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a b s t r a c t

This manuscript focuses on developing a workflow for determining the productivity of vineyards in a

novel and innovative way, ensuring flexibility and simplicity in data acquisition, automation in the pro-

cess and high-quality results, using low cost sensors. The non-invasive system proposed allows the deter-

mination of yield at cluster level by combining close-range photogrammetry and computer vision.

Bunches are reconstructed in 3D from images processed with Photogrammetry Workbench software

(PW) developed by the authors. Algorithms and techniques were combined to estimate the most relevant

parameters in the productivity of a vineyard: volume, mass and number of berries per bunch. To validate

the workflow proposed, a sample of laboratory tests based on dimensional analysis of the clusters

together with the single count of berries, were analyzed to establish the groundtruth. The results

achieved from the scaled models and different estimation parameters were contrasted. The results con-

firm the feasibility of the proposed methodology, providing scalability to a comprehensive analysis of the

productivity of the vineyard and affording a constant operational improvement and proactive

management.

Ó 2014 Elsevier B.V. All rights reserved.

1. Introduction

The development of innovative technologies in viticulture to

monitor vineyards is encouraged because of their huge environ-

mental and economic impact on society. Computer vision systems

are highly suitable for this purpose because they are a non-contact

and non-destructive technique (Chherawala et al., 2006). The

application scenarios of digital image analysis cover yield estima-

tion, quality evaluation, disease detection and grape phenology

(Whalley and Shanmuganathan, 2013). One of the main concerns

in the wine industry along history has been the accurate and objec-

tive estimation of the yield and the oenological potential of vine-

yards: yield forecasting or harvest forecasting. Currently, this is

still an unresolved issue and is of great technical and economic

importance (Wolpert and Vilas, 1992; Clingeleffer et al., 2001;

Dunn and Martin, 2004). A precise vineyard yield estimation

allows more efficient grapevines to be obtained, their qualitative

potential to be established, and the production of higher-quality

wines (Dunn and Martin, 2003). Roby et al. (2004) checked that

berry size is a determining factor for winegrape quality where

the berry small size is related to lack of water and the variation

in berry size indicates an inhomogeneous maturation. Also, this

estimation influences decision-making techniques, such as the

execution of vineyard score sheets.

Currently, the methods applied at industrial scale to estimate

the productivity of vineyards are destructive, labour- and time-

demanding (Martin et al., 2003) and, therefore, economically

non-viable. Furthermore, several methods are based mostly on a

visual inspection of the vineyard so the final data cannot guarantee

reliability and accuracy. In light of this, a specific software (Grape

Forecaster) was developed (Martin et al., 2003) to calculate the

final harvest, allowing only historical information on yield compo-

nents and variations from year to year to be collected. Blom and

Tarara (2009) proposed a method based on the tension of the wires

of the conduction system, which is expensive. Grape yield assess-

ment was studied from the point of view of water availability

and its effects on yield and berry quality attributes (Serrano

et al., 2012) by expensive measuring techniques. For these reasons,

in recent years image analysis has begun to be applied in

viticulture in attempts to assess the vegetative state or

performance of vineyards in some countries such as Australia
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(Dunn and Martin, 2004) or the U.S. (Nuske et al., 2011). More

concretely, Dunn and Martin (2004) captured in field images using

a white screen behind the canopy and extracted the colour features

to classify the berry clusters, using manual thresholds and

tolerances for the segmentation. The work of Nuske et al. (2011)

involves a visible light camera boarded in a small vehicle to survey

the entire vineyard. The berries are detected based on a 2D radial

symmetry transform to extract their center, and then are classified

based on their colour and texture. Finally a clustering is applied to

remove false positives. In a recent work (Nuske et al., 2012) the use

of calibration data from prior harvest data enhanced the previous

results. Moreover, 2D computer vision techniques have also been

applied to individual strains for the identification of plant elements

(Herrero Langreo et al., 2010) or counting individual berries using a

flatbed scanner (Battany, 2008). A 2D grapevine yield and leaf area

estimation was done by Diago et al. (2012), who used a visible light

camera to capture images in-field using a white screen behind the

canopy. Their approach involves the computation of Mahalanobis

colour distance for a supervised classification application.

Approaches to obtaining 3D models from photographs for plant

analyses were carried out at a laboratory with individual tomato

plants (Aguilar et al., 2008), but without effective automation

and failing to translate this technology to field conditions. More

recently, Djuricic et al. (2014) employed an active sensor, multi-

echo laser scanner, for grape berries detection, through the laser

intensity.

This paper aims to establish a method for estimating vine pro-

duction in field conditions using low-cost, non-invasive methods

based on computer vision (Sethian, 1999). Thus, 3D models of

bunches were obtained and dimensional analyses were carried

out to calculate the different yield components. The development

of the proposed method had to face additional difficulties, such as

the partial 3D models generated by in-situ bunch documentation

(only the visible side of the bunch), or having to deal with the occlu-

sions and geometrical complexities of the strain itself. Techniques

and algorithms to estimate the components of vineyard yields were

developed. The recovery of the non-visible side in the model was

achieved using convex hull techniques (Barber et al., 1996). The

main output of this workflow was an accurate and precise predic-

tive method aimed at eliminating the subjectivity deriving from

the spatial and temporal variability of grape production. This would

allow vine growers to take decisions in advance.

2. Image-based modelling

For precision agriculture purposes, a combination of Photo-

grammetry quality and computer vision algorithms (flexibility,

automation and efficiency) is required. An image-based modelling

technique based on this combination allows 3D models to be

obtained from 2D images via two main steps: first, the automatic

determination of the view of each image taken at vineyards;

second, the automatic computation of the 3D coordinates for the

generation of a dense and scaled 3D model of the scene.

This is a non-destructive and non-invasive technology with low

associated costs. The methodology allows data to be acquired

remotely with great efficiency, affording the radiometric and geo-

metric characteristics of objects with a high degree of accuracy and

detail in complex scenarios. Moreover, photogrammetry has

advantages over others sensors, such as expensive laser systems

(Lumme et al., 2008) or gaming sensor technologies, which are

subject to difficulties in external daylight scenarios (Lange et al.,

2011) as well as having a reduced working range.

To develop the proposed method, several robust descriptors for

feature extraction and matching were implemented and tested, the

SIFT variation (ASIFT) being the one that provided the best results

in this study, where variations in geometry and lighting were very

common. Last, but not least, several camera calibration models,

such as the Brown model or the Fraser model, were integrated to

allow working with any type of camera, including low-cost smart-

phones and tablets (Akca and Gruen, 2007).

Fig. 1 schematizes the workflow of the PW software

(González-Aguilera et al., 2013) based on image-based modelling.

2.1. Image acquisition protocol

The image acquisition protocol is the key to success of the

developed process since these images represent the input data of

the workflow, and thus their position (spatial and attitude) will

affect the final accuracy (i.e. in terms of perspective ray intersec-

tion) and completeness (i.e. in terms of overlap between images)

of the 3d model.

Prior to image acquisition, the scene must be analyzed, includ-

ing the lighting conditions because these will influence the expo-

sure values, and the aperture and shutter speeds of the sensor.

To this end, images should be acquired without strong variations

in illumination, avoiding overexposed areas and ensuring sharp-

ness, together with an occlusion analysis due to the presence of

obstacles that will affect the image acquisition protocol and the

overlaps between adjacent images. The shortest available focal

length of the camera should be chosen and must be held constant

throughout the image acquisition process to keep the internal cam-

era parameters stable.

Regarding the geometric conditions of the camera shots, the

objective is to establish an image acquisition protocol to recon-

struct the grapevine of interest, guaranteeing the completeness

and best accuracy of the resulting 3D model to perform the dimen-

sional analysis of each cluster. It should be remarked that finding

an optimal image network can be complex, in particular in scenes

with strong depth variations and occlusions. Therefore, the key at

this point is to establish a guideline, based on simple geometric

constraints, to perform image acquisition at vineyards (Fig. 2).

For an extensive vineyard study, at least five images (one master

and four slaves) must be taken of each grapevine. The master

image should cover the study grapevine and represents the origin

of the coordinate system. This image has to be taken in a frontal

way and framing the principal part of the grapevine or, if possible,

including all of it. The overlaps between the slaves and master

image must be high (80–90%) and must always maintain a slight

convergence (i.e. optical axis) (maximum 15°) so that image

matching will be ensured during the orientation phase. Regarding

depth, this should be chosen according to the image scale or the

desired resolution. This image acquisition protocol ensures the

completeness and quality of the final model.

The automatic scaling of the 3D point clouds is resolved by

incorporating self-scaled algorithms based on the automatic recog-

nition of targets of known dimension which should appear in the

photograph.

2.2. Features extraction and matching

One of the most critical steps in this process is the extraction

and matching of features (lines and points) with high accuracy

and reliability. This constitutes the framework that supports the

whole process by providing the necessary information to resolve

the spatial and attitude positions of images (orientation), camera

self-calibration and, finally, grapevine 3D reconstruction. In addi-

tion, agricultural scenes usually show variations in scale, perspec-

tive and illumination, so classical descriptors based on grey levels

such as area-based matching (ABM) (Joglekar and Gedam, 2012)

and least square matching (LSQ) (Gruen, 1985) are useless.

To this end, more sophisticated and robust descriptors were

tested: smallest univalue segment assimilating nucleus (SUSAN)
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(Smith and Brady, 1997); scale invariant feature transform (SIFT)

(Lowe, 2004); maximally stable extremal regions (MSER) (Matas

et al., 2004) and speeded up robust features (SURF) (Bay et al.,

2006). Unfortunately, all these algorithms become ineffective when

there are considerable variations in perspective between images.

In this sense, a variation of the SIFT algorithm, called affine scale

invariant feature transform (ASIFT) (Morel and Yu, 2009), has been

incorporated to the PW software. It permits the consideration of

two additional affinity parameters that control the perspective of

the images. These are the angles corresponding to two perspective

angles of the camera’s optical axis, the - angle (tilt) and the u

angle (axis) (Eq. (1)). In this way, the ASIFT algorithm allows one

to cope with images that have a high degree of perspective, which

is very common in vineyards. The result is an invariant descriptor

that considers scale, rotation, movement and significant deforma-

tions due to the perspective between images. This result provides

the next expression:

A ¼
a b
c d

� �

¼ HkR1ðjÞT1R2ð-Þ

¼ k
cosj ÿ sinj
sinj cosj

� �

�
t 0
0 1

� �

�
cos- ÿ sin-
sin- cos-

� �

ð1Þ

Fig. 1. Workflow of image-based modelling technique.

Fig. 2. Protocol of image acquisition of the study grapevines.
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where A is the affinity transformation that contains the scale (k),

rotation (j) around the optical axis (swing) and perspective param-

eters corresponding to the inclination of the camera optical axis (u
(tilt)), the vertical angle between the optical axis and the line per-

pendicular to the image plane and the horizontal angle between

the optical axis and the fixed vertical plane (-(axis)).

The matching process is carried out by SIFT descriptors. These

descriptors are first matched according to the Euclidean distance

(Lowe, 1999), after which they are filtered by the optimized ran-

dom sampling algorithm (ORSA) (Moisan and Stival, 2004;

Moisan et al., 2012). This algorithm is a variant of random sample

consensus (RANSAC) (Fischler and Bolles, 1981) with an adaptative

criterion to filter outliers by epipolar geometry constraints.

2.3. Hierarchical image orientation

Computing the spatial and attitude position of images is not an

easy mathematical task. Furthermore, image orientation is based

on features related to extraction and matching, so the presence

of outliers could be quite common. In this sense, the method pro-

poses a hierarchical approach for obtaining an approximate and

relative image orientation in an arbitrary coordinate system based

on computer vision. It can be refined and improved in an absolute

and scaled coordinate system for the set of images thanks to

photogrammetry.

Firstly, a relative image orientation is achieved using indepen-

dent models obtained from the fundamental matrix calculated

with the Longuet–Higgins algorithm (Longuet-Higgins, 1987).

One of the greatest advantages of the fundamental matrix is that

it is independent of any scene, so no knowledge of the internal

parameters or initial approaches of the camera is required.

Secondly, once the relative attitude and spatial position of

images has been obtained, a global adjustment of all images (bun-

dle-adjustment) is performed by an iterative and least-squares

process based on the collinearity condition (Kraus, 1993). The

coordinates of the ground control points are incorporated for abso-

lute georeferencing (Eq. (2)). These ground coordinates are added

to the orientation process as artificial targets located around the

vineyard. In cases in which the internal calibration parameters of

the camera are unknown (principal distance, principal point and

lens distortion), this second step allows these parameters (self-

calibration) to be incorporated into the equation as unknowns

(Quan, 2010).

ðxÿ x0Þ þ Dx ¼ ÿf
r11ðX ÿ SXÞ þ r21ðY ÿ SYÞ þ r31ðZ ÿ SZÞ

r13ðX ÿ SXÞ þ r23ðY ÿ SYÞ þ r33ðZ ÿ SZÞ

ðyÿ y0Þ þ Dy ¼ ÿf
r12ðX ÿ SXÞ þ r22ðY ÿ SY Þ þ r32ðZ ÿ SZÞ

r13ðX ÿ SXÞ þ r23ðY ÿ SY Þ þ r33ðZ ÿ SZÞ

ð2Þ

where x, y are the image coordinates of a point of the scene; X, Y, Z

are the coordinates of the scene point expressed in a local reference

system; rij are the rotation matrix coordinates; SX, SY, SZ are the spa-

tial coordinates of the camera point of view; f is the camera focal

length; x0, y0 are the principal point coordinates of the image, and

X, Y are the radial and tangential distortion parameters of the lens.

2.4. Automatic dense surface generation

Starting from the robust image orientation, a dense matching

process was developed. It is based on the semi-global matching

technique (SGM) (Hirschmuller, 2005; Deseilligny and Clery,

2011). Applying the projective equation (Hartley and Zisserman,

2003) (3), it permits the generation of a dense model resulting

from the determination of a 3D coordinate per pixel.

xk ¼ C D Ri Xk ÿ Sið Þð Þð Þ ð3Þ

where X is the 3D point; x is the point corresponding to the image; R

is the camera rotation matrix; S is the camera projection center; C is

the internal calibration function; D is the lens distortion function,

and the subscripts k and i are related to point and image,

respectively.

The SGM process consists of minimizing an energy function (4)

through the eight basic directions that a pixel can take. This func-

tion is composed of a cost function, M, which reflects the degree of

similarity of the pixels between two images, x and x’, together with

the incorporation of two restrictions, and P1 and P2, which show

the possible presence of outliers in the SGM process.

EðDÞ ¼
X

x

ðMðx;DxÞ þ
X

x02Nx

P1T½jDx ÿ Dx0 j ¼ 1�

þ
X

x02Nx

P2T½jDx ÿ Dx0 j > 1�Þ ð4Þ

where E(D) is the energy function to be minimized on the basis of

the disparity between the homologous characteristics; the function

C evaluates the level of similarity between the pixel p and its coun-

terpart q through the disparity Dp, while the P1 and P2 terms corre-

spond to two restrictions to avoid outliers in the dense matching

process due to the disparity of one pixel or a higher number of

them, respectively.

In addition, a third constraint was added to the SGM process.

This consisted of epipolar geometry derived from photogrammetry

(Hartley and Zisserman, 2003) and can enclose the search space

per pixel in order to reduce the huge computational cost. In partic-

ular, based on the computed fundamental matrix, F, the following

search band is defined: l0 = xF, which establishes that the corre-

sponding point of x should be along the epipolar line l0. In other

words if two image points (x and x0) correspond, then the epipolar

line l0 is defined l0 = Fx. As a result, it will generate a dense model

with multiple images, obtaining more optimal processing times.

3. Estimation of vineyard yields

The measurement of vineyard yields is accomplished with a set

of production components, such as volume, mass and the number

of berries per bunch (Greven, 2007). This study attempts to establish

these components, demonstrating the feasibility of scaling the pro-

posed methodology to the total yield estimation of the vineyard

(kg ⁄mÿ2). The current method improves classic and alternative

methods (Kurtural and ÓDaniel, 2007) and the empirical relations

proposed by Greven (2007). Different algorithms were imple-

mented to analyze clusters from the metric point cloud dimension-

ally, obtaining the volume and weight, as well as determining the

number of berries, following two computational strategies, as

shown in Fig. 3. The first one is automatic and relies on the point

cloud generated. The second one is a semi-automatic process and

requires computer-aided design (CAD)models from the point cloud.

Both strategies are fed by external variables, the average vol-

ume of the berries (Vm) and the average density of the bunches

(Dm) calculated by averaging the data acquired in laboratory tests.

These variables depend on the area and year of the crop.

Vm ¼

Pi¼n
i¼1ðV=BÞi

n
ð5Þ

Dm ¼

Pi¼n
i¼1ðW=VÞi

n
ð6Þ

where Vm is the average berry volume calculated by means of the

real bunch volume (V), the number of bunches (n) and the real num-

ber of berries per bunch (B); Dm is the average density of the bunch,

and W is the real weight of the bunch.
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The two methods described are based on different modelling

techniques of the 3D point cloud of the cluster. The first one is

an automatic process supported by generating the convex hull

(O’Rourke, 1994) of the 3D point cloud of the visible side of the

cluster. This volume limited by the hull (Vc) collects half of the

whole cluster due to the field of view of the camera and the limi-

tations of the branches and leaves, closing the hidden side of the

cluster by a flat surface. Because the convex hull includes empty

spaces where there are no berries, as well as the exclusivity of

the visible side of the bunch it is necessary to include an empirical

correction factor (K) (Nuske et al., 2011; Nuske et al., 2012) that

will refine the estimated volume (Ve).

The second strategy is based on a semi-automatic process sup-

ported by reverse engineering procedures that allows CAD models

to be generated from 3D point clouds (DeLuca et al., 2006). It is

noteworthy that there are still serious barriers in our knowledge

of full automation in the conversion to CAD solid models, espe-

cially in the case of complex objects (Gonzalez-Aguilera et al.,

2012). This approach requires the triangulation of the point cloud

from the cluster to achieve the spatial topology required to model

it. The meshing algorithm chosen was 3D Delaunay triangulation

(Golias and Dutton, 1997) to obtain a TIN (Triangle Irregular Net-

work). With this approach, the volume enclosed by the convex hull

(Vc) of the whole cluster can be achieved, from modelling the indi-

vidual berries of the visual side of the bunch and the subsequent

symmetry. As in the automatic approach, an empirical correction

factor (K) that refines the estimated volume (Ve) is required.

Fig. 4 shows both computational processes.

This second approach is more tedious. To obtain a CAD model

close to reality, the mesh has to be repaired previously. This step

uses the approximation of Attene (2010), which incorporates

several automatic and sequential tasks:

� Filling of holes through algorithms of planar triangulations

(Barequet and Sharir, 1995) or more complex approaches based

on interpolators of radial basis function (Branch et al., 2006), the

minimum distance (Dolenc andMakela, 1993) and the measure-

ment of angles (Bøhn and Wozny, 1992; Varnuška et al., 2005).

� Repair of meshing gaps, based on minimum threshold distance

algorithms (Rock and Wozny, 1992; Barequet and Kumar,

1997).

� Removal of topological noise, allowing the mesh to be re-trian-

gulated locally (Guskov and Wood, 2001).

� Removal of geometric noise by algorithms that apply filters as

anti-aliased Laplacians in general or specific zones (Fan et al.,

2008).

After this reconstruction, the mesh has been modelled to obtain

a solid CAD comprising two stages: segmentation and adjustment

of basic primitives. As proposed byWang et al. (2012), the segmen-

tation process involves 3 steps:

� Plane segmentation using the region growing technique.

� Segmentation of quadric surfaces from knowledge of the vertex

curvature obtained by fitting the local vicinity (Besl and Jain,

1988).

� Segmentation of free surfaces relying on the region growing

technique to maximize the number of vertices connected topo-

logically that can be generalized as a free surface of the B-spline

type.

Once the geometry has been segmented, modelling continues

with the setting of basic primitives. Thus, berries were approxi-

mated to spheres, extracted by an iterative adjustment of the min-

imization of the Euclidean distance from the mesh.

Fig. 3. Different computational strategies of vineyard production components from 3D bunch point cloud.
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The mathematical models implemented in both approaches are

detailed below, where Eq. (7) shows the bunch volume estimated

(Ve); bunch weight is estimated (We) in Eqs. (8) and (9) calculates

the number of berries estimated per bunch (Be). Vc represents the

volume limited by the convex hull and K is the empirical correction

factor:

Ve ¼ Vc � K ð7Þ

We ¼ Vc � K � Dm ð8Þ

Be ¼ Vc � K=Vm ð9Þ

Finally, a correlation between the calculated components and

the groundtruth by a sampling of laboratory tests was established

to analyze and validate the results acquired with both strategies.

4. Experimental results

Data collection was performed on the 20th of October 2013, on

a day with bright and homogeneous lighting, at an experimental

dry-farmed cv. Tempranillo (Vitis vinifera L.) vineyard of 1.05 ha,

located 6 km from Logroño (lat. 42°26’ N; long. 2°30’ W; 455 m

asl, La Rioja, Spain). Many studies have been conducted previously

at this location (Romero et al., 2010; Vicente Renedo et al., 2007).

Tempranillo vines (clon RJ-26) were grafted onto Ritcher-110

rootstock and planted in 1995, following a between-row and

within-row spacing of 2.90 m � 1.15 m respectively, with an

East–West orientation. This corresponds to a density of

2998 vines/ha. The grapevines were spur-pruned on a bilateral

cordon and trained to a VSP trellis system. The trellis featured a

supporting wire at 0.70 m, two wires at 1.00 m above the ground

for protection against wind damage, and a pair of movable shoot-

positioned wires at 1.45 m.

Fig. 4. Workflow of different computational processes to obtain the convex hull of the cluster.

Fig. 5. Image of trellis vineyards selected for this study.

Table 1

Technical specifications of the photographic sensor.

Canon EOS 500D

Type CMOS

Sensor size 22.3�14.9 mm

Total pixels 15.1 Mpíxels

Image size 4752�3168 pixels

Focal length 17 mm
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To validate the proposed method, 20 clusters from 14 trellis

vines were chosen, taking photographs according to the protocol

defined in Section 2.1. The selected strains were lightly defoliated

to allow one side of the study clusters to be seen. Before taking the

photographs, several artificial yellow targets were placed on the

ground to allow the automatic scaling of point clouds (Fig. 5).

The main features of the camera used are shown in Table 1:

Images were taken using a fixed short focal length, with an of

f/5.6 aperture, an exposure time faster than 1/160 s, ISO quality

of 200 to decrease image noise, and without flash, owing to the

shadow effects. The distance to the grapevine was approximately

2 m in order to maintain it inside the camera depth of field

(DOF). The aperture was chosen to achieve an optimal compromise

between exposure time, resolution and the DOF.

Photograph acquisition at such close distances requires the con-

sideration of lens parameters, such as the Modulation Transfer

Function (MTF), so the strains were centered in the image to

achieve better resolution. Additionally, the MTF was taken into

account for lens aperture selection (the lens ‘‘sweet’’ spot).

3D point cloud generation involves the identification and

matching of homologous points between images, exemplified in

Fig. 6 by straight white lines. The average number of homologous

points between pairs of images was 580, obtained automatically

through Micmac algorithm (Deseilligny and Clery, 2011). One of

the keys to success in the matching process passes through acquir-

ing pair of images with small baseline and thus guarantying high

overlap between images. Moreover, the ORSA algorithm used in

the matching process consists in introducing an a contrario

(Desolneux et al., 2000) criterion to avoid the hard thresholds for

inlier/outlier discrimination. Thus, the ORSA algorithm finds the

right balance between the critical parameter r and number of

inliers by controlling the number of false alarms (Moisan et al., 2012).

Fig. 6. Example of matching points between images.

Fig. 7. 3D point cloud and CAD model of a cluster example from 2D images.
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The dense point clouds generated have 4,276,000 points per vine-

yard, while the clusters alone have 96,460 points (as mean value).

These points are utilizated to create the bunch mesh, having

90,779 points with a ground sample distance of 0.3 mm and a size

of 8.3 kB (as mean value).

Fig. 7 shows scaled 3Dmodels of a cluster example and CAD sol-

ids through 2D images, which were the inputs of the method pro-

posed to estimate the vineyard yield.

The actual yield components were established by a laboratory

test: volume calculation (immersion), weighing, and individual

counting of berries per cluster. These laboratory tests which per-

form as a groundtruth were contrasted with estimated parameters,

providing the error of each estimation. Owing to the nature of

point clouds, the robust statistical parameter for defining the

adjustment is MAD (median absolute deviation) (Mosteller and

Tukey, 1977; Sachs, 1984) with respect to the median of the esti-

mated values. Additionally, the Pope test (Pope, 1976) was applied

for the detection and removal of the outliers. The final results are

shown in Figs. 8–10.

– A coefficient of determination of 0.77 was achieved by compar-

ing the actual volume of the cluster versus the volume

estimated from the point cloud (Fig. 8a). The MAD had a value

of 34 cm3 when the median of the estimated volumes was

216 cm3. In the case of bunch weight, an average coefficient of

determination of 0.78 g was obtained (Fig. 8b), with a MAD of

35 g when the median was 227 g.

– On comparing the actual volume of the bunch with the esti-

mated volume from CAD modelling, a coefficient of determina-

tion of 0.76 was obtained (Fig. 9a). The MAD was 33 cm3, the

median taking a value of 236 cm3. When bunch weight was

analyzed, a coefficient of determination of 0.75 was obtained

(Fig. 9b), the MAD 35 g being when the median was 248 g.

– On testing the actual number of berries and the number of ber-

ries estimated by the point cloud, a determination value of 0.80

was obtained (Fig. 10a). The MAD of this fitting was 15 units,

the median being 98 units. When this estimation was per-

formed with CAD modelling, a coefficient of determination of

0.78 was obtained (Fig. 10b). In this case the MAD was 15 units

when the median was 114 units.

From this analysis, it is possible to conclude that the semi-

automatic process does not provide significant improvements, in

contrast to the automatic one, which also has the advantage of a

Fig. 8. Bunch volume (a) and weight (b) obtained automatically from point cloud.

Fig. 9. Bunch volume (a) and weight (b) obtained semi-automatically from CAD model.
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reduced processing time and does not require human interaction.

It significantly decreases subjective variability as well as featuring

reduced associated costs and time saving. Furthermore, comparing

the coefficients obtained with other yield estimation studies, this

method can be cataloged as a great accurate one. Related to this

assertion, Diago et al. (2012) achieved a R2 of 0.73 between the

observed and predicted yield values. Dunn and Martin (2004) suc-

ceeded a R2 of 0.85 between grape weight and the ratio of grape

pixels to total image pixel. Both cases used approaches based on

supervised classification methodologies and an limited 2D analysis

of bunch morphology. Additionally, both approaches required the

employment of white screen to avoid the background influence

which limits their effectiveness and automation in field.

5. Conclusions

This research presents a non-invasive low-cost method with

application to precision viticulture that consists of vineyard yield

estimation. The method is fast, reliable, robust and objective, and

could serve to take decisions in advance regarding actions to be

taken in vineyards, predicting the results and planning the vintage

optimally. The method developed relies on the adaptation of the

PW software tool, which allows the metric reconstruction and

dimensional analysis of bunches from grapevine images taken in

field conditions. The groundtruth established in laboratory tests

ensures that the method is precise in complex agronomic scenarios

and in trellis vine configurations, which are more complex to pho-

tograph than classic pruned configurations. The advantages of PW

include process automation, sufficient quality to generate dense

resolution models equivalent to the pixel size of the image, and

low cost and ease of use.

Regarding the two processes developed to estimate vineyard

production parameters (point cloud-automatic and CAD-semiauto-

matic), the results show that there is no significant improvement

in CAD berry modelling. This is why the automatic methodology

using integrated algorithms in PW software was selected for the

present work. In addition, working only on one side of the cluster,

the visible side, is feasible for approximating the whole bunch with

an accurate and precise fit.

This methodology can be extrapolated to the whole of the vine-

yard, measuring its yield. Because this method is based on non-

invasive technologies through a passive sensor, the constraints

mainly depend on weather conditions, such as homogeneous light-

ing and the absence of rain and strong winds. By using artificial

light and simple screens to diffuse light, several restrictions can

be overcome. Since future prospects will address cluster compact-

ness and its relationship to volumes, another action to be devel-

oped in the future will be to design and build a platform that

supports the configuration of the image acquisition protocol

described in Section 2.1 and that can be loaded on a mobile plat-

form such as a quad. This would also allow the optimal distances

between sensors to be determined and calibrated and hence the

possibility of scaling models without targets, significantly optimiz-

ing the time devoted to field work and data processing.
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