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Abstract

Laser-plasma technology has the potential to provide compact sources of bright femtosecond

X-ray, which may soon serve as an alternative to their conventional counterparts. Proof-of-

principle experiments have impressively demonstrated the sources’ prospects, yet the poor

stability and tunability drastically limit their scope of applicability.

Conventional systems have achieved their remarkable control over the source by progressive

improvement of the discrete stages of injection, acceleration, beam transport and radiation

generation. In this work we have adapted this approach for laser-plasma sources and made

advances on all individual parts of the source.

The manuscript is organized in the same, successive way. The first part of the thesis dis-

cusses new injection methods which permit to create either stable, tunable, mono-energetic

electrons or beams of elevated charge and bandwidth. In the second part we use tailored

density profiles to adapt the plasma cavity size. This rephasing allows us to accelerate elec-

trons beyond the conventional limits of wakefield accelerators. We also demonstrate for the

first time focusing of ultrashort electron beams in an all-optical laser-plasma lens. The last

part of the manuscript is dedicated to radiation sources. In particular we made significant

improvements to the laser-driven betatron source, namely the production of stable, polarized

X-ray from ionization injected electron beams and increased X-ray yield in density tailored

plasma channels. Furthermore we have studied bremsstrahlung conversion and Compton

backscattering, with emphasis on imaging applications.
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Résumé

Les progrès réalisés dans le domaine de l’interaction laser-plasma au cours des dix dernières

années ont permis de produire de nouvelles sources de rayonnement X pouvant rivaliser avec

les conventionnels synchrotron et tubes X. Ces nouvelles sources ont un fort potentiel mais

leur domaine d’applications reste très limitées en raison d’importantes fluctuations et du peu

de contrôle de leurs propriétés.

Ces sources sont basées sur le même principe qu’un Synchroton. Il n’agit d’accélérer des

électrons jusqu’à des vitesses relativistes et de les faire osciller de manière à ce qu’ils émet-

tent efficacement du rayonnement X. Afin de obtenir un meilleur contrôle de la source nous

avons étudié les différentes étapes conduisant à la production de rayonnement : l’injection

d’électrons dans l’onde plasma créée dans le sillage du laser, l’accélération et le transport de

ces électrons puis les méthodes permettant de les faire osciller. Le manuscrit présente les

progrès réalisés dans ces domaines.

La première partie est consacrée aux nouvelles méthodes d’injection d’électrons permettant

de produire des faisceaux d’électrons stables, mono-énergétiques et accordables ou de forte

charge à spectre large. Dans la seconde partie nous montrons comment accélérer des fais-

ceaux d’électrons au delà des limites conventionnelles des accélérateurs laser-plasma. Nous

démontrons ensuite une méthode innovante et entièrement optique permettant de focaliser

un faisceau d’électrons. Enfin, nous présentons les progrès réalisés dans le domaines des

sources X femtoseconde utilisant ces électrons relativistes, c’est à dire les sources Betatron

et Compton. Nous avons considérablement amélioré les propriétés de la source Betatron

en produisant des faisceaux de rayonnement X stables et polarisés. Nous avons également

développer un schéma permettant de découpler les étapes d’accélération et de production de

rayonnement. Concernant la source Compton, nous l’avons caractérisée et utilisée pour des

applications en imagerie X à haute résolution spatiale.
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Resumen

La tecnología de la interacción láser-plasma tiene el potencial de producir nuevas fuentes de

rayos X, brillantes, compactas y ultracortas que reemplacen o sean una alternativa viable a las

fuentes convencionales existentes. Experimentos recientes han demostrado los principios

básicos de estas fuentes y su increíble potencial, pero también su pobre estabilidad y poco

control, lo que limita el alcance de sus aplicaciones.

La tecnología de aceleradores convencionales ha logrado un alto grado de control en las

características de las fuentes de radiación ionizante mejorando progresivamente cada uno

de sus elementos como la inyección, la aceleración el transporte del haz y la generación de

radiación. En este trabajo utilizamos esta metodología de optimización individual para las

fuentes láser-plasma y reportamos avances en cada uno de estos elementos.

El manuscrito está organizado de la siguiente forma: Empezamos con un discurso sobre

nuevos métodos de inyección controlada para crear haces de electrones, explorando en partic-

ular la inyección por choque y la inyección por ionización. En la segunda parte presentamos

los primeros resultados experimentales acerca de la evolución de la energía de un haz de

electrones en un acelerador con un perfil de densidad previamente diseñado. Se demuestra

también la posibilidad de focalizar un haz de electrones ultracorto en una lente completa-

mente óptica, utilizando la estela lineal del pulso en un plasma de baja densidad.

La última parte del texto está dedicada a la generación de radiación. En particular reportamos

avances significativos en una fuente betatrón. Demostramos la producción de una fuente

estable y polarizada de rayos X producida por electrones inyectados por medio de ionización

retrasada. Finalmente reportamos la producción optimizada de rayos X en canales de plasma

sobre perfiles de plasma diseñados. Además, hemos estudiado la radiación de frenado y la

retrodispersión Compton, centrándonos en sus aplicaciones en imagen de rayos X.
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1 Introduction

From the earliest X-ray tubes to free-electron lasers the development of lightsources has been

linked to the control of four different stages: Electron generation, acceleration, beam transport

and finally radiation generation. The aim of this work is to apply the same staging philosophy

to the emerging technology of laser-plasma lightsources, ameliorating the source by individual

improvement of each element.

After an introduction to conventional accelerators and lightsources we will review qualitatively

plasma-wakefield generation and radiation generation. Subsequently we briefly introduce

some basic concepts of laser-plasma interactions in order to establish a foundation for the

main chapters.
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Chapter 1. Introduction

The discovery of the Higgs boson in 2014 is undoubtedly one of the greatest achievements in

modern science. It was only made possible by the large hadron collider (LHC), a 26.7 kilometer

long synchrotron, capable of accelerating particles to never preceded energies. The LHC is

one of very few large accelerators in the public spotlight, yet particle accelerators and X-ray

sources are nowadays ubiquitous in industrial, scientific and medical environments. Most of

these small sources still rely on technology developed in the first half of the 20th century, when

the development of industrial and scientific accelerators was still closely linked. This situation

changed when scientific accelerators started to outgrow the size of university laboratories,

needing own dedicated accelerator centers like CERN in Switzerland or DESY in Germany. This

concentration to a few accelerator centers per country has drastically limited the accessibility

to modern particle- and lightsources, despite their indisputable advantages for society. One of

the central aims of laser-plasma technology is to fill this gap between large-scale facilities and

common X-ray tubes.

1.1 X-ray sources: from discharge tubes to free-electron-lasers

The discovery of X-ray by Wilhelm Conrad Röntgen in 1895 [1] can be seen as the beginning

of a new era in science. Yet from a technological point of view, the era of modern X-ray and

particle sources commenced some years later, in the 1900s and 1910s. In fact, these two

decades mark the timeframe that was needed to go from a machine that ’accidentally’ created

X-ray to a device that was designed to do so.

The Crookes tube Röntgen used for his work creates electrons via field ionization of residual

gas in a discharge. The freed electrons are then attracted by the anode where they emit

radiation in form of bremsstrahlung and line excitation. Meanwhile the ions drift towards

the cathode, where they free electrons via collision ionization. Electrons originating from the

cathode can be accelerated to higher energies than the gas electrons and therefore radiate

more when they eventually hit the anode. These early X-ray tubes (also called ion X-ray tubes

or cold cathode Tubes) were not very efficient, hardly tunable and would stop working once

the residual gas in the bulb was exhausted.

The modern X-ray tube design, which operates at higher vacuum and wherefore all electrons

originate at the cathode, was developed later by Julius E. Lilienfeld in Germany [2] and William

D. Coolidge in the United States [3]. In Coolidge’s X-ray tube [4] electrons are created by

thermionic emission, heating a tungsten cathode to ∼ 2000◦C. The thermionic emitter itself

was already studied before, yet Coolidge was the first to achieve a vacuum good enough to

reduce the effect of positive ions. Figure 1.1 shows Coolidge’s focusing X-ray tube No.147,

which remarkably incorporates all main components of a modern X-ray source.

The principal component is the electron source, a closely wound tungsten spiral, the filament,

which is heated by a current of 3 to 5 Amperes to temperatures of 1890 to 2540 Kelvin. Elec-

trons are emitted from this spiral via thermionic emission, which is still the most common

cathode type for this application. Then there is a focusing device, consisting of a cylindrical

2



1.1. X-ray sources: from discharge tubes to free-electron-lasers

Hot Tungsten 
Cathode (25) 

Electron Source 

Molybdenum tube 
(21) 

Focusing Device 

High Voltage AC 

Accelerator 

Tungsten Target 
(2) 

Radiation 
generation 

Figure 1.1 – Schematic layout of Coolidge’s X-ray tube from the original publication in 1913.
The different parts of the tube are colored according to their function.

molybdenum tube that serves as electrostatic lens. Today this part is called the focusing cup; it

is used to control the way the electrons hit the target anode. The gap between cathode and

anode forms the accelerator, where a high voltage is applied to accelerate electrons in an

electrostatic field. In Coolidge’s case up to 100 kV were reached, which is within the range of

modern diagnostic X-ray generators (∼ 20−150 kV). Once electrons are accelerated, their en-

ergy is converted into radiation when they hit the anode, which is tilted so X-rays are emitted

outwards the bulb. The target is made of tungsten which produces, as a heavy element, more

bremsstrahlung and provides good heat resistance. Nowadays tungsten remains most widely

used, though sometimes alloys with better resistance to surface damage (e.g. 10% rhenium

and 90% tungsten) or materials with specific emission lines (e.g. molybdenum or rhodium)

are employed.

While the hot cathode tube was (and still is) perfectly adequate for most medical applications,

scientists were interested in producing even harder X-ray. To do so, electrons had to be

accelerated to higher energies, thus requiring field strength enhancement. Such could be

3



Chapter 1. Introduction

provided using Van-de-Graaff (1929) and Cockcroft-Walton (1932) generators, which allowed

the acceleration of electrons to MeV level, yet at even higher field strength sparks would form.1

A major breakthrough in accelerator history was when Ising conceived (1925) and Wideroe

demonstrated (1928) the principle of resonance acceleration. In lieu of electrostatic accel-

eration, these machines operate with a time-dependent electric field and increase particle

energies successively in several accelerating structures. With this principle Wideroe’s first 1

MHz radio-frequency linear accelerator (RF linac) managed to accelerate particles to twice the

AC voltage using a drift tube and two grounded electrodes. His work inspired Ernest Lawrence

in the United States to apply the resonance principle to a cyclic accelerating structure, thus

increasing the particle energy during each revolution. However his cyclotron, which remains a

widespread ion source nowadays, is limited to non-relativistic particle velocities in order to

maintain synchronization and is therefore inadequate for electron acceleration. Instead, two

other cyclic accelerator concepts were conceived and implemented shortly after: The betatron

and the synchrotron [5].

The concept of a betatron is to accelerate electrons in a tangential electric field that is produced

by a changing magnetic flux. In contrast to the cyclotron such a configuration can achieve

relativistic energies. But, as Iwanenko and Pomeranchuk pointed out in 1944 [6], it will

be ultimately limited by radiation losses, because particles are continuously accelerated in

perpendicular direction in order to keep them on a circular orbit. At the same time Julian

Schwinger also developed a theory for the radiation in a betatron [7], indicating that the

radiation emission of a 100 MeV betatron should be peaked in the near infrared or visible part

of the spectrum. In 1945 McMillan proposed the synchroton [8], which is in many ways a

combination of Wideroe’s RF linac and Lawrence’s cyclotron. A crucial difference to preceding

cyclic accelerator concepts is that the synchrotron cannot accelerate particles initially at rest,

but instead needs an injector to provide electrons at already relativistic velocities. Shortly after

the first demonstration of a synchrotron by Goward and Barnes [9], a more powerful 70 MeV

machine was realized under the direction of Pollock [10]. It was his team that discovered the

visible signal Schwinger predicted [11], now known as synchroton radiation.

The consecutive development of this 1st generation of synchrotons concentrated initially on

reaching higher (over 1 GeV at ElettroSincrotrone in Frascati) and higher (6 GeV at DESY, etc.)

beam energies. Later the development of storage rings provided higher beam currents and

greater stability. However all these facilities were hybrid sources for high energy particles and

radiation. The construction of facilities exclusively dedicated to the production of synchrotron

radiation, like the SRS in Daresbury (UK) [12], marks the beginning of what is called 2nd

generation facilities.

Though synchrotron radiation was discovered in cyclic accelerators, it was soon realized

that also magnetic fields that alternate in the direction of motion could provoke transverse

1For high electric fields, field emission causes a local surface heating, which will then release particles into the
cavity. The gas is then ionized and as soon as the density rises sufficiently an arc form from the cathode to anode,
leading to what is called vacuum breakdown.
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1.1. X-ray sources: from discharge tubes to free-electron-lasers

Electron Source 

Beam optics 

  

Accelerator 

 Experiment 

Undulator 

Figure 1.2 – Artistic view of a typical modern lightsource. The different parts responsible
for electron generation and injection, acceleration, collimation and radiation generation are
marked accordingly.

oscillation of electrons and therefore create radiation. For large oscillation amplitudes an

observer will measure short flashes of radiation, whose Fourier transform corresponds to a

wide radiation spectrum. With the same qualitative argument we see that the low amplitude

undulator case will have a very narrow energy spectrum peaked around a fundamental fre-

quency. This search-light model was introduced by Motz [13], who built the first undulator at

the Stanford 100 MeV linac in 1953, producing 400 nm radiation [14]. Undulator radiation has

a much better spatial and temporal coherence than Wiggler radiation, which is why modern

synchrotrons are using mostly undulator configurations.

The high spatial coherence of synchrotron radiation also gave birth to a new generation

of X-ray imaging techniques. For example, X-ray imaging using phase contrast has many

advantages over conventional absorption contrast imaging [15].

In 1971 Madey proposed the free-electron-laser (FEL) [16], which was shortly later experimen-

tally realized at Stanford [17]. The FELs mimics the concept of conventional lasers [18], but

replaces the lasing medium with a relativistic electron beam. As operated in the IR or visible

(3.4µm for [17]) an optical cavity can be set up using mirrors, with the light intensity growing

by a few percent each passage.

However, in the extreme ultraviolet and X-ray regime it is not possible to set up a multi-pass

cavity using mirrors. Instead an effect called microbunching becomes important. Mircobunch-

ing means that the normally more or less equally distributed electrons, due to interactions

with the radiation, drift into small bunches at a distance of one radiation wavelength each.

This effect leads to coherent emission of all electron states and thus, laser-like properties.
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Chapter 1. Introduction

Providing much higher gain than the conventional technique, spontaneous emission can be

self-amplified within a single pass [19, 20].

First lasing in this SASE configuration was demonstrated in 2001 at the Advanced Photon

Source, located at Argonne National Laboratory, [21] and emission in the Ångstrom regime was

reached in 2011 at the SLAC Linear Coherent Light source [22]. Currently many projects are

underway to built X-Ray FELs around the world, providing light at unprecedented intensities

[23]. Also many facilities aim to replace the amplification of spontaneous emission by a seeded

operation [24], which would provide even better temporal coherence. There are many ways

such a seed can be implemented, e.g. by self-seeding [25], HHG seeding [26] or echo-enabled

harmonic generation [27]. The typical layout of an FEL is shown in Fig. 1.2.

X-FELs are the pinnacle of accelerator and lightsource development, but even more, they

are the result of a century of research and development around the same basic elements as

Coolidge’s X-ray tube from 1913: electron source, accelerator, beam transport and radiation

generation.

1.2 Merits of laser-plasma technology

Modern lightsources are not only extraordinary by means of their scientific value, but also

due to their enormous scale. For example, the european XFEL consists of a 1.7 kilometer

long accelerator and undulators of over 100 meter length [28]. And a typical 3rd generation

synchrotron has a circumference of some hundred meters, with beam lines extending up to

some tens of meters [29]. These large dimensions are dictated by technological limitations:

First, the accelerating gradient in conventional accelerators cannot exceed ∼ 150 MV/m due

to the vacuum breakdown limit. Second, the magnet arrays used in undulators cannot be

made arbitrarily small, but have a minimal period of some millimeters.

So it is obvious that the spread of any technology based on synchrotron radiation, regardless

its advantages, will be hindered by the limited accessibility of synchrotron sources itself.

Laser-plasma lightsources may be able to surpass these limitations.

As an example, Figure 1.3 shows the results from an experiment on laser-driven electron

acceleration with the ASTRA GEMINI Laser in 2011 [30]. During the experimental campaign,

electrons were accelerated over ∼ 10 millimeters to GeV-energies and emitted synchrotron-

like hard X-ray. The spatial coherence of these X-ray was indeed sufficient to acquire phase

contrast radiographies of a specimen.

This experiment is representative for the state-of-the-art of laser-plasma lightsources at the

beginning of this work. In the following we will therefore discuss qualitatively how this

experiment worked and what particular challenges the technology still faces.

6



1.2. Merits of laser-plasma technology

Figure 1.3 – Top: Electron beam spectrum and X-ray signal observed in 2011 at the ASTRA

GEMINI Laser. The laser plasma accelerator is operated in the transverse self-injection regime
and therefore the beam energy spread and divergence are elevated. Bottom: Propagation-
based phase contrast images of a specimen at different angles from the same experiment.

1.2.1 The self-guiding, self-injecting and self-radiating regime

The main advantage of laser-plasma accelerators to conventional RF accelerator technology

is that the plasma can sustain substantially higher fields, reaching TV/m. A laser-plasma

accelerator (LPA) can boost electrons to GeV level energies over a centimeter, within a plasma

cavity of some tens of micrometers. Also, due to the small dimensions of the cavity the

accelerated electron bunches have a much shorter duration than in conventional facilities,

usually in the femtosecond regime. In addition, the source size is in the micrometer range,

hence the phase space volume of the beam is very small. Most early experiments on laser

wakefield acceleration share on a fairly simple setup, relying in laser self-focussing and self-

injection of electrons.

In this scheme a high power laser is focused onto a helium target, which is immediately ionized

by the leading edge of the pulse. The intensity gradient of the focused laser leads to a net

acceleration of particles away from high intensity regions. This so-called ponderomotive force

scales as Fp ∝〈~A2〉/γ, so the force is proportional to the mean square of the vector potential

〈~A2〉 and thus acts in the same direction for both electrons and ions. Yet the widely different

inertia of both species lead to disparate acceleration rates ẍi on = me
mi on

ẍe ¿ ẍe , wherefore

charge separation is induced. Depending on the laser intensity this can range from a weak

density perturbation up to a complete electron blowout, cf. Fig.1.4.

The transverse extension of the electron rarefaction is usually of the order of the laser spot

size, while its length is restricted by the fact that electrons feel a restoring force from the

ion background. The longitudinal extension is therefore limited by the (relativistic) plasma

wavelength λp ∝√
γe /ne . The relativistic regime is reached if the laser potential is sufficient

7



Chapter 1. Introduction

accelerated 
electrons 

blow-out Secondary 
arches 

Laser  
propagation 

Figure 1.4 – Snapshot from a simulation of laser wakefield acceleration. Electrons are injected
in the back of the ion cavity formed behind the laser pulse (yellow). Due to initial transverse
momentum during the injection the electrons perform betatron oscillations within the cavity,
which leads to the emission of synchrotron radiation in direction of propagation.

to accelerate electrons to relativistic velocities, i.e. the normalized peak vector potential

a0 = e A0/me c2 > 1.

The ponderomotive expulsion and relativistic mass increase will also modify the dispersion

relation, leading to relativistic self-focusing of the laser pulse [31]. As discussed in the preced-

ing paragraph, fluctuation of the laser intensity due to this effect and variations of the local

ion density will affect the cavity size. This alters the wake velocity and facilitates injection of

background electrons into accelerating part of the cavity, a process known as self-injection.

Once injected, electrons will gain energy from the potential inside the plasma cavity, which is

close to parabolic in both longitudinal and transverse direction. Electrons with non-zero trans-

verse momentum perform so-called betatron oscillations and emit broadband synchrotron

radiation.

Apart from its poor shot-to-shot stability, the main disadvantage of this setup is that it is impos-

sible to tune parameters like electron energy, charge, divergence and X-ray yield independently.

For example, best X-ray results are achieved with electron beams of worst emittance, whereas

mono-energetic, well-confined electron beams emit weak up to non-measurable betatron ra-

diation. Ergo, there is a need for more sophisticated solutions which allow to control different

parameters of the laser-plasma source independently over a wide range. As in conventional

lightsources this involves individual improvement of the stages of injection, acceleration,

beam transport and radiation generation.
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1.2.2 Stages of laser-plasma lightsources and thesis outline

As laser-plasma accelerators operate in an already ionized medium, there is no need for a

cathode to provide free electrons. Instead the challenge of the injection stage is to couple

non-relativistc plasma background electrons to a plasma wave that propagates at a velocity

close to the speed of light. The first experiment to achieve this in a controlled manner was

presented in 2006 [32], and since then many different schemes have been proposed controlled

particle injection. Chapter 2: Injection of this work focuses on experimental results on two

injection mechanisms: injection due to cavity expansion in sharp density gradients and

injection triggered by late ionization of higher charge states.

Once an electron is injected, it will be accelerated until either the laser-driver cannot sustain

the wake anymore, or until the different velocities of electrons and driver let the electrons go off

resonance, resulting in deceleration. In order to mitigate the effects of such dephasing, it has

been proposed control the wake velocity via density tailoring. In Chapter 3: Acceleration we

present analytical, numerical and experimental results on electron rephasing in the blowout

regime using sharp density gradients. Also, we present experimental data that suggest electron

acceleration beyond laser depletion due to wakefields driven by the electron bunch itself.

A central drawback of laser-accelerated beams is their large divergence compared to con-

ventional accelerators. If not collimated close to the accelerator exit, this can lead to severe

degradation of the beam quality. Yet conventional beam optics are not powerful enough to

achieve collimation on a millimeter scale. In Chapter 4: Beam Transport we will discuss

how transverse wakefields can be used instead. Following a theoretical comparison of such

plasma lenses to conventional beam optics, we present experimental results on electron beam

focusing in a laser-driven wakefield lens. Furthermore we introduce the concept of electron

defocusing via density tailoring, which can possibly amplify betatron radiation.

Speaking of which we come to the last stage: Chapter 5: Radiation Generation. Here we are

going to discuss several methods to produce energetic photon beams with laser-accelerated

electron beams. First we use bremsstrahlung conversion, similar to a conventional X-ray tube,

to create MeV level radiation. This techniques has been demonstrated before, however the

combination with ionization injection allows the - to our knowledge - first stable operation of

such a source over hundreds of shots. Then we present results on synchrotron sources. First

we investigate radiation generation via Compton backscattering. This section comprises a

numerical investigation of different scattering geometries and experimental results using an

all-optical scheme presented a few years ago. Finalizing the work, a larger part is dedicated to

the improvement of betatron radiation, showing significant signal enhancement in density

tailored plasmas and increased stability and polarization for ionization injected beams.

9



Chapter 1. Introduction

1.3 Basic laser-plasma interaction and acceleration

In this section we will establish a theoretical basis of laser-plasma interactions that we are

going to build up on in the following chapters. Principal findings and definitions are also

reviewed in the formulary.

1.3.1 Vlasov-Maxwell system

Most generally we are interested in the evolution of a particle distribution in space, velocity

and time f (~x,~v , t ). In a collisionless system, were particles are neither created or destroyed,

the continuity equation is valid

d f

d t
= ∂ f

∂t
+∇x ·

(
∂~x

∂t
f

)
+∇p ·

(
∂~v

∂t
f

)
= 0. (1.1)

In a electron-ion plasma, where the term ∂t~v is associated to the Lorentz force, we find that

evolution of the distribution function is given by the Vlasov equations

∂ fe

∂t
+~ve ·∇x fe −e

(
~E + ~ve

c
×~B

)
·∇p fe = 0 (1.2a)

∂ fi

∂t
+~vi ·∇x fi +Zi e

(
~E + ~vi

c
×~B

)
·∇p fi = 0 (1.2b)

coupled to the Maxwell-equations (cgs-units)

∇×~B = 4π~j

c
+ 1

c

∂~E

∂t
∇ ·~B = 0 (1.3a)

∇×~E =−1

c

∂~B

∂t
∇ ·~E = 4πρ (1.3b)

where

ρ = e
∫

(Zi fi − fe )d 3p, ~j = e
∫

(Zi fi~vi − fe~ve )d 3p. (1.4)

This set of equations completely describes the behavior of a collisionless plasma. However,

in order to extract useful information from it we need a way to solve these equations in

some way. In particle-in-cell (PIC) codes the Maxwell equations are solved on a numerical

grid. Meanwhile the Vlasov equation is solved continuously using a set of macroparticles,

each usually representing ∼ fC of charge, to probe the density function. PIC codes are the

most popular numerical solver for this problem and were used throughout this work, for

example to obtain Fig.1.4. Yet they are numerically demanding and to get first intuition how

the laser-plasma interaction works we will pursue a reduced analytical approach.
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1.3. Basic laser-plasma interaction and acceleration

1.3.2 One-dimensional plasma waves

Let us now consider a simplified set of equations, treating the plasma like a fluid. For the

moment we are not interested in the velocity but the density distribution, which can be

obtained by integrating Vlasov equation over velocity space d3v , i.e.
∫ d

dt f (x, v, t )d3v = 0. This

leads to the continuity equation of particle density, whose unidimensional form is written as

∂t ne (z, t )+∂z j (z, t ) = 0. (1.5)

It is common to describe the interaction in a frame moving at the phase velocity vφ along the

z-axis

ξ= z − vφt and τ= t (1.6)

where the laser pulse appears only slowly varying in proper time τ and is nearly stationary.

This quasi-static approximation allows us to express the differentials ∂ξ and ∂τ in terms of the

phase velocity of the pulse. Also, the electrodynamic Maxwell equations can be reduced to the

electrostatic Poisson equation. As shown in [33] this leads to the reduced system

d 2Φ(ξ,τ)

dξ2 =−k2
p (n0(τ)−ne (ξ,τ)) = k2

pδn(ξ,τ) (1.7)

δn = ne −n0 =
(

1

1− vz /vφ
−1

)
n0, (1.8)

where we have expressed the current j = −ene vz in terms of electron density ne and fluid

velocity vz . In the limit βφ→ 1 we get then

1

k2
p

∂2

∂ξ2Φ= ne

n0
−1 = β

1−β = β

1−β
γ

γ
= pz

γ−pz
. (1.9)

What is missing now is an expression for the particle momentum evolution pz in terms of the

potential. Such can be found from the relativistic Lagrangian for an electron in an external

fieldΦ(ξ) [34]

L =−
√

1−β2
z +Φ(ξ), (1.10)

which via Legendre transformation leads to the Hamiltonian 2

H = γ(1−βzβφ)−Φ(ξ). (1.11)

As there is no explicit time dependence, the Hamiltonian is conserved H (t ) = const., where

the constant is defined by the initial conditions. For a particle initially at rest (pz (t = 0) = 0

2H = P · ξ̇−L = pz (βz −βφ)−L = − pz
βz

(β2
z −βzβφ)+γ−1 −Φ(ξ) = −γ((1−β2

z )+ (1−βφβz ))+γ−1 −Φ(ξ) =
γ(1−βzβφ)−Φ(ξ).
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Chapter 1. Introduction

and γ(t = 0) = 1) we find

γ= 1+Φ+pz . (1.12)

It can be shown [33] that the transverse particle momentum p⊥ follows the vector potential a

and as the energy of a relativistic particle is given by γ=
√

1+p2
⊥+p2

∥ , we find

γ= 1+pz → γ2 = 1+2pz +p2
z = 1+p2

⊥+p2
z = 1+a2 +p2

z (1.13)

and therefore we find an equation for the longitudinal momentum

pz = 1+Φ
2

(
1+a2

(1+Φ)2 −1

)
(1.14)

From (1.12) we know that 1+Φ= γ−pz and so we can combine (1.9) and (1.14) to the non-

linear one-dimensional plasma wave equation

∂2

∂ξ2Φ= 1

2

(
1+a2

(1+Φ)2 −1

)
k2

p . (1.15)

In the upper frame of Fig.1.5 solutions for the potentialΦ, the electric field E and the density

perturbation δn based on (1.15) are shown. The plasma wave is excited by a sin2-envelope

laser pulse with a duration of τ0 = λp /2c0. The field strength is expressed in units of the

electron rest mass me c2, which is convenient to distinguish between the linear non-relativistic

regime and the non-linear relativistic regime. In this case the normalized peak vector potential

a0 = e~A0/me c has a value a0 = 0.2, i.e. the laser pulse induces only weak density perturbations

and the transverse electron motion remains non-relativistic (p⊥ ¿ me c2).

1.3.3 Linear wakefields and particle acceleration

We have seen in Fig.1.5 that the electric field in the wake of the pulse seems close to sinusoidal.

Assuming a weak excitation (a ¿ 1 andΦ¿ 1) the wave equation (1.15) reduces to(
∂2

∂ζ2 +k2
p

)
Φ= k2

p
〈a2〉

2
. (1.16)

Here 〈a2〉/2 is the ponderomotive potential of the pulse, which represents the average effect

of the field integrated over a laser cycle. In a similar way one defines the one-dimensional

ponderomotive force Fp = ∂ξ〈a2〉/2 as the net effect of the Lorentz force over one laser period.

Equation (1.16) is an inhomogeneous Helmholtz equation and it can be shown [35] that for a

laser pulse at position ξ0

Φ= a2
0

4
cenv sin[kp (ξ−ξ0)]. (1.17)
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1.3. Basic laser-plasma interaction and acceleration

Figure 1.5 – Upper frame: Solution of the one-dimensional wakefield equation for a pump
pulse with a peak field strength a0 = 0.2 and a sin2-shaped envelope with FWHM of λp /2.
The laser induced density perturbation (linear plasma wave) is marked in green, while the
longitudinal electric fields are in blue and the potential is plotted in yellow. For visualization
purposes the sign of δn is flipped and both Ez andΦ are plotted in arbitrary units.
Lower frame: Solution of the hamiltonian for the above potential. The injection (discussed
in Ch.2) is marked in yellow. We define an electron as injected into the wake as soon as it co-
propagates with the wake, i.e. pz = mγφc2. During the acceleration process (shown in blue),
the electrons gains significantly in energy, until it has advanced over half a plasma wavelength
(linear dephasing length), when it starts to experience decelerating longitudinal fields (red).
Note that the above solution is normalized in terms of the plasma density, meaning that it is
just dependent on the pump pulse and not on the density anymore.
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Chapter 1. Introduction

Here cenv is a coefficient that reflects how well the pulse envelope couples to the wakefield.3

From (1.17) we see that the electric field Ez =−∂zΦ evolves according to

Ez =
a2

0

4

mcωp

e
cenv cos[kp (ξ−ξ0)], (1.18)

which is indeed sinusoidal. Assuming a resonant pulse (cenv ∼ 1.5), we find that the maximum

field strength is of the order of

|Ez,max | ∼
a2

0

3
×96

√
n0[1018cm−3] GV/m. (1.19)

This means that in the above scenario with a0 = 0.2 and assuming a plasma density of n0 =
1018cm−3 the electric fields reach over 1 GV/m. This is an order of magnitude higher than the

strongest fields achievable in conventional RF cavities, whence the attractiveness of plasma

waves for acceleration. As we will discuss in Sec.3.2 the fields can reach even beyond TV/m in

the highly non-linear regime.

As we have already derived an equation for the Hamiltonian and the wake potential, we can use

classical mechanics to calculate the energy gain of a particle with a given initial momentum

pz = γβz . The solutions are plotted in the lower frame of Fig.1.5.

If βz ¿βφ the electron gets periodically accelerated and decelerated. In the co-moving frame

the electron travels in opposite direction to the laser (i.e. right-to-left) and so the interaction

length in the laboratory frame is of the order of some plasma wavelength λp . In contrast

an electron with a much greater momentum pz > mγφc2 would catch up, co-propagate and

then eventually outrun the plasma wave. As the electrons move into the same direction, the

interaction length is of the order λp /(βz −βφ) Àλp . This allows the particle to gain significant

energy from the plasma wave. However, in this case we only accelerate particles that are

already relativistic.

A special case is the regime in between, within the separatrix. Here particles are originally

slower than the driver, but once they experience the wakefield, they are accelerated and catch

up, i.e. βz >βφ.4 In the following Chapter 2: Injection we are going to discuss in detail how

this is realized experimentally. Once injected, electrons are co-propagating, which means

that the interaction length - and therefore the acceleration length - is substantially increased.

However, βz > βφ implies that the electron advances with respect to the driver and it will

ultimately reach a region of inverse, decelerating electric field. Such dephasing is the limiting

3Depending on the pulse shape the coefficient is

cenv = [1− (kpσz /π)2]−1 sin(kpσz ) (sin2 pulse)

cenv =
√
π/4log(2)(ωpτ)exp[−(ωpτ)2/16log(2)] (gaussian pulse)

4In the co-moving frame this just means that they turn.
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1.3. Basic laser-plasma interaction and acceleration

factor of most laser-plasma accelerators and in Chapter 3: Acceleration we will discuss how

to mitigate phase detuning by changing the driver velocity.

1.3.4 Laser pulse propagation

Both the injection and the acceleration processes are closely linked to the phase velocity of

the plasma wave vφ. At a constant plasma density vφ is entirely determined by the laser driver

and it will therefore be useful for the following chapters to introduce some concepts of laser

pulse propagation in cold collisionless plasmas.

In such a plasma the phase and group velocity are given by

vph = ω0

k
= c0

η
and vg = dω0

dk
= ηc0, (1.20)

where η=
√

1−ω2
p /ω2

0 is the refractive index. If the plasma frequency ωp is equal or higher

than the laser frequency ω0, the plasma is called overdense and the laser gets reflected. The

density at which this transition occurs is called the critical density nc . In contrast, for an

underdense plamsa (ne ¿ nc ) we can approximate η' 1−ω2
p /2ω2

0. While this relationship

is quite accurate for linear wakefield generation, intense laser pulses enter the regime of

relativistic optics (a0 > 1). As we have mentioned in the previous section, the plasma frequency

changes at relativistic intensities. This modifies the refractive index to η ' 1 −ω2
p /2γω2

0.

The average momentum gain comes mostly from transverse acceleration a0 = p⊥, so γ '
γ⊥

√
1+〈a2

0〉.

The laser induced particle motion will also locally modifying the plasma density as n = n0+δn,

which is the ponderomotive blowout. Including both effects we find [36]

η' 1− 1

2

ω2
p

ω2
0

(
1+ δn

n0
− 〈a2

0〉
2

)
, (1.21)

where we assumed again weak perturbations (δn ¿ n0) and field strength (a0 < 1).

The change of the refractive index creates a lensing effect, leading to self-focussing of the

laser pulse. According to its physical origin the δn component is also called ponderomotive

self-focusing [37, 38], while the a2
0 term is called relativistic self-focusing [39, 40]. The latter

is predominant for weak drivers. For a gaussian beam of waist w0 we can equate the beam

diffraction near focus (∂2w/∂z2 ≈ 4/ω2
0w3

0) with the relativistic self-focusing term (∂2w/∂z2 '
−(a0ωp /ω0)2/8w) and find that the spot size evolves according to [36]

∂2w

∂z2 = 4c2
0

k2
0 w3

0

(
1− 1

32
a2

0w2
0ω

2
p

)
. (1.22)
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Figure 1.6 – Particle-In-Cell simulation of the evolution of a laser pulse of 800 nm wavelength
(no chirp) in a plasma. The pulse is focused to 18 µm waist (∼ f/18), which corresponds
to a Rayleigh length LR ∼ 1.26 mm in vacuum. The focus is at the entrance of a gas cell at
z = 0.1mm. From this point the plasma density rises linearly from zero to 8.0×1018cm−3 at
z = 1.0 mm and remains constant beyond this point.
The left side shows the beam waist and duration for different propagation distances, while
the plot on the right side shows the evolution of the on-axis field strength. As the simulation
window advances at c0 the laser velocity can be measured as an angle. In this representation
the different velocities of the pulse front and the etching are clearly visible.

This equation indicates that the spot size will diminish if the right-hand side is negative, i.e.

a2
0w2 > 32/ω2

p . The term a2
0w2 is proportional to the laser power and we can therefore define

a critical power

Pc =
me c5

0

e2

ω2
0

ω2
p
' 17

ω2
0

ω2
p

GW (1.23)

for which the laser will undergo self-focusing [40]. Importantly the critical power is inversely

proportional to the plasma density.

Self-focusing as described above would be, in principle, a self-amplifying instability. But in

reality self-focusing only grows until the ponderomotive self-focusing term takes over in the

non-linear regime. This term is then ultimately counteracted by the recoiling force of the

ion background. Many experiments operate in this regime, where a quasi-stable equilibrium

exists. Once the laser has reached this matched spot size, it can be guided over several Rayleigh

lengths at relatively stable intensity [41].

To illustrate the complex pulse evolution, Fig.1.6 shows the results of a Particle-In-Cell sim-

ulation of the propagation of a laser pulse in a plasma. Up to z = 1mm we observe how the
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1.3. Basic laser-plasma interaction and acceleration

laser self-focuses. At the same time the pulse length reduces. This is a consequence of the

ponderomotive δn/n0 term, which leads to a reduction of the plasma density in the rear part

of the pulse. Accordingly the rear part propagates faster than the front, compressing the pulse

(cf. for example z = 0.7mm and z = 1.0mm).

But we also observe that from z = 1mm to z = 1.5mm the peak intensity shifts backwards. This

so-called etching is the typical signature of pump depletion. This term is important to ensure

energy transfer to the wake and it also antagonizes the defocusing effect of the longitudinal

ponderomotive force at the pulse front. An analysis based on the one-dimensional wave

model (1.15) finds that the etching velocity is given by

vetch '
ω2

p

ω2
0

c0. (1.24)

Interestingly this value is independent of the wake excitation term a0 and amplitude ∂n, which

cancels out in the derivation [42]. Even this velocity is derived for the non-linear 1D wave

model, 3D Particle-In-Cell simulations [41] and experiments [43] find that the estimations

from the Decker model are quite accurate, even beyond its initial validity region.

The phase velocity of the plasma wake, given by the propagation velocity of the plasma wave

excitation is therefore of the order of the laser group velocity minus the etching term, i.e.

vφ ' vg − vetch '
(

1− 3

2

ω2
p

ω2
0

)
c0. (1.25)
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2 Injection

This chapter concentrates on the problem of particle injection into a propagating accelerating

field. First we discuss conventional solutions and their performance, followed by a qualitative

overview of laser-plasma injection techniques.

All experiments performed for this work relied on three main injection schemes, namely self-

injection, density downramp injection and ionization injection. We will discuss these methods

and give examples for beam quality obtained using injection in sharp density transitions and

ionization injection.
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Chapter 2. Injection

As discussed in the introductory chapter linacs, cyclotrons, synchrotrons and also laser wake-

field accelerators are types of what is called resonance accelerators. In such an accelerator the

accelerating field is time-dependent and particles need to stay in phase for sustained energy

gain. As a consequence it is necessary that particles are injected into the accelerator stage

with a propagation velocity ve close to the phase velocity vφ of the field.

In conventional accelerator facilities the creation and pre-acceleration of the electron beam is

done using a separate device, called the electron gun. An electron gun consists of a cathode

that emits electrons, which is coupled to a DC or RF field. In this field, electrons are acceler-

ated to mildly relativistic energies, from whereon they can be injected into the accelerator.

While this works well for conventional accelerators, injection into the a plasma wakefield is

challenging due to the small cavity size (λp ∼ 10−5 m) [44, 45, 46].

Instead, laser-wakefield accelerators rely on the injection of electrons from the plasma itself.

Numerous variants of such injection schemes exist, but in an illustrative way we can divide

them into two main approaches. The first one is analogous to the electron gun in conventional

accelerators, i.e. to accelerate the plasma electrons to relativistic energies. An example of

this is optical colliding pulse injection [32]. The second method is to slow down the wake by

inducing an expansion of the cavity. As the wake size depends on the plasma density ne and

the laser intensity a0, variations of these can therefore induce injection. Such variations can

happen within the plasma itself, e.g. from self-focussing of the laser pulse. Or can be created

intentionally e.g. with a density downramp.1

2.1 Conventional injectors

As we have seen before, the main task of the injector is to provide electrons and manage to

inject them in phase into a resonance accelerator. In a plasma accelerator the first task this

is straightforward as the plasma itself serves as supply of free electrons. However in solids

the situation is different, as electrons are still bound and first have to be freed. In fact, the

electron extraction at the cathode already defines many beam parameters for the subsequent

acceleration.

2.1.1 Cathodes and electron guns

In solids there are three main approaches to free electrons, cf. Fig.2.1. One is to heat the solid

so the electron energy distribution extents beyond the binding potential, known as thermionic

emission [47, 48]. Another way is to apply a strong electric field and therefore increase the

1The central aim of this chapter is to familiarize the reader with different injection methods and to evaluate
their performance for coupling them to subsequent stages of a laser-plasma lightsource. An extensive discussion
of our results on controlled injection schemes will be published in E.GUILLAUME, Control of electron injection
and acceleration in Laser-Wakefield Accelerators, Ph.D. thesis (2015) [89].
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Figure 2.1 – Illustration of the principle of the three main cathode types: Field emitters,
thermionic emitters and photocathodes.

tunneling probability of electrons to escape. This process is known as field emission [49, 50].2

Third, electrons can gain energy to escape from photoelectric absorption [51, 52].

Thermionic and field emitters are widespread due to the simplicity and robustness of the

setup. However, the electron bunches created in such devices have a long duration (>100

ps) and are difficult to control. On the contrary, in photoemitters the electron properties are

determined by the exciting laser [53], which means that very short pulses with low emittance

can be created.

The two main families are semiconductor and metal photocathodes. Semiconductor cathodes

can provide high current beams and usually have a good quantum efficiency in the visible,

thus allowing the usage of standard (green) lasers. In contrast they require a very good

vacuum quality for operation and have the shortest lifetime among all cathode types. Metal

photocathodes are much more durable and due to their faster response time (femtoseconds

vs picoseconds) they can be used to produce ultrashort electron bunches. Their principal

drawback is that metals have a work function of some eV (e.g. 4.65 eV for copper), which

requires UV light to free the electrons.

Once electrons are freed they have to be boosted to relativistic velocities. Note that at the

moment of emission they are still non-relativistic, so space charge effects are much more

important than in any other part of the accelerator. Therefore beam optics are used to shape

the beam, while either DC or RF fields are used to accelerate it towards subsequent accelerating

sections.

For lightsources the whole range of electron gun types is employed, depending on the specific

needs of the facility. For example, at ESRF a thermionic gun produces either 1ns-1nC or

1µs-10nC bunches at an emittance of 35 and 15 mm.mrad, respectively. The bunch is then

accelerated to 85 keV in a DC field and coupled to RF cavities [54]. In contrast, the LCLS free

electron laser requires short low-emittance beams. It therefore uses a copper photocathode

that is illuminated with a 255 nm UV laser. This cathode is capable of producing up to 1nC

2Field emission is conceptually related to field ionization we will discuss later in this Chapter. Also, it is one of
the primary causes of vacuum breakdown which limits conventional accelerator field strengths, cf. Ch.3.
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bunches at 10ps duration with an emittance of 1.2 mm.mrad, which are pre-accelerated in a

115 MV/m RF cavity [55].

2.1.2 Conventional linac as injector of LPAs

Laser-plasma acceleration was demonstrated for the first time in the early 1990s using external

injection of electrons into a laser-plasma beat wave. For example the UCLA group showed

trapping of 2 MeV electrons inside a wake with γφ = 33. In these experiments electrons were

accelerated in a gradient of ∼ 2.8 GeV/m up to 30 MeV. Such plasma beat wave experiments

used picosecond laser pulses, with injection electron beams of ∼ 10 ps in the case of [56].

Additionally there was a jitter of ±50 ps between both laser and electron beam, leading to an

unstable operation with strong energy variations.

However, since the early 2000s another acceleration scheme, resonant laser wakefield acceler-

ation prevails the field of laser-plasma acceleration. In this scheme it is even more difficult to

inject the beam as one needs femtosecond bunches and very low jitter.

Due to the short pulse duration, photocathode based injectors are best suited to be coupled to a

laser wakefield accelerator. This is for example one of the goals of REGAE (Relativistic Electron

Gun for Atomic Exploration) at DESY. Here a Cs2Te p-type semiconductor photocathode

is used as source for low charge (∼ 1 pC) electron bunches. Including a section for beam

compression, this gun should provide 10-15 fs beams at 3-5 µm RMS width and 0.3 mm.mrad

emittance. With a final energy of up to 5 MeV, such an accelerator could be used for external

injection in wakefields. However, due to the very low charge produced, RAGAE and similar

facilities are principally intended for basic research on wakefield acceleration rather than for

applications.

2.2 Laser-plasma injection schemes

As we have seen in the preceding section it is challenging to use conventional electron sources

as injector for a wakefield accelerator. An easier way is to use electrons from the plasma

itself. As discussed previously the main requirement for injection into a wakefield is that the

electrons can maintain phase, which basically reduces to the simple condition that vz > vφ at

the rear part of the wake.

For the fluid model that we introduced in the first chapter the condition vz > vφ means that

part of the fluid elements is moving faster than the wave, i.e. the wave brakes. Earlier we have

seen that the static Hamiltonian for this system is H = γ(1−βzβφ)−φ. In the moment of

injection (vz = vφ), hence H = 1−φi n j . Momentum is conserved, so to trap a particle initially

at rest, the potential difference needs to be φi n j & 1. Using Poisson’s equation we find the
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2.2. Laser-plasma injection schemes

non-relativistic wavebreaking threshold in a cold plasma [57]

E0 '
me cωp

e
= 96 GV/m ×

√
n0 [1018 cm−3]. (2.1)

The above expression is only a rough estimation, as electrons are moving at a speed close

to the phase velocity during injection, so a relativistic treatment is unavoidable. This effect

becomes more important the faster the wave moves and increases the cold wavebreaking limit

by a factor
√

2(γφ−1).[58]

Earlier we derived the maximum field strength in the linear wakefield regime (1.19), which

we can now be rewritten as |Ez,max | ∼ (cenva2
0/4)×E0. The linear regime is only valid for

non-relativistic field strength (a0 ¿ 1), so it is apparent that |Ez,max | < E0, i.e. wavebreaking

cannot occur in the linear wakefield regime.

Self-injection

Instead non-linear plasma waves have to be excited in order to achieve electron injection via

wavebreaking. This was first demonstrated in 1995 [59] at the VULCAN laser which delivered 0.8

ps laser pulses at peak intensities of up to a0 ∼ 1.9. In this experiment plasmas with densities

ne > 1019 cm−3 were used. As the pulse is much longer than the plasma wavelength cτ0 Àλp ,

it is self-modulated and excites a non-linear plasma wave. Wavebreaking lead to continuous

self-injection of electrons into the wake and the acceleration resulted in Maxwellian electron

spectra extending up to 44 MeV.

The advent of high power Ti:Sapphire systems with durations below 100 fs allowed for the

first time to operate in a regime of resonant wake excitation (cτ0 ∼ λp ) while guiding the

pulse beyond the Rayleigh length via self-focusing (P > Pc = 17ω2
0/ω2

p GW). This permitted to

accelerate electrons up to ∼ 200 MeV [60], yet the spectrum was still Maxwellian.

In 2002 it was theoretically predicted that acceleration in the highly non-linear broken-wave

regime could lead to beams with monoenergetic features [61]. The publication raised a lot

of attention and became widely known as bubble regime. Even the simulated laser param-

eters (a0 = 10, 33 fs) were beyond the experimental means of the time, first narrow energy

spread beams were demonstrated experimentally shortly later [62, 63, 64]. Three different

mechanisms were suggested to explain the low energy spread in these experiments: (a) Tem-

porally cavity expansion induced by self-focusing of the laser pulse, (b) inhibited continuous

injection due to beam loading and (c) dephasing induced energy spread reduction. In most

experimental conditions a combination of all three effects will occur. We will discuss (c) in

Chapter 3: Acceleration and concentrate for the moment on (a) and (b).

We have stated earlier that the wake that forms behind the laser scales with
p

a0/ne . So self-

focusing of the laser will increase the wave period. This expansion has two effects. Firstly,

it will reduce the phase velocity of the wake as function of the phase φ within the wakefield.
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Chapter 2. Injection

Secondly, for a rapid expansion the symmetry between accelerating and decelerating field is

temporarily broken, meaning that an electron with proper timing can gain net energy from

the wake due to the expansion and gets injected. However, this requires proper timing and

hence results in a short injection length. Also, once particles are injected into the wake they

shield the ions and reduce locally the wakefield, a process also known as beam-loading.

We distinguish two regimes of such self-focusing driven self-injection [65]. If the initial laser

intensity is highly relativistic (a0 & 3−4), ponderomotive expulsion leads to a formation of

an ion cavity behind the laser pulse. In this case electrons can only get trapped transversely,

traveling along the sheaths. To date this transverse self-injection is the most common injection

mechanism in laser wakefield acceleration. At lower weakly relativistic intensities (a0 ∼ 1−3)

there remains charge on axis, which can then get injected via longitudinal self-injection.

Controlled injection schemes

Self-injection into the wake provides a simple method to trap electrons in a laser-wakefield,

however it is not directly controllable and subject to strong shot-to-shot fluctuations. During

the last years a number of controlled injection schemes have been proposed or demonstrated

that extent the reliability and tunability of the source.[66]

As the wake scales also with the plasma density, alternatively to increasing the laser intensity

a cavity expansion can be induced by a reduction of the plasma density. Again, for a weak

long gradient the main effect is the reduced phase velocity, leading continuous down-ramp

injection [67, 68]. In contrast, for a sharp transition, as for example possible to create with

shocks, the asymmetric acceleration leads to a short well-located injection [69, 70, 71].

Another way to gain net energy from the wakefield and facilitate injection is via late ionization.

To do so a high-Z gas (usually nitrogen or argon) is used to create the plasma. While the outer

shells are ionized by the pulse front, the deeper ionization states are only reached close to the

peak of the pulse. Electrons are therefore born late into the wake and ideally experience only

the accelerating part of the wake [72, 73, 74]. This ionization injection leads to continuous

injection along the axis, so the beams have a high charge but also large energy spread, as

demonstrated for example in [75, 76].

A conceptually similar proposed injection scheme is cold-optical injection [77]. Here a second

laser pulse leads to a spatially periodic and time-independent beatforce. This force would

then freeze the longitudinal electron motion during the decelerating phase of the wake, which

again allows the electron to gain net energy from the wake and get trapped.

Alternatively a beat can be used to increase a particles momentum, thus speeding up the

particle to facilitate injection. This colliding pulse injection has been demonstrated in 2006

[32] and it was shown that the method not only allows to produce monoenergetic particle

beams, but furthermore the energy could be tuned by varying the injection position. Also, the
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2.3. Self-injection

phase-space volume occupied by injected electrons can be varied by changing the scattering

pulse energy [78].

Let us now enlarge upon those injection schemes that we used for this work, i.e. self-injection

(Sec.2.3), density downramp injection (Sec.2.4) and ionization injection (Sec.2.5).

2.3 Self-injection

To date, self-injection remains probably the most common type of injector used in laser-

wakefield acceleration, as it requires no additional external measures. But even self-injection

is the simplest type of injection to be set up in an experiment, it is a physically complex

phenomenon which can occur under many different circumstances, e.g. in the quasi-linear

and the non-linear regime, for both evolving [79, 80, 81] and non-evolving bubbles [82].

To illustrate this, Figures 2.3 and 2.4 show the results of different Particle-in-Cell simulations.

The only changing parameter is the plasma density profile, which as we observe, greatly

changes the simulations’ outcome.3

All simulations have in common that the laser pulse evolves during propagation and after ∼ 1

mm it reaches a stable spot size. This matched field strength is found to scale about linearly

with the plateau density. At high plasma densities the wakefields that build up behind the

laser exceed the wavebreaking threshold. In this case electrons gain longitudinal momentum

that exceeds the phase velocity (cf. Fig.2.2) and continuous electron injection begins.

The lower the plasma density, the later this wavebreaking initiates. At ne = 1.5×1019cm−3

injection starts around 0.7 mm into the jet, while at 1.0×1019cm−3 it is delayed to ∼ 1.5 mm

(not shown here) and at 0.8×1019cm−3 no electrons are injected at all. This changes however as

we modify the density ramp. If the density increases much faster than self-focusing can react,

the bubble undergoes important laser-induced fluctuations. An expanding cavity will facilitate

injection and via this mechanism electrons can still get injected into the wake. However, in this

case injection occurs only over a short distance, leading to a quasi-monoenergetic electron

beam, cf. Fig.2.4. Also depending on the laser intensity, electrons can be either injected

transversely or longitudinally.

So we have seen that self-injection heavily depends on the laser and plasma evolution. Some

regimes are more sensible to fluctuations than others, e.g. low charged injection close to

injection threshold is usually more stable in terms of accelerated charge, energy, divergence

and pointing, than high density operation, see e.g. [83, 84]. For the aforementioned reasons

it is difficult to define a ’typical shot’ for self-injection as a whole. Instead we will give some

examples of experimentally observed spectra in the following.

3The other simulation parameters are as follows: Simulations are performed using CALDER-CIRC at a resolution
∆z = 0.3k−1

0 , ∆r = 1.5k−1
0 and ∆t = 0.96∆z, with a simulation mesh size nz ×nr = 1500×250. The laser pulse is

identically initiated as well, with parameters similar to SALLE JAUNE (duration of 30 fs, waist of 11.5 microns and
peak potential a0 = 2.5).
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Chapter 2. Injection

Figure 2.2 – Particle-In-Cell simulation with CALDER-CIRC of self-injection, with macro parti-
cles projected onto the density map. The upper frame is normalized to the wake phase velocity
γφ =ω0/ωp . In this representation it is clear that injected particles are faster than the wake
and we can see those which are going to be injected soon in the back of the bubble. In the
lower frame the momentum is color-coded in MeV. This illustrates the broadband nature of
the electron spectrum, with highest energies at the head of the beam. Pixel area corresponds
to the weight, color and transparency to the momentum.
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(b) 

(d) 

(f) 

(a) 

(c) 

(e) 

Figure 2.3 – Particle-In-Cell simulation with CALDER-CIRC of self-injection for two different
densities, 1.2×1019cm−3 on the left and 1.5×1019cm−3 on the right. Figures (e) and (f) show
the density profiles (solid green) and the corresponding laser pulse evolution (red). The beam
spectrum is represented with a logarithmic colorscale, with a charge difference of 106 between
yellow and dark blue. We see that increasing the plasma density anticipates injection. (a-b)
shows the electron density and laser pulse just before injection begins. In (c-d) we see how
electrons have been continuously injected into the cavity.
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Figure 2.4 – Particle-In-Cell simulation with CALDER-CIRC of self-injection at 0.8×1019cm−3.
On the left the density ramp is 0.5 mm long, as in Fig.2.3. Clearly this density is below the
self-injection threshold and no electrons are accelerated. But for a steeper density ramp (0.125
mm) we observe injection at around z ∼ 0.5 mm.

Longitudinal self-injection

Longitudinal self-injection occurs at moderately high laser intensities (a0 ∼ 1−3), when the

laser forms a wake, yet not all electrons are ponderomotively blown out. In this case it is

possible for electrons to get injected on axis, usually during laser self-focusing, when cavity

expansion facilitates injection. Longitudinal self-injection is limited to the quasi-linear regime

and thus only happens early during the laser propagation. It therefore leads to higher energies

than transverse self-injection. In contrast the injected charge is much less, typically some pC.

Longitudinally injected beams have usually a divergence of some millirad and a reasonable

shot-to-shot stability. Longitudinal self-injection will be used in Sec.4.4.3, cf. Fig.4.11.

Transverse self-injection

In contrast, transverse self-injection takes place in the blow-out regime, when sheaths elec-

trons get trapped during an expansion phase or when the wakefields exceed the wavebreaking

threshold. Most experiments that use self-injection operate in this regime and it is characteris-

tic that electrons that originate from this mechanism have higher transverse momentum.

The transition between both self-induced self-injection processes is related to the laser field

strength, which is usually defined by self-focusing and therefore density dependent. At lower

densities, below the transverse self-injection threshold, only longitudinal injection takes place.

However, at higher densities (or longer propagation lengths) transverse self-injection will

dominate by far, as this regime allows injection of some hundred pC into the wake. It has been

shown that when operated close to the injection threshold transverse self-injection can lead to

quasi-monoenergetic beams. Experiments relying on transverse self-injection are discussed

in sections 3.4.4, 5.4.2 and 5.5.3.
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2.4. Density transition injection

2.4 Density transition injection

Injection in a density transition is conceptually related to self-injection, with the difference

that the cavity expansion is triggered by a rapid reduction of the plasma density. [69, 85, 86]

To illustrate the effect we simulate the propagation of a laser with intensity a0 = 2.5 in a plasma

using CALDER-CIRC.4 The density of the plasma is chosen relatively low (ne < 1019 cm−3) in

order to avoid self-injection, as shown in Fig.2.5c. Also, there is an initial density upramp

which prevents injection before the jump. Fig.2.5a shows the wake just before the density

transition and (b) behind the 50µm long transition from ne = 1×1019 cm−3 to 0.6×1019 cm−3.

In Fig.2.5b we observe that there is now a short electron bunch where the trajectory crossing

occurred before the cavity expansion. The length of this bunch is less than a micrometer,

corresponding to a duration of . 3 fs. We will come back to the subsequent acceleration of the

bunch (Fig.2.5c) in Chapter 3. Let us now discuss how density profiles, such as used for this

simulation, can be realized in an experiment.

Creating sharp density transitions

It has been shown that sharp density transitions in a plasma can be created by either control-

ling the gas flow [70] or by means of a second laser pulse [87]. For this work we have chosen the

former scheme, where an obstacle is placed within the path of a supersonic gas flow, leading

to the formation of a shock front.

The sharpness of the density transition created through this process depends on ratio between

the fluid velocity v and the velocity of sound c at the location of the obstacle, which is given by

the Mach-number M = v/c. In subsonic gas flows the information about the obstacle in the

path can travel upstream, thus forming a smooth density profile. In contrast when the flow is

faster than the speed of sound a shock front, a sharp density and pressure transition forms.

In case of a thin object (e.g. as a wire) the shock propagates downstream in both directions,

forming an ’M’-like density profile [88]. On contrast, if a larger object is moved from outside

into the stream (for instance a razor blade), the shock can only propagate inwards of the jet, cf.

Fig.2.6a. The density profile changes downstream, with the transition becoming smoother. In

order to provide sharpest transitions, the laser is therefore focused just above the blade.

As stated before, sharpness and ratio of the density transition critically depend on the Mach

number. The Mach number increases with distance to the nozzle exit, so the shock becomes

sharper and more pronounced the further away the blade is placed from the jet. Also the

shock should occur early during the laser propagation in order to minimize laser depletion

and maximize the remaining propagation distance. For this the blade should be placed close

to the entrance of the jet.

4All simulation parameters except the density profile are the same as in Sec.2.3.
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(a) 

(c) 

(b) 

Figure 2.5 – Particle-In-Cell simulation with CALDER-CIRC of shock injection. (a) shows the
electron density and laser pulse just before the density transition. After the transition (b) an
electron bunch has been injected into the wakefield. (c) shows the plasma density profile used
in the simulation (green line) and the evolution of the beam spectrum for along the jet. All
parameters are the same as in Fig.2.3, except the density profile.
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In previous experiment metallic razor blades were used to create the shock. However, after

extensive tests, we found that using cut silicon wafers lead to better results.
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Figure 2.6 – Experimental setup for electron injection in sharp density transitions. (a) ANSYS

FLUENT simulation of shock generation in a supersonic gas flow. (b) Density and Mach number
transverse line-outs of the gas flow at z = 3 mm.

Experimental results

The experiment is performed at a background density below the self-injection threshold, in

this case ne ∼ 1.2×1019cm−3. This ensures that the results are not disturbed by additional

self-injection.

We find that shock injected beams are much more stable than self-injection. Typical angularly

resolved spectra are shown in Fig.2.7, where the peak varies within 121±5 MeV, corresponding

to 4.5% variation. In some experiments we observe a double energy peak structure, with two

beams separated by about 10 MeV.

We find that by moving the blade over a distance 0.6 mm to 1.3 mm (measured from the

center of the jet and x = 1.5 mm is outside the gas flow) the beam energy could be tuned from

75 to 250 MeV. The injected charge ranges from 3 to 15 pC, while the divergence is typically
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between 2-4 mrad. The variation in charge can be explaineded by the width of the shock,

which changes with the blade position. The closer the blade is placed to the center the wider

the shock becomes, and so does the injection region.

More results on shock injection will be presented in [89]. In the context of this project we have

employed shock injected beams for rephasing experiments in Sec.3.4.6.
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Figure 2.7 – Example for stability of typical electron spectra from shock injection.
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2.5 Ionization injection

Ionization injection is a type of longitudinal injection that relies on delayed ionization of elec-

tron states with an elevated ionization potential. For better understanding of the underlying

physics we will first discuss strong field ionization mechanisms as we encounter them in the

conditions of laser wakefield acceleration and then introduce in more detail the concept of

this injection scheme.

2.5.1 Strong field ionization

The binding energy of outer shell electrons is typically ∼ 5−15 eV, which means that direct

classical photo-ionization of these electrons would require ultraviolet light. However, if the

photon density is high enough, there is a finite probability of ionzation via absorption of

several low energy photons, a process which is accordingly called multi-photon ionization

(MPI). In MPI the electron is ionized via passing through a number of unstable meta-states, as

depicted in Fig.2.8. In order to be ionized the electron therefore needs to absorb a subsequent

photon within the lifetime of these meta-states. This decay time is related to the uncertainty

relation, so it is shorter the stronger an electron is bound and therefore the probability of

multi-photon ionization to happen decreases rapidly.

At even higher intensities, the laser field can perturb the atomic potential, thus increasing the

electron’s tunneling probability. The threshold between multi-photon ionization and field

ionization is estimated using the ponderomotive potential that we have introduced in Chapter

1: Introduction , which describes the average energy a free electron acquires during a laser

cycle:

Up = a2
0

4
' 0.93 keV× I0[1016 W/cm2]

(λ0[µm])2 . (2.2)

According to Keldysh, the ionization is governed by MPI if the adiabatic parameter

γk =
√

ζ

2Up
(2.3)

is larger than unity. Here ζ denotes the ionization potential. In contrast, for γk ¿ 1, field

ionization dominates. For field ionization itself we distinguish two regimes: the tunneling

ionization (TI) regime, where the potential barrier remains above the electron ground state,

and the barrier suppression ionization (BSI), when the electron state is above the potential,

leaving it essentially unbound. The threshold for barrier suppression to occur is estimated

assuming a coulomb potential of a hydrogen-like atom, disturbed by an electric field: V (x) =
Z e2/|x|− eE0x. For this potential we can estimate a critical field strength EBSI = ζ2/4Z e3 at

which the potential is suppressed below the ground state. From this we find that BSI occurs
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Figure 2.8 – Illustration of multi-photon ionization (MPI), tunneling ionization (TI) and barrier
suppression ionization (BSI).

for intensities

IBSI[GW.cm−2] ∼ 4ζ4
i [eV]

Z 2 . (2.4)

Once the field intensity I0 exceeds IBSI, an electron state will be rapidly ionized.5 From (2.4)

we find that the BSI threshold is of the order of ∼ 1016 W/cm2 for He2+ and N5+, whereas

ionization of Nitrogen’s K-shell (N6+ and N7+) requires ∼ 1019 W/cm2. For Argon there is a

similar gap between the L-shell and the M-shell.

Between those two regimes (γ ¿ 1 and I0 < IBSI ), tunnel ionization models are used to

estimate ionization rates [90]. First models for DC fields were established by Landau and

Keldysh. A popular model for AC fieds was introduced by Ammosov, Delone and Kranov (ADK).

In CALDER-CIRC the both Landau and ADK models are implemented. For estimations we have

used ADK according to the formulation used in [91]

WADK[fs−1] ≈ 1.52
4n∗ζi [eV]

n∗Γ(2n∗)

(
8.23×104

ζ3/2
i [eV]

E [a0]

)2n∗−1

exp

(
−2.74×104 ζ

3/2[eV]

E [a0]

)
(2.5)

where n∗ ≈ 3.69 Zζ−1/2
i is the effective principle quantum number and Z denotes the ion-

ization state. ADK overestimates ionization close to barrier suppression [92], so there have

be various proposals to extent the ionization rates towards and beyond the BSI threshold,

e.g. by Krainov [93] or Tong and Lin [94]. Solving the time-dependent Schrödinger equation

(TDSE) instead would provide better predictions, yet such calculations are too cumbersome

to be performed in the context of Particle-In-Cell codes. In fact, it is still debated which

implementation of ionization in a laser wakefield environment is most accurate, see e.g. [95],

and simulation results in this context may be rather qualitative than quantitative.

5There will also be some back-reflection from the potential barrier, but for our purposes we can assume that
this is essentially the threshold for complete ionization.
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Figure 2.9 – Estimation of ionization rates using the ADK model for a 30 fs FWHM sin2 pulse
with peak amplitudes a0 = 1.0 (left) and a0 = 2.0 (right).

Figure 2.10 – Left: Keldysh parameter γ for different ionization potentials ζ and laser intensities
at 800 nm wavelength. The blue line corresponds to γ= 1, i.e. below it multi-photon ionization
dominates, whereas for γ¿ 1 field ionization processes occur. The barrier suppression thresh-
olds for 1st and 6th ionization state are also plotted as function of the ionization potential.
Above MPI and well below BSI the ADK model is valid to calculate ionization rates. Those are
calculated for the Z = 6th ionization state on the right side. Here the areas governed by MPI
and BSI are shaded.
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Species Ionization Potential ζi [eV]

2He 24.58 54.42

7N 14.53 26.60 47.45 77.47 97.89 552.07 667.05

18Ar 15.76 27.63 40.74 59.81 75.02 91.01 124.32 422.45
478.69 538.96 618.26 686.10 755.74 854.77 918.03

Table 2.1 – Ionization potentials below 1 keV for the three gases used in the experiment:
Helium, Nitrogen and Argon.

2.5.2 Conceptual idea

Ionization injection is a longitudinal injection technique which is based on tunnel ionization

of higher ionization states. While weakly bound electrons are usually ionized at the pulse front,

the deeper shells are ionized later, close to the peak field. Figure 2.11 illustrates this for the

case of argon, ionized by a laser pulse with peak intensity a0 = 1. The lately ionized electrons

skip a part of the decelerating phase, which allows them to gain more net energy from the

wake than early ionized electrons. This is why the separatrix - and therefore the injection

threshold - is lower behind the laser pulse, cf. Fig.2.11.

An additional three-dimensional effect is that electrons can be injected longitudinally, which

further lowers the injection threshold as they can take advantage of stronger on-axis fields.

This is even possible in the blowout regime (cf. Chapter 3), because their parent nuclei remain

mostly unaffected by the ponderomotive force.

Figure 2.11 – Ionization injection of argon inner shell electrons into a plasma wake. The
blue region corresponds to ionization of lower ionization states, while the yellow region is
where ionization beyond Ar7+ occurs. Such electrons experience a reduced potential and are
therefore easier trapped, as indicated by the yellow line.
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Figure 2.12 – Sketch of the setup for ionization injection in pure high-Z gases.

When using high-Z gases we have to take into account that inhomogeneous ionization does

affect the laser propagation. As the laser intensity profile is usually centered around the

propagation axis, ionization leads to an augmented electron population on-axis. Hence

ionization creates a defocusing effect, inversely to ponderomotive self-focusing, which leads to

a density reduction. In most ionization injection experiments high-Z gases are therefore only

used as dopants in a helium-dominated gas, which evades ionization induced defocusing.

Yet in some cases the usage of high-Z gases can lead to desirable results. As defocusing limits

the acceleration length, such a configuration should be suitable for applications requiring low

beam energies. We have studied this regime using pure Argon and Nitrogen, as discussed in

the following.

2.5.3 Ionization injection in pure high-Z gases

The experiment was performed at LOA using the Salle Jaune Laser System which at the time of

the campaign delivered pulses with 28 fs duration (FWHM) and 2.1 J energy per pulse. The

beam is focused with an f/10 off-axis parabola to a waist of 22 µm, within which 52 percent of

the total energy are contained. This results in a peak intensity of 8.9×1018 W/cm2, i.e. a0 ' 2.0.

As target a 700 µm sonic gas nozzle is used. Shot at 1 mm above the nozzle exit, the resulting

plasma channel length is ∼ 1.5 mm with a gaussian-like profile. Producing relatively low

energies, a smaller magnet spectrometer was used in this experiment. Using a permanent

magnet of 20 mm length and 760 mT strength, electron energies between 7 and 50 MeV were

detected, with a transverse acceptance angle of 110 mrad.
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Figure 2.13 – Electron spectra for five consecutive shots in argon with ne = 1.9×1019 cm−3 and
1.1 Joule pulse energy.

Experimental results

Electron acceleration in pure nitrogen and argon shows to be remarkably stable, both spectrally

as well as in terms of charge, cf. Fig.2.13.6 As expected from ionization injection the accelerated

charge is quite high, almost reaching 1 nC per shot, however the continuous injection leads

to a broad maxwellian-like spectrum. Below 10 MeV the distribution has a temperature of

∼ 2 MeV, while the temperature between 10 and 30 MeV is ∼ 4 MeV. The beam divergence is

energy dependent. For the ’cold’ part of the spectrum the divergence reaches up to 20 mrad,

while the divergence above 10 MeV is about 10 mrad (FWHM).

In order to find the injection threshold of this regime, we varied the laser energy on target

using a rotating half-wave plate and a polarizer. We measure an injection threshold energy

of 200 mJ, corresponding to 1.6×1018 W/cm2 or a0 ' 0.9. Above this threshold the charge

increases close to linearly with the laser energy, at a rate of ∼ 110 pC per 100 mJ, cf. Fig.2.14.

The highest charge measured is 910 pC at the maximum energy of 1.1 Joule. The shot-to-shot

fluctuations are very small at maximum energy (percent level) and the strongest fluctuations

were measured at 0.36 Joule (23 percent). Furthermore we find that neither the electron

temperature changes significantly as we vary the beam energy. This is an unexpected finding,

as the wakefield amplitude strongly depends on the laser intensity.

Interpretation and numerical studies

In order to explain this behavior we have performed Particle-In-Cell simulations with CALDER-

CIRC. The grid resolution is ∆x = 0.2k−1
0 and ∆r = 1.5k−1

0 . The number of neutral nitrogen

6In the following we only present experimental data for acceleration in Argon, however the results in Nitrogen
are very similar.
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2.5. Ionization injection

Figure 2.14 – Upper frame: Total integrated charge for different energy on target. Bottom:
Electron spectra for the different energies. The line width corresponds to the error, showing
the high stability of the source.

macro-particles per cell is 100, which results in 500 macro-particles per cell after ionization of

the L-shell by the pulse front.

In the simulations we could reproduce that the electron temperature and divergence is almost

independent of the laser energy. As found experimentally, changing the pulse energy primarily

affects the total injected charge, cf. Fig.2.15. The absolute value of 1 nC in the simulations is

close to the experimental results as well. Note that in contrast the electron temperature above

10 MeV is overestimated to lie between 15-20 MeV.

More physical insight on this behavior is gained when we look at the wake structure for

different beam energies, as shown in Fig.2.16. For a driver with initial intensity a0 = 1.2 only

the primary wake and second arch are excited. However, the stronger the driver, the more

wake periods are sustained. The maximum charge that can be accelerated in each of these

wake cavities is limited by beam-loading, i.e. the fact that the space-charge of the beam

counteracts the wakefield. Beam loading is roughly proportional to the background plasma

density and the wake amplitude. As both of these are similar in all secondary arches, the
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Figure 2.15 – Simulated electron spectra for different initial beam energies.

maximum charge of a fully loaded wake is expected to scale with the number of wake periods.

While this argumentation explains the scaling of the accelerated charge, it does not provide an

explanation for the similar spectra at different energies. We find that this is a consequence of

the particular density profile used in the experiment.

During the first half of the jet there is a density upramp, which acts opposite to the downramps

we have discussed before: Here the plasma wavelength diminishes, resulting in an effective

speed-up of the phase velocity. Being a phase velocity, the value can even be superluminal,

thus preventing any injection at all. As a consequence, electrons ionized early during prop-

agation cannot be injected initially. Yet still they are almost trapped, meaning that they do

co-propagate, yet dephase and slip backwards from cavity to cavity. Once the density profile

flattens the wake slows down and the electrons get trapped, in a secondary arch. This process

occurs almost simultaneously through the whole wake structure, i.e. electrons in all arches

are injected at the same time and therefore reach similar final energies. This is depicted in

Fig.2.16 (d) which shows the x −γ phase space. Injection only continues until beam loading

has reduced the longitudinal wakefields below the threshold field, which we estimate to be

Ecr i t ' 0.47E0. Indeed, the wake amplitude after injection has terminated is very close to this

value in all arches.

In conclusion we find that electron acceleration in high-Z gases has the potential to provide

electron beams with very high charge (∼ nC) and extraordinary shot-to-shot stability. The

spectrum is maxwellian with temperature below 5 MeV and around 10 mrad divergence. In

Section 5.1.2 we will use this injection method in combination with bremsstrahlung converters

to create γ radiation.
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(b) 

(c) 

(d) 

(a) 

Figure 2.16 – Result from Particle-In-Cell simulations with CALDER-CIRC for the density profile
shown in inlet (a), with peak density ne = 1.9×1019 cm−3. (b) and (c) show the electron density
distribution close to the center of the jet for 0.4 J (a0 = 1.2) and 1.1 J (a0 = 2.0) laser energy
(peak intensity), respectively. Also shown are the longitudinal wakefields on axis (light blue).
(d) shows the phase space of electrons from the Nitrogen K-shell for 1.1 J beam energy, with
color-coded ionization position.
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2.5.4 Ionization injection in gas mixtures

When using high Z gases only as dopant the laser can propagate over longer distances, thus

allowing to reach higher beam energies. We have studied various gas mixtures, among whose

98:2 Helium-Nitrogen produced the most stable results.

As for self-injection there are many different regimes and it is not possible to present a ’typical’

ionization injection spectrum. But compared to self-injection in pure helium the beams from

ionization injection have usually a larger divergence, while maintaining a better pointing

stability. Beam charges vary as well, but tend to be higher than in self-injection.

A problem of ionization injection is the continuous injection which leads to large energy

spread. To avoid this we have tried to combine ionization injection with injection in sharp

density transitions. For this we used a gas mixture and the shock injector setup from Sec.2.4.

Sample results from a 95:5 mixture are shown in Fig.2.18. We observe beam energies of 148±7.5

MeV. Such 5 percent peak energy variation is very comparable to what we have observed in

Helium. Still, with 5% high Z gas contribution we still observe dark current. This is slightly

improves when using only 2% nitrogen.

We have used ionization injection in gas mixtures for several experiments, cf. sections 4.5.2,

5.5.2 and 5.5.3.
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Figure 2.17 – Comparison of the top view plasma emission image for shock injection with pure
Helium and with a mixture. We observe a longer emission tail for ionization injection, which
we relate to continuous injection.
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Figure 2.18 – Two examples for ionization injection in a 95:5 Helium-Nitrogen mixture. Left: Five consecutive shots for ionization injection,
here the charge fluctuates significantly with 54±36 pC. Right: Five consecutive shots for shock-assisted ionization injection in a 95:5 Helium-
Nitrogen mixture. The charge in the quasi-monoenergetic peak fluctuates significantly from shot to shot, whereas the continuously injected
dark current remains quite stable. Shots (2-5) have the same color scale, shot (1) has ∼ 3× as much charge in the peak.
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2.6 Conclusions

In this chapter we have seen that injection schemes have a similar function as electron guns

in conventional accelerators. In particular the injection process determines many beam

parameters like charge, energy spread and divergence.

Here we have studied several difference injection regimes: Longitudinal and transverse self-

injection, shock injection, ionization assisted shock injection, ionization injection in mixtures

and ionization injection in pure high-Z gases. We can therefore select among a wide range of

laser-plasma injectors for different applications. The following summarizes our findings:

Highest beam charges (up to some hundred pC) are achieved with transverse self-injection

and ionization injection in mixtures and pure gases, while longitudinal self-injection and

shock injection usually lead to some pC beam charge.

The beam divergence is lowest in longitudinal injection techniques and for shock injection, in

contrast transverse self-injection results in the strongest initial transverse momentum. The

divergence of ionization injection depends on the ionization region, which itself depends on

the laser energy.

The earliest injection occurs in longitudinal self-injection and ionization injection in gas

mixtures, so they are potentially the most energetic. However, ionization induced defocusing

can reduce the driver strength during propagation, leading to lower beam energies.

The lowest energy spread is achieved with shock injectors and close to the injection threshold

of transverse self-injection. Continuous ionization injection usually results in a very large,

maxwellian energy spread. The energy spread is also linked to the pulse duration. In the case

of ionization injection and self-injection electrons can get trapped in several wake arches,

which results in a pulse train with a total length of some tens of femtoseconds. Shock injected

beams are expected to have a duration similar to optical injected pulses, reaching down to a

femtosecond.

In terms of stability ionization injection techniques are the most reliable, followed by lon-

gitudinal injection and shock injection. Transverse self-injection, especially at high plasma

density leads to strong fluctuations of all beam parameters. From an experimentalists point of

view, both ionization injection schemes and self-injection are relatively easy to implement,

whereas shock injection requires additional motorization, space and experience to align the

blade.
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3 Acceleration

In this chapter we will discuss the dynamics of the acceleration process itself, with emphasis

on the non-linear blowout regime. Notably we present results for acceleration beyond laser

depletion for highly charged beams from ionization injection. We also discuss how dephasing

between electrons and the laser driver can be mitigated by manipulation of the plasma density.

We quantify this using analytical and numerical models, with emphasis on phase-reset in

density profiles with a sharp upramps. Such profiles can be created in experiment using

shocks. We demonstrate that these tailored profiles can be used to increase the final electron

energy or to shape the electron spectrum.
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Chapter 3. Acceleration

Plasma wakefield acceleration can be seen as a special type of resonance acceleration, whose

accelerating structure is a wave. In this kind of accelerator a particle first goes through an

injection process (cf. preceding chapter), whereupon it has to maintain a synchronous phase

φ. Any phase miss-match can result in deceleration instead of acceleration. In order to provide

continuous energy gain the accelerator has therefore to (i) sustain the wave structure and (ii)

match electron velocity and phase velocity.

We start this chapter with an introduction to conventional traveling wave accelerators and

subsequently discuss in detail plasma wakefield acceleration.

3.1 Conventional accelerators

As we have seen in Chapter 1: Introduction there exists a great variety of conventional ac-

celerators. The type which is most important for electron acceleration is the traveling wave

linac. This accelerator is conceptually similar to wakefield acceleration, but uses a microwave

instead of a plasma wave for acceleration.

Belonging to the family of resonance accelerators, synchronicity between the field and the

accelerated particles has to be maintained. In ion accelerators this condition means that phase

velocities over a wide range from 0.1−1c0 have to be covered, while an electron gun usually

delivers already relativistic electron beams, i.e. the condition reduces to vφ ≈ c0(1−1/2γ2).

As we are directly using an electromagnetic wave to accelerate particles, a wave mode with

non-zero axial electric field is required. This is the case for transverse magnetic (TM) modes,

with TM01 being the simplest solution. In contrast to laser wakefield accelerators, where the

phase velocity is basically the group velocity of the laser and therefore subluminal, the phase

velocity of the accelerating TM01 exceeds the speed of light. In consequence, synchronicity

cannot be achieved in this configuration.

In order to still accelerate particles, the wave needs to be slowed down. This is done by placing

obstacles in the wave-guide, typically in form of irises. It can be shown that in such a disk-

loaded cavity the phase velocity is less than the speed of light, decreasing with increasing

volume enclosed between the irises.

Obviously the dispersion relation will depend on the radiofrequency chosen to operate the

accelerator. For a practical resonator size of a meter or less typically frequencies > 300 MHz

are used. So since the RF pulses in travelling wave structures are very short, the technology

also permits to operate close to breakdown at highest acceleration gradients (e.g. ∼ 100 MV/m

for the Compact Linear Collider study [96]).

However, the exact conditions for breakdown are still not completely clear. In particu-

lar, surface defects can increase the probability of field emission. This is described by

the Fowler-Nordheim equation, which relates the emission to the local field and the ma-

terial’s work function. For a copper cavity the field emitted dark current is IF [A/m2] ∼
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0.4(βE [MV/m])2 exp(−6.5×104/(βE [MV/m])), so the emission increases exponentially close

to breakdown. Here β describes the enhancement of emission depending on the defect ge-

ometry (typically β∼ 10−100), which can abet field emission significantly [97]. Not included

in this model is that empirical tests also show an RF frequency dependency. For example,

according to the first investigation by Kilpatrick in the 1950s [98], the breakdown surface

field scales as E [MV/m]exp(−4.25/E [MV/m]) = 24.7( f [GHz])1/2. Later studies found that

the Kilpatrick criterion underestimates the breakdown threshold, which might be due to large

defect enhancement in early accelerators, yet they still find a frequency dependence [99].

In any case, breakdown remains an issue at conventional facilities, which can lead to serious

damage of the accelerator structure. In order to reduce dark current and the risk of breakdown,

conventional accelerator facilities have to go through long conditioning periods on startup

and operate well below the breakdown limit.

3.2 Plasma accelerators

The particle colliders mentioned in the last section are intended to accelerate electrons

and positrons to TeV energies, which given their breakdown limited field gradients requires

kilometer-long linacs. The main idea of plasma accelerators is to create much higher fields by

charge separation in a plasma.

Normally a plasma behaves quasi-neutral on a scale of the Debye screening length

λD =
√
ε0kB Te

ne e2 , (3.1)

which is typically sub-micron scale for the plasmas concerned in this work. However, the

quasi-neutrality is the equilibrium situation without additional external fields. It is possible

to force a charge separation using e.g. the space-charge force of a particle beam (beam

driver) or the radiation pressure of laser beam (laser driver). Charge separation is facilitated

in an electron-ion plasma, where the two species have very different inertia and therefore

eigenfrequencies. In this case the plasma dynamics are governed by the electron motion, while

the ions are usually considered quasi-static. Once a density perturbation δn is introduced, the

plasma will react to it on the scale of a plasma wavelength

λp = 2π

√
ε0me c2

0

ne e2 . (3.2)

Here we see that the plasma wavelength is of the order kB Te /me c2
0 larger than the Debye

length, usually some tens of microns. We have already shown that the plasma responds to

small perturbations with a linear electron acoustic wave or Langmuir wave(
∂2

∂ζ2 +k2
p

)
Φ= k2

p

( 〈a2〉
2

+ nb

n0

)
. (3.3)
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where 〈a2〉/2 is again the ponderomotive potential. Additionally we have now included beam

space-charge effects with the term nb/n0, where nb denotes the bunch density. Electron

motion in this regime is laminar, so we can extend the model to cylindrical symmetry by

simple multiplication with the radial driver profile. For either driver type the corresponding

potential is then of the form

Φ(ξ,r ) = κ(ξ,r ) sin[kp (ξ−ξ0)]. (3.4)

where κ(ξ,r ) < 1 is a function depending on the driver strength and its longitudinal and

radial shape. For example, the explicit solution of κ for a laser pulse with gaussian shape

in both longitudinal and radial direction is κ' 0.266a2
0(kpσz )exp[−0.09k2

pσ
2
z ]exp[−2r 2σ−2

r ].

Note that κ does not affect the phase in this regime, as depicted in Fig.3.1a/b, which shows

longitudinal wakefields and density perturbation for a driver with a0 = 0.5.

3.2.1 Nonlinear regime

The plasma wave equation in the last section was just an approximation of the one-dimensional

plasma wave equation we derived in Chapter 1:

∂2

∂ζ2Φ= 1

2

(
1+a2

(1+Φ)2 −1

)
k2

p . (3.5)

Figure 3.1c/d shows the solution of this equation for an increased driver strength (a0 = 2.0).

Recalling that the electron momentum follows the vector potential and that a normalized

potential a0 = 1 corresponds electron rest energy, it is evident that relativistic effects become

important in this regime. A direct consequence is that the plasma frequency is intensity

dependent and will diminish towards the laser axis by γ−1/2. In the quasi-linear regime

(a0 = 2.0) this imbalance becomes noticeable and at high driver intensities we observe that

the wake is horseshoe shaped, cf. Fig.3.1e/f for a0 = 8.

A second characteristic of the non-linear regime is that the longitudinal wakefields are

sawtooth-like. This effect is better visible in an on-axis lineout, cf. Fig.3.2. This quasi-linear

shape of the electric field follows from the fact that the laser expels all electrons from axis,

leaving a constant ion background.

The last statement would be true in reality, but when we look carefully at the density profiles,

we observe that the electron density never drops below −n0/2, which seems counterintuitive.

In fact, for strong perturbations (a0 À 1) we rapidly reach the limits of the fluid model. These

limitations become obvious when we consider the velocity vz of an electron fluid element

(1.8)

vz = vφ

(
1− n0

ne (z)

)
(3.6)
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Density Electric field Ez 

(a) (b) 

(c) (d) 

(e) (f) 

Figure 3.1 – Solutions of the fluid model for drivers with w = 10µm, τ= 30 fs and a0 = 0.5, 2
and 8 in a plasma with density 1019cm−3. It is clearly visible how the wave structures shifts
from regular oscillations at the plasma wavelength to a horseshoe-like structure. At highest
intensities the electrons (white) form a peak. Colormaps in each plot are normalized to the
peak density and fields.
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Figure 3.2 – On axis fields and density for a pulse with a0 = 8.0.

As the phase velocity is close to vφ ∼ c0 we see that a density ne < n0/2 would imply that

vz < −c0, i.e. a super-luminal return flow. This is obviously unphysical and for a better

understanding we need to move beyond the cold fluid model and in particular of the laminar

solution.

Instead, we use the three-dimensional particle-in-cell code CALDER-CIRC to order to solve

the Vlasov-Maxwell system for the same driver and plasma density as in our last example

(a0 = 8,w = 10µm, τ = 30 fs and ne = 1.0×1019cm−3). The resulting density and wakefield

maps are shown in Figure 3.3. The result are similar, but especially the longitudinal fields are

much weaker (shown later in Fig.3.13). Also, the electron density in this solution approaches

zero behind the laser pulse, creating an ion cavity. Because of this, the regime is called blow-out

regime, or in reference to the spherical shape bubble regime.

Fig.3.4 shows the momenta pz , px and py for the same simulation. As seen in Chapter 2:

Injection the electrons rapidly gain longitudinal momentum towards the end of the bubble.

In addition we see clearly how the momentum along polarization x follows the laser field

strength. In the y the laser does not drive oscillations, instead electrons gain momentum by

the ponderomotive blowout. It is this quasi-isotropic ponderomotive momentum gain that is

responsible for the shape and extension of the ion cavity. If we assume the cavity to have a

spherical shape of radius rB , the potential inside is

Φ=
k2

p

4

(
r 2

B − r 2) (3.7)

and it immediately follows that the associated longitudinal fields are linear

Ez =−
meω

2
p

2e
(1−φ)rB (3.8)
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where φ describes the phase inside the wake. As mentioned before, the size of the blowout

depends on the driver. Via simulations it was found that for a laser, which is self-focused to

the matched spot size, the condition kp rB ' kp w0 = 2
p

a0 holds [41]. In this case the maximal

field strength is estimated to be of the order of

E max
z ∼ me cωp

e

p
a0 = E0

p
a0 = 96 GV/m×

√
n0[1018 cm−3]×p

a0. (3.9)

However, the above condition is only a rough estimation and simulations show that the

longitudinal field behaves sometimes highly non-linear at the back of the cavity, cf. Fig.3.13.

Figure 3.3 – Particle-in-Cell simulation of the same laser pulse as in Fig.3.1e/f. We see that in
this more accurate simulation a bubble-shaped blowout region forms instead of the horseshoe-
shape of the fluid model.

3.2.2 Energy gain and limitations

In the preceding section we have seen that driving a non-linear plasma wake can lead to even

higher longitudinal fields than in the linear regime. But even field strength in an ion cavity

can exceed a TV/m, this does not mean that we can (yet) create a tabletop TeV accelerator. As

stated in the introduction, there are two types of limitations for the energy gain attainable in

wakefield accelerators.

Plasma accelerator length

One limiting factor is obviously the length of the plasma channel itself. In beam-driven

accelerators Lithium plasma channels of over a meter length are used, whereas laser wakefield

accelerators typically use millimeter to centimeter long plasmas.
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Figure 3.4 – Momentum distributions for the bubble shown in Fig.3.3. Significant longitudinal
gain occurs at the back of the cavity. We clearly see that the transverse momentum parallel to
the laser polarization follows the normalized field strength, which is indicated by the contour
plot. Perpendicular to the polarization the momentum gain is due to the ponderomotive force.
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3.2. Plasma accelerators

But it is also clear that particles can only be accelerated in a plasma as long as the driver can

sustain the wake responsible for acceleration inside the plasma. In the previous section we

have discussed the plasma wave excitation and we found that it essentially depends on the

driver intensity, i.e. the bunch charge density and the photon density (given by the normalized

vector potential a).

A first limit on the acceleration length is then given by defocusing of the beam. As we will

discuss later, defocusing effects primarily the head of the driver. Operating a plasma ac-

celerator in this guiding limited regime or the propagation length limited case is the most

inefficient, because it means that a significant amount of pulse energy is not used to drive the

plasma wave. In contrast, the most efficient mode of operation in terms of energy transfer is

the depletion limit. In this regime the driver energy is completely used for wake excitation.

Depletion-limited accelerators are also very efficient for electron acceleration, because they

operate at higher accelerating fields (cf. dephasing below).

Dephasing

Laser-driven plasma waves are subject to a particular phenomenon called dephasing. In beam-

driven accelerators, both drive-bunch and witness bunch are highly relativistic and therefore

both of them travel essentially at the speed of light in vacuum c0. In contrast we have seen in

Chapter 1: Introduction that the phase velocity of a laser-driven wake is approximately

βφ ' 1− 3

2

ω2
p

ω2
0

= 1− 3

2

ne

nc
(3.10)

which is the group velocity of the laser in a cold underdense plasma minus the etching

velocity. This means that once injected, electrons advance with respect to the wake and will

eventually outrun the accelerating phase. Injected into the back of the wake, electrons will

typically encounter decelerating fields once they have advanced half a wake period rB . The

corresponding distance in the laboratory frame

Ld = rB

1−βφ
' 3

2
rB

nc

ne
= 2

3
rBγ

2
φ (3.11)

is called the dephasing length. Operating the accelerator in the dephasing limited regime

is desirable for the production of high quality beams, because the field gradient leads to a

reduction of the longitudinal momentum spread, as illustrated in Fig.3.5. The lowest energy

spread is reached close to the dephasing length where the bunch changes from a negative to a

positive chirp [100]. From (3.11) we also find that the dephasing length scales inversely with

the plasma density. Reducing the plasma density also effects the maximum accelerating fields,

but only at n1/2
e , so the dephasing limited energy gain scales as ∆γ∝ n−1/2

e .
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Figure 3.5 – Example for the evolution of electron energy and spread for an electron bunch
injected over a distance Li = 0.1Ld . The decreasing field strength leads to a rotation in the
z/pz phase space (indicated in red), reducing the energy spread significantly.

Energy gain in a constant density profile

Let us now quantify the energy gain in a laser-plasma accelerator. The energy gain of a particle

accelerated in an electric field is given by

∆γ(z) = q

me c2
0

∫ z

0
Ez (z ′)d z ′. (3.12)

where the field strength depends on phase and cavity size rB . It is reasonable to assume that

the electron is already highly relativistic at the moment of injection and therefore constantly

advancing in the cavity at the velocity c0 − vφ. If we furthermore approximate that both laser

intensity and plasma density remain constant, we can express the energy gain as

∆γ(z) = q

me c2
0

∫ z

0
Ez (n0, a0, z ′)d z ′. (3.13)

The maximum energy gain ∆γmax = q
me c2

0
< Ez > Ld is limited by the dephasing length Ld and

the mean field strength < Ez > experienced by the electron. We already mentioned that in the

regime of complete electron blowout and matched laser spot size, a cavity of approximately

rB ∼ 2
p

a0λp is formed [41]. According to (3.11) this yields to a dephasing length

Ld ' 4λp

3

(
nc

ne

)3/2p
a0. (3.14)

We have also discussed that the fields in this regime are sawtooth-like (3.8), so the average

accelerating field is simply given by half the peak field strength 〈Ez〉 = E max
z /2. The maximum
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energy gain is then

∆γmax = 2

3

nc

ne
a0 (3.15)

while the electron energy gain after at a distance z after injection is approximately

∆γ(z) = q

me c2
0

×E max
z ×

∫ z

0
(1− z ′/Ld )d z ′

=∆γmax

(
2

z

Ld
− z2

L2
d

) . (3.16)

which is the gain curve illustrated in Fig.3.5. Alternatively we can write this expression in the

comoving frame in terms of the phase φ= z/2Ld and obtain ∆γ(φ) = 4∆γmax(φ−φ2).

3.3 Reacceleration in beam-driven wakefields

As discussed in the previous section, the energy gain in laser wakefield accelerators is mainly

limited by the dephasing between the electron bunch and the optical driver, and intensity

reduction of the laser driver due to depletion and defocusing. In this section we are going to

discuss how the laser-accelerated electron bunch can excite its own wakefield and therefore

drive acceleration beyond laser depletion and unaffected by dephasing.

3.3.1 Beam-driven plasma wakefield acceleration

In the introductory part we have seen that a plasma wake can be excited either by a laser

pulse or by the space charge force of a beam. The latter is called the beam-driven regime. Its

amplitude depends crucially on the charge density nb , conventionally defined as the electron

number Ne within a gaussian beam with σz rms length and σr rms radius, i.e.

nb = Ne

(2π)3/2σzσ
2
r

. (3.17)

In order to drive a wake this value should be of the order of the plasma density. For example,

in a proof-of-principle experiments at SLAC in 2007 [101] it was shown that the energy of a 42

GeV electron beam could be doubled by plasma wakefield acceleration inside a 85 cm long

plasma channel (ne ∼ 2.7×1017cm−3). The parameters from this experiment represent the

state-of-the-art of modern accelerators, providing nC level charge at a duration of some tens

of femtoseconds. The electron beam had a charge of about 2.9 nC (Ne = 1.8×1010 electrons),

duration of 50 fs (σz ' 15µm) and was focused to a spot size of σr ' 10µm, which lead to a

bunch density of nb ∼ 3.5×1018cm−3.

In analogy to a ponderomotive driver, beam-driven blowout is reached if the driver strength

nb/ne À 1. From the beam and plasma charge densities given above we deduce nb/ne ∼ 13
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and peak fields of up to ∼ 50 GV/m were reported. Note that the beam is still rather long as the

plasma wavelength is of the order of ∼ 50µm, so kpσz ∼ 1.9.

In order to reach bunch densities that allow plasma wakefield acceleration, beams from

conventional facilities have to be compressed and focused. In contrast, due to their short

duration and micrometer source size, laser-accelerated electron beams intrinsically have a

competitive charge density. For example, experiments using optical injection have reported

beams of ∼15 pC charge at ∼2 fs duration [102], thus also reaching nb > 1019cm−3. It is

therefore desirable to use such beams for beam-driven wakefield acceleration experiments

[103]. Indications for beam-driven wakefields laser-plasma accelerators were first reported

in 2011 [104] and recently also other groups have attributed extended acceleration to beam-

driven fields [105]. Both experiments relied on self-injection and it is desirable to replace this

injector with a more controlled scheme.

Shock injected beams have properties very similar to the above mentioned example of op-

tical injected beams. However, neither kind of injector is suited for beam-driven wakefield

experiments. There are several reasons for this. As we have seen in sections 1.3.3 and 3.2 the

wake excitation depends on the pulse envelope and is inefficient for small kpσz . Also, as there

is no wake structure at the immediate front of the bunch, there are no focusing forces that

contain those electrons. This leads to head erosion, very similar to defocusing of the laser

pulse front in ponderomotive self-focusing we have seen in Sec.1.3.4. As a result the plasma

wave excitation moves towards the bunch tail, which is another argument against using very

short drivers. And lastly, as sketched in Fig.3.7, there always needs to be a driver that excites

the wake and a witness bunch that gets accelerated. So we either need a long bunch or a pulse

train.

In Chapter 2: Injection we have seen that ionization injection in high-Z gases can produce

electron beams of very high charge. Electrons in the bunch are arranged in a pulse train

with ∼λp separation. This kind of beams are a promising candidate to observe beam-driven

acceleration because their bunch density of nb ∼ 1018−19cm−3 is sufficient to create strong

wakes in plasmas with ne ∼ 1017−18cm−3. In particular the bunch duration σz ∼ 50µm is of the

same order as the plasma wavelength at these densities, allowing resonant excitation. This

specific kind of injector is also interesting because it is very stable and the final electron beam

energies are quite low compared to acceleration in helium, which increases the sensitivity of

the spectrum measurements.
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Figure 3.6 – Cartoon of the transition from laser-driven to beam-driven wakefield acceleration.

3.3.2 Experimental observation of reacceleration of ionization injected beams

In Chapter 2: Injection we have discussed how ionization injection in pure high-Z gases

can lead to the production of high charge electron beams. We have seen that electron beam

production in this regime is very stable and that the spectrum has a quasi-Maxwellian shape,

which is almost independent of the laser energy.

These measurements were performed at rather high electron densities ne > 1019cm−3. When

reducing the plasma density to ne ∼ 5×1018cm−3 we observe that the spectral shape changes

significantly. As shown in Fig.3.7, the low-density spectrum rapidly decreases by about an

order of magnitude from ∼ 8 to 12 MeV, but remains almost constant in the range from ∼ 15 to

40 MeV. In fact, the low-density spectrum contains less total charge, but greatly exceeds the

high-density charge for energies > 20 MeV.

To understand this unusual behavior, we have performed Particle-In-Cell simulations with

CALDER-CIRC.1 When looking at the temporal evolution of the electron beam spectrum, we

find that also the low-density spectrum initially has a thermal distribution, but then changes

to the shape that resembles our experimental data (cf.Fig.3.8).

1The simulation parameters are the same as in Chapter 2: The mesh resolution is ∆z = 0.2k−1
0 and ∆r = 1.5k−1

0 .
Initially neutral nitrogen atoms are considered, represented by 100 macro-particles per cell. Their ionization is
modeled using tunnel-ionization rates.
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Figure 3.7 – Average electron spectra for five consecutive shots each, at ne = 5.5×1018cm−3

(lighter blue) and ne = 8.5×1019cm−3 (darker blue). The width of the lines corresponds to the
standard deviation of the spectra.

To understand this effect we first have a look at the beam-wake structure at an earlier stage

of the acceleration, where the spectrum is still quasi-maxwellian. This is shown in the upper

frame of Fig.3.9. Electron injection commences at z ≈ 0.6mm, the center of the gas jet is

located at z ≈ 0.9mm. As seen in Chapter 2, electrons have been injected in several wake

buckets behind the laser, forming a multi-bunch structure. But this snapshot at z = 1.2mm is

already located in the density downramp (ne ∼ 3×1018cm−3) and we see that the separation

starts to blur out due to the augmentation of λp . After another 0.5mm of propagation (close to

the exit of the gas jet) the electrons form one macro-bunch of σz ∼ 60µm length. The plasma

density at this point has fallen to ne ∼ 5×1017cm−3, meaning that the electron bunch length

σz ∼λp and can therefore excite the wakefield resonantly.

As typical for beam-driven acceleration, the driving part of the beam looses energy. This

part consists of electrons from the first wakes the laser excited. Injected earlier than the

rear electrons, these electrons contribute to the high energy part of the spectrum at z = 1.2

mm in Fig.3.8. On the other hand the electrons at the rear part of the beam experience an

accelerating field, therefore gaining energy. The combination of deceleration of the front part

and acceleration of the rear part leads to a rotation in the z −pz phase space, explaining the

almost flat spectrum observed at the gas jet exit.

To enter this regime of beam-driven post-acceleration several conditions have to be fulfilled.

Firstly the plasma wavelength has to be of the order of bunch length and secondly the beam

charge density nb needs to be significantly higher than the background density ne . When

operating the high-Z LPA at densities beyond ne > 1019cm−3 these conditions are no longer

fulfilled. As shown in Chapter 2 the length of the electron microbunches at maximum pulse

energy 1.1 J is estimated to be & 50µm. However, in this high density case the plasma

wavelength at the end of the jet is much shorter, of the order of 10-20µm. Also, we estimate
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3.3. Reacceleration in beam-driven wakefields

Figure 3.8 – Simulated electron spectra for different propagation lengths. In the beam-driven
regime the sprectum flattens.

Figure 3.9 – Particle in Cell simulation of the plasma wake in the middle of the jet (laser-driven)
and at the end of the jet, where the beam drives its own wake.
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that the plasma wave excitation scales with nb/ne . So the increase of ne by over an order of

magnitude would need to be compensated by the bunch charge density. While the total bunch

charge at high density is roughly an order of magnitude higher, the charge density decreases as

the electron beam diverges. As the laser depletes earlier in the high density case (after ∼ 1mm

of propagation) the divergence is higher. In consequence no transverse guiding is provided for

the electron beam and the bunch density becomes insufficient to excite a wake.

3.4 Rephasing in laser-driven wakefields

In the preceding section we have discussed that the space-charge of a beam may under certain

circumstances sustain wakefields beyond the laser depletion length. However, to date most

LPAs are not operated in the laser depletion limited regime, but their maximum energy is

restricted by the phase-slippage between the electron bunch and the laser driver, cf. Sec.3.2.2.

In this section we are going to discuss how the phase φ between an electron bunch and the

laser-driver can be manipulated by means of density tailoring. Such phase manipulation can

serve several purposes. Maintaining a phase close to the rear of the cavity (φ→ 0) provides

the highest acceleration gradient and therefore best conversion efficiency between laser and

electron energy. Furthermore a phase locked accelerator would be limited by depletion instead

of dephasing, potentially shifting the maximum attainable energy of the accelerator to higher

energies. But beyond energy increase, phase manipulation can also be used to improve other

beam parameters. By intentionally shifting electrons into the beginning of the decelerating

phase a phase-space rotation can be induced, reducing the beam energy spread.

We start this section with a conceptual explanation upon which we will develop a phenomeno-

logical model of electron phase manipulation and discuss possible energy gain. Limits of this

model are examined by means of idealized PIC simulations. We then present an experimental

implementation, which matches with what we expect from simulations.

3.4.1 Rephasing of electrons via density modulation

The basic concept of electron rephasing in density gradients is inverse to downramp injection

we discussed in Chapter 2: Injection . The basic picture, as sketched in Fig.3.10, is quite

intuitive: After injection electrons are faster than the wake, so they advance inside the ion

cavity. However, if the plasma density increases during propagation, the restoring force from

the ion background augments, thus contracting the bubble. This contraction brings the rear of

the bubble closer to the electron bunch and with that back into a (stronger) accelerating field.

The situation becomes less intuitive as one takes into account that the density change also

effects the laser propagation. In order to maintain the electron phase stable, we need to solve

the coupled equations of cavity size scaling and electron-driver dephasing. This is evaluated

in the next section.
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Figure 3.10 – Cartoon of the basic principle of rephasing via density tailoring. An electron
bunch, shown in green, is initially at the center of the ion cavity where it would start to dephase.
Changing the plasma density changes the ion density (shown in different blue tones) and
therefore leads to shortening of the bubble. The electron bunch finds itself now located close
to the rear part of the contracted cavity, i.e. again in an accelerating field.

3.4.2 Model of phase-adjustments in the blowout regime

Let first see under which circumstances the electron dephasing can be completely compen-

sated by the wake evolution. This scenario is called phase-locking and has been studied in

depth for guided linear wakefield accelerators [106, 107, 108].

Phase locking

We define the initial phase of a particle as φ0 = ξ0/λwake,0, where ξ0 is the position of the

electron with respect to the wake andλwake,0 is the initial wakefield period. In order to maintain

the phase constant, the phase slippage ∆ξ/λwake,0 has to be compensated by changing the

wavelength. At each moment the infinitesimal change necessary is given by

dλwake

d t
= ve − vφ

(1−φ0)
(3.18)

Let us now assume that the electron is highly relativistic and therefore ve ≈ c0. With this

assumption there is also a constant dependence between time and propagation distance

z(t) = c0t + z0, and for the co-moving coordinates ξ(t) = (c0 − vφ)t + ξ0. Furthermore we

assume that the driver propagates at the group velocity in underdense plasmas (at ne ¿ nc ),
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i.e. vφ ≈ 1− (ne /nc )/2. With these assumptions (3.18) reads

1

c0

dλwake

d t
≈ ne /nc

2(1−φ0)
. (3.19)

Assuming a non-varying field amplitude2 a0, the cavity length is only dependent on the plasma

density, i.e. λwake(t ) =λwake,0 ×
p

n0/ne (t ). From this we get

dλwake

d t
= λwake,0

2

p
n0

ṅ(t )

n(t )3/2
(3.20)

This dependence is actually true for the linear, 1d non-linear and 3d non-linear model, as all

of them scale the same way with the plasma density. The cases differ however in the initial

cavity size λwake,0. Equations (3.19) and (3.20) can be rearranged to a first order non-linear

ordinary differential equation of the type

ṅ −α×n5/2 = 0 (3.21)

With the initial condition n(t = 0) = n0 the solution in the spatial domain reads

n(z) = n0

(1− z/L0)2/3
, (3.22)

which is the result found by Pukhov and Kostyukov [107]. The density increases first close to

linearly, but then the density ramp becomes increasingly steep until a singularity is reached

at L0 = 3c0/(2nc (1−φ0)λwake,0n1/2
0 ). Pukhov argues that in the linear wakefield regime the

change of plasma density will also effect the resonance factor cenv and the wake gets damped

when the density increases. They therefore included this effect in their calculations. The taper

in Rittershofer’s model has a similar shape [108], but the model is different as he considers a

guided pulse and takes into account laser diffraction in the parabolic channel.

The above-mentioned models have only very limited validity, because they do not take into

account the complete laser pulse evolution, as discussed in Sec.1.3.4. Especially pulse com-

pression and self-focusing have to be included in a realistic model, since many experiments

operate at densities around ∼ 1019 cm−3 and rely on self-guiding. The effects can compensate

density induced changes of the wakefield period and phase-locking is not evident to achieve

under these circumstances .

Phase reset

Instead, a simpler and more realistic scenario is a one-time phase reset. For this we keep the

density constant and then adapt the phase once. In this case the wake velocity is 1−n0/2nc ,

so the ODE becomes of the type ṅ −α×n3/2 = 0, with α= c0
p

n0/(1−φ)ncλwake,0. From there

2Note that especially in the self-guided blowout regime this assumption is not necessarily fulfilled. This point is
discussed in more detail in the following section.
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Figure 3.11 – Densities required for unique phase reset according to (3.24).

we find the reset density

n(z) = n0(
1− 1

2(1−φ)
n0
nc

z−z0
λ0

)2 = n0(
1− 1

(1−φ)
z−z0
2Ld

)2 , (3.23)

where we have identified the dephasing length Ld = (λwake,0/2)/(1−vφ/c0) in the second step.

For the more specific case of initial injection at the back (φ = 0 and z0 = 0), the equation

simplifies to

n(z) = n0(
1− z

2Ld

)2 , (3.24)

which is equivalent to the intuitive result n(φ) = n0/(1−φ)2. The function is plotted in Fig.3.11.

If we define the phase velocity including depletion, according to (1.25), we only have to change

the constant α in the ODE (3.21). The solution is again (3.23), with the dephasing length from

(3.11).

Energy gain for phase reset

We can now calculate the energy gain for such a phase reset in the blowout regime. For a first

estimation we assume a boost when the electron is just dephased, i.e. z = Ld . In this case the

required density transition (3.24) is n1 = 4n0. Once rephased, the electrons will essentially

behave as if they were just injected into a new accelerator with density n1 = 4n0. So we can

use (3.15) and sum the dephasing limited gain of those two ’stages’, which gives

∆γmax =∆γmax (n0)+∆γmax (4n0) = 5

4
∆γmax (n0). (3.25)
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The second stage contributes much less to the overall gain, as the dephasing length is shorter

at higher density. Still, we expect a gain of around 25 percent.

Let us now evaluate the optimal case. To find the maximum achievable energy gain in a unique

boost we take the position dependent gain in a sawtooth-shaped wakefield (3.16)

∆γ1(z) =
(

2z

Ld
− z2

L2
d

)
×∆γmax (n0) (3.26)

and add the density dependent gain (3.15) according to the rephasing density (3.24)

∆γ2(z) =
(
1− z

2Ld

)2

×∆γmax (n0). (3.27)

The complete energy gain is therefore

∆γ(z) =
((

1− z

2Ld

)2

+ 2z

Ld
− z2

L2
d

)
×∆γmax (n0)

=
(

1+ z

Ld
− 3

4

z2

L2
d

)
×∆γmax (n0).

(3.28)

As shown in Fig.3.12, the global maximum is at z = 2/3× Ld and leads to ∆γmax
(2

3 Ld
) =

4
3∆γmax (n0). So we estimate that a phase reset can lead to gain in the order of one third of the

dephasing limited energy gain. The results are in accordance with [109], where such a density

step scenario was empirically studied using test particle simulations. It is worth noting that

this relative energy augmentation is independent of the plasma density n0. However, this

situation will change if we take into account the laser pulse evolution. As we will discuss in the

next section, the scheme is most likely to work best at high densities, where electrons gain

significant energy over short distances.

3.4.3 Numerical modeling

The model we introduced in the preceding section has two main limitations: It assumes a

constant laser intensity and a sawtooth-like wakefield. As we have discussed in Sec.1.3.4,

self-focusing tends towards a matched spot-size w0 which depends on the plasma density

and the field strength a0. So we have to expect that self-focusing will evolve as we change

the density. But as the analytical framework of self-focusing has only been derived for the

weakly perturbed regime (a0 ¿ 1), we need to perform Particle-in-cell simulations to study

this phenomenon. This also help us to estimate the fields, as the Lu-model [110, 111] typically

underestimated the longitudinal wakefields at the back of the ion cavity.

For these simulations we want to study purely the dynamics of the bubble and the laser,

without any electrons. To do so we initiate the simulation with laser pulse parameters close

to the matched spot size that we found in preceding simulations. The density transition is
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Figure 3.12 – Estimated energy gain curve for phase-rest to φ= 0 at different positions along
the acceleration. The density profiles from Fig.3.11 for rephasing at z = 2

3 Ld and z = Ld are
plotted again in red and orange, respectively.

positioned very early in the simulation, as soon as a stable wake structure is established. This

allows us to use high resolution and distortions by the electron beam are evaded. After these

initial studies, we are going to model rephasing of shock injected electrons at full length.

Density transition width

First we want to study the bubble dynamics. As initial study we perform simulations for a laser

pulse with 30 fs duration, initial waist of 9 microns and a relatively high peak field strength

a0 = 8.0. The relatively high laser power (∼ 200 TW) was chosen because the ponderomotive

force at lower laser intensity was not sufficient to ensure ponderomotive blowout during the

whole propagation length. Also we start off with a strong focus in order to get closer to the

self-focusing limit from the beginning.

The resolution for the simulations is ∆z = 0.15k−1
0 , ∆r = 0.75k−1

0 and ∆t = 0.96∆z, on a

simulation mesh nz ×nr = 3000×500. The initial plasma density is n0 = 1.0×1019 cm−3 and

after ∼ 100µm a clear bubble structure has developed, but no electrons have been injected

into the wake yet.

At this point (z = 100µm) the density is increased linearly to n0 = 2.0×1019 cm−3. We chose

two different transition widths, zr amp,1 = 25µm and zr amp,2 = 125µm. The first corresponds

to sharp transitions we encounter in shocks and in this case the transition length is of the same

order of magnitude as the cavity size zr amp,1 ∼ 2rB . The second ramp is flatter zr amp,2 À 2rB ,

but should be short enough too avoid self-focusing during the transition itself.

We find that the sharp transition leads to a broadening of the trajectory crossing region in

the back of the cavity, as electrons recoil earlier at higher ion densities, cf. Fig.3.13. During
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the transition the electron density falls down inwards the cavity, which reduces the peak

longitudinal field, cf. Fig.3.13. Once the background density remains constant the peak profile

reverses, with the peak pointing inwards, which increases the field strength. However, the

broad crossing region disturbs the subsequent ion cavities, which then start to collapse.3

The softer density ramp in contrast shows a very clean density peak and the electric field rises

significantly. Also, the wake structure is preserved in this case. The length of the cavities scales

with
p

n0/n1 = 1/
p

2, with a wake period of λwake ∼ 13µm compared to λwake ∼ 18µm without

density transition.

So the fields at the back of the cavity generally exceed the field strengths assumed from Lu’s

model. The phase reset predicted by our calculation may therefore underestimate the gain

in an actual experiment. Also, the width of the density transition crucially influences the

wakefield evolution and should receive further attention in future studies.

Self-focusing

Following this we compared how the laser evolved for the three different cases. In Sec.1.3.4 we

have reviewed how the laser undergoes self-focusing due to relativistic and ponderomotive

effects. At a given plasma density the laser self-focuses approximately to the matched spot size.

But changing the local plasma density will especially affect the ponderomotive component

and change the laser pulse evolution. A density up-ramp typically leads to increased pon-

deromotive self-focusing of the laser, which then enhances relativistic effects and ultimately

results in a cavity expansion by a1/2
0 . However, ponderomotive re-focusing needs some time

to develop. Here we find that about ∼ 100µm of propagation are required for self-focusing to

develop.

In consequence, step-like profiles as those shown in Fig.3.11 do not represent the ideal rephas-

ing profile as self-focusing will eventually counteract the cavity contraction due to density

augmentation. The same reasoning holds for phase-locking in the blowout regime, where the

non-linearity of self-focusing makes it therefore difficult to deduce an actual phase-locking

profile in the blow-out regime.

For any experiment on rephasing in the blowout regime this means that density plateaus

should be avoided. Here the beam self-focuses, which re-expands the bubble and can lead to

self-injection. Instead, another experimental configuration - phase-reset in shocks - might

be more promising. With their characteristic width of just some hundred microns, shock

structures will be less affected by self-focusing. Yet the strong field increase at the back of the

bubble, can provide a boost that takes place in the first hundred microns after the shock.

3In the lower frame of Fig.3.13 we also observe a field fluctuation that resembles beam loading. However
the cavity is not loaded with electrons at this point. The effect might be related to the strong self-focusing and
disappears later in the simulation.
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Figure 3.13 – On-axis evolution of the density profile (left) and longitudinal wakefield (middle) for a sharp density step (25µm) and a moderate
step (125µm) to twice the initial density. The density profile is indicated with dashed lines. The images on the right visualize the two-
dimensional wake potential (relief) and electric field (color map) at ∼ 80µm behind the density ramp begins, corresponding to the middle
frame.
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Rephasing of shock-injected electrons

The foregoing simulations focused on the laser-plasma dynamics with the purpose of estimat-

ing the limits of our analytical model. For this the simulations started close to the matched

spot size and the total simulation length was some hundred microns. In the following we are

going to include electrons into the model. In order to avoid beam-loading effects, which also

alter the cavity size, we only inject a weakly charged electron beam via shock injection. For

comparison we choose the initial same parameters as in Chapter 2: Injection , but let the

simulation run longer in order to estimate the dephasing length.4 The simulation resolution is

∆z = 0.3k−1
0 , ∆r = 1.5k−1

0 and ∆t = 0.96∆z, on a mesh nz ×nr = 1500×250.

Here we have chosen to boost the beam after z ∼ 0.6Ld , which according to (3.23) requires a

density increase from n0 to 2n0. The width of the step is put shock-like, with a transition length

of ∼ 50µm. As shown in Fig.3.14 the density step steepens the energy gain curve, resulting in

an increase of the final beam energy of about 30 percent. Note the similarity to the prediction

by our model, cf. Fig.3.28.

However, as we have discussed in the preceding sections, after some hundred microns of

propagation self-focusing sets in, which then leads to self-injection. The large amounts of

electrons injected through this mechanism provoke a cavity expansion which brings the shock

injected beam faster into dephasing. We also observe that part of the beam is lost during

rephasing. This is surprising, as we see in Fig.3.15b that the electron beam does not reach the

rear of the bubble during dephasing. However, maintaining electron at the rear part of the

bubble is delicate, because the focusing field are very weak in this region. We will discuss this

effect in more detail in Chapter 4: Beam Transport .

The situation is worse when rephasing is overdone, for instance if we increase the density from

n0 to 3n0. This scenario is depicted in Fig.3.14c. In this case even more electrons are lost and

the electrons run even faster into dephasing, due to the increased self-injection.

In general we observe that the self-focused laser field strength a0 evolves delayed, but almost

linear with the density profile. In consequence all cavity contractions in this regime are

eventually compensated and if the density is high enough self-injection is triggered. We have

therefore tested another profile, which reduces the density again after the step. As shown in

Fig.3.14d, self-injection is suppressed, while electrons still gain additional energy.

4For this kind of simulation it is important to extract the dephasing length directly from the simulation. This is
necessary because the simulated laser pulse is not only subject to physical, but also numerical dispersion. When
solving Maxwell’s equation using the common Yee algorithm (cf.Apx.B), the pulse is slower than the physical
pulse, i.e. the dephasing length is shorter. Using Lehe’s algorithm [112], which was designed to avoid numerical
Cherenkov, it is faster. Numerical dispersion can be reduced using a finer mesh, but as we need maintain a CLF
number close to unity, increasing the resolution by a factor X augments the computing time by X 2−3. More details
on this are elaborated in the appendix on numerical methods.
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Figure 3.14 – Above: CALDER-CIRC simulation for shock injection as in Chapter 2. Electrons are injected at z = 0.6 mm and dephase after ∼ 2
mm of propagation, reaching around 300 MeV. Below: Simulation with density step at z ∼ 0.6LD ,where the model (3.23) predicts n1 = 2n0.
Electrons are clearly re-accelerated and reach around 400 MeV, which is in good accordance with the model prediction. Note that the laser
self-focuses at higher density, which ultimately triggers self-injection at z ∼ 2.5 mm.
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3.4. Rephasing in laser-driven wakefields

3.4.4 Experimental observation of phase-reset in sharp density transitions

In the last section we have discussed several kinds of density profiles to perform a phase-reset.

We found that shock-like profiles, as used for injection in Chapter 2: Injection , may be ideal

for a proof-of-principle experiment. The reason for this is that the shock provides a rapid

density increase, and therefore cavity contraction, but then the density decreases again, which

prevents injection from self-focusing at high densities. The experimental setup (Fig.3.16)

resembles the shock injection experiment from Sec.2.4, yet with the blade placed at the rear

side of the gas jet.

Pump Laser 
1.2 J, 30 fs 

Dipole 
Magnet 

500 μm  
Silicon wafer 

gas jet 


f/10 off-axis  
parabola 

Probe beam 

Figure 3.16 – Experimental setup used for electron rephasing. The laser is focused on a gas jet
with a silicon wafer mounted at its rear side. When this blade is placed in the gas flow a shock
front is formed, creating a sharp upward density step in the gas profile. The shock is almost
perpendicular to the laser axis, which allows interferometric characterization of the plasma
density via Abel transformation along the propagation axis. Electron spectra are measured
using the deflection of electrons in a dipole magnet. A scintillating screen is placed behind the
magnet, measuring electrons from ∼ 50−600 MeV.
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Experimental setup and observations

The experiment was performed at SALLE JAUNE, which delivered 1.2 Joule on target at 30

femtosecond duration during the experiment. The pulse was focused using an f/10 off-axis

parabola, with a focal spot size of 15µm. This results in a peak intensity of 1.0×1019 W/cm2,

which is equivalent to a normalized vector potential a0 ' 2.2. As target we use a 2He gas jet

with a 1.5mm supersonic de Laval nozzle. A 500µm silicon wafer is mounted at the back of

the nozzle, as shown in Fig.3.16. The shock front is formed when the gas flow encounters the

blade. This leads to a sharp upward density step, which we characterize using interferometry,

cf. Fig.3.17. Electron spectra are obtained from the deflection of the electron beam in a 10cm,

1.1T dipole magnet. The position and orientation of the scintillating screen (Kodak Lanex)

allows detection of electrons in the range from ∼ 50−600 MeV.

The bottom frame of Fig.3.17 shows the average electron spectra for different blade positions.

In this experiment electrons are injected via transverse self-injection, which leads to a broad

electron spectrum, with most charge below ∼ 200 MeV and a cut-off around 280 MeV. The

spectrum drastically changes when introducing a density step, i.e. by moving the blade

inwards. We observe that part of the electron beam looses energy, while the cut-off energy

increases beyond ∼ 350 MeV.

The average spectra seem broadband, without any mono-energetic features. However, this

is an effect of the averaging over many shots. When we look at representative single-shot

spectra (Fig.3.18), we observe that the high energy component exhibits a quasi-monoenergetic

feature.

Interpretation and validation via simulations

In our phenomenological model we had only considered monoenergetic electron beams at

a distinct phase φ with respect to the laser. However, within a beam electrons cover a range

of phases. So during the cavity contraction, some of the electrons will gain energy, but those

which are still close to the rear of the cavity will end up in the second arc of the wake and

where they are decelerated. This principle is illustrated in Fig.3.19b and it explains why we see

part of the spectrum down-shifted, while another part is accelerated.

In order to verify this qualitative argumentation, we have performed partice-in-cell simula-

tions with CALDER-CRIC. The resolution for these simulations was ∆z = 0.3k−1
0 , ∆r = 1.5k−1

0

on a grid of 3672×400 cells. The density profiles are chosen according to the experimental

data (Fig.3.17). In Fig.3.19a the computed electron spectra are presented, which resemble the

experimentally obtained data. Due to the density upramp, electron injection starts rather late,

close the center of the jet. Without a shock it continues from thereon up to z ∼ 1.3 mm. This

results in a long electron bunch with broad energy spread, as shown in the phase space map

(Fig.3.19c). At the position shown, part of the bunch has already entered a decelerating phase.
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Average spectra the different blade positions. Shots per position: 20, 5, 30, 5.
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2

the driving laser pulse encounters higher plasma density,
the wakefield period shrinks and the frontier between the
accelerating and decelerating region moves as fast as the
electron bunch itself, keeping it at the same phase inside
the ion cavity. The phase matching between wakefield
and the electron bunch can be kept for a longer accel-
eration distance, and therefore leading to higher elec-
tron energies. To get perfect matching the density profile
must be parabolic, which experimental realization is not
straightforward. The density tapering e↵ect has been ex-
tensively investigated numerically [9–13], however it has
been sparsely studied experimentally yet [14].

In this Letter, we explore a simple way to manipu-
late the electron beam and increase electron energy, with
a plasma presenting a low density region followed by a
high density one, separated by a sharp density jump. Ide-
ally, the density step is placed close to the dephasing
length, where the head of the bunch enters the decelerat-
ing region. When the laser crosses the density jump, the
bubble shrinks abruptly (Fig. 1(c)). Without the den-
sity step, the most energetic electrons at the head of the
bunch would eventually enter the decelerating zone and
their energy would decrease. In contrast, with the den-
sity step, electrons exit the decelerating region and shift
almost instantly to the rear of the cavity where the ac-
celerating field is larger, as shown in Fig. 1(c). The max-
imum electron energy is therefore larger than in the case
without transition. In a first experiment, a large energy
spread electron beam is used to demonstrate the princi-
ple of this technique. The density profile is obtained by
creating a shock front in a supersonic gas jet, generated
by placing a blade perpendicular to the gas flow emanat-
ing from the nozzle. In a second experiment, the density
step is made with a second gas jet, which can be used to
enhance the energy of mono-energetic electron beams.

The experiment has been performed with the ’Salle
Jaune’ Ti:Sa laser system (laser wavelength l0 = 813
nm) at Laboratoire d’Optique Appliquée. A linearly po-
larized, 1.2 J on target, 30 fs (corresponding to a peak
power P = 40 TW) laser pulse is focused at the en-
trance of a 1.5 mm supersonic Helium gas jet using a
f/10 o↵-axis parabola (as seen in the experimental setup
sketched in Fig. 1(a)). The Full Width at Half Maximum
(FWHM) focal spot size is 18 mm, with a peak intensity
on target of I = 1 ⇥ 1019 W.cm–2, equivalent to a nor-
malized vector potential a0 = 2.2. A 500 mm thick silicon
wafer is placed on the leaving side of the gas jet to cre-
ate a sharp density transition, by using a setup similar
to the one in Ref. [15, 16]. Note that in these previous
studies the shock front is created on the entering side of
the gas jet to trigger electron injection in the downward
density jump, whereas for now the shock is on the leav-
ing side of the jet and creates a sharp upward density
ramp. Measured longitudinal plasma density profiles for
di↵erent positions of the blade in the jet are presented
in Supplemental Material. The longitudinal position of
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FIG. 2. (Color online) (a) Experimental angle resolved elec-
tron spectra in logarithmic scale without (top panel) and with
the shock at 0.7 mm after the gas jet center (bottom panel).
(b) Angle integrated electron spectra in logarithmic scale for
four positions of the blade.

the shock is adjusted by moving the blade in and out.
Electron spectra are measured with a spectrometer con-
sisting of a permanent magnet (1.1 T with a length of
100 mm) combined with a phosphor screen imaged on a
16 bit CCD camera. The phosphor screen and detection
system are calibrated so that the electron beam charge
and energy distribution are measured for each shot.

Firstly a scan of the gas density is performed in or-
der to determine the optimum plasma density for which
the electron energy cut-o↵ is the highest. The en-
ergy spectrum with a plasma density without transi-
tion is shown in the top panel of Fig. 2(a) (angle re-
solved spectrum) and in red in Fig. 2(b) (spectrum in-
tegrated over the transverse direction). The electron en-
ergy distribution corresponds to the Force Laser Wake-
field (FLWF) regime [17], with a long plateau feature
and a Maxwellian decrease with a cut-o↵ energy around
230 MeV. The cut-o↵ energy is defined as the electron
energy where the charge of the beam becomes smaller
than 6 femtocoulombs per MeV. Such a spectrum indi-
cates the transverse self-injection of a long bunch [18],
which is consistent with an electron plasma peak density
ne = 8.5 ⇥ 1018 cm–3 along few millimeters.

When the blade is placed such as the shock is cre-
ated slightly beyond the center of the gas jet, the spec-
trum changes drastically, as shown in the bottom panel of
Fig. 2 (a) (corresponding to a shock position of zs = 0.7
mm, measured from the center of the gas nozzle at z = 0
mm). Figure 2 (b) shows the integrated spectrum for this
shock position in blue. The number of electrons between
100 MeV and 200 MeV substantially drops by a factor
20, and a quasi-monoenergetic peak appears around 300

zs = 1.8 mm 
zs = 2.0 mm 
zs = 2.3 mm 
out 

zs = 2.0 mm 

Figure 3.18 – Representative single-shot spectra without and with a density transition. In the
single-shot we observe that the rephasing leads to the formation of a peak at high energies.

If we however introduce a density step just before this point, the situation changes drastically.

First, the head of the bunch it again located completely within the accelerating phase. In

fact, while the unperturbed density profile lead to sawtooth-like wakefields with a gradient of

0.05 (TV/m) / µm, the tailored profile results in an increased field gradient of ∼ 0.19 (TV/m)

/ µm at the center and augments even stronger at the rear of the bubble. This corresponds

to what we have seen in previous PIC studies (Sec.3.4.3). The beam that is now at the back of

the bubble thus experiences very strong accelerating fields (exceeding TV/m) which results

in a phase space rotation and reduces the energy spread of the bunch in the first cavity. The

part of the bunch that was initially at the back of the bubble in contrast finds itself within the

decelerating phase of the wake and looses energy, just as we have observed experimentally.

We have discussed before that density tailoring can also favor electron injection and the

downramp after the shock could for instance lead to reinjection of electrons. In simulations

we find that this indeed occurs, however, these electrons will quickly dephase and do not

reach energies beyond > 150 MeV, as depicted in Figure 3.19e and 3.19f.
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Figure 3.19 – Interpretation of the experimental results. (b) shows a cartoon of the basic principle of rephasing via density tailoring. An electron
bunch, shown in green, is initially at the center of the ion cavity where it would start to dephase. Changing the plasma density changes the ion
density (shown in different blue tones) and therefore leads to shortening of the bubble. The electron bunch finds itself now located close to
the rear part of the contracted cavity, i.e. again in an accelerating field. (a) Results from PIC simulations in CALDER-CIRC with and without
density tailoring. The spectra are in qualitative accordance with the behavior observed in experiments. (c-d) Dumps of the z −pz phase space
from PIC simulations with and without density tailoring. The cavity contraction results in much higher accelerating field at the back of the
shortened bubble, which results in a rapid acceleration of electrons at these position. This results in a phase space rotation and hence a
reduced energy spread of this part of the beam. (e-f) Phase space z −pz as extracted from PIC simulations directly behind the shock and
after another ∼ 1.6 mm of propagation. The electrons are color-coded according to their injection position. Yellow corresponds to electrons
injected in the downramp behind the shock, which as shown the second plot, do not contribute to the electron spectrum for > 150 MeV.
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3.4.5 Energy spread reduction in propagation limited accelerators

The phase-space rotation that reduced the energy spread could also be reproduced in other ex-

periments. During another campaign with similar setup, we observed that a beam distribution

could be converted into a quasi-monoenergetic beam by means of a density gradient.

In this experiment the initial electron energies are substantially lower, reaching around 100−
150 MeV, with maxwellian distribution. However, when introducing the shock, the energy

spread reduced significantly and the broad spectrum turned into a quasi-monoenergetic

beam, cf. Fig.3.21. But in contrast to the previous experiments, the cuf-off energy of the beam

remains essentially unchanged.

In the preceding campaign electron energies of beyond 300 MeV were observed for similar

laser parameters and also from simple scaling laws we estimate a dephasing length of ∼ 2

mm with beam energies between 200−300 MeV. This suggests that the energy gain in this

experiment was limited by the plasma length. Indeed, interferometric measurements show

that the density profile (cf. Fig. 3.20) was steeper and the laser defocuses faster than in previous

experiments, which could be enough to explain the reduced energy gain.

In this scenario the shock-induced phase change would act differently than in the afore-

mentioned case. We have discussed before that the energy spread is always larger before

dephasing - and this would be the case for a propagation limited accelerator. But if a density

transition is introduced at the end of the accelerator, this would advance dephasing and thus

result in a phase-space rotation, as sketched in Fig.3.20. It is however important that the

acceleration terminates shortly after the density step, because otherwise the energy spread

will increase again. Indeed we observed the quasi-monoenergetic behavior only for a short

range of blade positions, which supports this interpretation.

(...)
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Figure 3.20 – (a) Schematic illustration how a density change before dephasing is reached can
lead to a reduction of the beam energy spread. (b/c) Interferometry images with and without
shock. (d) shows the density profile obtained from Abel inversion. Note that the resolution of
the shock is limited by the fringe spacing of ∼ 110µm.
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Figure 3.21 – Top frame: Electron spectra for 10 shots each with and without shock. The
linewidth is the moving rms-error divided by

p
n. Below: Representative single shots. In the

unperturbed density profile the energy spread is a hundred percent with a charge of 155±13
pC, whereas the spread is < 10 percent with the shock in place and the charge remains similar
(140±13 pC).

78



3.4. Rephasing in laser-driven wakefields

3.4.6 Energy gain of shock-injected beams

The last study performed in this context is the demonstration of energy gain in tailored density

profiles for mono-energetic electron beams. For this experiment we used shock injection in

pure Helium, as described in Chapter 2: Injection . This time the density transition is formed

with a small gas jet of ∼ 500µm diameter, subsequently referred to as ’needle’. The upward

transition length of this setup is comparable to the setup with the razor blade, cf. Fig.3.22d.

The shock-injected electrons have a quasi-monoenergetic distribution, as shown in Fig. 3.22

(i), with a peak energy of 125±2 MeV and a charge of 17±2 pC (mean over ten shots). With the

needle jet placed at the exit of the first jet we clearly observe an energy gain. As we increase

the backing pressure of the second jet the electron energy increases up to 220 MeV. At even

higher densities the electron beam is lost. This is in accordance with the behavior expected

from rephasing, as there is a threshold at which ion cavity contracts too far and the beam is

decelerated.

Though we observe a drastic energy gain, we have to examine whether this gain is completely

due to rephasing or partly the result of an increased propagation distance: In contrast to

previous experiments where the shocks created by the blade reduced the total propagation

length, the plasma channel is clearly elongated as the needle jet is active. However, while there

is a clear difference between the channel length with and without the jet, the propagation

distance is very similar for different backing pressures of the second jet, Fig. 3.22 (ii-iv). So it is

certain that the jet acts as second high density stage for the accelerator.
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3.5 Conclusions

In this chapter we have studied the laser wakefield acceleration process itself. In the intro-

ductory part we have discussed conventional resonant linacs and we have shown that laser

wakefield accelerators can provide much higher accelerating gradients (up to TV/m). Yet the

energy gain in both kinds of accelerators is limited by (i) the length over with the accelerating

structure can be sustained and (ii) the phase matching between the field and the electron

bunch. In a laser wakefield accelerator the former limitation (i) is mainly related to the de-

pletion of the laser driver, while the latter dephasing (ii) is a result of the subluminal phase

velocity of the laser-plasma wave. We have demonstrated two new regimes of operation for

the accelerator that alleviate these effects: beam-driven self-acceleration and density induced

rephasing.

For highly charged, long (σz > λp ) electron beams the beam-driven wakefield can sustain

a wakefield beyond depletion of the laser driver, which leads to continuous acceleration of

the rear part of the bunch. We have experimentally observed this effect for electron beams

from ionization injection in high-Z gases. However, the wake excitation depends critically

on the ratio between bunch density and plasma density, as well as the bunch length and the

plasma wavelength. Therefore the experimental parameters have to be carefully chosen and

we observe such reacceleration only for a limited plasma density range.

Furthermore, we have studied how appropriate density tailoring permits to influence in the

phase of electrons in a non-linear laser wakefield by means of analytical and numerical models.

We find that electrons can gain significant energy from a single density transition. Here an

increase of the local plasma density close to the dephasing length reduces the ion cavity size

and resets electrons back into an accelerating phase. But as the higher plasma density further

reduces the group velocity of the laser pulse, the acceleration length shorter than before

rephasing. We estimate a maximum gain of the order of 30 percent. Furthermore we find

that this kind of phase manipulation is restricted by self-focusing, which can either directly

compensate the cavity expansion or induce self-injection. We also observe that the shape of

the ramp influences the transformer ratio of the wakefield.

We have experimentally demonstrated the scheme in a setup very similar to electron injection

with shocks, where we use the density upramp created by a razor blade placed at the exit

of a supersonic gas jet. For broadband electron beams from self-injection we observe both

acceleration of the beam head and deceleration of the tail, which is in accordance to Particle-

in-Cell simulations. Furthermore we find that the method can be used to force electron beams

in dephasing, which reduces their energy spread. In the final section we show that the density

tailoring increases the final energy of monoenergetic electron beams by over 50 percent.

Understanding the exact interplay of density increase, wakefield dynamics and self-focusing

is an important area of future investigations.
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4 Beam transport

Beam transport lines are used to connect different stages of accelerators without losing beam

quality. In laser-plasma accelerators the injector and accelerator are directly coupled, which

means that no additional beam transport is necessary between these sections. However, from

the exit of the accelerator on the beam needs to be collimated. As we will discuss in this chap-

ter, conventional beam optics are too weak to transport laser-accelerated beams without beam

degradation. We show that in analogy with the longitudinal wakefield accelerators, the trans-

verse wakefields are suited for beam collimation at unparalleled field strengths. In particular

we present experimental results which show that a laser-driver can be used to focus ultrashort

beams. We also show results on electron defocusing due to beam-bubble interactions, which

is a promising mechanism to influence the amplitude of betatron oscillations.

Contents

4.1 Conventional beam optics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.1.1 Fundamentals of beam optics . . . . . . . . . . . . . . . . . . . . . . 85

4.1.2 Quadrupole lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.1.3 Normalized emittance and emittance growth . . . . . . . . . . . . . 91

4.2 Transverse laser wakefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.1 Linear wakefields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2.2 Blowout regime . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2.3 Betatron motion in transverse wakefields . . . . . . . . . . . . . . . 94

4.3 Plasma wakefield lenses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.4 Laser-plasma lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.4.1 Concept of the single pulse laser-plasma accelerator and lens . . . 98

4.4.2 Theoretical background of the linear laser-plasma lens . . . . . . . 98

4.4.3 Experimental demonstration of electron beam focusing using a

laser-plasma lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

4.5 Bubble lens . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

4.5.1 Conceptual idea and test particle simulations . . . . . . . . . . . . . 110

4.5.2 Experimental observation . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .113

83



Chapter 4. Beam transport

In order to use a particle beam for applications, beam transport lines are necessary to guide

the beam towards its destination. Throughout the beamline, the beam quality is characterized

by the normalized emittance, which is the area the beam occupies in the phase space [113].

Due to the small ion cavity size, laser-accelerated electron beams have (sub-)micrometer

source size. Even though the beam divergence is rather large (some milliradians), this leads to

a good normalized emittance in the order of mm.mrad.[114, 115]

Together with their ultrashort pulse length - which results in a very competitive beam charge

density nb - this makes laser wakefield accelerated electrons a promising candidate for bright

synchrotron sources and free-electron lasers (see Chapter 5: Radiation). However, whereas

the normalized emittance is considered to be conserved in most conventional accelerator

beam lines, laser-accelerated beams suffer from emittance growth during free propagation

[116]. This is a consequence of their larger energy spread and divergence, which makes it

imperative to collimate the beam shortly behind the accelerator.

Conventional beam optics are limited to field strengths of some Tesla, which even at smallest

aperture would require several centimeters to collimate a laser-accelerated beam. Once

again, the fields of the charge separation induced by a laser or particle beam can be orders

of magnitude stronger. Just instead of the longitudinal fields we consider the transverse

wakefields.

As for plasma wakefield acceleration, also plasma wakefield lensing was first studied in the

context of conventional accelerators. The interest in strong lenses came mostly from the

particle collider community, which has actively discussed the usage of plasma lensing at final

focusing stage of future colliders [117, 118] and thereby increase the luminosity.

Plasma wakefield lensing, which is also called self-pinching in the accelerator community,

was first demonstrated at Argonne National Laboratory in 1990 [119] and shortly later at

Tokyo University[120]. Other key experiments include focalisaton of positron beam at SLAC

[121] and streaking measurement of the electron beam focusing [122]. The latter showed that

despite the observation of plasma lensing, the head of the electron bunch still diverged. This

behavior - which we already discussed for beam-driven accelerators (Sec.3.3) - is related to

the length required to excite the wakefield. Accordingly beam-driven plasma lensing is not

possible for ultrashort electron bunches as we encounter in laser-wakefield accelerators. Here

we demonstrate that for such beams, a laser pulse can be used to create focusing fields.
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4.1 Conventional beam optics

In this section we will introduce the topic of linear beam optics to the reader, for further reading

see [123] and [124]. In particular we will discuss the concept of emittance and twiss functions

to describe beam evolution. For the latter we focus on the transfer matrix method. Then we

solve explicitly the equations of motion for one of the most common beam optical elements,

the quadrupole. This will serve as an example for the following analysis of electron motion in

wakefields. We conclude this part with a discussion of emittance growth in laser-wakefield

accelerators.

4.1.1 Fundamentals of beam optics

At a given time t an electron j is characterized by its phase space coordinates (~x j ,~v j ). If the

motion is predominantly in z-direction we can alternatively use its position~x j , the deviation

angle from the axis ~x j
′
⊥ = d ~x j ⊥/d z and its energy γ j as parameters.

An electron bunch is characterized in a similar way by the mean and the root-mean-square

(rms) quantities of the ensemble of Nb electrons, cf. Fig.4.1

〈z〉 = 1

Nb

∑
j

z j σ2
z = 〈z2〉 = 1

Nb

∑
j

z2
j

〈x〉 = 1

Nb

∑
j

x j σ2
x = 〈x2〉 = 1

Nb

∑
j

x2
j

〈x ′〉 = 1

Nb

∑
j

x ′
j σ2

x ′ = 〈x ′2〉 = 1

Nb

∑
j

x ′2
j

〈γ〉 = 1

Nb

∑
j
γ j σ2

γ = 〈γ2〉 = 1

Nb

∑
j
γ2

j

(4.1)

which are the beam center positions 〈x〉 and 〈z〉, the average energy 〈γ〉, bunch durationσz /c0,

bunch width σx , beam divergence σx ′ and energy spread σγ. Note that the beam direction

〈x ′〉 = 0 in the paraxial approximation.

However, it is clear that these quantities evolve over time, e.g. the bunch width changes

due to the beam divergence. When characterizing such a dynamical system it is therefore

useful to refer to conserved quantities instead. For the motion of charged particles under

linear transverse forces Liouville’s Theorem is valid, meaning that the phase space volume is

constant.

For reasons we will discuss later, it has become common to characterize this volume in each

plane (k,k ′) as an ellipse (cf. Fig.4.2) parametrized by α (related to beam tilt), β (beam size), γ
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Figure 4.1 – Schematic illustration of the electron beam in the laboratory frame. While each
individual electron e j in the bunch has its proper position and momentum, the whole beam is
characterized by the mean and root-mean-square quantities of the ensemble of particles.

(divergence) and ε (phase space area)1

γ2x2 +2αxx ′+βx ′2 = ε. (4.2)

The conserved phase space area ε, which is often interpreted as a kind of ’temperature’ of

the beam, is also called the beam emittance. A well-known equivalent for this is the beam

parameter product in light optics ( θ× w0 = λ/π for a diffraction limited Gaussian beam).

When the beam is not at waist we have to take into account the beam tilt and therefore the

emittance εx is calculated from the bunch widthσx and the divergenceσx ′ and the correlation

〈x x ′〉 = 1
Nb

∑
j x j x ′

j :

εx =
√

〈x2〉〈x ′2〉−〈x x ′〉2 (4.3)

Geometrically it is clear that the phase space ellipse - or Twiss - parameters α, β and γ are not

independent from each other for an ellipse of fixed area ε (cf. Fig.4.2), but it is found that they

are related by

α2 −βγ= 1 (4.4)

1The convention to parametrize with β and γ might cause some confusion with the velocity β and Lorentz
factor γ. Also, note that two different signs of α are common in the literature. We have followed the convention
from [124], which differs e.g. from the definition in [125].

86



4.1. Conventional beam optics

x' 

x 

��
�

�/�

��
�
�/�

tan 2� =
2�

� � �

�

area: ��

�x =
�
��

�x� =
�
��

Figure 4.2 – Beam ellipse in the x −x ′ (position-divergence) phase space.

The evolution of these parameters during beam propagation can be calculated in analogy to

light optics via transfer/transport matrices. For a general transfer matrix M = (A,B ;C ,D) the

beam evolves from its initial position
(
x0, x ′

0

)
according to(

x

x ′

)
=

(
A B

C D

)(
x0

x ′
0

)
(4.5)

and with the intial ellipse equation γ2x2
0 +2αx0x ′

0 +βx ′2
0 = ε we find that

α=−ACβ0 + (AC + AD)α0 −BDγ0

β= A2β0 −2ABα0 +B 2γ0

γ=−C 2β0 −2C Dα0 +D2γ0

(4.6)

Two frequently used examples are the transfer matrices of a free drift over a distance d and a

thin lens of focal length f

Mdrift =
(

1 d

0 1

)
Mthin lens =

(
1 0

−1/ f 1

)
. (4.7)

and with (4.5) and (4.6) we find immediately the impact in the beam ellipse. For example we

find that in a free drift

αdrift =α0 −dγ0 βdrift =β0 −2dα0 +L2γ0 γdrift = γ0. (4.8)
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Figure 4.3 – Evolution of the beam ellipse during free drift.

The physical interpretation of this is straightforward: During free space propagation the

divergence does not change (σx ′ =p
εγ= const). But the beam size (σx =√

εβ) changes, which

then obviously affects the tilt. The beam waist is reached at d =α0/γ0, which corresponds to

zero tilt α, cf. Fig.4.3.

With the transfer matrix formalism we have found a way to describe the beam evolution in

terms of its rms quantities. However, in this approach we have no information about individual

particle trajectories. Such can be found solving the equations of motion for particles in a given

field. It turns out that the phase space ellipse is equivalent the phase space trajectory of a

particle performing harmonic oscillations. The contour of the rms ellipse then corresponds to

the trajectory of the particle with largest amplitude
√
εβ. Historically these trajectories were

derived to describe beam fluctuations in the betatron accelerator. This is why the trajectory

parameters α(z), β(z) and γ(z) are also known as betatron functions, while the oscillations are

referred to as betatron oscillations.

4.1.2 Quadrupole lenses

Quadrupole lenses are among the most common beam optical elements and essential to focus

and collimate particle beams. We will now use the fields of electric and magnetic quadrupoles

to solve the equations of motion of electrons within and derive the corresponding betatron

phase-space coordinates
(
x(z), x ′(z)

)
.

The field strength in a pure electric quadrupole is given by

Ex =−E0
x

a
and Ey = E0

y

a
, (4.9)
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Figure 4.4 – Schematic layout of electrostatic and magnetic quadrupoles. The left side shows
the force lines for an electron beam in an electrostatic quadrupole, where the components
are focusing in the y direction and defocusing in x direction. The magnetic quadrupole on
the right will act in the same focusing directions for an electron beam traveling in positive z+

direction.

where a is the semiaperture as defined in Fig.4.4. In a similar way the magnetic quadrupole

field is

Bx = B0
x

a
and By = B0

y

a
. (4.10)

From Lorentz equation we can deduce the equations of motion of an electron in such fields

d 2x

d t 2 = eE0

mγa
x and

d 2 y

d t 2 =− eE0

mγa
y (4.11)

and correspondingly in the magnetic quadrupole

d 2x

d t 2 = evz B0

mγa
x and

d 2 y

d t 2 =−evz B0

mγa
y, (4.12)

which are all ordinary differential equations of the form ξ̈±ω2
0ξ= 0. The solutions are either

the confined oscillatory motion ξ = ξ1 sinω0t +ξ2 cosω0t or the diverging ξ = ξ1 sinhω0t +
ξ2 coshω0t . Thus, the quadrupole acts focusing in one plane and defocusing in the other. In

order to characterize this lensing effect spatially, we convert to trace space coordinates using

a constant dominantly longitudinal velocity (d z/d t = vz ' v = const), i.e. ξ′′±k2
0ξ= 0. The

solutions to these equations are obtained analogously to the temporal domain. For initial ray
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vectors (x0, x ′
0) and (y0, y ′

0) we find(
x

x ′

)
=

(
cosk0z k−1

0 sink0z

−k0 sink0z cosk0z

)(
x0

x ′
0

)
(4.13)

and (
y

y ′

)
=

(
coshk0z −k−1

0 sinhk0z

k0 sinhk0z coshk0z

)(
y0

y ′
0

)
(4.14)

For a short propagation length l through the quadrupole (l ¿ 1/k0) we can reduce the trans-

fer matrix to its first order Taylor expansion.2 This is the thin lens approximation and by

comparison with Mthin lens from the previous section we can identify the focal length

1

f
=±k2

0 l (4.15)

From (4.13) and (4.14) we then find the focal length for electric and magnetic quadrupoles

1

fE
=± eE0l

mγav2 and
1

fM
=± eB0l

mγav
. (4.16)

When we compare the focal lengths of both kind of quadrupoles we see that

fM

fE
= E0

βc0B0
. (4.17)

As discussed, high voltage breakdown limits electric fields to E0 ∼ 10− 100 MV/m, while

permanent magnets can reach field strength of B0 ∼ 1−2 T, which translates into fM / fE ∼
(0.01−0.3)β−1. In consequence, from the mildly relativistic regime upon, magnetic quadrupole

lenses provide stronger focusing. In order to achieve focusing in both transverse directions,

quadrupole doublets are used. In the simplest configuration, such doublets are constructed

such that the focal lengths of both lenses are f1 =− f2 and the effective focusing with a drift d

between both lenses is

1

fdoublet
= d

| f1 f2|
. (4.18)

2The first order expansion around z = 0 is

(
cosk0z k−1

0 sink0z
−k0 sink0z cosk0z

)
=

(
1 z

−k2
0 z 1

)
+O (z2).

90



4.1. Conventional beam optics

4.1.3 Normalized emittance and emittance growth

In our derivation of the emittance we have used Liouville’s theorem to argue that the emittance

ε is constant. This definition is no longer true for an accelerated beam. Instead, the position-

momentum x −px space has to be considered, where the phase space area remains constant

during acceleration. This quantity is called the normalized emittance εn :

εn
x = 1

mc

√
〈x2〉〈p2

x〉−〈x px〉2

' 1

mc

√
〈x2〉〈γ2x ′2〉−〈x γx ′〉2

(4.19)

Here γ is the relativistic factor and we assume again β= v/c ' 1.

Being conserved during acceleration the normalized emittance is an important characteristic

of an accelerator system. It is, if no degradations are present, preserved from the injection on.

However, emittance can augment due to various effects [123]. For laser accelerated electron

beams the beam energy spread is a principal source of emittance degradation.

As shown in [116], we can rewrite (4.19) in terms of the rms quantities (4.1)

εn = 〈γ〉
mc

√
σ2
γ,relσ

2
xσ

2
x ′ +ε2 = 〈γ〉

mc

√
∆ε2 +ε2, (4.20)

where σγ,rel = σγ/〈γ〉 is the relative energy spread. Without acceleration the conventional

transverse emittance ε is still considered a conserved quantity, however, the term ∆ε2 =
σ2
γ,relσ

2
xσ

2
x ′ is not. From the beta functions of a free drift (4.8) we find that for long propagation

σx 'σx ′ ×d , so the normalized emittance growth scales as

∆ε'σγ,relσ
2
x ′ ×d . (4.21)

In conventional accelerators this term is usually negligible as beams have a small energy

spread (σγ,rel ¿ 0.01) and divergence (σx ′ ¿ 1 mrad). As we have seen in Chapter 2: Injection,

the divergence and energy spread in a laser wakefield accelerator is orders of magnitude higher.

So even laser-accelerated electrons have a competitive emittance at the accelerator exit due to

their small source size, this advantage is lost rapidly during free propagation. It is therefore

paramount to collimate electrons and reduce their divergence as quickly as possible.

91



Chapter 4. Beam transport

4.2 Transverse laser wakefields

Though we have already discussed the three-dimensional ’bubble’ structure of laser-wakefields,

up to now we have restricted our discussion to the longitudinal wakefields. In this section we

are going to review transverse laser-wakefields in the linear and the blow-out regime.3

4.2.1 Linear wakefields

We have already discussed the one-dimensional linear plasma wave equation (1.16)(
∂2

∂ζ2 +k2
p

)
Φ= k2

p
〈a2〉

2
. (4.22)

which can be solved using Green functions. The more-dimensional solution is very similar and

usually a cylindrical symmetric coordinate system is used.In this case we also have to define a

radial pulse shape, which is often assumed gaussian h(r ) = exp[−r 2/w2]. It can be shown that

the corresponding potential is simply the one-dimensional solution with the imprint of the

laser profile in transverse direction, i.e. Φ(r,ξ) =Φ(ξ)×h2(r ), whereΦ(ξ) is the solution given

by (1.17), i.e.

Φ(ξ,r ) =−cenv
a2

0

4
sin[kp (ξ−ξl )]exp

(
−2r 2

w2

)
. (4.23)

From this we find the wakefields via Ez =−∂zΦ and Er =−∂rΦ:

Ez =
cenva2

0

4

mcωp

e
cos[kp (ξ−ξ0)]exp

(
−2r 2

w2

)
(4.24)

Er = cenva2
0

mc2r

ew2 sin[kp (ξ−ξl )]exp

(
−2r 2

w2

)
(4.25)

We notice that the transverse field is phase-shifted by π/2 with respect to the longitudinal field.

One consequence of this is that linear wakefield acceleration is only accelerating and focusing

over a quarter-wavelength λp /4, cf. Fig.4.5. Also, while the longitudinal field amplitude

scales explicitly on the plasma density via ωp , the radial field amplitude contains only the

coupling factor cenv. Instead, it contains the component r ×exp[−2r 2/w2
0]. This means that

the field vanishes on axis and then acts as a linearly focusing force. Note that the force

becomes non-linear for positions approaching the beam waist w due to the exp[−2r 2/w2
0]

term. Physically speaking this is a consequence of the weaker plasma perturbation at outer

radii, which weakens the restoring force.

3Note that even if we only provide explicit solutions for laser wakefields, the transverse fields in beam wakefields
are very similar, cf. [126].
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Figure 4.5 – Longitudinal (upper frame) and transverse (lower frame) electric fields in the
linear wakefield regime. The laser pulse (a0 = 0.5, τ= 30 fs,σr = 30µm) is plotted in yellow, the
plasma density is ne = 5×1018 cm−3. The colorscale is different for both cases, normalized to
the maximal field of each. Note that these fields are the result of Particle-In-Cell simulations.

4.2.2 Blowout regime

On the contrary, the blowout is distinguished by the complete ion cavitation that is formed

behind the laser. From Poisson’s equation in cylindrical coordinates

∆Φ= 1

r

∂

∂r

(
r
∂

∂r
φ

)
=−k2

p
δn

n0
(4.26)

we find that a constant charge density creates a parabolical transverse potential

Φ(r ) =Φ0

(
1− r 2

r 2
B

)
. (4.27)
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Figure 4.6 – Visualization of part of the wake potentialΦ and transverse electric fields Er in the
bubble regime as simulated with CALDER-CIRC. Electrons in the focusing, parabolic potential
(red) will perform harmonic betatron oscillations, while the repulsing area in the back (blue)
leads to strong defocusing of the beam.

The case of complete electron blow-out (δ=−n0) leads to the strongest potentialΦ0 = k2
p r 2

B /4.

From this we compute the field again via Er =−∂rΦ, which yields to

Er =
mω2

p r

2e
. (4.28)

So the transverse fields in the bubble are purely linearly focusing. There are also very strong

non-linear defocusing fields where electron trajectories cross. Though no analytical model has

been proposed for these fields, they are however well resolved in particle-in-cell simulations

cf. Fig.4.6.

4.2.3 Betatron motion in transverse wakefields

In the previous section we have seen that the 3D non-linear wakefield potentialΦ∝ [1−r 2/r 2
0 ]

is parabolic and the 3D linear potentialΦ∝ exp[−2r 2/w2
0] is quasi-parabolic4 along the radius.

The existence of such parabolic potentials suggests that particles in transverse wakefields

perform harmonic betatron oscillations.

Indeed, when solving Lorentz equation (mγr̈ = eEr ) for the transverse blowout (4.28) we find

the equation of an harmonic oscillator

d 2r

d t 2 =−
ω2

p

2γ
r (4.29)

4Its Taylor expansion at r = 0 is exp[−2r 2/w2
0 ] = 1−2r 2/w2

0 +O (r 3).
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4.3. Plasma wakefield lenses

Its eigenfrequency

ωβ =
ωp√

2γ
. (4.30)

is called the betatron frequency of the eponymous oscillations. It is now clear that there is a

strong analogy between the betatron oscillations in wakefields and in conventional focusing

optics. However, there are two important differences. The first is that betatron fields act

isotropically focusing in the transverse plane. And second, the electrons will always simulta-

neously experience the longitudinal wakefields (except at dephasing) and hence their energy

is not constant γ= γ(t ). This basically means that the relativistic increase of particle inertia

will damp the oscillations.

In case of adiabatic acceleration (dtωβ/ω2
β
¿ 1) the WKB approximation can be used to solve

(4.29), yielding [35]

r = r0

(
γ0

γ(t )

)1/4

cos

(∫ t

t0

ωβ(t ′)d t ′+φr

)
. (4.31)

From this equation we deduce that the initial betatron oscillation amplitude is damped during

acceleration by γ−1/4. Accordingly the transverse size of an electrons bunch decreases already

due to mere acceleration. We can also estimate the corresponding electron divergence with

θ ≈ ṙ /c0,

θ =− kp r0√
2γ0

(
γ0

γ(t )

)3/4

sin

(∫ t

t0

ωβ(t ′)d t ′+φr

)
(4.32)

which in turn implies that the divergence scales with γ−3/4.

4.3 Plasma wakefield lenses

In the preceding section we have seen that transverse wakefields are similar to quadrupole

fields used in conventional beam optics. Using them for beam transport in form of a plasma

lens is therefore a straightforward idea and was proposed early in the theoretical development

of plasma wakefield acceleration back in the 1980s [127, 117, 118]. As in the previous Chapter 3:

Acceleration we will start with a general discussion of plasma lenses, then move on to plasma

lenses based on beam-driven wakefields, before finalizing the discussion with theoretical and

experimental results on laser-driven plasma lenses.

Conventional versus plasma wakefield lenses

As for plasma wakefield acceleration, the main advantage of plasma wakefield lensing is that

the fields exceed by far those achievable in conventional devices. From the introduction we

know that electrostatic quadrupoles can provide up to E0 ∼ 10−100 MV/m, while magnetic
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quadrupoles usually operate at B0 ∼ 1−2 T. For ultra-relativistic beams the latter translate

into an equivalent of cB0 ∼ 500 MV/m. This value might be increased by a factor 2−3 in

superconducting [128] or pulsed [129] systems.

Yet the field strength is not only defined by the peak field, but also the aperture, cf.(4.9) and

(4.10). This is why focusing optics are usually characterized in form of field gradients E0/a

and B0/a, where a is the semi-aperture. The aperture is normally of the order of centimeters

and typical field gradients are B0/a ∼ 50 T/m (cB0/a ∼ 1.5 GV/m2). Higher fields gradients of

B0/a ∼ 500 T/m have been reported for permanent magnets with millimeter-size aperture,

but further amelioration is difficult to reach due to manufacturing issues, demagnetization

effects and so forth.

Alternatively, strong focusing forces can be achieved using the magnetic fields in plasma

discharges, see for example [130]. The magnetic gradient field in such a configuration is

approximately given by the solution of a concentric current-carrying cylinder of radius r0

[131], which reads B ′ = (µ0I )/(2πr 2
0 ). In laser-plasma accelerators discharges are often used

as waveguides, so it is convenient to use such devices for focusing as well. Typical radii and

currents, as for instance used in [132], are r0 ∼ 200µm and I ∼ 200 A, which corresponds to

field gradients of the order of ∼ kT/m.

Let us now compare these values to the transverse field gradients in linear (4.25) and non-

linear (4.28) wakefields. To find the radial fields in the beam-driven regime, we can replace

the ponderomotive driver (a2/4) by the space-charge excitation (nb/n0). Recall that n0 is the

plasma density and nb = Nb/(2π)3/2σzσ
2
r is the bunch density. Again, we get the potential by

multiplying the one-dimensional potential with the beam envelope and from this we get the

fields. The transverse field gradient in a linear beam-driven wakefield (also called overdense

plasma lens as nb > ne ) is then of the order of

dEr

dr
∼ 4mc2

e

1

σ2
r

nb

n0
, (4.33)

where we assume cenv sinφexp[−(2r 2)/(σ2
r )] ∼ 1, and scales with E ′

r ∝ Nb/(n0σzσ
4
r ). In linear

laser wakefields

dEr

dr
∼ mc2

e

a2
0

w2 ∼ 511
a2

0

w2 [µm2]
PV/m2 =̂1.7

a2
0

w2 [µm2]
MT/m (4.34)

e.g. for a0 = 0.1 and w = 30µm we find E ′
r ∼ 5 TV/m2, which is equivalent to ∼ 20kT/m. Since

the intensity depends on the beam diameter and the power, we find an equivalent scaling

as for beam beam-driven lenses and can rewrite the equation in terms of laser power, i.e.

E ′
r /c ∼ 124×P [GW]/w [µm]4 kT/m. So the gradient rapidly reduces when we increase the size

of the lens, which corresponds to the aperture. From this scaling we see that it only makes

sense to use plasma lenses for beams with micrometer-size diameter. Yet if one respects this

condition, the plasma-lens provides field gradients many orders higher than in conventional

lenses. An advantage of the linear regime is that depending on the phase sinφ, the lens can
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4.3. Plasma wakefield lenses

work either radially focusing or defocusing. This also means, that the lens can be used to focus

proton and positron beams.

For strong drivers we enter the blowout regime (also called underdense plasma lensing for in

the beam-driven case), where the transverse field gradients are independent of the driver

dEr

dr
=

mω2
p

2e
∼ 9ne [1018cm−3] PV/m2 =̂30ne [1018cm−3] MT/m (4.35)

In contrast the aperture is different for laser and beam-drivers, but still of the order of some

microns. From the derivation of betatron motion in the previous subsection, we can also

estimate the focal length of the plasma lens. As the equations of motion are very similar to

those in a quadrupole, we can identify k0 = ωβ/c and from (4.15) we immediately find the

focal length of a short blowout/underdense plasma lens [126]

1

fP
=
ω2
β

c2
0

l = (2π)2 l

λ2
β

(4.36)

where l is again the interaction length. It is important for plasma lenses to maintain l below

λβ/4 in order to avoid that the beam starts to oscillate.

Collimating laser-accelerated electron beams using plasma lenses

As discussed before, the expectations on a focusing system for laser-accelerated electron

beams are rather conservative: To avoid beam emittance growth. However, this conservative

goal requires quite unconventional solutions. As we will discuss later, to collimate a beam after

one millimeter of free propagation requires that the focal length is of the order of a millimeter,

too. Yet from (4.16) we can estimate the focal length of a 500 T/m quadrupole for a 200 MeV

electron beam to

fM (500 T/m,200 MeV) ∼ 1.4 m

l [mm]
. (4.37)

In contrast the betatron wavelength of a 200 MeV beam in an ion channel of n0 = 1×1018

cm−3 is λβ ∼ 0.9 mm, so from (4.36) we find

fP (1018 cm−3,200 MeV) ∼ 20 mm

l [µm]
, (4.38)

which means that employing a plasma lens could resolve the problem of emittance growth in

laser-plasma accelerators. Yet the question remains whether such a plasma lens should be

beam-driven or laser-driven.

For a beam-driven lens basically the same criteria apply as for beam-driven acceleration,

meaning that the drive-beam should have a high charge density and be rather long. Again, of

the injection schemes we discussed in Chapter 2: Injection, electron injection in high-Z gases
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is the most appropriate candidate to meet these requirements. However, PIC simulations

with CALDER-CIRC show that due to their large divergence, these beams suffer from the

rapid reduction of nb in free drift and it is therefore difficult to self-collimate them. Short,

high quality beam as from shock or optical injection are, also in this beam-driven scheme,

unsuitable. As for acceleration, this kind of beams requires a separate driver for the wakefield.

4.4 Laser-plasma lens

We have seen in the preceding section that beam-driven plasma focusing is - as well as beam-

driven acceleration - limited to long electron bunches or bunch trains. In order to focus

ultrashort electron beams as produced in laser wakefield accelerators, a separate driver for

the focusing is needed. In order to avoid the synchronization and alignment problems a

second laser pulse would impose, we opt for the simpler scheme of using the same driver as

for acceleration.

4.4.1 Concept of the single pulse laser-plasma accelerator and lens

The basic scheme of the single pulse laser-plasma accelerator (LPA) and lens (LPL) is depicted

in Fig. 4.7. During the first phase electrons are injected and accelerated via laser wakefield

acceleration. The area the bunch occupies in phase space at this point is determined by

the injection mechanism and the betatron phase mixing. As electrons and laser pulse exit

the accelerator, both start to defract. As discussed, the drift acts as tilt towards the x−axis

in phase space. But meanwhile both area ε and divergence γ are conserved, so the ellipse

squeezes to compensate. So the longer the drift, the better electrons can be collimated. For

LPA parameters, this free propagation length is typically millimeter scale. At the exit of the

accelerator the laser pulse has already transfered significant energy to the plasma and such an

additional unguided propagation will usually push the field strength below a0 < 1. Once the

laser reaches the second plasma region, it will excite a linear wakefield. The longitudinal field

is usually too weak to significantly affect a highly relativistic electron beam. Yet the transverse

fields suffice to bend and collimate the electron trajectories. As discussed before the jet has

to be shorter than l <λβ/4 to avoid oscillations. As the distance between laser and electron

beam is determined during the acceleration, the phase φ= kp (ξ−ξl ) has to be adjusted by

changing the density of the lens.

4.4.2 Theoretical background of the linear laser-plasma lens

As in Sec.4.2.3 we are now deriving the equations of motions in the transverse wakefield, this

time for the linear regime given by (4.25):

d 2r

d t 2 = cenvc2 sinφ

γ
× a2

0

w2 × r e−
2r 2

w2 . (4.39)

98



4.4. Laser-plasma lens

ne 

z 

acceleration drift space lens 

0 z0 + lz0

x' 

x x x 

x' x' 

Figure 4.7 – Cartoon of the principle of the laser-plasma lens and corresponding evolution of
the phase-space.

The equation is more complicated than a harmonic oscillator, but we can simplify it with a few

approximations. As such we assume again that the electrons travel close to speed of light in

z direction z ∼ ct , the energy does not change significantly γ= const. and dephasing can be

ignored φ= const. The latter assumptions are valid for low density plasmas and weak longitu-

dinal fields. Furthermore the electrons shall remain close to the axis, i.e. exp[−(2r 2)/(w2)] ' 1.

With this we obtain

d 2r

d z2 = cenv sinφ

γ

a2
0

w2︸ ︷︷ ︸
=k2

β,lin

r.
(4.40)

Now the equations of motion have the same form as for the blowout regime and quadrupoles.

However, the excitation amplitude depends on the laser intensity a0 and spot size w which

evolve during propagation. Far from focus these change approximately as a0(z) ' a0×zR /z and

w(z) ' w0 × z/zR , where zR is the Rayleigh length. The focal lens of a thin linear laser-plasma
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Figure 4.8 – Line-outs of the linear radial wakefields from the same simulation as Fig.4.5.

lens at position z0 À zR is therefore

1

fLP
' k2

β,linl ' cenv sinφ

γ

a2
0

w2
0

z4
R

z4
0

l . (4.41)

The thin lens conditions in this case is l ¿ λβ and we can assume a constant intensity and

spot size if l /zR ¿ z0/zR . A curiosity of the linear regime, which we mentioned parenthetically

in Sec.4.2.1, is that the radial fields are only weakly dependent on the plasma density via cenv.

This property is inherited by the betatron period and the focal length. The dominant density

dependence comes from the phase factor sinφ between the electron bunch and the driver.

For a given distance between electrons and laser (determined by the acceleration section), a

density scan of the lens should therefore show oscillations between focusing and defocusing.

From the thin lens transfer matrix Mthin lens (4.7) we can derive that the divergence reaches

zero x ′ = 0 for

1

f
=
σx ′

0

σx0

∼ 1

z0
, (4.42)

which is a relation well known from light optics. So we see that it becomes easier to focus

beams the more they propagate. Using this we can estimate what focal strength is needed to

collimate our beam. For example, let us consider a laser with a spot size of w(0) = 6µm and

a0(0) = 5.0 at the exit of the LPA. For a laser-plasma lens placed at z0 = 5zR ' 750µm behind

and a matched electron beam (cenv sinφ= 1) we estimate that f !∼ 750µm. To reach this the

lens would need a width l ∼ 500µm. This result is of the same order as estimations from a

100



4.4. Laser-plasma lens

more rigorous model [133], differs however as l ∼ 2zR which violates the model conditions

that a0/w remains about constant.

We can extend (4.41) to longer interaction length by calculating the average interaction length

l ′. This method is frequently used in accelerator physics to take into account fringe fields of

quadrupoles [123]. In our case

l ′ = 1

k2
β,lin(z0)

∫ z0+l

z0

k2
β,lin(z)d z =

[
− z4

0

3z3

]z0+l

z0

(4.43)

As we still want to avoid the regime of betatron oscillations it is fair to assume that z0 > l and

we carry on just terms of first order in l . The focal length then changes to

1

fLP
' cenv sinφ

γ

a2
0

w2
0

z4
R

z0(z0 + l )3 l (4.44)

From this we see clearly that the focusing effect is reduced for thicker lenses. Physically

this is an obvious consequence of the laser diffraction, which then diminishes the wakefield

amplitude.

Alternatively there is also an analytical solution for differential equations of the above type
d 2x
d z2 = k2

0

z4 x, which is discussed in [133]. This solution is however more complex and therefore

cumbersome to translate into a matrix formalism.

From (4.41) we also see that fLP ∝ γ, i.e. the laser-plasma lens is sensible to chromatic

aberrations. This effect is shown in Fig.4.9. Also, at high charge densities we simultaneously

drive a laser wake and a beam wake. As discussed before, this additional effect especially

affects the tail of the electron bunch.[134]

4.4.3 Experimental demonstration of electron beam focusing using a laser-plasma
lens

The theoretical framework established in the last sections helps us to understand how to

design a working setup for a experimental demonstration of the laser-plasma lens. This is

followed by the presentation of experimental results on electron beam focusing.

Considerations for choosing LPA parameters

The single-pulse laser pulse lens means to use the same laser pulse not only for acceleration,

but also for focusing. It is therefore imperative to operate the accelerator below the depletion

length. We also have to chose carefully the amount of dephasing we tolerate, as the sinφ term

will determine whether the lens is focusing or defocusing.
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Figure 4.9 – Electron collimation using the model from [133]. Beam rms parameters are
σθ = 3mrad, electron energy 300 MeV. The 1J, 30 fs, 800nm laser is focussed by an f/10 lens.
The lens has a length of 500 microns at 1.0×1018 cm−3 and electrons are located at 15 microns
laser pulse centre. Bottom row shows the effect of chromatic aberrations.

Another condition to maintain the laser-driver is that the Rayleigh length at the exit of the

accelerator should be long, in order to reduce the intensity losses during the free propaga-

tion. Yet even we can increase the Rayleigh range by adequate choice of focusing optics, the

curvature at the accelerator exit is likely to be higher as the laser undergoes self-focusing (cf.

Sec.1.3.4). This is difficult to control, but as the relativistic self-focusing angle is proportional

to the plasma density it might be favorable to operate at lower plasma densities.

Furthermore we require electron beams with an initial divergence in the range of some

milliradiants. On one hand beam focusing will be easier to measure for beams with larger

divergence. But on the other hand their divergence should be considerable lower than te laser

beam divergence in order to avoid aberrations from the pulse shape term exp[−(2r 2)/(σ2
r )].

In conclusion, we aim for electron beams of moderate energies and divergence. Also, if we

want to characterize the chromaticity of the lens it is better to start of with a broad electron

spectrum instead of monochromatic beams (no optical or shock injection). Furthermore we

have mentioned that beam-loading can counteract the lensing effect, so the charge density

must not be too high (no ionization injection, also unfavorable for transverse self-injection).

And lastly, the electron source should be stable enough to be able to compare between shots

with and without the lens with reasonable statistics. Taken all these criteria together we find

that longitudinal self-injection is the best suited regime of operation.
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Experimental setup

The experiment was conducted with the Salle Jaune Laser, which delivered on average ∼ 1.7

Joule on target at 28 femtosecond duration during the experimental campaign. The laser

was focused with an f /10 of axis parabola to a spot size of 12µm (FWHM), with 50−55% of

the energy in the central peak. From this we estimate a peak intensity of 1.0×1019 W/cm2,

equivalent to a0 ∼ 2.2. The Rayleigh length in vacuum is ∼ 400µm.

For acceleration the laser is focused 1.6 mm above at the entrance of a 2He supersonic gas

jet of 3 mm diameter and Mach number 3. At this height the gas forms a central pleateau

region of 2.4±0.1 mm, with gradients of 0.6±0.1 mm around. The plasma density of ne =
9.2±0.5×1018 cm−3 is caculated using Abel inversion of the phase shift measured with a

Normanski interferometer.

The plasma for the lens is also created via ionization in a 2He gas jet. This jet is shorter, with a

diameter of 0.8 mm and an estimated Mach number of 1.6, which leads to a triangular density

profile with gradients of 1.0±0.1 mm, cf. Fig.4.10.5

A dipole magnet (1.1 T over 10 cm) is placed behind the lens, deflecting electrons depending

on their energy. A Lanex phosphor screen is placed behind the magnet, covering energies from

110 MeV upon, and the scintillation light is imaged onto a 16-bit CCD. From this we obtain a

spectrally resolved measurement of the beam divergence in vertical direction. To increase the

angular resolution the screen is moved as far as possible away from the magnet (∼ 50cm). The

energy resolution of the diagnostic is affected by the horizontal divergence and lies between

∼ 1% for 140 MeV electron with 1.5 mrad divergence and ∼ 10% for 300 MeV at 4 mrad. The

vertical angular resolution is 0.3 mrad.

Electron accelerator performance

The laser plasma accelerator was operated in the regime of longitudinal self-injection, pro-

ducing electron beams of a few pC charge at a mean energy 241±12 MeV and 4.1±0.6 mrad

divergence. Direct imaging of the undeflected electron beam showed that the divergence is

very similar in the horizontal and vertical directions, which justifies to quantify divergence

reduction with the spectrometer in place. The stability of the accelerator is shown in Fig.4.11.

5The reader might wonder about this choice of parameters for the second jet instead of shooting close to the
exit of a small diameter supersonic nozzle. The reason for this is purely practical and the result of many iterations
of the setup. The valves used in acceleration experiments have a diameter of 17 mm and therefore it is not possible
to closely approach two parallel valves with the jet in their center. Neither can the nozzles be placed at 180 degrees,
because in this case the gas flow is highly perturbed by the opposing jet. Tilting the nozzles is a compromise, but
this usually disturbed the probe beam. We therefore started to investigate unconventional nozzles designs, where
the jet nozzle is placed shifted with respect to the valve’s exit. Yet such nozzles are more difficult to produce with
conventional milling techniques, which is why we employed additive manufacturing instead. As described in the
appendix we are limited to hole diameters in the order of ∼ 1 mm and therefore no high Mach numbers can be
reached.
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Figure 4.10 – Setup of the experiment for the laser-plasma lens. As shown in the cartoon on the lower left, we use one gas jet for acceleration
and a second smaller jet for focusing. The lanex screen is placed as far as possible from the source in order to increase the angular resolution.
The measured density profile is shown on the lower right for a drift space between the two gas jets of z0 ' 2.3 mm (at half maximum). The
density of the acceleration section is kept constant during the experiment, while the second jet can be tuned from 0 up to ∼ 6×1018 cm−3.
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Figure 4.11 – Stability of the electron acceleration in longitudinal self-injection regime.

Focusing and influence of the drift length

Turning on the focusing jet significantly changed the electron beam divergence, while the

spectral distribution remained essentially the same, cf. Fig.4.12. For a distance scan with

nLPL ' 3.9×1018 cm−3 we find that the divergence reaches a minimum at z0 ∼ 1.8 mm and

then increases back up to the initial value, cf. Fig.4.13. At the best conditions, the divergence

at 270 MeV reduced from initially 4.2 mrad to 1.6 mrad, corresponding to a reduction of 2.6

times.

To interpret these results let us first verify that we are indeed operating in the linear wakefield

regime. As stated in the previous section, the Rayleigh length of the parabolic mirror is

zR ∼ 400µm and we estimate a peak intensity at focus of a0 ∼ 2.2. As the laser self-focuses

in the first jet we expect the Rayleigh length to reduce, while the vector potential increases.

However, as both values are coupled and the laser overall looses energy to the wake, we can

estimate a0(z0 = 1.8 mm) ∼ a0(0)/(z0/zR ). 0.5, which lies within the linear wakefield regime.

In this regime a scan of the drift distance primarily varies the focal length of the plasma lens.

In this case the higher divergence at short drift lengths z0 can be interpreted as overfocusing

of the beam, which then reaches an optimum and re-augments afterwards as the focal length

increases further. This interpretation is supported by trajectory estimations from Lehe’s model,

cf. Fig.4.13. These calculations are performed for a 270 MeV, 4.2 mrad electron beam, focused

by a laser pulse of initially 1 J and 400µm Rayleigh length, within a 1 mm lens of constant

density. Please note that the calculations only support our interpretation, but are not to be

interpreted quantitatively as we are missing important information about the electron phase

with respect to the laser. In this case we have chosen an average plasma density nLPL = 2×1018

cm−3 and distance d = 8 microns, i.e. φ∼π/2.
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Figure 4.12 – Electron spectrum and divergence with and without the lens.

Electron phase and influence of the plasma density

In the single pulse scheme the distance d between the electron bunch and the laser is fixed

behind the accelerator.6 But we can vary the phase by changing the plasma density. Results

on such density scan are shown in Fig.4.14. While the beam divergence is almost unaffected

for peak densities below nLPL < 1.0×1018 cm−3, for higher densities the divergence changes

only weakly, with a minimal divergence at nLPL ∼ 4.3×1018 cm−3. Unfortunately the density

in the second jet could not be increased beyond nLPL > 6×1018 cm−3 and therefore we could

not observe focus/defocus oscillations.

This effect is reproduced in theory, where calculations show that minimal divergence is reached

at nLPL ∼ 2.5×1018 cm−3 and the density dependence is only weak in vicinity of this value.

Note that the theoretical model assumes a constant density profile, while the experimental

values are given in terms of the peak density.

6Actually the phase still changes due to dephasing, which is why it is important to operate the lens at low
densities. For density of nLPL = 5×1018 cm−3 the dephasing after 1 mm is almost ∆φ∼ 1.3 ∼π/2.
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Figure 4.13 – Divergence at 270 MeV for different drift lengths z0. Upper frame: Experimental
data, showing the average over 10 shots at each position. Vertical error bars represent the
standard error of the mean, while the horizontal bars correspond to the precision of the
position measurement. Bottom frame: Estimations using the model from [133] for the same
energy and divergence, which reproduce a similar tendency.
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Figure 4.14 – Divergence at 270 MeV for different plasma densities nLPL at z0 = 2.3 mm
drift length. Inlet: Estimations for Lehe’s model [133] for the same laser, electron and lens
parameters.

Chromatic effects

Up to now we have restricted our discussion to a single energy (270 MeV). But as discussed

before, the focusing strength of plasma lenses depends on the beam energy γ and when

looking at the whole spectrum we therefore expect an energy dependence of the focusing

effect. However, as plasma lenses act radially, a single lens can be used to focus the beam,

whose chromaticity is then determined by γ/sinφ, see (4.41). In contrast, conventional

quadrupole systems need to use a doublet to achieve bi-directional focusing and the resulting

focal length (4.18) has a γ2 dependency.

Our measurements on chromatic effects are summarized in Fig.4.15, which represents a 2D

map of the divergence reduction in dependence of the drift length and the electron energy.

As expected the lens behaves shows a much weaker energy dependence than conventional

systems as for instance shown in [135]. In fact, we find that the lens behaves almost achromatic

when placed more than 2.5 mm from the accelerator. Closer to the jet we observe stronger

focusing for high energy electrons, which is an unexpected tendency. It may however be

caused by the phase term sinφ. To understand this better additional density scans, over a

wider parameter range, are necessary.
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Figure 4.15 – Chromaticity of the laser-plasma lens. The plot shows the divergence reduction
for different electron beam energies and drift distances. We observe that the lens is rather
achromatic and the energy dependence becomes weaker the further the second jet is place
away from the accelerator.

4.5 Bubble lens

In the previous section we have discussed plasma focusing in the linear wakefield regime. In

this part we are going to briefly introduce a mechanism for rapid defocusing of an electron

beam in the blowout regime.

As in the case of the linear laser-plasma lens, plasma lenses are usually operated at much

lower densities and weaker fields than accelerators. One reason for this is that a lens has to

fulfill the thin lens criterion d ¿λβ. If not, the lens starts defocusing and eventually the beam

would perform betatron oscillations. This can be avoided if the lens is short enough, but at

high plasma density this would mean that the lens has to be of the order of some hundred

micrometers, which is difficult to engineer. Also, operating a laser-plasma lens in the blowout

regime is difficult as the aperture of the lens would be very small and therefore only very short

drift space are tolerable.

As discussed in Sec.4.2, the non-linear blowout regime exhibits very strong defocusing fields

at the rear of the bubble. As shown in Fig.4.16, the fields exceed the transverse strengths en-

countered inside the bubble by far and reach field gradients of 1018 V/m2 or equivalently some

GT/m. Even these fields are non-linear and will therefore not preserve the beam emittance,

they may be useful for certain applications that mean to augment the transverse beam size.
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Figure 4.16 – Radial wakefields in the blowout regime. The defocusing fields at the rear part of
the bubble are an order of magnitude stronger than the focusing fields inside the cavity.

One such application are plasma wigglers, which we are going to discuss in detail in the next

chapter.

4.5.1 Conceptual idea and test particle simulations

Having identified the rear of the bubble as source for defocusing fields, we now need to find

a way to take advantage of them. In most cases we aim for injection into the first ion cavity

behind the laser, whose fields are the strongest. So electrons will only advance with respect

to the rear of the bubble and thus never experience these fields. 7 In order to bring electrons

into the defocusing region we need to change the cavity size. This is very similar to rephasing,

except for the fact that we now want the bubble to shrink beyond the position of electrons in

the wake. As we haven seen in Chapter 3: Acceleration , self-focusing eventually compensates

the contraction, so ideally the electrons end up again in their original bubble.

For a computational test of the scheme we use test particle simulations. The wakefields are

extracted from CALDER-CIRC and 1000 test particles are injected into the wake at 150 MeV

with a normal distributed divergence of 5 mrad. The bubble is then contracted in shock-like

conditions.

As shown in Fig.4.17 electrons are rapidly defocused as they pass through the back of the

bubble, exceeding 100 mrad divergence. However, electrons which are too divergent cannot

7A difference are electrons injected into the rear wakes, however, as their transition occurs during the injection
process, it is difficult for us to control.
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be guided in the secondary arcs and are lost. In the plot those trajectories can be recognized

by the fact that the divergence remains constant behind the density transition. Electrons with

a divergence of less than ∼ 70 mrad are however refocused and start betatron oscillations at

increased amplitude.

Figure 4.17 – Test particle simulation for electrons passing through a defocusing fields at the
rear part of the bubble.

4.5.2 Experimental observation

In Chapter 3: Acceleration we have discussed that a long electron bunch going through

rephasing may separate into an accelerated and a decelerated part. In fact, when we consider

the angularly resolved profile of the beams, we observe that the beam is not only dephased

but also defocused. The effect is for example visible in Fig.3.18a, which shows two spectra

from the first rephasing experiment or in Fig.3.22 from the rephasing experiment that used

shock injected beams. For the latter it is actually very clear that there is a threshold density at

which the whole beam is defocused (Fig.3.22v).

We have therefore studied the defocusing effect in a separate experiment. To achieve pure

defocusing we have to go beyond the ideal density of rephasing and thus need to create

stronger density transitions than for rephasing. This is better to control with a second jet than

with a shock, so we decided to use the needle gas jet for the experiment.

To get reliable broadband injection we used a gas mixture of 95:5 Helium/Nitrogen to facilitate

injection. Without a density transition we measure a divergence of 4.6±0.7 mrad and an

average beam charge of 40±10 pC.
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Chapter 4. Beam transport

With the second jet active we observe a very different behavior. Fig.4.18 shows the results

for a positions scan with 10 shots at each location. As the fringes are asymmetric we cannot

perform a complete Abel inversion on the image, so instead we manually compare the local

fringe shift difference. For two positions (1.6 mm and 1.8 mm behind the jet entrance) we

observe strong additional injection, with beam charges exceeding 100 pC for 3/10 and 5/10

shots, respectively. For the analysis we neglect these shots as they are obviously different from

the general tendency, which is that the beam charge remains similar all along the jet. However,

the total integrated divergence tends to increase from initially ∼ 5 mrad to ∼ 30 mrad at the

position most inside the jet. We also observe that the average beam energy decreases from

140±10 MeV to about 100±10 MeV with the second jet active.

In order to assure that we are not missing charge at energies below the spectrometer cut-off

(51 MeV), we imaged the electron beam directly with and without the second jet active. The

electron beam profiles are mostly symmetric in horizontal and vertical direction. In this

measurement the beam divergence increases by a factor of 3-4, while the charge remains

similar.

A behavior similar to our observation is expected purely as a result of betatron oscillations,

which according to (4.32) affect the divergence with θ∝ (γ1/γ0)−3/4n1/n0. Taking this into

account the divergence would double in our conditions, so the observed divergence augmen-

tation still exceeds the predictions for pure betatron oscillations. Also the fact that electron

lose energy suggests that electrons enter a decelerating region, even this might also occur

inside the primary bubble due to the reduced dephasing distance.
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Figure 4.18 – Beam charge, energy and divergence in dependence of the position of the density
transition, measured with respect to the gas jet entrance. While we observe a similar beam
charge for all positions, the beam divergence increases significantly the more inwards the
density transition is place. Furthermore, the average electron beam energy reduces when the
second jet is active.
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4.6 Conclusions

In this chapter we have discussed the physics of electron beam transport and the necessity of

strong beam focusing to preserve the emittance of laser-accelerated beams. This is of great

importance for the usage of the electron beam in subsequent stages, e.g. insertion devices for

radiation generation. We have shown that the transverse wakefields are orders of magnitude

stronger than the fields of conventional focusing devices, with the additional advantage of

providing isotropic forces. It is therefore desirable to create wakefield lenses and we have

derived expressions for the focal lens in the thin lens regime.

While first experimental results on beam-driven wakefield lenses were reported decades ago,

such lenses are not suitable for ultrashort electron beams as encountered in laser-wakefield

accelerators. We have demonstrated that such beams can be focused employing a linear laser

wakefield lens instead. Here the lens uses the same laser as driver for both accelerator and

lens. It is shown that the device can reduce the divergence of a femtosecond electron beam by

almost three times over a distance of less than a millimeter.

The results are in accordance with theoretical predictions. However, for future use of the lens

we need to establish better diagnostics of the laser beam. Furthermore, it is desirable to gain

better control of the phase term sinφ, which would for example allow us to change between

focusing and defocusing phase.

We have also discussed how the much stronger non-linear wakefields can be used to rapidly

defocus an electron beam and present experimental evidence for this phenomenon. Such

defocusing is of particular interest for radiation based on betatron oscillations, which we are

going to discuss in the following Chapter 5: Radiation .
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5 Radiation generation

In this chapter we are going to discuss different methods to create X and γ radiation from
laser-accelerated electron beams. We start with a semi-conventional method, the production
of γ from bremsstrahlung conversion using electrons from ionization injection. Then we are
going to discuss synchrotron sources, in particular Compton backscattering using a plasma
mirror and betatron radiation. For the latter we present two main results: Stable, polarized
emission from ionization injected electrons and augmentation of emission in density tailored
plasma channels.
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Chapter 5. Radiation generation

5.1 Conventional X-ray sources

X-rays were first discovered by Wilhelm Conrad Röntgen in late 1895, while he was performing

experiments with discharge tubes. As Röntgen did not patent the source, X-ray technology

spread rapidly and first medical radiographies were performed only a few months after his

discovery, in early 1896. As we have discussed in Chapter 1: Introduction , Röntgen’s X-ray

source was based on the emission of bremsstrahlung and characteristic line radiation of

electrons hitting the anode.

To date, this method remains the most widely used to produce X-ray: In medical X-tubes a volt-

age of some tens to hundred kilovolt is applied to accelerate electrons and directly penetrate

the target. Typical X-ray energies are 15-30 keV for mammography and dental radiographies,

up to around 70 keV for computed tomography (CT) scanners. Some applications like mam-

mography require narrow bandwidth radiation. Such X-ray can be produced by exciting Kα

lines, e.g. Kα(42Mo)∼ 17.4 keV and Kα(45Rh)∼ 20.1 keV, and simultaneously reducing the

bremsstrahlung contribution using X-ray filters. However, employing filters diminishes the

photon flux significantly, while it increases the exposure time [136].

In non-distructive testing, e.g. for airport security scanners, even higher energies of up to

some MeV are reached. Such devices usually operate pulsed, using small linear accelerators

[137]. As Kα lines only extend to ∼ 100 keV, this regime purely relying on bremsstrahlung

emission, cf. A.4.1. For the same reason X-ray filters are not adapted to shape the spectrum

and thus the radiation is unavoidably broadband.

A major characteristic of X-ray generated when the energy of weakly relativistic electrons

is converted into Kα and bremsstrahlung is that the radiation is emitted quasi isotropically.

While this allows to design compact systems with a large field of view, it reduces the source’s

suitability for applications where only a small angular region is imaged. Examples are mag-

nification views and phase contrast measurements. Such small aperture applications also

require a reduced source size to avoid image blurring, which is usually achieved by stronger

electron beam focussing. However, such micro X-ray tubes have to operate at much lower

currents to avoid overheating the anode material, which reduces the available photon flux

even more. Though solutions as liquid metal anodes [138, 139] have been proposed to increase

the maximum power density (shown in Fig.5.1), continuously operating X-ray tubes are still

limited to peak brightnesses below 108 photons/s/mm2/mrad2/0.1 % BW.

While the above-mentioned X-ray imaging techniques make use of the fact that X-rays can

pass through matter, other applications take advantage of the high spatial resolution related to

their (sub-)Ångstrom wavelength. Such a probe allows to study structures on the scale relevant

for atomic physics and molecular chemistry, which lead to scientific breakthroughs such as

the discovery of the DNA structure in 1953 [140, 141]. But while X-ray tubes have given access

to spatial information about atoms and molecules, a continuous irradiation does not provide

any temporal information.
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Figure 5.1 – Spectral brightness of a state-of-the-art liquid tin micro X-ray source. Highest
brightness is measured around the Kα(50Sn)∼ 25.3 keV and Kβ(50Sn)∼ 28.5 keV lines. Data
taken from [142].

5.1.1 Femtosecond laser-based X-ray tubes

In order to study processes governed by atomic motion, pulsed sources with durations of

less than a picosecond are required [143]. The X-ray pulse duration is mainly dictated by the

duration of the electron bunch that hits the anode. Re-calling our discussion on cathodes

from Sec.2.1.1, one way to create short X-ray pulses is therefore to replace the commonly

used thermionic cathode of the X-ray tube by a photocathode. Such a configuration has been

demonstrated first using picosecond [144] and later with femtosecond [145] laser drivers.

The latter estimates a X-ray pulse duration of below 5 ps, but reaching sub-picosecond du-

rations is complicated by space-charge effects. A way to circumnavigate this limitation is to

accelerate electrons from the anode material itself. Such an ultrashort X-ray source has been

demonstrated in laser-solid interactions in the early 1990s [146, 147].

This regime is fundamentally different to laser-wakefield acceleration in underdense plasmas,

as the laser pulse does no penetrate the target, but is reflected at the surface. The interaction

with the pulse leads to electron heating via the~j ×~B term and leads to thermal electron spectra.

In this kind of experiment the drive laser is typically GW-class (∼ 100 fs, ∼ 1 mJ), creating

electrons with some tens of keV temperature. These electrons then stimulate Kα emission

and bremsstrahlung, analogously to photocathodes. However, the pulse duration is sub-

picosecond and strong focussing of the laser translates into a micrometer X-ray source size

[148]. It has been shown that the source size is sufficiently small to be applied for propagation-

based phase contrast imaging [149].

A main drawback of using solid targets is that the electrons used for radiation production

originate from the surface and therefore the technique is unavoidably destroying the anode
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Figure 5.2 – Electron beam spectrum used for radiographies in [153]. The blue line indicates
the average spectrum, while the rms error is shown in red. The instability of self-injection
leads to strong fluctuations, resulting in an rms error of about 50 percent. Inlet: Radiography
of a 20 mm tungsten object from the same experiment.

material. So even the sources provides a competitive brightness compared to conventional

micro X-ray tubes, its usage is restricted to a research environment where ultra-short pulse

durations are desired. This handicap can be overcome when the source is combined with

liquid targets, for instance using a water jet [150].

Another way to provide ultrashort electrons bunches for penetration of the anode is to use

a laser wakefield accelerator in place of the cathode. As discussed in the previous chapters,

such beams intrinsically have a duration in the range of 1-100 fs. But they also reach much

higher energies (MeV to GeV). Therefore the photon energies from this source are shifted into

the MeV γ-ray regime, where the source is purely reliant on bremsstrahlung emission. The

small electron source size and milliradiant beam divergence can result in a micrometer source

size if the converter is placed close enough to the accelerator.

This kind of experiment was conducted for the first time in 2002 [151] and in 2005 first

radiographies of complex dense objects were reported [152]. Since then several experiments

have explored the setup [153, 154], yet all of them relied on self-injected electron beams and

were therefore not operating very stably. In order to increase the technology readiness level of

the source it is indispensable to increase the electron beam stability, which we are going to

discuss in the following.
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5.1.2 Stable bremsstrahlung γ-ray source using ionization injection

In order to improve the reliability of laser-driven bremsstrahlung sources we need to replace

the transverse self-injection used in previous studies by a more reliable injection mechanism.

Conceivable candidates are therefore (cf. Chapter 2: Injection ) longitudinal self-injection,

optical injection, shock injection, downramp injection and ionization injection.

The bremsstrahlung spectrum does not benefit significantly from a low energy spread, but

in contrast the highest beam charge as possible is desired. This eliminates the first three

mechanisms, which typically lead to high beam quality at the disadvantage of lower beam

charge. In Chapter 2: Injection we found that ionization injection and acceleration in pure

high Z gases leads to very stable electron acceleration, with nC-level charges per shot. The

maximum beam energy is lower than for acceleration in helium, but this is in fact desirable

for practical reasons: Highest energy γ-ray (& 100 MeV) do not contribute significantly to

absorption contrast, yet will require additional radioprotection measures, cf. A.4.1. Unlike

typical single-shot LPA experiments [152, 153], this experiment was limited by the laser repeti-

tion rate and radioprotection regulations and the LPA was operated continuously at 1 Hz over

several hundred shots.

Just as in a conventional X-ray tube we create radiation via penetration of a solid target with

electrons. As converter material we use foils of 73Ta and we use different thicknesses (0.5

mm, 1.0 mm and 1.5 mm) in order to study their influence on the source size. Using the

continuous-slowing-down approximation [155] we estimate a stopping range of ∼ 0.5 mm for

1 MeV electrons, which means that they will slow down to rest within the converter. Though

most of the stopping power goes into coulomb collisions, about ∼ 10 % of electron energy

is converted into radiation. At 10 MeV the stopping range increases to ∼ 3.7 mm, meaning

that these electrons are not stopped within the converter. However, the ratio of radiative

stopping power to collision stopping power increases significantly between 1 and 10 MeV, and

accordingly we estimate a radiation yield of ∼ (6−20)% of their energy for (0.5−1.5) mm target

thickness. As a first rough estimation, we expect the production of ∼ 10−4 Joule of X and γ-ray

per shot.

The converter foils were placed behind the gas jet at distances between 5 and 20 millimeters,

cf. Fig.5.3. The X-ray signal was measured using photostimulable phosphor plates (Fuiji BAS

TR). The response of these image plates (IPs) depends essentially on the energy deposited in

the phosphor layer and will therefore drop significantly for photon energies above 100 keV

[156]. We estimate the photon spectrum using GEANT4 [157] simulations, cf. Fig.5.4.
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Figure 5.3 – Schematic setup of the experiment. The multi-TW laser pulse is focussed into a gas jet of nitrogen or argon. Electrons are
ionization injected into the wake of the pulse and accelerated. Once they exit the gas jet, they penetrate a tantalum foil, leading to the
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Using a knife-edge we measured the X-ray source size for different distances d between the

gas jet exit and the converter. At d = 0.5 mm from the exit the source size is estimated to be

∼ 65 µm and no significance influence of the converter thickness (0.5 mm,1 mm and 1.5 mm)

was observed. As shown in Fig.5.5 the source size remained below < 100 microns at 1.5 mm

distance. Due to the electron beam divergence it augmented to ∼ 350 µm at 3.5 mm from the

gas jet. While the results are fairly in accordance with monte carlo simulations of the source

size for a 0.5 mm tantalum converter placed at d = 2 mm from the exit, it should however be

noted that the source size depends strongly on the properties of the scattered electrons. As

discussed above, we expect low energy electrons to undergo strong scattering, up to complete

stopping inside the converter. Furthermore the initial beam divergence is about an order

of magnitude larger for low energy electrons than it is for electrons with energies & 10 MeV.

This tendency is reproduced in simulations (cf.Fig.5.5), where we see that the γ source size

increases significantly at lower energies.

In the experiment we initially noticed a very low image contrast, due to the high background

noise level. It was found that this noise was due to Bremsstrahlung emitted from the elec-

trons hitting the chamber wall and the signal to background noise ratio could be improved

significantly by applying additional lead shielding. While the strong local noise prevents to

image weakly absorbing objects, we were still able to perform some radiographies in order

to assess the suitability of the source for imaging applications. As an example, Figure 5.6

shows radiographies of industry standard (DIN EN 462) image quality indicators. The smallest

features resolved have a size of ∼ 200 micrometer.
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Figure 5.5 – GEANT4 simulation of the source size at 2mm from the jet. Inlet: Knife edge
measurements for different distances.

Figure 5.6 – Images of step-hole image quality indicators. Dark areas are where part of the lead
shielding is in front of the image plate.

5.2 Synchrotron sources

The particle trajectories of electrons penetrating a target are random, determined by the

scattering cross sections. This leads to very broad spectra as the one shown in Fig.5.4. In

contrast, particle orbits in synchrotron sources are controlled, relying on transverse deflection

of the electron beam using magnetic, electrostatic or electromagnetic fields. This results in

the emission of much brighter radiation, called synchrotron radiation. In this section we are

introducing the theoretical foundations of these sources, inspired by [131, 158, 124].
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5.2.1 Radiation from relativistic particle beams

The emission of radiation from accelerated particles is a direct consequence of the Maxwell

equation

∇×~B = 4π~j

c
+ 1

c

∂~E

∂t
(5.1)

We can describe the particle beam as a sum of point sources at positions δ(~x −~ri (t )) and the

movement of these charges at a velocity ~v(t ) forms a current. Treating the particles as point-

like sources allows us to use Green’s functions to find solutions to the associated potential,

known as Liénhard-Wiechert [159] potentials:

Φ(~x, t ) =
(

e

(1−~β ·~n)R

)
r et

(5.2)

~A(~x, t ) =
(

e~β

(1−~β ·~n)R

)
r et

. (5.3)

where ret means that the expression has to be evaluated at the retarded time tr et = t −R/c and

~n is the observation direction. The corresponding electric field is given by

~E(~x, t ) = e

(
~n −~β

γ2(1−~β ·~n)3R2

)
r et

+ e

c

(
~n × ((~n −~β)× ~̇β)

(1−~β ·~n)3R

)
r et

(5.4)

In this solution we see that the field consists of two distinct parts, which differ in their temporal

and spatial structure. In the particle rest frame (β′ = 0) the first term reduces to the electrostatic

Coulomb field of a point charge ~E(~x ′) = ~ne/R2. When β 6= 0 the field tilts with (~n −~β) into

the direction of propagation and the Coulomb field is reduced by the 1/γ2 term for highly

relativistic particles.

In contrast, the second term of (5.4) is also dependent on the acceleration ~̇β and therefore can-

not be reduced to an electrostatic form. This regime is called radiation regime and it reaches

much further than the Coulomb regime, decreasing with 1/R. In the following discussion we

will restrict us to this second far field term and ignore the Coulomb term. For this case the

magnetic field is related to the electric field by ~B = 1
c (~E ×~n)r et . Then the radiation flux towards

the observer given by the Pointing vector is

~S =
( c

4π
|~E 2|~n

)
r et

(5.5)

and the radiated power per unit angle is

dP (t )

dΩ
= R2(~S ·~n)r et =

( c

4π
R2|~E 2|

)
r et

. (5.6)

One has to consider again the retarded fields to get the power at a certain moment t , as the

signal has to arrive first. Sir Joseph Larmor evaluated this radiated power for the case of a
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non-relativistic particle (β¿ 1), for which the radiation field reduces to

~E = e

c

[
~n × (~n × ~̇β)

R

]
r et

. (5.7)

With (5.6) we get dP (t )/dΩ = e2/4πc3|~n × (~n × ~̇v)|2. Let θ be the angle between particle

acceleration ~̇v and the observer ~n this gives

dP (t )

dΩ
= e2

4πc3 |~̇v |2 sin2θ. (5.8)

A common example for this donut-shaped radiation distribution is the special case of dipole

radiation, cf. Fig.5.7. Note that the radiation field vanishes along the axis of acceleration.

Integrating over the solid angles Ω, we obtain Larmor’s well-known formula for the total

radiated power

P = 2

3

e2

c3 |~̇v |2. (5.9)

An important feature of this equation is that the radiated power is proportional to the square

of the acceleration v̇ . Similarly, a more careful analysis leads to its relativistic generalization

P = 2

3
re mcγ6

[
~̇β2 −

(
~β× ~̇β

)]
(5.10)

where we used the classical electron radius re = 1
4πε0

e2

mc2 . In this form the term
(
~β× ~̇β

)
intro-

duces a dependence on the direction of acceleration with respect to the particle propagation

vector ~β/|~β|. Reminding that 1−β2 = γ−2 we find the scalings

P∥ ∝ γ6~̇β∥ and P⊥ ∝ γ4~̇β⊥ (5.11)

for acceleration parallel ~̇β∥ and perpendicular ~̇β⊥ to the direction of propagation. At a first

glance it might seem that the γ6 term for longitudinal acceleration overweights the γ4 com-

ponent, however the perpendicular acceleration is actually much more efficient: At highly

relativistic velocities the particle velocity is very close to ~β ≈ 1, so the velocity derivative is

small (~v = γ−3~̇p).The emitted power is then independent of γ and scales linearly with the

accelerating field

P∥ ∝
(

d~p∥
d t

)2

. (5.12)

In contrast the transverse velocity change is simply given by the Lorentz force d~p⊥/d t = γm~̇v

and therefore scales as

P⊥ ∝ γ2
(

d~p⊥
d t

)2

. (5.13)
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5.2. Synchrotron sources

So we see that transverse deflection produces by γ2 more radiation than longitudinal accelera-

tion and therefore radiation sources rely on this transverse component.

Next we consider the relativistic generalization of (5.8)

dP

dΩ
= re mc

4πc2 |~̇v |2 (1−βcos2θ)− (1−β2)sin2θcos2φ

(1−βcosθ)5 . (5.14)

where we assume that the velocity is dominated by the longitudinal component, while acceler-

ation occurs in transverse direction. The anglesφ and θ are defined as shown in Fig.5.7. As this

is basically a lorentz-boosted version of (5.8) we expect that the radiation cone is contracted

by 1/γ. Indeed, for γÀ 1 and φ= 0, we find that this expression scales with (γ−2 +θ2)−3. This

means that P (φ= 0,θ = 1/γ) = P (0,0)/8 and thus most radiation is contained within

−1

γ
< θ < 1

γ
. (5.15)

This is shown for an electron at rest and an electron with β= 0.9 in Fig.5.7. To conclude this

general discussion of radiation properties we come back to the radiation field given by (5.4).

We obtain the spectrum of radiation by Fourier transformation,

[
R~E

]
r et (ω) = 1p

2π

e

c

∫ +∞

−∞
~n × [(~n −~β)× ~̇β]

(1−~β ·~n)2
·e iω(t−~n ·~r (t )/c)d t (5.16)

From this we obtain a general expression for the radiation from a charged particle in motion

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣∣
∫ +∞

−∞
~n × [(~n −~β)× ~̇β]

(1−~β ·~n)2
·e iω(t−~n ·~r (t )/c)d t

∣∣∣∣∣
2

(5.17a)

= e2

4π2c

∣∣∣∣∫ +∞

−∞
[~n × (~n −~β)] ·e iω(t−~n ·~r (t )/c)d t

∣∣∣∣2

. (5.17b)

The first term (1−~β ·~n)2 contains information about the collimation of the emitted radiation,

as we have discussed above. From~n × [(~n −~β)× ~̇β] we refind the power laws derived previously.

New information comes from the phase term e iω(t−~n ·~r (t )/c), which we can locally approximate

as e iω(1−β)t . For highly relativistic particles (γÀ 1) we can replace (1−β) ' 1/2γ2, so the

frequency is upshifted by 2γ2. This is generally interpreted as Doppler upshift and we will

discuss this effect in detail in the next section.

In conclusion we have shown that a transverse acceleration of relativistic particles leads to

emission of radiation within a cone of opening angle θ ∼ 1/γ, while the emitted power is

proportional to (γ ~̇p⊥)2.
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direction of acceleration 

β = 0 

β = 0.9 

θ = 1/γ 

�

Figure 5.7 – Visualization of the angular distribution of the radiation emission given by (5.14).
In red for an electron in its rest frame, where the isosurface shows the typical donut form
known for dipole radiation. In green the emission for a relativistic electron with longitudinal
velocity β= 0.9, i.e. γ≈ 3.2, is shown. We observe that the radiation is concentrated along the
direction of motion, within an angle of θ ∼ 1/γ. While the radiated power scales with γ2, for
visualization purposes, the green isosurface has been normalized to have the same transverse
extension as the β= 0 case.

5.2.2 Undulator and Wiggler radiation

Starting from (5.17b) we will now discuss the radiation emitted for certain trajectories~x(t).

Historically circular particle motion has been the first to be examined, by J. Schwinger [7], and

this the first two generations of synchrotrons relied on this kind of trajectory. Nevertheless,

since the introduction of insertion devices in third generation lightsources, radiation emis-

sion uses electrons that follow a periodic quasi-sinosoidal trajectory, leading to significant

enhancement of brightness.

In conventional sources, such kind of trajectory is driven by alternating magnet arrays. As

we will discuss later, this method has severe technological limitations and a main objective

of this work is devoted to the development of alternative methods using electrostatic and

electromagnetic fields.

However, being realizations of the same force, we can discuss all methods using the same

formalism. For this we first consider the motion of a free particle initially at rest in an elec-
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5.2. Synchrotron sources

tromagnetic field. Consider a plane wave of frequency ω̃ propagating along ~k = (0,0,kz )

with the normalized vector potential ~a = (ax , ay ,0). We have briefly mentioned in Chapter 1:

Introduction that the equations of motion in this case are

d~x

dτ
=

(
ax , ay ,

~a2

2

)
. (5.18)

From this we see that in first order the particle momentum equals the vector potential |~p| ∼ |~a|.
Furthermore, the transverse field does not only induce motion in the perpendicular plane,

but also in direction of motion. However, this term is second order ~a2, so for a sinusoidal

excitation we find ~a2 ∝|sinω̃τ|2 = 1
2 (1−cos(2ω̃τ)). This means that the field induces a drift

along the direction of wave propagation, combined with an oscillation at twice the initial

frequency 2ω̃.

Relativistic doppler-upshift of radiation

At the moment we will restrict us to the dominant fundamental component ω̃. The above

description is equivalently valid for the rest frame of a particle with velocity ~β= (0,0,βz ). As

long as the scattering wave’s potential is non-relativistic (a0 ¿ 1), we can treat the motion

in the rest frame as classical dipole. As such, the emitted frequency equals the frequency of

excitation ω̃. Yet boosting back to the laboratory frame, the observer perceives a doppler-

shifted frequency ω̃′. As we consider an electron at relativistic velocity β we get

ω̃′ = ω̃

γ(1−βcosθ)
. (5.19)

For γÀ 1 and observation close to the propagation axis (θ¿ 1) we can approximate with

cosθ ' 1−θ2/2 and β' 1−1/2γ2. Keeping only terms up to second order this yields to

ω̃′ ' 2γω̃

1+γ2θ2 . (5.20)

As consequence of the boost, the radiation is upshifted to a frequency of up to 2γω̃ on-axis.

However, we also see that there is an angular dependence of the frequency. This means that

even for a monochromatic emission in the electron rest frame, the spectrum is broadened

in the laboratory frame and the signal has to be observed through a pinhole to reduce the

bandwidth.

Up to now we have looked at the electron motion in its rest frame at frequency ω̃. In order to

apply this result to practical applications we need to establish an expression related to the

period of the wiggling field λ0. We will consider three different cases. (a) An electromagnetic

wave at incident angle φ and wavelength λ0. (b) A magnetic insertion device of period λ0 =λu .

(c) Betatron oscillations in an co-moving plasma wave with λ0 =λβ.
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Chapter 5. Radiation generation

Again, we are interested in the motion of the electron in its rest frame. For this we proceed

analogously to the previous section, but now we consider a moving source instead of a moving

receiver. The general expression for this is then

ω̃= γ(
1−βcosφ

)
ω0. (5.21)

So the wave frequency from case (a) depends on the incident angle and the upshift reaches

up to 2γ for a counter-propagating wave. The case (b) of an insertion device which is static

in the laboratory frame is equivalent to φ= 90◦, so the upshift in this case scales with γ. The

betatron case (c) is particular as the oscillation length depends not only on the field strength

(determined by the blowout density), but also on the particle energy. We have seen in Sec.4.2.3

that corresponding the betatron wavelength is λβ =
√

2γλp .

Hence the combination of both receiver and emitter upshift leads to emission of radiation at a

fundamental wavelength of

λθ=0 =
λ0

2γ2(1−βcosφ)
(EM-WAVE) (5.22a)

λθ=0 =
λu

2γ2 (Undulator) (5.22b)

λθ=0 =
λβ

2γ2 = λp

(2γ)3/2
(Betatron) (5.22c)

As mentioned above these values have to be multiplied by (1+γ2θ2) for a non-zero observation

angle.

Undulator radiation and harmonics

So far we have assumed that the dipole motion of the electron in its rest frame leads to the

emission of radiation at frequency ω̃, i.e. E (t ) ∝ exp(i ω̃τ). For an infinite periodic motion the

Fourier transformation of this kind of function is obviously the monochromatic solution ω̃.

Yet any real undulator will have a limited spatial extension, so the integration length [−∞,∞]

has to be replaced by a finite value [−τ0,τ0]. In this case the Fourier transformation

E(ω) ∝
∫ τ0

−τ0

e i (ω̃−ω)τ∝ 1

τ0

sin(ω̃−ω)

ω̃−ω . (5.23)

So the spectral intensity

I (ω) ∝|E(ω)|2 ∝ sinc2ξ, (5.24)

where ξ = πNosc
ω̃−ω
ω̃ . The width of this distribution scales inversely with the number of

oscillations

∆ω≈ ω̃

Nosc
(5.25)
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Figure 5.8 – Bandwidth of undulator radiation is reduced by constructive interference.

Up to now we have supposed that the electron motion in the transverse plane is non-relativistic

(a0 ¿ 1). If the wiggling field get stronger, a number of additional effects influence the

radiation spectrum.

One effect that we already mentioned briefly is that in the case of a highly relativistic electron

(β→ 1) oscillations in the transverse plane will impose oscillations in the longitudinal direction

as well, cf.(5.18). For small |β⊥|¿ 1 the change of velocity is given by

β∥ =
√
β2 −β2

⊥ 'β
(

1− β2
⊥

2β2

)
'β

(
1− β2

⊥
2

)
. (5.26)

For a sinusoidal transverse motion β⊥(t ) =β⊥0 sin(ωt ) this results in the aforementioned drift

part and oscillation at twice the frequency in the parallel direction:

β∥ =β0

(
1−

β2
⊥0

4
−
β2
⊥0

8
sin(2ωt )

)
(5.27)

The peak angular deflection β⊥0 is commonly expressed in terms of the so-called (Wiggler)

strength parameter K , defined as β⊥0 = K /γ. Integrating this equation over one wiggler

period we find that the average velocity is reduced due to the drift term 〈β∥〉 =β0
(
1−K 2/4γ2

)
.

When discussing the doppler shifts in the preceding section, we assumed that the motion is

predominantly longitudinal, so β∥ ≈β. For large oscillation amplitudes this is no longer the

case and for the boost in longitudinal direction we need to use 〈β∥〉 instead. This correction

gives us the effective Lorentz factor

γeff(K ) = γp
1+K 2/2

. (5.28)
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Figure 5.9 – Left: Emission of harmonics as function of the wiggler parameter K . For K ¿ 1
all emitted radiation is confined within the fundamental, yet for K > 1 the spectrum shifts
to higher harmonics and gets much broader. Right: Photon flux as function of the wiggler
parameter K . Although more and more harmonics are excited as K increases, we observe
that the absolute flux at the fundamental reaches its maximum around K ' 1.3. Note that the
frequency shifts down due to the decreasing effective Lorentz factor.

Once the transverse momentum of a particle becomes relativistic, its reaction to the Lorentz

force is modified by γ. In consequence the oscillations of the particle are no longer purely

sinusoidal. This leads to the emission of harmonics, where the amplitude of the nth harmonic

is given by [124]

An(K ) = n2K 2

(1+ 1
2 K 2)

[
J 1

2 (n−1)

(
nK 2

4+2K 2

)
+ J 1

2 (n+1)

(
nK 2

4+2K 2

)]2

(5.29)

and Jα are Bessel functions of the first kind: Jα(x) = ∑∞
m=0

(−1)m

m!Γ(m+α+1)

( x
2

)2m+α. The relative

contribution of harmonics to the spectrum from (5.29) is visualized in Fig.5.9 for strength

parameters up to K = 2. Up to K ' 0.3 radiation is only emitted at the fundamental. At

K ' 1.3 the second harmonic contribution surpasses the fundamental and for K ' 2 we

observe a broad spectrum with > 20 harmonics. The same figure includes also a visualization

of the absolute amplitude of the emitted frequencies, where we see how the frequencies

are downshifted by the aforementioned effective gamma factor γ′(K ). As already discussed

the emitted power increases the stronger the oscillation is. The maximal photon flux at the

fundamental is reached for K ' 1.3.

Wiggler radiation

Increasing the angular deflection K À 1 ultimately has the consequence that the radiation

is emitted into a field of view larger than the proper radiation cone (∼ 1/γ). This means that

we can no longer assume that radiation is constructively interfering over the whole particle
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path, as shown in Fig.5.8. Instead an observer will see separate flashes of radiation, each of

duration ∆t . The typical energy related to this pulse length is about ħωc ∼ (∆t/2)−1, which

can be shown to lead to

ωc = 3cγ3

2ρ
= 3

2
γ3ω′

0. (5.30)

Here we have denoted the local radius of curvature asρ. For a particle on a sinusoidal trajectory

most radiation is emitted at the turning points and we define the fundamental frequency

ω′
o = c0/ρ, which is the local circular frequency at the turning point:

ρ(z=0) = (1+ r ′(z))3/2

r ′′(z)

∣∣∣∣
z=0

= γ

K

λβ

2π
(5.31)

From this we find that the critical radiation frequency

ωc = 3

2
Kγ2ω0 (5.32)

scales linearly with the peak deflection K and by the square of the particle energy γ2.

The spectrum can be derived more rigorously from (5.17b). We have already shown that

the phase term scales with 1/2γ2, so now we also need to simplify the triple vector product

~n × (~n ×~β). For a sinusoidal motion we find that along the polarization vectors ~u∥ and ~u⊥

~n × (~n ×~β) ' [−(v t/ρ)~u∥+θ~u⊥
]
β. (5.33)

With these approximations (5.17b) can be solved analytically to find the electric fields in

frequency space. In the Wiggler limit (K À 1) we assume incoherent addition of these fields

and the resulting intensity distribution is

d 2I

dωdΩ
= e2

6π2c

(ωρ
c

)2
(

1

γ2 +θ2
)(

K 2
2/3(ξ)~uσ+ θ2

γ−2 +θ2 K 2
1/3(ξ)~uπ

)
(5.34)

with ξ = ω
ωc

(
1+γ2θ2

)3/2
. We also introduced modified Bessel functions of second kind Kν.

Such functions decay exponentially as the argument x becomes large compared to the order

ν, i.e. Kν(x À ν) ≈
√

π
2x e−x . In the on-axis case such behavior occurs for ω>ωc . We also find

that the radiation spectrum has two orthogonal polarization components, which show a very

different behavior. The dominant mode is theσmode (along the particle deflection u∥), which

is maximum on axis. The weaker π mode is emitted into two lobes with peak intensity around

1/γ, while it vanishes on axis, cf. Fig.5.10. So on-axis radiation (θ = 0) will be completely

polarized in the plane of motion and (5.34) reduces to

d 2P

dωdΩ

∣∣∣∣
(θ=0)

= e2

6π2c

(ωρ
c

)2 1

γ2 K 2
2/3(ξ) (5.35)
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Figure 5.10 – Wiggler intensity according to (5.34). Radiation is emitted into two polarization
modes, the σ mode along the deflection and π orthogonal to it.

The angularly integrated spectrum becomes

d I

dω
= Pγ
ωc

9
p

3

9π

ω

ωc

∫ ∞

ω/ωc

K5/3(x)d x (5.36)

Free-Electron-Laser

In the previous sections we have based our discussion on the radiation emission from a single

particle, where we found two regimes: The undulator regime - in which radiation fields sum

up coherently P ∝ N 2
osc ×K 2- and the wiggler regime - with incoherent broadband emission

P ∝ Nosc ×K .

Similarly we can separate the combined emission from electrons in a bunch into regimes of

coherent or incoherent emission. In analogy to the laser process this is also called stimulated

and spontaneous emission. As the stimulated emission scales with the electron number

squared N 2
e , such a Free-Electron-Laser (FEL) has potentially much higher brightness than

undulators relying on spontaneous emission.

Coherent emission can only occur if the electron phases are similar, meaning that the electrons

have to be periodically bunched at the radiation wavelength. One way such microbunching

can occur is via the interaction of the electrons and their proper radiation field, which over

long distances leads to a redistribution of the electrons. This process is called self-amplified

spontaneous emission (SASE). Yet a drawback of amplifying spontaneous emission is the lack

of temporal coherence in such sources. Alternatively a ’seed’ can be used. In this case a laser

pulse is superposed with the electron bunch, inducing the microbunching.

Unfortunately we cannot cover FEL physics in detail, so the interested reader may consult

the following references for more information about FELs in general [160, 161, 20] and in the

context of laser-wakefield accelerators [158, 35].
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Figure 5.11 – Principle of a SASE Free Electron Laser: An incoherent electron bunch enters
an undulator (left) and, after interaction with the synchrotron emission along propagation,
forms microbunches that emit coherently (right). Illustration from [23].

5.3 Conventional insertion devices

Since their third generation, synchrotron sources use sections of alternating magnetic field, so-

called insertion devices, to provoke transverse oscillations of highly relativistic electrons beams.

Depending on the oscillation amplitude we distinguish between wigglers and undulators.

5.3.1 Magnet undulators and wigglers

In Chapter 4: Beam Transport we have derived the equations of motion (4.13-4.14) for an

electron within a quadrupole. There we saw that electrons will perform oscillations in the

focusing plane. However, such configuration cannot be used for wiggling the electrons as they

will diverge in the perpendicular plane.

Instead, as proposed by Motz in 1951 [13], sets of dipole magnets are used, whose polarity

switches each λu/2, just as illustrated in Fig.5.11. If the magnets are placed close enough to

each other, the magnetic field will not have hard edges, but instead the fringe fields super-

impose and form fields of a form similar to By = B0 sin(ku z)+O (nku), which then impose

electron oscillations in the x-plane. Close to the beam axis the amplitude can be assumed
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constant, thus leading to the approximate equations of motion

ẍ =− eB0

meγ
cosku z and ÿ = 0. (5.37)

Again we assume that z = c0t and in consequence

x = eB0

k2
umeγ

cosku z and x ′ = eB0

kumeγ
sinku z (5.38)

The strength of the Wiggler fields is characterized by the peak angular deflection

K = γθ ' 0.934B0[T]λu[cm]. (5.39)

As discussed before, according to their different radiation features the regime K ¿ 1 corre-

sponds to the undulator limit, while K À 1 is the Wiggler limit. Yet in practice the threshold

between what is called an undulator and a wiggler lies rather around K ∼ 2.5, which is where

the spectrum changes from a harmonic form to a broadband, cf. Fig.5.9.

The above equations of motion are only taking into account lowest order terms. Any actual

magnet will however have additional higher order components nku . Also, the Motz configura-

tion is not free of fields in the Bx plane. The latter issue has been significantly reduced since

the introduction of magnets multipole arrays in the Halbach configuration [162]. Synchrotron

radiation originating from such sources is intrinsically linearly polarized. A common extension

of the Halbach-type configuration is for example the APPLE (Advanced Planar Polarized Light

Emitter) type helical undulator [163], where four Halbach arrays are arranged in blocks that

can be shifted with respect to each other. This way the field strength along Bx and By can be

adapted, allowing to produce either horizontally, vertically or cylindrically polarized radiation.

5.3.2 Coupling with laser-accelerated electron beams

Since laser-plasma accelerators nowadays reach electron beam energies comparable to medium

energy synchrotron radiation facilities, but at drastically reduced size, it is straightforward to

try coupling them to conventional insertion devices.

The first proof-of-concept of such a combination was presented in 2007 [165], when electron

bunches between 55 and 75 MeV were sent directly from the accelerator into a 1-m-long

undulator (λu = 20mm, K = 0.6). The emitted synchrotron radiation was in the visible and

near-infrared range (700-1000 nm) and a peak spectral brightness of 6.5×1016 ph/(s mrad2

mm2 0.1% BW) was estimated.

Shortly later, a more refined experiment demonstrated synchrotron emission in the XUV

range, with photon energies of up to ∼ 130 eV [166, 167]. In this experiment electrons between

150-220 MeV where accelerated and sent through two quadrupole lenses into a 30 cm long

undulator (λu = 5mm, K = 0.55). An advantage of this configuration is especially that the
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Figure 5.12 – Example for a synchrotron spectrum of the first three harmonics from the 6.04
GeV ESRF beam sent into an undulator with 5m length, λu = 42 mm period and K = 2.2.
Calculated with RADIA [164].

quadrupole pair allowed energy selection. The brightness of this source is estimated to be of

the order of 1.3×1017 ph/(s mrad2 mm2 0.1% BW). Also there are studies [168] that propose to

use a laser-plasma accelerator as injector for a conventional storage ring synchrotron, thus

replacing entirely the electron gun and booster section.

Even more, high current beam from laser-plasma accelerators would be a promising electron

source to realize a table-top FEL [169]. However, the FEL gain is only possible for a beams with

small energy spread and emittance. The latter is already of the order of 1.mm.mrad, which

would be sufficient for many applications, if properly transported e.g. using a laser plasma

lens. Yet the electron energy spread remains of the order of some percent. Recently it was

shown that a transverse gradient undulator could be used to shift the dependence from the

total energy spread towards the sliced energy spread. Simulations have shown that in this case

FEL-gain would be possible in a state-of-the-art LPA, which has motivated several projects on

LPA-based FEL sources, e.g. LUNEX5 in France [170].

5.4 Inverse Compton back-scattering

As mentioned earlier, not only magnetic structures can be used to force electrons to oscillate,

but also electromagnetic waves as from lasers. An advantage of such an optical undulator is

that the fundamental wavelength λ0 can be orders of magnitude shorter than in conventional

insertion devices.
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Synchrotron sources based on Compton backscattering have been proposed in 1963 by Mil-

burn [171] and Arutyunian and Tumanian [172]. First experimental results were obtained only

shortly later at the Cambridge Electron accelerator, when a ruby laser [18] was employed to

obtain γ-ray from scattering with a 6.0 GeV electron beam [173]. Since then, compton scatter-

ing beamlines have been established at many conventional accelerator facilities [174]. Not

only does this scheme allow to create high energy radiation, it is also a convenient method to

produce ultrashort X-ray pulses at such facilities: By scattering at an angle of 90◦ femtosecond

laser pulses can be used to create scattered radiation of similar duration, without need to

compress the electron beam [175].

However, just recently this technology has been combined with laser wakefield acceleration,

resulting in a ultra-compact source of X/γ-ray. The difficulty of the scheme lies in the fact that

one needs to overlap both temporally and spatially two terawatt class laser pulses. The first

proof-of-principle experiment has been presented in 2006 [176], however in this experiment

electrons were only accelerated to a few MeV and scattered radiation was in the soft X-ray

range (up to ∼ 2 keV). A mayor breakthrough was the production of X-ray in the range of

hundreds of keV via Compton backscattering using a plasma mirror (see below) [177]. Since

then several groups have used either this scheme [178] or the conventional two-pulse scheme

[179] to produce X/γ-ray from laser-accelerated electron beams.

Notable results are precise measurements using shock-injected electron beams [180] and the

production of quasi-monoenergetic radiation up to 1 MeV [181]. Higher beam energies, yet

broadband, have been reached at PW-class laser systems [182] or using laser harmonics for

scattering [183].

5.4.1 Numerical study of different scattering geometries

As discussed previously, most medical imaging techniques operate at energies below 100 keV.

Beyond 100 keV both detection and filtering of the radiation becomes much more difficult,

which is why especially the 50-100 keV region is of interest. A radiation source in this range,

with reasonable energy spread and small source size, would be for instance interesting for

phase contrast imaging.

Laser-wakefield accelerators with an optical or density-transition driven injector have shown

great potential to produce stable electron beams with small energy spread, see Chapter 2:

Injection . Though both higher and lower beam energies have been reported, the sweet spot

of operation for a typical 30 fs, 1-2 Joule Ti:Sa laser (e.g. SALLE-JAUNE, Lund TW Laser, etc.) lies

within the 100-200 MeV range. In a counterpropagating beam configuration the fundamental

backscattered energy would be therefore 4γ2ħω0 ≈ 250−1000 keV.

But optical undulators offer an additional degree of freedom that is not exploited in conven-

tional devices: The angle between the electron beam and the undulating structure. From
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5.4. Inverse Compton back-scattering

Figure 5.13 – Emitted fundamental wavelength (5.22a) as function of the initial electron energy
and the scattering angle for a Ti:Sapphire scattering pulse at 800 nm.

(5.22) we see that an incident laser angle changes the backscattered energy according to

ħω(φ)

ħω(180◦)
= sin2 φ

2
,

which is illustrated in Fig.5.14. One setup of interest would be to use a scattering beam at

φ = 30◦ incident angle. In this configuration the fundamental energy is down-shifted by a

factor of ∼ 15, meaning that scattering with electron beams of 100 to 250 MeV results in the

emission of X-ray in the range of ∼ 15 to 100 keV. We simulated this scenario with PLARES [184]

for electron beams of 1 percent energy spread and 1 milliradiant divergence. For accurate

modelling of the distribution 2000 test particles were used. The scattering beam is weakly non-

linear (a0 = 1.0), with 30 fs duration and 20 µm FWHM spot size at the interaction point. The

results shown in Fig.5.15 demonstrate that it would be possible to create narrow bandwidth

radiation using electron beams of ∼ 100 MeV energy. However, as the radiation is emitted

within a cone that scales with 1/γ, the electron divergence smears up the energy spread.

We observe that at 250 MeV the X-ray energy spread is then limited by the electron beam

divergence.

In fact, to reach the same photon energy at smaller scattering angles φ the electron beams

have to be more energetic, which increases the energy blur. For example, in order to obtain a
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e- 

τx 

ϕ 

α

Figure 5.14 – Scattering geometry.

backscattered energy of 100 keV for angles from 30 to 180◦, the γ factor varies by a factor of ∼ 4.

The resulting difference in backscattered beams is shown in Figure 5.16. In Fig.5.17 the on-axis

(θ < 3mrad) spectrum is shown for 30◦, 45◦, 90◦ and 180◦. Even though the simulations are

performed for the best achievable LPA beam parameters (∆E/E = 0.01. Divergence 1.0 mrad),

the X-ray energy spread is significant (∼ 5−20%). When the beam divergence is increased to 5

mrad the spectrum broadens even more, up to some 20−40%.

When using different collision angles φ, it is important to estimate the consequences for

the interaction time. For this we consider a simple geometric model, shown in Fig.5.14. We

approximate the electron beam as point-like, while the laser beam is described as an ellipse

with the diameters a = τ0 and b = w0/c0. The electron beam propagates at a velocity close to

the speed of light c0, so the laser beam ellipse is cut at an angle α= (180◦−φ)/2. From the

polar form of the ellipse equation we get then

τx (φ) = ab
[
(b cosα)2 + (a sinα)2]−1/2

.

For φ= 180◦ we get as expected τx = τ0, meaning that the interaction time is given by the laser

pulse length. In co-propagating geometries (φ→ 0◦) the laser waist is the defining parameter.

Also, for a given waist w0 and τ→ ∞, the interaction time is tanα× w0/c0. At φ = 30◦ for

example this value is about 3.7w0/c0, so at a typical waist of 20 microns the interaction time

cannot exceed ∼ 250 fs. This is an important issue because the amount of photons emitted

depends on the number of laser cycles n at the wavelength λ0/sin2φ/2 the electrons perceive

(e.g. nmax ∼ 10 for the before-mentioned case).
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Figure 5.15 – Backscattered photon spectra in the plane of laser polarization for an incident
laser angle of φ= 30◦ and different electron beam energies. Simulations performed using 2000
test particles. ∆E/E = 0.01. Divergence 1.0 mrad. Scattering beam a0 = 1, 60 fs duration, 20
µm FWHM.

The problem can be resolved by spatially tilting the laser wavefront, as proposed in the

travelling-wave undulator [185]. Depending on the tilt direction, the laser will then cross

the electron beam at α = 0◦ or α = 90◦ and the interaction length is therefore τ0 or w0/c0,

respectively.

In conclusion, optical undulators offer the possibility to tune the backscattered energy not only

by means of the undulator period and the electron energy, but also by using different collision

angles φ. When operating at small φ, the beam collimation is increased with respect to equiva-

lent counter-propagating Compton-sources. However, this makes the source’s spectrum also

more sensitive to the electron beam divergence. Another drawback is the limited interaction

time. The latter problem can be in principle solved using a tilted wavefront, while plasma

lenses as introduced in Chapter 4: Beam Transport could help to collimate the electron beam

before collision, although this would be a trade-off with the source size.

Yet all those schemes require further R&D before they can be applied to experiments. In the

following we will discuss a simpler scheme, based on retro-reflection with a plasma mirror,

which provides the best energy conversion efficiency.
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Figure 5.16 – Simulations for Compton backscattering of 100 keV photons in different scatter-
ing configurations. Performed using 2000 test particles. ∆E/E = 0.01. Divergence 1.0 mrad.
Scattering beam a0 = 1, 30 fs duration, 20 µm FWHM.

5.4.2 Compton backscattering using a plasma mirror

In 2011 Ta Phuoc and co-workers demonstrated that hard X and γ ray can be created from

backscattering using a single high power laser pulse, i.e. the laser acts both as driver of the

accelerator as well as scattering pulse [177]. The idea is that a plasma mirror is placed at the ac-

celerator exit, thus retro-reflecting the pulse which then immediately collides with the electron

bunch traveling in its wake. The scheme has several advantages to the conventional two-pulse

method. Most importantly it provides inherent spatial and temporal synchronization with

the electron beam, which greatly simplifies the experimental setup. Also it is very efficient

as unused laser energy is ’recycled’ to create radiation - and as the scattering angle is 180◦

the conversion efficiency is the highest possible. The disadvantage, similar to all combined

solutions e.g. single-pulse plasma lenses, is that using a single pulse limits the parameter

space. In particular, in this scheme we have less control over the scattering intensity and

cannot adjust the pulse duration.

Experimental setup

The experiment was performed at the SALLE JAUNE Ti:Sa Laser System at Laboratoire d’Optique

Appliquée, which delivers linearly polarized laser pulses at 28 femtosecond duration at full

width at half maximum (FWHM). Using a spherical mirror of 700 mm focal length the ∼ 1.6 J

pulse delivered from the laser were focussed at the entrance of a supersonic 2He gas jet of 2
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Figure 5.17 – Left: On-axis lineout of the spectra shown in Fig.5.16. Right: The same geometry
for an electron beam of 5mrad divergence. It becomes clear that the photon energy spread
increases significantly, to ∼ 20 and 30 percent.

mm diameter. The focal spot contained 50-55% of the beam energy, leaving a pulse of ∼ 0.9 J

for acceleration.

The laser-plasma accelerator was operated in the transverse self-injection regime, producing

beams of 100 - 200 pC charge at beam energies mostly in the range of 100 - 150 MeV. Electron

charge and spectra were measured using a dipole magnet spectrometer combined with an

absolutely calibrated phosphor screen. In contrast to previous experiments [177] the electron

beams in this study showed important quasi-monoenergetic features.

For the plasma mirror a 100 µm cellophane foil was used. This choice of the plasma mirror

material aims to reduce the production of bremsstrahlung as electrons pass through the

plasma mirror (more details below). The foil is a mounted on a three-axis translation stage

and slightly inclined with respect to the laser axis in order to avoid back-reflection to the laser

chain. It also permitted to observe the plasma channel the reflected beam formed in the gas

jet, cf. Fig.5.18(d-e). Furthermore the reflected laser beam was imaged on a screen Fig.5.18(c).

After each shot the foil was moved to provide a flat, undamaged mirror surface.

X-rays were detected using a GdOS based scintillator, fiber-coupled to a low-noise 16-bit CCD

(Princeton Instruments Quad-RO 4320). The total detector area was 5×5 cm2, divided into

2084×2084 pixels of 24 µm edge length each. Placed on the laser axis at 90 centimeters from

the interaction, this leads to a field of view of ∼ 55×55 mrad2.
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Figure 5.18 – Setup of the Compton backscattering experiment. The spherical mirror was replaced in a follow-up experiment by an off-axis
parabola. The foil which acts as plasma mirror is placed at the exit of the gas jet, as shown in (a). The foil can be moved along the axis to
distinguish between bremsstrahlung and backscattering. (b) shows the focal spot at the gas jet entrance. There are two diagnostics for the
back-reflection: (c) shows an image of the backscattered light on the foil, which is recollected using a lens system. Though not absolutely
calibrated, this measures the relative intensity of the backscattered light. Also, when there is no reflection we observe a clear plasma channel
on the shadowgraphy (d). Once the foil is in place we can also see the channel created from the reflected beam. The emitted X-rays are
detected downstream on a Gadox scintillator, fiber-coupled to a low noise Roper QuadRO CCD. The temperature of the radiation is estimated
using a filter array, as shown in (f).
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Figure 5.19 – Conversion efficiency of electron energy into radiation for different target ma-
terials (solid lines). Multiplication with the stopping range (dashed lines) gives the maximal
photon conversion efficiency. Data from NIST-ESTAR database [155].

Conversion efficiency into backscattering and bremsstrahlung

In Section 5.1.2 we have used electron stopping within a converter material as radiation source.

As the plasma mirror setup is very similar (cf. Fig.5.18), we need to assure that the emission is

dominated by Compton scattering.

Earlier in this chapter we derived the emitted power for a relativistic particle accelerated

in transverse direction (5.10). For a particle on a sinusoidal trajectory with peak angular

deflection K /γwe can use (5.10) and (5.31) to write this expression explicitly as average power

〈Pγ〉 = πe2c

3ε0

(
γK

λ0

)2

= 5.68×10−3
(

γK

λ0 [µm]

)2

[eV/fs] (5.40)

For a realistic scattering pulse with a0 = 2 and 30 fs duration this means that in terms of the

electron energy a fraction

Eγ
Ee−

∼ 2.1γ×10−6 (5.41)

of the energy is converted into radiation. For γ = 300 and the above scattering pulse the

formula evaluates to about ∼ 0.063 % .We also see that for high K and γ values the radiated

power can reach a significant fraction of the electron energy. Strictly speaking this would be

the Compton regime, while at lower energies scattering (in the laboratory frame) occurs in the

Thomson limit. On the other hand 150 MeV electrons passing through a 100 µm cellophane

foil (ρ ' 1.5g.cm−3) emit radiative stopping power of ∼ 3.5 MeV cm2/g. This means that

about χ∼ 0.015 % of electron energy are converted into bremsstrahlung, which is roughly a
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fourth of the backscattered energy. As shown in Fig.5.19 this is orders of magnitude less than

bremsstrahlung emission in heavy targets as Tantalum.

Even though less energetic electrons undergo stronger scattering, slightly less of the particle’s

total energy is converted into radiation than lost in collisions. The normalized radiative

stopping power ranges from 1.2×10−2cm2/g at 1 MeV to over 2.3×10−2cm2/g at 100 MeV, to

2.5×10−2cm2/g at 1 GeV. This means that in experiments using backscattering with a plasma

mirror, the ratio between backscattered and bremsstrahlung photons increases about linearly

the higher the electron energies.

In conclusion we expect for our experimental conditions a measurable, but inferior, contribu-

tion of bremsstrahlung to the high energy photon signal. The ratio increases in favor of the

backscattered signal the higher the electron beam energy.

Experimental results

As the Rayleigh length of the laser is about 0.8 millimeters, any signal observed at one centime-

ter behind the gas jet is not due to Compton backscattering but a result of bremsstrahlung

produced by electrons passing through the foil. This background signal is rather stable, with a

relative rms error of σbr ems ≈ 0.1. When moving the foil inwards we observe a signal increase,

up to about 3.2±0.6 times the bremsstrahlung background at the optimal foil position at the

gas jet exit. The results are in agreement with previous studies [177] and the estimations from

the preceding section. Also, in a second campaign we added a backscattering diagnostic in

order to measure the intensity of backscattered light on a single-shot basis. The correlation

with the X-ray emission shows the expected tendency, cf. Fig.5.20.

Additionally, we could distinguish the signals due to their very different spectral content. For

this, we placed a 5.1 mm copper filter in front of the detector, which cuts off the spectrum below

∼ 70 keV. Holes inside the plate (see Fig.5.18f) permit reconstruction of the unperturbed signal

level, which is shown in Fig.5.20. For this reconstruction the existing data are interpolated onto

a grid using a bi-linear spline. Complete beam profiles are then reconstructed by upscaling

the data again with a bi-cubic spline. This reconstruction is done by applying a 2D spline fit to

the data. The original hole positions are indicated in Fig.5.20 as crosses. The reconstructed

profiles are very similar to the profiles observed without any filters.

The ratio between both the filtered signal I1 and the signal that passes through the holes I0

allows to roughly estimate the spectral content. We observe an important difference between

the beams we attribute to bremsstrahlung and the beams from backscattering: Shots with the

foil close to the jet show a high contrast ratio of 0.6, the contrast being defined as 1− I1/I0.

When moving the foil outwards of the jet, the contrast reduces to 0.1. This implies that the

Compton X-ray are stronger attenuated and therefore contain less signal content beyond 100

keV than the bremsstrahlung signal (which extends far into the MeV range).

144



5.4. Inverse Compton back-scattering

In a later experiment we replaced the copper filter with a mesh of lead stripes, each 1 mm

thick. One millimeter of lead absorbs essentially all radiation below 100 keV, while at the su-

perposition the cut-off is around 150 keV. The transmission difference of these two continuum

filters peaks around 250 keV. Figure 5.22 shows an example of the backscattering signal from

to two consecutive shots. The first shot has an electron energy around hundred MeV, while

the second exceeds 200 MeV. From the transmission we can estimate that the first shot has

an energy off less than ∼ 200 keV, while the second shot clearly has significant signal content

above the cut-off energies. Also, as expected this shot is much more collimated.

The large field of view permits us to measure the beam divergence, which for the Compton

backscattering is close to isotropic, with an FWHM beam divergence ofΘx = (12.7±3.6) mrad

andΘy = (13.0±4.0) mrad, where x is plane of laser polarization. The pointing stability is 8.3

mrad and 6.4 mrad, respectively.

The duration of the pulse is approximately given by the electron bunch duration [158], which

is a few femtoseconds for electrons beams in our regime of operation. To get a better esti-

mate of the X-ray spectrum, we used a reduced version of PLARES [184] and simulated the

backscattering for a laser pulse of a0 = 1.0 and 30 fs duration for an electron beam of 140 MeV

peak energy, 5 percent energy spread and 5 mrad divergence, similar to the electron beam

distributions shown in Fig.2. The angularly resolved X-ray spectrum, shown in Fig.5.21, is in

fair agreement with the experimental data. The large energy spread is a consequence of the

initial electron energy spread, as well as the electron beam divergence. Simulations for various

beam parameters show that the latter is usually the dominating effect for laser-accelerated

electron beams.

To demonstrate that the X-ray flux from Compton backscattering is sufficient to be consid-

ered for imaging, we performed radiographies of macroscopic objects, placed in front of

the detector. As an example Fig.5.23 shows the radiography of a clock. Its structural parts

consist of different metal alloys, while the gears are made of plastic. The different materials

are clearly distinguishable in the radiography due to their distinct absorption coefficients. As

discussed previously the bremsstrahlung component is very energetic (> 100 keV) and there-

fore adds to the image mostly in form of a subtractable background noise. Due to the small

source size [177] a subject placed closer to the source will show significant edge enhancement

(propagation-based phase contrast imaging).
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Figure 5.20 – Top: Normalized X-ray signal as function of the backscattered beam intensity
for a series of 30 consecutive shots while scanning the foil position. The dashed trendline is a
third order polynomial fit. Bottom: Reconstructed beam profile for the unfiltered signal (a/c)
and the signal behind 5.1 mm of copper (b/d). The signal close to the jet is not only much
more intense, but is also significantly absorbed by the copper filter. In contrast, the signal
much behind the jet is barely disturbed, indicating that the photon energy is much higher.
The electron beams for both shots had comparable charge and energy.
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5.4. Inverse Compton back-scattering

Figure 5.21 – Simulated backscattered photon spectrum for an electron beam with 140 MeV
peak energy.
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Figure 5.22 – Comparison of Compton signal for different beam energies. (a) and (b) electron
spectra from the same series of self-injected beams. (c) and (d) corresponding X-ray signal.
The filter-grid consists of stripes of 0.5 mm lead. As expected the more energetic electrons
emit much higher energy.
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Figure 5.23 – Single-shot radiography of a clock. The different absorption contrast of metal
and plastic parts is clearly visible. Inlet: Photography.
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5.5. Betatron radiation

Figure 5.24 – Illustration of betatron oscillations, from a test particle simulation with 100
particles. The betatron wavelength visibly increases as electrons gain energy while they ad-
vance inside the ion cavity. Also visible, but less pronounced, is the damping of the oscillation
amplitude, which scales as rβ∝ γ−1/4.

5.5 Betatron radiation

In Chapter 4: Beam Transport we have discussed how a short plasma lens can be used to

collimate the beam. We observed that if the density length product of the plasma is sufficiently

large, the electron beam reached focus within the plasma itself. Increasing the transverse field

strength further reduces the focal length and ultimately the electron beam starts to undergo

betatron oscillations. Therefore the regime of betatron oscillations can be seen as an extension

of the plasma lens theory we have already developed in the preceding chapter.

So it is no surprise that shortly after the plasma lens had been conceived, proposals were

made to use the transverse oscillations in order to create a radiation source. However the

ion-channel laser, ion-ripple laser, etc. which were proposed at the time aimed for an FEL-like

operation, with unrealistic requirements on the beam emittance in order to achieve lasing.

The wiggler regime has much more relaxed requirements and broadband synchrotron radia-

tion was measured for the first time in 2002 in a beam-driven wakefield [186]. The setup was

very similar to the original plasma lens setup, with the main differences that SLAC managed in

the meantime to compress their beam further and to increase the plasma length. Shortly after

this betatron radiation was also observed in laser-driven wakefield accelerators [187, 188].

This spawned new interest in the source and the synchrotron formalism, as presented before,

was adapted for the new betatron source [189, 190].
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In the first decade after the discovery of betatron radiation in laser-plasma accelerators many

efforts were dedicated to the full characterization of the source and its brightness [158, 191].

While such properties can be directly retrieved from Particle-In-Cell simulations with radiation

post-processing, the experimental verification is much more elaborated. The source size (some

microns) has been measured using knife-edge techniques [192]. An experimental upper limit

on the betatron pulse duration was set using the solid-liquid phase transition in indium

antimonide as Bragg switch. This experiment showed that the betatron radiation has certainly

a sub-picosecond duration, with a best fit found at ∼ 100 fs [193]. The temperature of betatron

radiation is often estimated using X-ray filters, supposing that the spectrum is synchrotron-

like. This assumption was later verified with photon counting techniques [194]. Combining all

those measurements it was shown that the betatron source has a competitive brightness, with

peak values as high as 1022 photons / (second mrad2 mm2 0.1% bandwidth) being reported

[195].

It is important to underline that the properties of betatron radiation depend entirely on the

electron beam and the transverse wakefields. So on one hand betatron radiation can be used

as non-interfering diagnostic of the laser-plasma accelerator, see e.g. [196, 197, 115].

But on the other hand this means that the betatron source is directly related to the performance

of the laser-plasma accelerator. For betatron radiation this is even more important than for

other radiation sources (Compton, Bremsstrahlung, etc), as up to now, the betatron oscillations

could not be influenced without affecting the accelerator itself.

5.5.1 Basic properties and scalings

Let us now discuss some basic properties of betatron radiation in laser wakefield accelerators.

The deflection parameter for betatron oscillations in a 100-200 MeV laser wakefield accelerator

is typically of the order of K = γkβrβ ∼ 10. This is clearly the Wiggler limit, hence the emitted

radiation is incoherent and broadband. We have introduced all necessary physics in sections

4.2 and 5.2, which we can now readily apply to describe the source.

Photon energy

We have already derived an expression for the critical frequency emitted in a Wiggler (5.32),

which we can now combine with our definition of the fundamental betatron wavelength

(5.22c) into

ωc = 3

2
Kγ2ωβ =

3

23/2
Kγ3/2ωp ∝ r0

λ2
p
γ7/4 ∝ r0n0γ

7/4. (5.42)

So we see that due to the wavelength lengthening and amplitude reduction, betatron emission

scales much weaker with beam energy than other synchrotron sources. Furthermore, we have

seen that the maximum electron energy in a LPA is limited by the dephasing between the
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5.5. Betatron radiation

Figure 5.25 – The same electrons as in Fig.5.24, but now their trajectory is color-coded with

the momentarily emitted power P⊥ ∝ γ2
(

d~p⊥
d t

)2
. It is clearly visible that the electrons emit the

most in the turning point and at highest energies.

electron bunch and the laser pulse, which scales with n−1
e . If we take this into account, the

betatron oscillation length scales with λβ∝ γ−1, counteracting the γ2 upshift. For example,

in a recent experiment acceleration up to 2 GeV in a 4.8×1017cm−3 has been reported [198],

which corresponds to a betatron oscillation length of about 4 mm. In this experiment betatron

emission peaked at 25 keV, which is roughly 10 times the energy typically observed in a 200

MeV LPA.

Again, most applications of incoherent X-ray sources requires photon energies between ∼
10−100 keV, so it is important to find other ways to increase the betatron energy. For instance,

the spectrum can also be shifted to higher energies by increasing the amplitude or the density,

cf. Sec.5.5.3.

Photon number, divergence and polarization

We can estimate the emitted photon number per period and electron from the emitted power

(5.40), by using an average photon energy of the synchrotron spectrum 〈ħω〉 ' 0.3ħωc , which

yields

Nγ ' 3.31×10−2K . (5.43)

For typical parameters we find that Nγ per electron is of the order of unity. So for a beam

charge of ∼ 100 pC (which corresponds to 6.2×109 electrons), we expect a photon number in

the order 108−9.
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Being a Wiggler-type source, the beam is emitted within an angle ∼ K /γ. However, there is

a fundamental difference between a magnet wiggler and a plasma wiggler: In conventional

insertion devices oscillations occur only in the dipole plane. But the transverse wakefields act

radially and isotropically, so the betatron oscillations have no preferred plane of oscillation.

Instead, betatron radiation from self-injected beams is usually a superposition of randomly

polarized emissions and the exact shape depends on the electron trajectory [199]. Additionally,

in three dimensions electrons can also carry angular momentum [200], which can lead to

donut-like emission.

5.5.2 Stable, polarized betatron radiation from ionization injected beams

A principal drawback of betatron radiation from self-injected beams is that the X-ray signal

fluctuates as much, if not more, as the electron beam. In order to reach better stability it is

therefore desirable to use a controlled injection mechanism. Of those that we have discussed in

Chapter 2: Injection , ionization injection in gas mixtures is the most favorable, as it provides

stable highly charged beams in the range of some hundred MeV. For this application it is no

problem that the electron spectrum from this injector is maxwellian, as the betatron emission

itself is broadband, too.

A peculiarity of ionization injection - beyond its stability - is that is can lead to the production

of polarized radiation, which we are going to discuss in the following.

Electron orbits during ionization injection

As discussed in detail in Chapter 2: Injection , the key principle of ionization injection is

the create an asymmetry between accelerating and decelerating longitudinal wakefields,

giving the electron the possibility to gain net energy from the wake, which results in injection

successively. The source of the asymmetry is late ionization of higher ionization states, which

occurs close to the laser pulse’s peak. However, the electrons liberated from this process do not

only experience unbalanced longitudinal wakefields, but are also able to gain net transverse

energy from the laser itself. As a result ionization injected beams can have a preferential plane

of motion along with the laser polarization [74]. However, this behavior is not always observed,

so we need to discuss the mechanism behind this unbalance in the momentum distribution.

We recall from earlier that tunneling ionization increases exponentially with the field strength

W ∝ exp

(
−4ζi

3γ

)
= exp

(
−2ω(2ζi )3/2

E

)
(5.44)

where ω is the laser frequency, γ is the Keldysh parameter and ζ is the ionization potential.

Please note that though we have the convention to measure the electric field in units of the

normalized vector potential a0, we have to bare in mind that the electric field and the vector

potential are phase shifted, E(t) =−c−1∂t a(t). An immediate implication is that ionization
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Figure 5.26 – Left: Initial momentum distribution after ionization according to (5.45). Calcu-
lated for N6+ with an ionization energy ξ= 552 keV with a pulse of peak field strength a0 = 1.2.
Right: Width of the momentum distributions for different laser field strengths.

peaks at the minimal vector potential, so the majority of electrons is ionized at rest. According

to [201] the tunneling ionization rate by a linearly polarized pulse for a fixed momentum value

is given by

W =W (0)exp

(
−2ζiγ

3

3ω
p2
∥ −

γ

ω
p2
⊥

)
(5.45)

This relation is visualized in Fig.5.26. We see that the electron distribution is essentially

polarized in direction of polarization p∥, yet the momenta are only some keV. However, there

are more mechanisms through which electrons gain potential energy. Let us first consider the

ionization region.

For a laser with a gaussian intensity profile, we can estimate that electrons are isotropically

ionized within a radius of

rion ∼ w

√
log

a0

aT
, (5.46)

where we define aT as the threshold field strength and w the rms width of the pulse. The value

of aT is chosen in a way that describes onset of significant ionization, e.g. W (aT ) = 0.01fs−1.

As seen in Sec.4.2.2, the potential energy in an ion cavity isΦ= k2
p r 2/4, so the transverse fields

inside the ion cavity convert this spatial distribution into a momentum distribution with a

width of about p⊥ ∼ (kp rion/2)2. So the momentum gain depends on the ionization radius

and the plasma density. For instance, an electron born at rion = 1µm in a plasma of density

ne = 1.5×1019cm−3 gains potential energy of ∼ 100 keV. This value rapidly increases with the

ionization radius.
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The third mechanism is the ponderomotive motion of electrons. As its interplay with the

above phenomena is not straightforward, we performed 3D test particle simulations. We

include transverse and longitudinal laser field components [202] and a recoil term for the

ion cavity. As expected we find that the final momentum distribution depends on ionization

region. Electrons born close to the axis have a polarization degree similar to Fig.5.26, but with

increasing ionization radius the momentum ratio σp∥/σp⊥ approaches one, resulting in an

isotropic distribution.

In a laser-plasma accelerator it is not only important where electrons are ionized, but also

whether they are trapped. To get a better insight in this we performed Particle-in-Cell simula-

tions with CALDER-CIRC. The plasma is formed of a mixture of 99% Helium and 1% Nitrogen.

The driver is a 30 femtosecond pulse focused 12µm waist with a peak potential a0 = 1.2. It is

found that electrons trapped are born close the laser axis and their orbits depend essentially on

their initial position and the laser phase at ionization, cf.Fig.5.27. As found in the test particle

simulations, the injected electron beam oscillates preferentially in the plane of polarization.

In conclusion, electrons that are ionization injected and trapped close to the laser axis can

gain significant momentum in the direction of polarization due to the ponderomotive force.

However, for electrons born far from the axis the isotropic wakefield potential dominates and

the polarization ratio approaches σp∥/σp⊥ ∼ 1.

Experimental setup

The experiment was performed with the Salle Jaune laser, whose 28 femtosecond pulses were

focused using an off-axis parabola to a waist of 18 µm. Containing 55% of the total laser energy,

an energy of 1.2 Joule was delivered on target, resulting in an intensity of 3.5×1018W/cm2 or

a0 = 1.2. The laser polarization is adjusted using a λ/2 plate.

A supersonic nozzle of 3 mm diameter is mounted on a parker series 9 gas valve, connected to

a reservoir of 99% Helium and 1% Nitrogen. The electron spectrum is measured by deflection

in a permanent magnet (1.1 T over 10 cm). X-ray are detected either on a scintillator coupled

to a low-noise 16-bit CCD (Roper QuadRO) or directly on an X-ray CCD (Princeton Pixis).

Betatron polarization

Electrons were injected via ionization injection, leading to about 40 pC per shot with a broad-

band spectrum which extends up to ∼ 250 MeV. We find that the FWHM beam divergence is

anisotropic, with θ∥ = 16 mrad in direction of polarization and θ⊥ = 4 mrad in perpendicular

direction.

A similar behavior is found for the X-ray signal, whose FWHM divergence isΘ∥ = 24±1 mrad

andΘ⊥ = 10±1 mrad. In order to verify that the electron and X-ray polarizations are a result
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Figure 5.27 – CALDER-CIRC simulation of electron orbits from ionization injection (laser
polarized along x). (a) the electron experiences a ponderomotive drift away from the beam
center and performs weak oscillations in x direction. However, it then drifts back to the center
due to the longitudinal ponderomotive force, resulting an elliptical orbit at weak amplitude.
(b)-(d) electron is in phase with the ponderomotive force, resulting in an amplification of the
oscillation. Electrons perform strong oscillations in the plane of polarization.
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Figure 5.28 – Betatron x-ray beam profiles measured for four orientation of the laser polariza-
tion. The laser polarization axis is indicated by the yellow line. The line in figure (b) represents
the FWHM contour of the beam profile obtained from the test particle simulation.

of the laser polarization, we have turned the laser polarization. The X-ray signal followed

accordingly, as shown in Fig.5.28.

Apart from the apparent ellipticity of the beam in Fig.5.28 we also measured the source size

ratio to be 3:1, with a source size of 5± 1 micron in polarization direction. These values

could be reproduced in test particle simulations, where the radiation emission is calculated

according to (5.17b). In simulations we find a polarization degree Dp = 80±5 percent.
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Stability of the source

As we have mentioned before, ionization injection provides significantly better beam stability

than self-injection. Consequently, also the betatron emission sets new standard in terms of

pointing stability, divergence, signal level and beam energy.

We have measured the beam energy with two methods. In a first experiment we used a filter-

based method. To deduce the spectrum from the x-ray signal through the filters we introduce

an adaptive least squares algorithm. For this we start with an initial guess distribution (a flat

spectrum) and locally modify the spectrum. If the change decreases the total least squares

residual of the correlated filter transmissions it is taken into account, otherwise discarded.

The algorithm continues until convergence is reached. The error σ/
p

n is estimated by adding

gaussian noise to the measurements and applying the algorithm to the noisy data. For the

figure 30000 iterations on the spectrum were performed, while the error is estimated using

100 noisy data sets. The estimated spectrum agrees significantly better with the data than a

usual least-squares fit with only the critical energy as free parameter. Note that we can only

reconstruct the spectrum of X-ray that passes the X-ray window. The spectrum obtained using

this method is presented on Figure 5.29c.

In a second experiment we measured the beam energy using photon counting, with the

camera placed 8.5 meters away from the source. The measured spectrum over 60 consecutive

shots has a similar temperature of Ec = 6.7±0.5 keV, which is comparable to pure Helium

(Ec = 6.5 keV). For a series of 50 consecutive shots we measured that the center is stable within

a standard deviation of 1 mrad and the signal maximum varies by 15 percent.
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Figure 5.29 – Collage of the experimenal results on betatron radiation with ionization injection. (a) shows consecutive shots either in the gas
mixture or in pure helium. (b) is the sum of 50 consecutive shots, with the center of mass of each shot marked as green dot. (c) shows the
estimated spectrum from the filter transmission ratios in (d). (e) shows the flux fluctuations for 50 shots. (f) shows a typical photon spectrum
as measured form photon counting, with a synchrotron spectrum fitted in green. The spectral stability is shown in (g) where the synchrotron
fits for 60 consecutive shots are plotted.
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5.5.3 Augmentation of betatron radiation in tailored plasma density profiles

We have seen before that the betatron emission depends on the electron beam energy, the

transverse oscillation amplitude, the oscillation length and the number of oscillations per-

formed by the radiating electron. It has been proposed to manipulate these parameters

by appropriate tailoring of the plasma density profile [109]. In particular, it is desirable to

circumnavigate the weaker energy scaling of betatron radiation by adapting rβ and λβ.

In Chapter 3: Acceleration we have already discussed extensively how density tailoring can be

used to augment the beam energy. Furthermore, the bubble lens concept we have introduced

in Chapter 4: Beam Transport may be used to increase the betatron amplitude, cf. Fig.5.30.

The betatron oscillation length depends on the beam energy and the plasma density, where it is

clear that decreasing the beam energy to increase the radius of curvature is counterproductive.

However, augmenting the plasma density is a valid option to increase not only the betatron

frequency, but also the oscillation number. Yet we have seen in Chapter 3: Acceleration that

density steps usually trigger self-injection. While additional charge is beneficial to increase

the total photon number, this does not provide a path towards higher beam energies.

Over the course of this thesis we have tested a variety of configurations: As injectors we have

assessed self-injection, ionization injection in gas mixtures and shock injection; for the density

tailoring we used different jets or shocks; we measured X-ray using various scintillators and

CCD cameras. All of these experiments have shown to some extent augmented betatron

signals compared to a single jet. But as explained above, density tailoring can affect electron

beams in many ways and it is crucial to distinguish which process is responsible for the signal

increase.

In the following we are going to present in detail the results of two campaigns from 2014 and

2015. The first experiment relied on self-injection, two equally sized gas jets and a scintillator

with filters as X-ray detector. In a refined setup we used ionization assisted injection, a smaller

’needle’ jet and both scintillators and X-ray CCD cameras.

Experiment I (June 2014)

The experiment was conducted at Laboratoire d’Optique Appliqueé with the ’Salle Jaune’

Ti:sapphire laser system, which delivers 1 J/28 fs (FWHM) pulses at a central wavelength of 810

nm and with a linear polarization. The laser was focused with a 100-cm-focal-length off-axis

parabola, to a focal spot size of 12 µm (FWHM).

As target we use a system of two helium gas jets. It is found that mounting the jets at an

angle of about 135 degrees is optimal to avoid the formation of shock fronts. Furthermore 3D

printing technology is used to design nozzles that can be placed as close as possible to each

other. Both jets are motorized in order to scan the focus and superposition.
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Figure 5.30 – Test particle simulation demonstrating betatron augmentation in density steps
via interaction with the rear part of the bubble.

A 800 nm probe beam propagates through the plasma channel in orthogonal direction. The

plasma density is characterized using a Nomarski interferometer. The field of view is about 7

mm x 1.6 mm at 8.125 µm resolution. The region of optimal fringe visibility is approximately

3.5 mm. As the plasma channel is close to symmetric around the pump laser propagation axis,

we can deduce the local plasma density using an Abel transformation.

In order to measure the energy of the electrons the beam is dispersed by a 10cm 1.1 Tesla

permanent bending magnet placed 6 cm behind the gas jet. The electrons are deflected

according to their relativistic mass and measured on a phosphor screen (Kodak Lanex) which

converts a part of their energy into 546 nm scintillation light. The screen is imaged using a

Nikon f1.8/50mm lens mounted on an Andor DV420 16-bit CCD camera. The field of view

covers energies from 70 to 600 MeV.

The X-ray signal is measured using another Lanex phsosphor screen, which is imaged onto a

16-bit CCD camera at a resolution of (0.4mm)2. This leads to a radial resolution of≈ (0.7mrad)2,

while the field of view is about 105×88 (mrad)2. The screen is protected from laser light by 26

microns Aluminum, absorbing almost all radiation below 3 keV. The absorption rate of the

phosphor is quasi-constant below 20 keV, which makes the signal proportional to the emitted

power in the X-ray range that passes the filter. As the beam is only weakly asymmetrical

all pixels are grouped according to their distance to the center of gravity of the beam. The

resulting radial distribution can be well described by a normal distribution. This is used to

estimate the total X-ray signal of beams exceeding the field of view due to their divergence.
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The X-ray energy is estimated using Aluminium filters. For each filter pixel an algorithm

compares the signal level to the local mean of unperturbed X-ray, leading to a local filter

transmission ratio. In the case of betatron radiation it has been shown by photon-counting

techniques that the spectrum is synchrotron-like [194]. Assuming that the spectral shape

resembles the on-axis intensity distribution d 2I /dωdΩ∝ (E/Ecr i t )2K2/3(E/Ec )2 (where K2/3

is a modified Bessel function of second kind), we can define a unique temperature Ec for each

pixel.

Results

In this proof-of-principle experiment we create a density step using two independent gas jets.

The first jet serves as usual LPA, operated in the transverse self-injection regime [62, 64, 63].

This permits to produce electron beams of rather high charge while containing some quasi-

monoenergetic features. At the end of the LPA stage electron beams have a total charge of

∼ 108±26 pC and ∼ 140±40 MeV mean energy. The second jet is placed in the rear part of

the first jet. In the region where the two gas flows meet the density rapidly increases. If the

second jet is placed far inwards a shock front forms that disturbs the electron propagation.

Far outwards a plateau at initial density n0 is formed. Between these two cases a region of

high density n1 is created. As shown in Fig.5.32 the electron beam spectrum does not change

significantly as we turn on the second stage, while the charge between 100 and 200 MeV

increases slightly. Note that even individual shots may show quasi-monoenergetic features,

the unstable nature of transverse self-injection leads to a maxwellian-like mean spectrum.

Importantly, the charge augments only weakly. This means that even if there seems to be some

reinjection of electrons in the second jet, the contribution to the total charge is only about

one tenth. We also tested for reinjection in the second jet separately by reducing the backing

pressure of the first gas jet below the self-injection threshold.

While the spectrum and charge remain similar for both cases, the electron beam divergence

increases significantly. Also there is with no doubt a strong influence on the X-ray emission.

As shown in Fig.5.33, activating the second jet leads an increase of the peak X-ray signal by a

factor of 3-5, while the X-ray divergence augments from 28±2 mrad to around 38±5 mrad.

From this we estimate that the total X-ray signal increases by up to an order of magnitude.

To understand which process is responsible for the gain we use X-ray filters to estimate the

X-ray temperature, under the assumption that the spectrum is synchrotron-like. The results

are represented in two histograms of 20 and 24 shots, respectively (Fig.5.34). First, it is clear

that with the second jet much higher signal levels are obtained. But also, the energies we

estimate for these pixels tend to increase, the spectrum gets hotter. Note that the algorithm

sometimes estimates very high beam energies. At low signal level this is usually due to noise

issues. This can be especially an issue if we try to assign a single X-ray temperature to the

spectrum. The histogram representation at hand is less sensitive to such noise and beam

energies around 2−7 and 3−12 keV are measured. We estimate that the critical energy on axis
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Figure 5.33 – Electron beam charge and divergence vs. X-ray beam peak signal and divergence
for only jet 1 and for jet 1 and 2 at the three different positions from Fig.5.32. While the electron
beam charge does not change beyond the errors, the beam divergence increases significantly.
This behavior is inherited, though weaker, by the X-ray beam. Remarkably the peak signal
level augments by more than four times when the second jet is turned on. Thus the total X-ray
signal, which is estimated as the peak signal times the divergence squared, increases by about
an order of magnitude.
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Figure 5.34 – Filter-based energy estimation. All filter pixel are used as separate detector for
which the critical energy is estimated using filter transmission ratios for synchrotron-type
spectra. The local signal level is estimated from the surrounding filter-free regions. Pixel with
less than 15 counts are ignored due to noise issues. The plot shows the histogram of signal
versus energy for 24 shots with only jet 1 and 20 shots with both jets, giving a total dataset
of ∼ 30000 events each. We see a clear tendency that the spectrum is hotter the stronger the
signal level.

increases from ∼ 9 to 12 keV. In a radial representation of the data it is also observed that the

spectrum cools down angularly.

To conclude, we have observed augmented X-ray production in a two-stage gas jet configu-

ration. While we observe little influence on the electrons’ spectral distribution, the higher

plasma density in the superposition region (n1 ≈ 1.8×1019cm−3 vs n0 ≈ 1.0×1019cm−3) leads

to a measurable increase of electron beam divergence as well as X-ray energy and divergence.

We estimate that the emitted power increases by over an order of magnitude.
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Experiment II (June 2015)

While the experiment from the preceding section showed clear indications of increased beta-

tron yield in a two-jet configuration, there remained several uncertainties: In post-processing

we found that very divergent electron beams were partly clipped by the magnet spectrometer,

whereby we might not have collected the entire beam charge; furthermore the X-ray filter

set was not optimal chosen and did not allow quantitative beam energy measurement; and

last, with both jets having a size of ∼ 3 mm, there always remains uncertainty for the electron

dynamics throughout the second jet.

However, the strong increase of beam divergence indicates that the signal yield might be

related to the bubble lens effect we introduced in Sec.4.5. We therefore sought after a unam-

biguous demonstration of the concept. Such became possible when we started to use the

small diameter ’needle’ jet for rephasing experiments, cf. Sec.3.4.6.

In Chapter 4: Beam Transport we have discussed how the beam divergence increased when

a density step was introduced. In this section we are going to discuss the same experiment

from the point of view of X-ray emission.

To recall, in this experiment electron injection relied on ionization injection in a 95:5 Helium-

Nitrogen mixture. A density ramp was created using a small needle jet, placed close to the exit

and the laser axis.

We found that the second jet had weak influence on the beam charge and the average elec-

tron energy was reduced. However, we also observed that the beam divergence was greatly

increased, by up to 6 times the initial value. The results of a series of 60 shots (10 each for only

one jet and 5 positions of the second jet) are summarized in Fig.4.18.

We measured the X-ray signal for the same shots by indirect detection on a Princeton Instru-

ments Quad-Ro camera. Placed at 80 cm from the source we obtain a field of view of about

60×60 mrad2, which is however reduced by a circular flange around the 100 microns mylar

window at the chamber exit. The average beam profiles for each scan position are shown in

Fig.5.36. As for the self-injection experiment from the preceding section, we find again that a

second jet has a strong impact on the X-ray yield. Note that while the first experiment covered

only a scan range of less than 200 microns, the position scan in this experiment goes over

more than a millimeter and we see the signal both rising and falling again.

165



C
h

ap
ter

5.
R

ad
iatio

n
gen

eratio
n

Pump Laser 
1.2 J, 30 fs 

f/10 off-axis  
parabola 

Probe beam 

Dipole 
Magnet 

(b) 

jet and needle jet  

X-ray CCD / 
Quad-Ro 

(a) (c) 

(d) 

(e) Gas mixture: 95% Helium. 5% Nitrogen 
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’needle’ jet, both connected to a reservoir of 95% Helium and 5% Nitrogen. Sample interferometry images without (c) and with the second jet
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and an X-ray CCD camera, placed at variable distance from target in photon counting mode.
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We find that the noise-subtracted signal augments from a peak value of 60±5 counts up to

a maximum of 870±20 when the density transition is located 1.8 mm after the jet entrance.

At the same time the beam divergence augments to 90 mrad. As we are again using a Gadox

screen as detector, the total signal should be approximately proportional to the emitted power.

Unfortunately we were not able to collect the whole beam, but we can estimate that the

emitted power increases by 20 (field of view) to 60 (extrapolated) times. This is well above

anything that could be explained by charge fluctuations and suchlike, indicating that we have

indeed managed to influence the electron trajectories.

This is supported when we look at single shots from the series. Figure 5.37 shows two shots,

one without a second jet and one at the optimal position 1.8 mm. Here we see clearly how

both electron and X-ray properties change: While the beam on the left is well collimated and

weakly radiating, the beam on the right is much more divergent and the radiated power is

significantly higher.

We also measured the radiation spectrum in this configuration using an X-ray CCD camera

in photon counting mode. The measurement reproduces our estimations on the increase of

emitted photons. However, contrary to our expectations the temperature of the spectrum

increases only weakly, by 10-30 percent. An example, for one jet solely and with the second jet

at 1.6 mm, is shown in the lower frame of Fig.5.37.
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Figure 5.37 – Upper part: Representative single shot images for the scan shown in Figures 4.18
and 5.36. The beams on the left were measured with only one jet active. The electron beam
has a charge of 33.5 pC, with a quasi-monoenergetic feature at 207 MeV, containing ∼ 7 pC
charge. The beam divergence is about 4 mrad. The beam on the right was obtained with the
second jet active. The beam contains an integrated charge of 46.7 pC at a divergence of ∼ 41
mrad. Though both beams have comparable charge, the X-ray signal from the second beam is
much stronger, note the different colorscales for each frame.
Lower part: Photon spectra (solid lines) and angularly integrated electron spectra (dashed).
Both beams have comparable charge (36.5 vs 26.5 pC), while the divergence is very different
(3.4 vs 26.8 mrad). The total photon number is significantly higher for the second case, however
the temperature of both spectra rests similar.
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5.6 Conclusions and outlook

In this chapter we have applied the different techniques we developed for injection, accelera-

tion and transport in order to optimize X-ray production. As this part concludes the work, we

will also review the principal findings of the first chapters and discuss research perspectives

that arise from the results of this thesis.

5.6.1 Summary of the results

The aim of the first three stages has been to extend our control over the laser-plasma accel-

erator. In Chapter 2: Injection we have discussed how ionization injection and injection in

sharp density transitions can be used to produce electron beams whose stability outperforms

common self-injection by far. Using the SALLE JAUNE laser system we measured that ionization

injection in high-Z gases provides beams with a stable maxwellian spectrum at tunable charge

of up to 1 nC. Shock-injected beams contain less charge, but are monoenergetic and tunable

in energy.

Chapter 3: Acceleration was dedicated to extensions of acceleration beyond the limitations

set by laser depletion and dephasing. In particular we have discussed how density tailoring can

be used to influence the electron phase in a wakefield in a way that allows them to maintain

for a longer time in an accelerating phase. While this rephasing allowed us to affect the

longitudinal beam dynamics, we also demonstrated schemes for the control of the transverse

evolution. In Chapter 4: Beam Transport we have demonstrated that a laser-plasma lens can

serve as tool for rapid collimation of ultrashort electron beams. Furthermore we have shown

that interaction of the electron bunch with the rear part of the ion cavity can defocus the beam,

thus increasing its betatron oscillation amplitude.

Such an increase of the oscillation amplitude can significantly increase the X-ray signal, as

we have seen in the present Chapter 5: Radiation . Another important result has been that

beams injected via ionization injection radiate much more stably than found in any preceding

experiment. Furthermore, the physics of injection permits to create polarized X-ray beams,

which relies on the fact the electrons can directly gain transverse momentum from the laser.

This effect is most evident for electrons born close to the laser axis.

We have also made first steps towards applications of X/γ-ray sources, using either bremsstrahlung

conversion or Compton backscattering to perform radiographies.
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5.6.2 Future prospects

The results described in the preceding section have both immediate and long-term implica-

tions. As near-term we consider tasks that directly arise from the project results, but could

not be performed yet. Mid-term prospects include future experiments that can be performed

based on existing infra-structure or reasonable developments. We conclude with a discussion

of long-term perspectives of the field for the next years.

Near-term setup improvements

Many experiments performed in the context of the thesis relied control of the longitudinal

density profile. In order to create such tailored density profiles we have used either two

gas jets or a supersonic gas jet combined with a blade to create a shock front. Unfortunately

neither of these techniques allows us to vary the transition position and the density completely

independently. Instead there is always an interplay between the two gas flows or the gas flow

and the shock front, respectively. Yet for better control and understanding of all schemes

relying on density tailoring it is indispensable to have complete control of those parameters.

A first step will therefore be to perform a complete characterization of the ensemble. In our

case this would require tomographic density measurements of the source over a wide range of

backing pressures and positions.

Most experiments also shared the same diagnostics, consisting of a topview, sideview, electron

spectrometer and X-ray detector. Useful additions to this standard setup would be for example

to include integrating current transformers (ICTs) to measure the beams charge. Furthermore

additional diagnostics for the laser beam would be helpful for many types of experiments, e.g.

to get better insight in the laser evolution. We also intend to improve the X/γ detectors. In

particular it remains difficult to measure radiation beyond 100 keV, which is why we performed

initial tests that measured the response of different scintillating crystals. These could be

included into a sensor array to measure high energy γ-ray.

Near and mid-term research prospects

Beyond such immediate improvements to the experimental setup, the results from this thesis

can be extended in various ways. In the following we will therefore discuss some examples of

experiments that could built up on our results.

One of the principal findings of the thesis is the stable production of betatron radiation

using ionization injection. The discovery of this regime is an important step towards more

sophisticated applications of femtosecond X-rays, e.g. time-resolved crystallography.

Another important result has been that we can influence the betatron oscillation amplitude

via defocusing in at the rear part of the bubble. In fact, changing the amplitude does not only

increase the radiation emission, but is also changes the effective velocity at which the electrons
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Figure 5.38 – a) Calculated energy loss due to classical radiation reaction for a 30 fs scattering
pulse at 180◦ incident angle. b) Wiggler parameter for which the effective Lorentz factor γeff

equals the phase velocity γφ as function of the electron energy and the plasma density.

propagate in direction of the laser. Therefore a regime of interest for future investigations might

be to increase the betatron amplitude of to a peak deflection at which the effective Lorentz

factor γeff = γ/
p

1+K 2/2 matches the phase velocity of the wake γφ. Such a configuration

would be phase-locked and could provide an alternative to density matching discussed earlier.

An estimation for the required Wiggler parameters is shown in Fig.5.38b.

Plasma focusing devices, like the laser-plasma lens or the proper wakefields of highly charged

particle beams from ionization injection, will also enable many new developments. Such

devices could be employed to reduce the source size in bremsstrahlung conversion, or to

improve the radiation bandwidth in Compton-backscattering.

Our results on Compton backscattering also motivate to pursue the usage of the source for

imaging applications. One example would be to take advantage of the small source size to

perform phase contrast imaging. Or, varying the electron beam energy one could perform

dual-energy imaging. An interesting fundamental physics experiment would be to measure

radiation reaction [203]. Given the stability we have achieved using shock injected beams, it

might be possible to directly observe classical radiation reaction with the two main beams of

the SALLE JAUNE laser. Estimations for this are shown in Fig.5.38a. However, this effect will be

much easier to observe at petawatt-class laser facilities.

Mid and long-term goals

While we have presented a number of individual improvements on each stage of laser-plasma

lightsources, we have not yet explored a combination of all those schemes. In the near

future, many hybrid solutions will explored, e.g. using a wakefield accelerator as electron gun,

coupling a conventional undulator directly to a laser-wakefield accelerator [170] or to explore

172



5.6. Conclusions and outlook

combinations of conventional accelerators and Compton scattering [204]. It is also likely that

plasma lenses will be an important element to maintain the beam emittance in such setups.

Still, the long term perspective remains to create compact, reliable, tunable, bright, all optical

lightsources. A major step into this direction has been the combination of backscattering

with controlled injection using shocks, as published recently [180]. Future sources should

also provide higher repetition rate, which unavoidably requires further developments in laser

technology. But at the same time the plasma accelerator should operate as efficiently and

stably as possible. In this context we expect a high impact of our results on ionization injection

and density tailoring.
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A Experimental methods

In this chapter we review the basic experimental techniques that were used to obtain the

results from the main text. The discussion of the laser system, plasma and electron diagnostics

is intentionally brief. Instead we focus more on target development, with emphasis on new

additive manufacturing techniques, and discuss X-ray diagnostics for ultrashort laser-plasma

lightsources.
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Appendix A. Experimental methods

A.1 Laser System

The experiments in this work were performed at the SALLE JAUNE Laser system situated at

Laboratoire d’Optique Appliquée in Palaiseau, France. The system delivers two laser pulses of

up to 3 Joule energy each with a duration of ∼ 30 femtoseconds at a repetition rate of 1 Hertz.

The system is based on chirped-pulse amplification [205], where laser pulses with a large

spectral content are first stretched, then amplified and finally compressed. The Salle Jaune

system starts off with 4 nJ, 9 fs pulses at 800±150 nm (FWHM). These are then stretched to

picosecond duration, amplified and compressed to 400 µJ at 20 fs duration. Then the pulse is

cleaned in an XPW (Cross Polarized Wave) module, which enhances the contrast via non-linear

wave mixing.

After the XPW the pulse goes through a second stretcher and enters an acousto-optic tunable

filter [206], which allows to control the spectral phase. The pulses are then amplified by a series

of five Ti:Sapphire multi-pass amplifier stages, which are pumped with frequency-doubled

(532 nm) Nd:YAG lasers. After the last amplifier the beam is split into three parts: Two 3 Joule

beams that will serve as driver and a weaker beam (50 mJ), which is usually used as a probe.
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Figure A.1 – Schematic layout of the SALLE JAUNE laser system.
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Laser influence on electron and X-ray production

Being the driver of the wakefield accelerator, the laser quality has important influence on the

electron and X-ray yield. This is in particular the case for self-injection, which relies heavily

on self-focusing. There are for example data which show the influence of coma aberrations

on the beam divergence [207]. At Salle Jaune we have studied the influence of the third order

spectral phase on laser pulse propagation [208]. There are also empirical data which show that

high contrast leads to better beam stability and divergence [209]. Furthermore, it has been

shown that the pulse front orientation [210] and the wavefront in general [211] have important

influence on the wakefield acceleration.

A.2 Gas target

There are a number of different types of targets used for laser wakefield acceleration, among

whose gas jets, gas cells, dielectric capillary tubes and discharge capillary tubes are the most

popular.

An advantage of gas cells is that some designs allow to vary the cell length, which permits

optimization of the accelerator for dephasing and so forth. Dielectric capillaries intend to

provide guiding for the laser, especially the outer Airy modes. It has been reported that these

designs can lead to higher betatron yield and increased stability. Discharge capillary tubes

aim to provide a parabolic radial density profile, which should allow laser guiding beyond the

self-guiding regime.

While all of these solutions have certainly advantages compared to a simple gas jet, this comes

in hand with increased experimental complexity. Notably dielectric capillaries have to be

carefully aligned, as a misalignment will lead to immediate destruction of the waveguide. The

main challenge of discharge capillaries is the reliability of the plasma generation. Also, for

both types of capillary targets it is difficult to add plasma diagnostics.

In this work we exclusively used gas jet targets, which among all targets provide the highest

flexibility and due to their open design, side and top view diagnostics can be used to charac-

terize the plasma and laser propagation. In particular, we have explored the usage of multiple

gas jets and creation of tailored density profiles along the propagation axis.

Gas jets

The most common gas jet system used in laser-plasma accelerators is the Series 9 pulse valve

by Parker Hannifin Corp., which operates at up to 50-80 bar and a sub-millisecond reaction

time. On this valve different nozzles can be mounted, which are typically using a conical De

Laval layout. These nozzles have usually exit diameters of a few millimeters, up to more than

a centimeter for GeV electron acceleration. Note that recently also gas jets for laser-driven
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proton acceleration have been developed. However, in order to achieve near-critical plasma

densities, these jets operate at very high pressure (>100 bar) and small exit diameters (<1mm).

To date, such gas jet nozzles are usually made of aluminum, produced using CNC milling

machines.

3D printing of gas jet nozzles

There are three principal motivations for the usage of 3D printers. Firstly, pieces can be

produced directly from a CAD drawing, which make it ideal for rapid prototyping. The time

from finishing a 3D model to using it ranges from a few hours (if an in-house printer is

available) to a few days (for outsourced production). Furthermore the field is rapidly evolving

and recently a number of enterprises offer manufacturing at very competitive prices (usually

more than twenty times cheaper than milling). Lastly, additive manufacturing can offer more

freedom in the design than conventional milling does. For this last argument to hold, we need

however to respect some guidelines, which we will briefly discuss in the following.

What is commonly called 3D printing is a number of different technologies for additive

manufacturing. These technologies have been essentially developed since the 1980s and

have recently drawn a lot of public attention. The most common types are fused deposition

modeling (FDM), selective laser sintering (SLS) and stereolithography (SLA). For our studies

we have used commercial SLS and SLA systems. For the former nozzles have been printed

using an EOS Formiga P110 printer, which employs a 30 W CO2 laser coupled to an F-theta

scanning lens. The printer material is a PA 12 based fine polyamide (PA 2200) with an average

grain size of 60 µm. The layer thickness is 60 - 150 µm. As example of SLA we used a Stratasys

Objet30 Pro printer, with layer thickness of 28 µm and an xy resolution of 42 micrometers.

The Stratasys Objet offers currently the highest accuracy on the market (for non-specialized

applications).

It has to be clarified that the nominal resolution of a 3D printer is not the smallest feature

size, and especially, not the smallest hole size. After some unsuccessful tests to print nozzles

with small inner diameter, we performed several systematic tests. An example is shown in

Fig.A.2. We find that it is not recommendable to print gas channels with diameters below one

millimeter and larger diameters are preferred.

In this work we have used 3D printed jets twice: Once in Chapter 4: Beam Transport for the

focusing jet and also in Sec.5.5.3 in order to place two jets very close to each other. The larger

the jet, the more similar its performance to conventional nozzles, as can be seen for instance

in Fig.A.3.
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Figure A.2 – Back-lighted test prints for circular holes in plates of different thickness using SLS
(plastic) and SLA (resin). The rendered CAD model is shown in white. We find that the smaller
the hole diameter and especially the deeper the hole, the less well the tubes are resolved.
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Figure A.3 – Photos and neutral gas characterization of the gas jets used in Sec.5.5.3. Density
profile at 300 microns above the jet with 9 bar backing pressure.
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A.3 Plasma and electron beam diagnostics

In the experiment we have two plasma diagnostics in place, called top- and sideview, and

we measure the electron beam properties using a combination of magnet spectrometer and

phosphor screens. In the following we briefly discuss these diagnostics.

Topview

The topview is a passive imaging system that looks at the target from above. It views as straight

as possible above the gas jet, though under some circumstances this is geometrically not

possible and we image at an angle. The diagnostic mainly collects light emitted from the

plasma channel. It is therefore an important diagnostic during the alignment phase, as it

allows us to verify the horizontal position of the nozzle with respect to the laser. Also, as it is

sensible to wavebreaking radiation the injection position can be estimated and tuned.

Sideview

The sideview is an active imaging system employing an 800 nm probe beam, which is sent

through the target perpendicular to the gas target. The sideview diagnostic can be operated

either shadowgraphy or interferometry mode. For the former we directly image the beam

outside of the chamber. Plasma formation will disturb the propagation and modify its intensity.

Alternatively we can use an interferometer to retrieve the phase shift the beam experiences

while passing through the plasma. Common configurations are Michelson and Mach-Zehner

interferometers, see for instance [33]. However. for our experiments we have been using

Nomarski interferometers. This type of interferometer consists of a Wollaston prism and

polarizers before and after the beam splitter. Its main advantage to other schemes is the

simplicity and robustness of the alignment.

Electron beam charge and divergence

Most conventional accelerator facilities measure the beam charge in a non-invasive way with

current transformers. For high current beams at produced in laser-wakefield accelerators

it can be passively measured by employing integrating current transformers (ICTs). Unfor-

tunately the laser-plasma interaction creates strong EMP signal which can disturb the ICT

measurement. In a comparative study with scintillating screens, it was found that ICTs over-

estimated the beam charge significantly under LPA conditions. However, ICTs are regaining

popularity. Some experiments mount them further downstream, while others successfully

managed to shield their ICTs.

In this work we solely use absolutely calibrated scintillating screens, more precisely terbium

activated Gadolinium oxysulfide (Gd2O2S:Tb) powder screens, brand name Kodak Lanex Fine.
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For highly relativistic electrons the energy deposited in the scintillator is almost constant and

therefore the signal level uniquely depends on the beam charge. Usually we measure the

charge by integrating the whole signal on the electro spectrometer (see below), however for

some measurements we need to verify the amount of charge below the cut-off and electrons

are measured directly onto a screen.

The electron beam divergence is measured from the spatial charge distribution from the imag-

ing screen. With the spectrometer in place this measurement is reduced to one dimension and

it is therefore important to verify by direct transmission that the electron beam is sufficiently

symmetric.

The spectrometer itself consists of a dipole magnet, which deflects electrons according to their

energy onto the 35 mm × 177 mm large scintillating screen. In this work we used two different

magnets: a 10cm, 1.1 Tesla permanent magnet for electrons in the range of around 50-500

MeV; and a 2cm 0.76 Tesla magnet for lower energies. The phosphor screen is imaged with

commercial lenses (Nikon 50mm f/1.8 or Tamron 70-200mm f/2.8) onto a 16 bit CCD. To avoid

noise an interference filter is added, which selects the emission wavelength of the screen.

The deflection geometry is shown in Figure A.4. Depending on the placement of magnet

and screen with respect to the beam axis, the energy range and resolution can be varied. An

example for this is shown in right frame of the figure.
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Figure A.4 – Electron spectrometer setup for experiments at Salle Jaune [89]. Left: Spectrometer
geometry. Right: Corresponding energy range and resolution.

181



Appendix A. Experimental methods

A.4 X-ray diagnostics

The main objective of this work is the production of X and γ radiation. In this section we

are going to discuss their detection and how we can measure properties such as the photon

number, energy and so forth. For this we will first recall some basic physics of photon-matter

interaction. Thereafter we discuss the two main types of X-ray detectors used throughout this

work, scintillators and CCDs.

A.4.1 Photon interaction with matter

The main effects in photon interaction with matter are the photoelectric effect, Compton-

scattering and pair-production. Less important corrections arise from other effects as coherent

Rayleigh scattering and photonuclear reactions. Therefore the total cross section for matter-

photon interaction is approximately given by the sum

σtot 'σphoto +σscattering +σpair. (A.1)

Typically the photoelectric effect is dominating up to around 100 keV and then Compton-

scattering becomes important. Pair-production can only occur above 1 MeV and starts to

dominate in the γ-ray regime. The contribution of the three effects to the total scattering cross

sections is illustrated in Figure A.5. A quantitative evaluation of the cross sections is shown in

Figure A.7 for the cases of a low Z material (aluminum ) and a high Z material (lead).

The absorption in a material can be calculated from the cross section accoring to

I

I0
= exp

[
−σtot

u A
x
]

(A.2)

where A is the relative atomic mass and u is the unified atomic mass unit (uc2 ' 931.5 MeV).

From this we can immediately relate to the more intuitive mass attenuation coefficient

µ/ρ =σtot/u A (A.3)

which describes the attenuation over a distance x in a medium of density ρ. However, it is

important to notice that this quantity is not equal to the dose deposed in the medium nor the

energy absorption.

µtr /ρ = (
fphotoσphoto + fscatteringσscattering + fpairσpair

)
/u A (A.4)

and the mass energy-absorption coefficient takes into account the emission of radiation by

interaction of the secondary electrons with the medium1

µen/ρ = (1− g )µtr /ρ. (A.5)

1This kind of secondary emission is used in so-called intensifying screens.
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This correction becomes important at energies above ∼ 10-30 keV, and it significantly reduces

the amount of energy deposed inside the target. Importantly the emission of scintillating

screens depends on the mass energy-absorption coefficient and not the mass absorption

coefficient.

A.4.2 Scintillation

In the preceding section we have discussed how photons interact with matter. In particular

any absorption process means that energy is deposited in the object. Such energy deposi-

tion can result in heating and so forth, but for radiation diagnostics the most important is

photoluminescence, which means that the absorbed photon energy is re-emitted in form of

photons.

Among photoluminescence processes we distinguish two categories according to their typical

lifetime, which is the long living phosphorescence (typically milliseconds to hours) and the

prompt fluorescence (usually nanoseconds).

Materials that show photoluminescence are called scintillators or also phosphors.2 While

the absorption is determined by the scintillator material, the emitted light is defined by its

dopants. Common phosphors are caesium iodide (CsI), gadolinium oxysulfide (Gd2O2S) and

bismuth germanium oxide (BGO).

Such scintillators are mainly characterized by four different properties. Their light yield (LY)

describes the conversion efficiency of ionizing radiation into light. The scintillation decay

time (τ) is the time until the emission decreases to exp(−1). For laser-plasma sources this

parameter is usually negligible, because the X-ray pulse has a sub-picosecond duration, while

the camera integrates the signal over several milliseconds. The emitted wavelength (λ) is an

important parameter important for the detection, e.g. for coupling a CCD to the scintillator.

It should be be chosen to be in the range of best quantum efficiency of the detector. As said

before, the emitted wavelength is determined by the dopant, while the absorption efficiency is

mainly determined by the scintillator density ρ and its effective nuclear charge Zeff.

The following table lists those parameters for four typical scintillators.

material name LY τ λ ρ Zeff type

[ph/keV] [ns] [nm] [g/cm3]

NaI(Tl) 38 250 415 3.67 50 crystal

CsI(Tl) 54 1000 550 4.51 54 crystal

Bi4Ge3O12 BGO 8-10 300 480 7.13 75 crystal

Gd2O2S:Tb GOS/Gadox 60 ∼ 106 545 7.32 59.5 powder

Such phosphors usually come in two types, crystal and powder converter screens.

2In the literature there is no consensus whether both are considered synonyms or not
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Figure A.5 – Relative contribution of the photoelectric effect, Compton scattering and pair
production to the total cross section as function of the atomic number Z .
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Figure A.6 – Cross sections of Aluminum (Z = 13) and Lead (Z = 82). The absorption in Lead
is dominated by the photoelectric effect for energies up to 500 keV, while the absorption of
aluminum is reduced to the compton cross section for >100 keV.

Figure A.7 – Left: Mass attenuation coefficients from Hydrogen (Z = 1) to Uranium (Z = 92).
Also marked are the absorption edges at which the attenuation increases rapidly. Right: Ratio
between the mass energy-absorption coefficient µen and the mass attenuation coefficient µ.
While both agree well below 10 keV, there is an increasing discrepancy towards higher energies,
especially at the k edges.
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Powder converter screens

In powder screens small grains of phosphor are deposited on a substrate. The most common

material for this kind of scintillators is Gd2O2S:Tb, also called GOS or Gadox. It is well-known

by the Eastman Kodak trade name Lanex, while competitors sell it as Rarex, P43, etc. An

example of the layer structure of a Lanex screen is shown in Fig.A.8.

In contrast to crystal screens, powder screens are only produced with thin layers of phosphor

coating, e.g. 50 to 305 microns for Kodak Lanex screens. Furthermore the density of a powder

is usually in the order of half the solid density (7.32 g/cm3 for Gadox). According to East-

man Kodak the Lanex Fast back screens of 290 microns thickness have an average phosphor

coverage of 124 g/ft2, which leads to a slightly higher value of 4.6 g/cm3.3

Curl-control backing 

Polyester support 

Phosphor layer 

Clear overcoat 

178 microns 

50 – 305 microns 

7.6 microns 

Figure A.8 – Layers of a Lanex Screen.

Being thinner and less dense, powder screens are therefore only efficient for X-ray detection

up to ∼ 100 keV. In this range the absorption is dominated by the photoelectric effect, and

the K-edge at 50 keV. In the energy range up the 20 keV Lanex Fine / Regular absorb about

∼ 95 / 99 percent of the incident photons. This means that for an X-ray source emitting at less

than 20 keV, the scintillator signal is approximately proportional to the X-ray power. Another

particularity of Gadox screens is their long decay time of up to a millisecond.

Crystal converter screens

Crystal converter screens use the scintillator crystals as they are grown. Two of the most

common scintillator materials are caesium iodide (CsI) and Gadolinium oxysulfide (Gd2O2S).

Furthermore BGO is often used.

The absorption for these three filter types is shown in Fig.A.10. The plot reads in two directions:

While the horizontal lineout give information about the response curve for a scintillator of a

given thickness, the vertical direction allows to estimate the absorption distance in a stack

3There is an ambiguity in the literature concerning the thickness of Phosphor screens, because sometimes the
equivalent thickness of a solid is considered, while sometimes the actual thickness of the coating is meant.
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Figure A.9 – Estimated energy absorption using the NIST database for Lanex Fine (84±10
microns ) and Lanex Regular (160±10 microns).

of scintillators. From the absorption we can also get the locally deposed energy, which is

d A(E)/d x ×Eγ.

From the plots we see that in order to detect efficiently photons of more than a hundred keV,

millimeter thick scintillators are needed. This is why we have for example tested 3mm thick

CsI crystals to detect radiation from Compton scattering. A drawback of these thick crystals is

that the spatial resolution is reduced. This can be partly solved by means of special crystal

growth techniques, but such structures are not yet available for millimeter thickness.
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Figure A.10 – Absorption of CsI, Gadox and BGO scintillators as function of scintillator thick-
ness and photon energy.
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A.4.3 X-Ray filters

Also non-scintillating materials are of interest for X-ray detection. The attenuation of a X-ray

beam when passing through a material con be used to estimate the X-ray energy. As we have

already discussed above, the intensity of an X-ray beam behind a filter is given by (A.2):

I

I0
= exp

[
−σtot

u A
x
]

(A.6)

The reversely means that a material thickness x is needed to attenuate a beam to I /I0

x =− log[I /I0]

ρµ
(A.7)

A useful approximation to quickly estimate the order of magnitude to achieve significant

attenuation of a beam is to assume ρ ∼ 5g/cm3 and I /I0 = 0.1, which then leads to x0 ∼
5 mm/µ[g/cm2], where the attenuation coefficient µ can be extracted from Fig.A.7. The

amount of attenuation when radiation passes through filters can be used to extract information

on the spectral content. This method is frequently used for ultrashort laser-based sources, as

those exhibit significant shot-to-shot fluctuations and require single-shot diagnostics.

There exist a number of different implementations of such filer-based spectrometers. When

the filters are balanced information about the difference can be extracted. If informations

about the shape of the spectrum is known, a least squares fit can be used to fond the best

agreement. Or more generally, we present an adaptive algorithm, which optimizes an initial

guess spectrum to closely match the observed transmission ratios. However, it is difficult to

retrieve exact radiation spectra from filters and for energies below ∼ 30 keV, photon counting

in charge-coupled devices can be used instead.

A.4.4 X-ray CCD

Charge-coupled devices (CCDs) are designed to generate electron hole pairs in the epitaxial

layer when absorbing (visible) photons. But as we have established in the preceding sections,

also X-ray can deposit energy when travelling through the layers of a CCD. Below 150 keV

this energy deposition is dominated by the photoelectric effect. In this case its whole energy

is absorbed by the silicon and electron-hole pairs are created corresponding to the primary

photon energy. As the energy required to produce such pair is known (3.65 eV), the amount of

electrons measured can be used to deduce the initial photon energy.

In such photon counting mode, single pixel events are isolated and their signal level is related

by the camera gain to the original photon energy. However, high energy photons can excite

several neighboring pixels at once, which is why the photon counting algorithm also needs

to isolate multi-pixel events. Once all events are identified, the results are combined to a

histogram, as shown for example in Fig.5.37 of the main body.
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B Numerical methods

As complete analytical solutions can only be derived for simplified models like the one-

dimensional linear wakefield model, a more realistic treatment requires numerical solutions.

In laser plasma interactions, most computational methods rely on a finite difference time

domain approach.

Comprehensive solution of the laser-plasma interaction is done by solving the Vlasov-Maxwell

equations for a number of macro-particles. The particle-in-cell code CALDER-CIRC is dis-

cussed, as are stability and accuracy.
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B.1 Finite Difference Methods

Finite Difference methods are widespread in computational physics due to their simplicity

and numerical robustness. They are based on the idea of replacing differential equations by

difference equations. To do so we approximate the function f (x) by its Taylor expansion at the

point x0 +∆x

f (x0 +∆x) = f (x0)+∆x
∂ f (x)

∂x
+ ∆x2

2

∂2 f (x)

∂x2 +O (∆x3). (B.1)

From this we can estimate the first derivative as

∂ f (x0)

∂x
= f (x0 +∆x)− f (x0)

∆x
+O (∆x). (B.2)

However this approximation has a weak scaling of O (∆x), because it is basically “forward-

looking”. We can compensate for this by using a second “backward-looking” series

f (x0 −∆x) = f (x0)−∆x
∂ f (x)

∂x
+ ∆x2

2

∂2 f (x)

∂x2 +O (∆x3). (B.3)

and by subtracting respectively adding (B.3) and (B.1), we end up with the central difference,

which is second order O (∆x2)

∂ f (x0)

∂x
= f (x0 +∆x)− f (x0 −∆x)

2∆x
+O (∆x2) (B.4a)

∂2 f (x0)

∂x2 = f (x0 +∆x)−2 f (x0)+ f (x0 −∆x)

∆x2 +O (∆x2). (B.4b)

Solving the non-linear plasma wave equation

A simple example for the use of finite difference methods is the solution of the non-linear

plasma wave equation (1.15) that we have used extensively during the first chapters

∂2

∂ζ2φ= 1

2

(
1+a2

(1+φ)2 −1

)
k2

p . (B.5)

The solution of this equation is straightforward given the methods mentioned above: We can

use (B.4) to solve the potential with second order accuracy:

φk+1 = 2φk −φk−1 + [(1+ (ak+1)2)/(1+φk )2 −1]k2
p∆x2/2 (B.6)

Here we have used the common abbreviated notation f (k∆x, i∆t ) := f i
k . The solution is static

and we are not concerned about accumulation of numerical errors, so for convenience the

electric field and density were evaluated at first order B.2.
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B.1. Finite Difference Methods

Solving Maxwell’s equations

A more complex problem is the solution of Maxwell’s equations, e.g. in order to calculate

the propagation of an electromagnetic wave. Such propagation would be described by the

dynamic part of Maxwell’s equations (Ampère’s and Faraday’s laws) as

∂t E = c ·∇×B and ∂t B =−c ·∇×E (B.7)

which in one dimension reduces to

∂t Ex =−c ·∂z By and ∂t By =−c ·∂z Ex . (B.8)

We can convert these two PDEs to difference equation using the central difference formula

from above (as we are in one dimension we drop the indexes, i.e. E = Ex and B = By ):

E i+1/2
k −E i−1/2

k

∆t
=−c ·

B i
k+1/2 −B i

k−1/2

∆x
(B.9a)

B i+1
k+1/2 −B i

k+1/2

∆t
=−c ·

E i+1/2
k+1 −E i+1/2

k

∆x
(B.9b)

So the field at the next time step (i +1/2) is

E i+1/2
k = E i−1/2

k −ρ · (B i
k+1/2 −B i

k−1/2) (B.10a)

B i+1/2
k+1/2 = B i

k+1/2 −ρ · (E i+1/2
k+1 −E i+1/2

k ) (B.10b)

where ρ = c∆t/∆x ≤ 1 is the Courant-Friedrich-Lewy (CLF) number. The above discretization

method has been introduced by Yee. It solves the electric field on a so-called primary lattice,

while the magnetic field is solved on a dual lattice, shifted by half a step, cf. Fig.B.1. The

extension to three dimensions follows the same idea and is for example written out in [212].

Boris push

Once the fields for a certain charge and current distribution are known, one can calculate the

motion of a particle in these fields. This is often done using the Boris push, which for this

explicit problem reads

~p ′ = ~pn−1/2 +q~E ·∆t/2 (B.11a)

~p ′′ = ~p ′+q(~p ′×~B) ·
1√

1+~p ′2∆t/2 (B.11b)

~p ′′′ = ~p ′+q(~p ′′×~B) ·
1√

1+~p ′2 ·
1

1+~B 2
∆t/2 (B.11c)

~pn+1/2 = ~p ′′′+q~E ·∆t/2 (B.11d)
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Figure B.1 – Schematic principle of the one-dimensional Yee algorithm.

B.2 Test particle simulations

The idea of test particle is to analyze the behavior of a particle in an environment, while

ignoring the particle’s feedback on the environment. For laser-plasma interactions this means

that we do not solve the complete Maxwell-Vlasov system, but instead just model the response

of the particle to a given field.

Such a reduced system is by orders of magnitude faster to solve than Maxwell-Vlasov, and as

we have complete control of the fields we apply to the simulation, the results are also much

cleaner and easier to interpret.

On the other hand the reduced physics included in test particle simulations may lead to results

significantly different from reality. In the following we are going to discuss test particle models

used in this work, with focus on their range of application.

Electron motion in a given potential

In Chapter 4: Beam Transport and Chapter 5: Radiation we have used test particle models

to get an idea of the electron motion in certain wakefield patterns. These models used actual

electric fields from CALDER-CIRC, which were assumed static. However as the test particles

move continuously we use a bicubic interpolation to estimate the fields at the particles

position. The equations of motion are then integrated using a leap frog scheme. The accuracy

was tested using solutions of the wave equation and placing particles within the wake potential.

Trapped particles would perform many revolutions inside the potential without noticeable

deviation from their initial path.
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The main advantage of this code is that orbits for few test particles can be solved instanta-

neously. This allows interactive adaption of particle and field parameters, which is often

missing in more sophisticated numerical systems as PIC. It is adequate for order of magnitude

estimations as done in Chapter 4: Beam Transport , or for short term trajectory calculations

which can assume quasi-static fields. Also it is appropriate to estimate static properties, for

instance the trapping threshold for ionization injection.

Thomson scattering

For the simulations on Thomson scattering we used a reduced version of the PLARES code.

Here the laser propagation is implemented analytically, while the particle interaction is calcu-

lated using a standard Boris push.

Particles can be initiated in different spatial and momentum distributions, where we usually

define a certain initial energy spread and divergence. Once their trajectories are calculated

the Liénard-Wiechert potentials are solved in post-processing in order to find the resulting

radiation emission.

B.3 Particle-In-Cell Simulations

Since their introduction in 1962 by Dawson [213] Particle-In-Cell codes have become an

indispensable tool in plasma physics. Especially underdense laser-plasma interactions can

be excellently modeled in moving simulation window systems. Nowadays there exists a large

variety of commercial, open-source and close-source codes. Examples for popular codes to

date are OSIRIS, WARP, VORPAL, CALDER, EPOCH, PIConGPU and so forth.

B.3.1 The Particle-In-Cell method

The idea of Particle-In-Cell is to solve the Vlasov-Maxwell system in a way that the particle

distribution is sampled using so-called macroparticles.1 The particles are initiated accord-

ing to the particle distribution we wish to sample. The PIC algorithm then calculates the

fields associated with this distribution by projecting to particles onto a discrete grid. As the

macroparticles ’live’ in a continuous space, they will usually lie between several grid points.

They are therefore weighted according to a shape function, e.g. in the one-dimensional case

the density is

ρn+1
i =∑

i
qi S(xi −x j ), (B.12)

1When working with particle-in-cell it is actually more descriptive to express electron densities in particles
per µm−3 or pCµm−3, than to use the conventional cm−3. In fact, a density of 6.3×1018cm−3 is equivalent to 1
pCµm−3. For laser wakefield simulations a macroparticle therefore represents typically a charge in the order of ∼
fC.
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with the first order shape function S = 1− |xi−x j |
∆x . Once the fields are calculated, the response of

the macroparticles to them is calculated. Note that during the field initialization also external

fields as laser pulses can be introduced. The response is usually calculated with a pusher, like

the Boris push we discussed above. Once the particles are moved we again gather the new

densities and integrate to find the fields.

It is evident that the complexity and runtime of the code is increasing with each dimension

taken in account. For our case it is not sufficient to do a one-dimensional simulation, since

the ponderomotive force is acting in the transverse direction, moving particles away from the

center of the beam.

Good qualitative results can be obtained using two dimensions. In 2D every macroparticle

can be thought to be an infinitely long cylinder, moving in the plane perpendicular to is

extension.The main problems why a 2D PIC simulation cannot yield to quantitive results are

• It is well known that the external field of a charged cylinder falls with 1/r - by contrast

a point charge’s field falls with 1/r 2. This means that a 2D PIC overestimates forces

between macroparticles with rising distance.

• In two dimensions self-focussing does not lead to correct field intensities as the intensity

does not increase with the square of the spot size but just linearly. Therefore 2D PIC

codes have to be initialized with field intensities higher then the actual experimental

parameters.

B.3.2 CALDER-CIRC

Throughout this work we have performed Particle-In-Cell simulations using CALDER-CIRC.

The advantage of this code is that it uses a quasi-cylindrical geometry (r,θ, z) and decomposes

the fields, e.g. the electric field

~E(r,θ, z) = Er (r,θ, z)~er +Eθ(r,θ, z)~eθ+Ez (r,θ, z)~ez ,

in their Fourier components to θ. So each field F can be written in form of a series

F (r,θ, z) =
+∞∑

m=−∞
F̃ m(r, x)e−i mθ,

with

F̃ m(r, x) = 1

2π

∫ 2π

0
F (r,θ, z)e i mθdθ.

The great advantage of this method is that, as we write down consequently Maxwell’s equations,

there is no coupling between different modes. Thus each mode can be calculated separately

and as a result one does not need to perform a full 3D simulation, but a 2D ×nm , where nm is

the number of included Fourier modes. For laser propagation in vacuum it is sufficient to use
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m = 1. However Vlasov’s equation is non-linear and introduces coupling between the modes.

But as a wakefield is nearly axisymmetric there is almost no dependence on θ and it suffices to

include the order m = 0.

Thus, as discussed and verified in [214], CALDER-CIRC allows the user to perform simulations

at a speed that is of the same order as a 2D code, while still allowing a quantitative simulation

of physical phenomena that is comparable to real 3D codes. To do so it is sufficient to include

the first two modes, m = 0 for the wakefield and m = 1 for the laser beam.

B.3.3 Resolution and numerical dispersion

After this general discussion let us now consider some explicit rules we need to follow when

simulating laser wakefield acceleration with PIC codes, in particular CALDER-CIRC.

Resolution

If we want to study the plasma dynamics it is sufficient to resolve the plasma wavelength.

For underdense laser-plasma interactions the critical time scale is however the laser period,

which is why we need to have a longitudinal resolution that satisfies the Nyquist criterion. In

transverse direction we still only need to resolve the plasma dynamics, so in this direction the

resolution can be reduced.

An important issue to study dephasing is properly describe the driver dynamics. Firstly the

resolution has to satisfy the Nyquist criterion. Beyond this we also have to take into account

numerical dispersion.

Numerical dispersion

Let us consider the propagation of an electromagnetic wave in vacuum.

c2∂2
z E −∂2

t E = 0 (B.13)

If we use a first order discretization scheme as the Yee Algorithm, a time derivative is repre-

sented as

∂z E(z, t ) =
E i

j+1/2 −E i
j−1/2

∆z
(B.14)

∂t E(z, t ) =
E i+1/2

j −E i−1/2
j

∆t
(B.15)

1

∆t 2

(
E j+1

i −2E j
i +E j−1

i

)
= c2

∆z2

(
E j

i+1 −2E j
i +E j

i−1

)
(B.16)
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An electrical field of the form e i (kz−ωt ) leads to the dispersion relations

ω2 = c2k2 (B.17)

and therefore the phase velocity

vφ ≡ ω

k
= c (B.18)

which is in this case equal to the group velocity

vg ≡ ∂ω

∂k
= c (B.19)

1

∆t 2 sin2 ω∆t

2
= c2

∆z2 sin2 k∆z

2
(B.20)

so for k∆z ¿ 1

vφ = 2

k∆t
arcsin

(
c∆t

∆z

(
sin

k∆z

2

))
' 1− k∆t

48

(
1− ∆t 2

∆x2

)
(k∆x)2 (B.21)

vg =
[

1+
(
1− ∆t 2

∆x2

)
tan2(k∆x/2)

]−1/2

' 1− 1

8

(
1− ∆t 2

∆x2

)
(k∆x)2 (B.22)

In a cold, collisionless plasma the dielectric function is given by ε(ω) = 1−ω2
p /ω2 and the wave

equation is

c2∂2
z E −∂2

t E −ω2
p E = 0 (B.23)

which leads to the modified physical dispersion relation

ω2 = k2 +k2
p (B.24)

and numerical dispersion relation

1

∆t 2 sin2 ω∆t

2
= c2

∆z2 sin2 k∆z

2
+

k2
p

4
(B.25)

with the group velocity

vg =
[(

1+
k2

p∆x2

4sin2(k∆x/2)

)(
1+

(
1− ∆t 2

∆x2

)
tan2

(
k∆x

2

)
−

k2
p∆t 2

4cos2(k∆x/2)

)]−1/2

. (B.26)

The important question is, how does the plasma density effects the numerical laser propaga-

tion. For low plasma densities and k∆x ¿ 1 we find

vg = 1− 1

2

k2
p

k2 − 1

8

(
1+3

k2
p

k2

)(
1− ∆t 2

∆x2

)
(k∆x)2 (B.27)
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which means that there is also an additional numerical error, but it is only a fraction of the

numerical error in vacuum.
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C Formulary

This chapter sums up some of the most useful relations.

Relativistic optics

Normalized vector potential a0 and fields in units of a0

a2
0 ' 7.3×10−19[λ(µm)]2I0[W/cm2] (C.1)

E [TV/m] ' 3.21a0/λ[µm] (C.2)

Normalized velocity and Lorentz factor

β= v/c0 =
√

1−1/γ2 ' 1−1/2γ2 (C.3)

γ=
√

1

1−β2 = 1√
(1+β)(1−β)

(C.4)

Plasma physics

Plasma frequency, wavelength and wave number

ωp ' 178 THz×
√

ne [1019 cm−3] (C.5)

λp ' 10µm ×
√

ne [1019 cm−3] (C.6)

kp = 2π/λp (C.7)
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Laser-wakefield acceleration

Non-linear laminar plasma wave equation

∂2

∂ζ2Φ= 1

2

(
1+a2

(1+Φ)2 −1

)
k2

p . (C.8)

Exact solutions for weak excitation (linear plasma wave)

Φ =− cenv
a2

0

4
sin[kp (ξ−ξl )]exp

(
−2r 2

w2

)
(C.9)

Ez =cenva2
0

4

mcωp

e
cos[kp (ξ−ξ0)]exp

(
−2r 2

w2

)
(C.10)

Er =cenva2
0

mc2r

ew2 sin[kp (ξ−ξl )]exp

(
−2r 2

w2

)
(C.11)

cenv =[1− (kpσz /π)2]−1 sin(kpσz ) (sin2 pulse) (C.12)

cenv =
√
π/4log(2)(ωpτ)exp[−(ωpτ)2/16log(2)] (gaussian pulse) (C.13)

Velocity and corresponding Lorentz factor of a laser excited plasma wave

βφ =
√

1−ω2
p /ω2

0 and γφ =ω0/ωp (C.14)

Potential and fields in the bubble regime, (3.8) and (4.28)

Φ=
k2

p

4

(
r 2

B − r 2) (C.15)

Ez =−
meω

2
p

2e
(1−φ)rB (C.16)

Er =
mω2

p r

2e
(C.17)

Matched cavity size in bubble regime [41]

rB ≈ 2
p

a0λp (C.18)

Dephasing length (3.11)

Ld = rB

1−βφ
(C.19)

Maximum dephasing limited energy gain (3.15)

∆γmax ≈ 2

3

nc

ne
a0 (C.20)
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Synchrotron radiation

Intensity of radiation emitted by a relativistic particle (5.17b)

d 2I

dωdΩ
= e2

4π2c

∣∣∣∣∫ +∞

−∞
[~n × (~n −~β)] ·e iω(t−~n ·~r (t )/c)d t

∣∣∣∣2

(C.21)

Doppler upshift for different insertion devices (5.22)

λCompton = λ0(1+γ2θ2)

2γ2(1−βcosφ)
(C.22)

λUndulator = λu(1+γ2θ2)

2γ2 (C.23)

λBetatron = λβ(1+γ2θ2)

2γ2 (C.24)

Betatron oscillation wavelength (4.30)

λβ =
√

2γλp (C.25)

Emission in the Wiggler regime (5.34)

d 2I

dωdΩ
= e2

6π2c

(ωρ
c

)2
(

1

γ2 +θ2
)(

K 2
2/3(ξ)~uσ+ θ2

γ−2 +θ2 K 2
1/3(ξ)~uπ

)
(C.26)

Critical frequency of betatron radiation

ωc = 3

2
Kγ2ωβ∝ r0n0γ

7/4. (C.27)
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