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Network topology is a physical description of the overall resources in the network.
Collecting this information using efficient mechanisms becomes a critical task for
important network functions such as routing, network management, quality of service
(QoS), among many others. Recent technologies like Software-Defined Networks (SDN)
have emerged as promising approaches for managing the next generation networks.
In order to ensure a proficient topology discovery service in SDN, we propose a
simple agents-based mechanism. This mechanism improves the overall efficiency of the
topology discovery process. In this paper, an algorithm for a novel Topology Discovery
Protocol (SD-TDP) is described. This protocol will be implemented in each switch
through a software agent. Thus, this approach will provide a distributed solution to
solve the problem of network topology discovery in a more simple and efficient way.

1. Introduction
The huge demand of Internet services such as Big Data, Cloud services, Internet of Things (IoT), among others,
are the main drivers for the need of a new paradigm in networking. This significant amount of traffic has
been increasing on the same level as the number of network user and communication devices, such as terminal
computers, smartphones and sensors (Jammal et al., 2014). Answering these exponential demands dynamically
and efficiently, is one of the biggest challenges for the network management in current networks (Jammal et al.,
2014). A considerable effort to address these issues is the new networking paradigm called Software-Defined
Networks (SDN) (Nunes et al., 2014). This emerging architecture promises to simplify the network management
while allowing to innovate and develop on the network in simpler way (Nunes et al., 2014).

In SDN the global view of the network is provided by the network controller through the topology discovery
service (Kreutz et al., 2015). Discovering the network topology is critical for several controller services such as
routing, network management, resource allocation and configuration, quality of service (QoS), diagnosis and
fault recovery. In that direction, minimizing the time for obtaining the network topology is fundamental to make
timely and decisive responses according to real-time events. Therefore, discovering the up-to-date topology of
the network using efficient mechanisms constitutes a compulsory task for every network operator and it also
becomes one of the most significant design metric for large-scale SDN.

Maintaining a comprehensive view of large networks generates a considerable amount of state information
from the physical plane (Aslan and Matrawy, 2016). Furthermore, substantial volume of control traffic would
represent a considerable pressure for the central controller and, as a consequence, scalability issues might
appear (Levin et al., 2012). Schemes where each forwarding node has to send the topology information
periodically could overload the controller performance (Aslan and Matrawy, 2016). To solve this problem our
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research aims to design a simple and efficient mechanism for discovering the link layer in SDN. The proposed
solution uses a distributed algorithm and switches supporting software agents for minimizing both the time
and number of packets required to obtain the network graph. This approach is intended to get this graph in
large-scale networks decreasing the overload in the controller performance as well as to enforce the current
topology discovery service in SDN.

Discovering the physical topology requires to divide the big discovery problem into smaller processes. In
that way and without incurring in scalability issues, we could obtain the network graph as quick as possible. Our
research hypothesis is that an efficient and simple mechanism for topology discovery in large scale SDN could
be achieved through careful design of an algorithm which divides the whole process in phases and distributes
hierarchically the discovery functions between the network nodes.

In this study, we propose a distributed algorithm that is based on a simple agents-based mechanism to improve
the efficiency of the topology discovery process. This algorithm will be used in the design of a novel topology
discovery protocol, called Software Defined Network - Topology Discovery Protocol (SD-TDP). This protocol
will be implemented in each switch through a software agent. Thus, this approach will provide a distributed
solution considering that the topology discovery process is performed by nodes that support the network protocol.

The remainder of this work is organized as follows. In Section 2, we show a brief review about the state-
of-the-art and related works. In Section 3, we describe the technical proposal. In Section 4, we evaluate the
preliminary results achieved by this approach so far. Finally, Section 5 the main conclusions and future studies of
this work are outlined.

2. Background
Efficient procedures for topology discovery in SDN have been already researched in (Pakzad et al., 2014; Pakzad
et al., 2016). The topology discovery mechanisms proposed by the authors have focused on improving the current
OpenFlow-based SDN mechanism.

The authors of (Pakzad et al., 2014; Pakzad et al., 2016) evaluate the efficiency of the current OFDP
mechanism implemented by major SDN controllers. Moreover, they have proposed simple and practical
modifications to reduce the controller overhead during the topology discovery procedure. In (Pakzad et al., 2014),
after implementing the improved approach in POX controller and Mininet emulator, results show a reduction in
the controller overload up to 45%. On the other hand, testing the proposed modification in a specific topology in
OFELIA SDN testbed (Pakzad et al., 2016), show a reduction in the controller overload up to 40%, while the
physical topology is showed in the same fashion.

These works propose improving the efficiency of the OpenFlow-based mechanism based on the reduction
of packet_out messages sent from the controller to OpenFlow switches. Furthermore, the authors implement
an OFDPv2 based on the ability of OpenFlow switches to rewrite packet headers. As a result, the number of
packet_out messages sent by the controller was reduced to only one message per OpenFlow switch.

We have also analyzed some research contributions which discover the network topology in SDN using
non-OpenFlow mechanisms.

In (Tarnaras et al., 2015), the authors proposed an automatic topology discovery algorithm taking into account
a better usage of the LLDP protocol. This protocol is used locally in the data plane of switches for updating
periodically their local neighbors table. Afterwards, they obtained the topology map, using the IETF ForCES
framework for extracting the LLDP data directly from the network devices (i.e. LLDP local system MIB). This
procedure automatically reports to the controller any change in the physical topology as a triggered event. After
implementing the proposed algorithm, the simulation results showed that the average time to discover a new
switch (i.e. 12 ms) during the topology discovery process is 90% less than OpenFlow-based solution (i.e. 100 ms).

In (Jiménez et al., 2015), the authors propose SDN Resource Discovery Protocol (SDN-RDP) as an alternative
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to distribute the management of the network state among several SDN controllers. Each controller discovers a
portion of the network topology in order to ensure the distribution of the node management and also simplify the
protocol resolution. The described mechanism is asynchronous without a global initialization process and neither
need previous knowledge of the network. Based on simulation results, the proposed protocol achieves an efficient
reduction of the controller overload. On the other hand, fault recovery in the data layer could be achieved within
the 50 ms required in transport networks.

The papers mentioned above (Pakzad et al., 2014; Pakzad et al., 2016; Tarnaras et al., 2015) need each SDN
switch has preconfigured a network identification (i.e. IP address). Otherwise, the described mechanisms will not
discover the network topology. Furthermore, OpenFlow controllers also require a previous knowledge of some
parameters of active SDN switches in the network such as number of ports, MAC address, among others. This
information is requested by the controller after the establishment of the initial OpenFlow connection with each
forwarding device. Based on this, the OpenFlow controller implements a topology discovery mechanism that
uses the frame format defined by the Link Layer Discovery Protocol (LLDP). With the exception of the frame
format, this topology discovery mechanism has not much in common with LLDP. In general, there is a lack of
topology discovery mechanisms in SDN based on layer 2 techniques.

Contrary to these related works, we propose a topology discovery mechanism that enables discovering the
network nodes before the initial connection between the controller and the SDN switches. This idea is also
considered in (Jiménez et al., 2015), but we have also proposed that selected nodes aggregate the topology
information and send it to the controller in order to improve the overall efficiency of the topology discovery
process. In this way, our mechanism discovers the network topology without the need of previous configurations
nor previous controller knowledge of the network, which are the main limitations found in the literature. This
procedure enables SDN controllers to discover the network topology using layer 2 techniques and be connected
in already deployed networks, as an approach for fast installation.

3. Technical Proposal
Network topology discovery is a representation of how devices in network or sub-networks are physically
connected (Alhanani and Abouchabaka, 2014). In that direction, we propose a mechanism to automatically
discover the network topology without configuring the IP layer in the network. This novel approach is designed
to discover the network topology based only on layer 2 techniques.

To improve the overall efficient of the topology discovery service, we propose that selected nodes aggregate
the topology information and send it to the controller. In this way, we distribute the discovery functions between
the network nodes. Each forwarding node has to support the proposed algorithm through an agent. Previous
selection of the nodes that respond back to the controller, will be more efficient than approaches where every
node in the network has to send topology data toward the controller. The subset of selected nodes is such that,
each node in the network is either a part of the subset or is associated to a node in the subset.

3.1 Mechanism Description
The whole mechanism is divided into two phases. The first phase is initialized by the controller sending a
multicast message, called TDP-Request, through all the active interfaces. This stage lasts during the propagation
of the message through the network. The node identifier used in the packets will be the MAC address. The
agents within the switches change from the initial state (Standby) to the corresponding one according to the state
machine of Figure 1. As a result, the distributed algorithm defines a hierarchical delay-constrained shortest path
tree rooted at the controller and, simultaneously, sets which switches will send the topology data to the controller.
In addition, each node will know the MAC address of its controller.
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In the second phase, selected switches (Father nodes, FN) aggregate topology data from their neighbors
(Active nodes, AN) and asynchronously send it to the controller through the hierarchical tree. Each FN sends the
topology data when it has the information from all the AN associated to it. Moreover, each AN has only one FN,
at which it will send its topology information.

Each node in the network, after receiving a TDP-Request message, has to reply this request to the sender
node and then forwards the TDP-Request through its other interfaces. Based on this mechanism, each node can
determine the delay to its neighbours. Furthermore, each AN has to send a TDP-ACK message to indicate its
association with its FN.

3.2 SD-TDP State Machine
To better understand the behavior of the switches with SD-TDP based agent, we present the operation of the
software agents within the forwarding nodes as a state transition diagram. This state diagram shows all possible
switch states drawn as circles. The arcs represent transitions from one state to another and are labeled with the
condition that will change the state.

Standbystart Father

Children

Wait a TDP-Request
Wait a TDP-Request

for all its interfaces

TDP-Request

from controller

TDP-Request

from CN

TDP-Request

from FN No node associated

with FN

Figure 1: State machine of a switch with SD-TDP based agent

Initially, each switch in the network is in the Standby state, waiting for a TDP-Request message from another
node (i.e. switch or controller). Once a TDP-Request is received, the switch with Standby state examines the
packet and changes to either the Father state or the Children state, according to the sender state value found in
the packet. The possible sender state values (i.e. Controller, Father and Children) are shown as transition arc
labels from the Standby state.

Therefore, the resulting states only depend on the sender state value represented in the TDP-Request message.
For instance, if a TDP-Request message from a sender with Father state is received, the switch changes from the
initial state (i.e. Standby) to Children state. On the other hand, if the switch receives a TDP-Request message
from the controller or a sender with Children state, the switch changes to the Father state. It is important to
highlight that, the switches will change its state after receiving the first TDP-Request message, only if they have
the Standby state.

As a key issue for improving the overall efficiency of SD-TDP, we have defined that nodes with Father state
without any node associated to it, will automatically change to Children state. To achieve this, when a switch
reaches the Father state, it waits for a TDP-ACK message by at least one of its active interfaces. If after receiving
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all the corresponding messages from its neighbor nodes, no TDP-ACK message was received, the switch changes
to the Children state. Otherwise, the switch remains in the Father state. In this way, the controller overhead
produced by the sending of topology data is decreased.

4. Evaluation
In this section, we have developed a heuristic algorithm to evaluate the feasibility of the proposed mechanism. We
have implemented this algorithm using the programming language Python and the NetworkX library (NetworkX,
2016) for graph modelling. Moreover, we carried out several experimental simulations with real-world topologies
from the Internet Topology Zoo (Knight et al., 2011).

Algorithm 1 Finding an optimal-delay spanning tree

Require: G network topology, C controller position in G
Ensure: PT optimal-delay paths, S nodes that send topology data

1: Q← Qinit() . create the priority queue
2: PT , S ← None
3: for n ∈ N do
4: Qinsert(n)
5: if n = C then
6: S ← n
7: n.distto← 0
8: n.predec← set predecessor C
9: end if

10: n.distto←∞ . set distance to the controller
11: n.predec← None
12: end for
13: while Q is not empty do
14: n = Qdelmin(Q)
15: for edge (n, v) such that v is in Q do
16: if v.distto > n.distto + dn,v then
17: v.distto = n.distto + dn,v
18: if v.predec not in S then
19: S ← v
20: end if
21: Qdecdistto(v, v.distto, Q)
22: v.predec← set predecessor n
23: end if
24: end for
25: end while

4.1 Algorithm Description
To evaluate the results achieved by the proposed mechanism, we have developed an extension of Dijkstra
algorithm for supporting Father switch selection, showed in Algorithm 1. Furthermore, we have analyzed the
complexity of our implementation in this modified algorithm.
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This heuristic algorithm considers a physical network modeled by a directed connected graph G = (V , E),
with V a set of N nodes and E a set of edges. Each edge (i, j) ∈ E has associated a nonnegative delay d(i, j).
Let denote C as the controller located at one specific node in the graph. The goal is to find the subset of paths PT ,
which forms an optimal delay-constrained tree rooted at the controller. Furthermore, the subset of selected nodes
S ⊂ N to respond back toward the controller (i.e. set of Father nodes) with topology information is minimized.

The algorithm is implemented using a priority queue (fibonacci heap), in order to accomplish a good
performance on deployments with limited computation time. This procedure begins initializing the priority
queue and after that, we set initial parameters as distance to controller (distto) and predecessor (predec) to each
network node, and also store the nodes in the heap. Afterwards, we select the SDN controller as the starting
point to ensure that the optimal-delay spanning tree have as a root the controller. Subsequently, we get the node
with minimum distto and delete it from the priority queue through the function in line 14. For each adjacent
edge (n, v), if the neighbour v is in the heap and its distto is higher than (n.distto + dn,v), being dn,v the
link-delay among the nodes, we update the priority queue with the computed distance to the controller of the
neighbour v and, simultaneously, set n as predecessor of v. This procedure adds an edge to the desired tree in
every iteration. The functions used in lines 1, 4, 14, 21 are classical implementations of the fibonacci heap and
their time complexity is well described in the literature (Brodal et al., 2012).

4.1.1 Complexity

The time complexity of this heuristic algorithm is affected by the data structure used in the implementation.
Therefore, if we use only an adjacent list for this algorithm, we can define the asymptotic complexity as O(N2),
being N the number of nodes in the network. However, we have implemented this algorithm using a priority
queue (fibonacci heap) and thus, its complexity has been improved to O(E + N · log N ), being E the number of
links among the switches. This result agrees with the lowest bound achieved by Dijkstra heuristic algorithm,
using the same data structure.

We also analyze the overall complexity of our mechanism in terms of number of messages sent. Considering
N the number of nodes in the network, and Vn the number of neighbours of a node n ∈ N , we can express the
number of messages sent as M = N ·

∑
n∈N Vn +N . Due to Vn reaches his maximum value in fully connected

networks, the asymptotic overall complexity of the messages sent in the network can be considered of O(N2).

4.2 Preliminary Results
Motivated by the results, we further evaluate the proposed algorithm using real topologies contained in the
Internet Topology Zoo dataset, assuming each node in the topology as an SDN switch. We conducted all the
simulations on a computer with 3.30 GHz Intel Core i7 and 16 GB RAM.

In Figure 2, some metrics of running the SD-TDP protocol on GÉANT (40 nodes, 61 links) topology are
shown. This figure reveals the time for discovering all nodes and the number of FN that send topology data.
Each point in Figure 2 represents a simulation taking one node of the topology as network controller. SD-TDP
shows better performance with Germany as controller, it is also worth nothing that these results coincide with the
controller placement obtained using the minimum K-center algorithm (Heller et al., 2012).
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Figure 2: Parameters of running SD-TDP on GÉANT topology

Running SD-TDP on GÉANT has shown that the distributed protocol converges and discovers all nodes in
29.9 ms, with Germany as controller. Moreover, the algorithm reveals that only 8 FN of 40 total nodes had to
send topology data to the controller, needing in total 162 packets to achieve a global view of the network.

In addition, results of Figure 2 show the minimum convergence time of the entire process. These times are
equal to the Round Trip Time (RTT) from the controller to the farthest node, achieved through the hierarchical
tree formed in the first phase.

5. Conclusions
In this paper, we propose a distributed mechanism for discovering layer 2 topologies in large SDN using an
agents-based mechanism. This mechanism enables automatic discovering of the network without the need of
previous IP configurations nor controller knowledge of the network, as has been considered in the literature.
Through experimental simulations with real world topologies we demonstrate that SD-TDP provides a suitable
approach for discovering the network topology. The results after running the algorithm on GÉANT show that the
convergence time of our proposal is upper bounded by O(E + N · log N ), with a simple and efficient scheme.

Our future efforts will be directed to generalize the proposed protocol for supporting multi-domains SDN
and decreasing dynamically the control plane overhead associated with network state and topology information.
In addition, we pretend to incorporate fault-tolerance mechanisms as an approach to ensure robustness of the
control plane against changes in the network.
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