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«It is not the strongest of the species that survives, nor the most intelligent that survives. 

It is the one that is most adaptable to change» 

(Charles Darwin) 
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Since the late twentieth century, Geotechnologies are being applied in different research 

lines in Agroforestry Engineering aimed at advancing in the modeling of biophysical 

parameters in order to improve the productivity. In this study, low-cost and close range 

photogrammetry has been used in different agroforestry scenarios to solve identified gaps 

in the results and improve procedures and technology hitherto practiced in this field. 

Photogrammetry offers the advantage of being a non-destructive and non-invasive 

technique, never changing physical properties of the studied element, providing rigor and 

completeness to the captured information. 

In this PhD dissertation, the following contributions are presented divided into three 

research papers: 

• A methodological proposal to acquire georeferenced multispectral data of high 

spatial resolution using a low-cost manned aerial platform, to monitor and 

sustainably manage extensive áreas of crops.   

The vicarious calibration is exposed as radiometric calibration method of the 

multispectral sensor embarked on a paraglider. Low-cost surfaces are performed 

as control coverages. 

• The development of a method able to determine crop productivity under field 

conditions, from the combination of close range photogrammetry and computer 

vision, providing a constant operational improvement and a proactive 

management in the crop monitoring.  

An innovate methodology in the sector is proposed, ensuring flexibility and 

simplicity in the data collection by non-invasive technologies, automation in 

processing and quality results with low associated cost. 



• A low cost, efficient and accurate methodology to obtain Digital Height Models of 

vegatal cover intended for forestry inventories by integrating public data from 

LiDAR into photogrammetric point clouds coming from low cost flights.

This methodology includes the potentiality of LiDAR to register ground points in 

areas with high density of vegetation and the better spatial, radiometric and 

temporal resolution from photogrammetry for the top of vegetal covers. 

Keywords: vicarious calibration, multispectral sensor, low-cost platform, reflectance, 

photogrammetry, computer vision, automation, non-invasive technologies, digital height 

model of vegetal cover, data fusion, LiDAR, radiometric segmentation. 
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Since the last decade of the twentieth century, research lines on the applicability of 

Geotechnologies to Agroforestry Engineering have been developed, in order to optimize 

agroforestry, environmental and economic management. In this PhD dissertation, 

contributions advancing in the direction of the application of methodologies derived from 

low-cost and close range photogrammetry in this field are made. Thus, numerous 

information is available regarding to filed monitoring, aids to making decisions and 

traceability requirements and improving the intrinsic quality of agricultural and forestry 

derived products. 

Three case studies have been raised, generating a continuity in the research presented by this 

PhD dissertation: 

• multispectral aerial photogrammetry for agronomic analysis: low-cost and close 

range photogrammetry over large crop areas through paraglider. The spectral range 

of the study is among the visible and near infrared (NIR), optimal range for 

vegetation studies that enables deriving vegetation indices. The contribution of this 

research line focuses on one of the first problems to be solved in the use of 

multispectral cameras boarded on aerial platforms: the radiometric calibration of the 

sensors which allows to obtain physical quantities from digital levels stored in the 

images. At the same time, it aims to advance in the convergence of photogrammetry 

and remote sensing.

• Terrestrial photogrammetry to estimate agricultural production: low-cost and close 

range photogrammetry by reflex and compact digital cameras. The contribution to 

this research line addresses the problem posed by the imprecision in crop predicting 

enough in advance for proper planning of the harvest. The experiment was conducted 

in a vineyard and variables as volume, weight and number of berries associated to 

each cluster are estimated.

• Aerial photogrammetry for forest management: low cost and close range 

photogrammetry through paraglider over large forest extension to forest inventory 
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applications. The contribution in this line of research line aims to develop a 

methodology that combines low cost aerial photogrammetry and LiDAR existing 

data to be applied to forest inventory. Thereby, exploiting the advantages of both 

techniques is possible: on one hand, terrain LIDAR information constant in time is 

extracted; and on the other hand, modeling of vegetal cover is achieved at the 

required time thanks to the low-cost offered by photogrammetry. The case study is an 

area of pinus nigra.
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Following an introduction in which a short overview of these applications based on low 

cost and close-range photogrammetry to Agroforestry Engineering are shown, a series of 

hypotheses that seek to verify the proposed methodologies are posed: 

• Incorporation of aerial low cost and multispectral close range (visible and NIR) 

photogrammetry to agroforestry studies is an excellent technique to obtaine 

georeferenced and metric information with the required temporal, spatial and 

spectral resolution. 

• Through terrestrial low cost and close-range photogrammetry and computer vision 

algorithms is possible to estimate crop production in field conditions and semi-

automatically, particularly vineyards, by metrically modeling complex agronomic  

scenarios. 

• By integrating point clouds from LiDAR open data and the photogrammetric 

output from an alternative platform, it is possible to quickly and efficiently 

generate documentation applicable to forest management in the required area and 

time.  

���� ��+	�
,-	��

The overall objective of the research is to provide contributions to methodologies based 

on low cost and close-range photogrammetry in agroforestry scenarios for specific 

applications. 

To achieve this overall objective the following specific objectives have been established: 

1. Application of low cost and close-range multispectral aerial photogrammetry 

(visible and NIR) to agronomic analysis:  
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o adquisition of low cost georeferenced multispectral data with a high spatial 

resolution over crops. 

o vicarious calibration of a low cost multispectral sensor from paraglider 

through economic control surfaces for crop applications. 

2. Application of low cost and close-range photogrammetry to estimate vineyard 

yield: 

o vineyard yield estimation under field conditions by using a low cost and non-

invasive method that serves as support tool to take decisions in advance. 

o 3D bunch modeling through technique hybridization of photogrammetric and 

computer vision ensuring semi-automatism, flexibility and quality, by a proper 

tool called PW (Photogrammetry Workbench) developed bt TIDOP research 

group. 

o development of different techniques of computational geometry for the 

recovery of the non-visible side of the bunch using convex hull techniques. 

o development of algorithms to estimate vineyards production variables. 

3. Application of the low cost and close-range aerial photogrammetry to forest 

management: 

o development a low cost, efficient and accurate methodology to obtaine 

Canopy Height Models in the desired area and time, destined for forest 

inventories. 

o integration of LiDAR terrain open data data with minor temporal 

variability into photogrammetric point clouds obtained using a low-cost 

platform. 

o correction model between the two data sources to minimize the 

georeferencing errors. 

o supervised classification of vegetation based on image colour, using the 

radiometric values of the point cloud in the visible spectrum. The analysis 

is based on different digital levels percentages between two pairs of strips 

(R-G and R-B) according to a reference green. 
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Below, the three scientific papers published in hight impact journals are presented.
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a b s t r a c t

This article proposes a vicarious calibration as a radiometric calibration method using an onboard mul-

tispectral sensor and a low-cost manned aerial platform, PPG (powered paraglider) trike. The statistical

analysis of the errors shows the precision reached with this methodology. The greatest advantage offered

by this type of manned platforms is its flexibility of flight, autonomy and payload capacity, allowing

multiple sensors to be integrated without constraints to weight and volume. The results were validated

at two different heights in order to verify the solution obtained with the method, demonstrating the

insignificance of relative atmospheric influence between the aerial platform and ground using this

platform according to the radiative transfer model on a clear and sunny day. At the same time, the study

aims to develop a new trend for remote sensing that will assists in decision making for the sustainable

management of extensive crop areas using low-cost geomatic techniques. As a result of the radiometric

calibration process, georeferenced images with different vegetation indices over vineyards are obtained.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The possibility of loading multispectral cameras on low-cost

manned aerial platforms such as PPG trikes enables highly accurate

radiometric studies to be performed. Therefore, it is desirable that

the sensor should be subjected a calibration in which the radio-

metric behavior of each pixel in the different regions of the

spectrum is analyzed, using as ‘‘ground truth’’ the radiance

obtained on different targets with the calibrated spectroradiome-

ter (Honkavaara et al., 2009). The basis of this behavior lies in

the fact that each body has a typical and different pattern of

reflected/emitted energy when it is influenced by electromagnetic

energy, which distinguishes it from other materials (Chuvieco and

Huete, 2009) depending on atmospheric conditions and the sensor

characteristics (Biggar et al., 2003).

The main limitation of PPG trikes to make use of methodologies

based on quantitative remote sensing is the need to develop

radiometric calibration methodologies to obtain validated radiance

data. As advantages, PPG trikes are able to acquire higher spatial,

spectral and mainly temporal resolution data with a lower

associated cost (Hailey, 2005) and, also, the relative atmospheric

corrections required for validating the radiance data are likely to

be insignificant on a clear and sunny day. The high spatial resolution

data available from conventional platforms, such as satellites and

manned aircrafts, is usually limited to a Ground-Sample Distance

(GSD) of 50 cm/pixel. Instead, PPG trikes are capable of flying lower

than a conventional manned aircraft and therefore acquire images

of higher resolution, reaching up to 5–10 cm/pixel. In addition, the

ease of flight planning permits better temporal resolution than clas-

sic photogrammetric flight planning (Hernandez-Lopez et al., 2013).

In satellite systems, temporal resolution is limited by the coverage

patterns of the satellite’s orbit, involving lengthy periods in the

delivery of the results (unfavorable temporal resolution) (Berni

et al., 2009). Regarding unmanned aerial systems (UAS), the payload

capacity and volume of onboard sensors as well as the limited flight

autonomymeans that themapping andmonitoring of large surfaces

and ground covers are unviable. Last but not least, the progress of

microelectronics in the field of navigation equipment (GNSS/IMU-

Global Navigation Satellite System/Inertial Measurement Unit) has

made it possible to provide these low-cost manned platforms with

a quality solution to determine the spatial and angular position of

the sensors and consequently their trajectory.

A key factor in the suitability of close-range remote sensing for

vegetation analysis (i.e. precision agriculture) is based on the fact

that such sensing procedures are non-destructive and non-

invasive, providing similar accuracy to destructive field methods

(Zhang and Kovacs, 2012). More specifically, the spectral signature

http://dx.doi.org/10.1016/j.compag.2014.07.001

0168-1699/� 2014 Elsevier B.V. All rights reserved.
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of a given crop is directly related to its phenological, physiological

and morphological characteristics, such that any change in the

plant will also disturb its reflectance (Lass and Callihan, 1997;

Schmidt and Skidmore, 2003). These differences in the intrinsic

spectral behavior of each species allow their discrimination and

mapping by analysis techniques and digital classification. This is

why the spectral signatures of different types of vegetation can

be assessed, supported by vegetation indices and the subsequent

biophysical magnitudes used in agricultural applications.

The most widely used and most familiar vegetation index is the

Normalized Difference Vegetation Index (NDVI) developed by

Rouse et al. (1974), which is based on contrasts between maximum

absorption in the red spectral region, because of chlorophyll pig-

ments, and maximum reflection in the infrared region, caused by

the cell structure of leaves and reflection of the cover due to its

structure. Despite its intensive application, in cases of dense covers

or those consisting of several layers the NDVI becomes saturated,

such that a non-linear relationship with biophysical parameters

such as the Leaf Area Index (LAI) (Baret and Guyot, 1991) is seen.

The next generation of vegetation indices were developed taking

into account the linearity of the cover fraction and the leaf area

index, but normalizing soil brightness and color (Gilabert et al.,

2011). As implied by their name, these indices refer to the soil

and include the Soil Adjusted Vegetation Index (SAVI) (Huete,

1988) and the Modificied Soil Adjusted Vegetation Index (MSAVI)

(Qi et al., 1994).

Other indices have been designed taking into account the spec-

tral behavior of the soil in study areas, maintaining the sensitivity

to biophysical magnitudes such as the Generalized Soil Adjusted

Vegetation Index (GESAVI) (Gilabert et al., 2002). GESAVI showed

good results for its linearity with LAI and soil noise reduction, sim-

ulating reflectances with radiative transfer models and with exper-

imental data. A study by Broge and Leblanc (2001) addressing

radiative transfer models has shown that the MSAVI is the best

LAI estimator in terms of sensitivity-to-cover effects, variations

in the cover parameters and the spectral properties of the soil. In

the present work, the above vegetation indices were calculated

in order to show the potential of multispectral calibrated images

in agronomy.

Many studies have been carried out using multispectral and

hyperspectral aerial and satellite images in the evaluation of crops

(Herwitz et al., 2004; Chen et al., 2006; Zarco-Tejada et al., 2004).

In fact, some authors have published works that, using multispec-

tral, thermal or other conventional cameras on board small aircraft

or unmanned helicopters, demonstrate the viability of these as

platforms for image acquisition for plant studies (Esposito et al.,

2007; Xiang and Tian, 2007; Turner et al., 2011; Zhao and Peng,

2006). However, to date there are no studies in which low-cost

manned platforms such as PPG trikes have been used for crop mon-

itoring. These offer an ideal platform for the study of large exten-

sions of crops due to the above requirements.

The purpose of this article is to evaluate a new methodology

aimed at acquiring georeferenced multispectral data of high spatial

resolution after a radiometric calibration of the multispectral sen-

sor for the monitoring of crops and the detection of areas with

pathologies or hydric and nutritional deficiencies. To validate the

methodology, a cultivated area of 5.4 ha was studied via aerial-tri-

ke overflights at different heights, using open-source software and

tools. Thus, for vicarious calibration a GNU Octave (GNU, 2013)

code was implemented.

The article is structured as follows: after the Introduction, Sec-

tion 2 defines the method of vicarious radiometric calibration. In

Section 3, the instruments used and the method developed are

described. The experimental results and their discussion are given

in Section 4, and the most significant conclusions are outlined in

Section 5.

2. Vicarious radiometric calibration

The analysis of data captured by multispectral cameras requires

prior knowledge of the radiometric calibration parameters of each

channel to obtain correct interpretations. The calibration method

chosen here was vicarious calibration (Dinguirard and Slater,

1999; Hernández-López et al., 2012), which involves performing

an absolute radiometric calibration under flight conditions in an

in situ radiometric measurement campaign. In this mode, the abso-

lute method based on radiances was chosen because the digital

level (DN) that defines each pixel is directly related to the radiance

detected by the sensor (Hiscocks, 2011). The method based on

radiances is theoretically more accurate than those based on reflec-

tance, because it has an uncertainty of approximately only 2.8% as

compared with 4.9% for the latter case (Biggar et al., 1994). This

lower value is derived from the calibration and stability of the

spectroradiometer required for calibration.

To carry out the radiometric adjustment, low-cost surfaces

compared to other more expensive lambertian ones, have been

selected as the ground control targets (invariant targets) to

approximate comparable and homogenous spectral behavior under

nadir observation angles to flight measurements (Davranche et al.,

2009). In addition, via various laboratory tests and field studies the

invariant reflective capacity for a period of time in which these sur-

faces were not damaged was confirmed. From the multispectral

aerial images, the digital levels of these targets can be extracted

and the radiance measured is obtained with the spectroradiometer

on the ground, establishing a linear model for each spectral band of

the sensor. To assess the effects of the atmosphere in terms of radi-

ative transfer, the 6S Model (Vermote et al., 1997) was imple-

mented, which transforms the radiance measured at the ground

into that obtained at the height of the sensor. Finally, the results

were validated with natural and artificial check targets (pseudo-

invariant targets), contrasting the radiances calculated by the cal-

ibration parameters with those measured directly in the field.

Fig. 1 shows the workflow followed in the radiometric

calibration process.

3. Materials and methods

3.1. Materials

The following equipment was employed for data acquisition:

� A GNSS device, Leica 1200. This consists of a RTK dual frequency

receiver and geodetic GPS L2C and double dual-frequency

antenna with L2C and serves to georeference control and check

targets.

� A six-channel multispectral camera: Tetracam Mini-MCA. Each

of the six channels of the camera is constituted by a CMOS

(Complementary Metal–Oxide–Semiconductor) sensor and a fil-

ter with a preset performance against the spectral range. The

spectral response of CMOS sensors is not uniform due to quan-

tum efficiency and sensitivity. Neither do filters exhibit homo-

geneous transmission between each other. The effect of the

combination of CMOS and the six filters results in a reduction

in camera radiance, different per each wavelength. The camera

specifications are defined in Table 1. The choice of the filter

wavelengths (detailed in Table 2) was optimized for the evalu-

ation of the particular behavior of the vegetation, avoiding areas

of atmospheric absorption.

� A manned aerial platform supported by a powered paraglider

(PPG) trike built by Airges. Its technical specifications are shown

in Table 3. The Mini-MCA camera was loaded onto the PPG trike

using an auto-stabilized mounting platform.
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� An aluminum multi-sensor gimbal (stabilized platform) where

the multispectral camera is affixed. In particular, the gimbal

includes two servomotors arranged on the x and y axes to main-

tain the vertical position of the camera along the flight path

with precision. The servomotors are controlled by an Arduino

board, which incorporates an IMU with 6 degrees of freedom:

3 accelerometers with a range of ±3.6 G m sÿ2, a double-shaft

gyroscope (for pitch and roll) and an additional gyroscope for

yaw (both gyroscopes have a measurement range of ±300 /s).

The software developed for the control of the device was based

on Quadl_mini V 20 software, with DCM (Direction Cosine

Matrix) as the management algorithm of the IMU (Premerlani

and Bizard, 2013).

� A low-cost GNSS system based on a single-frequency receptor,

with a signal reception of GPS constellation and SBAS (Satellite

Based Augmentation System) (NavCen, 2008). The GNSS

antenna is installed on the camera platform close to the optical

center of the camera to minimize the baseline. In order to con-

trast the GNSS altitudinal accuracy that affects the final GSD, a

DigiFly VL100 barometer was installed. Thus, horizontal posi-

tioning during flight was performed by the NMEA (National

Marine Electronics Association) protocol of the GNSS system

using RTKNAVI software (Takasu, 2009), with corrections from

the ground from another similar board equipment, allowing

DGPS accuracies better than 1.5 m in planimetry and 2 m in

altimetry to be achieved in real time, and better than 0.5 m in

3 dimensions in postprocessing.

� A general purpose FieldSpec 3 ASD (Analytical Spectral Devices)

spectroradiometer, used for the different targets (control and

check) and specifically designed to acquire spectral

measurements (radiance and irradiance) in the visible and near

infrared ranges. The main technical specifications of the spect-

roradiometer are shown in Table 4.

Fig. 1. Workflow of the vicarious radiometric calibration process.

Table 1

Technical specifications of the Mini-MCA multispectral camera.

Parameter Value

Number of channels 6

Weight 700 g

Resolution 1.3 Mp per Channel

Image size 1280 � 1024 pixels

Radiometric resolution 8 bits

Capture speed 1.3 frames/s

Pixel size 5.2 lm

Focal length 9.6 mm

Table 2

Channel specifications of the Mini-MCA camera.

Channel kmin (nm) kmax (nm) Exposure time (%)

0 740 820 100

1 510 550 130

2 650 690 125

3 660 740 100

4 720 760 100

5 760 840 100

Table 3

Technical specifications of the manned aerial platform, PPG trike.

Parameter Value

Empty weight 110 kg

Maximum load 220 kg

Autonomy 3.5 h

Maximum speed 60 km/h

Motor Rotax 503

Tandem paraglide MACPARA Pasha 4

Emergency system Ballistic parachutes GRS 350

Gimbal Stabilized with 2 degrees of freedom

Minimum sink rate 1.1

Maximum glide 8.6

Plant surface 42.23 m2

Projected area 37.8 m2

Wingspan 15.03 m

Plant elongation 5.35

Central string 3.51 m

Boxes 54

Zoom factor 100%
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3.2. Methods

3.2.1. Flight planning and execution

The study area was located in an experimental field of the ITAP

(Provincial Agricultural Technical Institute) near Albacete (Castilla

La Mancha, Spain), about 21 km from the capital. Data collection

was performed on the 20th of June 2013 around a vineyard, grass

and a Papaver somniferum crop of 5.4 ha.

Proper flight planning is important to ensure that the data cap-

tured will fit the theoretical parameters pursued; it also optimizes

available resources and ensures a higher quality image, minimizing

capture time.

First, the study area and subsequently the plot flight paths were

defined. Then, the flight planning process defined the position and

orientation of the camera, the design of different blocks of images,

determination of the overlaps between different images, the neces-

sary shot angles and guarantee of the scale through choice of the

pixel size on the ground (GSD). A GSD of 0.08 m and 0.15 m was

selected in this study.

The geomatic information required for the flight planning pro-

cess can be obtained freely from the National Center of Geographic

Information in Spain (CNIG), from its National Aerial Orthoimage

Plan (PNOA, 2009) with a GSD of 0.25 m and a Digital Terrain

Model (DTM) with a 5-m grid resolution.

Flight planning was performed by considering the relationship

between flight altitude over the ground (H), the GSD, the focal

length of the sensor (f) and pixel size, as described in Eq. (1).

f

H
¼ pixel size

GSD
ð1Þ

Considering Eq. (1), the characteristics of the camera (Table 1)

and the required GSD of 0.08 m and 0.15 m, flight altitudes over

the ground of 145 m and 245 m are obtained respectively. Also,

additional restrictions, such as a minimum forward overlap of

60% and a minimum side overlap of 20% were established. The

flight planning obtained is outlined in Fig. 2, where rectangles

are the areas capture by each image shot in the point position.

3.2.2. Field data acquisition

In the study area, control and check targets were selected and

positioned (Fig. 3) taking the GSD dimension into account.

The control and check targets used in the data collection are

specified for both flights in Table 5.

In the radiometric campaign, calibration targets were character-

ized by the spectroradiometer as radiant flux detector. During data

acquisition, the angle between the gun of the spectroradiometer

and the targets measured was kept as orthogonal as possible, tak-

ing two measurements with an average of 30 spectral measure-

ments per cover. In order to avoid the BRDF effects, the tarps

have been characterized at field with enough number of samples

to reject spectral reflectance anomalies.

Figs. 4 and 5 show the spectral signatures of the colored and

grayscale tarps acquired in the radiometric campaign. The reflec-

tance of these targets was obtained as the ratio of the reflected radi-

ance of each cover and the irradiance provided by a reference target

(Spectralon! 99%), both measured with the spectroradiometer.

At the same time, and in order to avoid significant atmospheric

variations, a planned PPG trike flight was conducted over the study

area with a 0.08 m GSD (at 145 m height) and 0.15 m GSD (at

245 m height), capturing multispectral images (Fig. 6) and finally

choosing those in which the maximum number of control and

check targets appeared.

3.3. Calibration methodology and fitting model

Measured radiance serves as ground truth, establishing a con-

nection with the digital level of the corresponding wavelength.

On one hand, radiance was measured in a spectral range of 350–

2500 nm with a nanometer resolution. On the other, the Mini-

MCA recorded digital levels in its 6 channels, characterized by

the response of the filters and CMOS per wavelength. Thus, the

radiometric measurements were resampled and standardized for

the spectral resolution of the camera.

In addition, digital levels were corrected for vignetting and the

systematic background noise produced by each lens (Kelcey and

Lucieer, 2012). The vignetting study was performed at the labora-

tory with uniform lighting, capturing images of a white pattern

with low specular reflection (Zheng et al., 2009). The systematic

background noise was evaluated at the laboratory under the

absence of lighting conditions and analyzing the average response

of the camera per channel for its different exposure times.

Because there are several images involved in calibration adjust-

ment, a homogenization factor of luminance between images was

taken into account to neutralize the exposure differences. These

differences are caused by changes in lighting between different

image captures and the exposure time of each channel, according

Table 4

Technical specifications of the FieldSpec 3 ADS Spectroradiometer.

Parameter Value

Spectral range 350–2500 nm

Shooting time 0.1 s

Spectral resolution 1 nm

Field of view 25 

Fig. 2. Flight planning of 0.15 m GSD (at 245 m height) (a) and 0.08 m GSD (at 145 m height) (b).
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to the manufacturer. This factor corrects digital levels and depends

on the channel and the image. Also, a common unknown per image

and invariant for each channel was included in order to absorb pos-

sible discrepancies between the standard and real atmosphere for

each image.

The mathematical model used is shown in the following figure

(Fig. 7), where X is the vector of calibration coefficients

(unknowns); A is the design matrix (corrected digital levels of con-

trol targets in the images) and L is the vector of independent terms

(radiance measures of control targets).

Eq. (2) summarizes this model:

L ¼ F0 þ F1 � DNc; ð2Þ

where

Fig. 3. Terrestrial image of the control targets for the radiometric calibration (a) aerial image of the calibration targets and study area (b).

Table 5

Description of the control and check PCV targets.

Control Type Material Size Color

PVC tarp 5 m � 1 m Grayscale (5 steps)

Control targets Artificial PVC tarp 5 m � 1 m Black

Gray

White

Red

Green

Blue

Check targets Artificial PVC surface 0.55 m � 0.35 m Black

Gray

White

Red

Green

Blue

Brown wrapping paper

Cork

Cardboard

Grass

Ground

Natural Grapevine

Papaver somniferum

Fig. 4. Spectral signature from 350 nm to 1300 nm of the control targets (PVC tarps) obtained in the field with the spectroradiometer.
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L is the measured radiance of each control target,

DNc is the digital level of control targets corrected by lumi-

nance, vignetting and the systematic background noise,

F0 is the offset calibration coefficient of each channel,

F1 is the gain calibration coefficient of each channel.

The unknowns are obtained by solving the over-determined

system without rank default, performing a robust estimation with

the Danish Method (Krarup et al., 1980), which rejects the out-of-

range observations (outliers), giving a series of weights based on

the residual values obtained in the previous iteration.

3.4. Atmospheric correction

In aerial radiometry, the aim is to determine physical values at

ground level. In this way, an atmospheric model must be applied to

study the behavior of radiance propagation because of scattering

and absorption processes (Hernández-López et al., 2011). In this

study case, the 6S radiative transfer model (Vermote et al., 1997)

was applied for the less favorable flight (0.15 m GSD flight at

245 m height).

With regard to atmospheric parameters, the values of aerosol

optical depth (AOD) were taken from AERONET (aerosol robotic

Fig. 5. Spectral signature from 350 nm to 1300 nm of the control targets (Grayscale tarp) obtained in the field with the spectroradiometer.

Fig. 6. Multispectral images used in the radiometric calibration process.

M. Herrero-Huerta et al. / Computers and Electronics in Agriculture 108 (2014) 28–38 33



network). Owing to the absence of closer stations, the AOD value

was extracted as the average of the values of two closest stations,

approximately 200 km from Albacete in the North-West and

South-East directions (Madrid and Burjassot, respectively).

For each control target, sun direction was obtained at the

moment of image acquisition, expressed by the geodetic azimuth

and the zenith angle from the vertical. For this calculation, the

Solar Position Algorithm (SPA) library (Reda and Andreas, 2004)

was used. The input parameters were obtained from known flight

data and GNSS measurements. Once solar direction had been cal-

culated, the atmospheric parameters were obtained from the 6S

Model, which creates an atmospheric profile on the control targets

involved in the calibration process for each of the channels. Among

the atmospheric parameters calculated, irradiance per image and

channel and radiance and reflectance at ground and sensor per tar-

get and channel were included.

According to the data obtained, the relative influence of the

atmosphere is minimal because the atmospheric column spanned

by the radiation is unimportant and can be neglected in the calcu-

lations, demonstrating that sensor radiances at 1 m or 245 m

height (using 6S model (Vermote et al., 1997)) were fairly similar

to those measured at ground level with the spectroradiometer.

3.5. Derived geomatic products

Geomatic products are characterized by their spatial, spectral,

radiometric and temporal resolution (Aber et al., 2010). In the pres-

ent case, spatial resolution was limited by a GSD of 0.15 m, consid-

ered sufficient for this type of agricultural study. Temporal

resolution was established considering the phenological aspects

of the crop and environmental aspects. Regarding spectral resolu-

tion, this is limited to the band width of the six filters chosen to

detect certain types of plant behavior in the most appropriate

spectrum, avoiding areas of atmospheric absorption.

Advances in computer vision, photogrammetry and new low-

cost GNSS and IMU systems make it possible to obtain orthoimages

generated from images captured with a non-metric digital camera

aboard a low-cost aerial platform (Aber et al., 2010).

Finally, images were georeferenced considering Coordinate Ref-

erence System (CRS) ETRS89 UTM 30 (EPSG code 25830), which is

required by Spanish legislation in all geomatic products. In the

navigation phase, which uses a GNNS, WGS84 CRS was employed

(EPSG code 4326).

4. Experimental results and discussion

Below, the calibration parameters of the Mini-MCA camera are

reported. F0 is the offset coefficient and F1 is the gain coefficient

(Tables 6 and 7) obtained for each of the six channels achieved in

the mathematical fitting of the two flights with different GSD.

The a posteriori variance in unit weight shows a value of

0.0043Wmÿ2 srÿ1 and a correlation coefficient of adjustment, R2,

of 0.9940.

In both flights, the detection of outliers was studied in order to

avoid outliers. Standardized errors were calculated with the Pope

Statistical Test (Pope, 1976), the maximum standardized residual

of 2.800 remaining under the threshold of 3.916 established at

the 95% of confidence level with a Tau distribution.

Together with the detection of outliers, internal fiability was

tested by means of redundancy number analysis. As a result, all

the equations contribute to approximately the same extent, with-

out there being an increased presence of certain observations,

due to the internal design of the proposed system, confirming

the absence of outliers in the observations. The redundancy num-

bers of the adjustment entail a range between 0.9306 and 0.9995

for both flights.

A statistical analysis of the resulting coefficients for both flights

was performed in order to assess their differences. The statistical

parameter was defined as:

Z ¼ l1 ÿ l2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

r2
l1

þ r2
l2

q ð3Þ

where rl1 is the standard error of the mean value calculated as:

rl1
¼ r

ffiffiffi

n
p ð4Þ

The critical value for a two-tailed test at 5% of significance is

±1.96 using a normal distribution. According to the results shown

in Table 8, the resulting coefficients of both flights show no signif-

icant differences, so the null hypothesis of both samples belonging

to the same distribution can be accepted.

Fig. 7. Mathematical model of the radiometric calibration process.

Table 6

Radiometric calibration coefficients of the multispectral camera for 0.08 m GSD flight

(at 145 m height) in radiance units (W mÿ2 srÿ1).

Channel F0 value F1 value

0 ÿ60.5584 2627.3057

1 19.2122 4002.9353

2 2.7057 3108.6876

3 ÿ13.0825 2590.2099

4 ÿ84.4579 4349.9835

5 ÿ60.9567 2660.1684

Table 7

Radiometric calibration coefficients of the multispectral camera for 0.15 m GSD flight

(at 245 m height) in radiance units (W mÿ2 srÿ1).

Channel F0 value F1 value

0 ÿ77.1444 2548.2911

1 15.6807 3798.3712

2 ÿ16.4305 2930.0517

3 ÿ20.3672 2428.5566

4 ÿ89.7453 4250.6229

5 ÿ67.3736 2947.6022
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To address statistical significance, two complementary hypoth-

eses were established. In this case, H0 establishes that residual val-

ues are distributed according to a normal distribution with mean

zero, whereas Ha considers that the distribution mean is a nonzero

value. The F0 and F1 parameters were studied in both flights,

obtaining p-values greater than 0.279 and less than 0.001 respec-

tively. Working with a 95% confidence interval, the F0 coefficient

may be negligible but not the F1 coefficient. This is in agreement

with the specifications of the manufacturer in that the offset

parameter is negligible. To validate the results, the mean of the

absolute values of the residuals per channel of the targets (control

and check targets) between the measured and calculated radiance

was used. This parameter was always below 0.01 Wmÿ2 srÿ1

(Table 9).

Because the residuals in the 0.08 m GSD flight were lower than

in the 0.15 m GSD flight, the parameters at 0.08 m GSD flight were

analyzed in order to be used in future studies. Fig. 8 shows a

representation of the mean radiance errors of the different control

targets per channel used in the calibration process.

A statistical study was conducted to check the calibration pro-

cess Table 10 shows the statistical parameters of errors (Eq. (5))

calculated as differences between ground radiance measurement

with the spectroradiometer on check targets and radiance calcu-

lated by digital levels and the parameters resulting from the cali-

bration process (Eq. (6)).

v ¼ Lmeasured ÿ Lcalculated ð5Þ

Lcalculated ¼ F0 þ F1 � DNc ð6Þ

where

v: check target error,

Lmeasured: check target measured radiance,

Lcalculated: check target calculated radiance,

DNc: digital level corrected by variations in exposure time

between channels, vignetting and systematic background noise,

F0: offset calibration coefficient from each camera channel,

F1: gain calibration coefficient from each camera channel.

The standard deviation (r) (Eq. (7)), root mean square error

(rmse) (Eq. (8)) and average error jv!j in absolute values (Eq. (9))

are shown in Table 10, and are defined as follow:

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

nÿ 1

X

n

i¼1

ðv i ÿ �vÞ2
v

u

u

t ð7Þ

rmse ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n

X

n

i¼1

ðv iÞ2
v

u

u

t ð8Þ

jv!j ¼
Pn

i¼1jv ij
n

ð9Þ

This shows that most of the check targets, assumed to be

pseudo-invariant targets, are suitable for the validation of radio-

metric calibration. In general, artificially colored uniform surfaces,

such as PVC targets, provided the best precision in the six channels

Table 8

Statistical comparison of the radiometric calibration coefficients of both flights.

Channel F0 F1

Z score P value Z score P value

0 0.0143 0.9886 0.0399 0.9682

1 0.0033 0.9974 0.0979 0.9220

2 0.0167 0.9866 0.0922 0.9265

3 0.0066 0.9948 0.0886 0.9294

4 0.0046 0.9963 0.0406 0.9676

5 0.0055 0.9956 ÿ0.1341 0.8933

Table 9

Mean of the absolute values of the residuals per channel in W cmÿ2 srÿ1.

Flight GSD(m)/height(m) Ch. 0 Ch. 1 Ch. 2 Ch. 3 Ch. 4 Ch. 5

0.08/145 36.22 43.71 42.77 35.82 37.32 31.46

0.15/245 45.32 66.29 53.46 52.07 47.41 54.88

Fig. 8. Mean of the radiance errors of the different control targets (Wmÿ2 srÿ1) per channel.
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of the spectrum, while more heterogeneous surfaces such as the

ground or vegetation afforded poorer results. These are anisotropic

and less homogeneous surfaces than PVC, with higher variations in

the radiance leaving the target and its reflectance. This produces a

slight increase in its rmse and r.
All these results confirm the feasibility of using tarps of differ-

ent colors as a low-cost alternative to spectralon with certain lim-

itations for vicarious radiometric calibration. As a result, several

measurements can be obtained by increasing the number of targets

and hence improving the quality of the mathematical fitting.

Although not aiming to investigate the performance of the dif-

ferent vegetation indices, an example of the product generated

using the georeferenced multispectral reflectance images is pro-

vided in this work in order to highlight its potential in agricultural

studies. Four multispectral vegetation indices were selected taking

into account that they are widely applied in agronomy owing to

their sensitivity to vegetation and their normalization of soil back-

ground brightness and color: NDVI, SAVI, MSAVI and GESAVI. The

latter was parameterized for the soil characteristics in the study

area.

These images were processed with algorithms defined in the

2nd and 5th channel of the multispectral sensor (670 and

800 nm) (Fig. 8) through an implemented code in GNU Octave

software.

The reflectance of each pixel was obtained from the calculated

radiance and irradiance per channel acquired previously with a cal-

ibrated PVC target that appeared on the image, according to Eq.

(10) for each sensor channel [24], under the assumption of a Lam-

bertian surface.

q ¼ Lcalculated � p
E

ð10Þ

where Lcalculated is the radiance calculated from each target and E is

the irradiance per channel.

Although the indices addressed here do not have the same

range of variation, all of them identify the plant trellis in the scene,

as can be seen in Fig. 9. They enhance the photosynthetic activity in

the scene, showing not only the presence of the vineyard plants but

also other small plants between the rows. The darkest areas corre-

spond to non-vegetated areas. These images can also be compared

quantitatively to other flight dates allowing the vineyard to be

monitored for the managing of nutrients, diseases or water supply

within the plot.

Table 10

Statistical values of errors in the vicarious calibration performed on different check targets expressed in radiances (W mÿ2 srÿ1), where r is the standard deviation, rmse is the root

mean square error, and j�v j is the average absolute error value.

Target Statistical parameter Channel 0 Channel 1 Channel 2 Channel 3 Channel 4 Channel 5

Blue PVC r 61.33 54.88 17.00 33.03 44.62 63.75

rmse 68.49 47.77 86.02 140.20 74.55 55.22

j�v j 43.25 43.25 84.75 137.25 63.75 45.00

Gray PVC r 181.10 80.38 87.59 68.52 93.27 42.43

rmse 158.47 417.84 272.76 140.18 104.63 37.41

j�v j 124.25 412.00 262.00 127.00 103.00 33.00

Green PVC r 49.11 59.61 80.64 46.12 68.77 43.07

rmse 151.11 189.90 137.55 140.78 151.22 177.71

j�v j 145.00 182.75 118.50 135.00 139.00 173.75

Red PVC r 146.71 20.94 144.03 112.53 198.00 111.80

rmse 270.67 42.56 588.37 352.01 350.12 225.13

j�v j 239.00 38.50 575.00 338.25 305.25 203.25

Black PVC r 15.41 37.10 18.63 41.84 38.20 28.52

rmse 167.51 222.40 211.18 186.09 180.31 157.67

j�v j 167.50 222.38 211.18 186.05 180.28 157.65

White PVC r 214.36 133.39 195.42 209.22 230.73 167.65

rmse 560.86 1492.48 1063.80 666.12 590.34 491.68

j�v j 529.25 1488.00 1050.25 641.00 555.50 469.75

Ground r 9.90 11.31 7.07 24.75 28.99 12.02

rmse 99.25 149.21 287.04 95.12 113.37 42.36

j�v j 99.00 149.00 287.00 93.50 111.50 41.50

Brown Wrapping Paper r 58.94 84.68 81.93 103.23 111.70 101.10

rmse 51.27 73.98 153.66 94.62 96.43 89.79

j�v j 47.67 63.00 138.33 80.33 87.33 86.67

Cardboard r 57.14 52.00 73.60 138.30 88.06 93.22

rmse 436.17 591.19 731.14 466.21 421.84 351.67

j�v j ÿ433.67 ÿ589.67 ÿ728.67 ÿ452.33 ÿ415.67 ÿ343.33

Grass r 141.20 69.85 48.06 54.24 100.34 112.49

rmse 129.85 102.45 58.18 63.52 90.71 112.71

j�v j 127.40 81.20 42.40 44.20 75.60 106.80

Grapevine r – – – – – –

rmse 169.00 59.00 42.00 22.00 294.00 128.00

j�v j 169.00 59.00 42.00 22.00 294.00 128.00

Cork r 14.14 26.16 72.12 65.05 91.22 29.70

rmse 417.12 330.02 629.07 473.24 416.52 384.57

j�v j 417.00 329.50 627.00 471.00 411.50 384.00

P. somniferum. r – – – – – –

rmse 469.00 185.00 355.00 225.00 334.00 345.00

j�v j 469.00 185.00 355.00 225.00 334.00 345.00
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5. Conclusions

This paper describes a successful methodology for radiometric

calibration using the vicarious method of a multispectral Mini-

MCA camera aboard a low-cost manned aerial platform and using

low-cost targets of invariant reflectivity material. The statical anal-

ysis of the errors confirms the validity of the method. For this pur-

pose, a flight at two different heights was carried out to test

adjustment stability, the calibration coefficients being statistically

consistent in both cases, demonstrating insignificant relative

atmospheric effects occurring in flights below 300 m on a clear

and sunny day. In fact, this is the maximum height at which these

platforms are permitted to fly according to Spanish legal

constraints. The results confirm a new trend for low-cost remote

sensing, together with the use of the latest computer vision tech-

niques and open-source geomatic tools. In this study case, the cal-

ibrated geomatic products can be used to successfully evaluate and

classify large areas of different crops, allowing decisions to be

made about irrigation, nutritional support and crop development

through accurate georeferenced and calibrated multispectral

images. Compared to classic aerial photogrammetric platforms

(aircraft), the proposed methodology cuts costs. Regarding satellite

systems, their temporal and spatial resolution generates a major

limitation in applications to crops. The potential of this PPG trike

system is evident, with the possibility of being able to load it with

a large number of sensors that extendmultispectral studies, afford-

ing the advantage of a flying height that minimizes the need for

atmospheric corrections. Here, the potential of deriving quantita-

tive magnitudes such as vegetation indices is also shown. Future

works will address the assimilation of the calibrated images into

agronomic models to evaluate their consistency with advanced

biophysical variables.
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a b s t r a c t

This manuscript focuses on developing a workflow for determining the productivity of vineyards in a

novel and innovative way, ensuring flexibility and simplicity in data acquisition, automation in the pro-

cess and high-quality results, using low cost sensors. The non-invasive system proposed allows the deter-

mination of yield at cluster level by combining close-range photogrammetry and computer vision.

Bunches are reconstructed in 3D from images processed with Photogrammetry Workbench software

(PW) developed by the authors. Algorithms and techniques were combined to estimate the most relevant

parameters in the productivity of a vineyard: volume, mass and number of berries per bunch. To validate

the workflow proposed, a sample of laboratory tests based on dimensional analysis of the clusters

together with the single count of berries, were analyzed to establish the groundtruth. The results

achieved from the scaled models and different estimation parameters were contrasted. The results con-

firm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis of the

productivity of the vineyard and affording a constant operational improvement and proactive

management.

Ó 2014 Elsevier B.V. All rights reserved.

1. Introduction

The development of innovative technologies in viticulture to

monitor vineyards is encouraged because of their huge environ-

mental and economic impact on society. Computer vision systems

are highly suitable for this purpose because they are a non-contact

and non-destructive technique (Chherawala et al., 2006). The

application scenarios of digital image analysis cover yield estima-

tion, quality evaluation, disease detection and grape phenology

(Whalley and Shanmuganathan, 2013). One of the main concerns

in the wine industry along history has been the accurate and objec-

tive estimation of the yield and the oenological potential of vine-

yards: yield forecasting or harvest forecasting. Currently, this is

still an unresolved issue and is of great technical and economic

importance (Wolpert and Vilas, 1992; Clingeleffer et al., 2001;

Dunn and Martin, 2004). A precise vineyard yield estimation

allows more efficient grapevines to be obtained, their qualitative

potential to be established, and the production of higher-quality

wines (Dunn and Martin, 2003). Roby et al. (2004) checked that

berry size is a determining factor for winegrape quality where

the berry small size is related to lack of water and the variation

in berry size indicates an inhomogeneous maturation. Also, this

estimation influences decision-making techniques, such as the

execution of vineyard score sheets.

Currently, the methods applied at industrial scale to estimate

the productivity of vineyards are destructive, labour- and time-

demanding (Martin et al., 2003) and, therefore, economically

non-viable. Furthermore, several methods are based mostly on a

visual inspection of the vineyard so the final data cannot guarantee

reliability and accuracy. In light of this, a specific software (Grape

Forecaster) was developed (Martin et al., 2003) to calculate the

final harvest, allowing only historical information on yield compo-

nents and variations from year to year to be collected. Blom and

Tarara (2009) proposed a method based on the tension of the wires

of the conduction system, which is expensive. Grape yield assess-

ment was studied from the point of view of water availability

and its effects on yield and berry quality attributes (Serrano

et al., 2012) by expensive measuring techniques. For these reasons,

in recent years image analysis has begun to be applied in

viticulture in attempts to assess the vegetative state or

performance of vineyards in some countries such as Australia

http://dx.doi.org/10.1016/j.compag.2014.10.003
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(Dunn and Martin, 2004) or the U.S. (Nuske et al., 2011). More

concretely, Dunn and Martin (2004) captured in field images using

a white screen behind the canopy and extracted the colour features

to classify the berry clusters, using manual thresholds and

tolerances for the segmentation. The work of Nuske et al. (2011)

involves a visible light camera boarded in a small vehicle to survey

the entire vineyard. The berries are detected based on a 2D radial

symmetry transform to extract their center, and then are classified

based on their colour and texture. Finally a clustering is applied to

remove false positives. In a recent work (Nuske et al., 2012) the use

of calibration data from prior harvest data enhanced the previous

results. Moreover, 2D computer vision techniques have also been

applied to individual strains for the identification of plant elements

(Herrero Langreo et al., 2010) or counting individual berries using a

flatbed scanner (Battany, 2008). A 2D grapevine yield and leaf area

estimation was done by Diago et al. (2012), who used a visible light

camera to capture images in-field using a white screen behind the

canopy. Their approach involves the computation of Mahalanobis

colour distance for a supervised classification application.

Approaches to obtaining 3D models from photographs for plant

analyses were carried out at a laboratory with individual tomato

plants (Aguilar et al., 2008), but without effective automation

and failing to translate this technology to field conditions. More

recently, Djuricic et al. (2014) employed an active sensor, multi-

echo laser scanner, for grape berries detection, through the laser

intensity.

This paper aims to establish a method for estimating vine pro-

duction in field conditions using low-cost, non-invasive methods

based on computer vision (Sethian, 1999). Thus, 3D models of

bunches were obtained and dimensional analyses were carried

out to calculate the different yield components. The development

of the proposed method had to face additional difficulties, such as

the partial 3D models generated by in-situ bunch documentation

(only the visible side of the bunch), or having to deal with the occlu-

sions and geometrical complexities of the strain itself. Techniques

and algorithms to estimate the components of vineyard yields were

developed. The recovery of the non-visible side in the model was

achieved using convex hull techniques (Barber et al., 1996). The

main output of this workflow was an accurate and precise predic-

tive method aimed at eliminating the subjectivity deriving from

the spatial and temporal variability of grape production. This would

allow vine growers to take decisions in advance.

2. Image-based modelling

For precision agriculture purposes, a combination of Photo-

grammetry quality and computer vision algorithms (flexibility,

automation and efficiency) is required. An image-based modelling

technique based on this combination allows 3D models to be

obtained from 2D images via two main steps: first, the automatic

determination of the view of each image taken at vineyards;

second, the automatic computation of the 3D coordinates for the

generation of a dense and scaled 3D model of the scene.

This is a non-destructive and non-invasive technology with low

associated costs. The methodology allows data to be acquired

remotely with great efficiency, affording the radiometric and geo-

metric characteristics of objects with a high degree of accuracy and

detail in complex scenarios. Moreover, photogrammetry has

advantages over others sensors, such as expensive laser systems

(Lumme et al., 2008) or gaming sensor technologies, which are

subject to difficulties in external daylight scenarios (Lange et al.,

2011) as well as having a reduced working range.

To develop the proposed method, several robust descriptors for

feature extraction and matching were implemented and tested, the

SIFT variation (ASIFT) being the one that provided the best results

in this study, where variations in geometry and lighting were very

common. Last, but not least, several camera calibration models,

such as the Brown model or the Fraser model, were integrated to

allow working with any type of camera, including low-cost smart-

phones and tablets (Akca and Gruen, 2007).

Fig. 1 schematizes the workflow of the PW software

(González-Aguilera et al., 2013) based on image-based modelling.

2.1. Image acquisition protocol

The image acquisition protocol is the key to success of the

developed process since these images represent the input data of

the workflow, and thus their position (spatial and attitude) will

affect the final accuracy (i.e. in terms of perspective ray intersec-

tion) and completeness (i.e. in terms of overlap between images)

of the 3d model.

Prior to image acquisition, the scene must be analyzed, includ-

ing the lighting conditions because these will influence the expo-

sure values, and the aperture and shutter speeds of the sensor.

To this end, images should be acquired without strong variations

in illumination, avoiding overexposed areas and ensuring sharp-

ness, together with an occlusion analysis due to the presence of

obstacles that will affect the image acquisition protocol and the

overlaps between adjacent images. The shortest available focal

length of the camera should be chosen and must be held constant

throughout the image acquisition process to keep the internal cam-

era parameters stable.

Regarding the geometric conditions of the camera shots, the

objective is to establish an image acquisition protocol to recon-

struct the grapevine of interest, guaranteeing the completeness

and best accuracy of the resulting 3D model to perform the dimen-

sional analysis of each cluster. It should be remarked that finding

an optimal image network can be complex, in particular in scenes

with strong depth variations and occlusions. Therefore, the key at

this point is to establish a guideline, based on simple geometric

constraints, to perform image acquisition at vineyards (Fig. 2).

For an extensive vineyard study, at least five images (one master

and four slaves) must be taken of each grapevine. The master

image should cover the study grapevine and represents the origin

of the coordinate system. This image has to be taken in a frontal

way and framing the principal part of the grapevine or, if possible,

including all of it. The overlaps between the slaves and master

image must be high (80–90%) and must always maintain a slight

convergence (i.e. optical axis) (maximum 15°) so that image

matching will be ensured during the orientation phase. Regarding

depth, this should be chosen according to the image scale or the

desired resolution. This image acquisition protocol ensures the

completeness and quality of the final model.

The automatic scaling of the 3D point clouds is resolved by

incorporating self-scaled algorithms based on the automatic recog-

nition of targets of known dimension which should appear in the

photograph.

2.2. Features extraction and matching

One of the most critical steps in this process is the extraction

and matching of features (lines and points) with high accuracy

and reliability. This constitutes the framework that supports the

whole process by providing the necessary information to resolve

the spatial and attitude positions of images (orientation), camera

self-calibration and, finally, grapevine 3D reconstruction. In addi-

tion, agricultural scenes usually show variations in scale, perspec-

tive and illumination, so classical descriptors based on grey levels

such as area-based matching (ABM) (Joglekar and Gedam, 2012)

and least square matching (LSQ) (Gruen, 1985) are useless.

To this end, more sophisticated and robust descriptors were

tested: smallest univalue segment assimilating nucleus (SUSAN)
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(Smith and Brady, 1997); scale invariant feature transform (SIFT)

(Lowe, 2004); maximally stable extremal regions (MSER) (Matas

et al., 2004) and speeded up robust features (SURF) (Bay et al.,

2006). Unfortunately, all these algorithms become ineffective when

there are considerable variations in perspective between images.

In this sense, a variation of the SIFT algorithm, called affine scale

invariant feature transform (ASIFT) (Morel and Yu, 2009), has been

incorporated to the PW software. It permits the consideration of

two additional affinity parameters that control the perspective of

the images. These are the angles corresponding to two perspective

angles of the camera’s optical axis, the - angle (tilt) and the u

angle (axis) (Eq. (1)). In this way, the ASIFT algorithm allows one

to cope with images that have a high degree of perspective, which

is very common in vineyards. The result is an invariant descriptor

that considers scale, rotation, movement and significant deforma-

tions due to the perspective between images. This result provides

the next expression:

A ¼
a b
c d

� �

¼ HkR1ðjÞT1R2ð-Þ

¼ k
cosj ÿ sinj
sinj cosj

� �

�
t 0
0 1

� �

�
cos- ÿ sin-
sin- cos-

� �

ð1Þ

Fig. 1. Workflow of image-based modelling technique.

Fig. 2. Protocol of image acquisition of the study grapevines.
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where A is the affinity transformation that contains the scale (k),

rotation (j) around the optical axis (swing) and perspective param-

eters corresponding to the inclination of the camera optical axis (u
(tilt)), the vertical angle between the optical axis and the line per-

pendicular to the image plane and the horizontal angle between

the optical axis and the fixed vertical plane (-(axis)).

The matching process is carried out by SIFT descriptors. These

descriptors are first matched according to the Euclidean distance

(Lowe, 1999), after which they are filtered by the optimized ran-

dom sampling algorithm (ORSA) (Moisan and Stival, 2004;

Moisan et al., 2012). This algorithm is a variant of random sample

consensus (RANSAC) (Fischler and Bolles, 1981) with an adaptative

criterion to filter outliers by epipolar geometry constraints.

2.3. Hierarchical image orientation

Computing the spatial and attitude position of images is not an

easy mathematical task. Furthermore, image orientation is based

on features related to extraction and matching, so the presence

of outliers could be quite common. In this sense, the method pro-

poses a hierarchical approach for obtaining an approximate and

relative image orientation in an arbitrary coordinate system based

on computer vision. It can be refined and improved in an absolute

and scaled coordinate system for the set of images thanks to

photogrammetry.

Firstly, a relative image orientation is achieved using indepen-

dent models obtained from the fundamental matrix calculated

with the Longuet–Higgins algorithm (Longuet-Higgins, 1987).

One of the greatest advantages of the fundamental matrix is that

it is independent of any scene, so no knowledge of the internal

parameters or initial approaches of the camera is required.

Secondly, once the relative attitude and spatial position of

images has been obtained, a global adjustment of all images (bun-

dle-adjustment) is performed by an iterative and least-squares

process based on the collinearity condition (Kraus, 1993). The

coordinates of the ground control points are incorporated for abso-

lute georeferencing (Eq. (2)). These ground coordinates are added

to the orientation process as artificial targets located around the

vineyard. In cases in which the internal calibration parameters of

the camera are unknown (principal distance, principal point and

lens distortion), this second step allows these parameters (self-

calibration) to be incorporated into the equation as unknowns

(Quan, 2010).

ðxÿ x0Þ þ Dx ¼ ÿf
r11ðX ÿ SXÞ þ r21ðY ÿ SYÞ þ r31ðZ ÿ SZÞ

r13ðX ÿ SXÞ þ r23ðY ÿ SYÞ þ r33ðZ ÿ SZÞ

ðyÿ y0Þ þ Dy ¼ ÿf
r12ðX ÿ SXÞ þ r22ðY ÿ SY Þ þ r32ðZ ÿ SZÞ

r13ðX ÿ SXÞ þ r23ðY ÿ SY Þ þ r33ðZ ÿ SZÞ

ð2Þ

where x, y are the image coordinates of a point of the scene; X, Y, Z

are the coordinates of the scene point expressed in a local reference

system; rij are the rotation matrix coordinates; SX, SY, SZ are the spa-

tial coordinates of the camera point of view; f is the camera focal

length; x0, y0 are the principal point coordinates of the image, and

X, Y are the radial and tangential distortion parameters of the lens.

2.4. Automatic dense surface generation

Starting from the robust image orientation, a dense matching

process was developed. It is based on the semi-global matching

technique (SGM) (Hirschmuller, 2005; Deseilligny and Clery,

2011). Applying the projective equation (Hartley and Zisserman,

2003) (3), it permits the generation of a dense model resulting

from the determination of a 3D coordinate per pixel.

xk ¼ C D Ri Xk ÿ Sið Þð Þð Þ ð3Þ

where X is the 3D point; x is the point corresponding to the image; R

is the camera rotation matrix; S is the camera projection center; C is

the internal calibration function; D is the lens distortion function,

and the subscripts k and i are related to point and image,

respectively.

The SGM process consists of minimizing an energy function (4)

through the eight basic directions that a pixel can take. This func-

tion is composed of a cost function, M, which reflects the degree of

similarity of the pixels between two images, x and x’, together with

the incorporation of two restrictions, and P1 and P2, which show

the possible presence of outliers in the SGM process.

EðDÞ ¼
X

x

ðMðx;DxÞ þ
X

x02Nx

P1T½jDx ÿ Dx0 j ¼ 1�

þ
X

x02Nx

P2T½jDx ÿ Dx0 j > 1�Þ ð4Þ

where E(D) is the energy function to be minimized on the basis of

the disparity between the homologous characteristics; the function

C evaluates the level of similarity between the pixel p and its coun-

terpart q through the disparity Dp, while the P1 and P2 terms corre-

spond to two restrictions to avoid outliers in the dense matching

process due to the disparity of one pixel or a higher number of

them, respectively.

In addition, a third constraint was added to the SGM process.

This consisted of epipolar geometry derived from photogrammetry

(Hartley and Zisserman, 2003) and can enclose the search space

per pixel in order to reduce the huge computational cost. In partic-

ular, based on the computed fundamental matrix, F, the following

search band is defined: l0 = xF, which establishes that the corre-

sponding point of x should be along the epipolar line l0. In other

words if two image points (x and x0) correspond, then the epipolar

line l0 is defined l0 = Fx. As a result, it will generate a dense model

with multiple images, obtaining more optimal processing times.

3. Estimation of vineyard yields

The measurement of vineyard yields is accomplished with a set

of production components, such as volume, mass and the number

of berries per bunch (Greven, 2007). This study attempts to establish

these components, demonstrating the feasibility of scaling the pro-

posed methodology to the total yield estimation of the vineyard

(kg ⁄mÿ2). The current method improves classic and alternative

methods (Kurtural and ÓDaniel, 2007) and the empirical relations

proposed by Greven (2007). Different algorithms were imple-

mented to analyze clusters from the metric point cloud dimension-

ally, obtaining the volume and weight, as well as determining the

number of berries, following two computational strategies, as

shown in Fig. 3. The first one is automatic and relies on the point

cloud generated. The second one is a semi-automatic process and

requires computer-aided design (CAD)models from the point cloud.

Both strategies are fed by external variables, the average vol-

ume of the berries (Vm) and the average density of the bunches

(Dm) calculated by averaging the data acquired in laboratory tests.

These variables depend on the area and year of the crop.

Vm ¼

Pi¼n
i¼1ðV=BÞi

n
ð5Þ

Dm ¼

Pi¼n
i¼1ðW=VÞi

n
ð6Þ

where Vm is the average berry volume calculated by means of the

real bunch volume (V), the number of bunches (n) and the real num-

ber of berries per bunch (B); Dm is the average density of the bunch,

and W is the real weight of the bunch.
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The two methods described are based on different modelling

techniques of the 3D point cloud of the cluster. The first one is

an automatic process supported by generating the convex hull

(O’Rourke, 1994) of the 3D point cloud of the visible side of the

cluster. This volume limited by the hull (Vc) collects half of the

whole cluster due to the field of view of the camera and the limi-

tations of the branches and leaves, closing the hidden side of the

cluster by a flat surface. Because the convex hull includes empty

spaces where there are no berries, as well as the exclusivity of

the visible side of the bunch it is necessary to include an empirical

correction factor (K) (Nuske et al., 2011; Nuske et al., 2012) that

will refine the estimated volume (Ve).

The second strategy is based on a semi-automatic process sup-

ported by reverse engineering procedures that allows CAD models

to be generated from 3D point clouds (DeLuca et al., 2006). It is

noteworthy that there are still serious barriers in our knowledge

of full automation in the conversion to CAD solid models, espe-

cially in the case of complex objects (Gonzalez-Aguilera et al.,

2012). This approach requires the triangulation of the point cloud

from the cluster to achieve the spatial topology required to model

it. The meshing algorithm chosen was 3D Delaunay triangulation

(Golias and Dutton, 1997) to obtain a TIN (Triangle Irregular Net-

work). With this approach, the volume enclosed by the convex hull

(Vc) of the whole cluster can be achieved, from modelling the indi-

vidual berries of the visual side of the bunch and the subsequent

symmetry. As in the automatic approach, an empirical correction

factor (K) that refines the estimated volume (Ve) is required.

Fig. 4 shows both computational processes.

This second approach is more tedious. To obtain a CAD model

close to reality, the mesh has to be repaired previously. This step

uses the approximation of Attene (2010), which incorporates

several automatic and sequential tasks:

� Filling of holes through algorithms of planar triangulations

(Barequet and Sharir, 1995) or more complex approaches based

on interpolators of radial basis function (Branch et al., 2006), the

minimum distance (Dolenc andMakela, 1993) and the measure-

ment of angles (Bøhn and Wozny, 1992; Varnuška et al., 2005).

� Repair of meshing gaps, based on minimum threshold distance

algorithms (Rock and Wozny, 1992; Barequet and Kumar,

1997).

� Removal of topological noise, allowing the mesh to be re-trian-

gulated locally (Guskov and Wood, 2001).

� Removal of geometric noise by algorithms that apply filters as

anti-aliased Laplacians in general or specific zones (Fan et al.,

2008).

After this reconstruction, the mesh has been modelled to obtain

a solid CAD comprising two stages: segmentation and adjustment

of basic primitives. As proposed byWang et al. (2012), the segmen-

tation process involves 3 steps:

� Plane segmentation using the region growing technique.

� Segmentation of quadric surfaces from knowledge of the vertex

curvature obtained by fitting the local vicinity (Besl and Jain,

1988).

� Segmentation of free surfaces relying on the region growing

technique to maximize the number of vertices connected topo-

logically that can be generalized as a free surface of the B-spline

type.

Once the geometry has been segmented, modelling continues

with the setting of basic primitives. Thus, berries were approxi-

mated to spheres, extracted by an iterative adjustment of the min-

imization of the Euclidean distance from the mesh.

Fig. 3. Different computational strategies of vineyard production components from 3D bunch point cloud.
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The mathematical models implemented in both approaches are

detailed below, where Eq. (7) shows the bunch volume estimated

(Ve); bunch weight is estimated (We) in Eqs. (8) and (9) calculates

the number of berries estimated per bunch (Be). Vc represents the

volume limited by the convex hull and K is the empirical correction

factor:

Ve ¼ Vc � K ð7Þ

We ¼ Vc � K � Dm ð8Þ

Be ¼ Vc � K=Vm ð9Þ

Finally, a correlation between the calculated components and

the groundtruth by a sampling of laboratory tests was established

to analyze and validate the results acquired with both strategies.

4. Experimental results

Data collection was performed on the 20th of October 2013, on

a day with bright and homogeneous lighting, at an experimental

dry-farmed cv. Tempranillo (Vitis vinifera L.) vineyard of 1.05 ha,

located 6 km from Logroño (lat. 42°26’ N; long. 2°30’ W; 455 m

asl, La Rioja, Spain). Many studies have been conducted previously

at this location (Romero et al., 2010; Vicente Renedo et al., 2007).

Tempranillo vines (clon RJ-26) were grafted onto Ritcher-110

rootstock and planted in 1995, following a between-row and

within-row spacing of 2.90 m � 1.15 m respectively, with an

East–West orientation. This corresponds to a density of

2998 vines/ha. The grapevines were spur-pruned on a bilateral

cordon and trained to a VSP trellis system. The trellis featured a

supporting wire at 0.70 m, two wires at 1.00 m above the ground

for protection against wind damage, and a pair of movable shoot-

positioned wires at 1.45 m.

Fig. 4. Workflow of different computational processes to obtain the convex hull of the cluster.

Fig. 5. Image of trellis vineyards selected for this study.

Table 1

Technical specifications of the photographic sensor.

Canon EOS 500D

Type CMOS

Sensor size 22.3�14.9 mm

Total pixels 15.1 Mpíxels

Image size 4752�3168 pixels

Focal length 17 mm
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To validate the proposed method, 20 clusters from 14 trellis

vines were chosen, taking photographs according to the protocol

defined in Section 2.1. The selected strains were lightly defoliated

to allow one side of the study clusters to be seen. Before taking the

photographs, several artificial yellow targets were placed on the

ground to allow the automatic scaling of point clouds (Fig. 5).

The main features of the camera used are shown in Table 1:

Images were taken using a fixed short focal length, with an of

f/5.6 aperture, an exposure time faster than 1/160 s, ISO quality

of 200 to decrease image noise, and without flash, owing to the

shadow effects. The distance to the grapevine was approximately

2 m in order to maintain it inside the camera depth of field

(DOF). The aperture was chosen to achieve an optimal compromise

between exposure time, resolution and the DOF.

Photograph acquisition at such close distances requires the con-

sideration of lens parameters, such as the Modulation Transfer

Function (MTF), so the strains were centered in the image to

achieve better resolution. Additionally, the MTF was taken into

account for lens aperture selection (the lens ‘‘sweet’’ spot).

3D point cloud generation involves the identification and

matching of homologous points between images, exemplified in

Fig. 6 by straight white lines. The average number of homologous

points between pairs of images was 580, obtained automatically

through Micmac algorithm (Deseilligny and Clery, 2011). One of

the keys to success in the matching process passes through acquir-

ing pair of images with small baseline and thus guarantying high

overlap between images. Moreover, the ORSA algorithm used in

the matching process consists in introducing an a contrario

(Desolneux et al., 2000) criterion to avoid the hard thresholds for

inlier/outlier discrimination. Thus, the ORSA algorithm finds the

right balance between the critical parameter r and number of

inliers by controlling the number of false alarms (Moisan et al., 2012).

Fig. 6. Example of matching points between images.

Fig. 7. 3D point cloud and CAD model of a cluster example from 2D images.
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The dense point clouds generated have 4,276,000 points per vine-

yard, while the clusters alone have 96,460 points (as mean value).

These points are utilizated to create the bunch mesh, having

90,779 points with a ground sample distance of 0.3 mm and a size

of 8.3 kB (as mean value).

Fig. 7 shows scaled 3Dmodels of a cluster example and CAD sol-

ids through 2D images, which were the inputs of the method pro-

posed to estimate the vineyard yield.

The actual yield components were established by a laboratory

test: volume calculation (immersion), weighing, and individual

counting of berries per cluster. These laboratory tests which per-

form as a groundtruth were contrasted with estimated parameters,

providing the error of each estimation. Owing to the nature of

point clouds, the robust statistical parameter for defining the

adjustment is MAD (median absolute deviation) (Mosteller and

Tukey, 1977; Sachs, 1984) with respect to the median of the esti-

mated values. Additionally, the Pope test (Pope, 1976) was applied

for the detection and removal of the outliers. The final results are

shown in Figs. 8–10.

– A coefficient of determination of 0.77 was achieved by compar-

ing the actual volume of the cluster versus the volume

estimated from the point cloud (Fig. 8a). The MAD had a value

of 34 cm3 when the median of the estimated volumes was

216 cm3. In the case of bunch weight, an average coefficient of

determination of 0.78 g was obtained (Fig. 8b), with a MAD of

35 g when the median was 227 g.

– On comparing the actual volume of the bunch with the esti-

mated volume from CAD modelling, a coefficient of determina-

tion of 0.76 was obtained (Fig. 9a). The MAD was 33 cm3, the

median taking a value of 236 cm3. When bunch weight was

analyzed, a coefficient of determination of 0.75 was obtained

(Fig. 9b), the MAD 35 g being when the median was 248 g.

– On testing the actual number of berries and the number of ber-

ries estimated by the point cloud, a determination value of 0.80

was obtained (Fig. 10a). The MAD of this fitting was 15 units,

the median being 98 units. When this estimation was per-

formed with CAD modelling, a coefficient of determination of

0.78 was obtained (Fig. 10b). In this case the MAD was 15 units

when the median was 114 units.

From this analysis, it is possible to conclude that the semi-

automatic process does not provide significant improvements, in

contrast to the automatic one, which also has the advantage of a

Fig. 8. Bunch volume (a) and weight (b) obtained automatically from point cloud.

Fig. 9. Bunch volume (a) and weight (b) obtained semi-automatically from CAD model.
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reduced processing time and does not require human interaction.

It significantly decreases subjective variability as well as featuring

reduced associated costs and time saving. Furthermore, comparing

the coefficients obtained with other yield estimation studies, this

method can be cataloged as a great accurate one. Related to this

assertion, Diago et al. (2012) achieved a R2 of 0.73 between the

observed and predicted yield values. Dunn and Martin (2004) suc-

ceeded a R2 of 0.85 between grape weight and the ratio of grape

pixels to total image pixel. Both cases used approaches based on

supervised classification methodologies and an limited 2D analysis

of bunch morphology. Additionally, both approaches required the

employment of white screen to avoid the background influence

which limits their effectiveness and automation in field.

5. Conclusions

This research presents a non-invasive low-cost method with

application to precision viticulture that consists of vineyard yield

estimation. The method is fast, reliable, robust and objective, and

could serve to take decisions in advance regarding actions to be

taken in vineyards, predicting the results and planning the vintage

optimally. The method developed relies on the adaptation of the

PW software tool, which allows the metric reconstruction and

dimensional analysis of bunches from grapevine images taken in

field conditions. The groundtruth established in laboratory tests

ensures that the method is precise in complex agronomic scenarios

and in trellis vine configurations, which are more complex to pho-

tograph than classic pruned configurations. The advantages of PW

include process automation, sufficient quality to generate dense

resolution models equivalent to the pixel size of the image, and

low cost and ease of use.

Regarding the two processes developed to estimate vineyard

production parameters (point cloud-automatic and CAD-semiauto-

matic), the results show that there is no significant improvement

in CAD berry modelling. This is why the automatic methodology

using integrated algorithms in PW software was selected for the

present work. In addition, working only on one side of the cluster,

the visible side, is feasible for approximating the whole bunch with

an accurate and precise fit.

This methodology can be extrapolated to the whole of the vine-

yard, measuring its yield. Because this method is based on non-

invasive technologies through a passive sensor, the constraints

mainly depend on weather conditions, such as homogeneous light-

ing and the absence of rain and strong winds. By using artificial

light and simple screens to diffuse light, several restrictions can

be overcome. Since future prospects will address cluster compact-

ness and its relationship to volumes, another action to be devel-

oped in the future will be to design and build a platform that

supports the configuration of the image acquisition protocol

described in Section 2.1 and that can be loaded on a mobile plat-

form such as a quad. This would also allow the optimal distances

between sensors to be determined and calibrated and hence the

possibility of scaling models without targets, significantly optimiz-

ing the time devoted to field work and data processing.
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Abstract

Key message Low-cost methodology to obtain CHMs

integrating terrain data from LiDAR into photogram-

metric point clouds with greater spatial, radiometric

and temporal resolution due to a correction model.

Abstract This study focuses on developing a methodol-

ogy to generate a Dense Canopy Height Model based on

the registration of point clouds from LiDAR open data and

the photogrammetric output from a low-cost flight. To

minimise georeferencing errors from dataset registration,

terrain data from LiDAR were refined to be included in the

photogrammetric point cloud through a correction model

supported by a statistical analysis of heights. As a result, a

fusion point cloud was obtained, which applies LiDAR to

characterize the terrain in areas with high vegetation and

utilizes the greater spatial, radiometric and temporal reso-

lution of photogrammetry. The obtained results have been

successfully validated: the accuracy of the fusion cloud is

statistically consistent with the accuracies of both clouds

based on the principles of classical photogrammetry and

LiDAR processing. The resulting point cloud, through a

radiometric and geometric segmentation process, allows a

Dense Canopy Height Model to be obtained.

Keywords Dense Canopy Height Model �

Photogrammetry � LiDAR � Data fusion � Low-cost
platform � Radiometric segmentation

Introduction

The estimation of dasometric variables of interest for forest

management (diameter, height, basal area, volume of

growing stock, biomass, species, etc.) has traditionally

been done via pilot samplings of field inventories. The

advent of new remote sensing technologies and pho-

togrammetry has opened up a new field of possibilities for

carrying out such work, and such methods are advanta-

geous in the economic costs involved, the time invested

and estimation errors.

The application of active high-resolution remote sensors

affords high accuracy in height measurements and a good

prediction of dasometric variables (Popescu et al. 2002). In

particular, the capacity of active light detection and ranging

(LiDAR) sensors to penetrate and acquire three-dimen-

sional measurements of the canopy at different heights

(Wulder et al. 2013) allows improved estimation of vari-

ables such as biomass, volume and basal area over that of

other sensors that gather two-dimensional data, such as

photographic or radiometric systems. Since the late 1980s,

studies have been published based on profiles acquired

using airborne laser systems (ALS—airborne laser scanner)

for the estimation of biomass and volumes (Nelson et al.

1988) as well as simple and multiple linear models (Nelson

et al. 1997; Means et al. 2000) to analyse the effect of the

lag transformation of the forest variable. Later studies

Communicated by E. Priesack.

& Mónica Herrero-Huerta
monicaherrero@usal.es

1 Department of Cartographic and Land Engineering, Higher
Polytechnic School of Avila, University of Salamanca,
Hornos Caleros 50, 05003 Ávila, Spain
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(Naesset 1997; Nelson et al. 2003) have improved upon

studies of forest inventories by further exploiting instru-

mentation, capture methodology and information process-

ing. Of interest are the studies of Lim and Treitz (2004) and

Naesset (2004), in which the authors applied rodal1 meth-

ods to generate inventories, as well as individual tree

methods,2 in which methodological compendia are

described with the algorithms used in each estimation.

Comparisons of different LiDAR inventories (Naesset et al.

2005) and of photointerpretation and LiDAR (Eid et al.

2004) have been published.

In recent years, many studies and methodological

review articles have been published describing the oper-

ating capacity and definitive implementation of LiDAR

technology in the context of the extraction of forest vari-

ables (Hyyppä et al. 2008; Wulder et al. 2012; Kankare

et al. 2013). Benko and Balenovic (2011) reported new

experiences in inventory tasks and forest management in

different environments, with an analysis of the accuracies

achieved. Richardson and Moskal (2011) established clas-

sifications of vegetation via tree height and density.

Another interesting case is the guide produced by the

Canadian Forest Service as a current reference document

based on all previously published studies. The guide pro-

vides a series of recommendations for inventorying forest

applications based on rodal methods using LiDAR data

(White et al. 2013a). Gleason and Im (2012) applied dif-

ferent automated learning approaches to estimate biomass

in forests from aerial LiDAR data. The FullWave airborne

LiDAR systems provide large bodies of information about

the overall plant and forest structure in great detail (Wei-

nacker et al. 2004; Mallet and Bretar 2009). However, the

complex and tedious processing involved and the costs of

such technology are definite drawbacks (Chauve et al.

2007; Gupta et al. 2010).

Magnussen et al. (2007) used Landsat satellite images to

create inventories according to the spatial resolution factor.

Similarly, LiDAR techniques have been applied to images

captured by different remote sensing systems (Magnussen

et al. 2000; Wulder et al. 2008a, b; Willers et al. 2012;

Mora et al. 2013) and by traditional photogrammetry

(Magnusson et al. 2007).

Within the framework of the National Aerial Orthoim-

age Plan, low-density (0.5 points/m2) LiDAR sensor flights

have been performed since 2008 throughout the Spanish

territory. Thus, in recent years, different forest research

teams have tested different applications using data from

this source (Estornell et al. 2012; González-Ferreiro et al.

2014; Gonzalez et al. 2012; Navarro-Cerrillo et al. 2014).

The problem with these mass data acquisitions is that they

are very costly, their resolution is low, and they are

implemented individually at a given moment in time.

Currently, conventional photogrammetry is a comple-

mentary alternative to custom LiDAR flights to obtain 3D-

point clouds and digital surface models (DSMs) because

the associated costs are lower (Järnstedt et al. 2012); the

accuracy is greater; and the spatial, radiometric and tem-

poral resolution is greater (Bohlin et al. 2012). The com-

plementary nature of the two techniques can be seen in the

greater planimetric accuracy of photogrammetry than

LiDAR and the greater altimetric accuracy of the latter

than of the former. Nevertheless, photogrammetry is

incapable of generating a Digital Terrain Model (DTM) in

zones covered by vegetation, and LiDAR information must

be used to generate reference surfaces for the collection of

vegetation heights (Järnstedt et al. 2012). As an advantage

of the photogrammetric point cloud, White et al. (2013b)

cite the ability to interpret species composition as well as

the maturity and health of vegetation.

With the development of manned and unmanned low-

cost aerial platforms (RPAS—Remotely Piloted Aircraft

Systems), conventional photogrammetric data collection

and analysis can still be performed. Tao et al. (2011) used

dense photogrammetric point clouds obtained with RPAS

over forested areas and obtained information about the tree

density, its composition and changes in the forest canopy.

Other authors (Jaakkola et al. 2010; Wallace et al. 2012)

have combined cameras and light LiDAR systems on

RPAS, thus allowing both sensors to be used at the same

time. Finally, special attention should be paid to the study

of Lisein et al. (2013), in which the authors generated a

Canopy Height Model (CHM) of a hybrid nature, com-

bining the DSM obtained by correlating images from a

non-metric camera and an RPAS with a DTM obtained

from ALS data to estimate different forest parameters.

The aim of the present work was to develop a low-cost,

efficient and precise methodology to obtain CHMs destined

for forest inventories such a stratification of forest masses or

a stock calculation and for fire studies obtaining combustible

models. This was achieved by integrating LiDAR terrain

data with minor temporal variability, which are freely

available from the National Geographic Institute of Spain,

into photogrammetric point clouds obtained using a low-cost

platform, for a desired area and time. Thus, we combined

LiDAR’s terrain-sensing capacity in densely vegetated

zones with the greater spatial, radiometric and temporal

resolution offered by low-cost photogrammetry in plant

cover zones. A correction model was constructed for the two

data sources to minimise the georeferencing errors produced

by the low-cost photogrammetric process, thereby obtaining

a registration accuracy in agreement with the accuracies of

1 Rodal method: methods applied to a surface with similar arboreal
characteristics.
2 Individual-tree methods: methods applied differentially to each
tree.
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the point clouds generated by the two techniques. During

data analysis, following the recommendations ofWang et al.

(2007), we also incorporated a supervised classification of

the vegetation based on image colour that allows morpho-

logical classification types to be improved. The low-cost

photogrammetric platform we used was a powered para-

glider trike, designed and developed by the Institute for

Regional Development of the University of Castilla-La

Mancha. The greatest advantage offered by this type of

manned platform is its flexibility of flight, autonomy and

payload capacity, allowing data acquisition over an exten-

sive area using multiple sensors to be integrated without

constraints on time, weight or volume.

Materials and methods

The proposed methodology uses LiDAR open data freely

available from the National Geographic Institute of Spain

(IGN 2015) with a spatial resolution of 0.5 points/m2. The

aerial LiDAR data were revised by visual inspection and

later by manual refinement, correcting errors in the initial

automatic classification and thus obtaining well-coded

terrain points. To assess the quality of the classification, the

initial and filtered data were contrasted by means of a

confusion matrix (Kohavi and Provost 1998).

According to the technical specifications of the National

Aerial Orthoimage Plan (CNIG 2009), based on the type of

terrain and the vegetation, an altimetric accuracy of 0.40 m

was established.

Equipment

The following equipment was employed for photogram-

metric data acquisition:

• A Leica System 1200 GNSS-RTK device was used for

surveying control and check points, with a relative and

absolute precision better than 0.03 and 0.05 m,

respectively.

• A compact Olympus EP-1 camera, the first camera

which meets the design standards of the micro four

thirds (MFT) system. Its main features are shown in

Table 1.

• A manned aerial platform supported by a powered

paraglider (PPG) trike built by Airges (Fig. 1) was used

(Ortega-Terol et al. 2014). Its technical specifications

are shown in Table 2. The Olympus EP-1 camera was

installed aboard the PPG trike using an auto-stabilised

mounting platform. The potential benefits of this low-

cost system are evident: a payload capacity that allows

the system to be loaded with a large number of sensors

that could be used for multispectral studies; the

Table 1 Technical specifications of the photographic sensor

Olympus EP1

Type CMOS

Sensor size (max. resolution) 4032 9 3024 pixels

Sensor size 17.3 9 13 mm

Pixel size (sensor geometric resolution) 0.0043 mm

Focal length 17 mm

Total pixels 12.3 MPixel

Aperture f/2.8

Fig. 1 Aerial photogrammetric platform (PPG trike) with the gimbal
shown (white rectangle)

Table 2 Technical specifications of the manned aerial platform: PPG
trike

Parameter Value

Empty weight 110 kg

Maximum load 220 kg

Autonomy 3.5 h

Maximum speed 60 km/h

Motor Rotax 503

Tandem paraglide MACPARA Pasha 4

Emergency system Ballistic Parachutes GRS 350

Gimbal Stabilized with 2 degrees of freedom

Minimum sink rate 1.1

Maximum glide 8.6

Plant surface 42.23 m2

Projected area 37.8 m2

Wingspan 15.03 m

Plant elongation 5.35

Central string 3.51 m

Boxes 54

Zoom factor 100 %
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flexibility and autonomy of flying that offers the data

acquisition over extensive areas.

• The PPG was equipped with a low-cost multi-sensor

gimbal (stabilised platform), supporting the digital

camera. The gimbal includes two servomotors oriented

on the x and y axes to accurately maintain the camera’s

vertical position along the flight paths. The servomotors

are controlled by an Arduino board, which incorporates

an IMU with 6 degrees of freedom: three accelerom-

eters with a range of ±3.6 G m/s2, a double-shaft

gyroscope (for pitch and roll) and an additional

gyroscope for yaw (both gyroscopes have a measure-

ment range of ±300�/s). The software developed to

control the device is based on Quadl_mini V 20

software, with DCM (Direction Cosine Matrix) as the

IMU management algorithm (Premerlani and Bizard

2014). Figure 2 shows the gimbal platform.

• The system included a low-cost GNSS system based on

a single-frequency receptor, receiving signals from a

GPS constellation and Satellite Based Augmentation

System (SBAS) (NavCen 2008). The GNSS antenna is

installed on the camera platform close to the optical

centre of the camera to minimise the baseline. To

improve the GNSS altitudinal accuracy, which affects

the final GSD, a DigiFly VL100 barometer was

installed. Thus, horizontal positioning during flight

was performed using the GNSS system’s National

Marine Electronics Association (NMEA) protocol

using RTKNAVI software (Takasu 2009), with correc-

tions from the ground from similar equipment, allowing

DGPS accuracies higher than 1.50 m in planimetry and

2 m in altimetry to be achieved in real time as well as

accuracies higher than 0.50 m in three dimensions in

post-processing.

Flight planning and execution

Proper flight planning is important to ensure that the cap-

tured photogrammetric data will fit the desired theoretical

parameters; planning also optimises available resources

and ensures higher quality images, minimising capture

time. Flight planning was conducted with software devel-

oped by the IDR (Institute of Regional Development of

Castilla-La Mancha, Spain), called PFlip, utilising funda-

mentals of photogrammetry, the sensor configuration, and

the Digital Terrain Model (Hernández-López et al. 2013).

First, the study area was defined, followed by the flight

strips. Furthermore, additional constraints such as a mini-

mum forward overlap of 70 % and a minimum side overlap

of 30 % were established to ensure automatic detection of

tie points (Järnstedt et al. 2012). Then, the flight planning

process defined the position and orientation of the camera,

the design of different blocks of images, the overlaps

between different images, the necessary shot angles and the

scale, as defined by the choice of pixel size on the ground

(GSD).

The geomatic information required for the flight plan-

ning process was obtained at no cost from the National

Center of Geographic Information in Spain (CNIG 2015),

from its National Aerial Orthoimage Plan, with a GSD of

0.25 m and a Digital Terrain Model with a 5-m grid

resolution.

Flight planning was performed by considering the rela-

tionship among the flight height over the ground (H), the

GSD, the focal length of the sensor (f) and the pixel size, as

described in Eq. (1).

f

H
¼

pixel size

GSD
ð1Þ

Considering Eq. (1), the characteristics of the camera

(Table 1) and the required GSD of 0.08 m, a flight height

over the ground of 316 m was obtained. Based on the

technical specifications of the National Aerial Orthoimage

Plan (CNIG 2009), an ‘a priori’ altimetric accuracy of

0.10 m was estimated for the photogrammetric cloud.

The parameters that define image capture are deter-

mined during flight execution depending on the light con-

ditions, the camera quality and flight speed. Thus, the

camera configuration was established with a camera-

Fig. 2 Gimbal platform (auto-
stabilised mounting platform).
a Elevation view and b plan
view
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shooting interval of 4 s and a maximum flight speed of

14 m/s, which guaranteed a forward overlap of 70 %. A

shutter speed of 1/1000 s was adequate for this speed

because the equivalent terrain displacement would be

0.01 m, which was lower than 1/5 pixel, an insignificant

value for study purposes. An ISO of 125 was used with a

fixed focal length at infinity.

A topographic survey campaign was established to

obtain absolute georeferencing and a model scaled through

artificial accuracy targets. Targets were distributed along

the study area so that they remained visible through veg-

etation for photogrammetric capture. Moreover, these tar-

gets were marked and their size confirmed to rule out

effects from neighbouring pixels (35 cm diameter).

Photogrammetric processing

Low-cost photogrammetric workflow

Once the aerial imagery had been acquired, conventional

photogrammetric processing began, relying on an image-

based modelling technique. In an attempt to guarantee

automation and quality, a combination of photogrammetric

and computer vision algorithms was required. This

approach allows data to be acquired remotely with great

efficiency and accuracy, affording radiometric character-

istics to the point cloud. Photogrammetry Workbench

software (PW) developed by the authors (González-

Aguilera et al. 2013) was used for three steps. First, the

images were matched by the SIFT algorithm (Lowe 2004),

which allowed the detection of the scene’s points of

interest. Second, the camera orientations were computed

using the tie-points calculated in the previous step and the

coordinates of the artificial ground targets located in the

flight area (Pierrot-Deseilligny and Clery 2011). In this

process, the external camera parameters (position and ori-

entation) and the internal camera parameters were solved

by self-calibration. Finally, a textured point cloud was

obtained by means of ray intersection (Kraus 2007). To

solve this process, an semi-global matching (SGM) tech-

nique (Pierrot-Deseilligny and Clery 2011) was applied.

Photogrammetric point cloud processing

Owing to the massive and automated nature of the pho-

togrammetric point cloud, it was necessary to treat the

cloud to remove outliers and encode the information. More

precisely, a clean-up and classification process was used;

this approach is schematised in Fig. 3. After removing the

outliers produced by matching, the vegetation was distin-

guished via radiometric segmentation. Following this step,

we established geometric classification of the ‘‘non-vege-

tation’’ class to differentiate it from ‘‘ground’’, refining the

results via a second iteration. Once the uncertain points in

the ‘‘ground’’ class and the isolated terrain points had been

removed, we classified the other points into different

semantic categories using the Axelsson algorithm (1999):

‘‘ground’’, ‘‘low vegetation’’, ‘‘medium vegetation’’, ‘‘high

vegetation’’, ‘‘building’’ and ‘‘noise’’, according to the

American Society for Photogrammetry and Remote Sens-

ing (ASPRS Foundation 2012). During this process, special

emphasis was placed on the classification of the ‘‘ground’’

class so that it would act as a common reference point for

later collection of LiDAR and photogrammetric data.

Additionally, it is crucial to achieve a correct DTM to

obtain an accurate CHM.

Radiometric classification takes advantage of the RGB

values of the photogrammetric point cloud. This step was

carried out using in-house ‘‘Vegetation classification by

radiometry’’ software. The analysis is based on the per-

centage differences between the digital levels of two

channel pairs (R-G and R-B). Points were classified auto-

matically according to a threshold defined by the difference

from a green reference value. However, the values of green

hues depend on many factors, such as the sensor employed,

the conditions and date of flight, the type of species, the

phenological state of the vegetation, etc. Accordingly, it is

necessary to establish a threshold value from vegetation

samples in the photogrammetric model.

Once the LiDAR information was corrected and the

photogrammetric point cloud had been classified and

refined, the point clouds were fused as described in the

following section.

Fusion of point clouds

Before registering the point clouds, the ground pho-

togrammetric points were filtered by cross-analysis with

the LiDAR data to address errors caused in the classifica-

tion process. To do so, we obtained a map of altimetric

differences in ground-class zones shared between the two

clouds. The photogrammetric points with large differences

in height were reclassified as vegetation. We then gener-

ated a mask of the ground-class photogrammetric points to

remove clusters of isolated points (S\ 2 m2) and the

points contained within polygons with a high mean alti-

metric difference (h[ 1 m). This filtering process allowed

us to refine the terrain’s photogrammetric data. Figure 4

shows the process used.

Low-cost photogrammetry includes georeferencing

errors produced by the use of inertial sensors and low-

accuracy GNSS and non-metric cameras. Accordingly, we

designed a correction model to integrate the collected

LiDAR data into the refined photogrammetric cloud,

achieving a registration accuracy that was statistically

compatible with the accuracy of both techniques. To
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analyse this compatibility, the ‘a priori’ (r) and ‘a poste-

riori’ ðr̂Þ altimetric accuracies were compared. This model

was derived from the altimetric differences in the terrain

between both datasets. To reject outliers from the corrected

model, we eliminated the points whose altimetric differ-

ence fell outside the 95 % confidence interval (St-Onge

et al. 2008).

DTM, DSM and CHM generation

After the registration of both datasets, the different digital

models relating to terrain (DTM), surface (DSM) and

canopy (CHM) were obtained by surface generation in the

form of triangular meshes from the resulting classified

cloud. These meshes had to be filtered and refined to

remove the errors generated during the automated process.

Fig. 3 Workflow for the processing and classification of the photogrammetric point cloud

Fig. 4 Refining of the photogrammetric ground points through
LiDAR data
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This step used the approximation of Attene (2010), which

incorporates several automated and sequential tasks:

• Filling of holes through algorithms of planar triangu-

lations (Barequet and Sharir 1995) or more complex

approaches based on interpolation of the radial basis

function (Branch et al. 2006), the minimum distance

(Dolenc and Makela 1993) and the measurement of

angles (Bøhn and Wozny 1992; Varnuška et al. 2005).

• Repair of meshing gaps, based on minimum threshold

distance algorithms (Rock and Wozny 1992; Barequet

and Kumar 1997).

• Removal of topological noise, allowing the mesh to be

re-triangulated locally (Guskov and Wood 2001).

• Removal of geometric noise by algorithms that apply

filters as anti-aliased Laplacians in general or specific

zones (Fan et al. 2008).

Finally, the CHM was obtained from the difference

between the photogrammetrical DSM and the DTM

resulting from the fusion of the point clouds (Järnstedt

et al. 2012). The CHM represents the normalised heights of

the vegetation with respect to the surface of the terrain,

with a planimetric resolution of 1 m (D’Oliveira et al.

2012).

Experimental results

This study was conducted in an area of public land in the

municipality of Bienservida in the province of Albacete

(Spain). In particular, the study zone is located on land

identified in the Public Usefulness Catalogue as No. 26.

Figure 5a shows a map with the location of the study zone

outlined in white. The scrubland area covers 1100 Ha. This

is of great interest from a forestry perspective because the

densely forested zone hosts a forest mass composed of

Pinus nigra with different fractions of coverage according

to the National Forest Inventory of Spain. The area also has

a steep topography, and thus photogrammetric surveys are

more appropriate from a practical point of view than classic

forestry methods. The choice of this zone was also based

on the availability of a pre-existing work plan that included

the selected land and incorporated a classic forestry

inventory. Thus, we established a zone of 2.00 km2

(Fig. 5b) as the study area where we could apply the pro-

posed methodology.

Regarding the LiDAR dataset, despite its official source,

it was necessary to validate the data in advance by visual

checking and manual refining. As a result, some outliers

such as ‘vegetation’ or ‘noise’ were classified as ‘ground’,

whereas some buildings were classified as ‘vegetation’. To

contrast changes in the LiDAR cloud with the initial

classification, a confusion matrix was developed. A total of

4,822,511 points were classified correctly, obtaining a

global accuracy of 99.98 %. An analysis of the confusion

matrix, including the errors of commission and omission as

well as producer and user accuracy can be seen in Table 3.

These results show the insignificance of the incorrectly

classified points in relation to the entirety of the cloud. A

1 % error was only exceeded by the ‘others’ class due to

the presence of incorrect ground and vegetation points.

To perform photogrammetric data acquisition, the flight

over the study area was planned with a height of 300 m,

corresponding to a 7.50-cm GSD. The camera shooting

interval was configured according to the minimum forward

overlap and flight speed to meet the flight planning

requirements and avoid image blurring, respectively (see

‘‘Flight planning and execution’’ section for more details).

The obtained flight plan is outlined in Fig. 6, in which the

rectangles represent the footprint of each image (area

covered on the ground) resulting from each camera posi-

tion (circles) along the flight strips. These footprints were

Fig. 5 a Location map with a box around the study area (white rectangle) and b orthophoto of the study area (EPSG code 25830)
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projected based on the DTM ground relief to verify com-

pliance with the flight parameter requirements.

The flight was carried out on 5 December 2013, cov-

ering a greater area than proposed to ensure total coverage

of the study area. The flight run followed the established

plan. Finally, images were georeferenced according to

ETRS89 UTM 30 North (Coordinate Reference System,

CRS EPSG code 25830), which is required by Spanish

legislation for all geomatic products. The Albacete station

was taken as a reference from the ERGNSS network

(network of permanent geodetic GNSS stations of the

National Geographic Institute of Spain) and used to correct

the position of the RTK solution. In the navigation phase,

which used a GNSS, WGS84 CRS was employed (EPSG

code 4326). This georeferencing served as a preliminary

photogrammetric adjustment and helped the process of

computational matching.

Before the flight, 29 artificial ground points were placed

in the zone to be measured by GNSS; these acted as control

and check points. A georeferencing precision of 0.05 m

was obtained in GNSS measurement post-processing.

In the conventional photogrammetric processing method

carried out according to ‘‘Low-cost photogrammetric

workflow’’ section, a total of 12,732,877 matching points

were obtained, detecting 2,399,164 outliers through a

robust estimation of the fundamental matrix (Barazzetti

et al. 2010). The generated 3D dense model (Fig. 7) was

composed of 290 million points after the processing of

1001 images, which is a density of 145 points/m2. The

model was georeferenced using 17 ground control points,

obtaining an absolute georeferencing error of 1.21 m from

the check points.

Once the photogrammetric point cloud had been gen-

erated, it was necessary to classify the points according to

two classes: ground and vegetation. To distinguish the

vegetation, radiometric segmentation was carried out,

taking advantage of the visible spectrum of the pho-

togrammetric point cloud. Figure 8 shows an example of

the results of this processing.

Next, geometric segmentation was performed, working

with the non-vegetation class, which was re-labelled

‘ground’. The resulting photogrammetric point cloud

classification is outlined in Table 4.

To analyse the statistical compatibility of both data

sources (LiDAR and photogrammetry), the accuracies of

both sets of registrations were compared. The ‘a priori’

accuracy was r = 0.41 m (Eq. 2) while the ‘a posteriori’

accuracy obtained was r̂ ¼ 0:47 m, being the mean alti-

metric accuracy 0.17 m, confirming the validity of the

results. These values were acquired in areas sharing com-

mon ground points between the LiDAR and refined pho-

togrammetric point clouds, thus generating an altimetric

difference map.

rfusion ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2photogrammetry þ r
2
LiDARÞ

q

rfusion ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:102 þ 0:402ð Þ
p

¼ 0:41m ð2Þ

On the map of altimetric differences, we removed the

values that fell outside a 95 % confidence interval, and the

remaining differences were interpolated to obtain values at

points lacking photogrammetric terrain data. Figure 9

shows a Q–Q plot of the map’s height differences com-

pared with standard normal quantiles, demonstrating a non-

Gaussian distribution of the errors (absence of

Table 3 (a) Confusion matrix from the LiDAR data considering
‘ground’ and ‘vegetation’ classes and (b) errors of commission and
omission and user and producer accuracy

Refined LiDAR Data

Vegetation Ground Others

(a)

Initial LiDAR data

Vegetation 3,674,535 0 325 3,674,860

Ground 517 1,145,807 20 1,146,344

Others 0 0 2169 2169

3,675,052 1,145,807 2514 4,823,373

Commission % Omission
%

Producer
accuracy

User
accuracy

(b)

Vegetation 0.009 0.014 99.991 99.986

Ground 0.047 0.000 99.953 100.000

Others 0.000 13.723 100.000 86.277

Global accuracy:
99.982 %

Fig. 6 Flight planning, 0.08 m GSD: rectangles represent the
footprint of each image, and circles are the camera positions along
the flight strips (EPSG code 25830)
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systematism), with some values that exceed the estimated

accuracy. This is because the georeferencing of the LiDAR

and photogrammetric data was not very rigorous owing to

the scant topographic support of the LiDAR data, the

automated matching processes, the use of low-accuracy

inertial sensors and GNSS, and the use of non-metric

cameras for the low-cost photogrammetry. Owing to this

distribution, upon applying a solid-rigid transformation

whose principal component is translation on the z axis, the

error committed at certain points would be increased.

Table 5 shows the map’s statistical parameters and values.

In light of the above, we designed a discrete correction

model (section ‘‘Fusion of point clouds’’) that improved the

accuracy of the registration based on the altimetric differences

map. The model was applied to LiDAR terrain data at points

lacking photogrammetric information bymeans of a computer

application designed for this end, as shown in Fig. 10. These

corrected points were included in the photogrammetric point

cloud, thus obtaining the fused point cloud.

Once both datasets had been fused, the properties of the

final point cloud were analysed, checking for the absence of

vegetation points with negative height. Table 6 shows the

number of points belonging to each class together with the

range of elevations and height normalised with respect to the

ground class. Figure 11 shows the final point cloud for veg-

etation, ground and building classifications, seen in plan view.

As final results, Figs. 12, 13 and 14 show the Digital

Terrain, Surface and Canopy Models obtained from the

hybrid cloud, rasterised with a mesh size of 1 m.

After analysis of the CHM, we observed that there were

very few cases in which the vegetation surpassed a height

of 20 m. The P. nigra specimens in the zone were between

20 and 23 m in height. There was one case in which a

Fig. 7 Photogrammetric dense point cloud of the study area (145 points/m2)

Fig. 8 Examples of radiometric segmentation of the photogrammetric point cloud. a Photogrammetric point cloud, b classified vegetation
(green), c 3D classification view

Table 4 Classification of the photogrammetric cloud

Classification No. points %

Ground 29,281,752 17.70

Vegetation 135,562,812 81.92

Noise 528,961 0.32

Building 86,378 0.05

Wire conductor 12,668 0.01

Tower 2479 0.00
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height of 27.7 m was attained, but this specimen was not a

pine and was deciduous; it was probably a poplar, whose

heights can reach 35 m.

The results allowed us to explore the development of

forest growth in the area. To accomplish this, we analysed

Fig. 9 Q–Q plot of the altimetric difference map versus standard normal quantiles

Table 5 Statistical data of the
altimetric differences map

Maximum (m) 1.090

Mean (m) 0.226

Minimum (m) -0.760

Std. deviation (m) 0.364

Fig. 10 Correction model coded by colour (EPSG code 25830)
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the distribution of the differences in plant volume between

the CHM from the LiDAR data taken in 2009 and that

generated from the hybrid point cloud in late 2013, both

with respect to their respective DTMs. The increase in

biomass volume that occurred during the interim was

3,318,501 m3 in the 2.00 km2 study area. This was due to

the protectionist legislation enacted in the zone during

those years (Cerro and Borja 2007).

Table 6 Classification of the
final fusion cloud

Classification No. points % Z_Min (m) Z_Max (m) Height (m)

Ground 29,220,875 17.78 1111.24 1406.59 0

Low vegetation 22,638,874 13.78 1111.50 1407.50 (0–1]

Medium vegetation 17,920,617 10.91 1112.68 1409.46 [1–3]

High vegetation 93,514,449 56.93 1113.50 1412.49 [3–27.67]

Building 86,378 0.05 1119.99 1184.34 –

Others 911,914 0.55 – – –

Fig. 11 Plan view of the final classified fusion cloud

Fig. 12 Digital terrain model
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Conclusions

This paper describes a successful methodology that gen-

erates a Canopy Height Model for conducting forest

inventories such a stratification of forest masses to forest

management unit applications or a stock calculation and for

fire studies obtaining combustible models. This CHM

permits a better understanding of the forest structure in

detail, allowing to know the relationships between the

flora, the fauna and the soil over large extensions. The

combined use of low-cost photogrammetry based on the

use of economical, conventional, non-metric digital cam-

eras and aerial LiDAR open data, together with the use of

the latest computational vision techniques and geomatic

tools, provides useful information for forestry applications.

In particular, by integrating the terrain data in the pho-

togrammetric cloud, it is possible to incorporate LiDAR’s

capacity for terrain detection in zones of dense vegetation

with the greater spatial, radiometric and temporal resolu-

tion of low-cost photogrammetry from alternative

platforms such as the aerial trike or RPAS. Moreover, these

platforms allow the loading of sensors suitable for vege-

tation analysis, depending on their payload capacity. Thus,

it is possible to carry out a radiometric classification of the

vegetation that improves upon current morphological

methods. In this sense, we define a correction model that

allows LiDAR data to be adjusted to the photogrammetric

point cloud, obtaining an altimetric accuracy of 0.47 m for

the registration data.

The advantage offered by this methodology is that it

allows a CHM to be obtained with adequate phenological

detail due to the combination of LiDAR flights performed

at low temporal resolution and low-cost photogrammetric

flights performed with the required periodicity. This also

allows a reduction in the errors that arise in dasometric

assessments upon incorporating models for the prediction

of vegetation growth.

It is worth noting that the statistical compatibility of

both sources of data could be improved in the data acqui-

sition phase with appropriate field topographic support.

Fig. 13 Digital surface model

Fig. 14 Canopy height model

Trees

123



That is, photogrammetric point cloud georeferencing can

be improved by designing pre-signalling targets of suit-

able colour for forestry applications and for later mea-

surement in the images collected. It might even be possible

to improve the targets’ design to facilitate their detection

and the automated extraction of the centroid. Another

proposal would involve the incorporation of metric cam-

eras, although in the case of RPAS this depends on the

platform’s payload capacity. This would increase both the

associated cost and the accuracy.

The proposed methodology reduces the time required

for acquisition and processing compared with that of tra-

ditional techniques of forest inventorying, with the added

advantage that it provides vectorial information in the form

of classified point clouds. This implies an increase in final

accuracy at the rodal level and simplified integration and

management of forestry information in Geographic Infor-

mation Systems. At the same time, the subjectivity asso-

ciated with operator-generated uncertainty is removed.

Needless to say that the complementary of both techniques

would offer to reach better results, taking advantages of the

spatial continuity of the remote sensing in order to

extrapolate the manual measurements of the trees.

In future work, we shall address the forestry variables in

the obtained dense cloud and perform a comparative study

with the variables obtained from the LiDAR information,

applying rodal, individual-tree or even a combination of

both methods to benefit from the high resolution of the

initial data. To date, from the obtained CHM, essential tree

parameters such as diameter at breast height (DBH) or

distinguishing between species are not reliably derived yet.

Another line of enquiry will be to contrast the variables

obtained from the dense cloud with other data from a

classic inventory of the study zone, i.e., the National Forest

Inventory of Spain and the inventory drafted by the Public

Land and Natural Spaces Service of the Agricultural

Commission of the Regional Government of Castilla-La

Mancha, Spain.
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Gonzálvez P, Pierrot M, Fernández-Hernández J (2013) PW,
photogrammetry workbench
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In this Doctoral Thesis, contributions in the research lines are made which advance in the 

direction of the application of low cost and close-range photogrammetry to Agroforestry 

Engineering. This is a non-destructive and non-invasive technique suitable to inspect and 

monitor crops and forest land, through an optimal modeling of biophysical parameters 

and extracting georeferenced information with metric rigor. 

This Doctoral Thesis is the result of a compendium of three scientific papers published in 

specialized index journals. Below, a summary of the contributions including most 

relevant results and the directions for future works related to the articles, are discussed. 

The first paper describes a successful methodology for radiometric calibration using the 

vicarious method of a multispectral MiniMCA camera aboard a low-cost manned aerial 

platform and using low-cost targets of invariant reflectivity material. The potential of this 

PPG trike system is evident, with the possibility of being able to load it with a large 

number of sensors that extend multispectral studies, affording the advantage of a flying 

height that minimizes the need for atmospheric corrections. The results confirm a new 

trend for low-cost remote sensing, together with the use of the latest computer vision 

techniques and open-source geomatic tools. In this study case, the calibrated geomatic 

products can be used to successfully evaluate and classify large areas of different crops, 

allowing decisions to be made about irrigation, nutritional support and crop development  

through accurate georeferenced and calibrated multispectral images. Here, the potential of 

deriving quantitative magnitudes such as vegetation indices is also shown. Future works 

will address the assimilation of the calibrated images into agronomic models to evaluate 

their consistency with advanced biophysical variables. 

In the second paper, a non-invasive low-cost method with application to precision 

viticulture is presented that consists of vineyard yield estimation. The method is fast, 

reliable, robust and objective, and could serve to take decisions in advance regarding 

actions to be taken in vineyards, predicting the results and planning the vintage optimally. 
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The method developed relies on the adaptation of the PW software tool, which allows the 

metric reconstruction and dimensional analysis of bunches from grapevine images taken 

in field conditions. The advantages of PW include process automation, sufficient quality 

to generate dense resolution models equivalent to the pixel size of the image, and low cost 

and ease of use. Since future prospects will address cluster compactness and its 

relationship to volumes, another action to be developed in the future will be to design and 

build a platform that supports the configuration of the image acquisition protocol and that 

can be loaded on a mobile platform such as a quad. 

The third paper develops a successful methodology that generates a Canopy Height 

Model for conducting forest inventories. In particular, by integrating the terrain data in 

the photogrammetric cloud, it is possible to incorporate LiDAR�s capacity for terrain 

detection in zones of dense vegetation with the greater spatial, radiometric and temporal 

resolution of low-cost photogrammetry from alternative platforms such as the aerial trike 

or RPAS. The advantage offered by this methodology is that it allows a CHM to be 

obtained with adequate phenological detail due to the combination of LiDAR flights 

performed at low temporal resolution and low-cost photogrammetric flights performed 

with the required periodicity. In future work, we shall address the forestry variables in the 

obtained dense cloud and perform a comparative study with the variables obtained from 

the LiDAR information, applying rodal, individual-tree or even a combination of both 

methods to benefit from the high resolution of the initial data. Another line of enquiry 

will be to contrast the variables obtained from the dense cloud with other data from a 

classic inventory of the study zone. 

Generally concluding this research, we can verify that low cost and close-range 

photogrammetry applied to Agroforestry Engineering provides valid information for 

optimal management, reducing field time and associated cost, as well as it improves 

accuracy, quality and quantity of the obtained results. 
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Highlights: This study focuses on developing an innovative methodology to automatically estimate 

the diameter at breast height (DBH) of urban trees sampled by a Laser Mobile Mapping System

(LMMS). The high-quality results confirm the feasibility of the proposed methodology, providing

scalability to a comprehensive analysis of urban trees.

Keywords: breast height diameter, LiDAR, urban trees, laser mobile mapping system, estimation. 

Introduction 

Accurate measures of structural parameters of urban trees and monitoring their changes over time are essen-

tial to inventory of urban trees and growth models, modelling of carbon cycle and management systems of urban

trees [1]. The estimation of these variables has traditionally been done with field inventories via pilot samplings.

The advent of recent remote sensing technologies has opened up a new field of possibilities for carrying out such

work through non-destructive methods, providing advantages regarding the economic costs involved, the time

invested and estimation errors.

Among the various urban tree measurements, DBH (stem diameter at 1.3 m height) is an important tree in-

ventory attribute because it serves as a fundamental parameter in tree allometry and estimation of basal area, thus

providing valuable information about individual trees and tree stand structure. Many countries store the DBH of

urban trees in cadaster databases for monitoring purposes .

The application of LMMS (Laser Mobile Mapping System) enables to fast and accurately capture 3D data of

individual urban trees along the road. However, no research has been done on retrieving DBH using this tech-

nology. LMMS operates at the suitable work scale between manual and airborne LiDAR measurements. The

latter fails to capture the complete vertical distribution of the canopy [2]. Terrestrial Laser Scanning has been

used for estimating tree parameters[3], but being time-consuming compared with LMMS in an urban context.

However, the method proposed has to face additional difficulties due to the specific acquisition geometry of the

technology mentioned, such as the partial 3D data (only one side view), or having to deal with occluding vegeta-

tion, leading to underestimations compared to manually collected field data [4].

The aim of the present work is to develop an efficient and precise methodology in a novel way, to obtain

DBH of urban trees destined for inventories based on point clouds coming from LMMS. Additionally, the influ-

ence of the density of points on the accuracy of deriving DBH estimations were investigated.

Materials and Methods 

Laser Mobile Mapping System 

For this work, data acquired by Fugro Drivemap is considered. This LMMS is composed of two high perfor-

mance laser scanners type Riegl VQ250, a four-wheeled all-terrain vehicle and a navigation unit. The Global

Positioning System has 10 Hz of positioning rate and the laser pulse rate is 1.333�106 pulses/s, being the maxi-

mum density 115000 points/m
2
, the field of view 360

o
x 26.8

o
, the ranging accuracy less than 2cm and the maxi-

mum range 30 m.

Ground Inventory Data 

The ground truth of the DBH was established using a measurement tape by a qualified operator at 5 centime-

ter precision. It should  be remarked that the studied trees are less than 10 meters from de road.
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DBH tree extraction Methodology

Before estimating the DBH, the extraction of individual

tomated workflow by voxel analysis (not the aim of this study). For t

following steps are performed for each

1). Outliers removal.

A statistical analysis on each point’s

points whose mean distance is outside an interval defined by the global

considered as outliers and removed from the dataset.

2). Extraction of trunk data.

The limit between the trunk and canopy is

the number of filled voxels of 0.25 cm

If the histogram shows there are ramifications in the

each data point (xi,i=1...n). K-means is a clustering method that aims to find the positions

that minimize the Euclidean distance from the data poin

��������
	


�
where ci is the set of points that belong to cluster

3). Determining the orientation of each trunk by Princip

trunk points into a plane orthogonal to the axis corresponding to the principal directio

A classical approach consists in performing a PCA of th

statistical analysis uses the first and second moments of the point cloud, and results

centered on the centroid of the point cloud. The PCA sy

mensions, and thus models the principal directions an

the center of gravity [6].

4). Fitting a circle to the projected trunk points

gate the influence of outliers [7].

DBH was retrieved from laser datasets by circle fittin

the assumption that the diameter is not significantl

Points that deviated most from a

through the RANSAC method.

5). Quality control by obtaining the RMSE of the DBH esti

Figure 1.

Experimental Results 

The study area is located at the Delft University of Technology

The Netherlands) and tree species include Plantanus and Quercus

November 2014 covering an area of approximately 750 x

53,958,666 points, with the x, y and z

DBH tree extraction Methodology 

H, the extraction of individual trees of the point cloud is necessary through an a

oxel analysis (not the aim of this study). For the DBH tree extraction methodology the

for each tree (Figure 1):

statistical analysis on each point’s neighbourhood is performed by assuming a Gaussian

outside an interval defined by the global mean distance and standard devia

ed from the dataset.

The limit between the trunk and canopy is calculated by the curvature change of the histogram

cm
3

size as a function of height.

If the histogram shows there are ramifications in the trunk, k-means is used to assign a cluster (

means is a clustering method that aims to find the positions 

that minimize the Euclidean distance from the data points to the cluster (Equation 1):

���
�� �
�
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� ��������� ��� � �
����

����

	


��
is the set of points that belong to cluster i.

). Determining the orientation of each trunk by Principal Component Analysis (PCA) and projecting the

ogonal to the axis corresponding to the principal direction.

A classical approach consists in performing a PCA of the 3D coordinates of the point cloud of the trunk. This

first and second moments of the point cloud, and results in three orthogonal vectors

centered on the centroid of the point cloud. The PCA synthesizes the distribution of points along the three d

mensions, and thus models the principal directions and magnitudes of variation of the point distribution arou

). Fitting a circle to the projected trunk points by using RANSAC (RANdom SAmple Consensus)

DBH was retrieved from laser datasets by circle fitting at different height bins. This can be done because of

the assumption that the diameter is not significantly varying along a short length of the stem for mature trees.

Points that deviated most from a fitted circle were considered noise and removed for D

). Quality control by obtaining the RMSE of the DBH estimated and measured at different height bin sizes.

Figure 1. Workflow of the DBH Methodology

Delft University of Technology campus (lat. 52º00´ N; long.

and tree species include Plantanus and Quercus. Data collection was performed on the 4

November 2014 covering an area of approximately 750 x 1200 m on a day without wind. The dataset consists of

53,958,666 points, with the x, y and z coordinates and intensity. A pre-processing step of this

trees of the point cloud is necessary through an au-

he DBH tree extraction methodology the 

y assuming a Gaussian distribution. All

distance and standard deviation are

calculated by the curvature change of the histogram that represents 

assign a cluster (k clusters) to

means is a clustering method that aims to find the positions �i,i=1...k of the clusters 

�� ���������������������������
��

mponent Analysis (PCA) and projecting the 

ordinates of the point cloud of the trunk. This 

in three orthogonal vectors 

zes the distribution of points along the three di-

itudes of variation of the point distribution around 

mple Consensus) to miti-

fferent height bins. This can be done because of 

the stem for mature trees.

fitted circle were considered noise and removed for DBH estimations

and measured at different height bin sizes.

(lat. 52º00´ N; long. 4º22´ E; 1 m asl,

. Data collection was performed on the 4th of

n a day without wind. The dataset consists of 

of this dataset was carried
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out in order to obtain the individual trees of the zone of interest. After that, the point cloud has 1,860,156 points

with no intensity. There are 29 trees in total, 14 Platanus and 15 Quercus. The diameters of the first one are big-

ger than the others.

The accuracy of DBH estimation is influenced by several factors. Different height bins for determining the

number of points to fit the circle, were tested to derive reliably DBH estimations. In addition, DBH estimation

errors were confronted with the number of points to fit the circle but a relation was not seen.

Table 1 collects the robust statistical parameters of the linear regression stablished between the actual and the

estimated DBH at different height bin sizes. The probability of success to achieve a right DBH defined by this

parameters, is also included. From this analysis, it is possible to conclude that 20 cm height bin provides better

results, from 1.20 m to 1.40 m height of each individual tree.

Table 1.   Correlation coefficients and probability of success at different bin sizes 

Circle Fitting 

Height Bin (m) 
R

2
 RMSE (cm) Probability of Success (%) 

1,25-1,35 0,792 5,67 62,1

1,20-1,40 0,837 4,35 79,3

1,10-1,50 0,688 6,45 75,9

1,00-1,60 0,600 12,12 86,2

Conclusions 

This research presents a non-invasive method with application to urban tree inventory that consists of DBH

estimation. The method is fast, reliable, robust and objective, and could serve to take decisions in advance re-

garding actions to be taken in urban trees and planning the management and maintenance optimally. This study

also discussed the influence of the number of points to fit the circle and circle fitting height bin size on the influ-

ence of DBH estimation accuracy, validated against field measurements. Regarding these variables, the results

show that there is no significant relation between the number of points and the DBH estimation errors. A 20 cm

height bin provides better results, reaching a R
2
 value of 0.84 and a RMSE of 4.35 cm with a probability of suc-

cess of 79.3%. In addition, the results show that working only on one side of the tree, the visible side from the

road, is still feasible for approximating the DBH with an accurate and precise fit.

This methodology can be extrapolated to a comprehensive study of urban trees.

It should be mentioned that the proposed methodology is part of a robust and efficient workflow which con-

siders the automated, large scale extraction of tree sizes and locations sampled by a laser mobile mapping sys-

tem. It includes tree location, level height and crown width throw a sensitivity analysis.
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ABSTRACT:

In urbanized Western Europe trees are considered an important component of the built-up environment. This also means that there is

an increasing demand for tree inventories. Laser mobile mapping systems provide an efficient and accurate way to sample the 3D road

surrounding including notable roadside trees. Indeed, at, say, 50 km/h such systems collect point clouds consisting of half a million

points per 100m. Method exists that extract tree parameters from relatively small patches of such data, but a remaining challenge

is to operationally extract roadside tree parameters at regional level. For this purpose a workflow is presented as follows: The input

point clouds are consecutively downsampled, retiled, classified, segmented into individual trees and upsampled to enable automated

extraction of tree location, tree height, canopy diameter and trunk diameter at breast height (DBH). The workflow is implemented to

work on a laser mobile mapping data set sampling 100 km of road in Sachsen, Germany and is tested on a stretch of road of 7km long.

Along this road, the method detected 315 trees that were considered well detected and 56 clusters of tree points were no individual

trees could be identified. Using voxels, the data volume could be reduced by about 97 % in a default scenario. Processing the results of

this scenario took ˜2500 seconds, corresponding to about 10 km/h, which is getting close to but is still below the acquisition rate which

is estimated at 50 km/h.

1. INTRODUCTION

Recent years saw a rapid development of sensor systems that ef-

ficiently sample our 3D environment at high detail, (Vosselman

and Maas, 2010). Mobile mapping systems implemented in heli-

copters and cars obtain point clouds consisting of millions to bil-

lions of points at a daily basis, (Haala et al., 2008, Puente et al.,

2013). In addition, methods from e.g. computer vision and com-

putational geometry became available over the last years that are

able to extract useful information from such 3D point clouds by

estimating locations and sizes of the different objects sampled by

the point clouds, (Puttonen et al., 2011, Rutzinger et al., 2010).

Such methods are typically demonstrated in the scientific com-

munity at case study scale however. Examples are given of the

extraction of geometric parameters from one facade, one or a few

trees or 300 m of road furniture, (Monnier et al., 2012). So far,

the number of publications that specifically addresses the difficul-

ties of processing large urban point clouds is limited, (Weinmann

et al., 2015).

Unfortunately it turns out far from trivial to efficiently exploit the

possibilities of combining large 3D point clouds and 3D geometry

extraction methods, (Krämer and Senner, 2015). Computers have

limited memory capacity, which means that input data needs to

be (re)divided into manageable chunks. At the same time an au-

tomated division strategy will often affect the objects of interest,

as data division will take place before object extraction. Another

problem is that the results of geometry extraction algorithms of-

ten depend on parameters. For an individual case study such pa-

rameters can easily be tuned. When automatically processing an

unseen, large data set with a variety of different realizations of the

same object type, parameter tuning should be either unnecessary

or automated. Another challenge is to make algorithms responsi-

∗Corresponding author

ble for the compatibility between consecutive steps: the output of

step (k − 1) is the input of step k. Even powerful geometry ex-

traction methods may fail when sampling is locally hampered by

unfavorable acquisition conditions. Therefore it is important that

a human operator responsible for quality control is automatically

guided to such locations.

For the workflow presented in this paper the strategy to mitigate

the negative effects of large point clouds on computational fea-

sibility, is to process as much as possible at voxel level, rather

then at the individual point level. That is, the original point cloud

is subdivided into small cubic cells, the voxels, and consecutive

information extraction takes place by analyzing local voxel con-

figurations. Switching to voxels has some advantages. Data vol-

ume and therefore memory usage is reduced, as many points in

one voxel are simply replaced by one single voxel value (Either

voxel center, or center of gravity of the points in the voxel); The

effect of varying point densities in scan data is largely resolved

and irregular points are replaced by regular voxels cells, which

makes spatial indexing more efficient; Smaller gaps in data cov-

erage caused by occlusions in the scanning play a smaller role be-

cause of the lower resolution of the voxels. Voxels are the most

simple way to subdivide a 3D domain. More sophisticated and

more scalable is to organize a point cloud in a so-called kd-tree,

which allows to prune the point cloud to a certain level, (Triebel

et al., 2006), or in an octree.

Even when voxels are processed instead of the original points,

files consisting of these voxels can grow arbitrary large if sim-

ply merged without strategy. Therefore some additional tiling

and stitching strategy is needed that chops data in manageable

chunks, either for single node processing or for parallel execu-

tion, (Yang and Zhang, 2015). If one such chunk can be processed

in a reasonable time, the method would not change if you process

1km, 10km, or 10 000 km of data along urban streets, which is
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exactly what is required in practical applications. Here ‘reason-

able time‘ is often defined such that processing the data does not

take more time then acquiring the data. So, the only remaining

requirement is that it should be demonstrated that processing a

chunk doesn’t take more time then acquiring it.

The above mentioned advantages of using voxels, kd-trees and

octrees and octrees are reasons that several voxel based methods

have been designed for natural tree related processing of point

clouds. (Popescu and Zhao, 2008) divide their airborne point

clouds of trees in voxels to determine the transition between trunk

and canopy. (Bucksch et al., 2010) organize notably panoramic

scanner point clouds sampling trees in voxels to reconstruct the

branch structure of trees; (Wu et al., 2013) organize laser mobile

mapping data in voxels to divide tree points over individual trees.

(Cabo et al., 2014) detect pole like objects in mobile mapping

scan points using voxels, which allowed to work on 20-30 % of

the original data volume. (Lim and Suter, 2009) use initial in-

dividual point features to group points in so-called super voxels,

which are used in consecutively obtaining point cloud classifica-

tion results of a panoramic scanner point cloud.

This short literature review indicates that in principle methods ex-

ist that satisfy the needs of the workflow presented in this paper.

Still it was chosen to use methods that were implemented from

scratch for the following reasons. Available methods typically

solve a problem at hand in an approximate way, in the sense that

they may estimate related parameters, but not exactly the param-

eters required by a particular application. In addition, available

methods were often developed while solving a problemwithin the

particular context of a specific data set. Applying the method on

different data often gives incorrect results. Note that this prob-

lem is partly solved by data processing contests, e.g. (Vallet et

al., 2015), which compare methods in a more uniform way. An-

other issue is that within a workflow back-to-back processing is

required: the output of the previous module is the input of the

next module. A condition which is typically not fulfilled with-

out extra work when relying on available methods. Finally that

a method is published doesn’t mean that an implementation is

available, nor that input and output formats, programming lan-

guage and targeted operating system match. For the combination

of these reasons it was decided to implement the workflow from

scratch using relatively light but flexible methodology.

2. METHODOLOGY

In this work we will present a processing chain aiming at the ro-

bust and efficient large scale extraction of tree sizes and locations.

2.1 Data description

The processing chain is initially tested on 7 km of laser mobile

mapping data, sampling a test route in Saxony, Germany. The

laser mobile mapping system contains a clearance profile scanner

from Fraunhofer IPM, collecting up to 2 million points per sec-

ond. The relative precision of each single laser point is 4 mm.

The absolute geographic precision of the point cloud is about 15

cm, ensured by a 2 antenna GPS/GNSS positioning system sup-

ported by a 200 Hz IMU from APPLANIX and differential GPS

corrections applied in postprocessing.

The mobile mapping system originally records the laser scanner

data on the road in a binary format until 1 GByte is reached per

file (and then the next 1 GB container will be filled etc.). These

binary data containers were converted to xyzi-format and sepa-

rated into 10 meter chunks. These 10 meter chunks are the start-

ing point of the processing chain described in this work. The test

road is represented by 830 xyzi files (the 10 meter chunks) of in

total 17 GByte. In single cases, the car had to stop because of

traffic which lead to larger files. Together, these 830 files contain

427 186 054 points. The processing chain below doesn’t use the

intensity data, only the xyz information. In its final form the pro-

cessing chain will be used to extract tree locations and sizes for

100 km of laser mobile mapping data. For this area, ground truth

tree locations obtained by a human operator are available.

2.2 Processing chain

The processing chain consist of the steps listed below. Each step

corresponds to an algorithmwhich allows the user to specify up to

two parameters as indicated. Some more details are given below.

Downsampling and retiling, with two parameters: voxel size,

and maximum number of points per tile.

Tree point classification, with two parameters: grid size and min-

imum tree height:

Tree segmentation, with two parameters, minimum canopy di-

ameter and voxel size

Tree parameters, rough, no parameters

Upsampling per tree, no parameters

Tree parameters, fine, no parameters

What follows is a short description of the described methodology.

The input data is provided in chunks that in principal correspond

to 10m of road. It is assumed that these chunks are ordered ac-

cording to the order in which they were sampled A main step to

make the processing feasible is actually the first step, the down-

sampling and retiling step. In this step, input data chunks are read

and uniformly downsampled. This means that a fixed voxel size

is set by the user, e.g. 30 cm, which defines a 3D grid over the

scene sampled by the chunk. Consecutively all original points in

a given voxel cell are replaced by the center of gravity of those

points. Downsampled points are collected in order until a preset

number of points is reached. These, for example 200 000 points

are written to a file. Therefore this step will result in files con-

taining at most 200 000 points at a resolution of 30 cm.

These retiled files are the input for the classification step, (Sir-

macek and Lindenbergh, 2015). The aim of this step is to divide

the 3D points in two classes, tree and non-tree points. In this

step a 2D grid is defined over the data of a given grid size, e.g.

20 cm. For each grid cell, the number of 3D points are counted

whose xy location belong to the grid cell. Local maxima in the

resulting counts are assumed to correspond to tree locations. 3D

points above the ground and close to these tree locations will be

assigned to the tree class, the other points to the non-tree class.

To distinguish trees from shrubs, a minimal tree height can be de-

fined by the user, for example 2 m. A disadvantage of the current

algorithm is that it sometimes generates false positives at street

poles. This step is also illustrated in Figure 1. In the left im-

age, points colored gray are non-tree points, while the dark green

points are classified as trees.

The classified points proceed to the tree segmentation step. Goal

of this step is to segment the tree points into individual trees. To

do so, tree points are again distributed over a 3D voxel struc-

ture. First local maxima are detected. If a local maximum is

sufficiently prominent, according to the minimum canopy width
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Figure 1: Left Points classified as trees (green points) and other (gray points). Right Identified individual trees (solid colors) in their

bounding box.

Figure 2: Restoring of the original tree points for one individual tree. Left. Voxelized points belonging to a tree (in dark green) and

not belonging to this tree (in gray). Right. Using the bounding box in the left image, the original points are restored in the right image.

These original points are used to determine final tree parameters like Diameter at Breast Height (DBH).

parameter, it is selected as a seed point for growing a tree by

traversing the layers of the adjacent octree cells from top to bot-

tom. Voxel cells at a certain layer in between two seed points, are

assigned to one of the two seed points according to a proximity

criterion. The success of this tree segmentation step is indicated

by a quality flag which can be used to guide a human operator to

situations were automated processing was not successful.

As a result of the tree segmentation step, tree voxels are assigned

to individual trees. By determining the bounding box of all voxels

belonging to one tree, a first estimation of the canopy width, tree

height and tree location is obtained. Indeed, the canopy width and

tree height are simply the width and height of the bounding box,

while an estimation for the tree location is the intersection of the

horizontal diagonals of the bounding box. This step is illustrated

on the right in Figure 1. Different trees have different colors, and

around each tree a bounding box is visible.

Note that all of the tree extraction steps above were performed on

the uniform downsampled point cloud of, say, 30 cm resolution.

As by now individual trees have been identified, it is possible

and also computationally feasible to go back to the full resolution

original point cloud, as the correspondences between downsam-

pled points and original points were maintained.

The final step is therefore performed per individual tree on the

original points, compare Figure 2. In the left image, the down-

sampled points are shown, in the right image, the original points

are restored. The number of down-sampled tree points in this

example is 1702, while the original number of points inside the

bounding box is 22 283. Using a histogram analysis of the ver-

tical distribution of the tree points, compare also (Popescu and

Zhao, 2008), the trunk is separated from the canopy. The direc-

tion of the trunk is estimated by Principal Component Analysis

(PCA) and the diameter at breast height (DBH), which is the di-

ameter of a tree at 1m30, (Bucksch et al., 2014), is estimated

by determining the diameter of a circle through tree points, after
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X

Figure 3: Large figure: Identified trees. Green circles correspond to tree locations marked by the method as correct, red circles

correspond to tree points where the algorithm was not able to identify individual trees. Small figure: some tree classification and

segmentation results. Green points were identified as tree points. The red markers indicate single trees (top of the road) or a cluster of

trees that couldn’t be segmented (bottom of the road).

Figure 4: An estimation of the Diameter at Breast Height (DBH)

is obtained by fitting a circle to projected trunk points of an ap-

propriate portion of the trunk.

removing outliers using RANSAC, (Fischler and Bolles, 1981),

compare also Figure 4. The figure shows only a partially sampled

circle, which corresponds to the mobile mapping system seeing

only the part of the trunk that is facing the road. The PCA step

in combination with restoring the original point cloud can also

be used to improve the estimation of the location of the tree by

determining the intersection of the principal axis with the terrain.

2.3 Sensitivity analysis

There is an apparent tradeoff between the different parameters.

Downsampling with a smaller voxel size in the first step will re-

sult in a higher resolution downsampled file, which contains more

details, from which consecutive steps could profit. At the same

time, if the maximum number of points per tile is kept fixed, the

spatial extent of the tile will shrink. This implies that more trees

will be cut in two at tile boundaries, which will negatively affect

the results.

Increasing the number of points per tile will in turn have a neg-

ative effect on the computational performance of the processing

chain. In addition, the first three steps, downsampling, classifica-

tion and tree segmentation, all us a 2D or 3D grid. How the sizes

of these grids interact should be further investigated.

Note that in the current workflow the first three steps all use vox-

els or pixels. In the current implementation the different voxel

and pixel sizes are not yet aligned. Therefore it is for example

possible that when using a voxel size of 30 cm in the first step,

as stated as an example above, and having a grid size of 20 cm

in the second step, some grid cells are in fact empty. It would be

preferably if these sizes were aligned, as it would further simplify

the tuning of the remaining parameters and the interpretation of

unexpected results.

3. RESULTS

All above mentioned steps have been implemented, but the final

tree parameter estimation step could not yet been tested within

the workflow.

As ‘default‘ settings, the values as shown in Table are used. The

large image in Figure 3 shows results for part of the 7km of road

considered as case study. Green disks indicate trees identified

by the processing chain. The diameter of each disk corresponds

to the estimated width of the tree canopy. Red disks correspond

to tree points where the segmentation method was not able to

identify single trees. The algorithm indicates this by a quality

flag, which guides an operator to these cases. Again, the diameter

of the red disks correspond to the width of the bounding box, in
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Step Parameter Value

Downsampling Voxel size 0.3 m

Max points per tile 20 000

Classification Grid size 0.2 m

Min. tree height 2 m

Segmentation Voxel size 1 m

Min. canopy diameter 6 m

Table 1: Default settings workflow

this case of the cluster of tree points that couldn’t be segmented.

As such cluster in reality typically corresponds to a number of

trees, the diameters of the red disks are in general larger than

those of the green disks. In total 315 trees were identified using

default settings. For an additional 58 tree point clusters the tree

segmentation step didn’t succeed in identifying individual trees.

Note however, that the locations of the identified trees currently

have not yet been validated using the ground truth data.

The small image in Figure 3 illustrates some of the intermedi-

ate steps. The results of the classification are indicated in green

(tree points) and grey (non tree points). Locations of success-

fully identified trees at the top of the road are indicated by a red

marker. Note that a small tree marked ‘X‘ was not identified,

probably because it was to small and therefore removed. The tree

segmentation method failed on the large cluster of tree points at

the bottom of the road. In this case, the location of the cluster is

still reported, but with a quality flag indicating the lack of suc-

cess. In this case also a human operator would probably have

difficulties to separate this cluster into individual trees.

The effect of using voxels on the data volume is shown by the

following example. Retiling the first 50 tiles using a voxel size of

30 cm reduced the number of points from 23 282 574 to 518 365

points, which corresponds to a reduction in data volume of 97.8

%.

Increasing the tile size could affect memory usage in a negative

way but should decrease tiling effects. The effect of changing

the voxel size in the first step is less obvious, as also consecutive

steps use voxels. Full evaluation of results of different scenarios,

including validation against ground truth, will take place after the

voxel sizes have been harmonized throughout the workflow

The tests in Table 1 were run on a desktop PC with Intel Xeon

3.6GHz processor and 16GB of RAM. All algorithms where im-

plemented in C++ and compiled and run on the Ubuntu 14.04

64-bit operating system. Running the scenario with the default

settings, corresponding to the first row in Table 1 took 2573 sec-

onds in total, which means that 1 km of data takes about 2573:7

km = 368 seconds. This processing speed corresponds to roughly

10 km an hour. This means that the initial goal of processing at

the same rate as the acquisition is close but not yet met, as this

probably would mean that the processing rate should be improved

by a factor five. Probably this improvement could be reached by

a further optimization of the current code.

The total computation time of the presented scenario’s is divided

over the different steps as follows: Retiling takes approximately

65 %, classification takes 32 % and tree separation 2 %. Change

of scenario has no large effect on this division, that is effects are

not more then a few per cent. It makes sense that computational

efforts drop throughout the workflow. Retiling still considers the

full input point clouds and file reading and writing is required.

Classification only operates on voxels. Finally, tree separation

works on tree voxels only. The final tree parameter estimation

step, where the full point clouds within the bounding boxes are

restored, were not available for testing yet.

CONCLUSIONS

In paper a processing chain aiming at the extraction of tree loca-

tions and tree sizes from laser mobile mapping data is presented.

All-though further validation is needed, initial results indicate

that the workflow is able to extract individual trees at sufficient

quality and at a rate that is approximating the data acquisition

rate: processing takes place at a rate of about 10 km/h. For ef-

ficient processing, the input is downsampled using voxels to a

volume that is below 3 % of the original data volume. Besides

validation, still harmonization between the parameters in the dif-

ferent steps is required. Such steps, in combination with code

optimization are expected to be sufficient to reach the final goal

of automatized estimation of features sampled by mobile map-

ping at a rate that matches the acquisition speed and at a quality

that matches the result of a human operator.
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  MULRACS-Multispectral Radiometric Calibration Software 

Type: Registration of intellectual property 

Reference: SA-00/2015/4722 

University: University of Salamanca 

UNESCO codes: 

- 2209.18 Photometry 

- 2209.20 Radiometry 

- 2209.90 Image Processing 

- 3311.11 Optical Instruments 

Authors: 

- Susana Del Pozo Aguilera 

- Mónica Herrero Huerta 

- David Hernández López 

- Pablo Rodríguez Gonzálvez 

- Diego González Aguilera 

Abstract: 

MULtispectral RAdiometric Calibration Software (MULRACS) developed in Matlab, is a 

software to radiometrically calibrate passive sensors at close-range distances (unaffected 

by atmosphere scattering and absorption of solar radiation). It is based on the vicarious 

calibration process, specifically on the radiance-based method likely to be applied for 

both mono-spectral and multi-spectral sensors. After the calibration process, geo-

referenced images with physical values (reflectance or radiance) and different vegetation 

index can be generated. These images have a high potential for studies about natural 

resource surveys, material inspections, precision agriculture� having a strong impact in 



Appendix C.MULRACS softwares 

101 

the International Scientific Community and private companies in order to perform image 

analysis. Figure A shows the MULRACS interface. 

Characteristics: 

MULRACS software is purpose-built to assist the radiometric calibration process and 

help to effectively manage and control of passive sensors. In that sense, MULRACS 

software allows performing a rigorous sensor calibration through the vicarious radiance-

based calibration method. From multiple artificial targets collected in several images, a 

robust least squares adjustment is applied, following equation 1. 

��������� 	 
��
� � ��� � ���� � ���� ����������������������������������

where F0i (offset) and F1i (gain), are the calibration parameters of the sensor, DNi

is the digital number of the control surface derived from the images and �i is a 

correction coefficient, all of them per ith channels of the sensor. 

The robust estimation chosen is based on Danish Method which iteratively applied 

weights according to the residual value of each previous iteration in order to dismiss 

outlier effects.  

Inputs: 

� Artificial Lambertian control surfaces 

� Spectral response curve of the control surfaces 

� Quantum efficiency of CCD/CMOS and filters of the passive sensor 

� Collection of images with their capture parameters (focal length, ISO, exposure 

time and aperture) 

Outputs: 

� Radiometric calibration parameters per channel 

� Statistical calibration results 

� Solar irradiance 

� Radiance images 

� Reflectance images 

� Vegetal index images 
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Figure A: MULRACS interface 
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The fellowship at TIDOP research group within the Department of Cartographic 

Engineering and Land of the Polytechnic University of Avila, with Diego González 

Aguilera as tutor, lasted 12 months. It was centered on the study of close-range 

photogrammetry and multispectral analysis applied to precision agriculture. 
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Reseach staff of EnsMart National Project, with Diego González Aguilera as main 

researcher, during 2013 and 2014 at the University of Salamanca. It was based on the use 

of computer vision techniques, close-range aerial photogrammetry, Mobile LiDAR System 

data and processing of thermal images in urban buildings for energetic modeling.�
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Reseach staff of IQmulus European Project, with Roderik Lindenbergh as main reseacher, 

during 2015 at Delft University of Technology. The contribution is based on the 

application of data from Mobile LiDAR System in the characterization of urban trees by 

creating a bigdata platform. 
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Participation in �TLS benchmarking 2016� project, with Xinlian Liang, Harri Kaartinen 

and Juha Hyyppä as main researchers from the FGI. The objective of the benchmarking 
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project is to evaluate the quality, accuracy, and feasibility of automatic, semi-automatic 

or manual tree extraction methods based on terrestrial laser scanner data.�
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Presentation of a methodology to extract geometrical parameters of urban trees through 

Mobile LiDAR System in the ISPRS Geospatial Week (2015). 
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The research stay at the Institute for Regional Development of Castilla-La Mancha, with 

David Hernandez Lopez as tutor, lasted two months (01/07/2014-31/08/2014). It was based 

on the acquisition and analysis of multispectral images by an alternative aerial platform. 
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The research stay at the Delft University of Technology, with Roderik Lindenbergh as tutor, 

lasted five months (01/02/2015-30/06/2015). This work considered the automated, large scale 

extraction of tree parameters sampled by a Mobile LiDAR System for direct application in 

urban tree inventories. 
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Software for radiometric calibration of passive multispectral close-range sensors.�
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Software for the extraction of tree geometric parameters coming from Mobile LiDAR 

System data. 
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