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Abstract—The simulation of a double-tunnel junction with the 
SENS simulator gives access to the frequency-dependent and 
static behavior of shot noise. The concept of basic paths in a 
multi-state process provides a clear interpretation of the noise 
regimes, and allows locating cut-offs in autocorrelation functions 
and spectral densities. 
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I.  INTRODUCTION 
Shot noise (SN), consequence of the granularity of electron 

charge, has been intensively investigated within the last 
decades [1]. Coulomb blockade devices, where electrons are 
flowing through tunnel barriers one by one, are thus of great 
interest for SN studies.  

To characterize noise, its spectral density S f( )  is usually 
compared to the spectral density of a Poissonian process 
2q I . The ratio at zero frequency ( )0 2F S q I=  is called 
Fano Factor. If ( )1 1F < > , SN is sub-(super-) Poissonian. If 
F = 1, SN is Poissonian.  

The home-made simulator SENS (Single-Electron 
Nanodevices Simulation) has been used previously to analyze 
the behavior of Si quantum dot (QD)-based double-tunnel 
junctions (DTJs) [2] and single-electron transistors (SETs) [3]. 
It consists in the self-consistent solution of 3D Poisson-
Schrödinger equations, depending on the bias and number of 
electrons in the dot. Tunnel transfer rates are computed from 
the resulting wave functions and used in a Monte-Carlo (MC) 
algorithm or the master equation coupled with Korotkov’s 
method [4] to determine the electronic characteristics, such as 
current and SN.  

Korotkov’s method is very powerful to quickly reach 
accurate autocorrelation functions and frequency-dependent 
spectral densities. However, the physics at the origin of the SN 
behavior is hidden within a complex mathematical formalism.  

In contrast, the MC algorithm, though time consuming, 
allows us to follow the time evolution of the system. According 
to the number of electrons in the QD and the corresponding 
transfer rates, the time between two events is randomly picked. 

Then, the tunnel event is also randomly chosen (an electron 
goes in or out of the QD). A glance at resulting time/current 
characteristics, as well as a comparison between tunnel transfer 
rates, helps to understand the behavior of shot noise.  

In this work, the frequency-dependent and static SN are 
presented for a given DTJ. Their behavior is explained by 
considering transfer rates and characteristic times for each 
transition in a simple 3-state case. 

II. RESULTS AND DISCUSSION 

A. Overall results 
The studied structure is a DTJ consisting in a 10 nm QD, 

with 1.2 nm (1.8 nm) source (drain) oxide thicknesses. The 
study has been made at 0 K to avoid the contribution of thermal 
noise. At this temperature, we can only consider source-to-dot 
(dot-to-drain) tunnel transfer rates, written ( ) ( )( )in outN NΓ Γ , 
where N is the number of electrons in the dot before the tunnel 
transfer.  

In Fig. 1, the time evolution of the number of electrons 
going through source barrier shows a situation known as 
“bunching”, i.e., a lot of events happen in a short time, 
followed by a long time without any event. This is the 
signature of a super-Poissonian SN. 

The current autocorrelation functions for three different 
regimes (sub-Poissonian, super-Poissonian and close to 
Poissonian transport) are shown in Fig. 2. MC calculations fit 
nearly perfectly with Korotkov’s method. The autocorrelation 
function remains positive (negative) for super-(sub-) 
Poissonian Fano factor. Close to the Poissonian case, the 
autocorrelation function goes from negative to positive values 
before reaching zero. 

The spectral densities of current S f( )  are then calculated 
from the autocorrelation functions. The corresponding results 
are given in Fig. 3. For all cases, spectral densities are given by 
the Fano factor at low frequency and the Poissonian regime 
S f( ) = 2q I( )  is finally reached at high frequency. 

Remarkably, in the case of a Fano factor close to 1, the 
transport becomes sub-Poissonian in the [105  Hz - 108 Hz] 
range, thus indicating the presence of some specific dynamics 
in such frequency range associated to the values of the transfer 
rates. 
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Fig. 1.  Time evolution of the number of electrons going through the 
device in a case of a super-Poissonian noise F = 4.67. The mean current is 
0.76 pA. 
 

 
Fig. 2.  Current autocorrelation function for super-, sub- and Poissonian 
noise. Inset: Current-voltage and Fano factor-voltage characteristics for a 
given DTJ. The Fano factors studied are indicated by circles. The value at 
τ =  0 (variance) is not shown for clarity. 

 
Fig. 3.  Spectral density of current as a function of frequency obtained in 
the case of sub-Poissonian, super-Poissonian and Poissonian Fano factors. 

 
Fig. 4.  Schematic description of (a) all possible transitions in a 3-state 
case, and (b) basic paths followed by the number of electrons in the QD 
between two tunnel events through source oxide (red circles). The 
numbers in circles are the number of electrons in the quantum dot. 

The close to Poissonian and super-Poissonian regimes are 
reached respectively on the 3rd and the 4th steps of the Coulomb 
staircase, as shown on the inset of Fig. 2. Thus, respectively 6 
and 8 tunnel transfer rates are to compare (Γin(N=0,1,2) and 
Γout(N=1,2,3) on the 3rd step), making the analysis of noise 
behavior difficult. Hence, we will consider a simple 3-state 
case (i.e. with a maximum of 2 electrons in the QD), which can 
generate super-Poissonian transport. 

B. Analysis of noise in a 3-state case 
In a previous article [5], the zero frequency super-

Poissonian noise has been explained through the study of the 
tunnel transfer rates in a 3-state case (0-1-2 electrons in the 
QD) schematized in Fig. 4a. Any evolution of the number of 
electrons in the dot is a sequence built with 4 basic paths: 
(0)101, (1)212, (1)2101 and (0)12, sketched in Fig. 4b. These 
basic paths represent the sequence we can observe between two 
tunnel events through the source barrier. After an electron has 
entered through the source barrier, each path has a probability 
Ppath and a characteristic time between two current peaks tpath, 
depending only on the tunnel transfer rates. Their study allows 
us to analyze the frequency behavior of SN.  

In particular, we focus our attention on the two extreme 
values of the Fano factor of the 3-state case. The values of path 
probabilities and characteristic times are given in Table I.  

TABLE I.  PROBABILITIES AND CHARACTERISTIC TIMES OF BASIC PATHS 
FOR THE EXTREME VALUES OF THE FANO FACTOR 

Basic 
paths 

V = 0.9 V F = 0.62 V = 1.15 V F = 1.42 
Ppath tpath Ppath tpath 

0101 2 % 10-7 s 36 % 6 ×10-7 s 

1212 70 % 10-7 s 16 % 10-7 s 

012 14 % 3 ×10-8 s 24 % 6 ×10-8 s 

12101 14  % 2 ×10-7 s 24 % 6 ×10-7 s 

 

F = 0.62: In the case of sub-Poissonian transport, the main 
path is the 1212, at 70 %. If the only path followed were the 
1212, the Fano factor would be F = 0.6, using the calculation 
of a 2-state process [6]. 

However, the “transition paths” 012 and 12101 also occur 
with a rate of 14 %. Their characteristic times are twice slower 
and three times faster than the 1212 path, respectively. Thus, 
when an 12101 path occurs instead of an 1212, one event is 
“lost”. Nevertheless, a fast 012 path must follow to reach again 
the 1212 process: the lost event due to the 12101 is almost 
compensated by the fast 012. SN increases slightly, reaching 
F = 0.62.  



 
Fig. 5.  Current autocorrelation function for the extreme values of SN in a 
3-state case. Inset: Fano factor-voltage characteristic in a 3-state case. 
The Fano factors studied are indicated by circles. 
 

 
Fig. 6.  Spectral density of current as a function of frequency obtained for 
the extreme values of the 3-state case. 
 

F = 1.42. Because of the proximity of Γin(1) and Γout(1), 
basic paths have close probabilities  (0101 at 36 %, transition 
paths at 24 %), thus every path is likely to happen. However, 
the 0101 and 12101 paths are 6 times and 10 times slower than 
1212 and 012, respectively. This induces a bunching 
phenomenon, with fast events (1212 or 012) followed by slow 
events (0101 or 12101). This effect enhances the noise, to 
reach F = 1.42.  

Frequency behavior and characteristic times. As seen on 
the general results, the autocorrelation functions at low time 
lags, given in Fig. 5, show an anticorrelation in a case of a sub-
Poissonian noise; a correlation for super-Poissonian. Cut-offs 
occur around a time lag corresponding the slowest basic path 
characteristic time, i.e, t12101. After the cut-off, there is no 
correlation between events. 

The same analysis can be done for spectral density, shown 
in Fig. 6. Here, the cut-offs occur close to a frequency equal to 
1/t012, where t012 is the characteristic time of the fastest path. 

III. CONCLUSION 
Thanks to the simulator SENS, and the possibility to have 

access to the tunnel transfer rates for each configuration of 
number of electron in the QD, we have been able to simulate 
and interpret the frequency dependent and static SN in a DTJ. 
The concept of basic paths introduced in a 3-state case provides 
a clear explanation of static SN behavior, and allows us to 
localize the cut-offs in the autocorrelation functions and 
spectral densities, linked to the slowest and the fastest basic 
paths, respectively. 
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