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GENERAL INTRODUCTION 

1.  PERENNIAL RYEGRASS  

Lolium perenne, commonly known as perennial ryegrass, is a C3 plant, belonging to the 

subfamily Pooideae, that does not produce stolons or rhizomes, its shoot buds arise at or near 

the soil level in young plants, but may develop from higher nodes in adult plants. Beddows 

(1967) described this grass as a hemicryptophyte with a semi-rosette form before head 

emergence (Figure 1).  

 

 

Figure 1 Perennial ryegrass (Lolium perenne L.) vegetative plant 

 

Perennial ryegrass could have evolved from a small bottleneck of a L. rigidum 

population in the Middle East, and its distribution area in Europe could be explained either by 

the extension of primitive agriculture from the fertile crescent (Balfourier et al. (1998), or as 

consequence of post-glacial recolonization from southern refugia (Catalan et al. 2004). 

Presumably, L. perenne was introduced as a fodder crop for English pastoralists to many 

corners of their former empire, including North America, Australasia, South Africa and 

elsewhere, where it was, and frequently still is, referred to as English ryegrass (Beddows 1967).  

Lolium perenne is an agricultural species which has been intensively bred and selected 

for many years in different countries (Humphreys et al. 2010; Lee et al. 2012), as a result of 

these programs, there are many cultivars of both diploid and tetraploid forms (Sampoux et al. 

2011). Perennial ryegrass freely crosses with other Lolium species (e.g. L. multiflorum, L. 
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rigidum, L. remotum, and L. temulentum) producing fertile hybrids (L. x hybridum) with 

intermediate characteristics (Jenkin 1954). It also forms hybrids with species of Schedonorus 

(formerly Festuca) such as S. arundinaceus, S. giganteus and S. pratensis (Humphreys et al. 

2010); hence as an outcrossing species considerable genetic variability can be observed within 

and between its cultivars (Beddows 1967; Hahn et al. 2008). 

At the present time, perennial ryegrass has become extensively widespread; in part 

because it can tolerate a range of environmental conditions and withstands repeated 

defoliation, can produce good yields, and has high digestibility (Sampoux et al. 2011; Sampoux 

et al. 2012). Therefore, it is arguably the most important forage and turf grass in the world; for 

example, in New Zealand forms the basis of arable pastures (80%) (Fletcher et al. 1990), and in 

Europe In western Europe 17% of the total land area consists of permanent grassland (Wilkins 

and Humphreys 2003), with the greatest proportion being contributed by perennial ryegrass 

and Italian ryegrass (Pearson 2010). Furthermore, from sown pastures, it has spread to 

colonize footpaths, roadsides, tracks, waste places, sand dunes and riverbeds. 

2.  Epichloë  FUNGAL ENDOPHYTES  

Most plants have evolved the ability to form below and aboveground associations or 

symbioses with microorganisms such as viruses, bacteria, and fungi that can alter the host 

phenotype to enhance their fitness, competitiveness, expand their niche and enabling them to 

persist in otherwise marginal or inhospitable habitats (Funk and White 1997; Eaton et al. 

2015). For example, the establishment of mycorrhizal partnerships with aquatic plants, around 

460–480 million year ago, facilitated their transition to terrestrial habitats (Pirozynski and 

Malloch 1975). More recently in plant history (50–80 million year ago), fungi from the 

Clavicipitaceae family, derived from a parasitic fungus of arthropods, moved into grasses 

(Schardl et al. 2008; Gibert et al. 2012) and this interaction is mainly based on protection 

against biotic and abiotic stressors (Bush et al. 1997; Schardl 2001; Hahn et al. 2008). 

Epichloë/grass symbiosis exists in at least 80 grass genera and about 300 of grass species (Clay 

1989; Leuchtmann 1992), which represent less than 4% of the 8000 known grass species. 

Detailed surveys in restricted areas can show greater percentages of infected grasses. For 

instance, Epichloë endophytes were isolated from 11 of 49 grass species in a survey made in 

permanent semiarid grasslands of western Spain (Zabalgogeazcoa et al. 2003). 

Microorganisms growing (entirely) within the substrate of a plant, whether parasitic or 

not are generically known as endophytes (Greek: endo= within + phyte= plant) (Walker 1950; 

Snell et al. 1971; Clay 1990; Fletcher et al. 1990; Wennström 1994; Wilson 1995), they 

comprise several microorganisms associated to all major lineages of plants in natural and 

anthropogenic communities ranging from the arctic to the tropics (Arnold 2007). However, 

there is a general agreement over usage of the term endophyte, with the suggestion that the 

word implies a mutualistic relationship (Wennström 1994). In this thesis, the term endophyte 

is particularly used to refer to fungi of the genus Epichloë (Clavicipitaceae family) hosted by 

temperate grasses (Pooideae subfamily). 
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Epichloë endophytes had been recognized for centuries, the first known accounts of 

Epichloë endophytes were published in 1898 when Vogel recorded mycelium in the seed of 

darnel (Lolium temulentum) (Schardl et al. 2004b). According to do Valle Ribeiro (1993), this 

was confirmed in the same year by other researchers, and in 1902 Neubauer and Remer added 

L. remotum (=L. perenne subsp. remotum) to the list of infected species. Sampson (1935) 

indicated that McLennan in 1920 reported that all L. perenne plants carry the endophytic 

fungus. The observation of infection in tall fescue (Schedonorus arundinaceus= Festuca 

arundinacea= Lolium arundinaceum), red fescue (Festuca rubra) and perennial ryegrass (L. 

perenne) by those fungi were published by (Sampson (1933); 1935; 1937; 1939). Sampson's 

findings were confirmed by (Neill (1940); 1941) and reported the existence in New Zealand of 

an endophytic fungus, similar in appearance to the perennial ryegrass endophyte in tall fescue 

and meadow fescue (Festuca pratensis). 

Similarly, to other cool-season grasses, the symbiotic association between Epichloë 

endophytes and perennial ryegrass appears to be widespread. Field surveys have revealed that 

infected grasses have a broad distribution and infection included both sexual and asexual fungi 

(Kaur et al. 2015). The endophyte E. festucae var. lolii is the most common species in pastures 

of perennial ryegrass, but this grass also is a host of E. typhina, an interspecific hybrid (E. 

fetucae var. lolii x E. typhina) designated as LpTG-2, and an E. festucae-like endophyte (Latch et 

al. 1984; Clay 1987; Schardl et al. 1991; Christensen et al. 1993; Moon 1999).  

Despite the abundance of Epichloë in heavily grazed permanent grass communities, 

their artificial selection for culture apparently has eliminated much genetic variation of 

Epichloë endophytes and cultivated grasses seems infected by a small number of endophyte 

genotypes (Clay 1993; Schardl et al. 1994). And currently most of the researches about the 

effect of Epichloë endophytes have been conducted on commercials cultivars with scares 

diversity of grasses and endophytes. In this regard, Saikkonen et al. (2006) indicated that these 

type of assays fail to capture the breadth of variability inherent in wild grass/endophyte 

populations and communities. In contrast with cultured pastures, Jensen and Roulund (2004) 

found abundant genetic variation among endophyte from wild grasses, therefore these 

habitats may be excellent sources of endophytes useful for grass improvement and plant 

breeding. Additionally, according to Clay (1993) wild grasses should play a greater role in 

endophyte research, not only as repositories of genetic variability, but also as comparative 

systems for understanding the physiological, ecological and evolutionary interactions between 

plant and fungus.  

Natural wild population of L. perenne still widespread in most of Europa, part of the 

Mediterranean and Middle East area, where is its genetic center of origin (Balfourier et al. 

1998). In these areas, high genetic variability among Epichloë endophytes is expected because 

diversity and species composition of endophytes in natural habits are influenced by 

microhabitat and microclimatic conditions (Arnold 2007). Adaptation of endophytes to 

particular ecological conditions provides ecological data and desirable agronomic traits that 

would be applied to improvement of grasses (Oliveira and Charmet 1989). 
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2.1 Characteristics of Epichloë endophytes  

Upon germination of the grass seed, Epichloë hyphae within the embryo, extend into 

leaf primordia and axillary buds, the meristematic cells from which new shoots develop, 

invading all the above ground tissues. Hyphae are characteristically distributed parallel to the 

longitudinal leaf axis and remain confined to the intercellular spaces where they subsist on 

plant sugars, amino acids and other nutrients. The growth of the endophyte is synchronized 

with all stages of the plant growth, when the leaf matures and ceases to expand, no further 

fungal colonization takes place. In spring, mycelium grows into the leaf sheaths, leaves and 

inflorescences, reaching a maximum density in late summer and then declining. In the winter, 

it is confined to the plant crown where it is most concentrated in the meristematic tissues (di 

Menna and Waller 1986; Phillipson and Christey 1986; Tan et al. 2001; Clay and Schardl 2002; 

Christensen et al. 2008). 

Taxonomic classification of Epichloë endophytes has suffered several modifications 

since its discovery. Previously, Epichloë species were classified under two different genera 

depending on differences in their mode of reproduction. The asexual (anamorphic) taxa were 

assigned to a separate genus (Neotyphodium), but in accord with general recommendations 

for fungal taxonomy, it has been combined with the sexual (teleomorphic) taxa within a single 

genus, as part of a monophyletic group designated Epichloë, accepting 10 teleomorph-typified 

species and 24 anamorph-typified species (including three subspecies and six varieties) 

(Leuchtmann et al. 2014; Hettiarachchige et al. 2015). Despite differences in reproductive 

characteristics observed in some Epichloë endophytes from perennial ryegrass (e. g. Epichloë 

typhina and E. festucae ), the sexual forms are ancestral to the seed-borne types and both 

endophytes are close similar in morphology and secondary product biochemistry (Clay 1988; 

Schardl et al. 1991; Clay 1993).  

2.2 Reproduction, dispersion and diversification  

The Epichloë endophytes can be disseminated through vegetative structures of host 

plants or in one of two general ways related with their mechanism of reproduction: sexual 

species fruit on their hosts and can infect new plants; the asexual dispersion is through the 

seeds (Figure 2); but some Epichloë have both sexual and asexual cycles (Clay 1990; White et 

al. 1993; Chung and Schardl 1997b; Tadych et al. 2014).  

The life cycle of the sexual Epichloë endophytes causes no disease symptoms until the 

initial stages of flower development. Profuse epiphytic fungal growth occurs surrounding the 

incipient inflorescences with a fungal stroma that halts further panicle development and 

prevents seed production (‘choke disease’). On the surface of the fruiting structures or 

stromata perithecia containing ascospores develop (White and Bultman 1987). The fungi are 

heterothallic and for fertilization require the mediation of flies of the genus Botanophilia that 

deposit eggs in stromata and transfer conidia (spermatia) of compatible mating types for 

successful reproduction. Sexual species of Epichloë can be distinguished by mating 

compatibility, each mating population tends to have restricted host ranges (Chung and Schardl 

1997b; Bultman et al. 2011). The sexual stage is completed by ejection of haploid filamentous 
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ascospores derived from the meiotic products, which then undergo iterative germination and 

conidiation (Figure 2). In this type of interaction the transmission of the endophyte is 

horizontal and generally the seeds of the host plant, if produced, are fungus-free and give rise 

to uninfected plants (Schardl 1996).  

 

 

Figure 2 The asexual and sexual life cycles of Epichloë endophytes. 

 

Asexual reproduction of Epichloë endophytes, is fully asymptomatic, this type of fungi 

are confined to a single host species because they have lost the ability to produce ascospores 

on their hosts (Christensen et al. 1993). As the plant starts the reproductive phase, the 

endophyte in the vegetative apex enters the developing inflorescence primordium and floral 

apices from where it penetrates the tissues of ovary and ovule, soon after fertilization, the 

hyphae penetrates the embryo (Phillipson and Christey 1986) (Figure 2). The endophyte 

hyphae are present in the embryo of the mature seed, and particularly between the cells of 

the aleurone layer. Lineages of a single fungal genotype are vertically transmitted this way, this 

mode of dissemination is highly efficient, nearly 100% of seed from infected mother plants 

transmit the endophyte (Siegel et al. 1984; Clay 1990).  

Some Epichloë species are able to use the two mechanisms of reproduction, and can 

manifest its sexual and asexual cycles on different tillers of the same plant; individual plants 

may produce simultaneously fungal fruiting bodies (stromata) and healthy inflorescences, 

allowing the fungi to be transmitted vertically through seeds and horizontally by spores 

(Christensen et al. 2002). This type of Epichloë fungi are known as “pleitropic symbionts” 

because they possibly reflect a mixed evolutionary strategy and a pathway that connected the 

asexual endophytes with their sexual relatives (Schardl et al. 2004b). Interactions like these 

have been occasionally observed in some poöid grasses, like Festuca rubra infected with E. 

festucae (Zabalgogeazcoa et al. 1999).  
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In addition to the above mentioned dissemination mechanisms, certain Epichloë 

endophytes can produce epiphyllous mycelial networks with conidiogenous cells and conidia 

on leaf blades of host plants. The epiphytic conidia are water dispersed and will not release 

from the conidiophores unless water is present. The conidia may flow off leaves to tillers or 

seedlings that grow in the vicinity of grass plants and infect them (Christensen et al. 1997; 

Tadych et al. 2007; Iannone et al. 2009; Tadych et al. 2012; Tadych et al. 2014; White et al. 

2015; Wiewiora et al. 2015a) 

One particular way of genetic diversification of Epichloë endophytes has been through 

spontaneous events of interspecific hybridization (Schardl et al. 1994; Tsai et al. 1994; Craven 

et al. 2001a). The formation of interspecific hybrid endophytes is assumed to be relatively rare, 

and has not been observed under experimental conditions, though the processes implicated in 

hybrid formation have been demonstrated. Infection of single host plants by multiple 

endophytes can occur occasionally (Meijer and Leuchtmann 1999; Moon 1999). Anastomosis 

of pairs of Epichloë strains has also been successfully demonstrated (Chung and Schardl 1997a; 

Shoji et al. 2015). The large number of hybrid Epichloë species identified in surveys suggests 

that, at least in some circumstances, hybrids are positively selected (Moon et al. 2004). 

According to Clay and Schardl (2002) two likely bases for selection include the pyramiding of 

favorable genes and the counteracting of Muller’s ratchet, because acquiring several favorable 

characteristics from multiple endophyte ancestors, a hybrid endophyte has higher fitness than 

its nonhybrid ancestors do. 

2.3 Effect of Epichloë  endophytes on grasses  

The interactions between Epichloë fungi and host grasses appear to be conditional and 

vary greatly as part of a continuum from mutualism to parasitism/pathogenicity (Saikkonen et 

al. 1998; Schulz and Boyle 2005; Eaton et al. 2015), under continual control of two general 

classes of mechanisms. Clay (1993) explained that intrinsic mechanisms include changes in 

host biochemistry, physiology, and/or morphology. Extrinsic mechanisms depend on the 

interaction of host plants with other organisms in their environment, such as herbivores, 

pathogens, and competitors. The two classes of mechanisms are not necessarily independent 

and may interact in a complex fashion. 

2.3.1 Alkaloid production  

Epichloë fungi have passed through several phases of importance since its discovery, 

for many years were considered inconsequential, until they were linked with production of 

alkaloids which are beneficial to the endophyte-grass symbiosis because protect them against 

herbivores, but may be detrimental to livestock (Bacon et al. 1977; Rowan et al. 1986; Ravel et 

al. 1997a; Reed and Mace 2013).  

The effects of Epichloë endophytes on insects were first reported by Prestidge et al. 

(1982), observing a negative correlation between damage by Argentine stem weevils and the 

frequency of endophyte-infected perennial ryegrass in New Zealand pastures. In the United 

States Funk (1983) found that perennial ryegrass plots with high levels of endophyte infection 
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suffered less damage from sod webworms (Crambus spp.) and had fewer adults and eggs 

present than plots with lower levels of infection. Cheplick and Clay (1988) concluded that 

survival and population growth rates of flour beetles (Tribolium castaneum) on ground seeds 

of infected perennial ryegrass were significantly lower than on uninfected seed. The 

insecticidal effects of alkaloids, contribute to the increased persistence of endophyte infected-

grasses by enhancing its competitiveness compared to non-infected grasses (Clay 1988; Siegel 

et al. 1990).  

Negative effects of Epichloë endophytes over mammals extend from poor feeding to 

severe intoxication. It has been speculated that livestock may be selective in their grazing and 

discriminate between infected and non-infected plants due to the bitter taste of many 

alkaloids (Clay 1990; Bazely et al. 1997; Jensen and Roulund 2004). In the extreme side, 

Fletcher and Harvey (1981) found a direct association between Epichloë endophytes and 

ryegrass staggers, a neurological disorder that occurs in sheep, cattle, horses, and deer grazing 

infected ryegrass pastures; named because of the staggering gait of the affected animals, 

together with the observation of the outbreaks occurring in ryegrass-dominated pastures 

(Byford 1978). Another important syndrome that can suffer mammals grazing Epichloë 

infected pasture is fescue toxicosis, a malady whose symptoms could be fatal, including fever, 

abortions, convulsions and gangrene of the extremities (Bacon et al. 1977). 

The anti-insect and/or anti-mammalian activities of Epichloë-infected grasses, is 

caused by the production of four classes of fungal alkaloids, lolines, peramine, lolitrems, and 

ergopeptides (Schardl et al. 1991; Young et al. 2012) (Figure 3).  

 

 

Figure 3 Chemical structures of the most common compounds for each chemical group of alkaloid produced in 
grasses infected with Epichloë endophytes. 
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Lolines are found almost exclusively in grasses infected by hybrid Epichloë endophytes, 

and they exhibit broad-spectrum insecticidal activity. Concentrations of loline alkaloids found 

in planta are generally not toxic to mammalian herbivores (Siegel et al. 1990; Wilkinson et al. 

2000; Schardl et al. 2004a) (Bush et al. 1997; Easton et al. 2009).  

Peramine is the most widely distributed alkaloid in Epichloë-infected grasses; this 

alkaloid has a relatively even distribution in the plant and over the growing season, and there 

is evidence of host genotype control of peramine concentrations (Siegel and Bush 1996; Ball et 

al. 1997a; Siegel and Bush 1997; Clay and Schardl 2002). Peramine acts as a feeding deterrent 

to the Argentine stem weevil, but most other insects seem to be insensitive to this alkaloid and 

has low toxicity to mammals (Rowan and Gaynor 1986; Rowan et al. 1986; Cheeke 1995; 

Leuchtmann et al. 2000) 

Lolitrems are alkaloids with the indole-diterpenes group, known for being tremorgenic 

compounds, important neurotoxins causative agents of the ryegrass stagger. Lolitrem B is the 

major tremorgenic compound associated with Epichloë-infected Lolium species. Lolitrem B 

concentration increases progressively with increase of the plants leaf age (Gallagher et al. 

1982; di Menna et al. 1992; Keogh et al. 1996; Repussard et al. 2014b). 

Ergovaline is one of the most toxic of the ergopeptine alkaloids produced in grasses 

harboring Epichloë endophytes and occurs in the greatest concentration. Ergovaline 

concentrations are highest in the tissues most important for the survival and dissemination of 

the endophyte, namely the crown, the source of new emerging tiller, and the developing 

reproductive organs. In perennial ryegrass, the ergovaline levels can be high enough to cause 

fescue toxicosis symptoms if ambient weather conditions are suitable (Bacon et al. 1977; 

Siegel et al. 1990; Repussard et al. 2014a; Guerre 2015; Philippe 2016).  

The synthesis and concentration of each alkaloid produced in Epichloë-infected grasses 

is driven in a distinct pattern firstly controlled by the endophyte, but also influenced by the 

host and environmental factors (Repussard et al. 2014b).  

Laboratory studies with pure cultures of Epichloë fungi and metabolomic analyses in 

plants, suggest that the taxonomic identity of the endophyte appears to be the most 

important factor determining alkaloid production in infected grasses, product of genetic 

differences among strains within a species and among species (Rasmussen et al. 2009; Schardl 

et al. 2013; Takach and Young 2014; Young et al. 2015). In this regard, Vazquez de Aldana et al. 

(2010) indicated that in Festuca rubra the peramine contents tend to be similar in plats 

infected with genetically close isolates of Epichloë festucae. Leuchtmann et al. (2000) observed 

a tendency for stroma-forming plants to be free of alkaloids; in contrast, in asexual Epichloë 

expression of two or three different alkaloid classes is more frequent. In perennial ryegrass 

infected with the asymptomatic common endophyte, E. festucae var. lolii, three of the four 

classes of fungal alkaloids have been detected (Leuchtmann et al. 2000; Clay and Schardl 

2002).  
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The role of the host plant on concentration and production of alkaloids is particularly 

important. For example, F. gigantea and F. rubra, both naturally infected with E. festucae, had 

different combinations of alkaloids, which confirms that the spectrum of alkaloids expression is 

also dependent on the genotype of the host  (Christensen et al. 1993; Leuchtmann et al. 2000; 

Vazquez de Aldana et al. 2010).  

In Epichloë-host associations, environmental conditions are widely recognized to affect 

the levels of alkaloids expressed in the grass, and under same conditions their concentration 

have a seasonal fluctuation (Reed et al. 2001; Young et al. 2012). Leuchtmann et al. (2000) 

reported that in an infected plant of Bromus benekenii peramine was not detectable in May, 

the highest concentration was found in August; whereas, in plants of Festuca rubra, peramine 

was higher in August and was more than five times higher in October of the previous year 

compared to that in May.  

2.3.2 Tolerance to biotic and abiotic factors  

Because the host plant provides shelter, nutrients (including precursors in the 

synthesis of secondary metabolites) and dissemination via its seeds to the fungus, the 

metabolic costs of sustaining the endophyte, may be outweighed by the benefits (Marks et al. 

1991; Clay and Schardl 2002; Faeth and Sulivan 2003; Schardl et al. 2004b; Rasmussen et al. 

2007). There are many benefits related to field persistence and stress tolerance of grass 

species in agricultural and natural ecosystems that have been attributed to the presence of 

Epichloë endophytes; since in some conditions plants not in association with these symbiotic 

fungi fail to persist. In New Zealand attempts to replant endophyte-infected with endophyte-

free seed have been made in perennial ryegrass pastures; however, eliminating the endophyte 

reduces the vigor of the plants and their resistance (Clay 1990; Fletcher et al. 1990; Easton et 

al. 2001). Fletcher et al. (1990) found that in dryer regions non-infected ryegrass pastures may 

not survive in the face of Argentine stem weevil attack (Listronotus bonariensis), one of the 

major pasture pests in New Zealand.  

Besides herbivore resistance, other positive effects of Epichloë that have been 

observed in infected grasses are related to tolerance to water deficit (Bacon 1993; Kane 2011), 

low soil nutrients (Malinowski and Belesky 1999b; 2000; Zabalgogeazcoa et al. 2006), grazing 

pressure (Bao et al. 2015; Wiewiora et al. 2015b), heavy metals (Malinowski and Belesky 

1999b), and better performance in competition with other plant species (Vazquez de Aldana et 

al. 2013b). 

The Epichloë effect on the drought-stress tolerance of perennial ryegrass has given 

inconsistent results (Hesse et al. 2003). However in particular circumstances implying hydric 

stress, a selection pressure in favor of infection has been observed (Lewis et al. 1997), in such 

conditions infected plants tended to maintain a more positive water potential (Clay 1993; 

Hahn et al. 2008). Siegel and Bush (1997) suggested that in endophyte infected tall fescue, the 

accumulation of secondary metabolites produced by the endophyte could affect osmotic 

potential and, therefore, improve resistance to drought stress. The occurrence of these 
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adaptive mechanisms to drought tolerance in other Epichloë-infected grasses, such as 

perennial ryegrass, might also exist. 

Under certain controlled environmental conditions, perennial ryegrass associated with 

Epichloë endophytes, has showed significantly greater growth and producing more biomass 

than non-infected plants (Clay 1988; 1989; Oliveira et al. 2004). Latch et al. (1985) observed 

that ryegrass containing E. festucae var. lolii have grown up to 38% more herbage than those 

without the endophyte. The physiological basis for the increased growth of endophyte-

infected plants is not clear, but hormonal and physiological alterations and changes in source-

sink relationships within the host may allow improvements in the mechanisms involved in 

mineral acquisition. The response is conditional to soil nutrient status, with better 

performance of the infected grasses when the level of nutrients is higher than at lower levels 

(Cheplick et al. 1989; Malinowski and Belesky 2000; Reed et al. 2004; Rahman and Saiga 2005; 

Rasmussen et al. 2007).  

According to Jensen and Roulund (2004), endophyte-infected plants tolerate a higher 

grazing pressure than endophyte-free plants. In this way, infected hosts have greater 

competitive ability, indicating that infection contributes significantly to the species spread 

(Clay 1989; Marks et al. 1991). 
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OBJECTIVES 

The purpose of this thesis was to evaluate the effect of Epichloë fungal endophytes on 

their natural Lolium perenne host plants. With this broad aim, the specific objectives were:  

 

1. Detection and classification of Epichloë endophytes in plants of Lolium perenne from wild 

populations (Chapter I). 

 

2. Study of the concentration and production patterns of fungal alkaloids in wild plants of 

Lolium perenne as effect of the Epichloë morphotype of the endophyte hosted (Chapter II). 

 

3. Analysis of the effect of Epichloë endophytes on the content of minerals and fibers in 

Lolium perenne from wild populations (Chapter III). 

 

4. Evaluation of two techniques for inoculation of Epichloë endophytes into commercial 

cultivars of Lolium perenne (Chapter IV). 

 

5. Suitability of near-infrared reflectance spectroscopy (NIRS) for direct identification of 

Epichloë endophytes, and detection and quantification of their associated alkaloids in a 

heterogeneous set of Lolium perenne plants (Chapter V). 

 

For this purpose, a total of 358 Lolium perenne plants were collected at eight natural 

populations in western Spain. After analyzing all plants to detect their associated Epichloë 

endophytes and to characterize them morphologically and genetically (Chapter I), a set of 

ryegrass plants naturally infected with Epichloë (E+) and non-infected plants (E-) from six 

populations were transplanted in an experimental filed plot. These plants growing in the field 

plot were used to study the alkaloid profiles produced by the Epichloë endophytes (Chapter II) 

and to analyze the effect of Epichloë on nutrient and fiber contents (Chapter III). A selection of 

Epichloë strains (obtained in Chapter I) were used to inoculate commercial cultivars of Lolium 

perenne (Chapter IV), and this inoculated plants were analyzed for alkaloid profiles (Chapter II). 

All Lolium perenne plants (from wild origin and inoculated cultivars) were used to determine 

the suitability of NIRS technology for identification of Epichloë endophytes and detection of 

alkaloids (Chapter V).  
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I. DIVERSITY OF Epichloë  ENDOPHYTES FROM WILD 
POPULATIONS OF LOLIUM PERENNE 

I.1  ABSTRACT  

A total of 358 plants were collected from eight natural communities of Lolium perenne 

in western Spain with the aim of identifying the taxonomic diversity of their associated 

Epichloë endophytes. Epichloë endophytes were detected in 154 plants (E+), which represent 

an average incidence of 43.0%, ranging from 32.0% to 60.0% between communities. From the 

E+ ryegrass plants, 169 endophytes were isolated because 15 plants were infected with two 

different Epichloë endophytes. The Epichloë cultures obtained were divided into four 

morphotypes based on their morphological characteristics: M1, slow growth rate and 

brain-shaped cultures; M2, faster growth rate with white cottony aerial mycelium; 

M2S, resembling M2 but isolated from host plants bearing stromata; M3, 

intermediate growth rate with tan, smooth and flat mycelium . According to a genotypic 

characterization based on partial nucleotide sequences of the ITS region and the β-tubulin 

(tub2) gene, there were four major groups that clustered into two clades. The first clade was 

closer to E. festucae var. lolii and was integrated by two genotypic groups: G1a; including most 

of the M1 morphotypes and all M3 morphotypes; and G1b, comprising only M1 morphotype 

endophytes isolated from two communities. The second clade grouped endophytes related to 

E. typhina, and was composed by two subclades: G2a, endophytes with M2 morphotype and 

some with M2S morphotype (stomata producer); G2b, was formed exclusively for the M2S 

morphotype. According to the phenotypic and genotypic arrangement, the Epichloë 

endophytes isolated from L. perenne could be grouped into six taxonomic groups: M1(G1a), 

M1(G1b), M2(G2a), M2S(G2a), M2S(G2b) and M3(G1a).  

I.2  INTRODUCTION  

As many cool season grasses (subfamily Poöideae), Lolium perenne establishes 

symbiotic relationships with endophytic fungi of the genus Epichloë, these symbioses are 

frequent in nature, and regardless of the host plant or fungal species they share close 

similarities. Epichloë infections are chronic; plants will remain infected throughout their life 

span. The fungi grow systemically inside the host aboveground tissues with sparsely branched 

intercellular hyphae. All Epichloë species have common features in morphology, serology, 

secondary product biochemistry, isozyme profiles and life cycles (Schardl et al. 1991). 

However, during the host flowering stage, the behavior of these fungi can be differentiated 

depending on whether they have a sexual or an asexual reproductive cycle (Figure 2). Asexual 

Epichloë endophytes were previously classified in the genus Neotyphodium (Leuchtmann et al. 

2014).  
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Sexual Epichloë endophytes may form an external reproductive structure known as 

stroma (Figure 7), causing total or partial sterility of the host plant by constriction of the 

affected inflorescence, this condition is called choke disease (Clay and Schardl 2002). Sexual 

Epichloë species are heterothallic with a bipolar mating system, and receptive hyphae and 

spermatia are formed in the same stroma. After successful mating, asci develop within 

perithecia and the sexual state culminates with the production and ejection of ascospores able 

to infect other grasses via floret infection (Craven et al. 2001b; Schirrmann and Leuchtmann 

2015).  

In asexual Epichloë species, endophytic mycelium from maternal plants colonize 

developing ovaries and then embryos in seeds, being this type of transmission vertical and 

clonal, because the same fungal strain that infects a host plant will be transmitted to its seeds. 

Asexual Epichloë fungi are proposed to have evolved either directly from a single teleomorph, 

due to loss of the sexual state, or as a result of interspecific hybridization events between 

species of distinct sexual and asexual lineages (Tsai et al. 1994; Moon et al. 2002; Moon et al. 

2004; Gentile et al. 2005; Iannone et al. 2009; Hettiarachchige et al. 2015). Some seed-borne 

endophytes were considered to be reproductively confined to a single host species by virtue of 

the missing sporulation; nevertheless, associations between Epichloë endophytes and closely 

related grasses have been created artificially (Christensen et al. 1993). In natural conditions, 

cross-species infections would be a mechanism whereby grasses might enhance their effective 

biological diversity; for example, it has been hypothesized that when pooid grasses are 

occasionally infected by E. typhina from other grass species, the new hosts could suppress the 

choke stage and co-opt these fungi as nonpathogenic protective endophytes (Schardl et al. 

1991). Thus, it is also conceivable that E. typhina occasionally infects individual plants that 

already contain asexual endophytes, resulting in a diversity of endophytes which might allow 

the opportunity for hybridization of fungal strains cross by means of either sexual or 

parasexual means (Schardl et al. 1991; An et al. 1992; Christensen et al. 1993). 

Some reports suggest that much of the success in adaptability of cool season grasses 

could be attributed to their evolutionary history with Epichloë endophytes (Shukla et al. 2015), 

and that Epichloë-grass interactions play an important role in the ability of plants to survive in 

changing environmental conditions (Eaton et al. 2015). However, a positive effect of the grass-

Epichloë symbiosis cannot be generalized, because it depends on plant and fungal genotypes, 

as well as on the environmental conditions (Shukla et al. 2015). Although in agricultural 

ecosystems it seems to be mutualistic (Saikkonen et al. 2006; Zhang et al. 2011) because the 

host supplies the fungus with shelter, nutrients, and a means for dispersion though seeds; and 

in turn, the grass receives protection against abiotic stress, pathogens, and herbivores through 

the production of alkaloids and other means by the endophyte (Schardl et al. 2004b). The 

metabolites produced in Epichloë infected grasses such as ergovaline and lolitrems can cause 

significant economic problems for the beef and dairy industries because they are toxic for 

mammals, causing fescue toxicosis and ryegrass staggers. Other compounds like peramine and 

the lolines are known to have anti-insect activity and might function as potential biocontrol 

agents for reducing pest damage in grassland communities (Bacon et al. 1977; Fletcher and 
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Harvey 1981; Clay 1987; 1989; 1990; Young et al. 2009). Consequently, it is essential to have 

knowledge about the interaction between Epichloë endophytes and grasses in natural systems, 

including the number and kind of fungi involved, their effects on the host, and the genetic and 

environmental bases of the interaction (Clay 1989). Most studies on Lolium perenne 

endophytes have been done with cultivated plants but information about diversity of Epichloë 

in wild ryegrass populations is limited. 

In countries with intensive livestock production, perennial ryegrass is a key forage 

species and many researches have had the goal of improving its production. These research 

programs have included surveys for the characterization of their endophytes. Criteria used for 

taxonomic identification of Epichloë endophytes have been based on morphological 

characteristics, host species preference, alkaloid biosynthesis and their genetic relationships 

through the analysis of multiple gene sequences (Jensen and Roulund 2004; Leuchtmann et al. 

2014; Hettiarachchige et al. 2015). As result of these surveys, it is known the existence of 

considerable variation in cultural characteristics, conidial morphology, ability to produce 

stromata, host specificity, genetic variation and alkaloid production among Epichloë 

endophytes isolated from wild grasses. In addition, genetic evidence has confirmed that 

several Epichloë species can infect the same plant species (Jensen and Roulund 2004; Schardl 

et al. 2012; Jia et al. 2015). For example, L. perenne is a host of at least four taxonomic groups 

of endophytes that include Epichloë festucae var. lolii (=Neotyphodium lolii); the choke 

pathogen E. typhina, an asexual hybrid designated as LpTG-2, and an E. festucae-like 

endophyte (Schardl et al. 1994; Moon 1999).  

Variability in all of the aforementioned characteristics provides raw material for 

biotechnological manipulation, being natural pastures excellent sources of endophytes useful 

for grass improvement and plant breeding (Clay 1989) Arroyo et al. 2002). Using such 

knowledge, commercially available cultivars of perennial ryegrass have been inoculated with 

selected Epichloë endophytes safe for livestock but that confer resistance to abiotic stress and 

give protection against insects (Easton et al. 2001; Bluett 2003; Rasmussen et al. 2007; Zhou et 

al. 2014) and there is an increasing interest in new strains useful for grass improvement. 

With the aim of analyzing the taxonomic diversity of Epichloë endophytes from natural 

populations of Lolium perenne, the results of a survey of eight wild populations from different 

habitats in western Spain are presented in this study. Plants were analyzed to detect their 

associated Epichloë endophytes, and to characterize them morphologically and genetically.  
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I.3  MATERIALS AND METHODS  

I .3.1 Plant material  

The plant sampling was conducted in the spring of 2012. For this work, 358 plants of L. 

perenne were collected at eight populations with different ecological characteristics in western 

Spain (Table 1). These locations were not cultivated areas, and clumps or individual plants of 

perennial ryegrass occurred interspersed with other plant species. At each location, 

approximately 50 plants were dug out. Between each pair of sampled plants, a distance of at 

least 10 m was left. At some locations, plants with choke disease symptoms were found and 

collected (Figure 7).  

 

Table 1 Characteristics of the locations were the Lolium perenne plants were collected. 

Location Habitat 
Altitude Coordinates Precipitation Average annual Number of plants 

(masl) Latitude Longitude (mm/year) temperature (°C) collected 

Ciudad Rodrigo (CR) Riverbank 625 40°34’48”N 6°30’58”W 531 13.3 25 

Divar (DIV) Grassland 817 40°43’59”N 5° 45’44” 521 12.2 32 

Los Valles (LVA) Dehesa grassland 813 40°56’20” N 6°7’36”W 531 12.1 49 

La Vecilla (LVE) Agricultural land 879 42°42’20”N 5°23’2”W 556 11.2 50 

Porqueriza (POR) Dehesa grassland 807 40°58’18”N 5°57’24”W 531 13.3 50 

Potes (PI) Pasture mountain 1355 43°08'48"N 4°28'24"W 780 13.1 48 

Tábara (TAB) Oak forest 766 41°50’15”N 5°58’40”W 379 12.3 51 

Valle Fuentes (VAF) Low woodland 1133 42°56’33”N 5°14’18"W 556 13.3 53 

 

The plants of perennial ryegrass were transported to the Institute of Natural Resources 

and Agrobiology of Salamanca, Spain (IRNASA-CSIC) and then transplanted to 2 l pots 

containing a mixture of perlite and peat moss (1:1, v/v). The pots were kept outdoors in a 

wirehouse, watered regularly. 

I .3.2 Incidence and Identification of  Epichloë  

I .3.2.1 Isolation of Epichloë  f rom ryegrass plants  

The procedure to detect the presence of Epichloë endophytes in L. perenne was 

conducted immediately after sampling in the field. All collected plants were diagnosed through 

fungal isolation. From each ryegrass plant, a sample of leaf sheaths was obtained and cut into 

pieces approximately 5 mm long. These pieces were surface sterilized for 10 minutes in a 20% 

commercial bleach solution (1% active chlorine), rinsed with sterile water, and placed into 

Petri plates (9 cm) containing potato dextrose agar (PDA) (Bacon and White 1994) with 200 mg 

l-1 of chloramphenicol. The plates were incubated in the dark at room temperature (~22 °C) 

and examined daily until the emergence of endophytic mycelium, and then a small amount of 
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this mycelium was picked out and transferred to a new PDA plate to obtain a culture. The 

presence of Epichloë fungi was also confirmed microscopically by staining stem pith, leaf 

sheaths, and seeds of perennial ryegrass with aniline blue (Latch and Christensen 1985; Welty 

1986). 

I .3.2.2 Morphological  Classif ication  

A first approximation to the classification of the Epichloë cultures was based on macro- 

and micromorphological characteristics. The morphological characters of all the fungal cultures 

were observed on 9 cm Petri plates of three different culture media: potato dextrose agar 

(PDA), rose Bengal chloramphenicol agar (RBA), and malt extract agar (MEA). The morphology 

of cultures was compared with descriptions from the literature (Christensen et al. 1991; Bony 

et al. 2001; Christensen et al. 2002). Radial growth was measured for four weeks in 20 

individual Epichloë cultures growing in PDA plates, and the average daily growth rate was 

calculated. Microscopic features of the isolates like the presence of conidiophores and conidia 

were analyzed in cultures of PDA and water agar maintained at room temperature and at 10 

°C. A temperature of 10 °C is reported as a requirement to make cultures of E. festucae var. 

lolii sporulate (Christensen et al. 1991). When conidia were produced, small blocks (0.5 x 0.5 

cm) of the respective culture medium were removed from the margins of colonies, and 

observed at the microscope with a cover slip placed on top of the block (Christensen et al. 

1993), and photographed to analyze the shape and to measure the size of conidia (n= 20) from 

each culture.  

I .3.2.3 Genotypic  Classif ication  

A molecular classification of the endophytes isolated was based on the nucleotide 

sequence of the ITS1-5.8SrDNA-ITS2 region, and a 5’region of the β-tubulin (tub2) gene. The 

oligonucleotide primers: ITS4 (5’- TCC TCC GCT TAT TGA TAT GC -3’), ITS5 (5’- GGA AGT AAA 

AGT CGT AAC AAG G -3’) (White et al. 1990), and tub2-exon1d-1 (5’- GAG AAA ATG CGT GAG 

ATT GT -3’), tub2-exon4u-2 (5’- GTT TCG TCC GAG TTC TCG AC -3’) (Moon et al. 2002) were 

used to amplify each one of these regions.  

The Epichloë DNA was extracted from approximately 100 g of mycelium scraped from 

PDA cultures using a commercial kit for plant DNA extraction (RedExtract-n-Amp, Sigma-

Aldrich). For both genes, the PCR assay had the same conditions: 2 minutes at 95 °C, 35 cycles 

of 1 minute at 94 °C, 1 minute a 54 °C and 1 minute at 72 °C; and a final extension of 10 

minutes at 72 °C. Approximately 2.0 µl of fungal extract were used for the polymerase chain 

reactions (PCR) performed separately for each gene segment (ITS or β-tubulin) in a 

thermocycler (GeneAmp PCR System 9700) The success of the PCR amplification was 

corroborated by electrophoresis in 1% agarose gels run in 1X TAE buffer solution (Tris-HCl 2.0 

M, acetic acid 5.71% and EDTA 0.006M, pH 8.0) using 2.0 µl of the PCR reaction, stained with 

Midori Green (Nippon Genetics) and visualized under UV light.  
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For sequencing reactions, amplicons were purified using the MSB spin PCRapace kit 

(Stratec Molecular). Both strands of each replicon were sequenced in a 3100 Genetic Analyzer 

(Applied Biosciences). Sequence chromatograms were analyzed with Chromas LITE 2.1.1 

software (Technelysium Pty Ltd). Nucleotide sequences were aligned with Clustal X version 2.0 

software (Larkin et al. 2007). In order to detect distinct genotypes, dendrograms were 

constructed with the UPGMA method using MEGA version 6 software (Tamura et al. 2013). 

Alignment gaps were treated as partial missing information. Robustness of the genotypic 

classifications was estimated by one thousand bootstrap replications. In the phylogenetic 

trees, reference sequences of known Epichloë endophytes were included. Phylogenetic 

analysis was also performed with the concatenated sequences ordered as ITS-β-tubulin and a 

phylogenetic tree was constructed using the same methods described above. 

Another criterion for identification among Epichloë endophytes is their capability to 

synthesize specific alkaloids. For this purpose, it was examined the nucleotide sequence of the 

ltmQ gene, required for hydroxylation of paspaline, a chemical compound essential for the 

production of lolitrem B, a indole-diterpene alkaloid, produced in perennial ryegrass infected 

by some Epichloë species, which is the major toxin responsible for the ryegrass staggers 

syndrome in mammals (Young et al. 2009; Schardl et al. 2013). A set of PCR primers were 

designed to amplify a fragment of the gene and to detect its presence or absence, the latter 

would indicate the incapability of a given fungal strain to produce lolitrem B. These primers 

were the following: ltmQF 5’-GTA ATT TCA GGC GCC ACC ATT-3’ and ltmQR 5’-TCG AAG AAT 

GGA TCG CTG GG-3’. Conditions for PCR were the same as described above with an annealing 

temperature of 67.0 °C. 

With the aim of detecting the presence of Epichloë hybrids among the endophytes 

isolated, all the sequences were checked for presence of ambiguities, consisting in overlapping 

of the chromagrams picks when these isolates had two genesof β-tubulin (Figure 4). 

 

 

Figure 4 Overlapping of the peacks in the chromatogram indicates presence of two genes of β-tubulin in PCR 
products from the AR6 Epichloë hybrid of reference. 
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Furthermore, Southern blots were performed using Epichloë DNA extracted as 

indicated by Moon (1999) and digested with PstI and BamHI restriction endonucleases. As a 

probe, a PCR-amplified fragment of the tub2 gene labeled with the DIG High Prime DNA 

Labeling and Detection Starter Kit II (Roche) was used. The hybrid of reference was a culture of 

LpTG-2 named AR6, donated by Dr. Linda Johnson (AgResearch, Grasslands Research Centre, 

New Zealand). Additionally, hybrid condition was evaluated by a PCR amplicon cloning 

procedure. Amplicons of the tub2 gene of several Epichloë strains representative of each 

morphotype (including the hybrid of reference AR6), were inserted in pJET1.2/blunt plasmids. 

The ligation mixture was prepared following the instructions of the CloneJET PCR Cloning Kit 

(Thermo Scientific) and used to transform competent Escherichia coli DH5α cells. Six colonies 

of the transformed E. coli, containing the Epichloë tub2 inserts of each morphological group, 

were screened by PCR and sequencing to compare the homogeneity of such genetic 

fragments. Considering that, the hybrid LpTG-2 has two copies of the tub2 gene, each of them 

characteristic of its progenitors (E. typhina x E. festucae var. lolii), it was expected to found 

differences in the tub2 sequences contained by transformed E. coli. On the contrary, all 

transformed colonies with amplicons from non-hybrid Epichloë, must have exactly the same 

tub2 sequences. 

I.4  RESULTS  

I .4.1 Epichloë  Incidence 

Ryegrass plants were diagnosed as Epichloë infected (E+) when mycelia similar to 

morphological descriptions of Epichloë were found in at least one of the following 

circumstances: (i) growing out of tissues placed on PDA plates, and being subsequently 

isolated, (ii) observed by microscopy in the intercellular space of stem pith and leaf sheath 

tissues, or (iii) observed in the aleurone layer of seeds. Taking in consideration these diagnostic 

conditions, the presence of Epichloë endophytes was detected in ryegrass plants from all 

locations. The average incidence was of 43.0%, ranging from 32.0% in POR to 60.0% in the CR 

location (Figure 5). 
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Figure 5 Prevalence of Epichloë endophytes in plants of Lolium perenne among the eight locations where the Lolium 
perenne plants were collected. 

 

I .4.2 Morphological Classification  

The first factors used for differentiation of the Epichloë endophytes isolated from 

ryegrass were macromorphological features like the time of emergence from grass tissues, 

culture color and shape, and the growth rate observed in three culture media (PDA, RBA and 

MEA). Most cultures of Epichloë endophytes were obtained from asymptomatic ryegrass 

plants, and could be classified into three distinct morphotypes (Figure 6): (i) M1 morphotype, 

hyphae of this group of fungi emerged from plant tissue about one month after placing 

ryegrass samples on PDA. Cultures had strongly aggregated 'brain-like' mycelium and the 

lowest growth rate (𝑥̅= 0.19±0.02 mm day-1) of all morphotypes (Figure 6a-c). (ii) M2, hyphae 

of this morphotype emerged from plant parts about five days after the pieces of ryegrass were 

placed in PDA Petri plates. Cultures had white color with abundant cottony aerial mycelium 

and the fastest growth rate (𝑥̅= 1.54±0.16 mm day-1) (Figure 6e-g). (iii) M3 morphotype, whose 

hyphae emerged from plant fragments after about two weeks. In PDA these colonies had flat 

and smooth mycelium of light tan color and a growth rate of 0.47±0.06 mm day-1 (Figure 6i-k). 

A fourth group was referred as M2S, with morphological characteristics similar to the M2 

endophytes (Figure 6e-g), but isolated from plants that bore stromata on stems (‘choke 

disease’). 
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Figure 6 Culture morphology of Epichloë endophytes isolated from Lolium perenne plants in three growth media: 
potato dextrose agar (PDA), rose Bengal chloramphenicol agar (RBA), and malt extract agar (MEA). M1 
morphotype, slower growth mycelium with convoluted surface (a, b, c); M2 morphotype, faster growth 
rate with white cottony aerial mycelium (d, e, f); M3 morphotype, intermediate growth rate with tan, 
smooth and flat mycelium (I, j, k). Conidia and conidiophores of M1 morphotype cultures grown in water 
agar at 10 °C (d) and of M2 morphotype in PDA at room temperature (~22 °C) (h). M3 morphotype 
cultures did not sporulate in the above or other growth media tested. 

The growth pattern of the Epichloë colonies with the M1 morphotype was observed to 

be very stable, with no changes in form but in size in the different growing media (PDA, RBA 

and MEA). Much greater variation was found in colony shape among the M2 and M3 

morphotypes, changing their forms and size according to the growth medium (RBA and MEA). 

However, after some weeks they developed their distinctive characteristics observed in PDA: 

the cottony aerial mycelium for M2 and the tan color for M3. It was noticed that all Epichloë 

cultures made in RBA had a slight delay to start growing, and their radial growth was smaller 

than in the other media (Figure 6). 

Conidia were observed in Epichloë endophytes with M1 and M2 morphotypes and also 

in the hybrid (AR6), although different conditions were required for conidia production. The 

M1 morphotype cultures produced conidia after three weeks at 10 °C in water agar (Figure 

6d), and the M2 morphotype produced conidia at room temperature in PDA (Figure 6h); in 

these last conditions, the hybrid also produced conidia. Epichloë endophytes belonging to the 

M3 morphotype were sterile in all media and temperatures evaluated (PDA or water agar at 

room temperature or 10 °C). The conidia of the three types of endophyte (M1, M2 and hybrid) 

had the same reniform shape characteristic of the genus Epichloë but with statistical 

differences in size (P<0.001): conidia of M1 and M2 morphotypes had similar length, 4.96±0.18 

µm and 5.07±0.09 µm respectively; whereas, the hybrid produced larger conidia: 7.80±0.44 

µm.  
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The number of plants infected by each morphotype of Epichloë, and their distribution 

per location are shown in Table 2.  

 

Table 2 Morphotypes of Epichloë endophytes isolated from Lolium perenne and their distribution by plant origin. 

Plant origin n
¶
 

Morphotype of the Epichloë endophyte hosted¶ 

M1 M2 M3 M2S 

Percentage of plants (%) 

CR 16 18.8 18.8 18.8 43.8 

DIV 11 27.3 18.2 0.0 54.5 

LVA 38 36.8 23.7 23.7 15.8 

LVE 22 95.5 4.5 0.0 0.0 

POR 18 22.2 11.1 11.1 55.6 

PI 21 33.3 0.0 0.0 66.7 

TAB 26 42.3 7.7 0.0 50.0 

VAF 17 76.5 5.9 0.0 17.6 

Total(n) 
mean (%) 

169 48.2 13.1 10.2 28.5 

¶
The morphotypes were: M1= slow growth rate with ‘brain-like form’; M2= faster growing rate with cottony aerial 

mycelium; M3= intermediate growth rate with tan, smooth aerial mycelium; and with the choke disease M2S = M2 
from plants with stromata (see Figure 6). 

 

 

 

The most common endophyte hosted by ryegrass plants was the M1 morphotype, 

present in 48.2% of the infected plants, plants with the M3 morphotype composed 28.5% of 

the samples. There were 18 plants associated with the M2 morphotype (13.1%), and 14 

ryegrass plants (10.2%) had stromata producing endophytes (M2S). In three locations (CR, LVA 

and POR) the four Epichloë morphotypes (M1, M2, M2S and M3) were detected. No stromata 

characteristics of choke disease were observed in plants from DIV, PI, TAB or VAF locations. 

Plants from LVE, the only sampling site adjacent to agricultural lands, had the most 

homogeneous endophyte population with 95.5% belonging to M1 morphotype and one plant 

harboring an M2 endophyte. The only location where no M2 morphotypes were isolated was 

PI, Epichloë isolated from plants of that location belonged to M1 (33.3%) and M3 morphotypes 

(66.7%). 

From 154 E+ plants, 169 Epichloë isolates were obtained. This happened because from 

15 individual ryegrass plants two Epichloë endophytes with different morphotype were 

isolated. These double infections were observed in two circumstances: (i) healthy plants with 

normal growth; (ii) when the same plant produced both healthy reproductive stems with seed 

heads and stems with stromata (Figure 7). 
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Figure 7 Healthy seed head and stroma of a single Lolium perenne plant infected with two morphologically different 
Epichloë endophytes. 

In doubly infected asymptomatic ryegrass, the double infection status was 

corroborated through subsequent fungal isolations until two fungal phenotypes were obtained 

from single plants. In choked plants in which healthy seed heads were also produced (Figure 

7), double infection was verified by germinating the seeds in water agar and transplanting the 

seedlings to pots with sterile substrate (perlite:peat moss, 1:1, v/v). After three months these 

new plants were diagnosed and endophytes were classified as belonging to M1 or M3 

morphotypes. Double infected plants (DI) had always M2 endophytes, able or not to produce 

stromata (M2S), and one of the asymptomatic Epichloë (M1 or M3), in four combinations 

designed according to their endophytes hosted as: DI(M2/M1) and DI(M2/M3), for 

asymptomatic grasses; and DI(M2S/M1) and DI(M2S/M3) for plants that developed choke 

disease (Figure 7). There were no cases in which the M1 and M3 morphotypes were isolated 

from the same plant. Double infections were not detected in plants from DIV, PI and VAF; on 

the other hand, seven plants, 14% of the samples from LVA, were double infected (Figure 8).  
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Figure 8 Lolium perenne plants per location detected as infected by two morphologically different Epichloë 

endophytes, namely double infection (DI). 

I .4.3 Genotypic classification 

Phylogenetic analyses were performed using partial sequences of the internal 

transcribed spacers 1 and 2 (ITS1-5.8SrDNA-ITS2) and the β-tubulin gene (tub2), with 

representative sequences of characterized Epichloë endophytes obtained from the GenBank 

database. The genotypic classification was based on an ITS sequence of approximately 480 

base pairs (bp) containing 18 variant sites (excluding deletions), 16 of which were informative. 

The alignment analysis revealed two major clades, one enclosing M1 and M3 sequences into 

the same clade as the reference sequences of E. festucae var. lolii; and the second clade was 

comprised by M2 and M2S morphotypes which sequences were similar to those of E. typhina, 

the causal agent of choke disease (Figure 9).  
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Figure 9 Phylogenetic analysis based on the nucleotide sequence of ITS1-5.8SrDNA-ITS2 region of Epichloë 
endophytes isolated from Lolium perenne. The tree was made using the UPMGA method and the 
bootstrap test is based on 1000 replicates. Letters “a” and “b” indicate endophytes isolated from double 
infected ryegrass plants. Morphology of endophytes is indicated next to the sample name and with 
different symbols. 
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The first clade was composed by four subclades, which differentiated among them in 

substitution of only one nucleotide; this difference was corroborated by resequencing some 

samples of each subclade at least two times. The major subclade contained sequences from 

M1 and M3 morphotypes. There was a subclade with 20 sequences of M1 morphotypes 

isolated exclusively at LVE and VAF locations, these fungi differed from other M1 endophytes 

by a single substitution (G→A) around nucleotide 325. A third subclade contained four 

sequences all them belonging to M1 endophytes isolated from DIV and POR, differentiated 

from sequences of the first clade by the substitution C→G in nucleotide 32. The sequence of 

the LVA27 isolate with M3 morphotype was different to other endophytes because of a 

substitution in nucleotide 227 (G→A). The second clade contained indistinguishable sequences 

of the M2 and M2S morphotypes, only the sequence of the CR16 isolate was different, it had a 

substitution (A→G) in the nucleotide 82.  

The phylogenetic analysis performed with the partial sequences of the β-tubulin gene 

(tub2) produced an 836 nucleotide long sequence alignment, with 53 variant sites (excluding 

deletions), 37 of which were informative. The dendrogram grouped the Epichloë endophytes 

into two main clades. Similarly to the ITS dendrogram, there were no specific sequence 

differences among the M1 and M3 morphotypes; in contrast, there was a split into two 

subclades of the M2 morphotypes as a consequence of one variant site (bp 155, T→G). One of 

the subclades consisted of four samples of stromata-forming endophytes. The two sequences 

of the hybrid LpTG-2 (E. festucae var. lolii x E. typhina) were allocated in different clades 

identified respectively as AR6-I and AR6-II (Figure 10). The sequence AR6-I had one 

substitution (bp 116, G→T) with respect to the major subclade closer to the reference 

sequence of E. typhina, and the AR6-II sequences differs in nucleotide 734 (T→C) when 

compared to other sequences of E. festucae var. lolii. 
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Figure 10 Phylogenetic analysis based on the 5’ region of the β-tubulin (tub2) gene of Epichloë endophytes isolated 
from Lolium perenne. The tree was made using the UPMGA method and the bootstrap tree is based on 
1000 replicates.. Letters “a” and “b” indicate endophytes isolated from double infected ryegrass plants: 
Morphology of endophytes is indicated next to the sample name. 
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With the concatenated phylogenetic analysis using the ITS and β-tubulin (tub2) gene, 

there was a division of the Epichloë sequences into four genotypic groups as shown in Figure 

11.  

 

 

Figure 11 Phylogenetic analysis based on the nucleotide sequence of ITS1-5.8SrDNA-ITS2 region and the β-tubulin 
(tub2) gene of Epichloë endophytes isolated from Lolium perenne. The tree was made using the UPMGA 
method and bootstrap test is based on 1000 replicates. Letters “a” and “b” indicate endophytes isolated 
from double infected ryegrass plants. Morphology of endophytes is indicated next to the sample name. 

 

 POR05 M3

 TAB20b M1

 TAB08 M3

 LVA05b M1

 LVA48 M3

 TAB13 M1

 TAB46 M3

 TAB21 M3

 TAB11 M1

 TAB45 M1

 TAB29 M1

 TAB09 M3

 CR25b M1

 POR30 M3

 TAB35 M3

 POR11 M3

 POR06b M1

 LVA45 M3

 LVA35 M1

 CR20 M3

Genotype G1a

 LVE11 M1

 VAF50 M1

 VAF19 M1

 VAF13 M1

 LVE02b M1

 LVE13 M1

 LVE20 M1

 LVE06b M1

 VAF46 M1

 LVE25 M1

 VAF29 M1

 VAF22 M1

 LVE29 M1

 VAF48 M1

 LVE19 M1

Genotype G1b

E. Festucae var. lolii

 POR46a M2S

 POR42 M2

 POR36 M2

 LVA05a M2

 LVA08 M2S

 CR09 M2

 LVA32 M2S

 LVA10 M2S

 LVA22 M2S

 CR13 M2

 CR06 M2S

 CR23a M2

Genoty pe G2a

 LVA17 M2S

 LVA04 M2S

 POR32 M2S

Genotype G2b

E. typhina

66

66

67

67

100

0.0000.0010.0020.0030.004



28 

Each subclade in the concatenated dendrogram was designated as belonging to a 

different genotypic group. The M1 and M3 morphotypes were mixed in the first subclade 

(genotype G1a). The second subclade (genotype G1b) was comprised exclusively of sequences 

of the M1 morphotype infecting plants from LVE and VAF, the sequence of these M1 

morphotypes differed from those of genotype G1a in the ITS region. The second clade grouped 

M2 and M2S endophytes, closely related to E. typhina, and was integrated by genotypic groups 

G2a in the third subclade with M2 and M2S morphotypes, and the fourth subclade (genotype 

G2b) was composed solely by M2S endophytes (stromata producers) and identified with the 

tub2 gene. Sequences of endophytes isolated from double infected plants (signaled with 

letters “a” and “b” in Figure 9, Figure 10 and Figure 11) were distributed along the three first 

genotypic groups.  

The presence of the gene ltmQ, related to the production of lolitrem precursors, was 

detected in Epichloë endophytes belonging to M1 and M3 morphotypes, with no detection of 

this gene neither in M2 and M2S morphotypes or in the hybrid LpTG-2 (Figure 13). 

 

 

Figure 12 Electrophoresis gel for PCR screening of the ltm gene in different morphotypes of Epichloë endophytes: 
hybrid LpTG-2 (AR6) (lane 1), M1 (lanes 4, 7, 11), M2 (lane 5), M2S (lane 3), M3 (lanes 6, 9, 10) and blank 
(lane 12). 

 

To check the possible existence of hybrids among the Epichloë isolates, all sequences 

were carefully studied for ambiguities, all the β-tubulin sequences of the isolated Epichloë, 

indicating only a single form of the gene (Schardl et al. 1994). All the endophytes selected to 

evaluate their hybrid condition through the Southern Blot showed a single copy of the β-

tubulin (tub2) gene, only the control (LpTG-2) showed two distinct bands indicative of the 

existence of two copies of the tub2 gene (Figure 13, lane 3). 
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Figure 13 Southern blot analysis of β-tubulin (tub2) genes for determination of Epichloë hybrids isolated of Lolium 
perenne. Total DNA preparations were from morphotypes: M1 (lanes 1, 2 and 5), M2 (lane 7), M2S (lane 4) 
M3 (lane 6) and hybrid LpTG-2 (AR6)(lane 3). 

 

Hybrids of Epichloë were not detected neither by Southern blot or through cloning. 

The cloning test, showed that the six sequences of the E. coli DH5α cells transformed with the 

tub2 amplicons from the M1, M2, M2S and M3 Epichloë morphotypes were 100% identical. On 

the other hand, two of the six sequences of the E. coli DH5α cell transformed with tub2 

amplicons from the AR6 hybrid, were identical to a reference sequence of E. festucae var. lolii 

and close to endophytes of the M1 and M3 morphotypes; one sequence was closer to E. 

typhina and M2 and M2S morphotypes; and three sequences, were chimeras, different 

between themselves, having fragments of the tub2 gene of both E. festucae var. lolii and E. 

typhina randomly ordered. 

I.5  D ISCUSSION  

Epichloë endophytes were present at all the locations surveyed, and their incidence 

was relatively high ( x 43.0%) in comparison to those observed in other surveys of wild 

populations of Lolium perenne in Europe. Lewis et al. (1997), analyzed 523 perennial ryegrass 

populations from 20 different European countries and found Epichloë endophytes in 62% of 

the accessions, 48% of them had incidences ranging between 1% and 50%, and only 14% 

between 50% and 100%. In a survey of 262 wild populations of ryegrass in France, Ravel et al. 

(1997b), found Epichloë endophytes in 47% of the locations and the average infection rate was 

of 25%. In Germany, Oldenburg (1997) reported incidences below 30% on most locations 

analyzed, and Hesse (2002), found endophytes in 74% of the tested sites, with incidences 

lower than 50%. Other studies have reported between 64% - 72% of locations infected by 

Epichloë endophytes, with infection rates of 33% in Northern Spain, 18% in Denmark and 6% in 
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Germany ,(Oliveira and Castro 1998; Jensen and Roulund 2004; Dobrindt et al. 2013), but no 

survey has reported the presence of Epichloë in 100% of the examined locations, as in this 

work. 

The higher frequency of Epichloë in L. perenne observed in this survey could be related 

to the dry climatic conditions of western Spain, where plants were collected. Greater infection 

levels have been reported for warm and dry areas, suggesting that such conditions may impart 

a selection pressure that favors Epichloë infection (Lewis et al. 1997; Oliveira and Castro 1998; 

Hesse et al. 2003). For example, Lewis et al. (1997) found that infection frequency was 

significantly related to water-supply deficit, an indicator of drought stress, exerting a selection 

pressure in favor of endophyte infection. In France, Leyronas and Raynal (2001) observed that 

endophytes most often were present where the grass may suffer from summer drought, and 

Gibert et al. (2012) also found that Epichloë symbiosis was negatively correlated to water 

availability analyzing 22 perennial ryegrass populations from the French Pyrenees, and 

reported that Epichloë infection increased plant survival in xeric populations, and reinforced 

competitiveness in mesic populations. In this same regard, Hesse (2002), found an endophyte-

inducted increase in root dry weight and root/shoot ratio that could be beneficial for plant 

persistence, especially on sites where water is a growth-limiting factor. This may be of vital 

importance for plant survival, especially in locations where water is the limiting factor, and 

could help explain the greater number of infected plants found on dry sites and in regions with 

a Mediterranean climate (Hesse et al. 2003). Thereby water availability appears to be an 

important environmental factor in endophytic symbioses functioning in the natural 

environment, but such effect under water-limited conditions is still a subject of debate (Gibert 

et al. 2012). According to the results of this chapter, it was found a high incidence of Epichloë 

in the locations with lower precipitation (LVA 56% and TAB 49%), following the reported trend, 

but the location with the highest precipitation (PI) was not the one with the lowest endophyte 

incidence. Therefore, even when environmental conditions may highly influence the incidence 

of Epichloë, there are other factors which are known to also impact negative or positively on 

the endophyte infection rates, such as the endophyte and the plant genotypes, pest and 

grazing pressure, or soil nutritional condition. 

Epichloë endophytes were isolated from 154 plants representing a wide range of 

perennial ryegrass wild ecotypes. Each Epichloë isolate was kept under the same conditions 

and culture media. Two of the criteria for differentiation among the Epichloë endophytes were 

the delay in emergence from grass tissues, and the radial growth rates of colonies. The lapses 

of time that took to the Epichloë hyphae to be visible in PDA were similar to those reported by 

Christensen et al. (1991), that described some Epichloë isolates from L. perenne visible within 

three to seven days. Although most Epichloë described herein required at least ten incubation 

days for mycelium to emerge, with some isolates taking over 30 days.  

Endophytes from asymptomatic plants were classified according to their macroscopic 

features into three groups (M1, M2, M3) and it was decided to group stromata-producing 

endophytes in a fourth group (M2S) due to the important physiological alterations in their host 
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grass. Since the way of reproduction and dissemination of the Epichloë endophytes is an 

important factor for their taxonomic classification, it was found that 89.8% of Epichloë-

infected plants were asymptomatic, harboring M1, M2 and M3 morphotypes, and 10.2% of 

ryegrass plants were infected with stromata-producing endophytes (M2S morphotype). 

Epichloë endophytes belonging to M2 morphotype (13.2% of isolates), produced stromata in 

some plants when they were transplanted at a field-plot but not when they were growing in 

pots. Zabalgogeazcoa et al. (1999), observed that in Festuca rubra infected by E. festucae, 

stromata may be formed occasionally and only a small number of reproductive tillers or any 

plant may be affected. Thus, it has been speculated that when pooid grasses are occasionally 

infected by E. typhina from other grass species, the new hosts could suppress the choke stage 

and that certain environmental conditions (e. g. low nitrogen fertility) can cause moderate to 

high levels of choke disease (Schardl et al. 1991). Around the sample sites where L. perenne 

was collected, other grass species such as Brachypodium phoenicoides, Holcus lanatus and, 

Dactylis glomerata have been detected as infected with E. typhina (Zabalgogeazcoa et al. 2003; 

Zabalgogeazcoa et al. 2008), therefore the possibility of Epichloë typhina from other hosts 

infecting ryegrass samples is highly probable.  

Considering the microscopic observation in all cases (asymptomatic: M1, M3, M2; and 

stroma-producer endophytes: M2S) it was observed the same hyphal pattern in planta that fit 

with the descriptions reported by Christensen et al. (2002) of Epichloë endophytes in the 

tissues of ryegrass. However, there were differences in their ability to produce conidia: the M3 

endophytes were sterile, with no production of conidia; and even though the M1 and M2 

morphotypes produced conidia with similar shape and sizes, the conditions needed for their 

production were distinct. Clay (1990), indicated that sexual and asexual Epichloë endophytes 

have similar conidial morphology in culture and Christensen et al. (1993), reported that conidia 

of slow growing Epichloë fungi were not observed when grown at 20 °C but some produced 

conidia when grown on PDA or cornmeal dextrose agar at 10 °C. Differences in conidia length 

produced by M1 and M2 morphotypes with respect to the hybrid AR6, according to Kuldau et 

al. (1999), are due to genome size, in this case the larger conidia are indicator of heteroploidy; 

whereas shorter conidia size produced by M1 and M2 morphotypes could reflect their haploid 

condition with apparent no hybrid nature.  

Combining macro- and microscopic morphological characteristics, the M1 

morphotypes fit with descriptions of E. festucae var. lolii, and M2S are phenotypically similar 

to E. typhina (Christensen et al. 1991; Bony et al. 2001). However, although it is known that 

exist high morphological variability in ecotypes of the Epichloë fungi and particularly among E. 

festucae var. lolii strains (Bony et al. 2001) there are no reports of morphological descriptions 

similar to isolates designated as M3.  

Besides morphological, physiological and biochemical characteristics considered in 

taxonomy of the grass mycosymbionts, DNA sequence comparisons provide direct indications 

of relative diversity and genetic interrelationships (Schardl et al. 1991). The sequence-based 

phylogram with two molecular markers widely used in fungi classification (ITS and tub2), 
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contritubes to have a taxonomical approximation of groups of Epichloë endophytes isolated. 

The concatenated dendrogram displayed strong bootstrap support for the presence of two 

main clades conformed by four major genotypes, which coincided with the morphological 

division of the endophytes. In the first clade the sequences of asexual endophytes M1 and M3 

were allocated, together with E. festucae var. lolii reference sequences. Some M1 isolates 

were genetically indistinguishable of morphotype M3, although other differences were 

discernible, not only morphologically, but also in their ability to sporulate and in their alkaloid 

profiles (Chapter IV); therefore, undoubtedly they represent different biotypes of Epichloë 

endophytes. The second clade grouped sequences genetically similar to E. typhina (M2 and 

M2S morphotypes). The subclade or genotype designated G2b was composed uniquely for 

four sequences of M2S endophytes; whereas, the genotype G2a was most common and was 

composed by producers, non-producers and facultative stomata producer fungi. In this regard, 

there are reports which propose that sexual endophytes such as E. typhina are comprised by a 

group of cryptic species representing different taxa, including subspecies (Clay and Schardl 

2002; Zabalgogeazcoa et al. 2008; Leuchtmann et al. 2014; Schirrmann and Leuchtmann 2015).  

Respect to the difficulties found to separate genetically the M1 and M3 morphotypes 

and to divide the genetic group G2a between fungi with the ability to produce or not stromata, 

Craven et al. (2001b) pointed up that there are potential limitations if sequence analyses do 

not adequately fit with biological speciation, and it may be difficult to identify species on a 

strictly phylogenetic basis. 

In this survey, the asexual endophytes with morphological and genetic similarity to E. 

festucae var. lolii were predominant (M1= 48.2% of isolates). In other surveys, it has been 

reported that this endophyte is predominant in wild and cultivated accessions in France, 

Denmark, New Zealand, Australia and other countries (Bony et al. 2001; van Zijll de Jong et al. 

2008). Endophytes of one genetic group (G1b) were isolated exclusively from plants of two 

communities (LVE and VAF). van Zijll de Jong  et al. (2008), reported that most endophytes in 

their survey clustered into three groups that corresponded to major geographical regions, 

probably due that natural habitats have different types of selection pressure over the plants 

and these endophytes, as obligate symbionts, co-evolve with their host (Craven et al. 2001b; 

Clay and Schardl 2002; Hesse et al. 2003).  

The Epichloë endophytes isolated in this survey; were classified into four major 

taxonomic groups, similar to those described by Moon (1999), but without the detection of 

Epichloë hybrids as indicated by sequence chromatograms, the Southern blot and cloning 

assays as well the conidia size of the M1 and M2 morphotypes. In some of the ryegrass 

communities conditions that afford the opportunity for fungal hybridization were observed; 

for example, several Epichloë morphotypes in the same grass community occurred in 

sympatry, and the presence of doubly infected plants may result in hyphal fusion, and 

parasexual recombination might occur (Clay and Schardl 2002). Schirrmann and Leuchtmann 

(2015) explained that formation of interspecific Epichloë hybrids can be limited by differences 

in the host phenological stage, habitat or abiotic factors. Thus, Clay and Schardl (2002) 
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observed that in plants containing two endophytes most tillers were infected with just a single 

endophyte and Wille et al. (1999) reported that in Bromus erectus artificially inoculated with 

two different strains of E. bromicola only one of 139 analyzed tillers was colonized by two 

endophyte genotypes, they explained that since this tiller was young at the time of harvest, it 

is conceivable that this co-existence would have disappeared with increasing tiller age.  

Despite the absence of hybrids in the Epichloë endophytes studied, a wide range of 

possible endophyte combinations was found in the set of analyzed plants, resulting in at least 

six perennial ryegrass ecotypes in agreement with the morphological and genetic features: 

M1(G1a), M1(G1b), M2(G2a), M2S(G2a), M2S(G2b), M3(G1a); plus the occurrence of plants 

with double infections: DI(M1/M2), DI(M2/M3), DI(M2S/M1) or DI(M2S/M3). This wide variety 

of Epichloë/ryegrass associations may include some ecotypes with useful alkaloid profiles 

(Chapter II) or improved forage quality (chapter IV) which represent an important source of 

biological material for improving forage grasses. 

I.6  CONCLUSIONS  
Results of this chapter have indicated that there was high diversity of fungal Epichloë 

endophytes between and within the eight wild locations of Lolium perenne studied. Among 

asymptomatic ryegrass plants three culturable morphotypes of Epichloë (M1, M2 and M3) 

were characterized, plus another morphotype obtained from stroma producing plants (M2S). 

These endophlytic fungi characterized into four morphotype were classified into two species 

according to the genotypic analysis: M1 and M3 morphotypes belonged to Epichloë festuae 

var. lolii¸ and M2 and M2S morphotypes were E. typhina and several several genotypic groups 

were detected among them. There were two main genotypes of E. festucae var. lolii, the major 

of them (G1a) included part of colonies with the M1 morphotype and all the colonies with the 

M3 morphotype, the other genotypic group (G1b) were composed by endophytes with the M1 

morphotype isolated uniquely from plants of two locations; the endophyte classified as E. 

festucae were also composed by two distinctive genotypes, the most numerous (G2a) 

encompass strains with variable ability to produce stromata in their host grass, the second 

genotype (G2b) consisted in fungi that always produced stromata in their host. 

It was observed that in wild population of L. penne a wide range of possible endophyte 

combinations was found, resulting in at least six perennial ryegrass ecotypes in agreement 

with the morphological and genetic features: M1(G1a), M1(G1b), M2(G2a), M2S(G2a), 

M2S(G2b), M3(G1a); plus the occurrence of plants with double infections: DI(M1/M2), 

DI(M2/M3), DI(M2S/M1) or DI(M2S/M3). This wide variety of Epichloë/ryegrass associations 

may include some ecotypes that could withstand better to particular stressful conditions, 

which represent an important source of biological material for improving forage grasses. 
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II. ALKALOID PRODUCTION IN LOLIUM PERENNE IN 
RELATION TO THE EPICHLOË MORPHOTYPE HOSTED 

 

II.1  ABSTRACT  

Alkaloids production in Lolium perenne plants is firstly controlled by Epichloë 

endophytes, although there are other factors that can influence their synthesis and 

concentration. There have been lot of researches on symbiotic relationship of commercial 

cultivars of ryegrass with Epichloë endophytes; however, studies about the influence of 

Epichloë on alkaloid production in non-cultivated perennial ryegrass are scarce. In this chapter, 

the concentration of peramine, lolitrem B and ergovaline alkaloids in a heterogeneous set of 

perennial ryegrass from wild origin was analyzed. These plants were naturally infected with 

one of the asymptomatic (EO, M1, M2, and M3) or stromata producer (M2S) Epichloë 

endophytes. In addition, these analyses were also done for plants doubly infected with two 

different Epichloë endophytes (DI). The concentrations of alkaloids were studied at three 

harvests: October 2013 in wirehouse, and May and November 2014 in a field-plot. 

Additionally, alkaloid production was evaluated into two commercial cultivars of ryegrass 

artificially inoculated with selected Epichloë strains.  

The taxonomic group of the Epichloë endophyte had the strongest influence on 

synthesis and proportion of plants in which each alkaloid was produced. Plants harboring M2S 

Epichloë endophytes had the highest concentration of peramine; plants infected with M3 

endophytes produced more lolitrem B, and the highest concentration of ergovaline was found 

in ryegrass with endophytes M1. In DI-plants, it was observed the same patterns of alkaloid 

production but with higher concentration than in the single infected ones, possibly as result of 

a synergistic effect. The harvest time also had influence on proportion of plants and 

concentration on which each alkaloid was detected. The proportion of plants that produced 

peramine and their concentrations were higher in ryegrass from wirehouse. Lolitrem B was 

produced in a lower percentage in plants from the wirehouse but in higher concentration than 

in plants from the field-plot. Ergovaline was found more frequently in ryegrass plants from 

wirehouse, but did not varied among harvests. In inoculated plants, the type of alkaloid 

produced and its concentration was dependent on the morphotype of the Epichloë endophyte 

hosted. Although, the presence of alkaloids was detected only in half of the successfully 

inoculated plants; thus, peramine was detected in higher concentration and lolitrem B in lesser 

quantity than in naturally infected ryegrasses; whereas, in any plant presence of ergovaline 

was detected; which indicates that the host grass also exerted influence on alkaloid 

production. 
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II.2  INTRODUCTION  

One of the most studied and an important characteristic on symbiotic interactions of 

grasses with Epichloë endophytes is related to the production of secondary metabolites. 

Epichloë endophytes produce in planta a range of alkaloids and the best-known can been 

grouped into four classes including, pyrrolopyrazine (peramine), indole-diterpenes (lolitrem B), 

the ergot alkaloids (ergovaline) and aminopyrrolizidines (lolines) (Figure 14). These alkaloids 

enhance the competitive ability of endophyte-infected grasses by protecting them from 

herbivory; and the affected organisms depend upon the type of alkaloids produced that, in 

general, may be involved in anti-insect (peramine and lolines) and/or anti-mammalian 

activities (lolitrems and ergot) (Schardl et al. 1991; Siegel and Bush 1996; Bush et al. 1997; 

Young et al. 2009). 

 

 

Figure 14 Chemical structures of the most common compounds for each chemical group of alkaloid produced in 
grasses infected with Epichloë endophytes. 

 

Peramine is the only known pyrrolopyrazine alkaloid produced and it is also the most 

widely distributed alkaloid in Epichloë-grass associations (Lane et al. 2000; Clay and Schardl 

2002). Peramine consists of a lipophilic pyrrolopyrazine ring and a hydrophilic guanidinyl side 

chain, and it is less lipophilic than the other alkaloids (Siegel and Bush 1996). Peramine was 

first identified in extracts of perennial ryegrass infected with Epichloë festucae var. lolii (Rowan 

et al. 1986), and it has been shown to be a potent feeding deterrent of adult Argentine stem 

weevil (Listronotus bonariensis), an economically important pest in New Zealand, and also of 

other insect herbivores (Rowan et al. 1990; Rowan 1993). 
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Indole-diterpene alkaloids in Epichloë-grass associations are known commonly as 

lolitrems, these compounds have a core structure comprising a cyclic diterpene skeleton. 

Lolitrem B, is the predominant compound from this group and is responsible for ryegrass 

staggers, a neuromuscular disorder in which affected mammals develop ataxia and tremors. 

Sheep experienced short prancing steps usually resulting in arched back and rigid extended 

limbs held in a tetanic spasm of several minutes duration and cattle usually collapse onto the 

brisket with legs splayed (Mortimer 1983; McLeay et al. 1999). This syndrome has been 

commonly identified in livestock grazing ryegrass pastures infected with E. festucae var. lolii, 

after long periods of water stress (Fletcher and Harvey 1981; Gallagher et al. 1984; Gallagher 

et al. 1985). Lolitrem B also has biological activity against Argentine stem weevil larvae and 

other insects (Prestidge and Gallagher 1988). Other classes of indole-diterpenes, the epoxy-

janthitrems and the terpendoles that also have been isolated from perennial ryegrass infected 

with E. festucae var. lolii, have similar antiherbivore activity than lolitrem B (Gatenby et al. 

1999; Parker and Scott 2004; Tapper and Lane 2004). 

The ergot alkaloids are represented by several compounds with an ergolene ring 

system, and ergovaline is the predominant Epichloë-derived ergot alkaloid in grasses (Garner 

et al. 1993; Guerre 2015). This alkaloid is the cause of fescue toxicosis, that occurs in cattle 

grazing tall fescue pastures infected with E. coenophiala, effects of which may include poor 

weight gain, hyperthermia, convulsions, reduced fertility, gangrene of the extremities and 

death (Bacon 1995). In perennial ryegrass, ergovaline has been associated to vasoconstriction 

(Dyer 1993), which reduces peripheral blood flow (Rhodes et al. 1991; Schmidt and Osborn 

1993) and the ability to dissipate heat and therefore can exacerbate ryegrass staggers in sheep 

(Bluett et al. 2005). Ergovaline also enhance the persistence and productivity of ryegrass 

pastures by protecting them against attacks of black beetle (Heteronychus arator) (Ball et al. 

1997b).  

The alkaloids commonly referred to as lolines are saturated pyrrolizidines that have a 

strained ether bridge between aliphatic carbon atoms and they occur almost exclusively in 

grasses associated with Epichloë. The major loline alkaloids are N-formylloline, N-acetylloline 

and N-acetylnorloline and all of them exhibit broad spectrum deterrence and insecticidal 

activity (Siegel et al. 1990; Bush et al. 1997; Wilkinson et al. 2000; Schardl et al. 2007). N-

acetylnorloline, has been reported as the causative agent of fescue eodema, a toxic syndrome 

whose clinical signs include inappetence, depression, and subcutaneous oedema of the head, 

neck, chest and abdomen of horses grazing pastures of tall fescue (Schedonorus arundinaceus 

= Festuca arundinacea = Lolium arundinaceum) infected with some specific strains of E. 

coenophiala (Bourke et al. 2009). Wounding of plants induces high levels of lolines, that can 

accumulate up to 2% of the dry weight of the infected plant’s dry mass, exceeding in quantity 

other alkaloids (Spiering et al. 2002).  
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The presence of Epichloë in pastures has caused important economic losses due to the 

toxic effects of the alkaloids, in countries like US, New Zealand or Australia where 

monocultures of endophyte-infected tall fescue and perennial ryegrass occupy large areas. In 

US, Allen and Segarra (2001) estimated losses of about 2000 million USD in beef industry, as 

impact in loss of weight in cattle; and losses of 340 million USD in reproductive and death of 

livestock. In addition, Reed et al. (2004) highlighted that losses caused by subclinical 

concentration of endophyte toxins may greatly outweigh the economic losses associated with 

staggers, heat stress and deaths associated with clinical symptoms. On the other hand, 

Argentine stem weevil is ranked as the most important pasture insect pest in New Zealand, the 

total cost to the country being estimated at 78 to 251 million AUD per year. Several 

observations have shown that the presence of peramine alkaloid is crucial to ryegrass pastures 

for protection against this pest. As a consequence, in pasture grazing systems, current 

strategies for forage grass improvement focus on the utilization of selected endophytes which 

maintain insect deterrent properties (peramine and lolines) while minimizing negative 

detrimental impact of alkaloids toxic to livestock (lolitrem B and ergovaline) (Repussard et al. 

2014b).  

Depending on their genetic background, Epichloë endophytes are responsible for the 

synthesis of the four main classes of alkaloids. Particular gene clusters are involved in the 

biosynthesis of each alkaloid including ergot alkaloids, indole-diterpenes, and lolines 

(Panaccione et al. 2001; Spiering et al. 2002; Wang et al. 2004; Spiering et al. 2005b; Young et 

al. 2005; Schardl et al. 2007) ; whereas, a single gene is required for peramine production 

(Tanaka et al. 2005). Nevertheless, a grass naturally infected with Epichloë endophyte that 

possesses all four alkaloid classes has not been identified yet. Three types of alkaloids have 

been detected in perennial ryegrass infected with its most common endophyte, E. festucae 

var. lolii, those include peramine, lolitrem B and ergovaline (Siegel and Bush 1996; Bush et al. 

1997). No loline alkaloids have been detected in perennial ryegrass infected with E. typhina, E. 

festucae var. lolii or the hybrid LpTG-2 (E. typhina × E. festucae var. lolii ) (Siegel et al. 1990; 

Schardl et al. 2004a), because they lack the complete gene cluster essential for loline synthesis 

(Spiering et al. 2005b; Young et al. 2013); whereas E. festucae, in Festuca rubra had heritable 

variation for loline expression (Wilkinson et al. 2000). In inoculation tests of perennial ryegrass 

with E. coenophiala isolated from F. arundinacea production of lolines has been detected, 

although with lesser concentration than in the original host (Siegel et al. 1990; Bush et al. 

1993).  

Besides the endophyte genetic background, alkaloid production and concentration in 

plants are affected by factors, like host plant genotype, plant tissue and phenological stage and 

environment. Expression studies have shown that the genes controlling alkaloid biosynthesis 

are up regulated in planta, which suggest that host-specific signaling influences the pathways 

on alkaloid production (Spiering et al. 2002; Young et al. 2005; Tanaka et al. 2006; Hahn et al. 

2008; Zhang 2008). Thus different alkaloid profiles can be expected in the same grass-

endophytes species combination. 
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Each epichloid-alkaloid has a particular pattern of accumulation in the host grass 

according to the phenological stage of the plant and the hyphal growth of the endophyte. 

Peramine, as a water-soluble compound, is almost evenly distributed in the plant and does not 

accumulate in older tissues; its concentration decreases as leaf age increases, and it is higher in 

the regrowth component than in the basal parts of the plant (Keogh et al. 1996; Ball et al. 

1997a). The lolitrem B and ergovaline alkaloids, which are lipophilic, and consequently less 

readily mobile, are more closely linked to endophyte mycelium (Ball et al. 1995; Keogh et al. 

1996; Ball et al. 1997a). Lolitrem B accumulates over time, showing a negative basal-apical 

gradient, its concentration is high in the older tissues in the sheath of outer leaves or dead leaf 

material, where the fungal mycelium is declining (di Menna et al. 1992; Keogh et al. 1996; Ball 

et al. 1997a). The concentration of ergovaline follows a basal-apical increase up the sheath and 

the leaf blade above the ligular zone, paralleling the concentration of mycelium, with the 

highest concentrations in the crown and inflorescence (Lane et al. 1997; Lane et al. 2000; Reed 

et al. 2004). Lolines accumulate during the vegetative stage, mostly in the pseudostem with 

the lesser concentration in the leaf blade and senescent tissues (Siegel and Bush 1996). 

Alkaloid levels in plants have strong seasonal variations, as a consequence of the plant 

development and endophyte life cycle (Lane et al. 2000). Concentrations tend to be lower in 

winter and early spring, rising with inflorescence development in late spring, and peaking again 

in late summer with seed production which is the transmission way of the endophyte 

(protection) (Ball et al. 1997a; Repussard et al. 2014b). Several environmental factors can 

affect alkaloid concentrations. It has been reported that alkaloid production increased when 

water availability decreases (Belesky et al. 1989; Eerens et al. 1998; Hahn et al. 2008). Fertilizer 

supply can also alter alkaloid concentrations; for example, high levels of soil nitrogen and 

phosphorus can increase the production of ergopeptide alkaloids (Arechavaleta et al. 1992; 

Malinowski et al. 1998; Richardson et al. 1999). Some studies revealed an increase in 

ergovaline concentrations with nitrogen fertilization, but this effect varied with the dose, the 

kind of fertilizer, and the year of the assay (Lyons et al. 1986; Belesky et al. 1988; Rottinghaus 

et al. 1991). The effects of nitrogen fertilization also seem to vary with the part of the plant 

analyzed, an increase of ergovaline level was observed in the leaves but not in the 

inflorescence (Repussard et al. 2014a; Guerre 2015). 

The ability of some Epichloë endophytes to form artificial symbioses with different 

species, genera or tribes of plants, offers a powerful tool for the development of new 

beneficial grass-endophyte associations (Simpson and Mace 2012; Young et al. 2013). Taking 

advantage of this feature, characterization of naturally occurring Epichloë endophytes, and 

their subsequent artificial inoculation on endophyte-free grass cultivars (Siegel et al. 1990; 

Gillanders 2007), have made possible that currently, several commercial grasses contain 

endophytes that do not lead to the accumulation of toxic alkaloids for livestock in the host 

plant. Moreover, turfgrass infected with non-pathogenic fungal endophytes may help meet 

demands for reduced pesticide use and for lower inputs in maintenance of turf and sod 

production. For instance, in perennial ryegrass cultivars, the endophyte AR1 does not produce 

lolitrem B or ergovaline, but produces peramine (insecticide). Endophytes NEA2, NEA3 and 
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NEA6 produce both ergovaline and peramine but no lolitrem B (Rasmussen et al. 2007; van Zijll 

de Jong et al. 2008; Schardl et al. 2012; Young et al. 2013; Zhou et al. 2014; Kaur et al. 2015).  

Several studies on alkaloid production in perennial ryegrass have been performed in 

cultivated pastures infected with the asymptomatic endophyte E. festucae var.lolii because it is 

the most common Epichloë species in such systems. However, in wild populations of perennial 

ryegrass, it has been detected a wide variability among the Epichloë endophytes hosted, as 

reported in Chapter I. Because the effects of a grass-endophyte association depends on its 

particular reaction to all the surrounding factors, endophyte-infected grasses from different 

environmental conditions could have different alkaloid profiles and some of them could be 

useful for improving the performance of commercial cultivars of grasses. The aim of this 

Chapter was to screen the diversity on alkaloid profiles of Epichloë endophytes from six 

different natural populations of perennial ryegrass located in western Spain, and the behavior 

of selected endophytes when inoculated in commercial varieties of ryegrass. Specific 

objectives were: (i) to analyze the concentration of the alkaloids peramine, lolitrem B and 

ergovaline in a heterogeneous set of L. perenne plants naturally infected with Epichloë 

endophytes having different morphotypes: is there any relationship between alkaloid profile 

and Epichloë-morphotype?; and, (ii) to evaluate the alkaloid production of two commercial 

varieties of perennial ryegrass inoculated with 10 selected Epichloë endophytes.  

II.3  MATERIALS AND METHODS  

I I .3.1 Plant material  

The plants of Lolium perenne used in this Chapter were selected from those described 

in Chapter I (Table 1), which were collected at six locations corresponding to different 

ecosystems. For each plant, endophyte status (E-= non-infected, E+= Epichloë-infected) and 

morphotype (M1, M2, M2S, M3) was known as indicated in Chapter I (Table 2, Figure 6). As the 

number of plants infected with a specific morphotype of Epichloë endophyte was different 

among locations, plants samples were selected trying to cover the widest taxonomic 

endophytic variability over the plant origin. Thus, a total of 148 ryegrass plants grown in two 

different conditions were screened for alkaloid production: (i) in pots in a wirehouse and (ii) in 

a field-plot.  

The set of samples from the wirehouse consisted of 80 plants of L. perenne (65 E+ and 

15 E-), transplanted in March 2013 to individual pots with a potting mix of perlite:peat moss 

(1:1, v/v). Clones of 48 of these E+ plants were also grown in the filed plot. Pots were 

maintained outdoors in a randomized arrangement, rotating their position frequently, 

watering regularly and fertilizing them once a year with a liquid commercial fertilizer. Ryegrass 

plants were harvested in vegetative stage in October 8, 2013, and all samples were composed 

of leaves and pseudostems. At this harvest, plants bearing M2S endophytes had not developed 

‘choke’ disease symptoms (stromata Figure 7).  

file:///C:/Users/Beatriz/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/OYJ2JAK2/Thesis_Manuscript03.docx%23Results
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For the field plot, E+ and E- plants, were transplanted on October 2013, to a clay eutric 

chromic cambisol (FAO/UNESCO 1998), in the experimental farm Muñovela (Salamanca, Spain; 

40°54'19" N, 5°46'28" W; 780 masl; annual precipitation 372 mm, and mean annual 

temperature 12.7 °C). A distance of 50 cm was left between neighboring plants, they were 

watered during their establishment but not thereafter, were not fertilized and the plot was 

manually maintained free of weeds (without herbicides). On May 2014, all E+ plants (107) and 

9 E- plants randomly selected were harvested at the flowering stage, asymptomatic plants had 

developed panicles and plants infected with M2S endophytes had stromata in developing 

reproductive stems. On November 2014, a subset of 30 plants was harvested at vegetative 

stage (regrowth) when M2S-ryegrass had no longer stromata. Double infected plant samples 

(harboring two different Epichloë-morphotypes) from the field-plot, harvested on May 2014, 

consisted mainly of tillers with stromata because flowering healthy tillers were preserved to 

obtain seeds (to germinate and follow plant growth).  

In all cases, ryegrass plants were harvested by cutting all aboveground biomass at 

approximately 5 cm from the soil surface. Plant samples were stored at -80.0 °C, freeze dried 

and ground to 0.5 mm using a hammer mill (Fritsch 15303). 

I I .3.2 Inoculation of ryegrass with Epichloë  endophytes 

For the evaluation of alkaloid concentration in commercial cultivar of ryegrass as effect 

of the Epichloë endophyte hosted, a set of sample plants from the inoculation assay (Chapter 

III) was selected. Ryegrass plants were infected with 10 different inocula of Epichloë 

endophytes, these fungi had been morphologically and genetically characterized, and the 

alkaloid profile produced on their natural perennial ryegrass host was known. Endophytes had 

been inoculated into two commercial cultivars of ryegrass: ‘Barplus’, a turfgrass cultivar, and 

‘Romance’ a forage cultivar (Barengbrug, NL). After inoculation, ryegrass seedlings were placed 

in water agar (1%) plates, incubated  in a growth chamber (25 °C, 12h of light, 60% relative 

humidity) (Sanyo MLR-351H) for 15 days, transplanted to plastic seedbeds (5x5x10 cm) 

containing a sterile potting mix and then maintained in a glasshouse. Three months later, 

Epichloë infection was corroborated by direct fungal isolation in potato dextrose agar. Infected 

ryegrass plants (E+) and the same amount of non Epichloë-infected plants (E-) were 

transplanted to individual 2 l pots with the usual potting mix, maintained outdoor in a 

wirehouse, watering regularly and fertilizing them once a year. Inoculated ryegrass plants were 

harvested for alkaloid analyses at different vegetative stages on April, June and August 2014. 

I I .3.3 Alkaloid analysis  

Chemical analyses of the alkaloids peramine, lolitrem B and ergovaline were 

performed in a total of 195 ryegrass wild plants: 149 Epichloë-infected and 24 E-; and in 46 

inoculated plants. Each alkaloid was analyzed separately, using some modifications of 

published high-performance liquid chromatography (HPLC) methods.  

Peramine was extracted following the technique described by Barker et al. (1993), 

adding 3.0 ml of a 30% propan-2-ol solution to 100 mg of ground ryegrass and kept 30 min at 

file:///C:/Users/Beatriz/AppData/Local/Microsoft/Windows/Temporary%20Internet%20Files/Content.Outlook/OYJ2JAK2/Thesis_Manuscript03.docx%23INOCULATION%20OF%20Epichloë%20ENDOPHYTES%20IN%20COMMERCIAL%20CULTIVARS%20OF%20Lolium%20perenne.
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90 °C. After centrifugation (12 000 rpm, 5 min), the extract was passed through a CBA cartridge 

(Carboxylic acid 100 mg, Agilent Bond Elut) preconditioned with a mix of 80% aqueous 

methanol and 2.0% ammonium hydroxide, then cleaned up with 1.0 ml of methanol. The 

sample was eluted with 1.0 ml of 5% formic acid (v/v) in 80% aqueous methanol (v/v). 

Quantification was done by comparing the peaks of samples and a stock solution prepared 

with a standard of peramine, donated by G. Lane (AgResearch, New Zealand). The analysis was 

performed by HPLC (Waters module 2695) with a C18 column 3.9 x 150 mm; 4.0 µm (Waters 

Nova Pak 036975) using a Photodiode Array detector (Waters 996) set at 230 nm. Mobile 

phase was isocratic composed by 15% acetonitrile and 85% of buffer 10 mM guanidine 

carbonate and 0.16% formic acid, with a flow rate of 0.7 ml min-1.  

Quantification of lolitrem B was based on the method indicated by Gallagher et al. 

(1985). For the extraction, 1.5 ml of a chloroform:methanol (2:1, v/v) solution was added to a 

100 mg of ground sample and the mixture was kept for 60 min in an orbital shaker at 150 rpm, 

and then centrifuged (12 000 rpm, 5 min). The supernatant was cleaned up with 0.5 ml of 

dichloromethane, filtered through a 0.45 µm nylon disk and then evaporated to dryness with a 

nitrogen stream. The residue was dissolved in 1.5 ml of dichloromethane and was passed 

through a silica cartridge (100 mg, Waters Sep-Pak) previously conditioned with 2.0 ml of 

dichloromethane. For quantification, it was used a standard of lolitrem B provided by C. Miller 

(AgResearch, New Zealand). The samples peaks were compared with those of a lolitrem B from 

standard solution, using a HPLC with a module Waters 2695, a silica column 250 x 4.6 mm, 5.0 

µm (Waters Spherisorb) and a fluorescence detector (Waters 2475) λexc= 268 nm; λem= 440 nm. 

The mobile phase was composed of 80% dichloromethane and 20% acetonitrile, with flow rate 

of 1.0 ml min-1.  

The procedure descripted by Yue et al. (2000) was performed to determine the 

concentration of ergovaline. Extraction was conducted with 0.5 g of ground ryegrass, adding 

10 ml of chloroform, 0.5 ml of 5 mM sodium hydroxide in methanol, and an internal standard 

of ergotamine (Sigma-Aldrich). The mixture was placed on an orbital shaker at 150 rpm for 120 

min, paper-filtered (Filter Lab 1240) and washed with 3.0 ml of chloroform and then passed 

through ergosil – HL silica gel (500 mg, Analtech) columns preconditioned with 5.0 ml of 

chloroform. For elimination of pigments, a solution of 5.0 ml chloroform:acetone (75:25 v/v) 

was added to the filtered solution, elution was with 3.0 ml of methanol taken to dryness with 

nitrogen stream, ergovaline was dissolved in 1.0 ml of methanol and filtered with a nylon disk 

(0.45 µm). Ergovaline quantification was performed by reverse phase HPLC in a module Waters 

2695, a C18 column 150 x 4.6 mm; 2.7 µm (Agilent Poroshell) and a fluorescence detector 

(Waters 2475) λexc= 250 nm; λem= 420 nm. The mobile phase was acetonitrile: 0.01M 
ammonium acetate with gradient flow to 0.8 ml min-1. Ergovaline standard was provided by F. 

Smith (Auburn University, AL, US). 

I I .3.4 Statistical analyses  

The percentage of plants that produced peramine, lolitrem B and ergovaline was 

calculated separately for the different growing conditions (wirehouse or field-plot). 
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Additionally the percentage of plants that produced only one or a specific combination of 

alkaloids was calculated for the whole set of plants. Those plants infected with two different 

Epichloë endophytes (double infections, DI) were considered separately. 

The concentrations of peramine, lolitrem B and ergovaline were compared across the 

morphotypes (EO, M1, M2, M2S, M3), for each harvest separately, by means of a one-way 

ANOVA followed by a post-hoc Bonferroni’s test. Differences among harvests (Wirehouse-Oct, 

Fieldplot-May, Fieldplot-Nov) were assessed considering the Epichloë morphotypes, by means 

of a one-way ANOVA followed by a post-hoc Bonferroni’s test. These statistical analyses 

included only ryegrass plants producing detectable amounts of the alkaloid (zeros were not 

included). 

Alkaloid concentration data were standardized to build a ternary plot with an axe for 

each alkaloid. For standardization of data, the relative concentration was calculated based on 

the maximum concentration for each alkaloid. The relative alkaloid concentration was 

normalized with a corresponding value being the sum of the three transformed data 100% and 

the values were introduced in the appropriate axis of the plot. The relationship between 

alkaloid concentrations across the whole set of plants was assessed by Pearson's correlation 

coefficient.  

All statistical analyses were performed with SigmaPlot software version 13.0 (Systat 

Software, San Jose, CA, USA). 

II.4  RESULTS  

In fourteen Lolium perenne plants (nine from wirehouse and five from the field-plot), 

originally classified as E-, the presence of at least one of the alkaloids analyzed was detected: 

two produced only lolitrem B, six only ergovaline, two peramine and ergovaline, one lolitrem B 

and ergovaline and three the three alkaloids. Plants in this condition were diagnosed again 

through microscopic observation of seeds and stem pith preparations, and mycelium typical of 

Epichloë endophytes was observed in culm tissues and in the aleureone layer of the seeds. 

None of these endophytes could be isolated in potato dextrose agar; therefore, plants 

harboring these type of Epichloë endophytes were relocated as E+ and such fungi were 

designed as EO, because probably could be Epichloë occultans.  

Epichloë occultans is frequently found in association with annual Lolium species (Moon 

et al. 2000) and some Lolium hybridium (L. perenne x L. multiflorum). Unlike other 

Epichloë/grass symbioses which colonize the intercellular space of all above ground tissue, E. 

occultans is typically localized in the meristematic region of the plant) (Moore et al. 2015), and 

this endophyte is known to be virtually unculturable in artificial growth media. (Moon et al. 

2000; Sugawara et al. 2006). 

Most of the Epichloë infected plants (E+) produced at least one of the three alkaloids 

analyzed (peramine, lolitrem B or ergovaline). In the wirehouse, alkaloids were detected in 

100% (65/65) of the E+ plants and in the field-plot 96.2% of the E+ plants (103/107) produced 
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alkaloids. In two of the E+ samples from the field-plot in which no alkaloids were detected, the 

alkaloid lolitrem B was present in their respective clones from the wirehouse, and the other 

two E+ plants without alkaloids in the field-plot were not analyzed in the wirehouse.  

A preliminary statistical analysis of data showed that variation in alkaloid 

concentration across plant locations was mainly due to the morphology of the fungus 

(percentage of plants with each morphotype). Thus, we focused on alkaloids production and 

concentration of peramine, lolitrem B and ergovaline, in perennial ryegrass, affected according 

to the morphology of the Epichloë endophyte(s) hosted (EO, M1, M2, M2S or M3) and the 

harvest (Wirehouse-Sep, Fieldplot-May and Fieldplot-Nov). 

 

I I .4.1 Peramine 

Peramine was produced in 77.2% of the ryegrass plants growing in the wirehouse and 

in 76.5% of the plants from the field-plot. Plants infected with any morphotype of Epichloë 

produced peramine in both growing conditions (Table 3). In the wirehouse, the proportion of 

plants with peramine ranged from 22.2% in EO- to 100% of M2- and M2S-infected plants, and 

in the field-plot, ranged from 42.8% in M2-infected to 92.0% in M3-ryegrass.  

 

Table 3 Peramine alkaloid in Lolium perenne plants: percentage of plants producing the alkaloid and 
concentration as affected by harvest and morphology of their Epichloë endophyte hosted. 

Morphotype 

Wirehouse-Oct     

n 

  Fieldplot- May    Fieldplot-Nov 

n 
Producer 

Concentration 
(mg kg

-1
)

¶
  

Producer 
Concentration  

(mg kg
-1

)
¶
 

  

(%) Mean±SE   (%) Mean±SE   Mean±SE 

EO 9 2 (22.2) 14.18±2.99 ab 
 

5 3 (60.0) NA 
  

9.45±3.23 
 

M1 22 18 (81.8) 5.54±1.00 a 
 

52 38 (73.1) 3.73±0.23 a 
 

5.87±1.43 
 

M2 5 5 (100)  19.38±1.89 b 
 

7 3 (42.8) 10.11±5.22 b 
 

14.28±0.00 
 

M2S 4 4 (100) 27.64±2.11 c 
 

9 8 (88.8) 17.52±1.52 c 
 

13.35±5.05 
 

M3 17 15 (88.0) 10.29±1.09 ab 
 

25 23 (92.0) 6.26±0.57 b 
 

7.46±0.99 
 

Mean 57 44 (77.2) 15.4±0.88 B   98 75 (76.5) 6.25±0.6 A   8.1±1.01 AB  

¶
EO: Epichloë uncultivable endophytic fungus, M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 

morphotype, faster growth rate with white cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-
producing ; M3 morphotype: intermediate growth rate with tan, smooth and flat mycelium (Figure 6) 

 §
n= Number 

of plants analyzed, NA= No analysed, SE= Standard error. a, b, c for each column, mean concentration with different 
letters are statistically different P<0.05. A,B,C, mean concentration in a row with different letters are statistically 
different P<0.05. 

 

The ANOVA showed significant differences (P< 0.001) in concentration of peramine 

among ryegrass plants infected with different morphotypes of Epichloë in Wirehouse-Oct and 

Fieldplot-May; with no statistical differences in the Fieldplot-Nov. At all harvests, peramine 

followed the same pattern of concentration according to the morphology of the endophyte 
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hosted: the lowest concentration was detected in plants infected with the M1 morphotype; 

ryegrass with EO or M3 endophytes had intermediate concentrations; and L. perenne with M2 

and M2S had the highest peramine concentrations (Table 3). Regarding the harvest factor, 

there was a significant effect (P< 0.001) on peramine. Plants from the Wirehouse-Oct had the 

greatest peramine concentration (𝑥̅= 15.40±0.88 mg kg-1), followed by Fieldplot-Nov (𝑥̅= 

8.10±1.01 mg kg-1), and lowest concentration was recorded in Fieldplot-May (𝑥̅= 6.25±0.60 mg 

kg-1) (Table 3).  

Considering all plant samples together, it was observed that peramine concentrations 

were variable but within specific ranges, depending on the morphotype of Epichloë hosted 

(Figure 15). A large number of plants with M1-morphotype (n= 65) produced peramine within 

in a narrow range of concentration (0.60-15.0 mg kg-1). By contrast, a lower number of M2- (n= 

14) and M2S-plants (n= 16) had peramine within a widest concentration range (3.5 – 33.0 mg 

kg-1).  

 

 

Figure 15 Concentration of peramine in Lolium perenne plants according to the morphotype of Epichloë hosted. 
(Including plants growing in the wirehouse and in the field-plot) 

 

I I .4.2 Lolitrem B 

Lolitrem B was detected in 61.5% of the plants from the wirehouse and in 68.3% of 

ryegrass from field-plot. Plants infected with M2S endophytes did not produce lolitrem B in the 

wirehouse but plants from the field-plot at both harvests did produce it (Table 4). The 

percentage of plants producing lolitrem B was smaller in the wirehouse than in the field-plot 

when the hosted endophytes were EO or M2, and there was a similar proportion of plants with 
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lolitrem B in the wirehouse and Field-plot for plants infected with the morphotypes M1, M2 or 

M3.  

 

Table 4 Lolitrem B alkaloid in Lolium perenne plants: percentage of plants producing the alkaloid and 
concentration as affected by harvest and morphology of their Epichloë endophyte hosted. 

Morphotype 

Wirehouse-Oct     

n 

  Fieldplot- May    Fieldplot-Nov 

n 
Producer 

Concentration 
(mg kg

-1
)

¶
  

Producer 
Concentration  

(mg kg
-1

)
¶
 

  

(%) Mean±SE   (%) Mean±SE   Mean±SE 

EO 9 2 (22.2) 1.99±0.79 b 
 

5 4 (80.0) NA 
  

0.71±0.10 
 

M1 22 13 (59.1) 1.48±0.31 b 
 

52 35 (67.3) 1.12±0.08 ab 
 

0.69±0.05 
 

M2 5 2 (40.0) 1.01±0.79 b 
 

7 4 (57.1) 0.89±0.21 ab 
 

NA 
 

M2S 4 0 (0.0) 0.00±0.00 a 
 

9 4 (44.4) 0.48±0.03 a 
 

0.61±0.05 
 

M3 17 15 (88.2) 2.44±0.29 b 
 

25 20 (80.0) 1.38±0.11 b 
 

0.77±0.06 
 

Mean 57 32 (61.5) 1.7±0.16 C   98 67 (68.3) 1.17±0.06 B   0.71±0.03 A 

¶
EO: Epichloë uncultivable endophytic fungus, M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 

morphotype, faster growth rate with white cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-
producing ; M3 morphotype: intermediate growth rate with tan, smooth and flat mycelium (Figure 6) 

 §
n= Number 

of plants analyzed, NA= No analysed, SE= Standard error. a, b, c for each column, mean concentration with different 
letters are statistically different P<0.05. A,B,C, mean concentration in a row with different letters are statistically 
different P<0.05. 

 

The Epichloë morphotype had a significant effect on lolitrem B concentrations in plants 

from the Wirehouse-Oct (P= 0.011) and in ryegrass from Fieldplot-May (P= 0.024), but not in 

plants from Fieldplot-Nov (P= 0.562). Perennial ryegrass with M2S endophytes did not produce 

lolitrem B in the Wirehouse-Oct, and in Fieldplot-May presented the lowest lolitrem B 

concentrations (𝑥̅= 0.48±0.03 mg kg-1). On the other hand, plants infected with the M3 

morphotype had the highest lolitrem B concentration, with 𝑥̅= 1.38±0.11 mg kg-1 in the 

Fieldplot-May (Table 4). No significant differences in lolitrem B concentration were found 

among ryegrass infected with EO, M1 or M2 endophytes in any harvest. Lolitrem B was also 

affected by harvest (P< 0.001) with a greater concentration in plants grown in Wirehouse-Oct 

(𝑥̅= 1.70±0.16 mg kg-1) than in the Fieldplot-May (𝑥̅= 1.17±0.06 mg kg-1) and in Fieldplot-Nov 

(𝑥̅= 0.71 mg kg-1) (Table 4).  

The greatest contrast on lolitrem B content was found between M2S- and M3-infected 

plants (Figure 16). Ryegrass with M3 endophytes, produced lolitrem B within a wide range of 

concentration (0.50-5.60 mg kg-1), and M2- and M2S-plants had values within a narrow range 

(M2= 0.65-1.50 mg kg-1; M2S= 0.46-0.68 mg kg-1). Concentration of lolitrem B in infected plants 

with EO and M1 was in the same scope. Most of the plants (79/99) had lolitrem B below 1.8 

mg kg-1, the threshold concentration for causing ryegrass staggers in cattle and sheep (di 

Menna et al. 1992). Lolitrem B at toxic concentration was detected in 12 plants infected with 

M3, in seven with M1 and in one with EO morphotype (Figure 16).  
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Figure 16 Concentration of olitrem B in Lolium perenne plants according to the morphotype of Epichloë 

hosted, including plants growing in the wirehouse and in the field-plot. The toxic level for 
livestock is indicated with the horizontal red line.  

I I .4.3 Ergovaline 

The alkaloid ergovaline was more common among plants from the wirehouse (90.2%) 

than in plants from field-plot (62.6%) (Table 5). The type of the endophyte hosted affected the 

concentration of ergovaline in the Wirehouse-Oct (P= 0.014) and the Fieldplot-Nov (P= 0.006), 

but not in Fieldplot-May (P= 0.184).  

Table 5 Ergovaline alkaloid in Lolium perenne plants: percentage of plants producing the alkaloid and 
concentration as affected by harverst and morphology of their Epichloë endophyte hosted. 

Morphotype 

Wirehouse-Oct     

n 

  Fieldplot- May    Fieldplot-Nov 

n 
Producer 

Concentration (mg kg
-

1
)

¶
  

Producer Concentration (mg kg
-1

)
¶
   

(%) Mean±SE   (%) Mean±SE   Mean±SE 

EO 9 9 (100) 0.95±0.42 ab 
 

5 3 (60.0) NA 
  

1.37±0.37 b 

M1 16 14 (87.5) 2.29±0.34 b 
 

52 31 (59.6) 1.41±0.21 
  

0.35±0.10 a 

M2 3 2 (66.7) 0.29±0.89 ab 
 

7 4 (57.1) 1.08±0.6 
  

NA 
 

M2S 1 1 (100) 0.08±1.26 a 
 

9 2 (22.2) 0.10±0.00 
  

0.33±0.14 a 

M3 12 11 (91.7) 0.68±0.38 ab 
 

26 22 (84.6) 1.01±0.16 
  

0.58±0.13 a 

Mean 41 37 (90.2) 0.86±0.34     99 62 (62.6) 1.19±0.13     0.59±0.11   

¶
EO: Epichloë uncultivable endophytic fungus, M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 

morphotype, faster growth rate with white cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-
producing ; M3 morphotype: intermediate growth rate with tan, smooth and flat mycelium (Figure 6) 

 §
n= Number 

of plants analyzed, NA= No analysed, SE= Standard error. a, b, c for each column, mean concentration with different 
letters are statistically different P<0.05. A,B,C, mean concentration in a row with different letters are statistically 
different P<0.05 

0.0

1.0

2.0

3.0

4.0

5.0

6.0

EO M1 M2 M2S M3

Lo
lit

re
m

 B
 (

m
g 

kg
-1

) 

Morphotype of the Epichloë endophyte hosted 



47 

Moreover, the harvest did not have a significant effect on ergovaline concentration (P= 

0.113). At all harvests, plants infected with M2S had the lowest mean ergovaline 

concentration; by contrast, M1-infected had in average the highest ergovaline concentration. 

No significant differences were found in ergovaline concentration among plants infected with 

morphotypes EO, M2, or M3 (Table 5).  

Ergovaline in M1-infected plants spanned from 0.03 up to 10.10 mg kg-1; although, 

49.2% of plants with M1 endophyte had ergovaline concentrations below 2.0 mg kg-1 (Figure 

17). Ergovaline levels in ryegrass with morphotypes EO, M2S and M3 had a similar distribution 

range. Most plants in which ergovaline was detected, 87.7% (57/65), had a concentration 

above 0.4 mg kg-1, which is associated with heat stress in cattle (Hovermale and Craig 2001). 

 

 

Figure 17 Concentration of ergovaline found in Lolium perenne plants according to the morphotype of 
Epichloë hosted, including plants growing in the wirehouse and in the field-plot. The toxic 
level for livestock is indicated with the horizontal red line. 

 

I I .4.4 Alkaloid combinations  

Considering the whole set of infected ryegrass samples, in several plants only one 

alkaloid was detected. Peramine alone were detected in 41.7% of M2S- and in 2.2% of M3-

infected; whereas, none of the EO-, M1- or M2- infected plants produced peramine alone 

(Figure 18a). Lolitrem B alone was detected in infected plants with all the Epichloë 

morphotypes, from 4.8% of M3- up to 14.3% for M1-ryegrass (Figure 18a). Ergovaline alone 

was frequently found in L. perenne infected with EO endophytes (42.9%); less common in M1- 

and M2- plants (8.7% and 10.0% respectively); whereas, in none plants infected with the M2S 

or M3 morphotypes the alkaloid ergovaline was detected alone (Figure 18a). 
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Figure 18 Alkaloids detection in Lolium perenne plants according to the morphotype of the Epichloë endophyte 
hosted: (a) only the indicated alkaloid, (b-d) different combinations of the specified two alkaloids (e) 
detection the three alkaloids and (f) no detected the indicated alkaloid.  

 

Production of two alkaloids in the same plant was common in the sample set analyzed. 

Peramine and lolitrem B were detected in 16.2% of the M1-, 16.7% of M2- and 7.0% of M2S-

infected ryegrasses but this alkaloid combination was not found when the hosted endophytes 

were EO or M3 (Figure 18b). Peramine and ergovaline was the most frequent combination of 

two alkaloids, and it was produced by all the Epichloë endophytes, ranging from 5.4% of the 

M3-infected ryegrass to 40.0% of plants with M2 endophytes (Figure 18c). Lolitrem B and 

ergovaline was the least common combination of two alkaloids; these alkaloids were detected 

in 7.1% of ryegrass with EO endophytes and in 10.0% of M2-plants, but not in ryegrass infected 

with the M1, M2S or M3 morphotypes (Figure 18d).  
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Production of the three alkaloids peramine, lolitrem B and ergovaline together were 

detected in plants infected by all morphotypes of Epichloë, with a particularly high percentage 

in ryegrass infected with the M3 morphotype (>75%), and with less frequency among plants 

infected with other endophytes in a range from 9.1% in M2-infected plants to 27.6% in M1-

ryegrasses (Figure 18e). 

Depending on the purpose in which is intended the grass, it is important to know the 

absence of only a particular alkaloid. In this regard, the absence the neurotoxic alkaloid of 

lolitrem B, was observed in plants infected with any of the Epichloë morphotypes ranging from 

7.7% among M2S plants up to 25.0% in M2 ryegrass. No ergovaline, another toxic alkaloid, 

production was observed in 7.1% of EO- and 8.3% of M2-infected of plants (Figure 18f). It was 

observed that 7.1% of EO- and 8.3% of M2-infected did not have peramine and in ryegrass 

with other Epichloë morphotypes it did was produced).  

The Figure 19 represents a three axis plot built using the normalized data of alkaloid 

concentrations in perennial ryegrass according to the Epichloë endophyte hosted. It can be 

observed that most of the endophytes belonging to a specific morphotype are allocated in the 

same cluster. Plants with EO endophytes are located down in the right side, since they produce 

lower concentration of lolitrem B and ergovaline than that of peramine. Most of plants with 

the M2 morphotype, independently if they were or not stomata producers are situated at the 

extreme right side at the bottom of the plot, because in these samples peramine 

concentrations were higher and the levels of lolitrem B lower. Plants infected with M3 

endophytes, which produced the three alkaloids are grouped in the center of the plot. 

However, endophytes with the M1 morphotype were separated into two different clusters.  

The clear segregation into two groups of the plants infected with the M1 morphotype 

is coincident with their genotypic profile (see Chapter I). Plants from the genotypic group G1b 

lay along the lolitrem B axis, they produced higher levels of lolitrem B and peramine, but very 

low concentration of ergovaline or did not produce this alkaloid (Figure 19). Plants infected 

with the M1 morphotype and genotypic profile G1a were congregated along the peramine 

axis, because they produced ergovaline and peramine in a wide range of concentrations but 

most of them did not produced lolitrem B. 
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Figure 19 Normalized data of the relative concentration of alkaloids peramine, lolitrem B and ergovaline in Lolium 
perenne plants according to the taxonomic group of their Epichloë endophyte hosted. 
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There were significant correlations among concentrations of alkaloids, but these 

correlations were not comprehensive, as they were found in plants infected with specific 

Epichloë morphotypes (Table 6).  

 

Table 6 Pearson’s correlation coefficient (r) and signification level (P) between alkaloids produced in 
Lolium perenne plants, for each morphological group of Epichloë endophyte hosted. 

ALKALOID   MORPHOTYPE
¶
 

COMBINATION 
 

EO M1 M2 M2S M3 

Peramine and 
Lolitrem B 

 r 0.665 0.209 0.028 -0.503 0.716 

P 0.009 0.050 0.924 0.047 <0.001 

 
n 14 74 12 13 42 

 
      

Peramine and 
Ergovaline 

 r 0.383 0.325 -0.200 0.102 0.070 

P  0.176 0.003 0.533 0.740 0.639 

 
n 14 69 10 10 37 

 
      

Lolitrem B  and 
Ergovaline 

 r -0.029 -0.492 0.733 0.392 -0.094 

P  0.918 <0.001 0.007 0.185 0.529 

 n 14 69 10 10 37 
¶
EO: Epichloë uncultivable endophytic fungus, M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 

morphotype, faster growth rate with white cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-
producing ; M3 morphotype: intermediate growth rate with tan, smooth and flat mycelium (Figure 6).Numbers in 
bold indicates significant correlation coefficients P ≤ 0.05. 

 

Concentration of the alkaloids peramine and lolitrem B were positively correlated in 

plants with morphotypes EO, M1 and M3, and negatively with M2S. The content of the 

alkaloids peramine and ergovaline were correlated only in M1-infected ryegrass (positively). 

Lolitrem B and ergovaline concentrations were inversely significantly correlated in M1-ryegrass 

and positively in M2-plants (positive). 

I I .4.5 Alkaloids in double infected plants  

In perennial ryegrass infected with two different Epichloë endophytes (double 

infections, DI), peramine was usually detected in similar concentrations to those of single 

infected plants with M2 and M2S morphotypes; but contrary to the general trend, DI(M2/M1)- 

produced as low peramine as the single infected M1-plants (Figure 20a, Table 3).  

In double infected perennial ryegrass the concentration of lolitrem B was similar than 

in single infected plants (Figure 20, Table 4). However, when the endophytes hosted were a 

stromata producer (M2S) and M3, the mean concentration of lolitrem B was higher than in 

single infected plants (𝑥̅ = 1.70±0.16 mg kg-1 in Wirehouse-Oct; 𝑥̅= 1.17±0.06 mg kg-1 in 

Fieldplot-May; and 𝑥̅ = 0.70±0.03 mg kg-1 in Fieldplot-Nov ).  
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Figure 20 Average concentration of alkaloids in Lolium perenne plants infected by two Epichloë endophytes (double 
infections, DI): (a) peramine, (b) lolitrem B and (c) ergovaline.   
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From all DI-plants, in those classified as DI(M2/M1) the highest concentration of 

ergovaline (𝑥̅ = 3.45±1.17 mg kg-1) was detected, and it was higher that single infected plants 

(Figure 20b, Table 5). On the other hand, DI-plants with stromata had the lowest mean 

ergovaline concentration. 

The separate analyses of stromata and healthy seed heads from one DI-plant with M2S 

and M1 endophytes, indicated presence of peramine in high concentration (18.06 mg kg-1) in 

stromata but it was not detected in seed heads. Lolitrem B was not produced, and ergovaline 

had similar concentrations in the two analyzed samples (0.10 mg kg-1, in stromata; 0.13 mg kg-

1, in seed heads). 

I I .4.6 Production of alkaloids in inoculated plants  

Comparison of the alkaloids concentration among ryegrass plants of the two cultivars 

evaluated was only possible in a limited number of plants, because not all the inocula infected 

successfully the two cultivars. The statistical analyses to compare the alkaloid concentrations 

in such plants did not show significant differences (P< 0.05) between the two ryegrass cultivars 

evaluated. 

Differences in alkaloid concentrations between naturally infected- and inoculated- 

plants were observed (Table 7). Peramine was found to be produced by almost all inoculated 

plants with endophytes belonging to the M2 morphotype; with the exception of isolate LVA04, 

even when in its natural host peramine was produced in high concentrations (17.35-32.59 mg 

kg-1). Plants inoculated with Epichloë endophytes of the M1 or M3 morphotype that produced 

peramine in their natural host did not produce this alkaloid in the inoculated ryegrasses (Table 

7).  

Table 7 Production of alkaloids in ryegrass plants inoculated with Epichloë endophytes of different 
morphology and in naturally infected plants.  

    

n 

Peramine   Lolitrem B   Ergovaline 

Morphotype¶ Inoculum Inoculated plants 
 

Natural 
 

Inoculated plants 
 

Natural 
 

Inoculated plants 
 

Natural 

    Producer (%) 
Concentration  

(mg kg-1) 
  Producer (%) 

Concentration  
(mg kg-1) 

  Producer (%) 
Concentration  

(mg kg-1) 

M1 LVE11 4 0.0 0.00 
 

0.66-11.02 
 

0.0 0.00 
 

0.66-1.59 
 

0.0 0.00 
 

0.03 

 
LVE29 6 0.0 0.00 

 
3.13-6.03 

 
0.0 0.00 

 
1.22-1.25 

 
0.0 0.00 

 
0.07 

M2 LVA08 8 100 13.13-25.62 
 

10.9 
 

25 0.01-0.53 
 

0.00 
 

0.0 0.00 
 

NA¶ 

 
LVA32 12 100 8.26-31.16 

 
15.8-11.95 

 
8.3 0.85 

 
0.51-1.37 

 
0.0 0.00 

 
0.24 

MS2 LVA04 6 0.0 0.00 
 

17.35-32.59 
 

0.0 0.00 
 

0.00 
 

0.0 0.00 
 

0.00 

 
LVA17 4 100 21.31-26.15 

 
20.29-32.14 

 
0.0 0.00 

 
0.46 

 
0.0 0.00 

 
0.00 

 
MON06 4 100 15.49-26.76 

 
4.96 

 
0.0 0.00 

 
0.67-0.87 

 
0.0 0.00 

 
0.00 

 
MON07 8 100 13.93-29.04 

 
6.22 

 
12.5 0.46 

 
0.00 

 
0.0 0.00 

 
0.41 

M3 CR14 4 0.0 0.00 
 

6.91-14.92 
 

0.0 0.00 
 

0.89-1.47 
 

0.0 0.00 
 

0.64 

  TAB42 4 0.0 0.00   12.07-23.06   0.0 0.00   1.62-5.68   0.0 0.00   0.25 

¶
M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 morphotype, faster growth rate with white 

cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-producing ; M3 morphotype: intermediate 
growth rate with tan, smooth and flat mycelium (Figure 6)n= Number of plants analyzed, 

¶
NA= No analysed, 
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The alkaloid lolitrem B was detected only in plants inoculated with M2 isolates LVA08, 

LVA32 and MON07 (Table 7). The endophyte MON07 and LVA08 produced lolitrem B uniquely 

in the inoculation trial but not in their natural host grown in wirehouse or field. In no plants 

inoculated with M1 or M3 endophytes was detected lolitrem B; although this alkaloid was 

detected in the original host plants. 

Ergovaline was not detected in any of the three harvests (in April, June and August 

2014) in ryegrass inoculated with Epichloë endophytes, independently whether in the natural 

hosts this alkaloid was produced.  

II.5  D ISCUSSION  

The alkaloids peramine, lolitrem B and ergovaline are produced exclusively in grasses 

infected with Epichloë endophytes; hence, non-infected plants should not produce these 

alkaloids. In our study, plants originally classified as E- using a fungal isolation diagnostic 

method produced alkaloids, and presumably could be infected with Epichloë occultans, 

because an unculturable endophyte was observed by microscopy in stems and seeds. van Zijll 

de Jong  et al. (2008) reported the detection, through SSR markers, of a scarce presence of 

Epichloë endophytes with genetic similarity to E. occultans in L. perenne pastures. It has been 

reported that E. occultans could be in symbiosis with hybrid ryegrasses that coexist within 

natural population of perennial ryegrass (Hume et al. 2001)(Bluett et al. 2004), and Sugawara 

et al. (2009) reported successful artificial inoculation of E. occultans into L. perenne plants. 

Although high production of lolines and low concentrations of peramine have been reported in 

L. rigidum and other annuals grasses infected with E. occultans, the alkaloids lolitrem B and 

ergovaline have not been detected (Sugawara et al. 2006).However,  Moore et al. (2015) 

reported that annual ryegrass infected with E. occultans produced several precursor 

compounds of indole-diterpenes (lolitrems) and Kuldau and Bacon (2008) associated the 

presence of lolitrem B and ergovaline in Epichloë-infected grasses to pressure for predation of 

small vertebrates. 

Most of the L. perenne plants (>95%) infected with Epichloë endophytes had at least 

one of the three alkaloids analyzed (peramine, lolitrem B or ergovaline). The proportions of 

plants that produced peramine, lolitrem B or ergovaline were 70.9%, 64.8% and 60.9%, 

respectively. These percentages were similar to those reported by Bony et al. (2001) in 

ryegrass plants from natural populations infected with Epichloë endophytes. Differences on 

the percentage of plants that produced each alkaloid may be due to genetic background of the 

plant and the fungi. The concentration of alkaloids in Epichloë infected ryegrass were in the 

same range found by other researchers: peramine 2.0 - 52.8 g kg-1 (Rowan et al. 1990; Bony et 

al. 2001); lolitrem B 0.3 to 11.5 mg kg-1 (Christensen et al. 1991; Bony et al. 2001; Reed et al. 

2004); and ergovaline 0.24-3.46 g kg-1 (Easton et al. 1993) (Lane et al. 1997; Bony et al. 2001). 

Toxic levels of lolitrem B for livestock (>1.80 g kg-1) were detected in a low number of the 

analyzed plants and most of them were infected with M3-endophytes; whereas a very 

important proportion of the samples (ca. 90%) have a concentration of ergovaline above the 



55 

reported safe limit for livestock consumption (0.40 g kg-1). However, toxicosis cases in Europe 

are scarce mainly because the floristic diversity of grasslands and the use of endophyte-free 

ryegrass cultivars (Zabalgogeazcoa and Bony 2008).  

It is known that production and concentration of alkaloids in grasses are affected by 

factors such as the endophyte and host genotypes, plant tissue, environmental conditions 

(water and nutrients availability) and management (Ball et al. 1995; Easton et al. 2002; 

Spiering et al. 2005a; Rasmussen et al. 2007; Hahn et al. 2008; Zhou et al. 2014). In this 

Chapter, the main objective was to evaluate the influence of the Epichloë morphotype on 

alkaloid production (peramine, lolitrem B, ergovaline) in a heterogeneous set of perennial 

ryegrass plants growing in two different conditions (wirehouse or field-plot) and sampled at 

different phenological stages. The results showed a stronger influence of the Epichloë 

morphotype over other possible sources of variation on the profile of alkaloids produced in 

perennial ryegrass plants, because the same particular characteristic pattern of production 

was observed for each of the three alkaloids in both growth conditions and in the three 

harvests. This is in agreement with the results of Easton et al. (2002), who explained that 

variation in herbage concentration of endophyte-derived alkaloids may be mainly due to the 

difference in the Epichloë strains.  

A higher concentration of peramine in plants infected with M2- and M2S- endophytes 

could be related in some extent to a higher abundance of fungal mycelia. Rasmussen et al. 

(2007), reported a direct relationship between the abundance of fungal endophyte on 

peramine concentration. In Chapter I (Fig. I. 3e), it was observed that in PDA, Epichloë 

endophytes from morphological group M2 (stromata forming included) had the highest growth 

rate; M3 morphotype had intermediate rates and M1 morphotype the lowest. Therefore, 

although growth rate in PDA could not be reflected in planta, it seems that patterns of 

peramine concentration coincided with growth rate of the fungi in the culture medium, being 

the M2 and M2S morphotypes the highest producer of peramine; whereas, the lowest 

peramine concentrations were recorded in M1-plants, and when M3-endophytes were hosted, 

ryegrass had intermediate peramine levels.  

In the case of lolitrem B, M3-infected plants had the highest mean concentration and 

plants with sexual endophytes (M2S) had the lowest content. This is in agreement with 

Leuchtmann et al. (2000) who reported that Epichloë strains that thoroughly choke all host 

tillers tend either not to produce lolitrem B or to produce it at low levels. According to Young 

et al. (2009) many sexual isolates are unable to produce lolitrem B due to absence of the 

complete LTM locus or, in some cases, just the genes encoding the first committed steps in the 

pathway. In contrast, gene profiling of asexual species with an E. festucae progenitor (e. g. E. 

festucae var. lolii) are likely to be capable of producing lolitrem B (Young et al. 2009; Schardl et 

al. 2012). In Chapter I, it was reported that many of the endophytes with M2 and M2S 

morphotype did not have the ltmQ gene (part of the LTM locus), required in the pathway for 

paspaline hydroxylation, essential for lolitrem B production. This may explain both the 

infrequent and the lower concentration of lolitrem B in plants infected with the M2 or M2S 
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morphotypes. On the contrary, ltmQ gene was detected in endophytes with other 

morphotypes, and more than 60% of M1- and 80% of M3-infected plants produced lolitrem B. 

Unlike the clear relationship among distinctive morphotypes of Epichloë and the 

production of peramine and lolitrem B, for ergovaline it was found that the highest 

concentrations were detected in plants infected with a specific group of endophytes belonging 

to M1 morphotype. Epichloë endophytes with M1 morphotype split into two genotypic groups 

(G1a and G1b), according to a genotypic analysis using the ITS1-5.8SrDNA-ITS2 region and 

reported in Chapter I, and interestingly such groups coincided with their ability to produce 

ergovaline. The highest ergovaline concentrations was detected in ryegrass plants infected 

with M1-endophytes of G1a genotype; but when the endophyte hosted was from the M1-

morphotype belonging to the genetic group G1b, the production of ergovaline in the ryegrass 

plants was very low or null. Therefore, our results show that the genetic segregation of both 

groups can be explained on the basis of their alkaloid contents. 

According to the relationship between the alkaloid production and the morphotype of 

the Epichloë endophyte hosted by in the ryegrass plants observed in this chapter, some M2 

and M1(G1b) strains can be used for improvements of forage ryegrass, because these Epichloë 

morphotypes do not produce toxic alkaloids for livestock (lolitrem B and ergovaline), but they 

do produce the insect-deterred alkaloid peramine. On the other hand, as the M3 morphotype 

produce high level of lolitrem B but also of peramine, this type of endophyte can be a good 

option for improvement programs in turf grasses.  

Relationships between the different alkaloids produced suggest modes of regulation 

induced by the endophyte. Some relationships between concentration of alkaloids have 

elucidated that mevalonic acid and tryptophan are precursors of both lolitrem B and 

ergovaline and that lolitrem B- and ergovaline-ratios could thus be influenced by pathway 

competition for these two compounds (Baxter et al. 1962; Spiering et al. 2005a). This could 

explain the negative relationship between both alkaloids found in M1-infected plants and the 

low frequency of plants in which this alkaloid combination was found; however, in M2-

ryegrass, production of lolitrem B and ergovaline were positively correlated. On the other 

hand, the correlation between peramine and lolitrem B was significant in four of the five 

Epichloë morphotypes. This relationship was positive in the asymptomatic ryegrass-Epichloë 

associations, which is in accordance with other reports (Ball et al. 1995; Siegel and Bush 1996; 

Reed et al. 2004), but negative for the M2S (the stroma-producing). These results indicate that 

besides the competition for mevalonic acid and tryptophan other processes could be involved 

in the pathway for synthesis of alkaloids, which may be genetically controlled in a distinctive 

way by each Epichloë morphotype.  

Production of alkaloids in double infected ryegrass also followed the pattern of 

concentration according to the morphology of their Epichloë endophytes hosted, although in 

some DI plants a synergistic effect was observed. For peramine, DI plants had similar 

concentration than the single infected ryegrass with M2 or M2S endophytes, the highest 

producers of peramine. In the same way a synergistic effect was observed for lolitrem B in DI 
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infected plants with the M3 morphotype and for ergovaline in three of the four ecotypes of DI 

plants with endophytes of the M1 morphotype, with higher concentration than in single 

infected ryegrass, which may have negative consequences for livestock because the safe 

concentration limits were exceeded. Bony et al. (2001) also quantified alkaloids in ryegrass 

plants harboring two Epichloë endophytes; however, they reported values only for lolitrem B 

which were in same range of production (0.80-4.30 g kg-1) than in the single infected plants 

that they analyzed (0.80-5.75 g kg-1). 

Regardless of the ryegrass samples had miscellaneous environmental backgrounds, the 

strong effect of Epichloë morphotype on alkaloids synthesis, and possible interactions 

host/endophyte reported (Easton et al. 2002; Cheplick and Cho 2003; Rasmussen et al. 2007), 

the results described herein allowed to identify an effect of the harvest on alkaloid production. 

The three harvests encompassed different plant phenological stages (vegetative, flowering and 

autumn regrowth) in two growing conditions (wirehouse and field-plot). Significant differences 

were observed in concentrations of peramine and lolitrem B between ryegrass plants from the 

wirehouse and the field-plot, but not for the ergovaline alkaloid. Conditions on wirehouse or 

field-plot had particular nutritional and climatic circumstances; therefore, differences on 

alkaloid concentrations may reflect in part the effects of such aspects. However, one of the 

most important differences was due to the plant growth stage, an important factor 

determining the accumulation of alkaloids which is also related to differences in concentration 

in plant tissues. Wirehouse-Oct plants were harvested at vegetative stage and samples 

consisted mainly of leaves; whereas Fieldplot-May plants were harvested at flowering stage, 

and samples were composed of leaves, stems and inflorescences. Furthermore, M2S-infected 

ryegrass from the Fieldplot-May had stromata, and these structures were not present in plants 

from Wirehouse-Oct. Plants of ryegrass from Fieldplot-Nov also were in a vegetative stage of 

regrowth but with older tissues at the crown  than samples taken from Wirehouse-Oct. 

Concentration of peramine was higher in plants collected at vegetative state 

(Wirehouse-Oct, Fieldplot-Nov) than in plants analyzed at flowering (Fieldplot-May). This is 

explained because peramine is most abundant in younger tissues and particularly in leaves, 

which were the largest proportion of the samples collected at the vegetative state (Keogh et 

al. 1996). Other environmental factors do not seem to have strong effect on the production of 

peramine, which is not affected by N (Lane et al. 1997; Rasmussen et al. 2008), neither by 

water availability (Hahn et al. 2008).  

Plants from the wirehouse in vegetative stage had higher concentration of lolitrem B 

than plants from the field-plot at any harvest. These results are contrary to several reports 

indicating that concentration of lolitrem B in perennial ryegrass has a pronounced seasonal 

variation related to maturity of the plant, from lower amount in leaves and rising with 

inflorescence development, with higher concentration in older leaf sheaths and seeds 

(Prestidge and Gallagher 1988; di Menna et al. 1992; Ball et al. 1995; Lane et al. 2000; 

Repussard et al. 2014b). On the other hand, information about the influence of abiotic factors 

on the levels of lolitrem B in field conditions is scarce and sometimes contradictory (Lane et al. 
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1997), making not possible attribute to one specific factor the higher concentration of this 

alkaloid in wirehouse that in the field plot. According to Hahn et al. (2008) for lolitrem B in 

perennial ryegrass there is not a clear model and it concentration is highly dependent of each 

individual Epichloë/grass association. In the present study, due to the large heterogeneity of 

Epichloë/grass associations used, factors affecting alkaloid content are not depending on 

individual features of the cultivars; instead our results reflected a strong effect caused by the 

nature of the endophytes hosted. Besides the morphotye of the endophyte, other factors may 

have influenced the alkaloid production; for instance, it has been observed that under specific 

conditions of higher moisture accompanied by dry, warm conditions in spring−summer, a rising 

of perennial ryegrass toxicosis was observed in Australia, as consequence of the lolitrem B 

level accumulation (Reed et al. 2011). Thus a possible dilution effect of the samples might 

occurs, accumulation of lolitrem B is very high toward the base of the plant (di Menna et al. 

1992; Keogh et al. 1996) and biomass production and principally the proportion crown:stem 

were lesser in plants form wirehouse than in ryegrass grown in the field; therefore, crown 

tissues were proportionally more abundant in wirehouse samples and higher lolitrem B were 

recorded. Additionally, others combinations of not examined abiotic factors may also affect 

the lolitrem B production, because in the analyzed plants from wirehouse, which were, 

watered, fertilized and were confined to plot, the highest lolitrem B concentration was 

detected. 

The ergovaline concentration was not significantly affected by harvest or growth 

conditions. Repussard et al. (2014b) reported that ergovaline concentration in perennial 

ryegrass has a peak in spring during flowering and in field-growth E. festucae var. lolii-infected 

perennial ryegrass, and the ergovaline content increased under conditions of water and 

temperature stresses or in response to addition of N fertilizer (Barker et al. 1993; Hahn et al. 

2008; McCulley et al. 2015; Ryan et al. 2015). Although, Rasmussen et al. (2007) showed that 

the effect of external factors such N addition could not be significant on the ergovaline content 

in certain cultivars of ryegrass, but in this work such kind of influence is override due to the 

heterogeneity of the plats evaluated. It may be possible that differences in concentration of 

ergovaline were not detected, because when the ryegrass was sampled in Fieldplot-May plants 

were flowering having the pick concentration of ergovaline, and in the wirehouse, the plants 

were fertilized also promoting the content of this alkaloid. 

Alkaloid production is highly driven by external environmental factors related with 

defensive and ecological functions; herbivore attack may trigger signals for synthesis of 

alkaloid or concentration in specific tissues that need protection. In lolines this effect have 

been extensively studied; for example, Patchett et al. (2008) found that in Epichloë infected 

medow fescue (Festuca pratensis= Bromus pratensis= Lolium pratense) exposed to grass grub 

(Costelytra zealandica) (a subterranean pest common in New Zealand Pastures), loline 

concentration in root was significantly higher than in the crown of the grass and aboveground 

concentrations was lower when compared with no-infected grasses. Similarly, alkaloid 

production inducted by plant clipping was demonstrated by (Bultman and Ganey 1995) in 

endophyte infected perennial ryegrass. In this regard, it can be speculated, that the higher 



59 

concentration of alkaloids, particularly lolitrem B, in plants from the wirehouse, might be an 

active reaction of the Epichloë infected ryegrass to the aphid attacks observed with frequency 

in those plants in contrast with plants from the field-plot in which these insects were not 

observed. 

Interestingly, production of alkaloids in perennial ryegrass inoculated with Epichloë 

endophytes was sparse: in no association was detected the toxic alkaloid ergovaline, lolitrem B 

was found in 30% of inoculated plants, whereas peramine (insecticide) was detected in 50% of 

plants. Inoculated grasses contained more peramine and less lolitrem B compared with 

naturally infected ones, which is a suitable and very interesting result intended for livestock 

feed. Alkaloids were produced only in plants infected with endophytes of the M2 and M2S 

morphotypes, but with no others. Probably, adaptation of the inoculum to the traits of the 

new host (as nutrient availability, sugar content, host metabolism, etc.) may have affected the 

fungal development inside the plants particularly of the M1(G1a) endophytes able to produce 

the highest ergovaline concentration in their natural grass hosts. Easton et al. (2002), reported 

that variation in peramine and ergovaline concentration are genetically controlled as a 

function of mycelial mass; furthermore, the level of adaptability reflected in compatibility 

grass/endophyte have been developed through cycles of adaptation not founding the degree 

of adaptation in the first reproductive cycles. Inoculated plants were harvested three times to 

follow alkaloid concentration; more analysis on time should be done to guarantee the safeness 

of these endophytes-infected ryegrasses. The goal should be that peramine could be 

maintained in time but not lolitrem B and ergovaline.  

II.6  CONCLUSIONS  

Our results showed a widespread concentration range of endophyte-alkaloids in a 

diverse set of ryegrass plants naturally infected with Epichloë endophytes. Distinctive patterns 

on alkaloids production were observed according to the Epichloë morphotype hosted by the 

perennial ryegrass plants. There was a stronger effect of endophyte morphotypes, over other 

evaluated factors, on their ability to produce alkaloids in frequency and concentration.  

In single infected ryegrass, independently of the harvest, the highest concentration of 

peramine was produced in plants infected with sexual endophytes (M2S); the content of 

lolitrem B was the highest in ryegrass infected with the M3 morphotype; and, M1(G1a)-

infected ryegrasses produced the highest concentration of ergovaline. Considering such 

results, the morphotype of the Epichloë endophyte may be used as criterion of major 

importance in the selection of fungi with a particular ability for alkaloid production. For forage 

improvement the researches should be focused in the M1 morphotype, because they produce 

lower concentration of lolitrem B and among them, there was a genotypic group in which the 

production of ergovaline was also lower or was not produced (M1G1b).  

A synergistic effect on the alkaloid concentration was observed in some double 

infected plants, being within these plant ecotypes where the highest concentrations of the 
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three alkaloids were quantified, especially in those in which one of the endophyte hoste 

belonged to the M2S morphotype.  

Additionally, there were differences in production and concentration of alkaloids by 

effect of harvest time, which is related to the phenological stage; ryegrass from wirehouse had 

higher peramine and lolitrem B concentration; whereas the ergovaline concentration was 

constant in the three harvests. 

Inoculated plant produced higher concentration of the insecticidal alkaloid peramine 

that in the natural associations; on the contrary, alkaloid toxic for livestock lolitrem B and 

ergovaline were found in lesser concentration or were not detected, which would be a suitable 

characteristic for the use of these plants as forage.  
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III. Epichloë  ENDOPHYTES AFFECT THE NUTRIENT AND 
FIBER CONTENT OF Lolium perenne  REGARDLESS OF 
PLANT GENOTYPE 

Cite this section as: Soto-Barajas MC, Zabalgogeazcoa I, Gómez-Fuertes J, González-Blanco V, Vázquez de Aldana, 

BR. (2015). Epichloë endophytes affect the nutrient and fiber content of Lolium perenne 

regardless of plant genotype. Plants and Soils. doi:10.1007/s11104-015-2617-zl 

III.1  ABSTRACT  

Epichloë endophytes inhabit aerial grass tissues but they can modify belowground 

processes that might affect host nutrient balance. The aim of this chapter was to determine 

the effects of Epichloë infection (E-=non-infected; E+=Epichloë-infected) and three Epichloë 

morphotypes (M1, M2, M3) on growth and nutrient content of a heterogeneous set of 

naturally Epichloë-infected asymptomatic plants of Lolium perenne. In addition, plant 

parameters were compared between asymptomatic E+ and plants with choke disease. A field 

experiment was conducted with 194 plants obtained from six natural populations (97E+, 97E-). 

For each E+ plant, the morphotype of the Epichloë endophyte hosted was known.  

Epichloë-infected plants had significantly lower P, Ca, S, B, neutral detergent fiber and 

lignin contents, and higher Mn and digestibility than E-, independently of plant origin. Biomass 

production was affected by plant origin but not by the infection with Epichloë endophytes. No 

effect of Epichloë morphotypes in any parameter was found. However, asymptomatic E+ and 

choke diseased plants differed in nutrients, fibers, and digestibility. An Epichloë effect was 

detected in nutrient and fiber content, in spite of the heterogeneous constitution of the plant 

and fungal material used. The results obtained indicate that Epichloë may affect above and 

possibly underground processes involved in nutrients absorption, as well as plant quality, what 

may potentially affect litter decomposition processes and consequently the nutrients cycling.  

III.2  INTRODUCTION  

The nutrient content of grasses can be affected by soil properties, climate, plant 

factors (species, genotype, phenological stage), and also by symbiotic relationships (Jones and 

Thomas 1987; Nelson and Moser 1994). Symbiotic associations of plants with fungi are 

ubiquitous in nature. For instance, those occurring with arbuscular mycorrhizae have been 

known for long, and positively affect nutrient acquisition in plant hosts (Jeffries et al. 2003). 

More recent studies indicate that most plant species harbor a rich and diverse mycobiota 

composed of endophytes, fungi that infect plant tissues without causing disease symptoms. An 

increasing number of examples is showing that some symbioses of plants with endophytes are 

beneficial, providing increased plant growth and stress tolerance (Rodriguez et al. 2009). 
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Today Epichloë is probably the most studied genus of fungal endophytes (Saikkonen et 

al. 2006; Leuchtmann et al. 2014; Tadych et al. 2014). Hyphae of Epichloë endophytes colonize 

systemically the intercellular space of aerial organs like leaves and stems of the host plant, but 

there are differences among species of this genus in their life cycles. Some species (e.g. 

Epichloë festucae var. lolii = Neothyphodium lolii) are transmitted vertically to the seeds, this 

type of spread is asexual and clonal, and the same fungal genotype that infects a host plant 

will be transmitted to its seeds. Other Epichloë species are exclusively sexual (e. g. Epichloë 

typhina), they are not vertically transmitted to seeds and develop a tubular stroma that wraps 

the inflorescence primordium in host plant reproductive stems, inhibiting panicle 

development, a disorder known as ‘choke disease’ of grasses. Ascospores released from 

fertilized stromata of E. typhina can infect florets of other healthy plants, giving rise to infected 

seeds (Clay and Schardl 2002) (Figure 2).  

Although Epichloë endophytes are only present in aerial parts, they can alter 

belowground components and processes. Changes in root biomass and morphology, root 

exudates and mycorrhizal colonization have been observed in Epichloë infected plants 

(reviewed by Omacini et al. (2004)). Thus, endophyte-mediated alterations of roots can affect 

host plant nutrition. For instance, roots of infected tall fescue plants release phenolic 

compounds with Fe3+ reducing and P solubilizing activity (Malinowski et al. 1998; Malinowski 

and Belesky 1999a), and endophyte-infected plants showed an increased capability to bind 

copper in the rhizosphere (Malinowski et al. 2004). An increase of phenolic compounds in 

roots of endophyte-infected plants have been reported in several other grass species (Ponce et 

al. 2009; Vazquez de Aldana et al. 2011), increasing the competitive ability of infected versus 

non-infected plants due to root-mediated allelopathic interactions (Sutherland et al. 1999; 

Vazquez de Aldana et al. 2013b). Changes in plant nutrient content might alter the quality of 

litter produced by senescent grass shoots, which is one of the main factors that control 

decomposition rates (Meier and Bowman 2008). Therefore, Epichloë endophytes might modify 

litter decomposition rates, and consequently nutrient cycling, by altering the quality of the 

litter produced by infected plants, and/or by changing the composition of invertebrate 

detritivores and microbial decomposers (Omacini et al. 2004; Franzluebbers and Stuedemann 

2005; Lemons et al. 2005). 

While research on the alkaloid-mediated antiherbivore resistance or drought 

performance of endophyte infected plants is abundant (Bush et al. 1997; Malinowski and 

Belesky 2000; Clay and Schardl 2002; Kuldau and Bacon 2008; Saikkonen et al. 2013), the 

effects of endophytes on plant nutrient content have been much less explored. Several studies 

have shown that endophytes modify the nutrient status of host plants like tall fescue (Festuca 

arundinacea = Schedonorus arundinaceus) (Lyons et al. 1990; Malinowski et al. 1998; 

Malinowski and Belesky 1999a; Rahman and Saiga 2005), Festuca rubra (Zabalgogeazcoa et al. 

2006; Vazquez de Aldana et al. 2013a), or Achnatherum sibiricum (Li et al. 2012). However, in 

spite of the economic importance of perennial ryegrass (Lolium perenne) as a forage crop, little 

is known about the effect of Epichloë endophytes on its nutrient content. To our knowledge, 

there is only one report about the effect of Epichloë infection on the content of several 
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nutrients in ryegrass (Ren et al. 2009). Other reports focus on single elements like nitrogen 

(Lewis et al. 1996), phosphorus (Ren et al. 2007), or heavy metals (Malinowski et al. 2004; 

Monnet et al. 2005; Ren et al. 2006). The effect of Epichloë endophytes on fiber content and 

digestibility of L. perenne has also received scarce attention (Oliveira et al. 2004). Furthermore, 

all of these studies were carried out with one or two cultivars of L. perenne and their 

corresponding Epichloë genotypes; therefore, very limited variability among plants and 

endophytes was included.  

Lolium perenne is one of the most important forage and turf grasses in the world. As a 

forage grass, it can produce good yields, has high digestibility, and withstands repeated 

defoliation. In addition, L. perenne can tolerate a broad range of environmental conditions, 

including widely fluctuating temperatures and soil moisture deficits. Its wide adaptability and 

good agronomic performance have contributed to its ecological success and worldwide spread 

(Peeters 2004). Perennial ryegrass is often infected by Epichloë endophytes (Hume and Sewell 

2014), and in natural populations phenotypic diversity is found among fungal isolates (Bony et 

al. 2001; Soto-Barajas et al. 2013). Some of these distinct Epichloë phenotypes correspond to 

particular rDNA nucleotide sequences, and might belong to distinct taxa (Soto-Barajas et al. 

2013). In this regard, it has been reported that L. perenne is a host of at least four taxonomic 

groups of endophytes that include Epichloë festucae var. lolii (=Neotyphodium lolii); the choke 

pathogen E. typhina, an asexual hybrid designated as LpTG-2, and an E. festucae-like 

endophyte (Schardl et al. 1994; Moon 1999). Given the phenotypic and possible species 

diversity of Epichloë endophytes found in wild populations of L. perenne (Moon 1999; Bony et 

al. 2001; Soto Barajas et al. 2013, Chapter I), our hypothesis was that the morphotype of 

Epichloë endophyte hosted might influence the nutrient acquisition from soil, and this could 

alter the nutrient content of ryegrass plants. The experimental methods used to detect the 

effects of Epichloë endophytes in plants are in most cases based in the use of one or a few 

plant cultivars or lines, each one having  E+ and a corresponding set of E- plants. Fungicides or 

other techniques such as heat can be used to eliminate the endophyte from some infected 

seeds (Zabalgogeazcoa et al. 2006; Cheplick et al. 2014) in order to obtain near isogenic E- 

material, or an E- plant can be artificially inoculated in order to use it as a source of E+ seed 

(Ravel et al. 1997a; Hahn et al. 2008). These approaches allow to detect effects of specific 

endophyte genotypes in particular plant backgrounds (i.e. cultivars), but might not be the best 

setting to detect strong endophyte effects that could be occurring over a wide set of plant and 

fungal genotypes.  

A field experiment was conducted with a set of perennial ryegrass plants naturally 

infected with different Epichloë endophytes and non-infected plants. These plants had been 

collected at six natural populations in different habitats. The aim of this chapter was to identify 

endophyte effects on growth, mineral and fiber contents in a genetically heterogeneous set of 

L. perenne plants and Epichloë endophytes. Specific questions were to determine whether 

Epichloë endophytes affect plant tissue chemistry independently of plant origin, and to 

determine whether diverse Epichloë endophytes have different effects on the tissue chemistry 

of their plant hosts. 

file:///E:/Documents/TO_DO/Draft_Thesis/Thesis_Manuscript05.docx%23Results
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III.3  MATERIALS AND METHODS  

I I I .3.1 Plant material  

In the spring of 2012, plants of L. perenne were collected at six locations in different 

habitats in western Spain (Table 8).  

Table 8 Characteristics of the locations where Lolium perenne plants were collected 

   Altitude Coordinates Precipitation Mean annual 

Location Habitat (masl) Latitude Longitude (mm/year) temperature (°C) 

Ciudad Rodrigo (CR) Riverbank 625 40°34’48”N 6°30’58”W 531 13.3 

La Vecilla (LVE) Rural path 879 42°42’20”N 5°23’2”W 556 11.2 

Los Valles (LVA) Dehesa grassland 813 40°56’20” N 6°7’36”W 531 12.1 

Porqueriza (POR) Dehesa grassland 807 40°58’18”N 5°57’24”W 531 13.3 

Tábara (TAB) Oak forest 766 41°50’15”N 5°58’40”W 379 12.3 

Valle Fuentes (VAF) Low woodland 1133 42°56’33”N 5°14’18"W 556 13.3 

These habitats were not agricultural, and clumps or individual plants of perennial 

ryegrass occurred interspersed with other plant species. At each location, about 50 plants 

were collected leaving a distance of at least 10 m between each pair of samples. In some 

locations, plants with symptoms of choke disease were sampled (Figure 21d).  

The plants were transported to the Institute of Natural Resources and Agrobiology in 

Salamanca (IRNASA-CSIC) and transplanted to 2 L pots containing a mixture of perlite and peat 

moss (1:1, v/v). The pots were kept outdoors in a wirehouse, watered regularly, and fertilized 

once a year with a liquid commercial fertilizer. 

In a previous work we reported that on average, 44% of the plants of Lolium perenne 

were infected by Epichloë endophytes in several Spanish natural populations, including some 

whose plants were used for this study (Chapter I, Table 2) (Soto-Barajas et al. 2013). The 

endophytes isolated from asymptomatic plants in that study were classified into three 

morphotypes based in morphological characters observed in potato dextrose agar cultures. 

The most common morphotype was M1, characterized by white cultures with strongly 

aggregated 'brain-like' mycelium, and the slowest growth rate of the three morphotypes 

(Figure 21a). Isolates of the M2 morphotype were the least abundant, having white, cottony 

aerial mycelium, and the fastest growth rate (Figure 21b). The M3 morphotype had tan, flat 

and smooth mycelium, and an intermediate growth rate (Figure 21c). Endophytes isolated 

from symptomatic plants with choke disease, caused by Epichloë typhina (Figure 21d) had M2 

morphology, and were designated as M2S. Furthermore, rDNA nucleotide sequences of M2 

and M2S morphotypes were identical to those of Epichloë typhina, while sequences of M1 and 

M3 morphotypes were identical to E. festucae sequences (Figure 11, (Soto-Barajas et al. 2013). 
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Figure 21 Cultures of the three morphotypes of Epichloë endophyte isolated from plants of Lolium perenne (a) M1 
morphotype, slow growth rate with ‘brain-like’ mycelium; (b) M2morphotype, faster growth rate with 
white cottony aerial mycelium; (c) M3 morphotype intermediate growth rate with tan, smooth and flat 
mycelium; (d) A stroma of Epichloë typhina in ryegrass, a typical symptom of choke disease 

I I I .3.2 Field experiment design 

A field experiment was carried out with a total of 194 plants of L. perenne obtained 

from the six locations described in Table 8; 97 plants were naturally infected with Epichloë 

(E+), and 97 were not (E-). For each E+ plant, the morphotype it hosted (M1, M2, M3 and M2S) 

was known, and both asymptomatic plants bearing M1, M2 and M3 Epichloë morphotypes, 

and symptomatic plants with choke disease (M2S) were considered together as ‘morphotype’ 

factor. Lolium perenne is a cross-pollinated species in which genetic diversity occurs even 

within commercial cultivars (Peeters 2004). For instance, McNeilly and Roose (1984) reported 

that 10-year-old pastures originally sown with two cultivars of L. perenne could contain 40 to 

50 different genotypes per 0.25 m2. Therefore, in this field experiment we could expect to 

have a very heterogeneous set of plant genotypes because the plants were collected from 

different locations and habitats in natural populations, where they occurred in sympatry with 

other plant species, and sampled individuals were spatially distanced. 

The experimental design was based on having the same number of E+ and E‒ plants 

from each location; however, the number of plants differed among locations because we used 

all E+ plants obtained at each location in order to include all the morphotype variability 

available in the experiment (Table 9).  
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Table 9 Number of Lolium perenne plants used in the experimental trial, and percentage distribution of infected 
plants according to the morphotype of the Epichloë endophyte at each sampling location.  

Plant origin n
¶
 

Epichloë morphotype
§
 

M1 M2 M3 M2S 

Percentage of plant (%) 

CR 26 15.3 7.6 46.1 30.7 

LVE 28 100 0.0 0.0 0.0 

LVA 40 45.0 15.0 5.0 35.0 

POR 24 41.6 16.6 25.0 16.6 

TAB 44 50.0 0.0 50.0 0.0 

VAF 32 68.7 6.2 25.0 0.0 

Total/mean= 194 53.6 7.2 25.7 13.4 

¶ 
n= number of plants per location. One half of the plants from each location were E+ and the other half were E-. 

§
The morphotypes were: M1= slow growth rate with ‘brain-like form’; M2= faster growing rate with cottony aerial 

mycelium; M3= intermediate growth rate with tan, smooth aerial mycelium; and with the choke disease M2S = M2 
from plants with stromata (see Figure 21). 

 

On October 2013, the ryegrass plants were transplanted in a randomized design, at the 

experimental farm Muñovela (Salamanca, Spain; 40°54'19" N, 5°46'28" W; 780 masl; annual 

precipitation 372 mm, and mean annual temperature 12.7 °C) in a clay eutric chromic cambisol 

(FAO/UNESCO 1998) with neutral pH on the surface, decreasing slightly with depth. This soil 

contains low concentrations of organic matter (1.26 %), total nitrogen (0.08 %), available 

phosphorus (16.6 mg kg−1), potassium (107 mg kg−1), and calcium (984 mg kg−1). Each plant was 

set at a distance of 50 cm from its neighbors. Plants were watered during their establishment 

in October but not thereafter. During the experiment, the plants were not fertilized and the 

plot was maintained free of weeds. 

On May 19 2014, the plants were harvested at the flowering stage, cutting them 5.0 

cm above the soil surface. Before harvesting, the number of tillers was counted in all plants, 

including those whose reproductive stems bore E. typhina stromata. All samples were dried at 

60 °C in a forced air oven during 48 hours and the dry matter yield was determined. 

I I I .3.3 Chemical analysis  

All ryegrass samples were ground using a hammer mill (Fritsch 15303) fitted with a 0.5 

mm screen. Each sample was analyzed for total N by digital colorimetry with a segmented flow 

system (AutoAnalyzer AA3, Bran Luebbe). For mineral content, plant samples were calcined 

(450 °C), for 8 hours, and ashes were dissolved in HCl:HNO3:H2O (1:1:8). The concentrations of 

P, K, Ca, Mg, S, Na, Mn, Zn, Cu, B, Mo and Co were determined by inductively coupled plasma 

atomic emission spectroscopy (ICP-OES, Varian 720-ES).  
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Neutral detergent fiber (NDF), acid detergent fiber (ADF), lignin and dry matter 

digestibility (DMD) were evaluated using the filter bag technique, with an automated fiber 

analyzer Ankom A2000, based on the analytical method of Goering and Van Soest (1970). 

 

I I I .3.4 Statistical analysis  

A two-way ANOVA was performed to determine the effect of Epichloë infection (E+ 

and E-) and plant origin (CR, LVA, LVE, POR, TAB and VAF) on growth and chemical composition 

of L. perenne. For this statistical analysis, plants with choke disease were not included because 

their scarce biomass production was visually evident, and these plants were found only in one 

half of the locations (Table 9). When a significant effect was detected, differences between 

pairs of means were assessed using the Bonferroni test, adequate for the unbalanced design. 

The effect of Epichloë morphotype on dry matter production and the number of tillers 

was assessed on asymptomatic infected plants hosting endophytes with the M1, M2 and M3 

morphotypes by means of one-way ANOVA. When a significant effect was detected, 

differences between pairs of means were assessed using the Bonferroni test.  

To evaluate the effect of each Epichloë morphotype on chemical composition of 

ryegrass, both asymptomatic plants (M1, M2, and M3) and plants with choke disease (M2S) 

were considered. When a significant effect was detected, differences between pairs of means 

were assessed using the Bonferroni test. SigmaPlot software version 13.0 (Systat Software, San 

Jose, CA, USA) was used for all the statistical analyses. 

III.4  RESULTS  

I I I .4.1 Plant biomass and number  of ti l lers  

The aboveground plant biomass, composed of leaves, stems and inflorescences, was 

measured at the flowering stage. The ANOVA did not detect a significant effect of endophyte 

infection on dry weight of ryegrass (P= 0.442) neither an interaction between endophyte and 

plant origin (P= 0.126). However, the location of origin of plants affected the dry matter yield 

(P<0.001). Plants from LVE, VAF and CR had the highest yield, and those from POR had the 

lowest dry weight (Figure 22).  
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Figure 22 Dry matter yield of L. perenne according to locations of plant origin. Bars are means + standard error. 
Different letters on the bars indicated significant differences (P< 0.05)  

 

The ANOVA detected a significant effect of the interaction between infection status 

and plant origin on the number of tillers (P=0.039). This effect was expressed only in plants 

from TAB, with a significantly higher tiller production in E- (124.8±13.6) than in E+ (63.5±11.6) 

plants; in the remaining populations there were no significant differences in tiller number 

between E+ and E- plants (Figure 23).  

 

 

Figure 23 Number of tillers per plant as affected by plant origin, and infection status: E+ = Epichloë-infected; E‒ = 
Non-infected plants. Bars are means + standard error. *Significant differences between E+ and E- 
(Infection status x Plant origin; P =0.039) 
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The effect of each endophyte morphotype of E+ asymptomatic plants on dry matter 

yield and tiller number was not significant (P=0.411 and P=0.626 respectively). Thus 

differences among plants infected with different endophyte morphothytes in dry matter 

production (M1=50.9±6.99 g plant-1; M2=49.8±14.92 g plant-1; M3=36.24±7.27 g plant-1) and 

number of tillers (M1=83±7.4; M2=88±20.6; M3=72± 9.7) were not statistically different. In 

plants with choke disease, the average dry matter production was 9.5±1.7 g plant-1 and the 

number of tillers was 22±10.4. 

I I I .4.2 Mineral content  

The two-way ANOVA indicated a significant effect of endophyte and plant origin on the 

concentration of several mineral elements, with a significant interaction between those factors 

only for Co (see Table 10). 

Table 10 Mineral contents of Lolium perenne plants as affected by endophyte status (E+ = infected; E‒ = non-
infected) and location of plant origin. The E+ sample set did not include plants with choke disease. Values 
are means ± standard error 

    Mineral content (g kg-1) 

    N P K Ca Mg S Na 

Endophyte E+ 13.46±0.24 2.70±0.05 10.37±0.18 2.34±0.06 1.06±0.02 1.62±0.05 0.40±0.03 

 
E‒ 13.45±0.23 2.99±0.05 10.39±0.17 2.51±0.05 1.05±0.01 1.83±0.05 0.48±0.03 

         
Plant origin CR 12.54±0.50 ab 2.51±0.11   a 9.52±0.38   a 2.27±0.13 ab 0.92±0.04   a 1.60±0.11 0.78±0.07   c 

 
LVA 13.27±0.37 ab 2.62±0.08   a 10.16±0.28   a 2.65±0.09 ab 1.09±0.03 ab 1.74±0.08 0.31±0.05 ab 

 
LVE 14.16±0.37 bc 3.20±0.08   b 11.65±0.28   b 2.48±0.09 ab 1.14±0.03   b 1.68±0.08 0.36±0.05 ab 

 
POR 13.51±0.47 ab 2.84±0.10 ab 10.04±0.36   a 2.41±0.12 ab 1.07±0.04 ab 1.79±0.10 0.52±0.07 bc 

 
TAB 15.25±0.34   c 3.06±0.07   b 11.00±0.26 ab 2.74±0.09   b 1.10±0.03 ab 1.86±0.07 0.42±0.05 ab 

 
VAF 11.98±0.34   a 2.84±0.07 ab 9.89±0.26   a 2.06±0.09   a 0.96±0.03   a 1.68±0.07 0.24±0.05   a 

P (ANOVA) 

        Endophyte(E) 

 

0.958 <0.001 0.937 0.048 0.952 0.005 0.132 

Plant origin (P) 

 

<0.001 <0.001 <0.001 <0.001 <0.001 0.340 <0.001 

E x P 
 

0.440 0.910 0.250 0.303 0.508 0.945 0.807 

    Mineral content (mg kg-1) 
 

    Mn Zn Cu B Mo Co 
 

Endophyte E+ 30.88±1.08 18.47±0.39 4.65±0.13 5.41±0.31 1.01±0.06 0.043±0.001 
 

 
E‒ 27.86±1.05 18.55±0.38 4.58±0.12 7.11±0.29 1.16±0.06 0.041±0.001 

 

         
Plant origin CR 27.83±2.29 16.76±0.83   a 4.20±0.26   a 5.72±0.64 1.03±0.14 0.033±0.003   a 

 

 
LVA 31.43±1.72 17.69±0.62 ab 4.46±0.19   a 6.27±0.47 0.96±0.10 0.042±0.002 ab 

 

 
LVE 30.35±1.72 19.00±0.62 ab 5.29±0.18   b 6.43±0.45 1.32±0.09 0.042±0.002 ab 

 

 
POR 28.11±2.12 19.78±0.76 ab 4.57±0.24 ab 6.28±0.59 1.18±0.12 0.042±0.002 ab 

 

 
TAB 32.36±1.55 19.83±0.56   b 4.70±0.17 ab 7.02±0.43 1.05±0.09 0.046±0.002    b 

 

 
VAF 26.24±1.57 17.46±0.56 ab 4.35±0.17   a 5.79±0.43 0.98±0.09 0.041±0.002 ab 

 
P (ANOVA) 

       
 

Endophyte(E) 

 

0.049 0.645 0.670 <0.001 0.094 0.975 
 

Plant origin (P) 

 

0.074 0.003 0.002 0.431 0.135 0.016 
 

E x P   0.891 0.269 0.163 0.651 0.438 0.024 

 In each column, values with different letters are statistically different at P<0.05 
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The concentrations of P, Ca, S, and B were significantly greater in E- than in E+ plants, 

and that of Mn was greater in E+ than in E-. The effect of plant origin was significant for the 

mineral content of nine elements (N, P, K, Ca, Mg, Na, Zn, Cu and Co), but not for S, Mn, B and 

Mo. In general, plants from LVE and TAB had the highest concentrations of minerals and those 

from CR and VAF the lowest (Table 10). Regarding the interaction between endophyte and 

plant origin on Co, its concentration in E- plants (0.414±0.036 g kg-1) was significantly greater 

than in E+ (0.251±0.038 g kg-1), but only in plants from CR, in the other locations differences 

between E+ and E- were not statistically significant. 

According to the one-way ANOVA with morphotype factor, asymptomatic plants 

infected with M1, M2 or M3 endophytes did not differ in their concentration of minerals 

(Table 11). On the other hand, plants with stromata (M2S) had significantly greater 

concentrations of N, K, Ca, Mg, S, Mn, Zn, Cu and B than those infected by asymptomatic 

endophytes (Table 11). The concentrations of Zn, Cu and B in plants with M3 were not 

statistically different from plants with M2S. 

 

Table 11 Mineral content in L. perenne plants infected by different Epichloë morphotypes Values are means ± 
standard error. 

Morphotype§ 
Mineral content (g kg-1) 

N P K Ca Mg S Na 

M1 13.59±0.36 a 2.79±0.08 10.64±0.31 a 2.41±0.10 a 1.04±0.04 a 1.70±0.07 a 0.362±0.049 

M2 13.07±0.78 a 2.56±0.09 10.16±0.25 a 2.18±0.09 a 0.97±0.04 a 1.45±0.05 a 0.387±0.113 

M3 14.09±0.50 a 2.75±0.08 10.29±0.25 a 2.44±0.13 a 1.05±0.04 a 1.60±0.06 a 0.406±0.072 

M2S 16.65±0.70 b 2.95±0.14 12.25±0.34 b 3.28±0.11 b 1.44±0.07 b 2.32±0.19 b 0.583±0.181 

        
P (ANOVA) 0.002 0.399 0.016 <0.001 <0.001 <0.001 0.388 

Morphotype§ 
Mineral content (mg kg-1) 

 
Mn Zn Cu B Mo Co 

 
M1 31.18±1.72 a 18.43±0.62   a 4.71±0.21   a 5.27±0.26   a 0.96±0.07 0.045±0.002  

 
M2 27.23±3.36 a 17.48±0.65   a 4.29±0.32   a 5.25±0.49   a 0.87±0.13 0.037±0.005  

 
M3 33.13±2.22 a 19.05±0.82 ab 4.67±0.30 ab 5.85±0.41 ab 1.21±0.14 0.042±0.002  

 
M2S 46.41±3.83 b 22.27±1.16   b 5.82±0.43   b 7.21±0.67   b 1.25±0.14 0.047±0.005  

 

        
P (ANOVA) <0.001 0.025 0.016 0.022 0.123 0.291 

 
P= significance level for one-way ANOVA. In each column, values with different letters are statistically different at 
P<0.05.  

§
M1= slow growth rate with ‘brain-like form’; M2= faster growing rate with cottony aerial mycelium; M3= 

intermediate growth rate with tan, smooth aerial mycelium; and in plants with choke disease M2S = M2 from plants 
with stromata (see Figure 21). 
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I I I .4.3 Fiber content and digestibil ity  

Results of the two-way ANOVA showed a significant effect of endophyte status and 

plant origin on neutral detergent fiber (NDF), lignin, and dry matter digestibility (DMD), and 

the interaction between both factors was not significant for any of these parameters (Table 

12). The E+ plants had lower NDF and lignin (P= 0.060), and higher DMD than E- plants. 

Differences in acid detergent fiber (ADF) between E+ and E- plants were not statistically 

significant. The effect of plant origin was significant for NDF, lignin and DMD contents. Plants 

from CR had the lowest NDF and lignin and the greatest DMD; on the contrary, samples from 

TAB had the highest NDF and lignin, and the lowest DMD. Plants from LVA, LVE, POR and VAF 

had similar percentages of NDF, lignin and DMD, and they were intermediate between those 

found in plants from CR and TAB.  

 

Table 12 Mean contents ± standard error of acid detergent fiber (ADF), neutral detergent fiber (NDF), lignin, and dry 
matter digestibility (DMD) of L. perenne plants as affected by endophyte status (E+ = infected; E‒ = non-
infected) and location of plant origin. The E+ sample set did not include plants with stromata. 

    
ADF NDF Lignin DMD 

Concentration (%) 

Endophyte E+ 28.05±0.24 48.30±0.35 5.61±0.14 59.73±0.36 

 
E‒ 27.67±0.23 49.46±0.33 6.02±0.14 57.67±0.35 

      
Plant origin CR 27.06±0.51 47.17±0.74   a 5.53±0.31 ab 59.89±0.77   b 

 
LVA 27.26±0.38 48.62±0.55 ab 5.68±0.23 ab 58.83±0.57 ab 

 
LVE 28.02±0.38 49.66±0.55 ab 6.20±0.22 ab 57.47±0.54 ab 

 
POR 28.40±0.47 49.66±0.68 ab 5.47±0.29   a 59.65±0.71 ab 

 
TAB 28.44±0.35 49.86±0.50   b 6.46±0.21   b 56.71±0.52   a 

 
VAF 27.95±0.35 48.33±0.50 ab 5.52±0.21 ab 59.83±0.52 ab 

      
P (ANOVA) Endophyte (E) 0.266 0.019 0.060 <0.001 

 
Plant origin (P) 0.115 0.022 0.008 <0.001 

  E x P 0.231 0.501 0.663 0.776 

P= significance level for one-way ANOVA.  In each column, values with different letters are statistically different at 
P<0.05. 

 

Considering the Epichloë morphotypes evaluated, a significant effect was detected in 

ADF and NDF, but plants infected with asymptomatic endophytes (M1, M2 and M3) did not 

differ in these parameters (Table 13). Plants with choke disease (M2S morphotype) had lower 

ADF and NDF contents than asymptomatic E+ plants. 
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Table 13 Mean contents ± standard error of acid detergent fiber (ADF), neutral detergent fiber (NDF), lignin and dry 
matter digestibility (DMD) of L. perenne plants infected with different Epichloë morphotypes. 

Epichloë 
morphotype

¶
 

ADF NDF Lignin DMD 

Concentration (%) 

M1 28.18±0.29 b 48.46±0.41 b 5.47±0.25 58.95±1.00 

M2 28.25±0.69 b 49.87±1.21 b 5.11±0.23 60.25±1.02  

M3 27.52±0.55 b 47.24±0.86 b 5.46±0.25 60.48±0.67  

M2S 21.72±0.50 a 37.89±0.85 a 5.87±0.38 61.09±0.75 

     

P (ANOVA) <0.001 <0.001 0.302 0.079 

¶
M1= slow growth rate with ‘brain-like form’; M2= faster growing rate with cottony aerial mycelium; M3= 

intermediate growth rate with tan, smooth aerial mycelium; and with the choke disease M2S = M2 from plants with 
stromata (see Figure 21).In each column, values with different letters are statistically different at P<0.05. 

 

III.5  D ISCUSSION  

In spite of the potentially large plant variability included in our experiment, with plants 

from six wild populations, we detected a significant effect of Epichloë endophytes on the 

concentration of five mineral elements, fibers and DMD in shoots, and it was independent of 

the plant origin. This result indicates that Epichloë can alter the nutrient balance in perennial 

ryegrass by decreasing the concentrations of P, Ca, S, B, NDF and lignin, and increasing Mn 

content and DMD in comparison to E- plants. This occurred, even though dry matter yield was 

not significantly altered.  

Under our experimental conditions, infected plants had lower P, Ca, S and B content 

than those not infected. Ren et al. (2009) also reported lower B content in E+ than in E- shoots 

of one ryegrass cultivar, with no significant effects on the concentration of the other nine 

elements that they analyzed (P, K, Ca, Mg, Na, Mn, Fe, Zn, Cu), and Ren et al. (2007) found a 

slight increase in P content in sheaths of E- ryegrass plants growing with a low P supply, as 

compared to E+. In agreement with our results, an absence of endophyte effect for total N 

(Lewis et al. 1996) and Zn concentration (Monnet et al. 2005) was reported when a single 

genotype of ryegrass was evaluated. In contrast, our results showed an endophyte-mediated 

increase in Mn, an essential element for some lignin-degrading enzymes such as Mn 

peroxidases (Fioretto et al. 2005). Increased nutrient content due to endophyte was also 

observed for Zn and Mo in perennial ryegrass (Malinowski et al. 2004), and for P, Ca or Zn in 

other grasses like Festuca rubra (Zabalgogeazcoa et al. 2006; Vazquez de Aldana et al. 2013a) 

and tall fescue (Malinowski et al. 1998; 2000). 

Nutrient uptake in plants through the root surface is mainly meditated by three 

mechanisms: mass flow, diffusion, and root interception (Jungk 2002). Mass flow occurs when 

nutrients are transported to the root surface by the movement of water in the soil (i.e. 

percolation, transpiration, or evaporation). Any change produced by Epichloë endophytes in 



73 

leaf area or tiller structure in their grass host could affect the evapotranspiration rate and 

consequently the nutrient acquisition. In plants with choke disease (MS2), high evaporation 

from the surface of stromata maximizes the flow of nutrients needed by the fungus for 

reproduction (White et al. 1997), and those elements which move by mass flow (N, Ca, Mg, S, 

Mn and Mo) were found in higher concentrations. In contrast, in asymptomatic plants (hosting 

M1, M2 and M3 Epichloë endophytes) concentrations of these elements were almost identical.  

The movement of nutrients by diffusion in soils implicates concentration gradients. 

This kind of flow is particularly susceptible to any chemical change in the rhizosphere and is 

responsible for the acquisition of P, K, Fe and Zn. For instance, release of root exudates 

(phenolic compounds) in E+ tall fescue was linked to an increase of P uptake in aboveground 

tissues (Malinowski et al. 1998). In perennial ryegrass, Ren et al. (2007) found a greater 

content of total phenolic compounds in roots of E+ plants, but P concentration was superior in 

sheaths of E- plants than in E+, which is in accordance with our results. This suggests that root 

exudates of perennial ryegrass may be of different nature than those of tall fescue, and thus 

mechanisms of nutrient acquisition could be different in both grass species, as suggested 

(Malinowski et al. 2004).  

The third possible plant mechanism to acquire nutrients from soil solution is root 

interception. It occurs when a nutrient comes into physical contact with the root surface, and 

is responsible for a considerable amount of Ca uptake, and to lesser extent Mg, Zn and Mn 

(Jungk 2002). The plant-endophyte interaction can alter rhizospheric conditions that affect the 

density and activity of different soil organisms, like arbuscular mycorrhizal fungi (AMF) which 

in turn can enhance root interception. Thus, Epichloë infected plants have shown a reduction 

in colonization and sporulation of mycorrhizae, as compared to plants without Epichloë  (Chu-

Chou et al. 1992; Müller 2003; Omacini et al. 2004; Antunes et al. 2008; Liu et al. 2011). On the 

contrary, a positive association between Epichloë endophytes and AMF has been found in wild 

native grasses (Novas et al. 2005; 2012; Vignale et al. 2015). Although we did not analyze AMF 

in our ryegrass plants, a reduction in AMF in E+ plants could explain the lower P content found 

in plant tissue, but not the greater concentration of Mn, an element immobile in soil which can 

be mobilized by mycorrhizas. This suggests that other root endophytic and epiphytic species 

than AMF might be linked to nutrient absorption processes in plant roots (Sánchez Márquez et 

al. 2010).  

Effects of endophytes on plant fiber contents have received scarce attention. We 

found that the presence of Epichloë in ryegrass plants decreased NDF and lignin and increased 

DMD, with independence of plant origin. The NDF measures all the forage fiber (hemicellulose, 

cellulose and lignin), and a high NDF content decreases forage quality and intake by ruminants. 

Our results showed that Epichloë endophytes boost the digestibility of L. perenne, and this 

cannot be only attributed to the observed decrease in the lignin fraction. A similar endophyte 

effect on NDF and DMD was reported for ryegrass (Oliveira et al. 2004; Rasmussen et al. 2008) 

and red fescue (Zabalgogeazcoa et al. 2006). In contrast, most studies done with tall fescue 

and Epichloë coenophiala (=Neotyphodium coenophialum) have shown no effect of endophyte 
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infection in the concentration of NDF, ADF, lignin, or digestibility (Fritz and Collins 1991; 

Humphreys et al. 2002; Johnson et al. 2012). The positive effect of Epichloë on digestibility of L. 

perenne could be explained, according to Rasmussen et al. (2012), because the intercellular 

endophytic hyphae promotes a carbohydrate hydrolysis to use cell wall components as a 

supplementary source of C, and this process might reduce the content of hemicellulose and 

NDF in plant.  

Changes induced by Epichloë endophytes on fiber and mineral contents of L. perenne 

maintained in senescent shoots might alter the quality of litter and consequently its 

decomposition rate as well as recycling of nutrients. The degradation of cellulose and lignin, 

the most abundant components of litter, is slower than that of other plant components, thus, 

the lower lignin content of E+ ryegrass plants would imply faster litter decomposition 

compared to E- plants. On the other hand, litter Ca has been related to increased microbial 

activity (Berg et al. 2003), and the lower concentration of this element in E+ plants could imply 

slower decomposition rates. Other aspects of litter quality also affect decomposition 

processes. The N:P ratio of litter contributes to determine the relative importance of bacteria 

and fungi in the decomposition process, with low N:P ratios promoting bacteria and high 

values fungi (Güsewell and Gessner 2009). Thus, differences in P content due to endophyte 

could affect the structure of the mycobiota involved in decomposition. Experiments of litter 

decomposition with tall fescue and Lolium multiflorum have shown that decomposition was 

slower for endophyte-infected litter, related to the fact that endophyte infection tended to 

reduce the N content of litter (Omacini et al. 2004), and to changes in the composition of 

associated decomposers (Lemons et al. 2005). Thus, differences in litter quality among species 

could imply differences in decomposition rates (Meier and Bowman 2008).  

Due to the variability of the plant material and associated Epichloë endophytes used in 

this study, we expected to find differences in the chemical composition of plant tissues among 

plants infected by different fungal morphotypes. However, we did not find differences among 

asymptomatic Epichloë endophytes (M1, M2 and M3) in any parameter related to plant 

growth or chemical composition. Instead, significant differences in nutrient content were 

detected between asymptomatic and choked plants. In plants infected by the choke pathogen 

Epichloë typhina, the development of reproductive stems is arrested by fungal stromata. 

Flowering stems have greater fiber and lignin and lower mineral contents than leaves, thus, 

differences in the leaf:stem ratio might partly explain why plants with choke disease had the 

lowest NDF, and the greatest DMD and mineral content. In addition, an improvement in 

photosynthesis efficiency in plants infected with the choke pathogen E. typhina was observed 

in Dactylis glomerata (Rozpadek et al. 2015), and this could imply an alteration in the 

assimilation of nutrients. 

The biomass production of L. perenne was not affected by the endophyte infection 

status (E+, E-) or by different Epichloë morphotypes (M1, M2, M3), but a significant variation in 

yield occurred among plants from different origin. Our results agree with those of other 

studies showing no significant endophyte effect on dry matter yield of ryegrass (Lewis et al. 
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1996; Barker et al. 1997; Oliveira et al. 2004). Other studies reported an interactive effect 

between endophyte and plant genotype affecting plant production, both in greenhouse and 

field assays (Cheplick and Cho 2003; Hesse et al. 2004; Kane 2011). In our field trial, a 

significant interaction between infection and plant origin on the number of tillers produced 

was observed, but it was limited to plants from TAB, with more tillers in E- than in E+ plants. 

Similarly, among 13 genotypes of ryegrass, a negative effect of Epichloë endophytes on tillering 

under hydric stress conditions was reported by Cheplick et al. (2000), although differences 

were not detected under regular watering. On the contrary, a positive tiller response to 

Epichloë infection has been reported in some genotypes of L. perenne growing under hydric 

stress (Ravel et al. 1997a). 

III.6  CONCLUSIONS  

In this chapter a heterogeneous set of plants of L. perenne and their associated 

Epichloë endophytes was used to study the effect of endophyte infection on host plant growth 

and nutrient content. The biomass production was affected by plant origin but not by 

endophyte infection. In contrast, a strong endophyte effect, independent of plant origin, was 

detected in mineral content (P, S, Mn and B) and fiber contents (NDF, lignin and DMD). The 

results suggest that Epichloë might alter belowground processes that influence nutrient 

acquisition in the host plant, although the mechanism is not clear and several processes might 

be involved. In spite of the variability of Epichloë endophytes infecting ryegrass plants, plant 

growth or chemical plant tissue did not vary among different Epichloë morphotypes. However, 

plants infected by the choke pathogen, Epichloë typhina, showed significant changes in 

nutrient content and fiber composition with respect to those infected by asymptomatic 

Epichloë endophytes.  
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IV. INOCULATION OF Epichloë  ENDOPHYTES IN 
COMMERCIAL CULTIVARS OF Lolium perenne  

IV.1  ABSTRACT  

Endophytic fungi of the genus Epichloë confer adaptive features beneficial to the 

growth and persistence of their host grasses, but also may be deleterious to the health of 

animals that graze them. Many of these traits can be incorporate into new host grasses by 

artificial inoculation of fungal endophytes. In this chapter, the evaluation of two methods of 

artificial inoculation of plants with Epichloë endophytes is described. The slitting method and a 

new procedure of inoculation in the culture medium with colonies of Epichloë were used to 

infect two cultivars of perennial ryegrass (‘Barplus’ and ‘Romance’) with four morphytes of 

Epichloë endophytes (M1, M2, M2S and M3) isolated from wild plants of ryegrass collected at 

several locations. The rate of infected plants achieved was higher when inoculation was 

through the culture medium (12.9%) than with the slitting method (0.5%). Independently of 

the method of inoculation or cultivar, the most effective inocula were endophytes with the M2 

and M2 morphotypes; whereas with the M1 or M3 morphotypes the percentage of 

successfully inoculated plants was lower than reported elsewhere. 

IV.2  INTRODUCTION  

The symbiotic relationship of endophytic fungi of the genus Epichloë (Fam. 

Clavicipitaceae) with grasses of the Pooideae subfamily have gained relevance since Bacon et 

al. (1977) reported the connection between Epichloë-infected tall fescue pastures and fescue 

toxicosis in cattle. Soon after this, a similar link of Epichloë-infected perennial ryegrass 

pastures with ryegrass staggers in sheep was found (Fletcher and Harvey 1981). On the other 

hand, many researches have reported that the presence of Epichloë endophytes improved pest 

and/or drought resistance in their grass host (Funk 1983; Latch et al. 1985; Rowan and Gaynor 

1986; Arachevaleta et al. 1989; Siegel 1993).  

Considering this dual effect of the associations between Epichloë fungi with many 

agronomically important grasses, a primary aim of endophyte research and goal of much 

interest to worldwide grass seed companies has been the conjunction of a match with suitable 

characteristics. Seeds infected with no harmful Epichloë endophytes are often desired by 

farmers to prevent the detrimental effects that common toxic endophytes can have on 

livestock and/or to increase the performance of the grasses that will be difficult to achieve in 

no-infected grasses (Siegel 1993). 

The oldest records about infection of a grass after inoculation with endophytes were 

made several decades ago. Sampson (1937) obtained endophyte-infected plants after 

inoculation of Lolium perenne seedlings with an unnamed endophyte, and Western and Cavett 

(1959) infected Dactylis glomerata with spores of Epichloë typhina. 



77 

Currently, artificial infection of grasses with Epichloë endophytes has been achieved by 

inoculating seedlings (Latch and Christensen 1985; Leuchtmann and Clay 1993; Christensen 

1995), callus cultures (Johnson et al. 1986; Kearney et al. 1991) or plantlets derived from 

meristems (O'Sullivan and Latch 1993). The predominant method involves inserting mycelium 

from pure cultures into the meristematic region at the junction of the mesocotyl and 

coleoptile of young seedlings, either into slits cut with a scalpel or by injection (Latch and 

Christensen 1985; Koga et al. 1993; Leuchtmann and Clay 1993). These techniques are slow, 

laborious and have a low success rate of infected seedlings (lower than 13%). The inoculation 

method by means of a callus culture, developed by Johnson et al. (1986), achieved a higher 

endophyte infection success rate (17%), but is very time consuming taking around 30 weeks to 

produce a small seedling.  

Due to the difficulties that involve the use of these inoculation techniques, there have 

been attempts to develop new protocols to improve inoculation efficiency, and to optimize the 

time invested. For example, floret inoculation has proven to be a successful method in wheat 

with Fusarium graminearum (Engle et al. 2003), but it was not a feasible method for creating 

infections of grass cultivars with novel strains of Epichloë endophytes (Gillanders 2007). For 

this reason, the slitting technique had remained as the most used method in developing 

Epichloë-grass associations, and it has allowed most of the studies about the effects of the 

endophytes on their host in different environments (Morse et al. 2007; Jia et al. 2016). 

Once a new synthetic infection is released, there are other factors that also influence 

the effect of the endophyte on the host grass, and the association must be carefully followed 

up (do Valle Ribeiro 1993; Gillanders 2007) because evidence suggests that the strength and 

direction of Epichloë endophyte interactions with new host grasses are highly variable (Latch 

and Christensen 1985; Meijer and Leuchtmann 2000; Saikkonen et al. 2006; Jia et al. 2016). 

Three sources are the main factors that drive the outcomes of the Epichloë-grass interaction: 

(i) endophyte strain or species, (ii) host plant genotype, and (iii) the local abiotic (e.g., soil 

nutrients and moisture) and biotic (e.g., the presence of herbivores) environments (Jia et al. 

2016).  

Therefore it is of major relevance to evaluate how endophytes behave on host grasses 

with different genetic background and under several environmental conditions before the 

adoption of any endophyte-grass combination is released for commercial purposes. As a first 

step for further investigation on the role of Epichloë endophytes on the performance of Lolium 

perenne, the aim of this chapter was to evaluate the effectiveness of two techniques of 

inoculation: (i) the slitting method and (ii) the infection in the culture medium with colonies of 

Epichloë. 

 

 

 



78 

IV.3  MATERIALS AND METHODS  

IV.3.1  Plant material  

The plants used for inoculation were two commercial cultivars of endophyte free 

ryegrass: ‘Barplus’, used for forage production, and ‘Romance’, a turfgrass. Seeds of these 

cultivars were donated by the Barenbrug seed company, NL. For all inoculation experiments, 

the lemma and palea were removed and then seeds were surface-sterilized, soaking them in a 

sodium hypochlorite solution (1% of active chlorine) for 20 min, and rinsed afterwards in 

sterile water.  

 

IV.3.2  Epichloë  inocula  

The Epichloë endophytes used as inoculum were isolated from Lolium perenne plants 

of wild origin collected at seven different locations whit diverse environmental conditions 

(Chapter I, Table 8). These Epichloë strains were morphologically and genetically characterized 

following the methods detailed in the Chapter I. 

Eighteen different Epichloë strains were selected for inoculations, trying to have a 

representation of the four morphotypes described in Chapter I (Figure 6): the asymptomatic 

M1, M2 and M3, and the stroma-producing M2S endophytes (Table 14). 

 

Table 14 Epichloë endophytes isolated of Lolium perenne plants used in the inoculation trials. 

 MORPHOTYPE
¶
 

 M1 M2 M2S M3 

 LVE11 LVA08 LVA04 CR14 

 LVE16 LVA32 LVA17 CR19 

 LVE25 POR36 MON06 TAB09 

INOCULUM
§
 LVE29 

 
MON07 TAB42 

 TAB21 
   

 VAF13 
   

 VAF20 
   

¶
M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 morphotype, faster growth rate with white 

cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-producing ; M3 morphotype: intermediate 
growth rate with tan, smooth and flat mycelium (Figure 6). 

§
Fugal colonies marked in bold letters were not used for 

inoculation through the culture medium. 
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IV.3.3  Techniques of Inoculation  

IV.3.3.1  Slitting method 

The first inoculation technique evaluated was the slitting method, according to the 

procedure described by Latch and Christensen (1985). This method consists of making a 

longitudinal slit of about 3 mm with a scalpel at the junction of the mesocotyl and radicle of 

the ryegrass seedling, and pushing a piece of mycelium of the selected Epichloë endophyte 

inside the wound. The procedure was done using a microscope (Leica Microsystems) at 20X 

magnification.  

For this trial, the seeds of ryegrass were previously germinated in Petri dishes with 

water agar (10 seeds per dish) by incubating them for one week in a growth chamber (Sanyo 

MLR-351H) (25 °C, 12h photoperiod, 60% relative humidity), until the inoculation. The M1 and 

M3 strains used as inoculum were cultured for two weeks in potato dextrose agar (PDA), and 

the M2 and M2S morphotypes for one week, because the differences on their growth rate 

(Chapter I). Fresh fungal mycelum from several PDA dishes of each of the 18 strains (Table 14) 

were inoculated into approximately 40 seedlings of each ryegrass cultivar (‘Barplus’ and 

‘Romance’). Immediately after inoculation, the plants were placed in new Petri dishes with 

water agar, and kept in the growth chamber for two weeks. After that period the inoculated 

seedlings were transplanted to a seedbed (5x5x15 cm) with a sterilized potting mix of 

perlite:peat moss (1:1, v/v).  

 

IV.3.3.2  Inoculation in culture medium with colonies of Epichloë   

To evaluate the effectiveness of a new inoculation procedure in culture medium with 

colonies of Epichloë, sterilized ryegrass seeds were placed on growing colonies of Epichloë 

fungi. For this procedure, the 12 Epichloë strains indicated in Table 14 were used as inoculum, 

and they were grown in Petri dishes with a culture medium composed of PDA and Murasige-

Skoog solution. This solution was included in the culture media as a nutrient sink for the 

ryegrass seedling, because of the long incubation period in the growth chamber. Inocula with 

M1 and M3 morphotypes were cultured for two weeks, and endophyte with M2 and M2S 

morphotypes for one week. Twenty ryegrass seeds of each cultivar (‘Barplus’ and ‘Romance’) 

were placed above each of the fungal cultures (Figure 24a). The Petri dishes with the ryegrass 

seeds were kept in the growth chamber, and during this time any contamination of the culture 

medium was removed. After two weeks 10 seedlings were randomly selected from each Petri 

dish, and transplanted to seedbeds (Figure 24b). 
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Figure 24 Inoculation of perennial ryegrass seedlings in the culture medium with colonies of Epichloë using a strain 
of the M2 morphotype as inonculum: (a) First day of the trial, (b) seedlings before transplanting, two 
weeks later. 

 

IV.3.4  Confirmation of the Epichloë  Infection  

Three months after the inoculation, the presence of Epichloë endophytes was verified 

in all the surviving inoculated ryegrass plants (n= 1340). The diagnostic was made by isolation 

of the endophyte after placing surface-disinfected fragments of leaf sheath in PDA. 

Endophytes identified as Epichloë were confirmed by polymerase chain reaction (PCR) 

amplification and sequencing of gene segments containing the internal transcribed spacers 

(ITS4 and ITS5) (White et al. 1990) and a 5’ region of the β-tubulin gene (tub2) using the 

primers tub2-exon1d-1 and tub2-exon4u-2 (Moon et al. 2002), and comparing them with those 

of the original inoculum (following the same protocols described in Chapter I).  

The percentage of successful inoculations was calculated on basis of the number of 

plants examined and not in the number of plants inoculated, because the death of some 

seedlings before transplantation or poor vegetative development not enough to diagnose 

them. 

All plants diagnosed as Epichloë-infected were transferred into individual 2 l pots with 

a perlite-peat moss (1:1, v/v) potting mix and maintained outdoors in a wirehouse. The 

inoculated plants which were not infected were kept as control treatment in further 

experiments (alkaloid concentration, Chapter II) because they underwent the same 

wounding/handling and transplantation as the successfully inoculated plants. 
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IV.4  RESULTS  

IV.4.1  Slitting method 

The number of ryegrass plants diagnosed as successfully infected with Epichloë 

endophytes using the slitting method was only six, which represents a 0.5% of the 1130 

analyzed plants. This result was really frustrating. Two ‘Barplus’ plants were diagnosed as 

infected plants and four of the infected plants belonged to the cv. ‘Romance’ (Table 15).  

Table 15 Number of ryegrass plants analyzed and infected with Epichloë endophytes using the slitting method of 
inoculation. 

Morphotype
¶

 Inoculum 
Barplus   Romance   Total 

Analyzed (n) Infected (%)   Analyzed (n) Infected (%)   Analyzed (n) Infected (%) 

M1 

LVE11 46 0.0 
 

35 5.7 
 

18 0.0 

LVE16 30 0.0 
 

31 0.0 
 

61 0.0 

LVE25 24 0.0 
 

24 0.0 
 

48 0.0 

LVE29 25 0.0 
 

29 0.0 
 

54 0.0 

TAB21 46 0.0 
 

§NA §NA 
 

46 0.0 

VAF13 26 0.0 
 

28 0.0 
 

54 0.0 

VAF20 42 0.0 
 

32 0.0 
 

74 0.0 

Total 239 0.0 
 

179 1.1 
 

418 0.5 

          

M2 

LVA08 23 4.3 
 

39 0.0 
 

62 1.6 

LVA32 32 3.1 
 

28 0.0 
 

60 1.7 

POR36 30 0.0 
 

33 0.0 
 

63 0.0 

Total 85 2.4 
 

100 0.0 
 

185 1.1 

          

M2S 

LVA04 37 0.0 
 

36 0.0 
 

73 0.0 

LVA17 37 0.0 
 

27 3.7 
 

64 1.6 

MON06 35 0.0 
 

37 2.7 
 

72 1.4 

MON07 26 0.0 
 

34 0.0 
 

60 0.0 

Total 135 0.0 
 

134 1.5 
 

269 0.7 

          

M3 

CR14 15 0.0 
 

17 0.0 
 

32 0.0 

CR19 38 0.0 
 

33 0.0 
 

71 0.0 

TAB09 51 0.0 
 

30 0.0 
 

81 0.0 

TAB42 38 0.0 
 

36 0.0 
 

74 0.0 

Total 142 0.0 
 

116 0.0 
 

258 0.0 

                  

Total (n) 
mean (%) 

601 0.3 
 

529 0.8 
 

1130 0.5 

¶
M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 morphotype, faster growth rate with white 

cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-producing ; M3 morphotype: intermediate 

growth rate with tan, smooth and flat mycelium (Figure 6).
§
 NA= No analyzed 

The rate of successful infection with the M1 morphotype was of 0.5%, being only 

among the cv. ‘Romance’ the infected plants with this endophyte. The M2 morphotype was 

effective in the inoculation of 2.4% of the ‘Barplus’ plants, and no infected plants were 

observed with the cv. ‘Romance’. Inoculation with the M2S morphotype was effective in 0.7% 

of plants from the cv. ‘Romance’ and these type of fungi were not successfully inoculated in 

‘Romance’ ryegrass. In this trial, the less effective fungi for inoculation were the M3 

morphotype, none of the plants of any of the two cultivars evaluated were infected (Table 15).  
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IV.4.2  Inoculation in the culture medium with colonies of Epichloë  

The inoculation in the culture medium with colonies of Epichloë was notoriously more 

effective than the slitting method. On average 12.9% of the analyzed plants were successfully 

infected with Epichloë endophytes. Fifteen of the 112 of the diagnosed ‘Barplus’ plants (13.4%) 

and 12 of the ‘Romance’ ryegrass (12.2%) were successfully inoculated with Epichloë (Table 

16). 

Table 16 Number of ryegrass plants analyzed and infected with Epichloë endophytes using the inoculation in culture 
medium method. 

Morphotype
¶

 Inoculum 
Barplus   Romance   Total 

Analyzed (n) Infected (%)   Analyzed (n) Infected (%)   Analyzed (n) Infected (%) 

M1 

LVE11 10 0.0   8 0.0 
 

18 0.0 

LVE29 10 0.0 
 

10 0.0 
 

20 0.0 

VAF20 8 0.0 
 

9 0.0 
 

17 0.0 

 
Total 28 0.0 

 
27 0.0 

 
55 0.0 

          

M2 

LVA08 9 0.0 
 

9 44.4 
 

18 22.2 

LVA32 10 60.0 
 

9 22.2 
 

19 42.1 

POR36 10 0.0 
 

5 0.0 
 

15 0.0 

 
Total 29 20.7 

 
23 26.1 

 
52 23.1 

          

M2S 

LVA04 9 11.1 
 

7 42.9 
 

16 25.0 

LVA17 10 0.0 
 

8 25.0 
 

18 11.1 

MON06 9 0.0 
 

10 10.0 
 

19 5.3 

MON07 9 77.8 
 

5 0.0 
 

14 50.0 

 
Total 37 21.6 

 
30 20.0 

 
67 20.9 

          

M3 
CR14 8 12.5 

 
8 0.0 

 
16 6.3 

CR19 10 0.0 
 

10 0.0 
 

20 0.0 

 
Total 18 5.6 

 
18 0.0 

 
36 2.8 

  
        

Total (n) 
mean (%)  

112 13.4   98 12.2   210 12.9 

¶
M1 morphotype, slow growth rate with ”brain-like” mycelium; M2 morphotype, faster growth rate with white 

cottony aerial mycelium; M2S morphotype: similar to M2 but stroma-producing ; M3 morphotype: intermediate 

growth rate with tan, smooth and flat mycelium (Figure 6).
§
 NA= No analyzed 

 

The M1 morphotype was not successfully inoculated in any of the two cultivars of 

ryegrass assayed. Fungi with the M2 morphotype infected 20.7% of the ‘Barplus’ and 26.1% of 

the ‘Romance’ plants. The M2S morphotype infected 21.6% of the inoculated ‘Barplus’ grasses 

and 20.9%  of the ‘Romance’ plants. Infected plants with the M3 morphotype were found in 

5.3% and 2.8% of the cv. ‘Barplus’ and cv. ‘Romance’ plants respectively (Table 16).  
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IV.5  CONCLUSIONS  

Inoculation of commercial cultivars of Lolium perenne with Epichloë endophytes was 

more effective in culture medium than using the slitting method. Particularly for M2 and M2S, 

the procedure using the culture medium was very effective. For the M1 and M3 morphotypes, 

the rate of successful infection was similar for both methods of inoculation, and it was lower 

than that reported by other researchers using strains of E. fesctucae var. lolii.  

Herein it is the first time in which successful infection of grasses with Epichloë 

endophytes is reported by using inoculation in culture medium with colonies of Epichloë. This 

method may work with same high infection rates as the reported herein for other inoculation 

trails involving strains with similar characteristics to the M2 morphotype. 
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V. NEAR INFRARED SPECTROSCOPY TO DETERMINE THE 
PRESENCE OF Epichloë  ENDOPHYTES AND THEIR 
ASSOCIATED ALKALOIDS IN Lolium perenne 

 

V.1  ABSTRACT  

Near-infrared spectroscopy (NIRS) has been widely used in quality control, particularly 

in the forage industry, because it is faster, cleaner and less expensive than conventional 

chemical procedures. In Lolium perenne, one of the most important forage grasses, NIRS has 

been applied for the determination of nutritional parameters. The presence of Epichloë fungi is 

known to alter the nutritive quality of its host plant by means of the production of fungal 

alkaloids. This chapter focuses in the use of NIRS for the identification of ryegrass infected with 

Epichloë endophytes, and the detection and quantification of the alkaloids peramine, lolitrem 

B and ergovaline.  

The plant material consisted of 222 perennial ryegrass plants, 194 of which were of 

wild origin and 28 belonged to two commercial cultivars. All the spectra of the grass samples 

were classified according to the plant condition, not infected or infected with Epichloë 

endophytes (E-, E+); the morphotype of the Epichloë endophyte hosted (M1, M3 or M3); and 

the presence or absence of the alkaloids peramine (PER-, PER+), lolitrem B (LTM-, LTM+) and 

ergovaline (ERG-, ERG+). For discriminant analysis, the algorithm X Residuals was applied, and 

for quantitative analysis, a modified partial least squares (MPLS) algorithm was used.  

The best discriminant equation for detection of Epichloë using the NIR spectra 

identified 93.3% of E+ plants. The identification of the Epichloë morphotypes was correct for 

92.9% of M1 morphotype samples and 100% of M2 morphotypes. However, all plants 

harboring M3 endophytes were wrongly classified as hosting M1 morphotypes. Detection of 

alkaloids was correct for 94.4% of PER+ plants; 87.5% of LTM+ and, 92.9% of ERG+ plants. The 

quantitative NIR equation had coefficient of correlation (RSQ) of 0.93, 0.41 and 0.76 

respectively, for concentration of peramine, ergovaline and lolitrem B. These results show that 

NIR spectroscopy is a suitable tool for screening studies related to the direct detection of some 

anti-quality properties of samples of ryegrass, such as detection and identification of Epichloë 

endophytes, and the presence and quantification of alkaloids. 
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V.2  INTRODUCTION  

Near infrared spectroscopy (NIRS) is a non-destructive technique with a widespread 

application to food, agricultural and industrial research of various plant products, including the 

agronomic selection of forages for improved quality (Corson et al. 1999; González-Martín et al. 

2006; González-Martín et al. 2007). NIRS is an analytical technique that predicts the chemical 

composition of material based on the interaction between the surface of the sample and the 

incident polychromatic light over a spectral wavelength ranging from 1100 to 2500 nm (near 

infrared range) (Figure 25).  

 

Figure 25 Representation of the effect of diffuse reflectance used in near infrared spectroscopy. 

The sample absorbs and reflects specific frequencies corresponding to combinations 

and overtones of vibration such as stretching and bending of hydrogen-bearing functional 

groups like –CH, -OH, and –NH (Osborne 2006; Baranska and Schulz 2009). The signal obtained 

by NIRS contains information about the chemical composition and other properties of the 

matrix (Baker et al. 1990; Shenk and Westerhaus 1993; Corson et al. 1999). The large amount 

of data in a NIR spectrum requires the use of chemiometrics to extract qualitative and 

quantitatively characteristics of interest from the sample (Blanco et al. 2008). With the use of 

regression techniques, NIR spectroscopy transmittance spectra can be correlated to 

laboratory-derived data. This correlation results in prediction equations that may or may not 

accurately quantify a wide range of constituents (Roberts et al. 1997). The NIRS technique is 

absolutely dependent on reference data or laboratory analyses and its limitations are defined 

by the capacity for accurate calibration and sample characteristics able to provide 

interpretable spectra (Corson et al. 1999). 

Near infrared spectroscopy offers several advantages over conventional methods of 

forage quality analysis. NIRS can provide reliable estimates of feed composition and evaluate 

many constituents (e.g. moisture, protein, oil, starch, fibers and others) at the same time using 

the same spectral signature, is rapid, non-destructive, requires small quantities of plant 

sample, for plant sample preparation only require dried and ground, no chemical reagents are 

needed and is less expensive than conventional analytical procedures (Barton 2nd and 

Windham 1987; Clark et al. 1987; García‐Ciudad et al. 1993; González-Martín et al. 2007; 

Foskolos et al. 2015).  
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Many researchers have used infrared spectroscopy to discover different forms of 

adulteration of products, to predict the metabolisable energy value of a feed (Ulyatt et al. 

1995; González-Martín and Hernandez-Hierro 2008; Baranska and Schulz 2009) and less 

commonly is  to identify and classify microorganisms like bacteria, fungi and virus (Arnold et al. 

2000; Petisco et al. 2008; Petisco et al. 2011; Brandl 2013). Nowadays, in forages NIRS is a 

routine technique used to analyze the amount of structural fiber, soluble carbohydrate, crude 

protein, lipid, ash and for detection and quantification of minerals (García‐Ciudad et al. 1993; 

Vazquez de Aldana et al. 1995; González-Martín et al. 2007; Burns et al. 2013). However, NIRS 

has been rarely explored for the identification of anti-quality properties of forages.  

Anti-quality components are defined as any factor that diminishes the degree to which 

forage meets the nutritional requirements of a specific kind of animal (Allen and Segarra 

2001). Among the diverse impediments to forage quality are structural components (e.g. 

lignin) and secondary metabolites, but also are included mineral imbalances related or not to 

the presence of insects, fungi, bacteria or diseases. Anti-quality components may reduce dry 

matter intake, dry matter digestibility, or result in nutritional disorders in animals. Such factors 

represent a high economical cost for the livestock industry, for example, reproductive and 

death losses of livestock due to poisonous plants have been estimated at 340 million USD in 

USA (James et al. 1992; Allen and Segarra 2001). There has always been a concern that anti-

quality components in forages have the potential to compromise food safety and human 

health (Allen and Segarra 2001; Pfister et al. 2001; Thompson et al. 2001). 

Perennial ryegrass (Lolium perenne) is one of the most important cool season grasses 

and the basis of many forage-livestock systems grown worldwide. Perennial ryegrass, like 

several other grass species, is often infected by endophytic fungi of the genus Epichloë that 

confer adaptive advantages. However, these fungi are also responsible for some anti-quality 

factors of the grass. Fungal alkaloids has often pronounced physiological reactions in 

herbivores, causing negative effects on livestock (Bacon et al. 1977; Fletcher and Harvey 1981; 

Gallagher et al. 1984; Gallagher et al. 1985; Allen and Segarra 2001; Young et al. 2015). 

Peramine, lolitrem B and ergovaline are the most common alkaloids produced in perennial 

ryegrass plants infected with Epichloë endophytes. Peramine is an insect deterrent, with no 

clinical effect over mammals; lolitrem B is a tremorgenic compound responsible for ryegrass 

stagers in sheep; ergovaline is reported to be a major contributor to several livestock disorders 

including gangrene in limbs, reduced fertility, hyperthermia, convulsion, all these symptoms of 

a syndrome known as fescue toxicosis (Yates et al. 1985; Aldrich et al. 1993; Moubarak et al. 

1993; Bluett et al. 2005). 

The detection of Epichloë endophytes in Lolium perenne is mainly performed by 

microbiological, histochemical, immunological or molecular techniques, as presented in 

Chaper I. Histochemical detection is based on staining plant tissues with rose Bengal or aniline 

blue, followed by visual inspection of fungal hyphae by light microscopy (Saha et al. 1988; 

Bacon and White 1994; Miles et al. 1998). Another very slow method of determining the 

presence of endophytes, is to isolate the endophyte into a culture medium  (Latch and 
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Christensen 1985; Fletcher et al. 1990). Enzyme-linked immunosorbent assay (ELISA) uses 

specific antibodies against fungal cells (Miles et al. 1998; Dombrowski et al. 2006; Koh et al. 

2006). Molecular methods include DNA extraction and polymerase chain reaction (PCR)-based 

amplification with specific primers, resulting in patterns of simple sequence repeats (Moon et 

al. 1999; Rasmussen et al. 2007; van Zijll de Jong  et al. 2008; Najafabadi et al. 2009). On the 

other hand, quantitative analysis of alkaloids is based on an elaborated procedure of 

extraction, followed by quantification by high performance liquid chromatography. Alkaloid 

extraction requires high investments, due to the use of organic solvents and/or solid-phase 

exchangeable cartridges. Although these above mentioned methods are preferred for being 

exact and precise procedures, in large-scale screening studies in which a significant numerous 

samples should be analyzed, none of them is ideal in term of cost-effectiveness, speed and 

accuracy, because they need high level of expertise, a series of chemicals and equipment (e.g. 

buffers, primers and dyes), are tedious, and too time-consuming (e. g. Chapter I and III). For 

the reasons mentioned above, alternative methods such as infrared spectroscopy are studied 

to develop diagnostic methods with lower economic and ecological cost than conventional 

techniques (Levasseur et al. 2010). 

The objectives of this work were to evaluate the suitability of NIR spectroscopy for: (i) 

discrimination between perennial ryegrass plants infected or non-infected by Epichloë 

endophytes; (ii) identification of the morphotype of the Epichloë endophyte hosted, (iii) 

detection of alkaloids of fungal origin (peramine, lolitrem B and ergovaline); and (iv) 

quantification of these alkaloids 

V.3  MATERIALS AND METHODS  

V.3.1  Plant Material and Reference Methods 

The plant material consisted of 222 plants sampled from six wild populations of Lolium 

perenne located at western Spain (described in Chapter I), and from two commercial cultivars: 

’Barplus’ used for turfgrass and ’Romance’ a forage cultivar (Barenbrug, NL). Wild ryegrass 

plants were cultivated in a field-plot and the commercial ryegrass plants were grown for more 

than 12 months in 2 l pots with a potting mix (perlite:peat moss, 1:1, v/v). The set of ryegrass 

samples was composed by endophyte-free, naturally infected and artificially inoculated plants. 

Infected plants hosted different morphotypes of Epichloë endophytes, which produced 

distinctive alkaloid profiles (Chapter IV).  

As indicated in Chapter I, Identification of Epichloë-infected plants was made through 

microscopic examination of the grass stem piths stained with 1% aniline blue (Bacon and 

White 1994), and by fungal isolation in potato dextrose agar (PDA) (Latch and Christensen 

1985); and were confirmed as Epichloë using the PCR primers: ITS4 (5’- TCC GCT TAT TGA TAT 

GC -3’), ITS5 (5’- GGA AGT AAA AGT CGT AAC AAG G -3’) (White et al. 1990), and tub2-exon1d-

1 (5’- GAG AAA ATG CGT GAG ATT GT -3’), tub2-exon4u-2 (5’- GTT TCG TCC GAG TTC TCG AC -

3’) (Moon et al. 2002).  
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The alkaloids, peramine, lolitrem B and ergovaline, were determined from ryegrass 

harvested 5 cm above ground; freeze dried, ground to 0.5 mm with a hammer mill (Fritsch 

15303, Germany), and stored at 6 °C in the dark until laboratory analysis and NIR spectra 

acquisition. Each alkaloid peramine, lolitrem B and ergovaline was analyzed separately by high 

performance liquid chromatography (HPLC) as indicated in Chapter III.  

V.3.2  Infrared spectroscopy  

V.3.2.1  Acquisit ion of infrared spectra  

Approximately 2.0 g of each of the 222 ground ryegrass samples were placed on a 

circular (38 cm in diameter and 10 mm in thickness) quartz reflectance-sampling cell (Figure 

26a) for their spectrum acquisition. The reflectance spectra between 400 and 2498 nm, 

acquired at 2 nm wavelength increments were collected using a NIRSystem 6500 scanning 

monochromator (FOSS Analytical, Denmark) fitted with a sample transport module (Figure 

26b). The spectrum of each grass sample was stored as log (1/R) (R= intensity of reflected light 

at each wavelength) and used for further chemiometrical analyses. Instrument control, 

manipulation of spectral files and chemiometric analyses were made with WinISI 4.3 software 

(FOSS Analytical, Denmark). 

 

Figure 26 Instrumental used in acquisition of NIR spectra of the ryegrass samples: (a) reflectance capsule cell, (b) 
spectrophotometer monochromator NIRS 6500.  

 

The collected spectra were divided into two subsets, one of them (ca. 75% of all the 

samples) used for training or calibration of the models (depending on whether classification or 

quantification was the objective), and the rest of samples (ca. 25%) were separated to 

corroborate the performance of the NIR equations obtained by external validation. The spectra 
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were assigned randomly, from different plant origins, growth conditions and harvests, to have 

a wide variability in terms of plant genetic, geographic, management and physiology in 

training/calibration and validation sets, which allows the development of robust NIRS 

equations. The distribution of ryegrass samples is indicated in Table 17. 

Table 17 Characteristics and number of the ryegrass samples (n) used in the development of NIRS models for 
identification plants with Epichloë fungi, morphological classification of the endophyte hosted, and for 
detection and quantification of the alkaloids peramine, lolitrem B and ergovaline.  

Parameter¶ 
Sample 

Condition
¶
 

Statistical Training/Calibration Validation Total/Average 

descriptor set set   

Epichloë infection 
E- n 74 24 98 

E+ n 94 32 124 

Epichloë morphotype 

M1 n 40 14 54 

M2 n: 31 10 41 

M3 n: 21 8 29 

Peramine 

PER- n: 36 12 48 

PER+ 

n: 56 20 76 

Range (mg kg
-1

): 2.16-24.00 2.73 2.16-24.00 

Media (mg kg
-1

): 6.96 20.39 7.16 

SD (mg kg
-1

) : 5.83 7.70 5.87 

Lolitrem B 

LTM- n: 37 14 51 

LTM+ 

n: 48 16 64 

Range (mg kg
-1

): 0.47-6.74 0.46-2.61 0.46-6.74 

Media (mg kg
-1

): 1.33 1.27 1.32 

SD (mg kg
-1

) : 1.13 0.62 1.02 

Ergovaline 

ERG- n: 50 16 71 

ERG+ 

n: 39 14 53 

Range (mg kg
-1

): 0.02-2.11 0.19-1.55 0.02-2.11 

Media (mg kg
-1

): 0.74 0.61 0.71 

SD (mg kg
-1

) : 0.58 0.39 0.54 

¶
E-= No Epichloë infected plants, E+= Epichloë infected plants; M1 morphotype= slower growth mycelium with 

convoluted surface,  M2 morphotype= faster growth rate with white cottony aerial mycelium, M3= morphotype, 
intermediate growth rate with tan, smooth and flat mycelium; PER-= plants without detection of the alkaloid 
peramine, PER+= plants with detection of the alkaloid peramine; LTM-= plants without detection of the alkaloid 
lolitrem B, LTM+= plants with detection of the alkaloid lolitrem B; ERG-= plants without the detection of the alkaloid 
ergovaline, ERG+= plants with the detection of the alkaloid ergovaline 

 

To determine Epichloë infection, the whole set of 222 ryegrass samples was used, 98 

samples were not infected (E-), and 124 were Epichloë-infected (E+). Equations for 

identification of the Epichloë morphotype hosted and for detection and quantification of 

alkaloids were performed obviously only with the spectra from E+ plants. From the 124 E+ 

ryegrass samples, 54 were infected with the M1 morphotype, 41 with the M2 morphotype, 

and 29 with the M3 morphotype (Table 17). Modelling the presence and concentration of 

peramine was made with 124 spectra, 115 spectra were used to detect lolitrem B because in 

six E+ plants this alkaloid was not determined by HPLC, and for ergovaline all the 124 spectra 

of the E+ plants were used.  
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V.3.2.2  Spectra treatment  

The development of qualitative and quantitative analyses using near infrared 

spectroscopy has some steps in common. In both cases, mathematical pretreatments and 

principal component analysis (PCA) are applied to the sample spectra. 

Mathematical treatments are performed to minimize problems related to light 

scattering. The physical characteristics of the sample (size, shape and compaction of particles), 

external factors (light and humidity), and aspects related with the instrumental measurement 

and the spectral signal with overlapped bands can influence negatively the spectral data. In 

this work, the mathematical pretreatments applied were: averaging of the raw spectra, 

characterization of the absorbance (standard normal variate, SNV), correction of the trend 

(DeTrend, DT), and application of SNV and DT together (Figure 27).  

 

 

Figure 27 Example of 10 spectra of ryegrass with the four mathematical treatments used for correction of the 
scaring: (a) averaging; (b) standard normal variated (SNV), (c) correction of trend, (DeTrend, DT), and (d) 
SNV with DT together.  

 

The function of the spectra averaging is to reduce the random noise, and therefore to 

increase the signal/noise ratio. Characterization of the absorbance (SNV) tries to minimize the 

dispersion caused by physical factors, such as the particle size, and for this each individual 

spectrum is centered and scaled (Barnes et al. 1989). The DeTrending (DT) step involves the 

application of a second-degree polynomial to standardize variation in spectral curvilinearity 

(Barnes et al. 1989). The mathematical pretreatments were combined with derivatives and 
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smoothing transformations to remove additive baseline effects (first derivative) or a linear 

baseline (second derivative) (Naes et al. 2002). Their notation is indicated with four digits (a, b, 

c, d) where: a is the order of derivative; b is the number of points where the derivative is 

performed; c is the number of points where the first smoothing is made; and d the number of 

points where the second smoothing is performed (Figure 28). 

 

 

Figure 28 Averaged spectra of 10 samples of ryegrass transformed with four combinations of derivative, gaps and 
derivatives. 

 

V.3.2.3  Qualitative analysis  

Discriminant analysis is a qualitative methodology that identifies a sample as belonging 

to a particular group. In this work, the discriminant model was based on a pattern recognition 

method, with a priori knowledge about the category membership of samples (supervised) 

(Figure 29). A discriminant algorithm known as X Residuals was used, in this method a PCA is 

performed on each group, then the evaluated spectrum’s score is multiplied by the PCA 

loadings for each group, the product is subtracted from the evaluated spectrum and the 

sample will be classified as belonging to the group resulting with the lowest residual. 
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Figure 29 Steps followed for discriminant analysis in infrared near spectroscopy. Classes identification = sample 

condition (see Table 17). 

The NIR spectral information of each sample in Table 1 was used to define the 

parameters to be modeled and the discriminant equations to be developed: infection with 

Epichloë endophytes (E- or E+), Epichloë morphotype hosted (M1, M2 or M3), and the 

presence of each alkaloid in E+ ryegrass samples: peramine (PER- or PER+), lolitrem B (LTM- or 

LTM+) and ergovaline (ERG- or ERG+). In order to find out optimal NIRS classification 

equations, it was needed to transform the spectra through the mathematical treatments 

(Figure 27) combined with smoothing, gaps and derivatives treatments (Figure 28) providing 

40 discriminant equations for each parameter.  

Once the discriminant models were created, their accuracy was measured with the 

percentage of samples from the validation set that were correctly classified and by the global 

percentage of false positives. Those models with the best classification performance and, the 

lowest percentages of false negatives, were selected for identification of the evaluated traits 

of new ryegrass samples. For this work, a false-positive was defined as a sample without the 

constituent studied but classified by the discriminant model as having the constituent; 

conversely, a false-negative occurs when in a sample the constituent is present but the models 

classify the sample as not having the constituent.  

V.3.2.4  Quantitative analysis  

The objective of the calibration in quantitative analyses was to develop an equation to 

calculate the concentration of each alkaloid in endophytes-infected ryegrass samples, in a way 

that, the residual or the difference between the reference chemical data and the value of 

concentration predicted by the NIRS equation is as low as possible. The quantitative NIR 

equations were developed through a modified partial least squares (MPLS) regression method 

(Figure 30). 
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Figure 30 Schematic representation of the steps followed for quantitative analysis in near infrared spectroscopy 

 

The modified partial least squares method (MPLS) is similar to partial least squares 

(PLS) regression, but often more stable and accurate. Similar to principal component 

regression, the PLS is based in a reduction of variables but the calibration process uses both 

the reference data (chemical, physical, etc.) and spectral information to form the factors useful 

for fitting purposes (Martens and Martens 2001). The modification in MPLS consists of a 

standardization of the NIRS residuals at each wavelength, after one factor is calculated the 

residual is divided by the standard deviations before calculating the next factor.  

Previous to the MPLS, a principal components analysis (PCA) was performed on spectra 

of the calibration set, generating 20 different files by the combination of the mathematical 

treatments (spectra averaging, SNV, DT, SNV+DT, smoothing, gaps and derivatives) described 

above (Figure 27, Figure 28). In this process, the spectral outliers were identified (samples with 

H> 3.0) and discarded. Subsequently, on the 20 files generated by the PCA other 20 

pretreatments were applied, generating 400 different equations to be evaluated for the 

quantification of each alkaloid. 

When the MPLS is performed, a cross-validation is applied to select the optimal 

number of factors, and to avoid overfitting (Shenk and Westerhaus 1995). In cross-validation, 

the calibration set is divided into several groups; each group is then validated using a 

calibration developed on the other samples. In this process, samples with high residuals are 

detected and those samples whose statistical T, defined as the residual divided by the 

standard error of cross-validation (SECV), exceeds the value of 2.5 were removed from the 
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calibration set, this procedure was repeated two times to finally obtain the models. The 

selection of the best NIRS equations for alkaloid quantification was based on the statistics 

described in Table 18. In all these equations iy is the calculated data; iŷ is the theoretical data 

for each one of the i samples; y  is the average of the calculated data; N  is the number of 

sampled used on calibration or internal validation; p  is the number of factors used in the 

cross validation, and refSD is the standard deviation of the reference data (Marten et al. 1989; 

Mark and Workman Jr 2010). 

 

Table 18 Statistical equations for the calculation of the accuracy of the quantitative equation generated by NIRS 

Calibration statistical  Validation statistical 

Multiple correlation 
coefficient (RSQ), measures 
the fitting degree between 
predicted data and actual 
concentration 
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Multiple correlation 
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the predicted values with 
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Standard error of 
calibration (SEC) is an 
estimate of the best 
accuracy obtainable using 
the specific wavelengths of 
the calibration equation 
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 Standard error of 
prediction (SEP), is a true 
measure of the 
performance of the 
equation on unknown 
samples and is the 
preferred statistic to use 
for comparison of 
regression equations: 
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Residuals, is the difference 
between the actual value 

iy and the predicted value 
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BIAS is the medium value of 
the residuals 
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Standard error of cross 
validation (SECV), is a true 
estimate of the prediction 
accuracy of the equation 
and it is used as the 
statistic for determining the 
best number of 
independent variables or 
factor for the calibration 
equation 
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Ratio performance 
deviation (RPD). A suitable 
quantification model 
should have a RPD> 2.0. 
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The robustness of the NIR models for alkaloid quantification was corroborated through 

external validations by means of a simple regression between NIRS-predicted values and those 

obtained by the reference method, to determine the accuracy of the calibration. A Student’s t-

test was conducted to corroborate that the concentrations obtained by both methods (HPLC 

and NIRS) provided values significantly equal or not (P= 0.05) and the residuals were calculated 

on alkaloid concentrations. 

V.4  RESULTS  

V.4.1  Qualitative analys is  

Figure 31 shows the averaged raw spectra of the 222 ryegrass samples of all evaluated 

conditions: non infected plants, Epichloë-infected, different Epichloë morphotypes, with and 

without fungal alkaloids. The shape of the spectra is almost the same along the entire spectral 

range with no obvious distinction for the identification of specific groups. Differentiation 

among the ryegrass samples according to their traits was possible only after the use of 

chemometric methods to build up mathematical relationships between the absorption spectra 

and the characteristics of interest. 

 

 

Figure 31 Spectra from visible to near infrared range (400 – 2500 nm) of the 222 samples of ryegrass. 

 

The main peaks observed in the spectra (Figure 31) are derived from hydrogen bonds 

of water molecules, which strongly absorb the infrared radiation contributing to scatter the 

light and producing a negative effect in the vis-NIR spectra. Thus, it is observed that the visible 

region did not contribute with useful information, on the contrary the accuracy of the NIRS 

equations decreased. Taking that into consideration, the wavelength used for the obtain all the 

NIR equation in this chapter was in the range of 1100 – 2000 nm.  
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The discriminant analyses followed the method indicated in Figure 29, applying the X 

Residual algorithm. The Table 19 presents the results obtained after PCA was applied on the 

spectra with the mathematical treatments and they are indicated as follows: n= no scattering; 

s= standard normal variate (SNV); d= correction of trend (DT); and m was the application of 

SNV + DT transformations. The smoothing, gaps and derivatives are indicated with one number 

next to letter that indicate the scatter treatment, following the notation of four digits (Fig. 4); 

for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 3=(2,10,10,1); and, 4=(2,8,6,1). 

 

Table 19 Number of principal components, variability explained, and outliers detected for each of the mathematical 
transformations after analysis of principal component in the spectra of ryegrass.  

Mathematical Principal Variability Spectral 

treatment¶ Components Explained (%) outliers 

n0 8 99.89 12 

n1 13 99.85 7 

n2 18 99.59 5 

n3 14 99.84 10 

n4 16 99.82 7 

s0 8 99.99 13 

s1 14 99.89 11 

s2 20 99.60 7 

s3 14 99.83 13 

s4 17 99.83 10 

d0 11 99.99 8 

d1 13 99.86 9 

d2 18 99.59 5 

d3 14 99.84 10 

d4 16 99.82 7 

m0 12 99.99 11 

m1 14 99.86 11 

m2 20 99.58 7 

m3 14 99.82 13 

m4 17 99.82 10 
¶
Transformation of the NIR spectra: n= no scattering; s= standard normal variate (SNV); d, correction of trend (DT); 

m= SNV + DT transformations (Figure 27). The smoothing , gaps and derivatives are indicated with the number next 
to letter as follow; for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 3=(2,10,10,1); and, 4=(2,8,6,1) (Figure 28). 

 

Several spectra from commercial cultivars of ryegrass were outliers; it seems that 

those plants have important differences with respect to the wild ryegrass. The inclusion of 

spectra from inoculated ryegrass may reduce the predictive models accuracy, although they 

also provide more variability and therefore universality to the discriminant NIR models, for this 

reason the remnant spectra from commercial cultivars were kept in the training set. 
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V.4.1.1  Detection of Epichloë  endophytes  

The results obtained by the X Residual method for classification of ryegrass samples 

according to their infection status (E= not infected; E+= infected with Epichloë endophytes) are 

presented in Table 20, which include the percentage of samples correctly classified in training 

and validation sets, and the global percentage of sample misclassified by the NIRS discriminant 

models evaluated.  

 

Table 20 Results of the discriminant analysis using the NIRS spectra of ryegrass samples for evaluation of the 
Epichloë infection (E- = no infected plants, E+= Epichloë infected plants).  

  Samples correctly classified (%)
§
   Samples misclassified (%)

§
 

Mathematical Training set 
 

Validation set 
 

Total 

treatment
¶
 E- 

 
E+ 

 
Mean 

 
E- 

 
E+ 

 
Mean 

 
E- 

 
E+ 

n0 82.2 
 

80.0 
 

81.0 
 

62.5 
 

64.3 
 

63.5 
 

22.7 
 

23.9 

n1 95.9 
 

92.0 
 

93.8 
 

91.7 
 

100 
 

96.3 
 

5.1 
 

6.0 

n2 97.3 
 

100 
 

98.8 
 

79.2 
 

83.3 
 

81.5 
 

7.1 
 

4.2 

n3 94.6 
 

100 
 

97.4 
 

91.7 
 

85.7 
 

88.5 
 

6.1 
 

3.7 

n4 98.6 
 

95.4 
 

96.9 
 

83.3 
 

56.7 
 

68.5 
 

5.1 
 

14.5 

s0 86.5 
 

86.7 
 

86.6 
 

70.8 
 

78.6 
 

75.0 
 

17.3 
 

15.3 

s1 94.6 
 

97.6 
 

96.2 
 

87.5 
 

82.1 
 

84.6 
 

7.1 
 

6.2 

s2 95.9 
 

100 
 

98.1 
 

83.3 
 

93.3 
 

88.9 
 

7.1 
 

1.7 

s3 100 
 

100 
 

100 
 

79.2 
 

89.3 
 

84.6 
 

5.1 
 

2.8 

s4 95.9 
 

100 
 

98.1 
 

79.2 
 

89.3 
 

84.6 
 

8.2 
 

2.7 

d0 89.2 
 

97.6 
 

93.7 
 

87.5 
 

93.3 
 

90.7 
 

11.2 
 

3.5 

d1 94.6 
 

98.8 
 

96.9 
 

91.7 
 

90.0 
 

90.7 
 

6.1 
 

3.5 

d2 97.3 
 

100 
 

98.8 
 

79.2 
 

80.0 
 

79.6 
 

7.1 
 

5.0 

d3 91.9 
 

92.9 
 

92.4 
 

83.3 
 

90.0 
 

87.0 
 

10.2 
 

7.9 

d4 98.6 
 

100 
 

99.4 
 

83.3 
 

70.0 
 

75.9 
 

5.1 
 

7.8 

m0 97.3 
 

91.8 
 

94.3 
 

70.8 
 

78.6 
 

75.0 
 

9.2 
 

11.5 

m1 100 
 

100 
 

100 
 

87.5 
 

85.7 
 

86.5 
 

3.1 
 

3.6 

m2 95.9 
 

100 
 

98.1 
 

87.5 
 

93.3 
 

90.7 
 

6.1 
 

1.7 

m3 93.2 
 

94.0 
 

93.6 
 

87.5 
 

92.9 
 

90.4 
 

8.2 
 

6.3 

m4 98.6 
 

97.6 
 

98.1 
 

83.3 
 

86.7 
 

85.2 
 

5.1 
 

5.3 
§
Percentages calculated without spectral outliers. 

 ¶
Transformation of the NIR spectra: n= no scattering; s= standard 

normal variate (SNV); d, correction of trend (DT); m= SNV + DT transformations (Figure 27). The smoothing , gaps 
and derivatives are indicated with the number next to letter as follow; for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 
3=(2,10,10,1); and, 4=(2,8,6,1) (Figure 28). The highlighted row indicates the mathematical treatment most 
accurate. 

 

The percentages of good classification in the training set varied from 81.0 to 100%, 

depending on the mathematical treatment. In the validation set the percentage of plants 

correctly classified was lower than in the training set, ranging from 68.5 to 96.3%. The best 

discriminant model to detect Epichloë in ryegrass was obtained with 20 PCs which explained a 

98.58% of spectral variability and applying the mathematical treatment m2: correction of 

scatter: SNV+DT (2,4,4,1), with a 90.7% of good classification, classifying correctly 87.5% of E- 

plants and 93.3% of E+ plants in validation. Although this model did not have the highest 
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percentage of plant classified correctly (e.g. n1, 96.3%), it had the lowest percentage of false 

positives (1.7%). 

In Figure 32 is represented the classification of the ryegrass plants after the application 

of the NIR discriminant equation for identification of plants infected by Epichloë endophytes. 

The misclassified E- plants were six, four of them were artificially inoculated commercial 

cultivars, and they can be pointed out in Figure 32 because of their higher difference with 

respect to the E-. In the other two cases, the spectra were recorded from capsules not 

completely full because there was not enough sample amount. In the two E+ samples classified 

as E- no particular characteristics were observed. 

 

 

Figure 32 Classification of ryegrass samples according to the presence of Epichloë (E-= no infected plants; E+= 
Epichloë-infected plants) applying the discriminant X Residual algorithm on the NIR transformed spectra 
with the mathematical treatment m2: SNV+DT (2,4,4,1). 

 

V.4.1.2  Morphotype of the Epichloë  endophyte  

Identification of the morphotype of the Epichloë endophyte present in ryegrass 

samples through NIRS was successful for the M1 and M2 morphotypes and less accurate for 

the M3 morphotype because in the validation set M3 endophytes were not identified correctly 

(Table 21).  

 

Table 21 Results of the discriminant analysis using the NIRS spectra of ryegrass samples for morphotype 
identification (M1 morphotype= slower growth mycelium with convoluted surface, M2 morphotype= 
faster growth rate with white cottony aerial mycelium, M3= morphotype, intermediate growth rate with 
tan, smooth and flat mycelium) of the Epichloë endophytes hosted in the ryegrass samples. 
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  Samples correctly classified (%)
§
   Samples misclassified (%)

§
 

Mathematical Training set  
 

Validation set 
 

Total 

treatment
¶
 M1 

 
M2 

 
M3 

 
Mean 

 
M1 

 
M2 

 
M3 

 
Mean 

 
M1 

 
M2 

 
M3 

n0 72.5 
 

77.4 
 

73.7 
 

74.4 
 

35.7 
 

80.0 
 

0.0 
 

38.2 
 

16.1 
 

7.3 
 

12.1 

n1 100 
 

93.5 
 

94.7 
 

96.7 
 

71.4 
 

80.0 
 

0.0 
 

52.9 
 

3.2 
 

3.2 
 

8.9 

n2 100 
 

100 
 

89.5 
 

97.8 
 

78.6 
 

70.0 
 

0.0 
 

52.9 
 

2.4 
 

2.4 
 

9.7 

n3 100 
 

96.8 
 

94.7 
 

97.8 
 

50.0 
 

80.0 
 

0.0 
 

44.1 
 

5.6 
 

2.4 
 

8.9 

n4 100 
 

100 
 

94.7 
 

98.9 
 

64.3 
 

80.0 
 

0.0 
 

50.0 
 

4.0 
 

1.6 
 

8.9 

s0 75.0 
 

80.6 
 

78.9 
 

77.8 
 

64.3 
 

50.0 
 

10.0 
 

44.1 
 

12.1 
 

8.9 
 

10.5 

s1 100 
 

93.5 
 

94.7 
 

96.7 
 

71.4 
 

80.0 
 

0.0 
 

52.9 
 

3.2 
 

3.2 
 

8.9 

s2 100 
 

100 
 

94.7 
 

98.9 
 

78.6 
 

80.0 
 

0.0 
 

55.9 
 

2.4 
 

1.6 
 

8.9 

s3 97.5 
 

96.8 
 

94.7 
 

96.7 
 

50.0 
 

80.0 
 

10.0 
 

47.1 
 

6.5 
 

2.4 
 

8.1 

s4 100 
 

100 
 

94.7 
 

98.9 
 

64.3 
 

80.0 
 

0.0 
 

50.0 
 

4.0 
 

1.6 
 

8.9 

d0 87.5 
 

80.6 
 

94.7 
 

86.7 
 

57.1 
 

60.0 
 

10.0 
 

44.1 
 

8.9 
 

8.1 
 

8.1 

d1 100 
 

93.5 
 

94.7 
 

96.7 
 

57.1 
 

80.0 
 

0.0 
 

47.1 
 

4.8 
 

3.2 
 

8.9 

d2 100 
 

100 
 

89.5 
 

97.8 
 

78.6 
 

70.0 
 

0.0 
 

52.9 
 

2.4 
 

2.4 
 

9.7 

d3 100 
 

96.8 
 

94.7 
 

97.8 
 

50.0 
 

80.0 
 

0.0 
 

44.1 
 

5.6 
 

2.4 
 

8.9 

d4 100 
 

100 
 

94.7 
 

98.9 
 

57.1 
 

70.0 
 

0.0 
 

44.1 
 

4.8 
 

2.4 
 

8.9 

m0 95.0 
 

93.5 
 

89.5 
 

93.3 
 

78.6 
 

80.0 
 

10.0 
 

58.8 
 

4.0 
 

3.2 
 

8.9 

m1 35.0 
 

93.5 
 

94.7 
 

67.8 
 

71.4 
 

80.0 
 

0.0 
 

52.9 
 

24.2 
 

3.2 
 

8.9 

m2 100 
 

100 
 

94.7 
 

98.9 
 

78.6 
 

80.0 
 

0.0 
 

55.9 
 

2.4 
 

1.6 
 

8.9 

m3 97.5 
 

96.8 
 

94.7 
 

96.7 
 

50.0 
 

80.0 
 

10.0 
 

47.1 
 

6.5 
 

2.4 
 

8.1 

m4 100 
 

100 
 

94.7 
 

98.9 
 

92.9 
 

100 
 

0.0 
 

67.6 
 

0.8 
 

0.0 
 

8.9 
§
Percentages calculated without spectral outliers. 

 ¶
Transformation of the NIR spectra: n= no scattering; s= standard 

normal variate (SNV); d, correction of trend (DT); m= SNV + DT transformations (Figure 27). The smoothing , gaps 
and derivatives are indicated with the number next to letter as follow; for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 
3=(2,10,10,1); and, 4=(2,8,6,1) (Figure 28). The highlighted row indicates the mathematical treatment most 
accurate. 

 

In the training set, the lowest correct classification achieved was of 67.8% and the 

highest was 98.9% depending on the mathematical treatment (Table 21). In this set, ryegrass 

samples infected with M1 morphotype were the best identified, in most of the models (15 out 

of the 20 models) more than 95% of the plants were correctly classified, and only in one case 

the classification of ryegrass samples infected with M1 morphotype was lower than 50%. The 

samples harboring the M2 morphotype were correctly identified with all the NIRS models, 

within a range from 80.6% to 100%. Plants hosting endophyte with the M3 morphotype were 

classified correctly in a range from 73.7% to 94.7%. In the validation, the percentage of correct 

classification of plants with M1-endophytes was less uniform and the range of correct 

classification varied from 35.7% to 92.9% (Table 21). The M2 morphotype was correctly 

classified in an interval from 60% to 80%. In contrast with the training, in validation only five 

discriminant models achieved a 10% of success when where applied to identify plants hosting 

M3 endophytes (Table 21). 

The discriminant model with the best statistical parameters for identifying the 

morphotype of the Epichloë endophyte hosted by ryegrass plants was obtained when the 

spectra were transformed using the mathematical treatment m4, applying a scatter: SNV+DT 

(2,8,6,1). The discriminant model used 17 PCs that explained 99.81% of the spectral variability 

between the samples. This discriminant model had the highest percentage of the correct 

classification in the training and the validation sets, 98.9% and 67.6% respectively. The 
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selected discriminant model misclassified 11 samples, one belonging to the M1 morphotype 

and classified as M2, and all the grass infected with the M3 morphotype from the validation 

set (n= 8) were classified as plants hosting Epichloë endophytes with the M1 morphotype 

(Figure 33). Among the misclassified samples there was any trend, all were naturally infected 

and had different origins.  

 

 
Figure 33 Classification of ryegrass samples according to the morphotype of Epichloë endophyte (M1, M2 or M3) 

hosted in ryegrass samples, applying the discriminant X Residual algorithm on the NIR transformed 
spectra with the mathematical treatment m4: SNV+DT (2,8,6,1). 
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V.4.1.3  Detection of peramine 

The discriminant equations for peramine detection were developed with the NIR 

spectra and with HPLC as the chemical method of reference (Table 17). Since peramine is an 

endophyte-mediated alkaloid, only E+ ryegrass plants were included. Once the X Residual 

discriminant algorithms were applied on the training set, the performances of the models 

were evaluated in the validation set (Table 22). 

 

Table 22 Results of the discriminant analysis for peramine (PER-= plants without detection of the alkaloid peramine, 
PER+= plants with detection of the alkaloid peramine) in the ryegrass samples infected with Epichloë 
endophytes. 

  Samples correctly classified (%)
§
   Samples misclassified (%)

§
 

Mathematical Training set 
 

Validation set 
 

Total 

treatment
¶
 PER- 

 
PER+ 

 
Mean 

 
PER- 

 
PER+ 

 
Mean 

 
PER- 

 
PER+ 

n0 100 
 

92.2 
 

95.1 
 

50.0 
 

90.0 
 

75.0 
 

14.3 
 

8.5 

n1 96.7 
 

100 
 

98.8 
 

33.3 
 

40.0 
 

37.5 
 

21.4 
 

16.0 

n2 91.4 
 

100 
 

96.7 
 

75.0 
 

90.0 
 

84.4 
 

12.8 
 

2.7 

n3 96.6 
 

100 
 

98.8 
 

30.0 
 

80.0 
 

63.3 
 

20.5 
 

5.3 

n4 96.7 
 

100 
 

98.8 
 

25.0 
 

80.0 
 

59.4 
 

23.8 
 

5.3 

s0 80.0 
 

100 
 

92.6 
 

80.0 
 

94.4 
 

89.3 
 

20.0 
 

1.4 

s1 96.7 
 

100 
 

98.8 
 

60.0 
 

88.9 
 

78.6 
 

12.5 
 

2.7 

s2 100 
 

100 
 

100 
 

58.3 
 

85.0 
 

75.0 
 

11.9 
 

4.0 

s3 100 
 

98.1 
 

98.8 
 

50.0 
 

90.0 
 

76.7 
 

13.5 
 

4.1 

s4 100 
 

100 
 

100 
 

60.0 
 

85.0 
 

76.7 
 

10.3 
 

4.0 

d0 93.3 
 

90.9 
 

91.8 
 

80.0 
 

65.0 
 

70.0 
 

10.0 
 

16.0 

d1 96.7 
 

98.2 
 

97.6 
 

60.0 
 

80.0 
 

73.3 
 

12.5 
 

6.7 

d2 100 
 

100 
 

100 
 

58.3 
 

90.0 
 

78.1 
 

11.4 
 

2.7 

d3 96.6 
 

100 
 

98.8 
 

30.0 
 

80.0 
 

63.3 
 

20.5 
 

5.3 

d4 96.7 
 

100 
 

98.8 
 

25.0 
 

80.0 
 

59.4 
 

23.8 
 

5.3 

m0 96.6 
 

98.1 
 

97.6 
 

40.0 
 

95.0 
 

76.7 
 

17.9 
 

2.7 

m1 96.4 
 

100 
 

98.8 
 

70.0 
 

70.0 
 

70.0 
 

10.5 
 

8.0 

m2 100 
 

100 
 

100 
 

58.3 
 

85.0 
 

75.0 
 

11.9 
 

4.0 

m3 100 
 

100 
 

100 
 

70.0 
 

90.0 
 

83.3 
 

8.1 
 

2.7 

m4 100 
 

100 
 

100 
 

20.0 
 

90.0 
 

66.7 
 

20.5 
 

2.7 
§
Percentages calculated without spectral outliers. 

 ¶
Transformation of the NIR spectra: n= no scattering; s= standard 

normal variate (SNV); d, correction of trend (DT); m= SNV + DT transformations (Figure 27). The smoothing , gaps 
and derivatives are indicated with the number next to letter as follow; for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 
3=(2,10,10,1); and, 4=(2,8,6,1) (Figure 28). The highlighted row indicates the mathematical treatment most 
accurate. 

 

All discriminant models for detection of peramine had good accuracy, the global 

percentages of good classification in the training set were always higher than 90%. In the 

validation, the percentages of good classification were lower than in the training. In the 

validation, it was observed that plants with peramine (PER+) were better recognized than 

plants without the alkaloid (PER-) (Table 22). 
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The model selected for identifying ryegrass samples with or without peramine, was the 

one with the highest percentage of good identification in validation (89.3%), and it was 

achieved when the spectra were transformed using the s0 treatment, SNV(0,0,1,1), with eight 

PCs explaining 99.99% of the spectral. This model misclassified 20% of PER- plants (8 out of 

48); however, it had the lowest percentage of false negative (1.4%) mistakenly only one PER+ 

plant in the validation set. Wrongly classified PER- plants had different origins and were 

handled equally during the spectra acquisition. The only PER+ sample classified as PER- had a 

peramine concentration of 3.88 mg kg-1, which is in the lower limit of concentration found in 

PER+ plants from the training set (Figure 34). 

 

 

Figure 34 Classification of E+ ryegrass samples according to the presence of peramine (PER-, without peramine; 
PER+, with peramine) applying the discriminant X Residual algorithm on the NIR transformed spectra with 
the mathematical treatment s0: SNV(0,0,1,1). 
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V.4.1.4  Detection of lol itrem B  

Discriminant NIRS equations for the classification of E+ ryegrass between plants with 

lolitrem (LTM+) and without lolitrem B (LTM-) correctly identified between 85.9% and 100% of 

the samples in the training set. For all mathematical treatments the percentage of good 

classification was greater for LTM+ plants than for LTM- samples (Table 23). In the validation 

set the percentages of good classification were lower than in the training set, also with better 

identification for LTM+ than LTM- plants.  

Table 23 Results of the discriminant analysis for lolitrem B (LTM-= plants without detection of the alkaloid lolitrem 
B, LTM+= plants with detection of the alkaloid lolitrem B) in the ryegrass samples infected with Epichloë 
endophytes. 

  Samples correctly classified (%)
§
   Samples misclassified (%)

§
 

Mathematical Training set 
 

Validation set 
 

Total 

treatment
¶
 LTM- 

 
LTM+ 

 
MEAN 

 
LTM- 

 
LTM+ 

 
MEAN 

 
LTM- 

 
LTM+ 

n0 75.0 
 

93.5 
 

85.9 
 

66.7 
 

68.8 
 

67.9 
 

27.3 
 

12.9 

n1 93.3 
 

100 
 

97.4 
 

41.7 
 

87.5 
 

67.9 
 

21.4 
 

3.1 

n2 97.1 
 

100 
 

98.8 
 

33.3 
 

93.8 
 

67.9 
 

19.1 
 

1.6 

n3 83.3 
 

100 
 

93.6 
 

58.3 
 

56.3 
 

57.1 
 

23.8 
 

10.9 

n4 96.7 
 

100 
 

98.7 
 

33.3 
 

68.8 
 

53.6 
 

21.4 
 

7.8 

s0 73.3 
 

100 
 

88.7 
 

66.7 
 

75.0 
 

71.4 
 

28.6 
 

7.0 

s1 87.1 
 

97.9 
 

93.6 
 

50.0 
 

81.3 
 

67.9 
 

23.3 
 

6.3 

s2 97.0 
 

100 
 

98.8 
 

33.3 
 

81.3 
 

60.7 
 

20.0 
 

4.7 

s3 93.3 
 

97.9 
 

96.2 
 

60.0 
 

81.3 
 

73.1 
 

15.0 
 

6.3 

s4 96.7 
 

100 
 

98.7 
 

50.0 
 

68.8 
 

60.7 
 

16.7 
 

7.8 

d0 90.3 
 

95.8 
 

93.7 
 

41.7 
 

75.0 
 

60.7 
 

23.3 
 

9.4 

d1 100 
 

97.9 
 

98.7 
 

33.3 
 

62.5 
 

50.0 
 

18.6 
 

10.9 

d2 97.1 
 

100 
 

98.8 
 

33.3 
 

93.8 
 

67.9 
 

19.1 
 

1.6 

d3 83.3 
 

100 
 

93.6 
 

58.3 
 

56.3 
 

57.1 
 

23.8 
 

10.9 

d4 87.9 
 

100 
 

95.1 
 

33.3 
 

68.8 
 

53.6 
 

26.7 
 

7.8 

m0 90.0 
 

100 
 

96.2 
 

41.7 
 

62.5 
 

53.6 
 

23.8 
 

9.4 

m1 100 
 

100 
 

100 
 

50.0 
 

87.5 
 

71.4 
 

14.6 
 

3.1 

m2 97.0 
 

100 
 

98.8 
 

33.3 
 

81.3 
 

60.7 
 

20.0 
 

4.7 

m3 90.0 
 

100 
 

96.2 
 

40.0 
 

87.5 
 

69.2 
 

22.5 
 

3.1 

m4 100 
 

100 
 

100 
 

33.3 
 

75.0 
 

57.1 
 

19.0 
 

6.3 
§
Percentages calculated without spectral outliers. 

 ¶
Transformation of the NIR spectra: n= no scattering; s= standard 

normal variate (SNV); d, correction of trend (DT); m= SNV + DT transformations (Figure 27). The smoothing , gaps 
and derivatives are indicated with the number next to letter as follow; for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 
3=(2,10,10,1); and, 4=(2,8,6,1) (Figure 28). The highlighted row indicates the mathematical treatment most 
accurate. 

The best discriminant model for lolitrem B detection in ryegrass samples was obtained 

by using the spectra with the m1 mathematical treatment, SNV+DT (1,4,4,1), standard normal 

variate and DeTrend together, with first derivative transformation, using the firsts 14 PCs 

which explained 99.86% of the spectral variability. The final model was developed with 29 

LTM- and 48 LTM+ samples in a range of concentration from 0.47 to 6.74 mg kg-1. 
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Figure 35 illustrates the classification of the samples according to whether lolitrem B 

was detected or not using the NIRS discriminant equation. The selected discriminant model for 

the detection of lolitrem B in ryegrass samples misclassified samples only in the validation set, 

and 6 out of 12 LTM- samples (50.0%) where recognized as LTM+, and only two out 16 of the 

LTM+ samples (12.5%) were not correctly classified. The six LTM- plants, which were not 

correctly classified were from different origins and characteristics; LTM+ plants misclassified 

had individual lolitrem B concentrations of 0.74 mg kg-1 and 1.49 mg kg-1. 

 

 

Figure 35 Classification of E+ ryegrass samples according to the presence of lolitrem B (LTM-, without lolitrem B; 
LTM+, with lolitrem B) applying the discriminant X Residual algorithm on the NIR transformed spectra with 
the mathematical treatment m1: SNV+DT(1,4,4,1). 

 

V.4.1.5  Detection of ergovaline  

Correct classification of ryegrass according whether the alkaloid ergovaline was absent 

(ERG-) or present (ERG+) varied from 84.0% to 100% in the training set. It seems that NIR 

models identified ERG+ better than ERG- samples, thus in 16 out of the 20 models 100% of 

ERG+ plants were correctly classified; and in 7 out of 20 all of ERG- plants were correctly 

classified. In the validation set, the discriminant models correctly classified between 53.3% and 

86.7% of the samples, in ERG- plants the range was 43.8% -87.5%; whereas, for ERG+ samples 

the model with the lowest correct classification had a 64.3% and the highest percentage of 

good classification was of 95.9% (Table 24). 
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Table 24 Results of the discriminant analysis for ergovaline (ERG-= plants without detection of the alkaloid 
ergovaline, ERG+= plants with detection of the alkaloid ergovaline) in the ryegrass samples infected with 
Epichloë endophytes. 

  Samples correctly classified (%)
§
   Samples misclassified (%)

§
 

Mathematical Training set 
 

Validation set 
 

Total 

treatment
¶
 Erg- 

 
Erg+ 

 
Mean 

 
Erg- 

 
Erg+ 

 
Mean 

 
Erg- 

 
Erg+ 

n0 84.4 
 

86.8 
 

85.5 
 

50.0 
 

92.9 
 

70.0 
 

24.6 
 

11.5 

n1 95.8 
 

100 
 

97.7 
 

81.3 
 

71.4 
 

76.7 
 

7.8 
 

7.5 

n2 100 
 

100 
 

100 
 

61.1 
 

85.7 
 

71.9 
 

10.6 
 

3.8 

n3 95.6 
 

100 
 

97.6 
 

37.5 
 

71.4 
 

53.3 
 

19.7 
 

7.5 

n4 100 
 

100 
 

100 
 

62.5 
 

92.9 
 

76.7 
 

9.4 
 

1.9 

s0 81.4 
 

86.8 
 

84.0 
 

87.5 
 

85.7 
 

86.7 
 

16.9 
 

13.5 

s1 97.8 
 

100 
 

98.8 
 

68.8 
 

71.4 
 

70.0 
 

9.8 
 

7.7 

s2 100 
 

100 
 

100 
 

56.3 
 

64.3 
 

60.0 
 

10.9 
 

9.4 

s3 90.9 
 

100 
 

95.1 
 

71.4 
 

71.4 
 

71.4 
 

13.8 
 

7.7 

s4 100 
 

100 
 

100 
 

81.3 
 

85.7 
 

83.3 
 

4.9 
 

3.8 

d0 91.3 
 

100 
 

95.2 
 

62.5 
 

92.9 
 

76.7 
 

16.1 
 

2.0 

d1 95.7 
 

100 
 

97.6 
 

81.3 
 

64.3 
 

73.3 
 

8.1 
 

9.4 

d2 100 
 

100 
 

100 
 

56.3 
 

85.7 
 

70.0 
 

10.6 
 

3.8 

d3 95.6 
 

100 
 

97.6 
 

37.5 
 

71.4 
 

53.3 
 

19.7 
 

7.5 

d4 100 
 

100 
 

100 
 

62.5 
 

92.9 
 

76.7 
 

9.4 
 

1.9 

m0 95.5 
 

94.9 
 

95.2 
 

75.0 
 

85.7 
 

80.0 
 

10.0 
 

7.5 

m1 95.5 
 

100 
 

97.6 
 

68.8 
 

71.4 
 

70.0 
 

11.7 
 

7.5 

m2 100 
 

100 
 

100 
 

56.3 
 

64.3 
 

60.0 
 

10.9 
 

9.4 

m3 95.2 
 

100 
 

97.5 
 

43.8 
 

78.6 
 

60.0 
 

19.0 
 

5.8 

m4 97.8 
 

100 
 

98.8 
 

62.5 
 

71.4 
 

66.7 
 

11.5 
 

7.5 
§
Percentages calculated without spectral outliers. 

 ¶
Transformation of the NIR spectra: n= no scattering; s= standard 

normal variate (SNV); d, correction of trend (DT); m= SNV + DT transformations (Figure 27). The smoothing , gaps 
and derivatives are indicated with the number next to letter as follow; for this: 0= (0,0,1,1); 1= (1,4,4,1); 2= (2,4,4,1), 
3=(2,10,10,1); and, 4=(2,8,6,1) (Figure 28). The highlighted rows indicate the mathematical treatments most 
accurate. 

There are two models, which have the best parameters for the identification of ERG+ 

and ERG- plants, and both have the same statistical and were transformed with mathematical 

treatments n4 and d4 (Table 24). In cases like that, it is recommendable to choose the model 

in which the original spectra had been less modified; therefore, the model selected was n4, 

raw spectra without correction of the scattering and transformation using the second 

derivative (2,4,4,1). The selected model used 16 PCs, which explained 99.82% of the spectral 

variability on the samples. The training set was finally constituted for 48 ERG- samples and 39 

plants with ergovaline concentrations in the 0.03 – 2.11 mg kg-1 range.  

All samples in the training set were correctly classified; in the validation set seven 

plants were incorrectly classified, six out of 16 ERG- samples were identified as having 

ergovaline and from ERG+ samples only one out of 13 samples was classified as ERG- (Figure 

36). Misclassified ERG- samples were from different origins, five of them hosted Epichloë 

endophytes with M1 morphotype and the other two the M2 morphotype. The concentration 

of ergovaline in the ERG+ sample classified as ERG- was 0.48 mg kg-1, in the lowest limit of 

concentration in the training.  
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Figure 36 Classification of E+ ryegrass samples according to the presence of ergovaline (ERG-, without ergovaline; 
ERG+, with ergovaline) applying the discriminant X Residual algorithm on the NIR transformed spectra 
with the mathematical treatment n4: raw spectra (2,8,6,1). 

 

 

 

V.4.2  Quantitative analysis of alkaloids  

The development of the quantitative models was done through the modified partial 

least squares method (MPLS) by using the spectra and the reference concentrations of the 

ryegrass from the calibration set for each alkaloid peramine, lolitrem B and ergovaline 

separately (Figure 30). In this procedure, neither uninfected ryegrass plants (E-) or samples in 

which the alkaloid concentration was zero in the HPLC-analysis were included.  

For each alkaloid a calibration model was developed as follows. After PCA, the number 

of PCs was selected and the spectral outliers (H> 3) were eliminated; then the mathematical 

treatments were applied, obtaining 400 equations to be evaluated. The quantitative equation 

with the best statistical parameters (RSQ, SEC, SECV, and RPD) was selected and a cross 

validation was performed. Chemical outliers (T> 2.5) were eliminated for optimization of the 

equations, then the errors of prediction (SEP and SEPc) and prediction ability (RPD) were 

calculated. 

In Table 25 all the statistical parameters of the best NIRS equations for quantification 

of peramine, lolitrem B and ergovaline in ryegrass samples are reported. 
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Table 25 Summary of the statistical parameters of equations developed for quantification of alkaloids peramine, 
lolitrem B and ergovaline applying the modified partial least square algorithm in NIR spectra of ryegrass 
samples 

  Alkaloid 

  Peramine Lolitrem B Ergovaline 

Principal Component Analysis 
(PCA)    

Pretreatment¶ s2 d0 s0 

Number of principal components (PCs) 11 7 6 

Explained variability (%) 99.05 99.93 99.95 

Spectral outliers (H> 3.0) 1 0 1 

    
Modified Partial Least Squares (MPLS) 

   
Pretreatment¶ s2 d0 d0 

Number of samples 55 46 36 

Standard deviation (SD) (mg kg
-1

) 5.63 0.47 0.46 

Range (mg kg
-1

) 0.83 - 22.64 0.04 - 1.96 0.09 - 1.93 

Chemical outliers (T> 2.5) 0 2 2 

Multiple correlation coefficient (RSQ) 0.93 0.41 0.70 

Standard error of calibration (SEC) (mg kg
-1

) 1.56 0.46 0.29 

Standard error of cross validation (SECV) (mg kg
-1

) 3.65 0.51 0.38 

Number of PLS factors 11 7 6 

Groups in cross-validation 6 6 6 

    
Internal validation 

   
Standard error of prediction (SEP) (mg kg

-1
) 1.46 0.44 0.26 

Medium value of the residuals (BIAS) (mg kg
-1

) 0 0.09 0 

SEP corrected by the Bias (SEPc) (mg kg
-1

) 1.47 0.44 0.26 

Multiple correlation coefficient (RSQ) 0.94 0.41 0.76 

Ratio performance deviation (RPD) 3.99 1.25 2.04 

    

External validation    

Root mean standard error (RMSE= SEP) (mg kg
-1

) 0.25 0.39 0.25 

Average residual (mg kg
-1

) 1.95 0.30 0.22 

Student’s t-test (P)  0.52 0.33 0.56 

¶Transformation of the NIR spectra: s= standard normal variate (SNV); d, correction of trend (DT)(Figure 27). The smoothing , gaps and derivatives are 
indicated with the number next to letter as follow; for this: 0= (0,0,1,1); 3=(2,10,10,1) (Figure 28). 

 

V.4.2.1  Quantification of peramine  

The most accurate model for quantification of peramine was developed when the 

sample spectra were transformed using the mathematical pretreatment s2: SNV, standard 

normal variate (2,4,4,1) (Table 25). Eleven factors were required for PLS. As a result of the 

statistical treatments described, the calibration model was obtained with 55 samples; only one 

spectral outlier was eliminated after application of the H criterion (Mahalanobis distance) and 

none chemical outliers were detected according to the T criterion (high residual, T greater than 

2.5). The obtained calibration equation had a correlation coefficient (RSQ) of 0.93; a standard 
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error of calibration (SEC) of 1.56 mg kg-1 and a standard error of cross-validation (SECV) of 3.65 

mg kg-1 (Table 25).  

The uncertainty in the prediction due to the model is indicated by the standard error 

of prediction (SEP), the standard error of prediction corrected (SEPc) by the residual (BIAS) 

obtained by means of an internal validation. The correlation between the reference values and 

the ones predicted by NIRS samples from calibration set is presented in the Figure 37. The 

standard error of prediction (SEP) was 1.46 mg kg-1 for concentration of peramine in ryegrass 

samples. The predictive capability of the model (RPD) was 3.99; which indicates that the 

obtained model can be applied to estimate accurately peramine concentration in ryegrass 

samples. 

 

 

Figure 37 Internal validation comparing values of reference against the predicted by NIR spectroscopy using the 
MPLS methods for peramine concentration in the validation set of ryegrass samples. 

 

The external validation of the NIR equation for quantification of peramine in ryegrass 

samples was accurate (Table 25). The Student t-test indicates that there were not significant 

differences between the concentration measured in HPLC and the NIR predictions (P= 0.52). 

The mean standard error for quantification of peramine concentration of the NIR equation 

with respect to the HPLC procedure was 0.25 mg kg-1 and the residual errors were 1.95 and 

0.25 mg kg-1 in unknown samples, namely, plants not used in the development of the 

quantitative models.  

 

0.0

5.0

10.0

15.0

20.0

25.0

30.0

0.0 5.0 10.0 15.0 20.0 25.0 30.0

P
e

ra
m

in
e

 (
m

g 
kg

-1
),

 H
P

LC
 

Peramine (mg kg-1),  NIRS 

RSQ:    0.94 
SEP:     1.46 (mg kg-1) 
SEPc:   1.47(mg kg-1)



109 

V.4.2.2  Quantification of lol itrem B  

The best results of calibration for lolitrem B quantification by NIRS were obtained using 

the spectral pretreatment d0 (correction of trend, DT), with the numerals (0,0,1,1) which 

involves the application of a second-degree polynomial to standardize variations in spectral 

curvilinearity without transformation by derivatives (Table 25). Seven PCs components were 

required to explain 99.93% of the spectral variability among samples in the calibration set. 

None samples were eliminated by the H criterion.  

Similarly to PCA for the MPLS, the best performance on lolitrem B quantification was 

obtained with the pretreatment d0 and using seven PLS factors. The final calibration set was 

constituted by 46 samples because two samples were eliminated using the T criterion. The 

NIRs model had a RSQ of 0.41 with error of calibration (SEC) and cross-validation (SECV) of 0.46 

and 0.51 mg kg-1 respectively (Table 25).  

Validation processed comparing the concentration of lolitrem B obtained with HPLC 

with the values using NIRS equation (Figure 38), allowed the calculation of the standard error 

de prediction (SEP) which was 0.44 mg kg-1 and the predictive capability of the NIRS equation 

(RPD= 1.25). These statistical parameters for quantification of lolitrem B in ryegrass samples 

(Table 25) shown that the results of prediction should be taken cautiously for prediction of 

concentration, given the low correlation between the actual data and the predicted (RSQ= 

0.41), and the low RPD.  

 

Figure 38 Internal validation comparing values of reference against the predicted by NIR spectroscopy using the 
MPLS methods for lolitrem B concentration in the validation set of ryegrass samples. 
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In external validation (Figure 38), among the NIR equation for quantification of lolitrem 

B and chromatographic method of reference (HPLC), there was not significant differences (P= 

0.39). However, compared with the concentrations of the samples the error or prediction 

(RMSE) was high (0.39 mg kg-1) also the residuals (0.30 mg kg-1).  

V.4.2.3  Quantification of ergovaline  

The model with the best performance for ergovaline quantification by NIRS was 

obtained when spectra were transformed by the mathematical treatment s0: standard normal 

variate (SNV), without no derivatives (0,0,1,1) in the PCA, with six factors that explained 

99.95% of the spectral variability. In this process, one spectral outlier was detected and 

eliminated (Table 25).  

In MPLS regression, the mathematical treatment used was d0: correction of trend 

without application of derivatives (0,0,1,1) and six PLS factors. The model for quantification of 

ergovaline had a RSQ of 0.76, a standard error of calibration of 0.29 mg kg-1 and the standard 

error of cross-validation was of 0.38 mg kg-1 (Table 25).  

When actual ergovaline concentration was compared with the predicted NIR values, 

the standard error of prediction was 0.26 mg kg-1 and this model had a RPD of 2.04 (Figure 39). 

According to this RPD, the NIRS models for quantification of ergovaline can be used to quantify 

this alkaloid in samples of ryegrass, but the prediction should be taken with caution because 

the SEP (0.26 mg kg-1) was half of the safety limit for livestock consumption (0.40 mg kg-1). 

 

Figure 39 Internal validation comparing values of reference against the predicted by NIR spectroscopy using the 
MPLS methods for ergovaline concentration in the validation set of ryegrass samples 
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Results of the external validation, in which the performance of the NIR equation for 

quantification of ergovaline was evaluated, indicated that the concentrations calculated were 

equals than the data obtained using HPLC (P= 0.56). The RMSE in the calculation of the 

concentration using NIR was 0.25 mg kg-1 and the residuals 0.22 mg kg-1 (Table 25) 

V.5  D ISCUSSION  

The purpose of this chapter was to study the suitability of near infrared spectroscopy 

to identify the presence of Epichloë endophytes and their associated alkaloids in a 

heterogeneous set of perennial ryegrass plants. The results enable to conclude that the 

spectral information obtained from ryegrass plant samples can be used to associate the 

presence of Epichloë fungi, to determine the morphotype or species of these endophytes, and 

also to detect the alkaloids peramine, lolitrem B and ergovaline. The quantification of these 

alkaloids was accurate and was highly correlated with data obtained from HPLC having low 

errors of prediction. Qualitative and quantitative NIRS equations fulfilling their purpose 

independently that the set of samples was composed of wild ryegrass plants with diverse 

origins and conditions indicating a high robustness of this method. 

Several samples from the commercial cultivars of ryegrass where spectral outliers, 

which means that their spectra were significantly different from the media spectra obtained 

from the rest of ryegrass samples, conformed predominantly by grass of wild origin. 

Commercial varieties of ryegrass have been part of continuous breeding programs, improving 

herbage production, persistence, drought and heat tolerance, resistance to fungal and viral 

diseases and pest (Cunningham et al. 1994; Sampoux et al. 2011; Lee et al. 2012), introducing 

physiological and metabolic changes with respect to unaltered plants from natural origin. All 

these changes may be reflected in the chemical composition of the plants and therefore in 

their respective spectra. Besides, the number of samples from commercial ryegrass was lower 

than the plants from wild origin which possibly did not give to them enough representation in 

the whole set to be recognized as part of the group. Omission of all spectra from commercial 

cultivars arose the accuracy of the discriminant models but at the same time the robustness of 

the models decreased and consequently also their applicability, therefore they remained in the 

training set. 

Identification of ryegrass plants infected with E. festucae var. lolii through 

spectroscopy was performed by Brandl (2013) but using only one commercial variety of 

perennial ryegrass, and reported correct identification of all samples using Fourier transformed 

spectroscopy on 20 samples (10 E+ and 10 E-). In this Chapter, using near infrared 

spectroscopy, only eight plants were misclassified from a set of 222 samples, which can be 

considered an excellent result in view of the high heterogeneity of the ryegrass plants and 

Epichloë endophytes analyzed. Epichloë hyphae reach less than 0.2% of the infected plant 

biomass (Tan et al. 2001; Spiering et al. 2005a), however it is evident that the endophyte 
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produces remarkable chemical changes inside the host plants that are easily detectable using 

NIR spectroscopy. Other methods highly specific for detection of fungi as the immunological 

tests have been used to identify Epichloë endophytes in many grass species, resulting the 

diagnostic positive for some samples in which no infection was confirmed by visual inspection 

(Jensen et al. 2011; Brandl 2013).  

In discriminant analysis, for distinction among the morphotypes of the Epichloë 

endophytes hosted in ryegrass samples, ryegrass infected with M3 morphotype was not 

properly distinguished in the validation process; instead they were classified as belonging to 

M1 morphotype but completely apart from M2 morphotype. In this regard, it is important to 

remark that, as reported in Chapter I, according to the genetic analysis using the partial 

sequences of the ITS1-5.8SrDNA-ITS2 region and the β-tubulin (tub2) gene of the endophytes 

from the set of the ryegrass plants analyzed, only two species of Epichloë fungi were detected 

and they coincided with the results obtained thought the discriminant analysis using NIR for 

morphotypes identification: M2 morphotype = E. typhina; whereas, M1 and M3 morphotypes 

= E. festucae var. lolii. Fungi with the M1 and M3 morphotypes as belonging to the same 

species may have more features on common beyond the differences on morphotype and 

alkaloid profile that made them indistinguishable inside the ryegrass samples. Therefore, the 

misclassification of M3 is not a method fail, on the contrary this strengthen the findings 

reported in Chapter I, about the existence of two Epichloë species among the endophytes 

hosted by the ryegrass samples. There has been attempt of the use of NIRS in classification of 

fungal species; for example, Petisco et al. (2008) used grounded mycelia to the developed of a 

direct method for identification of three species of Epichloë, which resulted in correct 

classification rates higher than 90% for the three species. However, one advantages of the 

discriminant method described in this chapter is that it does not require the isolation of the 

fungi from the grass and is not needed to wait until have enough fungal mycelia for analysis, 

instead the classification is directly performed in grounded samples of ryegrass and have an 

excellent classification of the two Epichloë species hosted. 

There are no bibliographical reports on the use of near infrared spectroscopy for 

identification of grass samples containing alkaloids. This qualitative technique can be a helpful 

tool in studies where high numbers of samples need to be screened. Our results show that the 

accuracy of NIRS discriminant models for the identification of ryegrass samples containing 

peramine, lolitrem B or ergovaline was very acceptable. In general, spectral differences were 

higher in positive (with alkaloid) samples compared with negatives (without) ones, resulting in 

discriminant NIRS models that identified better those sample plants which have alkaloids. Due 

to the nature of this study the opposite case, having higher number of false negatives, may be 

a problem, as consequence of the toxic nature of lolitrem B and ergovaline for mammals. 

However, NIRS discriminant equation for lolitrem B and ergovaline had 3.1% and 1.9% of false 

negatives respectively, which represents two plants with lolitrem B no identified in a set of 64; 

and for ergovaline one sample from a total 76 plants.  

file:///E:/Documents/TO_DO/Draft_Thesis/Thesis_Manuscript05.docx%23Incidence%20and%20Identification%20of%20Epichloë
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The problem with the false positives, which in case of lolitrem B was 50% of the 

samples in set of validation, could be due to the detection limits in HPLC, since all samples 

used for the development of this discriminate equation were E+ and production of this alkaloid 

is genetically controlled in the endophyte. It is known that E. festucae var. lolii (M1 and M3 

morphotypes) contains the gene needed for synthesis of lolitrem B (Young et al. 2009; Schardl 

et al. 2012) and this endophyte has the ability to produce it, in a wide range of concentrations 

(Chapter III) probably even below the limit of quantification considered in HPLC. Thus, the NIR 

procedure relates all the spectral information with the characteristics of the sample, and 

probably the presence of a specific alkaloid may influence in other properties of the plants that 

were detected through the discriminant analysis and cannot be elucidated using an extremely 

specific method for determination of compounds as the chromatographic techniques. 

Studies on quantitative analysis of alkaloids by NIRS in forage samples are very scarce, 

there are only three published reports of its use in quantification of ergovaline in tall fescue 

samples (Roberts et al. 1997; Kallenbach et al. 2003; Roberts et al. 2005) but there were not 

published references of its use on quantitative analysis of peramine or lolitrem B.  

The NIRS equation for quantification of ergovaline developed here was less accurate 

(RSQ: 0.76) than the one reported by Roberts et al. (1997) (RSQ= 0.93); however they used 

samples from only one cultivar of tall fescue from two locations, whereas the samples used 

herein came from wild plants obtained at six locations, plus two commercial cultivars, were 

grown in different conditions, and they had a wider concentration range of ergovaline. Roberts 

et al. (1997) indicated that the lower precision may be in part because the concentration of 

ergovaline in the grass samples is at least 10 000 times minor than other forage quality 

constituents routinely quantified by NIRS.  

In this way, the higher RSQ in the calibration process for quantification of peramine 

(0.94) could be because of its higher concentration as compared to the other alkaloids. 

Nevertheless, for quantification of lolitrem B (RSQ= 0.44) this argument does not seem to be 

valid, because its concentration ranged in the same threshold than ergovaline and had almost 

equal standard deviation of concentration in the calibration set of samples. Another possible 

explanation suggested by Roberts et al. (2005) is that NIR spectrophotometers could be able to 

detect precursors of the constituents of interest decreasing the precision of calibration. 

Although it is highly probable due to the complexity of the lolitrem B molecules and of its 

biochemical pathway of synthesis (Gallagher et al. 1982; Saikia et al. 2012; Philippe 2016), this 

suggestion should be validated because herein was studied the near infrared region, and not 

mid-infrared region, where it is easier to attribute the differences of absorbance to specific 

chemical bounds and identified their possible origins (Levasseur et al. 2010). Besides, the 

accuracy of NIRS estimations are dependent upon the data used to calibrate the instrument, 

the accuracy of predictions is dependent upon instrument calibration supported by good 

quality assurance protocols, and NIRS can only be as good as the calibration data derived from 

wet chemistry (Corson et al. 1999).  
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Independently that NIRS equations are not always as accurate or as sensitive as 

microbiological, genetic, chemical or chromatographic analytical techniques, this study shows 

that in works such as surveys of fungal endophyte incidence or fast screening on alkaloids 

detection of large numbers number of samples, NIRS does offer an alternative technique 

which is rapid, non-destructive, without the need of time-consuming sample preparation and 

inexpensive for providing chemical and nutritional analyses of feed stuffs. 

V.6  CONCLUSION  

Diagnosis of the presence of Epichloë  is important for biological and economic reasons 

in the livestock industry because the toxic alkaloids produced in forage plants, and it is often 

necessary to use molecular or chemical techniques for species classification and alkaloids 

detection when a rigorous identification is required.  Our results showed that the use of near 

infrared spectroscopy and chemiometrics for qualitative analysis allows identifying the 

presence Epichloë endophyte, Epichloë morphotype and species, and fungal alkaloids in a 

heterogeneous set of ryegrass samples. This is the first report of the use of a qualitative 

approach using near-infrared spectroscopy for analysis of fungal alkaloids (ergovaline, 

peramine and lolitrem B) in a heterogeneous ryegrass sample set. The developed discriminant 

NIRs models are able to classify Epichloë species hosted inside ryegrass sample plants. 

Although our objective was to classify endophyte-morphotypes, surprisingly our results 

allowed a classification according to Epichloë species; discriminating Epichloë festucae var. lolii 

from Epichloë typhina in infected plant. This is the first report about that.  

The NIRS quantitative equations generated enabled to estimate accurately the 

concentration of peramine and ergovaline in perennial ryegrass samples having similar 

precision than the HPLC methods, but it accuracy was lower predicting the lolitrem B 

concentrations.  

NIRS equations can be used as an accurate alternative for Epichloë detection and 

identification of the species hosted and for detection and quantification of alkaloids in a broad 

ryegrass sample population. 

Although in this work chapter Lolium perenne was evaluated as the experimental 

material, this technique might be useful in similar situations for other forage species infected 

with Epichloë endophytes providing important parameter to scientists involved in routine 

forage quality research and nutritional analyses of feedstuffs.  
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GENERAL CONCLUSSIONS 

In this study, the performance of a heterogeneous set of Lolium perenne plants of wild 

origin infected with Epichloë fungal endophytes was examined. Particular emphasis of this 

thesis was on alkaloid production, but other complementary objectives were raised with the 

aim to better understand the symbiotic grass-endophyte association. In the first experimental 

phase of this research, the incidence of Epichloë endophytes in eight wild populations of L. 

perenne was surveyed, isolating endophytes that were morphologically and genetically 

classified. In the second chapter the relationship between the type of Epichloë endophyte 

hosted and the production of the fungal alkaloids peramine, lolitrem B and ergovaline in 

perennial ryegrass plants was evaluated. Experimental work of the third chapter aimed to 

investigate how the presence of Epichloë and their morphotype affected the mineral 

concentration and the fibers content of perennial ryegrass plants. In the fourth chapter, two 

methods of inoculation of Epichloë endophytes in commercial cultivars of perennial ryegrass 

were tested and compared. The last experimental section, fifth chapter, was an approach to 

the use of near infrared spectroscopy as a tool for identification of plants infected with 

Epichloë endophytes and the morphological classification of these symbiotic fungi, as well as 

for detection and quantification of peramine, lolitrem B and ergovaline directly in samples of 

perennial ryegrass.  

Epichloë endophytes were found at the eight locations of Lolium perenne surveyed 

with an average incidence of 43.0%. According to the morphological and genetic classification, 

alkaloid production and NIRS spectroscopy, a high diversity of Epichloë endophytes was found 

within the locations of L. perenne studied. Among asymptomatic ryegrass plants three 

morphotypes of Epichloë (M1, M2 and M3) were characterized, all Epichloë endophytes 

isolated from plants with stromata had a M2 morphotype and they were designed as M2S. 

These Epichloë endophytes were classified into at least two species according to the genotypic 

analysis using partial sequences of the internal transcriber spacer ITS y the β-tubulin (tub2) 

gene: M1 and M3 belonging to Epichloë festuae var. lolii¸ and M2 morphotypes were E. 

typhina.  

In agreement to the morphological classification several genotypic groups were 

detected, there were two main genotypes of E. festucae var. loli:, the most common of them 

(G1a) included all colonies with M3 morphotype and part of the endophytes with M1 

morphotype; the other genotypic group (G1b) was composed by endophytes with the M1 

morphotype, and was isolated uniquely from plants of two locations. Endophytes classified as 

E. typhina were also composed by two genotypes, the most common (G2a) encompass strains 

hosted in asymptomatic plants, and other were stromata-producing; the second genotype 

(G2b) consisted of only stromata-producing endophytes.  
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The occurrence of two distinctive morphotypes of Epichloë endophytes, in different 

arrangements (M1/M2, M1/M2S, M3/M2 or M3/M2S) were found commonly in several single 

plants of perennial ryegrass from many of the sampling locations. Although conditions that 

may afford the formation of interspecific Epichloë hybrids, such as several types of Epichloë 

endophytes living in sympatry and the presence of double infected plants were observed in 

the ryegrass communities, Epichloë hybrids were not detected in this survey. However, a wide 

range of possible associations were observed in the plants analyzed, that afford at least six 

perennial ryegrass ecotypes in agreement with the morphological and genetic features: 

M1(G1a), M1(G1b), M2(G2a), M2S(G2a), M2S(G2b), M3(G1a), plus double infections. This wide 

variety of Epichloë/ryegrass associations may include some ecotypes that could withstand 

particular traits (e. g. alkaloid profiles) useful for improving forage grasses. 

A direct relationship between the alkaloid content of perennial ryegrass plants and the 

morphotype of the Epichloë endophyte hosted was detected. The highest concentrations of 

peramine, lolitrem B and ergovaline were found in ryegrass infected respectively with the 

M2S-, M3- and M1-morphotypes. In doubly infected plants a synergistic effect was observed 

on alkaloid production, those plants had the same alkaloid pattern as single infected grasses 

according to Epichloë morphotypes hosted, but in higher concentration. 

In most of the Epichloë-infected plants the concentration of lolitrem B was lower than 

that reported as the safe limit for livestock consumption (1.80 mg kg-1). However, ergovaline in 

harmful concentration to livestock performance (0.40 mg kg-1) was detected in more than 90% 

of the analyzed plants. In spite of these values, there have not been reports of alkaloid 

intoxication due to the high floristic diversity in natural pastures. 

The Epichloë endophytes produced significant changes in mineral concentration and 

fiber content in their perennial ryegrass hosts. Epichloë infected plants had lower P, Ca, S, B, 

neutral detergent fiber and lignin contents, and higher Mn and digestibility than non-infected 

plants. These results suggest that Epichloë might alter belowground processes that influence 

nutrient acquisition in the host plant, although the mechanism is not clear and several 

processes might be involved.  

The effect of Epichloë morphotypes on mineral concentration and fibers content was 

observed only in plants with symptoms of choke disease, infected by the M2S morphotype, 

choked plants had higher concentration of minerals and lower lignin concentration than 

asymptomatic Epichloë-infected plants. In asymptomatic ryegrass plants there was no effect 

neither of the Epichloë infection or the morphotype of endophyte hosted on the number of 

tillers and biomass produced.  

A new technique for inoculating endophytes in perennial ryegrass, consisted of placing 

seeds in a culture medium containing Epichloë endophytes was developed. With this method a 

higher number of plants were successfully inoculated than with the predominant procedure, 

the slitting method. Using this new inoculation procedure, remarkable good results were 

observed for inoculation of Epichloë typhina (M2 and M2 morphotypes). However, the 

percentages of infection with E. festucae var. lolii  (M1 and M3 morphotypes) in commercial 
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cultivars of ryegrass were lower than those reported using the slitting method. Therefore, 

more research should be done concerning to inoculation of E. festucae var. lolii in ryegrass 

cultivars because it is a medullar step in the development of new endophytic associations with 

grasses. 

Using the NIR spectra of the heterogeneous set of ryegrass samples and chemometrics 

procedures it was possible to identify with high accuracy the plants infected with Epichloë 

endophytes, the species of the Epichloë endophyte hosted, and the presence of the fungal 

alkaloids peramine, lolitrem B and ergovaline, and the quantification of peramine and 

ergovaline. Quantifying lolitrem B by NIRS was less accurate than for the other two alkaloids. 

In general, the results showed that NIR spectroscopy allows to analyze a large number of 

samples in exploratory studies on the effects of endophytes in grasses having highly reliable 

results with minimal sample preparation. 

As an overall conclusion, in this thesis a strong effect of the Epichloë endophyte in the 

performance of Lolium perenne was observed. For some characters the influence of the fungi 

in their host plant was dependent of the Epichloë morphotype, promoting particular changes 

in morphology and physiology, alkaloid production, and influencing the dynamic and 

acquisition of nutrients. Application of the results, the new inoculation technique and 

combination of the traditional and new approaches (e. g. NIR spectroscopy) may help in 

further studies for understanding on more details the Epichloë/grass relationship and 

consequently to development or improvement of commercial cultivars of grasses. 
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