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Abstract

Key message Low-cost methodology to obtain CHMs

integrating terrain data from LiDAR into photogram-

metric point clouds with greater spatial, radiometric

and temporal resolution due to a correction model.

Abstract This study focuses on developing a methodol-

ogy to generate a Dense Canopy Height Model based on

the registration of point clouds from LiDAR open data and

the photogrammetric output from a low-cost flight. To

minimise georeferencing errors from dataset registration,

terrain data from LiDAR were refined to be included in the

photogrammetric point cloud through a correction model

supported by a statistical analysis of heights. As a result, a

fusion point cloud was obtained, which applies LiDAR to

characterize the terrain in areas with high vegetation and

utilizes the greater spatial, radiometric and temporal reso-

lution of photogrammetry. The obtained results have been

successfully validated: the accuracy of the fusion cloud is

statistically consistent with the accuracies of both clouds

based on the principles of classical photogrammetry and

LiDAR processing. The resulting point cloud, through a

radiometric and geometric segmentation process, allows a

Dense Canopy Height Model to be obtained.

Keywords Dense Canopy Height Model �

Photogrammetry � LiDAR � Data fusion � Low-cost
platform � Radiometric segmentation

Introduction

The estimation of dasometric variables of interest for forest

management (diameter, height, basal area, volume of

growing stock, biomass, species, etc.) has traditionally

been done via pilot samplings of field inventories. The

advent of new remote sensing technologies and pho-

togrammetry has opened up a new field of possibilities for

carrying out such work, and such methods are advanta-

geous in the economic costs involved, the time invested

and estimation errors.

The application of active high-resolution remote sensors

affords high accuracy in height measurements and a good

prediction of dasometric variables (Popescu et al. 2002). In

particular, the capacity of active light detection and ranging

(LiDAR) sensors to penetrate and acquire three-dimen-

sional measurements of the canopy at different heights

(Wulder et al. 2013) allows improved estimation of vari-

ables such as biomass, volume and basal area over that of

other sensors that gather two-dimensional data, such as

photographic or radiometric systems. Since the late 1980s,

studies have been published based on profiles acquired

using airborne laser systems (ALS—airborne laser scanner)

for the estimation of biomass and volumes (Nelson et al.

1988) as well as simple and multiple linear models (Nelson

et al. 1997; Means et al. 2000) to analyse the effect of the

lag transformation of the forest variable. Later studies
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(Naesset 1997; Nelson et al. 2003) have improved upon

studies of forest inventories by further exploiting instru-

mentation, capture methodology and information process-

ing. Of interest are the studies of Lim and Treitz (2004) and

Naesset (2004), in which the authors applied rodal1 meth-

ods to generate inventories, as well as individual tree

methods,2 in which methodological compendia are

described with the algorithms used in each estimation.

Comparisons of different LiDAR inventories (Naesset et al.

2005) and of photointerpretation and LiDAR (Eid et al.

2004) have been published.

In recent years, many studies and methodological

review articles have been published describing the oper-

ating capacity and definitive implementation of LiDAR

technology in the context of the extraction of forest vari-

ables (Hyyppä et al. 2008; Wulder et al. 2012; Kankare

et al. 2013). Benko and Balenovic (2011) reported new

experiences in inventory tasks and forest management in

different environments, with an analysis of the accuracies

achieved. Richardson and Moskal (2011) established clas-

sifications of vegetation via tree height and density.

Another interesting case is the guide produced by the

Canadian Forest Service as a current reference document

based on all previously published studies. The guide pro-

vides a series of recommendations for inventorying forest

applications based on rodal methods using LiDAR data

(White et al. 2013a). Gleason and Im (2012) applied dif-

ferent automated learning approaches to estimate biomass

in forests from aerial LiDAR data. The FullWave airborne

LiDAR systems provide large bodies of information about

the overall plant and forest structure in great detail (Wei-

nacker et al. 2004; Mallet and Bretar 2009). However, the

complex and tedious processing involved and the costs of

such technology are definite drawbacks (Chauve et al.

2007; Gupta et al. 2010).

Magnussen et al. (2007) used Landsat satellite images to

create inventories according to the spatial resolution factor.

Similarly, LiDAR techniques have been applied to images

captured by different remote sensing systems (Magnussen

et al. 2000; Wulder et al. 2008a, b; Willers et al. 2012;

Mora et al. 2013) and by traditional photogrammetry

(Magnusson et al. 2007).

Within the framework of the National Aerial Orthoim-

age Plan, low-density (0.5 points/m2) LiDAR sensor flights

have been performed since 2008 throughout the Spanish

territory. Thus, in recent years, different forest research

teams have tested different applications using data from

this source (Estornell et al. 2012; González-Ferreiro et al.

2014; Gonzalez et al. 2012; Navarro-Cerrillo et al. 2014).

The problem with these mass data acquisitions is that they

are very costly, their resolution is low, and they are

implemented individually at a given moment in time.

Currently, conventional photogrammetry is a comple-

mentary alternative to custom LiDAR flights to obtain 3D-

point clouds and digital surface models (DSMs) because

the associated costs are lower (Järnstedt et al. 2012); the

accuracy is greater; and the spatial, radiometric and tem-

poral resolution is greater (Bohlin et al. 2012). The com-

plementary nature of the two techniques can be seen in the

greater planimetric accuracy of photogrammetry than

LiDAR and the greater altimetric accuracy of the latter

than of the former. Nevertheless, photogrammetry is

incapable of generating a Digital Terrain Model (DTM) in

zones covered by vegetation, and LiDAR information must

be used to generate reference surfaces for the collection of

vegetation heights (Järnstedt et al. 2012). As an advantage

of the photogrammetric point cloud, White et al. (2013b)

cite the ability to interpret species composition as well as

the maturity and health of vegetation.

With the development of manned and unmanned low-

cost aerial platforms (RPAS—Remotely Piloted Aircraft

Systems), conventional photogrammetric data collection

and analysis can still be performed. Tao et al. (2011) used

dense photogrammetric point clouds obtained with RPAS

over forested areas and obtained information about the tree

density, its composition and changes in the forest canopy.

Other authors (Jaakkola et al. 2010; Wallace et al. 2012)

have combined cameras and light LiDAR systems on

RPAS, thus allowing both sensors to be used at the same

time. Finally, special attention should be paid to the study

of Lisein et al. (2013), in which the authors generated a

Canopy Height Model (CHM) of a hybrid nature, com-

bining the DSM obtained by correlating images from a

non-metric camera and an RPAS with a DTM obtained

from ALS data to estimate different forest parameters.

The aim of the present work was to develop a low-cost,

efficient and precise methodology to obtain CHMs destined

for forest inventories such a stratification of forest masses or

a stock calculation and for fire studies obtaining combustible

models. This was achieved by integrating LiDAR terrain

data with minor temporal variability, which are freely

available from the National Geographic Institute of Spain,

into photogrammetric point clouds obtained using a low-cost

platform, for a desired area and time. Thus, we combined

LiDAR’s terrain-sensing capacity in densely vegetated

zones with the greater spatial, radiometric and temporal

resolution offered by low-cost photogrammetry in plant

cover zones. A correction model was constructed for the two

data sources to minimise the georeferencing errors produced

by the low-cost photogrammetric process, thereby obtaining

a registration accuracy in agreement with the accuracies of

1 Rodal method: methods applied to a surface with similar arboreal
characteristics.
2 Individual-tree methods: methods applied differentially to each
tree.
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the point clouds generated by the two techniques. During

data analysis, following the recommendations ofWang et al.

(2007), we also incorporated a supervised classification of

the vegetation based on image colour that allows morpho-

logical classification types to be improved. The low-cost

photogrammetric platform we used was a powered para-

glider trike, designed and developed by the Institute for

Regional Development of the University of Castilla-La

Mancha. The greatest advantage offered by this type of

manned platform is its flexibility of flight, autonomy and

payload capacity, allowing data acquisition over an exten-

sive area using multiple sensors to be integrated without

constraints on time, weight or volume.

Materials and methods

The proposed methodology uses LiDAR open data freely

available from the National Geographic Institute of Spain

(IGN 2015) with a spatial resolution of 0.5 points/m2. The

aerial LiDAR data were revised by visual inspection and

later by manual refinement, correcting errors in the initial

automatic classification and thus obtaining well-coded

terrain points. To assess the quality of the classification, the

initial and filtered data were contrasted by means of a

confusion matrix (Kohavi and Provost 1998).

According to the technical specifications of the National

Aerial Orthoimage Plan (CNIG 2009), based on the type of

terrain and the vegetation, an altimetric accuracy of 0.40 m

was established.

Equipment

The following equipment was employed for photogram-

metric data acquisition:

• A Leica System 1200 GNSS-RTK device was used for

surveying control and check points, with a relative and

absolute precision better than 0.03 and 0.05 m,

respectively.

• A compact Olympus EP-1 camera, the first camera

which meets the design standards of the micro four

thirds (MFT) system. Its main features are shown in

Table 1.

• A manned aerial platform supported by a powered

paraglider (PPG) trike built by Airges (Fig. 1) was used

(Ortega-Terol et al. 2014). Its technical specifications

are shown in Table 2. The Olympus EP-1 camera was

installed aboard the PPG trike using an auto-stabilised

mounting platform. The potential benefits of this low-

cost system are evident: a payload capacity that allows

the system to be loaded with a large number of sensors

that could be used for multispectral studies; the

Table 1 Technical specifications of the photographic sensor

Olympus EP1

Type CMOS

Sensor size (max. resolution) 4032 9 3024 pixels

Sensor size 17.3 9 13 mm

Pixel size (sensor geometric resolution) 0.0043 mm

Focal length 17 mm

Total pixels 12.3 MPixel

Aperture f/2.8

Fig. 1 Aerial photogrammetric platform (PPG trike) with the gimbal
shown (white rectangle)

Table 2 Technical specifications of the manned aerial platform: PPG
trike

Parameter Value

Empty weight 110 kg

Maximum load 220 kg

Autonomy 3.5 h

Maximum speed 60 km/h

Motor Rotax 503

Tandem paraglide MACPARA Pasha 4

Emergency system Ballistic Parachutes GRS 350

Gimbal Stabilized with 2 degrees of freedom

Minimum sink rate 1.1

Maximum glide 8.6

Plant surface 42.23 m2

Projected area 37.8 m2

Wingspan 15.03 m

Plant elongation 5.35

Central string 3.51 m

Boxes 54

Zoom factor 100 %
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flexibility and autonomy of flying that offers the data

acquisition over extensive areas.

• The PPG was equipped with a low-cost multi-sensor

gimbal (stabilised platform), supporting the digital

camera. The gimbal includes two servomotors oriented

on the x and y axes to accurately maintain the camera’s

vertical position along the flight paths. The servomotors

are controlled by an Arduino board, which incorporates

an IMU with 6 degrees of freedom: three accelerom-

eters with a range of ±3.6 G m/s2, a double-shaft

gyroscope (for pitch and roll) and an additional

gyroscope for yaw (both gyroscopes have a measure-

ment range of ±300�/s). The software developed to

control the device is based on Quadl_mini V 20

software, with DCM (Direction Cosine Matrix) as the

IMU management algorithm (Premerlani and Bizard

2014). Figure 2 shows the gimbal platform.

• The system included a low-cost GNSS system based on

a single-frequency receptor, receiving signals from a

GPS constellation and Satellite Based Augmentation

System (SBAS) (NavCen 2008). The GNSS antenna is

installed on the camera platform close to the optical

centre of the camera to minimise the baseline. To

improve the GNSS altitudinal accuracy, which affects

the final GSD, a DigiFly VL100 barometer was

installed. Thus, horizontal positioning during flight

was performed using the GNSS system’s National

Marine Electronics Association (NMEA) protocol

using RTKNAVI software (Takasu 2009), with correc-

tions from the ground from similar equipment, allowing

DGPS accuracies higher than 1.50 m in planimetry and

2 m in altimetry to be achieved in real time as well as

accuracies higher than 0.50 m in three dimensions in

post-processing.

Flight planning and execution

Proper flight planning is important to ensure that the cap-

tured photogrammetric data will fit the desired theoretical

parameters; planning also optimises available resources

and ensures higher quality images, minimising capture

time. Flight planning was conducted with software devel-

oped by the IDR (Institute of Regional Development of

Castilla-La Mancha, Spain), called PFlip, utilising funda-

mentals of photogrammetry, the sensor configuration, and

the Digital Terrain Model (Hernández-López et al. 2013).

First, the study area was defined, followed by the flight

strips. Furthermore, additional constraints such as a mini-

mum forward overlap of 70 % and a minimum side overlap

of 30 % were established to ensure automatic detection of

tie points (Järnstedt et al. 2012). Then, the flight planning

process defined the position and orientation of the camera,

the design of different blocks of images, the overlaps

between different images, the necessary shot angles and the

scale, as defined by the choice of pixel size on the ground

(GSD).

The geomatic information required for the flight plan-

ning process was obtained at no cost from the National

Center of Geographic Information in Spain (CNIG 2015),

from its National Aerial Orthoimage Plan, with a GSD of

0.25 m and a Digital Terrain Model with a 5-m grid

resolution.

Flight planning was performed by considering the rela-

tionship among the flight height over the ground (H), the

GSD, the focal length of the sensor (f) and the pixel size, as

described in Eq. (1).

f

H
¼

pixel size

GSD
ð1Þ

Considering Eq. (1), the characteristics of the camera

(Table 1) and the required GSD of 0.08 m, a flight height

over the ground of 316 m was obtained. Based on the

technical specifications of the National Aerial Orthoimage

Plan (CNIG 2009), an ‘a priori’ altimetric accuracy of

0.10 m was estimated for the photogrammetric cloud.

The parameters that define image capture are deter-

mined during flight execution depending on the light con-

ditions, the camera quality and flight speed. Thus, the

camera configuration was established with a camera-

Fig. 2 Gimbal platform (auto-
stabilised mounting platform).
a Elevation view and b plan
view
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shooting interval of 4 s and a maximum flight speed of

14 m/s, which guaranteed a forward overlap of 70 %. A

shutter speed of 1/1000 s was adequate for this speed

because the equivalent terrain displacement would be

0.01 m, which was lower than 1/5 pixel, an insignificant

value for study purposes. An ISO of 125 was used with a

fixed focal length at infinity.

A topographic survey campaign was established to

obtain absolute georeferencing and a model scaled through

artificial accuracy targets. Targets were distributed along

the study area so that they remained visible through veg-

etation for photogrammetric capture. Moreover, these tar-

gets were marked and their size confirmed to rule out

effects from neighbouring pixels (35 cm diameter).

Photogrammetric processing

Low-cost photogrammetric workflow

Once the aerial imagery had been acquired, conventional

photogrammetric processing began, relying on an image-

based modelling technique. In an attempt to guarantee

automation and quality, a combination of photogrammetric

and computer vision algorithms was required. This

approach allows data to be acquired remotely with great

efficiency and accuracy, affording radiometric character-

istics to the point cloud. Photogrammetry Workbench

software (PW) developed by the authors (González-

Aguilera et al. 2013) was used for three steps. First, the

images were matched by the SIFT algorithm (Lowe 2004),

which allowed the detection of the scene’s points of

interest. Second, the camera orientations were computed

using the tie-points calculated in the previous step and the

coordinates of the artificial ground targets located in the

flight area (Pierrot-Deseilligny and Clery 2011). In this

process, the external camera parameters (position and ori-

entation) and the internal camera parameters were solved

by self-calibration. Finally, a textured point cloud was

obtained by means of ray intersection (Kraus 2007). To

solve this process, an semi-global matching (SGM) tech-

nique (Pierrot-Deseilligny and Clery 2011) was applied.

Photogrammetric point cloud processing

Owing to the massive and automated nature of the pho-

togrammetric point cloud, it was necessary to treat the

cloud to remove outliers and encode the information. More

precisely, a clean-up and classification process was used;

this approach is schematised in Fig. 3. After removing the

outliers produced by matching, the vegetation was distin-

guished via radiometric segmentation. Following this step,

we established geometric classification of the ‘‘non-vege-

tation’’ class to differentiate it from ‘‘ground’’, refining the

results via a second iteration. Once the uncertain points in

the ‘‘ground’’ class and the isolated terrain points had been

removed, we classified the other points into different

semantic categories using the Axelsson algorithm (1999):

‘‘ground’’, ‘‘low vegetation’’, ‘‘medium vegetation’’, ‘‘high

vegetation’’, ‘‘building’’ and ‘‘noise’’, according to the

American Society for Photogrammetry and Remote Sens-

ing (ASPRS Foundation 2012). During this process, special

emphasis was placed on the classification of the ‘‘ground’’

class so that it would act as a common reference point for

later collection of LiDAR and photogrammetric data.

Additionally, it is crucial to achieve a correct DTM to

obtain an accurate CHM.

Radiometric classification takes advantage of the RGB

values of the photogrammetric point cloud. This step was

carried out using in-house ‘‘Vegetation classification by

radiometry’’ software. The analysis is based on the per-

centage differences between the digital levels of two

channel pairs (R-G and R-B). Points were classified auto-

matically according to a threshold defined by the difference

from a green reference value. However, the values of green

hues depend on many factors, such as the sensor employed,

the conditions and date of flight, the type of species, the

phenological state of the vegetation, etc. Accordingly, it is

necessary to establish a threshold value from vegetation

samples in the photogrammetric model.

Once the LiDAR information was corrected and the

photogrammetric point cloud had been classified and

refined, the point clouds were fused as described in the

following section.

Fusion of point clouds

Before registering the point clouds, the ground pho-

togrammetric points were filtered by cross-analysis with

the LiDAR data to address errors caused in the classifica-

tion process. To do so, we obtained a map of altimetric

differences in ground-class zones shared between the two

clouds. The photogrammetric points with large differences

in height were reclassified as vegetation. We then gener-

ated a mask of the ground-class photogrammetric points to

remove clusters of isolated points (S\ 2 m2) and the

points contained within polygons with a high mean alti-

metric difference (h[ 1 m). This filtering process allowed

us to refine the terrain’s photogrammetric data. Figure 4

shows the process used.

Low-cost photogrammetry includes georeferencing

errors produced by the use of inertial sensors and low-

accuracy GNSS and non-metric cameras. Accordingly, we

designed a correction model to integrate the collected

LiDAR data into the refined photogrammetric cloud,

achieving a registration accuracy that was statistically

compatible with the accuracy of both techniques. To
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analyse this compatibility, the ‘a priori’ (r) and ‘a poste-

riori’ ðr̂Þ altimetric accuracies were compared. This model

was derived from the altimetric differences in the terrain

between both datasets. To reject outliers from the corrected

model, we eliminated the points whose altimetric differ-

ence fell outside the 95 % confidence interval (St-Onge

et al. 2008).

DTM, DSM and CHM generation

After the registration of both datasets, the different digital

models relating to terrain (DTM), surface (DSM) and

canopy (CHM) were obtained by surface generation in the

form of triangular meshes from the resulting classified

cloud. These meshes had to be filtered and refined to

remove the errors generated during the automated process.

Fig. 3 Workflow for the processing and classification of the photogrammetric point cloud

Fig. 4 Refining of the photogrammetric ground points through
LiDAR data
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This step used the approximation of Attene (2010), which

incorporates several automated and sequential tasks:

• Filling of holes through algorithms of planar triangu-

lations (Barequet and Sharir 1995) or more complex

approaches based on interpolation of the radial basis

function (Branch et al. 2006), the minimum distance

(Dolenc and Makela 1993) and the measurement of

angles (Bøhn and Wozny 1992; Varnuška et al. 2005).

• Repair of meshing gaps, based on minimum threshold

distance algorithms (Rock and Wozny 1992; Barequet

and Kumar 1997).

• Removal of topological noise, allowing the mesh to be

re-triangulated locally (Guskov and Wood 2001).

• Removal of geometric noise by algorithms that apply

filters as anti-aliased Laplacians in general or specific

zones (Fan et al. 2008).

Finally, the CHM was obtained from the difference

between the photogrammetrical DSM and the DTM

resulting from the fusion of the point clouds (Järnstedt

et al. 2012). The CHM represents the normalised heights of

the vegetation with respect to the surface of the terrain,

with a planimetric resolution of 1 m (D’Oliveira et al.

2012).

Experimental results

This study was conducted in an area of public land in the

municipality of Bienservida in the province of Albacete

(Spain). In particular, the study zone is located on land

identified in the Public Usefulness Catalogue as No. 26.

Figure 5a shows a map with the location of the study zone

outlined in white. The scrubland area covers 1100 Ha. This

is of great interest from a forestry perspective because the

densely forested zone hosts a forest mass composed of

Pinus nigra with different fractions of coverage according

to the National Forest Inventory of Spain. The area also has

a steep topography, and thus photogrammetric surveys are

more appropriate from a practical point of view than classic

forestry methods. The choice of this zone was also based

on the availability of a pre-existing work plan that included

the selected land and incorporated a classic forestry

inventory. Thus, we established a zone of 2.00 km2

(Fig. 5b) as the study area where we could apply the pro-

posed methodology.

Regarding the LiDAR dataset, despite its official source,

it was necessary to validate the data in advance by visual

checking and manual refining. As a result, some outliers

such as ‘vegetation’ or ‘noise’ were classified as ‘ground’,

whereas some buildings were classified as ‘vegetation’. To

contrast changes in the LiDAR cloud with the initial

classification, a confusion matrix was developed. A total of

4,822,511 points were classified correctly, obtaining a

global accuracy of 99.98 %. An analysis of the confusion

matrix, including the errors of commission and omission as

well as producer and user accuracy can be seen in Table 3.

These results show the insignificance of the incorrectly

classified points in relation to the entirety of the cloud. A

1 % error was only exceeded by the ‘others’ class due to

the presence of incorrect ground and vegetation points.

To perform photogrammetric data acquisition, the flight

over the study area was planned with a height of 300 m,

corresponding to a 7.50-cm GSD. The camera shooting

interval was configured according to the minimum forward

overlap and flight speed to meet the flight planning

requirements and avoid image blurring, respectively (see

‘‘Flight planning and execution’’ section for more details).

The obtained flight plan is outlined in Fig. 6, in which the

rectangles represent the footprint of each image (area

covered on the ground) resulting from each camera posi-

tion (circles) along the flight strips. These footprints were

Fig. 5 a Location map with a box around the study area (white rectangle) and b orthophoto of the study area (EPSG code 25830)
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projected based on the DTM ground relief to verify com-

pliance with the flight parameter requirements.

The flight was carried out on 5 December 2013, cov-

ering a greater area than proposed to ensure total coverage

of the study area. The flight run followed the established

plan. Finally, images were georeferenced according to

ETRS89 UTM 30 North (Coordinate Reference System,

CRS EPSG code 25830), which is required by Spanish

legislation for all geomatic products. The Albacete station

was taken as a reference from the ERGNSS network

(network of permanent geodetic GNSS stations of the

National Geographic Institute of Spain) and used to correct

the position of the RTK solution. In the navigation phase,

which used a GNSS, WGS84 CRS was employed (EPSG

code 4326). This georeferencing served as a preliminary

photogrammetric adjustment and helped the process of

computational matching.

Before the flight, 29 artificial ground points were placed

in the zone to be measured by GNSS; these acted as control

and check points. A georeferencing precision of 0.05 m

was obtained in GNSS measurement post-processing.

In the conventional photogrammetric processing method

carried out according to ‘‘Low-cost photogrammetric

workflow’’ section, a total of 12,732,877 matching points

were obtained, detecting 2,399,164 outliers through a

robust estimation of the fundamental matrix (Barazzetti

et al. 2010). The generated 3D dense model (Fig. 7) was

composed of 290 million points after the processing of

1001 images, which is a density of 145 points/m2. The

model was georeferenced using 17 ground control points,

obtaining an absolute georeferencing error of 1.21 m from

the check points.

Once the photogrammetric point cloud had been gen-

erated, it was necessary to classify the points according to

two classes: ground and vegetation. To distinguish the

vegetation, radiometric segmentation was carried out,

taking advantage of the visible spectrum of the pho-

togrammetric point cloud. Figure 8 shows an example of

the results of this processing.

Next, geometric segmentation was performed, working

with the non-vegetation class, which was re-labelled

‘ground’. The resulting photogrammetric point cloud

classification is outlined in Table 4.

To analyse the statistical compatibility of both data

sources (LiDAR and photogrammetry), the accuracies of

both sets of registrations were compared. The ‘a priori’

accuracy was r = 0.41 m (Eq. 2) while the ‘a posteriori’

accuracy obtained was r̂ ¼ 0:47 m, being the mean alti-

metric accuracy 0.17 m, confirming the validity of the

results. These values were acquired in areas sharing com-

mon ground points between the LiDAR and refined pho-

togrammetric point clouds, thus generating an altimetric

difference map.

rfusion ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðr2photogrammetry þ r
2
LiDARÞ

q

rfusion ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

0:102 þ 0:402ð Þ
p

¼ 0:41m ð2Þ

On the map of altimetric differences, we removed the

values that fell outside a 95 % confidence interval, and the

remaining differences were interpolated to obtain values at

points lacking photogrammetric terrain data. Figure 9

shows a Q–Q plot of the map’s height differences com-

pared with standard normal quantiles, demonstrating a non-

Gaussian distribution of the errors (absence of

Table 3 (a) Confusion matrix from the LiDAR data considering
‘ground’ and ‘vegetation’ classes and (b) errors of commission and
omission and user and producer accuracy

Refined LiDAR Data

Vegetation Ground Others

(a)

Initial LiDAR data

Vegetation 3,674,535 0 325 3,674,860

Ground 517 1,145,807 20 1,146,344

Others 0 0 2169 2169

3,675,052 1,145,807 2514 4,823,373

Commission % Omission
%

Producer
accuracy

User
accuracy

(b)

Vegetation 0.009 0.014 99.991 99.986

Ground 0.047 0.000 99.953 100.000

Others 0.000 13.723 100.000 86.277

Global accuracy:
99.982 %

Fig. 6 Flight planning, 0.08 m GSD: rectangles represent the
footprint of each image, and circles are the camera positions along
the flight strips (EPSG code 25830)
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systematism), with some values that exceed the estimated

accuracy. This is because the georeferencing of the LiDAR

and photogrammetric data was not very rigorous owing to

the scant topographic support of the LiDAR data, the

automated matching processes, the use of low-accuracy

inertial sensors and GNSS, and the use of non-metric

cameras for the low-cost photogrammetry. Owing to this

distribution, upon applying a solid-rigid transformation

whose principal component is translation on the z axis, the

error committed at certain points would be increased.

Table 5 shows the map’s statistical parameters and values.

In light of the above, we designed a discrete correction

model (section ‘‘Fusion of point clouds’’) that improved the

accuracy of the registration based on the altimetric differences

map. The model was applied to LiDAR terrain data at points

lacking photogrammetric information bymeans of a computer

application designed for this end, as shown in Fig. 10. These

corrected points were included in the photogrammetric point

cloud, thus obtaining the fused point cloud.

Once both datasets had been fused, the properties of the

final point cloud were analysed, checking for the absence of

vegetation points with negative height. Table 6 shows the

number of points belonging to each class together with the

range of elevations and height normalised with respect to the

ground class. Figure 11 shows the final point cloud for veg-

etation, ground and building classifications, seen in plan view.

As final results, Figs. 12, 13 and 14 show the Digital

Terrain, Surface and Canopy Models obtained from the

hybrid cloud, rasterised with a mesh size of 1 m.

After analysis of the CHM, we observed that there were

very few cases in which the vegetation surpassed a height

of 20 m. The P. nigra specimens in the zone were between

20 and 23 m in height. There was one case in which a

Fig. 7 Photogrammetric dense point cloud of the study area (145 points/m2)

Fig. 8 Examples of radiometric segmentation of the photogrammetric point cloud. a Photogrammetric point cloud, b classified vegetation
(green), c 3D classification view

Table 4 Classification of the photogrammetric cloud

Classification No. points %

Ground 29,281,752 17.70

Vegetation 135,562,812 81.92

Noise 528,961 0.32

Building 86,378 0.05

Wire conductor 12,668 0.01

Tower 2479 0.00
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height of 27.7 m was attained, but this specimen was not a

pine and was deciduous; it was probably a poplar, whose

heights can reach 35 m.

The results allowed us to explore the development of

forest growth in the area. To accomplish this, we analysed

Fig. 9 Q–Q plot of the altimetric difference map versus standard normal quantiles

Table 5 Statistical data of the
altimetric differences map

Maximum (m) 1.090

Mean (m) 0.226

Minimum (m) -0.760

Std. deviation (m) 0.364

Fig. 10 Correction model coded by colour (EPSG code 25830)
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the distribution of the differences in plant volume between

the CHM from the LiDAR data taken in 2009 and that

generated from the hybrid point cloud in late 2013, both

with respect to their respective DTMs. The increase in

biomass volume that occurred during the interim was

3,318,501 m3 in the 2.00 km2 study area. This was due to

the protectionist legislation enacted in the zone during

those years (Cerro and Borja 2007).

Table 6 Classification of the
final fusion cloud

Classification No. points % Z_Min (m) Z_Max (m) Height (m)

Ground 29,220,875 17.78 1111.24 1406.59 0

Low vegetation 22,638,874 13.78 1111.50 1407.50 (0–1]

Medium vegetation 17,920,617 10.91 1112.68 1409.46 [1–3]

High vegetation 93,514,449 56.93 1113.50 1412.49 [3–27.67]

Building 86,378 0.05 1119.99 1184.34 –

Others 911,914 0.55 – – –

Fig. 11 Plan view of the final classified fusion cloud

Fig. 12 Digital terrain model
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Conclusions

This paper describes a successful methodology that gen-

erates a Canopy Height Model for conducting forest

inventories such a stratification of forest masses to forest

management unit applications or a stock calculation and for

fire studies obtaining combustible models. This CHM

permits a better understanding of the forest structure in

detail, allowing to know the relationships between the

flora, the fauna and the soil over large extensions. The

combined use of low-cost photogrammetry based on the

use of economical, conventional, non-metric digital cam-

eras and aerial LiDAR open data, together with the use of

the latest computational vision techniques and geomatic

tools, provides useful information for forestry applications.

In particular, by integrating the terrain data in the pho-

togrammetric cloud, it is possible to incorporate LiDAR’s

capacity for terrain detection in zones of dense vegetation

with the greater spatial, radiometric and temporal resolu-

tion of low-cost photogrammetry from alternative

platforms such as the aerial trike or RPAS. Moreover, these

platforms allow the loading of sensors suitable for vege-

tation analysis, depending on their payload capacity. Thus,

it is possible to carry out a radiometric classification of the

vegetation that improves upon current morphological

methods. In this sense, we define a correction model that

allows LiDAR data to be adjusted to the photogrammetric

point cloud, obtaining an altimetric accuracy of 0.47 m for

the registration data.

The advantage offered by this methodology is that it

allows a CHM to be obtained with adequate phenological

detail due to the combination of LiDAR flights performed

at low temporal resolution and low-cost photogrammetric

flights performed with the required periodicity. This also

allows a reduction in the errors that arise in dasometric

assessments upon incorporating models for the prediction

of vegetation growth.

It is worth noting that the statistical compatibility of

both sources of data could be improved in the data acqui-

sition phase with appropriate field topographic support.

Fig. 13 Digital surface model

Fig. 14 Canopy height model
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That is, photogrammetric point cloud georeferencing can

be improved by designing pre-signalling targets of suit-

able colour for forestry applications and for later mea-

surement in the images collected. It might even be possible

to improve the targets’ design to facilitate their detection

and the automated extraction of the centroid. Another

proposal would involve the incorporation of metric cam-

eras, although in the case of RPAS this depends on the

platform’s payload capacity. This would increase both the

associated cost and the accuracy.

The proposed methodology reduces the time required

for acquisition and processing compared with that of tra-

ditional techniques of forest inventorying, with the added

advantage that it provides vectorial information in the form

of classified point clouds. This implies an increase in final

accuracy at the rodal level and simplified integration and

management of forestry information in Geographic Infor-

mation Systems. At the same time, the subjectivity asso-

ciated with operator-generated uncertainty is removed.

Needless to say that the complementary of both techniques

would offer to reach better results, taking advantages of the

spatial continuity of the remote sensing in order to

extrapolate the manual measurements of the trees.

In future work, we shall address the forestry variables in

the obtained dense cloud and perform a comparative study

with the variables obtained from the LiDAR information,

applying rodal, individual-tree or even a combination of

both methods to benefit from the high resolution of the

initial data. To date, from the obtained CHM, essential tree

parameters such as diameter at breast height (DBH) or

distinguishing between species are not reliably derived yet.

Another line of enquiry will be to contrast the variables

obtained from the dense cloud with other data from a

classic inventory of the study zone, i.e., the National Forest

Inventory of Spain and the inventory drafted by the Public

Land and Natural Spaces Service of the Agricultural

Commission of the Regional Government of Castilla-La

Mancha, Spain.
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