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LOSSES OF LEAF AREA OWING TO HERBIVORY AND EARLY SENESCENCE IN 

THREE TREE SPECIES ALONG A WINTER TEMPERATURE GRADIENT 

ABSTRACT 

In temperate climates, evergreen leaves have to survive throughout low temperature winter 

periods.  Freezing and chilling injuries can lead to accelerated senescence of part of the leaf 

surface, which contributes to a reduction of the lifespan of the photosynthetic machinery and 

of leaf lifetime carbon gain. Low temperatures are also associated with changes in foliar 

chemistry and morphology that affect consumption by herbivores. Therefore, the severity of 

foliar area losses caused by accelerated senescence and herbivory can change along 

winter temperature gradients. The aim of this study is to analyse such responses in the 

leaves of three evergreen species (Quercus ilex, Q. suber and Pinus pinaster) along a 

climatic gradient. The leaves of all three species presented increased leaf mass per area 

(LMA) and higher concentrations of structural carbohydrates in cooler areas. Only the two 

oak species showed visible symptoms of damage caused by herbivory, this being less 

intense at the coldest sites. The leaves of all three species presented chlorotic and necrotic 

spots that increased in size with leaf age. The foliar surface affected by chlorosis and 

necrosis was larger at the sites with the coldest winters. Therefore, the effects of the winter 

cold on the lifespan of the photosynthetic machinery were contradictory: losses of leaf area 

due to accelerated senescence increased, but there was a decrease in losses caused by 

herbivory. The final consequences for carbon assimilation strongly depend on the exact 

timing of the appearance of the damage resulting from low temperature and grazing by 

herbivores. 

Key words: abiotic stress, herbivory, leaf nitrogen, evergreen species, structural 

reinforcement, winter temperature. 
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INTRODUCTION 

The study of the changes in foliar traits along environmental gradients has become a useful 

tool to assess the effects of climate change on the productivity and distribution patterns of 

the different tree species (Mediavilla et al. 2012; Klein et al. 2013). The analysis of changes 

in leaf traits across different environments shows that there is a trend towards an increase in 

leaf mass per unit leaf area (LMA) in colder environments (Ogaya and Peñuelas 2007; Atkin 

et al. 2008). Similarly, several authors reported increases in N contents in leaves produced 

in colder sites (Weih and Karlsson 2001; Jian et al. 2009), although in other studies the 

patterns in N content proved inconsistent (Hultine and Marshall 2000; Chen et al. 2013). 

These changes in LMA and, possibly, in nitrogen content along temperature gradients 

should affect productivity in different environments, given the effects of both traits on 

instantaneous photosynthesis per unit leaf mass (Reich et al. 1997; Mediavilla et al. 2001; 

Niinemets and Sack 2006). 

Temperature gradients also affect other productivity-determining factors, for example, the 

effects of temperature on plant-herbivore interactions have been frequently reported (Veteli 

et al. 2002; Jamieson et al. 2012). Temperature effects on the growth of herbivore 

populations are often direct. Higher temperatures promote higher metabolic rates that lead 

to higher consumption, growth and development rates (Jamieson et al. 2012). Moreover, 

warmer late winter and early spring temperatures tend to enhance insect survival (Bale et al. 

2002). Furthermore, differences in foliar nitrogen content affect herbivores’ preferences and, 

therefore, higher leaf N concentrations lead to stronger attack rates (White 1984; Agrawal 

2004). On the other hand, leaf mass per unit area is known to correlate positively with leaf 

rigidity and hardness (Kudo 1996), often being considered an adaptation aimed at reducing 

vulnerability to herbivore attacks and other stress factors (Wright and Cannon 2001; Shipley 

et al. 2006). Thus, LMA and nitrogen changes along climatic gradients might interact with 

the direct effects of temperature on herbivore activity, leading to differences in the levels of 
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herbivory. Herbivory is a major determinant of leaf mortality rates, and has been shown to 

affect plant fitness (Moles and Westoby 2000; Mothershead and Marquis 2000). Leaf area 

losses resulting from herbivory usually take place at the early stages of leaf development 

and can significantly reduce the photosynthetic surface for a large part of the leaf’s lifespan 

(Coley 1983; Kudo 1996; Moles and Westoby 2000). 

Apart from the damage caused by herbivory, abiotic stress produces different physiological 

reactions and structural changes resembling natural senescence. These processes occur 

before the age of programmed senescence and may thus be interpreted as accelerated cell 

senescence (Günthardt-Goerg and Vollenweider 2007). Among other abiotic stress factors, 

low temperatures are known to produce irreversible damage that accumulates as the leaf 

ages (Günthardt-Goerg and Vollenweider 2007). Accordingly, the intensity of leaf area 

losses should also vary along temperature gradients, provided that other stress factors 

remain similar. Frequently, abiotic stress, such as drought, frost or chilling, results in 

necrotic areas bordered by green tissue (Vollenweider and Günthardt-Goerg 2005), which 

implies that only part of the leaf area is affected and that the individual leaf may remain alive 

until it reaches its age of programmed senescence. Similarly, for species with a long leaf 

lifespan, a large amount of herbivory damage may occur before the leaves are shed 

(Poorter et al. 2004). Therefore, leaf area losses resulting from herbivory and anticipated 

senescence may lead to a significant reduction in the amount of photosynthetic machinery 

before the end of the leaf’s lifespan. As a result, individual leaves may have a longer life 

span than any unit of leaf mass or nutrients (Mediavilla and Escudero 2003a). Obviously, 

the shorter duration of the photosynthetic machinery renders the estimates of leaf-level 

carbon balance inaccurate, when they are based on the lifespan of individual leaves 

(Mediavilla and Escudero 2003b; Kikuzawa and Lechowicz 2006). In evergreen species, 

leaf lifespan tends to increase with decreasing temperatures (Wright et al. 2005), probably 

reflecting the longer payback time for construction costs in such conditions, due to the 

shorter growing season. However, this trend could be compensated by anticipated losses of 
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leaf area under conditions of cold stress. 

We are not aware of any studies devoted to the analysis of changes in the intensity of foliar 

damage due to abiotic factors along climatic gradients. Conversely, there are numerous 

studies on the damage caused by herbivory along different environmental gradients, albeit 

with contradictory results. Thus, for example, while there are cases where higher levels of 

herbivory were detected in warmer environments (Bale et al. 2002; Bjorkman et al. 2011), 

other authors’ results show higher levels of consumption in colder environments (Coley and 

Aide 1991; Aizen and Williams 1995) or no trends along temperature gradients (Andrew and 

Hughes 2007; Adams et al. 2009). In most studies, the sampled species changed along the 

climatic gradients, which makes it difficult to identify the factors responsible for the trends in 

levels of herbivory. The task of analysing leaf damage caused by herbivory and other 

factors is very time-consuming, which could be one of the reasons why this aspect has not 

been integrated into previous production models. There is a clear need for studies that 

analyse differences in leaf area losses comparing different environments, so that we might 

understand the impacts of climate change on the potential distribution of tree species.  

The purpose of this study is to analyse damage to the leaf area caused by different stress 

factors in three evergreen tree species differing in leaf life span (Quercus ilex ssp. ballota 

(Desf.) Samp, Quercus suber L. and Pinus pinaster Aiton) located at different sites along a 

temperature gradient and to determine the effects of differences in foliar traits on possible 

differences in damage intensity. An earlier study using the same species and locations 

showed that there were significant site-related differences in several leaf traits. Thus, the 

leaves of the analysed species exhibited higher LMA, thickness and structural carbohydrate 

content in colder areas, with no trends in nitrogen content (Mediavilla et al. 2012; González-

Zurdo et al. 2015). These differences among sites suggest the need for greater structural 

reinforcement under harsher winter conditions, which would involve higher costs in the 

coldest areas, mainly due to the negative relationship between LMA and instantaneous 

photosynthesis (Reich et al. 1997; Niinemets and Sack 2006). These costs could be 
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compensated, however, if the greater reinforcement were to involve a decrease in 

herbivory-related leaf area losses in colder environments. Therefore, our aim is to test 

whether the greater leaf structural reinforcement in cold environments involves lower costs 

in terms of losses of photosynthetic area associated with herbivory. By contrast, we 

anticipate that losses of photosynthetic area caused by accelerated senescence would be 

higher in colder environments. 

MATERIALS AND METHODS 

Species and study areas 

Three evergreen species were selected for the study: Pinus pinaster Aiton, Quercus suber 

L. and Q. ilex ssp. ballota (Desf.) Samp. The species were distributed over six sites located 

in the regions of Castilla-Leon and Extremadura (central-western Spain) between latitudes 

41º 45' N and 39º 49' N and longitudes 6º 22' W and 2º 37' W (Table 1). Altitudes range 

between 466 and 1189 m a.s.l. Because of the differences in geographical location and 

altitude, two of the selected sites may be categorized as cold, with the lowest minimum 

temperatures and the highest number of frost days; two sites could be identified as warm 

and the remaining two as having intermediate winter conditions. The sites consisted of flat 

areas with sparse populations (between 50 and 100 specimens ha
-1

) of mature (over 100 

years old) individuals. Each site was selected so as to include as many study species as 

possible and to cover a wide winter temperature gradient, at the same time making sure that 

the rest of climatic characteristics were as homogeneous as possible. Nevertheless, there is 

a tendency for rainfall levels to be higher in the hottest and southernmost sites, which helps 

to reduce the differences in the intensity of drought stress between cold and hot sites (Table 

1). Owing to its lower tolerance to low temperatures, Q. suber was absent at the coldest 

sites. Rainfall data were obtained from the digital climatic atlas of the Iberian Peninsula 

(Ninyerola et al. 2005): a set of digital climatic maps of mean air temperature, precipitation
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and solar radiation elaborated with 200-m resolution by using data from climate stations and 

a combination of geographical variables (altitude, latitude, continentality, solar radiation and 

terrain curvature). Temperature data were obtained for each site by means of data loggers 

(Hobo Pendant temperature/light datalogger, Part UA-002-08, Onset Computer Corporation, 

Pocasset, MA, USA) programmed to obtain temperature data every 10 min and kept at each 

site for 6 years (October 2008 – October 2014). Data on ozone concentrations were 

obtained from The European Environment Agency (EEA) (The European air quality 

database and http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-

qualitydatabase-8), using the information from the nearest control stations. In all cases the 

stations were situated at an altitude similar to the study sites. Ozone levels were expressed 

according to the index AOT40 (accumulated ozone over threshold 80 µg m
-3

) along years 

2012-2014 (Table 1). Soil samples were taken up to a depth of 20 cm (excluding the forest 

floor) from each stand. Determinations of soil granulometry, pH and N and P concentrations 

were carried out at the Soils Laboratory of the Institute of Natural Resources and 

Agrobiology of Salamanca, according to the methods described by Chapmann and Pratt 

(1973) and Walkley and Black (1934). 

Sample collection and processing 

At each site, a branch from each of five mature specimens of each species selected 

randomly was taken at the top of the crown. The trees chosen were sun-exposed mature 

individuals whose trunk diameter at a height of 1.3 m ranged from 40 to 60 cm, mean 

heights being 8-10 m. All the samples were gathered in mid-October 2014. 

The samples were taken immediately to the laboratory and the branches were separated 

into annual segments (shoots) of different age classes. Only one flush of leaf growth was 

observed in all species. Accordingly, all the leaves sprouting in a given year were 

considered to belong to the same age class. All the leaves from each species and age were 

http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-qualitydatabase-8
http://www.eea.europa.eu/data-and-maps/data/airbase-the-european-air-qualitydatabase-8
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visually analyzed and classified into different categories depending on whether they 

presented visible symptoms of damage or not. The damaged leaves were further classified 

according to damage type: leaves attacked by herbivores, leaves with symptoms of abiotic 

stress and leaves with both types of damage (herbivory and abiotic factors). There are many 

studies that offer plentiful graphic information that allows for identifying both biotic and 

abiotic stress symptoms in leaves (Vollenweider and Günthardt-Goerg 2005; Günthardt-

Goerg and Vollenweider 2007). Samples from Pinus pinaster were only separated into two 

categories (healthy leaves and leaves presenting abiotic damage) because the herbivory 

levels detected for this species were practically negligible. After sorting, a count of the 

number of leaves in each category was made for each of the selected tree individuals of 

each species. A total of around 54,000 leaves were examined to detect damage and its 

type.  

To check possible differences in the traits of the leaves of a same species according to the 

different environments and damage categories, 50 leaves of each species, leaf age class 

and category (healthy, with damage by herbivores and with abiotic damage) from each site 

(10 leaves of each category from each of the 5 selected specimens) were randomly 

selected. Leaf thickness was measured with a digital micrometer (Digimatic micrometer, 

Mitutoyo, Japan) as a mean of three measurements taken at random positions on each leaf 

or needle, avoiding the main ribs on flat leaves. The total projected leaf and needle areas 

were determined by an image analysis system (Delta-T Devices LTD, Cambridge, UK). In 

the case of P. pinaster, we also measured needle length with the digital micrometer. The 

samples were then oven-dried at 70 ºC to constant weight and the total dry mass was 

determined. From the data thus obtained, we calculated the leaf dry mass per area (LMA). 

Once all the data had been collected, a value for each specimen and leaf age class was 

calculated as the average of 10 leaves of each damage category. The 10 individual leaves 

taken from each specimen and leaf age class were ground together to obtain a sufficient 

amount of sample for the chemical analyses. Leaf N concentrations were determined with a 
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CE-Instruments NA-2100 auto analyser (ThermoQuest, Milan, Italy). After the N analyses, 

the remaining material was used to analyze the fibre content (hemicellulose, cellulose and 

lignin) with an Ankom Analyzer (A220, New York, USA), following the method of Goering 

and Van Soest (1970). The nitrogen and fibre contents of leaves were expressed per unit 

dry mass (as milligrams of nutrient or fibre per gram of leaf dry mass), and N also as per unit 

of leaf area, obtained as the N content per unit dry mass multiplied by LMA. 

The foliar surface lost to herbivores or damaged by abiotic stress was also determined 

based on 10 leaves per tree individual up to a total of 50 from each species and age class, 

from each site, using the ImageJ programme (http://rsb.info.nih.gov/ij/; Abràmoff et al. 

2004). The leaves were first subjected to high-resolution scanning (2300 x 3300 pixels). The 

ImageJ programme allowed for the analysis of the images obtained, measuring both the 

whole area of each leaf and those areas with a different colouration due to necrosis and 

chlorosis caused by abiotic stress damage. The area lost to herbivores was estimated by 

reconstructing leaf outlines and calculating the difference between the reconstructed leaf 

and the actual area. Thus, the percentage of surface loss caused by herbivory or other 

types of damage was estimated for each of the 50 leaves analysed in each case. 

Additional branches were sampled on a 2-monthly basis to estimate leaf lifespan. Five 

mature specimens of each species were selected randomly at each site during each 

sampling session. A composite sampling of sun-exposed branches with leaves from 

different crown positions in each canopy was undertaken for each individual selected. The 

number of leaves or needles per shoot was counted for each age class and the data were 

used to construct static life tables, which made it possible to estimate the mean leaf life 

span for each species according to standard methods. 

Data analysis 

Once the leaves of each type had been counted up, we calculated the percentage of

http://rsb.info.nih.gov/ij/
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damaged leaf area for each tree. A final estimate of damage was obtained for each species 

and leaf age class from each site as a mean of the five trees selected in each case. One-

way analysis of variance (ANOVA) was used to examine the differences among sites within 

each species. Linear regression analysis was used to explore the relationships within each 

species between levels of herbivory and leaf traits at the different sites. Regression analysis 

was also used to test the relationship between climate and level of damage at each site. 

Each site was given a single value for the average temperature and mean daily maximum 

and minimum temperatures, obtained as the average of the mean values measured each 

month over 4 years. A value for the maximum and minimum temperatures recorded was 

also obtained. In addition to temperature, the total annual and summer precipitation of each 

site and the Emberger’s pluviothermic index (Emberger 1930) were used to analyse the 

effect of possible differences in water availability on the level of foliar damage recorded at 

each site. Emberger’s index, commonly used in Mediterranean climates (Kunstler et al. 

2007), was obtained through the following equation: 

   
      

     
     

 
         

 

where P is the annual precipitation (mm), TX is the average temperature of the hottest month 

(ºC) and TN is the average temperature of the coldest month (°C). All statistical analyses 

were performed using the SPSS statistical package (SPSS Inc., Chicago, IL, USA). 

RESULTS 

Intraspecific variation in the traits of healthy leaves along the climatic gradient 

No significant differences were found between the two sites selected in each of the three 

climatic environments for any of the leaf traits analysed. Conversely, ANOVA results 

revealed differences among the three climatic environments for most of the leaf traits (Table 
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2). There was a tendency for leaves of a same species and age class produced at the 

warmest sites to be larger (larger area in the two Quercus and longer needles in P. 

pinaster), but thinner, with lower LMA and fibre content than in the coldest sites, with 

significant differences among sites in practically all of the cases (Table 2). The leaves from 

sites with intermediate climates also yielded intermediate values for thickness, LMA and 

fibre contents (Table 2). By contrast, between-sites differences in lignin concentrations were 

non-significant (not shown). Similarly, differences in nitrogen concentration per unit mass 

(Nmass) were small and non-significant in most of the cases. The differences in N content per 

unit area (Narea) tended to be more pronounced because of the increase in LMA at the 

coldest sites, although, in most cases, these differences did not reach significance either 

(Table 2). Leaf life span showed a non-significant trend to decrease with the increase in 

temperature in P. pinaster, but there were no trends for the other two species. The LMA, 

thickness and fibre content increased with the leaf longevity of the different species, 

whereas the opposite happened with nitrogen content per unit mass, which tended to be 

lower in leaves with longer life spans (Table 2). 

Intraspecific differences in the levels of foliar damage along the climatic gradient 

Most herbivorous damage was due to leaf area loss by leaf chewers and scars on leaf 

blades mainly by skeletonizers. The two species that presented significant damage caused 

by herbivory showed significant differences in level of damage in the different areas of the 

climatic gradient, the percentage of herbivore-attacked leaves and average area consumed 

per leaf always being significantly higher in the warmest sites (Table 3). In the case of Q. 

ilex, leaves also showed intermediate levels of consumption at the sites with intermediate 

climate characteristics (Table 3). The differences among environments could be observed in 

all leaf age classes. There were no differences in the intensity of herbivore damage among 

different age classes, the leaves of the different cohorts showing similar proportions of 

attacked leaves, as well as of consumed areas in both species (Table 3). Between the two
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oaks, the species with the shortest-lived leaves, Q. suber, showed the highest percentage of 

damaged leaves and consumed area in each leaf (Table 3). 

 

Trends of abiotic damage among sites proved opposite to those obtained for herbivory 

levels. For the two species represented in the three climatic environments (P. pinaster and 

Q. ilex), both the percentage of damaged leaves and the percentage of leaf area damaged, 

tended to be higher at the coldest sites than at the warmest ones, with intermediate values 

at sites with intermediate temperatures (Table 3). The same results were obtained for Q. 

suber, the intensity of damage caused by abiotic factors being much higher at the sites with 

lower temperatures (more damaged leaves and larger damaged area per leaf) as compared 

Leaf Sites No. of leaves Leaves attacked Area lost per Leaves damaged Area damaged

age class temperatures examined by herbivores (%) leaf (%) by abiotic stress (%) per leaf (%)

Q. suber 1 Warm 3200 55.2 (0.99) a 15.69 (1.38) a 33.6 (0.84) b 9.64 (0.75) b

1 Intermediate 4487 49.5 (1.59) b 10.80 (0.57) b 45.1 (2.13) a 17.3 (0.81) a

2 Warm 100 56.5 (6.50) a 14.75 (1.49) a 44.0 (6.00) b 18.3 (1.61) b

2 Intermediate 865 48.7 (3.09) b 11.39 (1.34) b 51.2 (3.09) a 25.0 (0.66) a

Q. ilex 1 Warm 6492 50.9 (0.80) a 7.48 (0.81) a 8.11 (0.67) a 6.17 (0.53) c

1 Intermediate 4056 44.1 (0.63) ab 6.25 (0.64) ab 9.74 (0.29) a 11.0 (0.67) b

1 Cold 5893 41.0 (4.10) b 4.87 (0.49) b 11.9 (2.27) a 18.9 (1.78) a

2 Warm 2110 49.0 (0.41) a 7.34 (0.58) a 17.7 (0.79) b 9.35 (1.07) c

2 Intermediate 2216 45.8 (0.82) b 6.34 (0.45) ab 20.2 (0.54) ab 16.4 (1.45) b

2 Cold 1989 42.2 (1.13) c 5.06 (0.46) b 23.5 (3.13) a 22.5 (0.98) a

3 Warm 210 48.2 (0.63) a 7.61 (0.65) a 23.5 (0.53) c 13.5 (3.33) c

3 Intermediate 828 44.8 (0.84) b 6.61 (0.66) a 25.3 (0.58) b 22.0 (2.05) b

3 Cold 214 42.4 (1.34) b 4.92 (0.32) b 30.5 (0.43) a 28.6 (1.97) a

P. pinaster 1 Warm 3079 - - 18.84 (0.49) c 1.03 (0.12) b

1 Intermediate 2849 - - 21.97 (0.31) b 1.99 (0.06) a

1 Cold 2552 - - 24.92 (0.88) a 2.38 (0.18) a

2 Warm 2513 - - 25.39 (1.17) c 2.23 (0.21) b

2 Intermediate 2532 - - 31.99 (0.93) b 2.91 (0.27) ab

2 Cold 2335 - - 37.10 (0.79) a 3.63 (0.21) a

3 Warm 1420 - - 44.66 (1.26) c 3.11 (0.35) b

3 Intermediate 1257 - - 52.21 (1.36) b 3.92 (0.33) b

3 Cold 1309 - - 62.97 (2.67) a 4.91 (0.32) a

4 Warm 212 - - 78.28 (1.67) c 3.84 (0.42) b

4 Intermediate 461 - - 85.35 (1.43) b 4.48 (0.15) b

4 Cold 968 - - 91.03 (1.31) a 5.50 (0.33) a

Species

Table 3. Percentage of leaves attacked by herbivores and damaged by abiotic factors (SE in parentheses, n = 10 trees

per species). 

Average loss of area (%) per individual leaf (n = 10). Means with different letters indicate significant differences (P = 0.05) between climatic

categories.
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to the hottest sites. In contrast with herbivory, there were differences in damage caused by 

abiotic stress among the successive foliar cohorts, the proportion of damaged leaves and of 

the damaged part increasing with leaf age (Table 3). 

Of the three species, the leaves of the one with the lowest leaf lifespan (Q. suber) once 

again showed higher intensities in the damage caused by stress factors when compared to 

leaves of the same age from the two other species (Table 3). Between Q. ilex and P. 

pinaster, P. pinaster showed a greater proportion of leaves with visible damage symptoms, 

although the percentage of damaged area per leaf in each of the environments was much 

lower than in Q. ilex (Table 3). 

Leaf traits and environmental factors that determine the differences in levels of foliar 

damage 

Regression analysis including data from the six sites studied was used to detect the foliar 

traits that determine the differences in the levels of herbivory among sites. Although we had 

herbivory data for the two oak species, the analysis was restricted to the leaves of Q. ilex, 

since Q. suber could only be found at four sites. Since the levels of herbivory were similar 

for the different leaf cohorts, the analyses were further limited to current-year leaves. There 

was a close relationship between all the traits related to the reinforcement of leaf structure 

and the levels of attack, the percentage of leaves consumed (Fig. 1) and the mean leaf area 

consumed (Fig. 2) becoming lower as LMA, thickness and structural carbohydrates 

increased along the climatic gradient. However, there was no significant relationship 

between levels of herbivory and concentrations of lignin and the nitrogen content per unit 

mass in the leaves from the different sites. There was a trend towards lower levels of 

herbivory as nitrogen content per unit leaf area increased, although it was only significant for 

the percentage of leaf area lost (Fig. 2). 
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The comparison between the traits of the healthy and the attacked leaves of each species at 

each site confirmed the influence of structural strengthening on herbivory levels (Table 4). 

There were no significant differences in nitrogen content per unit area between leaves with 

herbivore damage and intact leaves across sites. At the hottest sites, the current Q. ilex 

leaves that had been attacked by herbivores presented lower Nmass contents than did the

Figure 1. Relationships between the percentage of leaves attacked by herbivores and different leaf traits

of current-year leaves of Quercus ilex at different sites. LMA = leaf mass per unit area, H+C = cellulose

+ hemicellulose concentration, N mass = N concentration per unit leaf mass, N area = N content per unit leaf

area.
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healthy ones. No differences were observed with regard to the individual area of intact and 

attacked leaves. Conversely, in many cases, there were significant differences in LMA 

between healthy and damaged leaves, both by herbivory and by abiotic stress factors. The 

healthy leaves tended to have greater LMA than do the damaged ones, regardless of the 

type of damage suffered (Table 4). 

Figure 2. Relationships between the percentage of leaf area lost by herbivory and different leaf

traits of current-year leaves of Quercus ilex  at different sites. Abbreviations as in Fig. 1.

y = -0.04x + 16.2
R2 = 0.91, P = 0.0030

4

5

6

7

8

200 225 250 275 300

A
re

a
 l
o

s
t 
p

e
r 
le

a
f 

(%
)

(H+C) (mg g-1)

135 140 145 150 155

Lignin (mg g -1)

y = -0.03x + 15.2
R2 = 0.97, P = 0.0004

4

5

6

7

8

235 280 325 370

A
re

a
 l
o

s
t 
p

e
r 
le

a
f 

(%
)

Leaf  thickness (µm)

y = -0.04x + 15.3
R2 = 0.99 P < 0.0001

190 210 230 250 270

LMA (g m-2)

4

5

6

7

8

11 12 13 14 15 16

A
re

a
 l
o

s
t 
p

e
r 
le

a
f 

(%
)

Nmass (mg g -1)

y = -2.11x + 12.9
R2 = 0.74, P = 0.0286

2.5 3.0 3.5 4.0

Narea (g m-2)



Capítulo III 

 

126 

  

Le
af

 
C

at
eg

or
y

LM
A

N
N

LM
A

N
N

LM
A

N
N

ag
e 

cl
as

s
of

 d
am

ag
e

(g
m

-2
)

(m
g 

g-1
)

(g
m

-2
)

(g
m

-2
)

(m
g 

g-1
)

(g
m

-2
)

(g
m

-2
)

(m
g 

g-1
)

(g
m

-2
)

1
H

ea
lth

y
5.

23
 (

0.
33

) 
a

16
6 

(6
.2

1)
 a

16
.6

 (
0.

33
) 

a
2.

74
 (

0.
09

) 
a

4.
21

 (
0.

24
) 

a
19

0 
(5

.9
6)

 a
15

.8
 (

0.
47

) 
a

3.
02

 (
0.

15
) 

a
-

-
-

5.
55

 (
0.

37
) 

a
14

9 
(3

.5
3)

 a
b

16
.5

 (
0.

41
) 

a
2.

46
 (

0.
07

) 
a

4.
77

 (
0.

16
) 

a
16

8 
(4

.9
9)

 b
15

.7
 (

0.
30

) 
a

2.
64

 (
0.

10
) 

a
-

-
-

-

H
er

bi
vo

ry
5.

49
 (

0.
45

) 
a

14
6 

(4
.9

0)
 b

16
.0

 (
0.

34
) 

a
2.

34
 (

0.
09

) 
a

4.
65

 (
0.

15
) 

a
16

4 
(3

.9
3)

 b
15

.0
 (

0.
48

) 
a

2.
46

 (
0.

11
) 

a
-

-
-

-

1
H

ea
lth

y
3.

02
 (

0.
10

) 
a

20
2 

(6
.8

3)
 a

14
.3

 (
0.

42
) 

a
2.

91
 (

0.
16

) 
a

2.
64

 (
0.

10
) 

a
23

6 
(8

.6
2)

 a
12

.7
 (

0.
60

) 
a

2.
99

 (
0.

16
) 

a
2.

10
 (

0.
09

) 
a

26
7 

(1
2.

9)
 a

14
.2

 (
0.

21
) 

ab
3.

80
 (

0.
16

) 
a

2.
97

 (
0.

13
) 

a
20

3 
(7

.9
3)

 a
13

.9
 (

0.
49

) 
ab

2.
80

 (
0.

12
) 

a
2.

69
 (

0.
14

) 
a

21
3 

(4
.9

2)
 b

12
.2

 (
0.

56
) 

a 
2.

60
 (

0.
15

) 
a

2.
09

 (
0.

10
) 

a
24

1 
(7

.0
6)

 b
13

.9
 (

0.
52

) 
b

3.
34

 (
0.

18
) 

a

H
er

bi
vo

ry
2.

99
 (

0.
12

) 
a

18
3 

(1
3.

7)
 b

13
.3

 (
0.

40
) 

b
2.

42
 (

0.
19

) 
a

2.
42

 (
0.

14
) 

a
20

9 
(7

.6
0)

 b
12

.4
 (

0.
29

) 
a

2.
58

 (
0.

11
) 

a
2.

21
 (

0.
13

) 
a

24
2 

(4
.9

7)
 b

15
.0

 (
0.

61
) 

a
3.

63
 (

0.
14

) 
a

2
H

ea
lth

y
2.

96
 (

0.
11

) 
a

21
5 

(5
.9

2)
 a

11
.8

 (
0.

47
) 

a
2.

54
 (

0.
13

) 
a

2.
67

 (
0.

12
) 

a
24

7 
(5

.3
0)

 a
10

.8
 (

0.
25

) 
a

2.
66

 (
0.

04
) 

a
1.

92
 (

0.
14

) 
a

27
8 

(8
.9

7)
 a

12
.8

 (
0.

39
) 

a
3.

58
 (

0.
20

) 
a

2.
84

 (
0.

13
) 

a
20

5 
(7

.4
2)

 a
10

.8
 (

0.
48

) 
b

2.
22

 (
0.

14
) 

a
2.

41
 (

0.
15

) 
a

23
7 

(7
.0

3)
 a

10
.2

 (
0.

33
) 

a
2.

41
 (

0.
06

) 
a

2.
10

 (
0.

13
) 

a
25

6 
(7

.9
0)

 b
13

.1
 (

0.
25

) 
a

3.
35

 (
0.

13
) 

a

H
er

bi
vo

ry
2.

87
 (

0.
14

) 
a

19
9 

(3
.3

5)
 a

11
.6

 (
0.

36
) 

ab
2.

31
 (

0.
10

) 
a

2.
54

 (
0.

16
) 

a
23

7 
(5

.2
8)

 a
10

.6
 (

0.
29

) 
a

2.
52

 (
0.

11
) 

a
2.

13
 (

0.
24

) 
a

25
7 

(1
2.

4)
 b

13
.6

 (
0.

39
) 

a
3.

51
 (

0.
24

) 
a

1
H

ea
lth

y
13

3 
(4

.8
9)

 a
35

5 
(1

4.
6)

 a
9.

26
 (

0.
42

) 
a

3.
29

 (
0.

24
) 

a
11

7 
(6

.7
7)

 a
36

9 
(3

.0
0)

 a
10

.2
 (

0.
92

) 
a

3.
77

 (
0.

42
) 

a
95

 (
2.

56
) 

a
39

3 
(1

3.
0)

 a
9.

39
 (

0.
70

) 
a

3.
68

 (
0.

28
) 

a

12
2 

(7
.7

7)
 a

31
7 

(4
.5

0)
 b

8.
24

 (
0.

52
) 

b
2.

61
 (

0.
15

) 
a

12
4 

(6
.2

4)
 a

33
9 

(1
2.

3)
 b

9.
71

 (
0.

85
) 

a
3.

31
 (

0.
36

) 
a

90
 (

2.
04

) 
a

35
4 

(1
2.

8)
 b

8.
78

 (
0.

66
) 

a
3.

11
 (

0.
26

) 
a

2
H

ea
lth

y
13

9 
(2

.7
2)

 a
36

7 
(2

3.
3)

 a
8.

92
 (

0.
46

) 
a

3.
26

 (
0.

18
) 

a
12

4 
(6

.2
1)

 a
39

1 
(6

.8
9)

 a
9.

58
 (

0.
52

) 
a

3.
78

 (
0.

66
) 

a
10

6 
(4

.4
6)

 a
41

4 
(1

3.
3)

 a
9.

80
 (

0.
43

) 
a

4.
05

 (
0.

12
) 

a

12
4 

(7
.9

3)
 a

34
8 

(1
2.

0)
 a

7.
65

 (
0.

26
) 

b
2.

66
 (

0.
09

) 
a

13
2 

(3
.1

6)
 a

36
6 

(4
.8

7)
 b

9.
91

 (
0.

72
) 

a
3.

63
 (

0.
64

) 
a

10
4 

(3
.8

9)
 a

38
3 

(1
1.

0)
 b

9.
38

 (
0.

96
) 

a
3.

56
 (

0.
26

) 
a

3
H

ea
lth

y
12

2 
(7

.6
7)

 a
37

9 
(3

.8
9)

 a
7.

60
 (

0.
84

) 
a

2.
89

 (
0.

34
) 

a
12

4 
(6

.2
1)

 a
41

0 
(4

.0
5)

 a
8.

70
 (

0.
69

) 
a

3.
57

 (
0.

30
) 

a
89

 (
6.

20
) 

a
42

3 
(1

6.
0)

 a
8.

09
 (

0.
60

) 
a

3.
43

 (
0.

32
) 

a

12
4 

(9
.1

7)
 a

35
9 

(4
.4

6)
 a

6.
55

 (
0.

47
) 

b
2.

36
 (

0.
18

) 
a

10
2 

(1
3.

4)
 b

38
9 

(6
.2

4)
 a

8.
39

 (
0.

96
) 

a
3.

25
 (

0.
38

) 
a

74
 (

3.
19

) 
a

39
6 

(1
0.

6)
 b

8.
18

 (
0.

77
) 

a
3.

21
 (

0.
22

) 
a

M
ea

ns
 w

ith
 d

iff
er

en
t l

et
te

rs
 in

di
ca

te
 s

ig
ni

fic
an

t d
iff

er
en

ce
s 

(P
 =

 0
.0

5)
 b

et
w

ee
n 

ca
te

go
rie

s 
of

 d
am

ag
e.

 L
ea

f s
iz

e:
 a

re
a 

(c
m

2)
 in

 o
ak

s 
an

d 
ne

ed
le

 le
ng

ht
 (

m
m

) 
in

 p
in

e.
 L

M
A

 le
af

 m
as

s 
pe

r 
un

it 
ar

ea
. 

T
ab

le
  4

. M
ea

n 
tra

its
 o

f h
ea

lth
y 

an
d 

da
m

ag
ed

 le
av

es
 a

t t
he

 d
iff

er
en

t s
ite

s 
(S

E
 in

 p
ar

en
th

es
es

, n
 =

 1
0 

tre
es

). 

Le
af

 s
iz

e
Le

af
 s

iz
e

Le
af

 s
iz

e

Q. suber

A
bi

ot
ic

 s
tre

ss

W
ar

m
 s

ite
s

In
te

rm
ed

ia
te

 s
ite

s
C

ol
d 

si
te

s

A
bi

ot
ic

 s
tre

ss

Q. ilex

A
bi

ot
ic

 s
tre

ss

A
bi

ot
ic

 s
tre

ss

P. pinaster

A
bi

ot
ic

 s
tre

ss

A
bi

ot
ic

 s
tre

ss



Capítulo III 

 

127 

The climatic factors responsible for the differences among sites in foliar damage caused by 

abiotic stress were determined by means of linear regression analysis between the 

percentage of leaves with damage symptoms and the percentage of damaged area per leaf 

against the different climatic variables recorded at each site (Table 5). Once again, Q. suber 

was excluded from the analysis because this species was only found in four plots. The 

Q.ilex (C) (n  = 6) y R 2 P value y R 2 P value

Mean  monthly  temperature (ºC) y = -0.58x + 17.6 0.81 0.0148 y = -1.89x + 37.1 0.88 0.0059

Maximum summer temperature (ºC) y = -0.47x + 29.3 0.23 NS y = -1.56x + 76.3 0.25 NS

Minimum winter temperature (ºC) y = -0.28x + 7.30 0.74 0.0257 y = -1.08x + 1.91 0.96 < 0.0001

Number of days with frost per year y = 0.04x + 7.78 0.77 0.0219 y = 0.13x + 4.41 0.97 < 0.0001

Total annual rainfall (mm) y = -0.01x + 12.1 0.31 NS y = -0.01x + 18.0 0.23 NS

Summer precipitation (mm) y = 0.07x + 7.11 0.58 NS y = 0.22x + 2.29 0.68 NS

Emberger’s index y = -0.01x + 10.6 0.01 NS y = 0.01x + 11.8 0.01 NS

Q.ilex (C+1) (n  = 6)

Mean  monthly  temperature (ºC) y = -0.93x + 32.9 0.8 0.0157 y = -2.03x + 42.9 0.96 < 0.0001

Maximum summer temperature (ºC) y = -0.71x + 49.9 0.2 NS y = -2.03x + 99.5 0.41 NS

Minimum winter temperature (ºC) y = -0.48x + 16.1 0.71 0.0342 y = -1.09x + 5.88 0.93 0.0018

Number of days with frost per year y = 0.06x + 17.0 0.82 0.0136 y = 0.13x + 8.25 0.98 < 0.0001

Total annual rainfall (mm) y = -0.01x + 23.8 0.25 NS y = -0.01x + 23.8 0.37 NS

Summer precipitation (mm) y = 0.11x + 15.8 0.64 NS y = 0.20x + 7.17 0.55 NS

Emberger’s index y = -0.01x + 20.9 0.01 NS y = -0.04x + 18.6 0.02 NS

P. pinaster (C) (n  = 6)

Mean  monthly  temperature (ºC) y = -0.95x + 34.4 0.94 0.0012 y = -0.22x + 4.67 0.99 < 0.0001

Maximum summer temperature (ºC) y = -0.85x + 56.7 0.32 NS y = -0.26x + 12.4 0.59 NS

Minimum winter temperature (ºC) y = -0.48x + 17.4 0.82 0.0123 y = -0.11x + 0.77 0.87 0.007

Number of days with frost per year y = 0.06x + 18.3 0.93 0.0019 y = 0.03x + 0.99 0.93 0.0017

Total annual rainfall (mm) y = -0.01x + 25.0 0.26 NS y = -0.01x + 2.70 0.44 NS

Summer precipitation (mm) y = 0.10x + 17.4 0.64 NS y = 0.02x + 1.02 0.39 NS

Emberger’s index y = -0.01x + 22.2 0.01 NS y = -0.01x + 2.25 0.05 NS

P. pinaster  (C+1 ) (n  = 6)

Mean  monthly  temperature (ºC) y = -1.83x + 55.6 0.98 0.0002 y = -0.21x + 5.77 0.87 0.0061

Maximum summer temperature (ºC) y = -1.84x + 107 0.42 NS y = -0.19x + 10.7 0.29 NS

Minimum winter temperature (ºC) y = -0.96x + 22.5 0.91 0.0032 y = -0.11x + 1.90 0.76 0.0234

Number of days with frost per year y = 0.12x + 24.5 0.98 0.0002 y = 0.01x + 2.10 0.86 0.0072

Total annual rainfall (mm) y = -0.01x + 37.9 0.32 NS y = -0.01x + 3.75 0.31 NS

Summer precipitation (mm) y = 0.18x + 23.5 0.56 NS y = 0.02x + 1.90 0.59 NS

Emberger’s index y = -0.02x + 32.9 0.01 NS y = -0.01x + 3.12 0.01 NS

Number of leaves damaged (%) Area damaged per leaf (%)

Table 5. Linear regression parameters for mean levels of damage by abiotic stress depending on different climatic

variables at each site (C = current-year leaves). 
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results for the two younger leaf age classes of each species were included in this case 

because of the fact that foliar damage caused by abiotic stress increased with leaf age. Only 

differences in temperatures showed significant effects on damage levels. From the different 

temperature estimates, in most cases, the lowest temperatures and the number of frost 

days per year showed the highest percentages of explained variance (Table 5). Average 

temperatures also showed highly significant effects, mainly because of the strong effect of 

the lowest temperatures on the means. On the other hand, absolute maximum temperatures 

showed no significant effects on abiotic damage symptoms. No significant effects of the 

estimates of water availability in the different sites were observed in practically any of the 

cases (Table 5). 

DISCUSSION 

The results obtained confirm those of previous studies that conclude that LMA is not 

exclusively a specific protection against drought and attack by herbivores (Niinemets 2001; 

Wright et al. 2002), but rather a response to a wide range of environmental stress factors, 

including low temperatures (Ogaya and Peñuelas 2007; Mediavilla et al. 2012; González-

Zurdo et al. 2015). The tendency of the leaves of all three species was for LMA, contents of 

structural carbohydrates and thickness to be higher in colder than in warmer environments. 

In the two oak species, these differences in foliar traits among environments were 

accompanied by differences in levels of consumption by herbivores, with a lower percentage 

of attacked leaves and a smaller part of consumed area per leaf at the colder sites. 

Differences in levels of herbivory at the different sites could be due to a direct effect of 

temperatures on the growth of herbivore populations (Bale et al. 2002; Jamieson et al. 

2012). However, within a same site, the herbivore-attacked leaves presented lower LMA 

and thickness than the healthy ones did, which suggests a direct effect of these leaf traits on 

herbivores’ preferences. At each site, herbivores seemed to first choose the species with 

lower leaf thickness and LMA and, within each species, the leaves with these same 
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characteristics. On the other hand, and again within each species, herbivores seem not to 

discriminate because of N concentrations. 

Many leaf traits have been related to defence against herbivory. Foliar nitrogen content has 

been suggested as the main determinant for interspecific and intraspecific differences in 

levels of attack by several authors (White 1984; Agrawal 2004). Unlike the increase in the N 

content of leaves with the decrease in temperatures reported in some studies (Weih and 

Karlsson 2001; Jian et al. 2009), in the present study no trends in leaf N contents related to 

temperature changes were observed, which is, on the other hand, consistent with other 

studies (Hultine and Marshall 2000; Chen et al. 2013). Therefore, the between-sites 

differences in levels of herbivory observed in the species analysed showed no relationship 

to differences in foliar nitrogen contents. 

Conversely, the level of herbivory significantly decreased with the increase in LMA, probably 

because of the positive effect of this trait on leaf rigidity (Kitajima and Poorter 2010; Onoda 

et al. 2011). These results suggest that, as defended by other authors (Poorter et al. 2004; 

Carmona et al. 2011; Cárdenas et al. 2014), leaf rigidity would be the best predictor of 

differences in the rate of herbivory. The higher LMA at the coldest sites was a result of a 

thickening caused by higher amounts of structural carbohydrates in the cell wall, with no 

changes in density (Mediavilla et al. 2012; González-Zurdo et al. 2015). Both thickness and 

cellulose and hemicellulose contents had a negative effect on the levels of herbivory at the 

different sites, while lignin content had no significant effects. Different authors (Coley 1983; 

Kitajima et al. 2012; Cárdenas et al. 2014) have proved the relevance of cellulose content 

as a predictor of herbivory-related damage. The lack of effects of lignin contents on levels of 

herbivory has also been observed in diverse studies (Kurokawa and Nakashizuka 2008; 

Kitajima et al. 2012). Conversely, our results are in contrast with those of other authors who 

state that the levels of herbivory depend on leaf density (Kitajima et al. 2012), while leaf 

thickness (Cárdenas et al. 2014) or hemicellulose content (Kitajima et al. 2012) show no 

significant effects. The reason for these discrepancies could be the fact that the conclusions 
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of other authors are based on interspecific comparisons, while in this study responses are 

analysed at the intraspecific level. 

Harsher climatic conditions during winter resulted in greater foliar damage by abiotic factors, 

with more leaves damaged by the effects of low temperatures and larger fractions of 

damaged area per leaf at the coldest sites for the three studied species. Accordingly, in 

contrast with its role in the protection against herbivores, the structural reinforcement in cold 

sites does not seem to contribute to protection against cold stress. Differences in rainfall 

and in Emberger’s pluviothermic index had no effect on the level of damage of the leaves 

from the different sites. Other authors (Grossoni et al. 1998; Munné-Bosch and Peñuelas 

2004) have found that drought stress also produces visible leaf damage symptoms. 

Mediterranean environments almost always suffer drought stress during the summer 

(Lionello et al. 2006). Therefore, the fact that rainfall levels have no effect on the intensity of 

abiotic damage suggests that, even though the rainfall levels recorded at each site were 

different, there were no differences in the intensity of drought stress during summer. In fact, 

Emberger’s index varied little from site to site and showed no relation to the temperatures at 

each of them. Among the different environmental variables studied, minimum winter 

temperatures and the number of frost days per year had the strongest effects on the 

intensity of abiotic damage. On the other hand, the effects of maximum temperatures were 

non-significant. 

Accelerated foliar senescence is usually related to oxidative stress (Günthardt-Goerg and 

Vollenweider 2007), so the most likely explanation for the higher levels of damage in cold 

climates is oxidative stress caused by excess light absorption in periods when temperatures 

represent a constraint for photosynthesis. In cold Mediterranean climates, during winter 

there are frequently periods of relatively high atmospheric pressure and clear skies when air 

temperature remains low during the whole day while leaves receive high levels of solar 

radiation. It is well-known that, if the energy absorbed from light that reaches the reaction 

centres exceeds the amount of energy that can be used, as is the case with low 
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temperatures, photoinhibition may cause damage to the photosynthetic apparatus 

(Demming-Adams and Adams 1992; Lucinski and Jackowski 2006). This damage could be 

the main cause for the appearance of necrotic and chlorotic spotting in the leaves of the 

studied species. Depending on atmospheric conditions, UV irradiance may be expected to 

increase with altitude at a rate of between 3 and 7% km
-1

 (Pfeifer et al. 2006). Accordingly, 

the differences in altitude between our sites could contribute to the responses observed in 

our species. In fact, increases in leaf thickness in response to UV-B radiation have been 

found in different experimental studies (Filella and Peñuelas 1999). The combination of low 

temperatures and high UV-B irradiances could exacerbate the appearance of visible 

symptoms of injury at higher altitudes. Damages by ozone have been reported at the Iberian 

Peninsula particularly in Mediterranean and other coastal areas (Saavedra et al 2012). 

However, to our knowledge, there are no reports of ozone damages in rural areas at the 

interior of the Iberian Peninsula for the three species included in the present study. 

Sclerophylly is considered as an adaptation that protects leaves against the effects of 

ozone, UV-B radiation and other pollutants (Bussotti and Ferretti 1998). Given the 

sclerophyllic character of the species studied, current ambient ozone levels in southern 

Europe are probably not high enough to induce visible injury in this species (Sanz and 

Calatayud 2016, http://www.ozoneinjury.org/). In any case, levels of ozone were very similar 

during the study years for the different sites (Table 1). Accordingly, differences in ozone 

effects cannot be responsible for the strong differences in visible symptoms observed 

between the different sites. 

According to the results of the present study, in the environments with lower temperatures, 

evergreen tree species produced leaves with higher LMA and structural carbohydrates 

concentration. This structural reinforcement would have a negative impact on instantaneous 

C assimilation (Reich et al. 1997; Mediavilla et al. 2001; Niinemets and Sack 2006), which 

should be interpreted as a cost for the evergreen leaves produced at cold sites. This study 

shows that, in addition to this unfavourable effect on photosynthesis, damage caused by 

http://www.ozoneinjury.org/
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abiotic factors was also higher at the sites with lower winter temperatures, which should 

contribute to a decrease in total CO2 fixation across the entire lifespan of a leaf. On the 

contrary, at cold sites, losses resulting from herbivory were lower in both oak species. 

Moreover, lifespan of Pinus pinaster needles was slightly longer in colder than in warmer 

areas, although the trend was not significant. Therefore, the negative effects on leaf area 

persistence of the adaptation to cold might be partially counteracted by the positive ones. If 

these two types of effect are compared, in Q. suber the percentage of leaves attacked by 

herbivores was approximately 10% lower at the colder sites, which adds to 31% lower area 

consumed per leaf. Nevertheless, levels of damage by abiotic factors inversely increased in 

a proportion of 34% more damaged leaves and 79% more damaged area per leaf at the 

coldest sites. For current-year Q. ilex leaves, the decrease in levels of herbivory in the 

coldest plots in comparison with the warmest ones was of 19% less leaves attacked and 

35% less average leaf area consumed. On the other hand, the intensity of damage caused 

by abiotic factors increased in around 47% more damaged leaves and 26% more average 

damaged area per leaf in the coldest environments compared to the warmest. Therefore, 

the reduction of anticipated losses of photosynthetic area caused by herbivory in cold 

environments would not, in principle, be enough to compensate the higher losses in 

photosynthetic area undergone in the coldest environments with respect to the warmest 

ones. Losses caused by herbivorous insects occur mainly during leaf formation, since 

herbivores show a preference for young leaves as opposed to old ones, which have lower 

concentrations of nutrients and higher rigidity (Coley and Aide 1991; Coley and Barone 

1996). This means that the negative effects of area losses caused by herbivores take place 

over the leaf’s whole lifespan. As opposed to this, damage caused by abiotic factors 

increases with leaf age, which allows the young leaves to maintain their photosynthetic area 

in healthy conditions during the most productive phases of their life cycles, because 

photosynthetic rates tend to decline with leaf age (Mediavilla and Escudero 2003b; 

Niinemets et al. 2005). Therefore, the timing of the appearance of both types of damage 

would mean that in equal amounts of damaged leaf area, the effect of herbivory on 
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productivity would be more negative than that of abiotic damage. However, losses caused 

by herbivory occur at very early phases of the leaf expansion period. If leaves are still small 

at the time of the attack, the volume of resource lost might be also relatively small. In fact, 

there were no significant differences in individual area between healthy leaves and those 

attacked by herbivores within a same species and site, which suggests that losses of the 

photosynthetic area due to this kind of attack are compensated during growth, so that the 

final leaf size is independent of herbivore attack. The differences between both types of leaf 

damage thus make it difficult to assess their final effects on leaf-level carbon balance. In any 

case, for both oak species, the increase in the intensity of abiotic damage at the coldest 

sites in relation to the warmest was stronger than the decrease in herbivory, which suggests 

that the negative impact of cold temperatures on the duration of the photosynthetic surface 

would be stronger than the positive effects. As far as P. pinaster is concerned, the 

percentage of leaves damaged by abiotic stress was very high, especially after their second 

year of life, although the percentage of damaged leaf area was small (around 4-5%). 

Therefore, the reduction in the photosynthetic area at cold sites was relatively small and 

lower than the lengthening of leaf lifespan in the coldest locations. 

To our knowledge, this is the first study to provide data on the differences in anticipated 

losses of leaf area in populations of a same species located in different environments. 

Further study of other species is undoubtedly required to confirm our results. In any case, 

the anticipated loss of leaf area owing to herbivory and abiotic stress is a key factor that 

should be incorporated into models for estimating carbon sequestration capacity of the 

different tree species with the purpose of predicting future changes in ecosystem carbon 

balance. 
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