
Metamodeling for Requirements Reuse

Oscar López1, Miguel A. Laguna2, and Francisco J. Garcı́a3

1 Technological Institute of Costa Rica, San Carlos Regional Campus, Costa Rica
olopez@infor.uva.es

2 Department of Informatics, University of Valladolid, Spain
mlaguna@infor.uva.es

3 Department of Informatics and Automatics, University of Salamanca, Spain
fgarcia@usal.es

Abstract. Correct requirements determination is a critical factor in software de-
velopment as it takes resources and it is an error prone activity which can bring
tragic consequences to the rest of the software life cycle. Having stored reusable
requirements elements, both qualified and classified, in a repository might con-
tribute to taking advantage of software development resources and to reducing
the error probability in requirements specifications. However, the diversity of no-
tations and formats, as well as the existence of different levels of requirements
description make requirements reuse difficult. In this paper we present a meta-
model to integrate some different types of semiformal diagrams into a require-
ments reuse approach. The description of reusable elements constitutes the basis
for benefiting from diverse representations of requirements in the development of
specifications by reusing requirements.

Keywords: Requirements engineering, requirements reuse, metamodeling, use case,
scenario, workflow.

1 Introduction

In general terms, software reuse can contribute to an increase on productivity. In par-
ticular, since requirements engineering triggers the software development process [22],
requirements reuse can empower the software life cycle [5]. Different authors, such as
Cybulski [5], Sutcliffe and Maiden [25], and Mannion [13], among others, have pointed
out that reusing early software products and processes can have an impact on the life
cycle from two basic points of view: (a) allowing the software development resources
to be more profitable, and (b) promoting the reuse based development across the en-
tire software process. Quality and productivity in software specifications are favored by
using proven and validated requirements components (requirements assets). This has
all been successfully proven when applied to specific domains in industrial software
production [14, 7].

In order to approach software reuse from the early stages of requirements elicitation
and analysis, an adequate framework should be established. This framework makes de-
mands on the support of structures and tools. Reusing requirements, as does reusing any

other software product, requires the assets to be represented, classified, stored, selected
and adapted [4, 12]. These activities face the difficulties in dealing with the diversity
and complexity of the requirements and models documenting requirements as princi-
pal trade-off. The management of diverse models requires a high level of abstraction to
describe the common features of the different models. Metamodeling [17], ontological
models [1] and case-base reasoning [8] have been applied as higher abstract structures.
All of these approaches bring, as trade-off, the need for specific tools for management
and maintenance of descriptive models, but for the case of metamodeling the tools may
be more readily available or more easily built than in the other cases. Metamodeling is
a standard way of integrating different models [9, 17]. Metamodels based on a standard
language, for example MOF (Meta Object Facility) [19], give us the advantage of being
supported by a well known and accepted meta-metamodel.

This paper is aimed at proposing a metamodel for reusable requirements as a con-
ceptual scheme to integrate semiformal requirements diagrams into a reuse strategy.
The diversity of modeling techniques and the existence of different levels of require-
ments description make requirements reuse difficult. To face these difficulties we have
taken two main actions. First, we constrain the scope of the study to six widely known
techniques, which mainly focus on functional requirements: scenarios, use cases, activ-
ity diagrams, data flows, document-task and workflows. Second, we establish a reuse
framework which consists of three steps: (a) fixing a Diagram Family Model, (b) spec-
ifying a new application from the Diagram Family Model, and (c) requirements engi-
neering as a basis for requirements family evolution. The theoretical basis for this reuse
framework is the requirements metamodel.

The rest of the paper is arranged as follows: Section 2 presents a metamodel for the
integration of diverse requirements representations into assets. Section 3 shows the de-
scription of use cases and workflows under the proposed metamodel. Section 4 presents
a framework for requirements reuse. Section 5 concludes the paper and focuses on fu-
ture work.

2 Modeling Reusable Requirements

Addressing systematic requirements reuse requires a model for reusable requirements
element, which is a kind of “Asset”. Furthermore, due to the diversity of modeling
techniques, a metamodel for requirements is needed.

2.1 The Reusable Requirements

We consider as reusable requirements those which are represented in Requirements Rep-
resentation Model, this is a kind of Asset, as shown in Figure 1. There are three different
kinds of Requirements Representations Models: Formal (presenting a rigorous seman-
tic and syntax), Semiformal (models which make the agreement among stakeholders
easier) and Non-Formal (expressions in natural language, videos, images, voice and
sounds to constrain the system to be developed).

We are mainly intended at reusing Semiformal kind of diagrams from the require-
ments engineering process. This process is characterized by necessities for communi-
cation and agreement between different people related to the process. These necessities

Requirements
Representation

Model

Semiformal Non-Formal

Behavioural
Model

Natural
Text

Video/
Image

Voice/
SoundStructural

Model

Formal

Refines >

1..**

Asset

Behavioural and
Structural Model

Derived Product

Fig. 1. The assets can be of two kinds: Requirements Representation Model and Derived Product.

promote the higher formality levels to be avoided in early stages of the software life
cycle. As a consequence, formal models are not very common in early stages of the
software life cycle. On the other hand, in despite of they are very useful in the re-
quirements engineering process, non-formal diagrams show such ambiguity and lack
of precision that it makes their reuse extremely difficult. Semiformal diagrams provide
an intermediate formality level and constitute a fundamental product for the negotiation
phase within the requirements engineering process. These semiformal diagrams are so
important, it leads us to address their reuse. There are three kinds of semiformal models:

– Behavioural Models: These emphasize dynamic issues of the system such as al-
lowing communication between the system and users to be modeled. The system
behaviour is represented with activities or jobs which may be done by actors or sub-
jects to fulfill certain goals or objectives under certain constraints and coordination
mechanisms, e.g. Use Case Diagram and Data Flow Diagram.

– Structural Models: These provide a static view of the system as a components col-
lection which interact with each other, or as a data set and corresponding constraint
as support for the system, e.g. Class Diagram and Entity - Relationship Diagram.

– Behavioural and Structural Models: These incorporate both dynamic and static is-
sues, e.g. Collaboration Diagram and object-oriented Petri nets.

Software requirements might be related to each other through traceability relation-
ships. This means the requirements come together into a requirements specification
document so that the application requirements can be better reflected. As an example,
a use case diagram might be related to a class diagram. This traceability relationship
between different diagrams is a central issue to be taken into consideration in the reuse
context, and it is in practice often not managed. Although we do not address traceabil-
ity relationships in this paper, the Requirements Representations Models come together
the way is described in section 2.5. Besides, Requirements Representations Models are
related to Derived Product. A Derived Product is any software product resulting from

refining a set of Requirements Representations Models, e.g. design elements which are
derived from a requirements model.

With regard to software requirements data to be considered, we respect the Software
Engineering Institute (SEI) recommendations. They classify the requirements from the
point of view of the level of description. From this perspective there are two kinds of
requirements [23]:

– C-Requirements: These mainly refer to the functional and non-functional issues
that software products must fulfill, from the customer and user point of view. With
regard to functional issues, there are typical diagrams in this category such as Use
Cases, Workflows, Scenarios, and Activity Diagrams.

– D-Requirements: These refer to the functional and non-functional characteristics to
be fulfilled by software products from the developer point of view. Typical diagrams
in this category are State Machines, Interaction and Collaboration Diagrams.

Our requirements reuse framework is initially based on C-Requirements and semi-
formal representations. C-Requirements supply a higher abstract perspective than D-
Requirements. Very specific details of software application included in D-Requirements
make the integration and organization of requirements data, belonging to a set of do-
main applications, difficult. Semiformal diagrams specify the expected software ser-
vices in such a way that they make the beginning of the requirements engineering
process easier. Our reuse framework integrates D-Requirements, as well as design ele-
ments, by means of Refines relationship between Requirements Representations Models
and Derived Product.

2.2 Requirements Metamodel

Because there are diverse modeling techniques among different development paradigms,
we need a conceptual scheme to describe the requirements in the reuse framework. This
conceptual scheme constitutes a Metamodel for different Requirements Representation
Models (for simplicity, we shall call it the metamodel).

The central elements of the metamodel are the Requirements Representation Model,
which describes different requirements diagrams, the Modeling Unit, which describes
units that belong to the requirements diagrams, and the Domain Objective, which allows
the Requirements Representation Model to be characterized, see Figure 2. In this meta-
model, in its current development stage, there are different kinds of Modeling Units
which correspond to Semiformal, Behavioural Requirements Representation Models.
This metamodel also includes different relationships between modeling elements.

A Requirements Representation Model is related to at least one requirements Project.
Each Requirements Representation Model is characterized by a Domain Objective which
represents domain knowledge.

2.3 The Modeling Units

In Requirements Representations, which model the “Universe of Discourse”, there are
Modeling Units. There are six categories of Modeling Units which are instanced from
the metamodel:

Person

Goal

Job

Model Level

Workflow
Diagram

Use Cases
Diagram

Activity
Diagram

Model
Relationship

Subject

Company
Unit

Autonomous
System

Compulsory

Temporal
Constraint

Resource
Constraint

Meta Level

From
User

From
System

Unit
Relationship

AlternativeOptional

Data Level

Constraint State

Multiple

Action

JointLinear Split

Generalization

Data Flows
Diagram

Document-
Task

Diagram

Requirements
Representation

Model

Association

2..*

*

source

target

1 *

1 *

characterize >
1 0..1

* *

* parent * child

Scenarios
Diagram

Dependency

Modeling
Unit

Unit Model
Relationship

11

* *

Workflow of an
Organization

Use Cases Diagram
of a System

Scenarios Diagram of
a System

DTd for an
Organization

Activity Diagram of a
System

DFd for an
Organization

Sequence
Specification

Template

Sequence
Specification

InclusionEquivalence ExtensionSubsetExceptionComplement

Activity *

Semiformal

Behavioural
Model

Structural
Model

Behavioural and
Structural Model

Connector

Domain
Objective

Project

1..*

1..*

DataPhysical

Fig. 2. Requirements Metamodel expressed in UML.

– Activity: This models a process which may be a job or an action. Job is an activity
formed by other activities. Action represents an atomic activity, that is, one which
is never subdivided.

– Subject: This is a person, company unit or autonomous system which is directly
associated within and in charge of the activities.

– Goal: This represents the specific intentions of users and system in the context of
interaction between users and systems.

– Constraint: This consists of information constraining the system functionality. It
represents temporal constrains, or required resources for the system.

– Connector: This represents a criterion for semantic ordering of modeling units
which can be of three kinds: Linear, Joint, or Split.

– State: This represents a dynamic situation (a period of time) during which an entity
is satisfying some condition, performing some activity, or waiting for some event.

2.4 Relationships between Modeling Units

The Unit Relationship class allows the relationships between Modeling Units to be
described in the metamodel. This relationship represents the links between elements
inside a requirements diagram. Representing these links allows the content of different
diagrams to be described and integrated in our reuse strategy. There are four kinds of
relationships between Modeling Units in the metamodel:

– Dependency: This is a semantic relationship which establishes the changes in a
Modeling Unit have an effect in another one. This is a six-kind relationship:

� Extension: It establishes an element to be defined in terms of another element
definition.

� Inclusion: It establishes an element able to express its function in the context
of another element.

� Equivalence: It establishes the content of participant elements as interchange-
able without modifying the system services.

� Subset: It establishes the content of an element as a subset of the another ele-
ment content.

� Exception: It specifies an abnormal situation which the system must become
aware of.

� Complement: It specifies contents to be added to a described element.
– Generalization: This means some Modeling Unit is a sub-type of another one (the

same as UML generalization / specialization).
– Association: This is a semantic relationship which specifies links among Modeling

Units in a requirements diagram.

All these kinds of relationships between Modeling Units show a direction issue
establishing that some elements act as a source while others act as a target. This direc-
tion characterization is shown in requirements diagrams in different ways, for example
“requires”, “produces”, “starts”, “executes”, “performs”, etc. Graphically, direction is
represented in requirements diagrams by an arrow toward the element acting as the
target.

2.5 The Domain Objectives and Model Relationships

The Model Relationship class describes the relationships between Domain Objectives.
These relationships give us the basis for the integration of a body of domain knowledge
which is related to Requirements Representation Models. Hence, these relationships
allows the requirements to be sorted regardless the way they are modeled.

Model Relationship has a structural issue which determines the degree of associa-
tion between two or more related diagrams. The structural issue is expressed by means
of four kinds of Model Relationship:

– Compulsory: If the objectives are so strongly related that it is not possible to sepa-
rately reuse them without resulting in a lack of sense in the domain.

– Optional: If the objectives are so weakly related that reusing the parent objective
means non-mandatory reuse of the child objectives.

– Alternative: If there are choices to choose from. It means that reusing the parent
objective implies choosing one and only one of the child elements.

– Multiple: If there are choices to choose from. It means that reusing the parent ob-
jective implies choosing at least one of the child elements.

2.6 The Unit Model Relationship

Some modeling units may have such a complexity that they need to be specified in
another complete Requirements Representation Model. For example, a process in a
Data Flow Diagram may be exploded in another Data Flow Diagram, or a use case
may be specified as a Sequence Specification Template, as shown in Figure 3. These
relationships are described as Unit Model Relationships.

3 Use Cases and Workflows under Metamodel

The metamodel allows several diagrams to be instantiated, thus the diagrams instances
are integrated in our reuse framework. In this Section we show how Use Cases and
Workflow Diagrams are exemplified as instances of Behavioural Model. For clearness
of figures, while the Meta Level is expressed using UML, the Model Level has two
particular characteristics:

– Each requirements diagram is represented as a “package”, benefiting from its UML
definition [20] as an “aggregation of classes”.

– Relationships are represented as “UML associations” being labeled by the meta-
class name which defines the name of the relationship.

association
STARTS->

association
<-CARRIES OUT

association
<-REQUIRES

association
<- ENSURES extension/

inclussion

association
ACHIEVES->

association
PRODUCES->

Use Cases Diagram

Model
Level

Sequence Specification
Template

Use Case
Goal

Postcondition

Use Case
Actor

Person

Goal

Job

Model
Relationship

Subject

Company
Unit

Autonomous
System

Compulsory

Temporal
Constraint

Resource
Constraint

Meta Level

From
User

From
System

Unit
Relationship

AlternativeOptional

Constraint State

Multiple

Action

Joint

Linear Split

Generalization

Requirements
Representation

Model

Association

2..*

*

source

target

1 *

1 *

characterize >
1 0..1

* *

* parent * child

Dependency

Modeling
Unit

Unit Model
Relationship

11

* *

InclusionEquivalence ExtensionSubsetExceptionComplement

Activity *

Semiformal

Behavioural
Model

Connector

Domain
Objective

Project

1..*

1..*

DataPhysical

Triggering
Event

Precondition
Use Case

Result

Unit-Model
<- SPECIFICATION

Use Case

Fig. 3. Representation for Use Case Diagrams under metamodel.

3.1 The Use Cases Diagram

The Use Case Diagram is represented as an instance package of Behavioural Model,
see Figure 3. The Use Case element is related to a Triggering Event, a Precondition, a

Postcondition, a Result, a Goal and an Actor which are instances of different kinds of
Modeling Units. In addition, a Use Case shows Dependencies (Inclusion or Extension)
with another Use Case.

According to specification of UML language [20], a Use Case describes a service
that an entity provides independently from internal structural details. The service is
described as a sequence being started by an actor. The Use Case has to show possi-
ble variants, for example alternative sequences and exceptional behaviour. Due to this,
the use of natural language based structures to describe Use Cases, as has been pro-
posed in [3, 6], is highly recommended. According to these proposals, we include in
our metamodel the Sequence Specification Template. The Use Case class is related to
the Sequence Specification Template through an instance of Unit Model Relationship.

3.2 The Workflow Diagram

The Workflow package is composed of Workflow Activities which are associated to
Transition Information (To and From relationships). There are two kinds of these ac-
tivities: Complex and Primary. The Complex Activity may be exploded in another
Workflow Diagram. The Primary Activity also has Association Relationships with ele-
ments belonging to Workflow Participant, Workflow Application, and Workflow Rele-
vant Data. Elements of the Transition Information class are joined to a Workflow Rele-
vant Data class.

The structure of a Workflow Diagram is more complex, as regards the relationships
between system activities, than the structure of a Use Case Diagram. Use Cases are
composed of step sequences while the Workflow Process includes activity sequence is-
sues. These issues in a Workflow Diagram allow the management of business resources
to be represented. In contrast, the Use Case Diagram only represents possible interac-
tions between actors and the system.

3.3 The Sequence Specification Template

Both the Use Cases and Workflows, as well as other modeling techniques, are related
to the Sequence Specification Template in our requirements reuse strategy. A Use Case
describes a service which is supplied for an entity. A Workflow Primary Activity also
describes a service that a workflow process supplies. A service could be described as
a complete sequence where actors and the system are involved. The Sequence Specifi-
cation Template allows the stream of steps in Use Cases and Workflow Activities to be
represented.

The Sequence Specification Template consists of Sequence Steps which are related
to Sequence Indicator, as shown in Figure 5. There are two kinds of Sequence Steps:
Communication Step and Operative Step. Each Step is joined to a Step Subject that
may be the System itself (which corresponds to the system being modeled by Use Case
Diagram or Workflow Diagram) or Unit Actor (which corresponds to one of the Actors
of the Use Case or the Workflow Activity). The Step Subject is joined to the Sequence
Step through three possible relationships: Carries Out, Sends or Receives.

Model
Level

Person

Goal

Job

Model
Relationship

Subject

Company
Unit

Autonomous
System

Compulsory

Temporal
Constraint

Resource
Constraint

Meta Level

From
User

From
System

Unit
Relationship

AlternativeOptional

Constraint State

Multiple

Action

Joint

Linear Split

Generalization

Requirements
Representation

Model

Association

2..*

*

source

target

1 *

1 *

characterize >
1 0..1

* *

* parent * child

Dependency

Modeling
Unit

Unit Model
Relationship

11

* *

InclusionEquivalence ExtensionSubsetExceptionComplement

Activity *

Semiformal

Behavioural
Model

Connector

Domain
Objective

Project

1..*

1..*

DataPhysical

or

Sequence Specification
Template

association
REFERS TO->

association
<-CARRIES OUT

association
EXECUTES->

association
FROM ->

association
<- REQUIRES

Generalization ->

Workflow
Relevant Data

association
<-PRODUCES

Generalization->

Workflow
Participant

Unit-Model
SPECIFICATION ->

Complex
Activity association

TO ->

Workflow Diagram

Workflow
Activity

Workflow
Application

Transition
Information

Unit-Model
SPECIFICATION ->

Primary
Activity

Fig. 4. Representation for Workflows under metamodel.

Each one of the Sequence Steps can be associated to an Exception. Both the Se-
quence Step and the Exception are associated to a Type which may be Atomic or Com-
plex. The Atomic Type is an instance of the Action metaclass. The Complex Type is
an instance of the Job metaclass. Finally, each Sequence Step could be associated to a
Condition and to a Restriction, both of which are instances of the Constraint metaclass.

4 Framework for Requirements Reuse

The requirements metamodel we have presented underpins our requirements reuse frame-
work. This framework is aimed at turning the requirements process into a reuse based
approach. Different from several reuse approaches, for example FODA [11], PuLSE [2]
and ODM [24], which face the reuse process by starting on the domain analysis, we
propose fixing a requirements family from existing, semiformal diagrams on a domain.
Sorting the existing specifications, to be reused in a product family approach, is an al-
ternative on domains where usually there are not enough resources to afford a domain
analysis from the scratch.

Figure 6 shows the three steps of our requirements reuse framework: (1) Fixing a
Diagram Family Model, (2) Specifying a new application, and (3) Requirements Engi-

Model
Level Sequence Specification

Template

Communication
Step

association
<-CARRIES OUT

association
<- SENDS

association
<- RECEIVES

Operative
Step

Step Subject

association
<- HAS association

REQUIRES->

System

Generalization ->

Unit Actor

Type

AtomicComplex

<- Generalization

Exception

Person

Goal

Job

Model
Relationship

Subject

Company
Unit

Autonomous
System

Compulsory

Temporal
Constraint

Resource
Constraint

Meta Level

From
User

From
System

Unit
Relationship

AlternativeOptional

Constraint State

Multiple

Action

Joint

Linear Split

Generalization

Requirements
Representation

Model

Association

2..*

*

source

target

1 *

1 *

characterize >
1 0..1

* *

* parent * child

Dependency

Modeling
Unit

Unit Model
Relationship

11

* *

InclusionEquivalence ExtensionSubsetExceptionComplement

Activity *

Semiformal

Behavioural
Model

Connector

Domain
Objective

Project

1..*

1..*

DataPhysical

Generalization ->

association
TO->association

FROM->

Conditional

Sequence
Step

Sequence
Indicator

association
<-HAS

Restriction

association
<-REQUIRES

Fig. 5. Representation for Sequence Specification Template under metamodel.

neering. The output from the first step is the Diagram Family Model, which is used in
second step to obtain the specification for a new requirements project. The requirements
family could be expanded by taking new diagrams from the third step. The Figure also
shows the second step feedbacks the Diagram Family Model, hence new projects are
included into diagram family to make sure it contains all requirements for all member
products.

4.1 Fixing a Diagram Family Model

The main step of our requirements reuse framework is sorting the diagrams as a family.
Inputs for this step are previous documents of requirements specifications, as well as
domain knowledge. The purpose in this step is obtaining groups of requirements by
identifying, describing, and storing the diagrams as a family. Sorting the requirements is
based on the stakeholders’ points of view, which act as a guidance to obtain the diagram
family, as has been used in [13]. Obtaining the Diagram Family Model is achieved as
follows:

– Identifying the domain stakeholders and establishing a domain dictionary. Identi-
fying the domain stakeholders allows the goals of each stakeholder to be elicited

Elicitation

Negotiation

Validation &
Verification

Specification &
Documentation

3. REQUIREMENTS ENGINEERING

1. FIXING A DIAGRAM FAMILY MODEL

DescribingStorage

Identifying

Selecting

RetrievingIntegrating

2. SPECIFYING A NEW PROJECT

New
DiagramsNew requirements,

Domain experience

Previous documents of requirements specifications,
Domain goals

Diagram
Family Model

New
Requirements

Project

Fig. 6. Requirements reuse framework.

and arranged in a lattice structure by linking them with Model Relationships. This
stage makes demands on the experience and domain knowledge to guide the de-
cision making process to establish the lattice. The decisions include dealing with
overlapping and conflicting goals as well as dependencies among goals.

– Describing the Domain Objectives by linking them to existing requirements dia-
grams. This stage is aimed at taking benefit from the existing requirements dia-
grams in domain applications, thus it could be a need for rewriting some diagrams
through an iterative process which is supported by the tool we present in Section
4.4.

– Storage of Diagram Family Model in a repository which supplies the operative
support to create, manage and reuse the diagrams. Foundation for this stage is the
McClure’s proposal [18] establishing the repository is a tool for definition, storage,
access and management of the information that describes together an enterprise
and its software systems, during each one of the stages of software life cycle. The
Diagram Family Model contains data from the initial stages of software process.

The Diagram Family Model allows the commonalities and variabilities among re-
quirements to be viewed [14, 7]. The Optional, Alternative and Multiple kinds of Model
Relationship represents the variabilities. The Compulsory kind of Model Relationship
represents the commonalities.

4.2 Specifying a New Project

Specifying a new project from the Diagram Family Model consists of making decisions
about commonalities and variabilities in requirements. Commonalities and variabilities
are inside the Diagram Family Model. Each Project belonging to the domain has a set
of requirements. These requirements are chosen from the Diagram Family Model by

selecting from commonalities and variabilities. Hence, while specifying a new product
there is a need for going over the objectives lattice in such a way that the adequate
reusable elements are selected. This stage consists of three actions:

– Selecting the Domain Objectives that applies for the new project. Going over the
objectives lattice, the user makes a decision about including the current objective in
the new project. Selected objectives are added to new project and they are included
in the document of requirements specification for the New Requirements Project.

– Retrieving the diagrams which are linked to the selected Domain Objectives. This
stage implies the need for iterate with the Data Manager which access data from
repository.

– Integrating the new requirements Project into Diagram Family Model. There is a
need for feedback the repository so that the new Project is included. At this stage it
is important to take into account the way to make sure about the logical consistency
of the new Project.

4.3 Requirements Engineering

Specifying new projects can lead to including new requirements in Diagram Family
Model. In such a case, new requirements are specified by requirements engineering
process being composed of elicitation, negotiation, specification & documentation, and
verification & validation activities [21]. The output of this process is a set of New Di-
agrams which are integrate into family. Because of these diagrams are specified when
the Diagram Family Model has been built, their specification is addressed with a reuse
compromise and being supported by ourR 2 environment, which is presented in Section
4.4.

4.4 A Tool for Requirements Reuse (R2)

The requirements reuse framework is supported by R 2, a prototype system which is
implemented using relational tables (ORACLE) and Java language. This tool is com-
posed by eight main elements with corresponding sub-elements: (1) User Interface in-
cluding menu options and necessary views to support the interaction between reusers
and the environment, (2) Requirements Editor which supplies needed functionality for
creation and modification of requirements diagrams, (3) Data Manager, it allows the
requirements information to be stored, classified, retrieved and updated, (4) Repository,
which physically contains the information related to requirements diagrams regarding
the conceptual scheme of our requirements metamodel, (5) Consistency Analyzer, it is a
module which allows the information to be directed to and directed from external Petri
net applications to address the consistency analysis of diagrams and projects, (6) Lexi-
con Manager, it allows the domain lexicon to be managed according the principles of
circularity and minimal vocabulary that proposes Leite et alt. [15], (7) Diagrams Trans-
lator, it provides services to rewrite diagrams in such a way that they become expressed
in other supported notation, and (8) Repository Manager, it is a module which allows
the quality of requirements diagram which are stored in repository to be estimated.

Figure 7 shows the interface of the Requirements Editor in R 2. The identifier of
project and their elements are on the left side of the window. Graphical notation corre-
sponding to current element appears on the right. The Figure shows the selected diagram
inside the so called project “Communicator”. This editor carries out two essential func-
tions in our requirements reuse framework. First, it allows the existing requirements
diagrams to be restructured, if needed, before they become a part of Diagram Fam-
ily Model. Second, the editor supplies functionality for diagrams maintenance, thus
supporting the evolution of Diagram Family Model. Supporting diverse modeling tech-
niques, as they are instantiated under metamodel, the Requirements Editor makes com-
munication among stakeholders easier.

Fig. 7. Requirements Editor interface of R2 environment.

5 Conclusions and Future Work

In the development of complex software systems the modeling techniques, showing
stakeholder’s viewpoints, are required [10]. Due to this, we have investigated the man-
agement of the richness of units and relationships, which are represented in diverse
modeling techniques, to establish a requirements reuse framework. In this paper we
propose a requirements metamodel that is based on the same language as UML. This
metamodel describes useful modeling information on the requirements reuse context.

The contribution of this paper is a metamodel as theoretical basis to approach the re-
quirements reuse in domains where the requirements information has been represented

in diverse semiformal models. For this reason, we have not addressed formal and non-
formal models in this paper. Although informal models are widely used, their lack of
formality and their complexity make reuse difficult. There are very interesting propos-
als for reusing non-formal representations [5] based on reusing requirements patterns.
On the other hand, reusing formal representations has been successfully addressed [7],
however formal based reuse requires having formal requirements specifications.

The metamodel allows every requirements element from the modeling techniques
we have investigated to be identified as an object instance of some requirements meta-
class. In this way, the metamodel supports for the integration of different Requirements
Representations. Nevertheless, this integrating perspective of requirements diagrams is
one building block in the way of turning the requirements process into a reuse based
approach. Furthermore, as we claim in [16], empirical research shall be conducted to
evaluate the results of applying requirements reuse in domains. Thus, our immediate
work should apply our Diagram Family Model and our Requirements Reuse prototype
system in generating new requirements specifications in a specific domain. We expect
that reusing requirements on our reuse framework can make better requirements spec-
ification because of requirements engineers might focus on decisions about taken a set
of requirements regardless the details of definition and documentation.

Acknowledgments
This work is sponsored by the DOLMEN Project within CICYT-TIC2000-1673-C06-05, Ministry
of Technology and Science, Spain.
Oscar López wishes to thank the Spanish Agency for International Cooperation (AECI) and the
Ministry of Technology and Science of Costa Rica.

References

1. Raquel Anaya. Desarrollo y Gestión de Componentes en el Marco de OASIS. PhD thesis,
Universidad Politécnica de Valencia, Spain, 1999.

2. J. Bayer, O. Flege, P. Knauber, R. Laqua, D. Muthig, K. Schmid, T. Widen, and J.-M. De-
Baud. PuLSE: A methodology to develop software product lines. In Proceedings of the Fifth
ACM SIGSOFT Symposium on Software Reusability (SSR’99), pages 122–131, Los Angeles,
CA, USA, May 1999. ACM.

3. A. Cockburn. Writing Effective Use Cases. Addison-Wesley, Boston, 2000.
4. Richard E. Creps, Mark A. Simos, and Rubén Prieto-Dı́az. The STARS conceptual frame-

work for reuse processes. In Proceedings of STARS’92, November 1992.
5. Jacob L. Cybulski. Patterns in software requirements reuse. Technical report, Department of

Information Systems. University of Melbourne, July 1998.
6. Amador Durán. Un Entorno Metodológico de Ingenierı́a de Requisitos para Sistemas de

Información. PhD thesis, Universidad de Sevilla, Spain, 2000.
7. Stuart R. Faulk. Product-line requirements specifications (PRS): an approach and case study.

In Proceedings of 5th IEEE International Symposium on Requirements Engineering, pages
48–55, Toronto, Canada, August 2001. IEEE Computer Society.

8. F.J. Garcı́a, J.M. Corchado, and M.A. Laguna. CBR applied to development with reuse based
on mecanos. In Proceedings of 13th International Conference on Software Engineering and
Knowledge Engineering - SEKE’01, pages 307 – 311, Buenos Aires, Argentina, June 13-15
2001. Knowledge Systems Institute.

9. R. Geisler, M. Klar, and C. Pons. Dimensions and dichotomy in metamodeling. In Proceed-
ings of 3th BCS-FACS Northern Formal Methods Workshop. Springer-Verlag, Sep. 1998.

10. M. Jarke, J. Bubenko, C. Rolland, A. Sutcliffe, and J. Vassiliou. Theory underlying require-
ment engineering: An overview of NATURE at genesis. Proceedings of the IEEE Interna-
tional Symposium on Requirements Engineering, 1993.

11. K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson. Feature-Oriented
Domain Analysis (FODA). Feasibility study. Technical Report CMU/SEI-90-TR21 (ESD-
90-TR-222), Software Engineering Institute, Carnegie-Mellon University, Pittsburgh, Penn-
sylvania 15213, November 1990.

12. E. Karlsson, editor. Software Reuse. A Holistic Approach. Wiley Series in Software Based
Systems. John Wiley and Sons Ltd, 1995.

13. Barry Keepence, Mike Mannion, Hermann Kaindl, and Joe Wheadon. Reusing single system
requirements from application family requirements. In Proceedings of the 21st International
Conference on Software Engineering, pages 453–462. ACM Press, May 1999.

14. J. Kuusela and J. Savolainen. Requirements engineering for product lines. In Proceedings
of ICSE 2000, IEEE. IEEE Computer Society, 2000.

15. J. Leite, G. Hadad, J. Doorn, and G. Kaplan. A scenario construction process. Requirements
Engineering. Springer-Verlag London Limited, 5(2000):38–61, 2000.

16. O. López, M.A. Laguna, and F.J. Garcı́a. Reuse based analysis and clustering of require-
ments diagrams. In Pre-Proceedings of the Eighth International Workshop on Requirements
Engineering: Foundation for Software Quality (REFSQ’02), pages 71–82, Essen, Germany,
September 2002.

17. S. Mann and M. Klar. A metamodel for object-oriented statecharts. In Proceedings of The
Second Workshop on Rigorous Object-Oriented Methods, May 1998.

18. Carma McClure. Software Reuse Techniques: Adding Reuse to the System Development
Process. Prentice-Hall, 1997.

19. OMG. Meta object facility (MOF) specification. version 1.3.1. document OMG-MOF V1.3,
November 2001. http://www.omg.org/.

20. OMG. Unified modeling language specification. Version 1.4. Technical report, Object Man-
agement Group Inc., September 2001. http://cgi.omg.org/docs/formal/01-09-67.pdf.

21. K. Pohl. Requirements engineering, an overview. Encyclopedia of Computer Science and
Technology, Vol. 36, Marcel Deccer Inc., 1996.

22. Colette Rolland and Naveen Prakash. From conceptual modelling to requirements engineer-
ing. Technical Report Series 99-11, CREWS, 1999.

23. H. Dieter Rombach. Sofware specifications: A framework. SEI Curriculum Module. Tech-
nical Report SEI-CM-11-2.1, Software Engineering Institute, Carnegie Mellon University,
January 1990.

24. Mark Simos, Dick Creps, Carol Klingler, Larry Levine, and Dean Allemang. Organiza-
tion domain modeling (ODM) guidebook - version 2.0. Technical Report STARS-VC-
A025/001/00, Lockheed Martin Tactical Defense Systems, 9255 Wellington Road Manassas,
VA 22110-4121, June 1996.

25. A. Sutcliffe and N. Maiden. The domain theory for requirements engineering. IEEE Trans-
actions on Software Engineering, 24(3):174–196, March 1998.

