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Capitulo I: Presentacion y objetivos

CAPITULO I:
PRESENTACION Y OBJETIVOS

El estudio de las variaciones climaticas y ambientales a lo largo de la historia
geoldgica responde al interés por conocer el funcionamiento de los sistemas naturales
y sus efectos. Una cuestion clave para su comprension reside en el conocimiento de la
forma concreta en que cada sistema terrestre responde a los cambios ambientales y la
escala temporal a la que lo hace. En el caso del océano, la respuesta dinamica a las
influencias climaticas tiene como consecuencia la reorganizacion de la circulacién
superficial global y el reajuste de la circulacién termohalina (“conveyor belt model”).
Como consecuencia, el registro de las variaciones climaticas pasadas y los procesos
paleoceanograficos asociados a ellas ha venido centrando el interés de la comunidad
cientifica en los ultimos afos. La comprensién de los mecanismos y procesos que han
actuado a lo largo de la historia geoldgica reciente permitira interpretar los procesos
ambientales que estdn ocurriendo en la actualidad, asi como predecir el
comportamiento y evolucion del sistema climdtico en un futuro préximo.

Para resolver tales cuestiones es clave la utilizacidon de registros sedimentarios
marinos cuya localizacion geografica y alta resolucion temporal permitan estudiar los
distintos procesos que integran el sistema climatico terrestre. El margen occidental de
la peninsula Ibérica es una de estas dreas estratégicas. Se ha demostrado que su
registro sedimentario puede compararse directamente con los registros de hielo
antartico y de Groenlandia, ofreciendo datos fiables para el estudio de variaciones
climdticas a escala milenaria tanto del hemisferio norte como del sur. Esto es
especialmente interesante para reconstruir el sistema climatico de épocas para las que
no se dispone de registros de hielo.

El margen occidental ibérico estd en el drea de influencia del giro subtropical del
Atlantico Norte y recibe aguas tanto de la corriente de las Azores, como de la corriente

de Portugal, rama descendente de la Corriente del Atlantico Norte. Esta especial
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localizacién, en el limite entre distintas masas de agua, hace de esta un drea muy
sensible a cambios de intensidad en el flujo de dichas corrientes y, por lo tanto, clave
para el estudio de variaciones paleoceanograficas en el Atlantico Norte. De hecho,
diversos estudios han relacionado las variaciones climaticas milenarias registradas en
esta region durante el Cuaternario con cambios en los frentes ocednicos y en la

distribucién de las corrientes.

Sin embargo ningun estudio realizado en el margen ibérico alcanzaba mas alla de
los 580 ka, puesto que no existian registros sedimentarios anteriores. La campafia de
IODP 339, con su sondeo U1385, ha permitido extender el registro sedimentario
disponible hasta el millon de afios. Para la elaboracion de esta tesis doctoral he
estudiado las asociaciones de foraminiferos plancténicos y los datos isotdpicos
obtenidos de los sedimentos de este sondeo para reconstruir la historia climatica y
oceanografica de esta regidn a escala milenaria entre los estadios isotdpicos MIS 21y
MIS 11, asi como su correlacidon con eventos oceanograficos en el Atlantico Norte y

climaticos a escala global.
Los principales objetivos de esta tesis podrian resumirse en:

* Elaboracion de un registro de las variaciones en las asociaciones de

foraminiferos plancténicos durante el periodo estudiado

* Reconstruccion de paleotemperaturas mediante distintas funciones de

transferencia, basadas en asociaciones de foraminiferos planctdnicos

* Reconstrucciéon de la paleoproductividad exportada mediante funciones de

transferencia, basadas en asociaciones de foraminiferos planctdnicos

e Estudiar las oscilaciones climaticas a escala milenaria durante los estadios

isotopicos 21 al 11

* |dentificar las causas de dichas variaciones climaticas y el agente responsable

(orbital, oceanogréfico...)

* Estudiar el comportamiento de las corrientes ocednicas superficiales del
Atlantico Norte que afectan al drea de estudio durante los estadios glaciales del

MIS 20 al MIS 14
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* Estudiar variaciones ambientales tanto superficiales como profundas, que
afectan a la distribucién de comunidades bentdnicas durante los estadios
isotopicos MIS 13 al MIS 11

* Comparar los registros obtenidos con datos publicados procedentes de otras

regiones para poder establecer variaciones ambientales a nivel global

El presente trabajo opta al grado de “Doctor Internacional”, por lo que esta escrita
mayoritariamente en inglés. No obstante, se adjuntan sendos capitulos “Resumen” y

“Conclusiones”, en espafol.
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CAPITULO II:
RESUMEN /ABSTRACT

RESUMEN

En esta tesis se reconstruyen las condiciones paleoceanograficas superficiales en
el margen occidental ibérico mediante el andlisis de las asociaciones de foraminiferos
plancténicos de sedimentos procedentes del testigo I0DP-U1385 (37234.285'N,
1027.562°W; 2585 m de profundidad). Los datos proporcionan un registro climatico
continuo y de alta resolucién para los estadios isotdpicos marinos (MIS) 21 a 11,
ampliando el registro existente del margen ibérico hasta el noveno ciclo climatico (867
ka).

Se identifican oscilaciones en la temperatura del agua superficial a escala
milenaria tanto durante los periodos interglaciales como los glaciales, pero las
oscilaciones de mayor amplitud (>5 2 C) suceden en los inicios y terminaciones
glaciales. En todas las desglaciaciones del Pleistoceno medio se registraron eventos de
extremando enfriamiento marcados por maximos en el porcentaje de
Neogloboquadrina pachyderma sinistral, con valores altos de 5%0 medido en
foraminiferos plancténicos y minimos en la relacién Ca/Ti. Estos eventos de
prominente enfriamiento de las aguas superficiales a lo largo del margen ibérico son el
resultado de importantes reorganizaciones de la circulacion en el Atlantico Norte,
tanto a nivel de superficie como de aguas profundas, que tuvieron lugar como
consecuencia del aporte de grandes cantidades de agua dulce al Atlantico Norte al
inicio de las deglaciaciones. De hecho, la mayor parte de estos eventos frios ocurrieron
cuando la insolacion de verano del hemisferio norte estaba préxima a sus valores
maximos. La disminucion de la formacién de agua profunda en el Atlantico Norte
redujo el aporte de aguas calidas hacia el norte, que tiene lugar mediante el giro

13
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subtropical del Atlantico Norte. Esta disminucion de aporte calido fue registrada en el
margen ibérico por el incremento en el aporte de aguas subpolares frias. Después de
cada episodio de enfriamiento profundo asociado a las deglaciaciones, el agua
superficial experimentd un rapido calentamiento que marcaba el inicio del dptimo
climdtico durante la fase temprana de los interglaciales. Los calentamientos bruscos
guedaron registrados por un aumento repentino de la asociacién subtropical, lo que
indica incremento en el transporte del calor hacia latitudes altas a través de la
corriente del Atlantico Norte. En el inicio de las glaciaciones, la temperatura de
superficie en el margen portugués se mantuvo relativamente calida, mientras que las
aguas superficiales del Atlantico Norte se enfriaban, generando un alto gradiente

latitudinal de temperatura superficial oceanica.

Se ha demostrado que el margen Ibérico suroeste es muy sensible a cambios en la
distribucién de corrientes ocednicas y masas de agua superficiales del Atlantico norte,
asi como a variaciones en la posicidon de los frentes artico y subtropical. Durante los
estadios glaciales del final del Calabriense y el Pleistoceno medio, tuvo lugar una
importante reorganizaciéon en la circulacion del Atlantico Norte que afecté a la
distribucidn superficial de las distintas masas de agua y el trazado de las corrientes
oceanicas. Este cambio tuvo lugar principalmente durante el estadio isotépico MIS 16,
asociado al cambio de posicion del frente artico y a la intensificacién en la formacion
de agua profunda Nord-atlantica, fendmenos ambos que tuvieron lugar durante este
estadio glacial y el interglacial previo. Durante los periodos glaciales anteriores al MIS
16 el frente artico estaba localizado en latitudes medias, lo que unido a los continuos
flujos de hielo que al fundirse producian grandes cantidades de agua de muy baja
salinidad, y por tanto muy baja densidad, dificultaba en gran medida la formacién de
aguas profundas Nord-atlanticas. La drdstica reduccién de la circulacion profunda
debilito la circulacién superficial, afectando a la corriente Nord-atlantica y facilitando la
dispersién de aguas polares por latitudes medias del Atlantico Norte. La corriente del
Atlantico Norte quedaba desviada al sur, adquiriendo una trayectoria casi oeste-este, y
las aguas cdlidas subtropicales llegaban al margen de Portugal circulando
superficialmente sobre las aguas polares que llegaban desde el norte. Desde el MIS 16

el frente artico adquiere una posicion mas al norte, lo que unido al incremento en la

14
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formacidén de aguas profundas reactivé la NAC y facilito el aporte de aguas templadas
altas latitudes. La corriente de Portugal incrementd su intensidad a lo largo del margen
oeste ibérico, impidiendo que las aguas subtropicales aportadas por la corriente de las
Azores llegaran cerca de la costa, como quedé registrado en el sondeo U1385 por la
reducida abundancia relativa de la asociacion calida superficial.

Parte del trabajo de esta tesis consiste en el estudio integrado de las condiciones
oceanicas superficiales y las profundas durante los estadios isotdpicos 13 al 11. Este
estudio revela el predominio de aguas bien oxigenadas en el fondo, asi como
abundancia de disponibilidad de alimento para las comunidades bentdnicas. La
concentracion de foraminiferos bentdnicos en los sedimentos y las variaciones de las
asociaciones de foraminiferos plancténicos sugieren cambios significativos en la
productividad superficial y el aporte de nutrientes hacia el fondo marino desde el final
del MIS 13 hasta el final del MIS 11. Hacia el final del MIS 13 la productividad
exportada fue muy baja. Este hecho, junto a la presencia de sedimentos claros indica
bajo aporte de carbono organico al fondo y altos niveles de oxigenacién.
Posteriormente, el aporte de materia organica se incrementd considerablemente y
mantuvo altos valores hasta la Terminacién V, permitiendo condiciones eutrdficas,
indicadas por valores altos de la tasa de acumulacidon de foraminiferos benténicos.
Durante el MIS 11 se registraron valores mas bajos en la tasa de acumulacién de
foraminiferos bentdnicos, lo que sugiere condiciones oligotréficas en el fondo y menor
aporte de carbono organico. Esta variacién de las condiciones ambientales bentdnicas
responde a cambios importantes en la ventilacion del agua, probablemente ligados a
variaciones en la circulacion termohalina profunda del Atlantico Norte que, en ultimo
término determina el contenido de oxigeno y la disponibilidad de alimento en los

sedimentos.
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ABSTRACT

In this work | reconstruct past sea surface water conditions on the SW Iberian
Margin by analysing planktonic foraminifer assemblages from IODP Site U1385
(37234.285°N, 1097.562°W; 2585 m depth). The data provide a continuous climate
record from Marine Isotope Stages (MIS) 21 to 13, extending the existing paleoclimate
record of the Iberian Margin back to the ninth climatic cycle (867 ka).

Millennial-scale variability in Sea Surface Temperature (SST) occurred during
interglacial and glacial periods, but with wider amplitude (> 5 2C) at glacial onsets and
terminations. Pronounced stadial events were recorded at all deglaciations, during the
middle Pleistocene. These events are recorded by large amplitude peaks in the
percentage of Neogloboquadrina pachyderma sinistral coincident with heavy values of
planktonic 20 and low Ca/Ti ratios. This prominent cooling of surface waters along
the Portuguese margin is the result of major reorganizations of North Atlantic surface
and deep-water circulation in response to freshwater release to the North Atlantic
when ice sheets collapse at the onset of deglaciations. In fact, most of these cooling
events occurred at times of maximum or increasing northern Hemisphere summer
insolation. The slowdown of deep North Atlantic deep-water formation reduced the
northward flow of the warm subtropical North Atlantic Drift, which was recorded on
the Iberian margin by enhanced advection of northern cold subpolar waters. Following
each episode of severe cooling at the onset of deglaciations, surface water
experienced abrupt warming that initiated the climatic optimum during the early
phase of interglacials. Abrupt warming was recorded by a sudden increase of the
subtropical assemblage that indicates enhanced northward transport of heat through
the North Atlantic Drift. At the onset of glaciations, SST along the Portuguese margin
remained relatively warm while the surface waters of the North Atlantic experienced
cooling, generating a large latitudinal SST gradient.

The Southwest Iberian margin is highly sensitive to changes in the distribution of
North Atlantic currents and water masses, as well as to changes in the position of the
Arctic and subtropical fronts. Variations in abundance of microfaunal assemblages

indicate a change in the general North Atlantic circulation during MIS 16, associated
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with the shift in the Arctic Front (AF) position and intensification of North Atlantic
Deep Water (NADW) formation that happened at the time. During glacials previous to
MIS 16 the southern position of the AF and the surges of icebergs and associated
production of meltwater severely reduced the NADW formation, which resulted in a
weakened North Atlantic Current and the dispersal of polar water over the North
Atlantic. The NAC followed an almost pure west to east drift, and off the SW Iberian
margin warm subtropical water overflowed (probably northward) the colder polar and
subpolar water masses advected southward. Since MIS 16, the northern position of the
Arctic Front and increased production of NADW reactivated the North Atlantic Current,
which advected warmer water to higher latitudes. Off the Iberian margin, the Portugal
Current became stronger and diverted warmer water offshore, reducing the relative

abundance of warm surface-dwelling species in Site U1385.

Integrative research including deep and surface analysis has been conducted to
evaluate the incidence that surface changes had on deep-sea environment from MIS
13 to MIS 11. Results reveal the predominance of well-oxygenated bottom and pore-
waters, as well as abundance of food in the sediment for benthic communities. Benthic
foraminifer concentration in the sediments and variations of the planktonic foraminifer
assemblages suggest significant changes in surface productivity and food supply to the
sea floor since the ending of MIS 13 to the end of MIS 11. At the end of MIS 13 values
of Annual Export Productivity were very low, what together with the presence of light-
color sediments reveals lower organic carbon flux to the bottom and high oxygen
conditions. Afterwards the organic matter supply increased rapidly and remained very
high until Termination V, determining an eutrophic environment, expressed by high
benthic foraminifer accumulation rates, and reduced availability of oxygen. Lower
benthic foraminifer accumulation rates during MIS 11 suggest oligotrophic conditions
at the bottom consistent with lower inputs of organic carbon, associated to high
oxygen content of bottom waters that agrees with the lighter color of the sediments.
The evolution of the macrobenthic tracemaker community during MIS 13 and 11
responds to major changes in bottom water ventilation probably linked to variations in
deep water (North Atlantic) thermohaline circulation, determining variations in oxygen

and food availability.
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1. CLIMATE DURING THE PLEISTOCENE
1.1. Glacial cycles

During the Quaternary period global climate has been characterised by periodic
oscillations of advance/retreat of the ice sheets that partly covered the Earth’s
continents (e.g., Lisiecki and Raymo, 2007). Each climatic cycle begins with a very warm
interval known as interglacial climatic optimum, when ice volume reaches a minimum
value. Models suggest that some of these ice volume minima, like during MIS 11, were
even lower than present day values (Raynaud et al., 2003). The climatic optimum is
followed by progressive cooling and increase of ice volume, marked by cool-warm
oscillations of lesser amplitude and higher frequency (21 ky) than glacial-interglacial
ones, which culminates with the highest extension of ice sheets during the cycle,
known as glacial maximum.

During the last million of years these climatic cycles have followed an approximate
periodicity of 100 ky with superimposed climatic oscillations of ~41 ky and ~21 ky (e.g.,
Imbrie et al., 1992; Ruddiman, 2006; Huybers, 2007), all of which can be correlated
with the orbital cycles described by Milankovitch (1941). Nevertheless, at a lower time
scale, discrepancies exist between climatic records and orbital parameters, which
suggest the influence of other factors in modulating the global climatic system. Some
of these factors are thought to be the atmospheric concentration of greenhouse gases
(Shackleton and Pisias, 1985; Kennett et al., 2000; Ruddiman, 2003, 2006; Toggweiler
et al., 2006), oceanic circulation (Broecker, 1989; Raymo et al., 1997; McManus et al.,
2004; Pisias et al., 2010), ice sheets size, and albedo effect (Imbrie et al., 1993; Denton

el al., 2010).

1.2. Suborbital climate variations: Heinrich Events and Daansgard-Oeschger
oscillations

During middle and late Pleistocene several millennial-scale iceberg surges into the
North Atlantic occurred that altered the ocean’s heat conveyor and caused
fundamental reorganisations of the ocean-climate system, producing extreme cooling

(Heinrich, 1988; Broecker, 1994, Cortijo et al., 1995; Hodell et al., 2008; Channel et al.,
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2012). These episodes, known as “Heinrich events” (Broecker et al.,, 1992), had a
duration of a few hundred to a thousand years and a recurrence of ~7-10 ky (e.g. Bond
and Lotti, 1995). Superimposed on this variability, a series of large shifts in air
temperature, up to 15 2C (Huber et al., 2006), in a few decades (Stuiver and Grootes,
2000), termed Dansgaard—Oeschger (D-O) oscillations have been registered in the
Greenland ice-core records (e.g., Dansgaard et al., 1993; Grootes et al., 1993); the final
event coincided with the Younger Dryas (e.g. Bond et al., 1992). These stadial-
interstadial oscillations appear to be grouped in sequences of progressively cooler
events, the end of each sequence marked by the deepest cooling; such sequences are
known as “Bond cycles” (e.g., Broecker et al., 1990) and are thought to be linked to
changes in the mode of overturning circulation in the Atlantic ocean (Broecker et al.,
1985).

Most of Heinrich events happened at the end of the colder phase of a Bond cycle
and were followed by warming to almost interglacial temperatures (e.g. Bond et al.,

1992; Wright and Flower, 2002).

1.3. Climate in the subtropical and middle latitude North Atlantic

The climate regime over middle latitude North Atlantic and Western Europe is
mainly governed by the position and intensity of the Azores high-pressure area (AzH)
and its latitudinal motion and intensification through the annual seasonal cycle. During
spring/summer the AzH migrates northward, which results in strong northerly winds,
while during fall/winter months the AzH is significantly weaker (Maze et al., 1997;
Coelho et al., 2002). In consequence, this region is under the influence of the North
Atlantic Oscillation (NAO) anomaly (Hurrell, 1995). This anomaly is measured by the
NAO index, that records the difference in atmospheric pressure between the Iceland
low and the AzH. The anomaly is positive (NAO®) when the Az high is reinforced and
the difference with the Iceland low is greater. In this scenario, westerly winds become
stronger and the Gulf Stream migrates northward, which results in anomalously mild
and wet winters for northern Europe, while southern Europe becomes anomalously
cold and dry (Fig. lll-1). The NAO also affects the sea ice coverage in the North Atlantic

(Deser et al., 2000) and, indirectly, the thermohaline circulation (Dickson et al., 1996).
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Off Portugal, NAO" phases are associated with reinforcement of the upwelling via
strengthening of NE trade winds. In NAO™ conditions the westerlies are weaker, the
Gulf Stream is located southward, climate in NW Europe is dry while in the south is wet
and off Iberia the Azores Current prevails, inducing warm conditions and the reduction

of the upwelling (Dickson et al., 1996).

a

Figure III-1. Sea level pressure (a-c, hPa) and precipitation (d-f, mm) for months with
positive (a,d), negative (b,e) and extremely negative (c,f) NAO index (from Wanner et al.,
2001).

In tropical regions, climatic conditions are mainly governed by the alternation of

rainy (warm) and dry (colder) seasons that trace the seasonal motion of the ITCZ. The
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southward migration of the ITCZ appears to be linked to cooling on the North Atlantic
over various time- scales (Black et al., 1999; Peterson et al., 2000; Schmidt et al., 2004)
through weakening of the Atlantic Meridional Overturning Circulation (Schiller et al.,

1997).

The climate of southern Europe, specifically the Iberian Peninsula, is also
connected with the ENSO through more complex mechanisms. For example, both
ENSO and NAO phenomena influence rainfall in Iberia (Rodo et al., 1997; Trigo et al.,
2002). ENSO oscillation signals have been observed in the rainfall records of the past
century in Iberia. There is clear evidence that the western part of the peninsula is more
generally under the influence of NAO in winter while the eastern part is under the

influence of ENSO in spring and autumn.

2. PLANKTONIC FORAMINIFERA AS OCEANOGRAPHIC PROXIES
2.1. Main species in the region

Some key species or groups of species can be used as paleoceanographic and

paleoclimate tracers. This work focuses on these ones.

The polar species Neogloboquadrina pachyderma sinistral (Nps), with a
temperature tolerance range between —1 and 8 2C and an optimum of 2 2C (Tolderlund
and Bé, 1971), has been extensively used within the North Atlantic as a proxy for
climate cooling (Ruddiman et al., 1986; Bond et al., 1993) and to monitor southward
penetrations of very cold water masses of polar origin, usually associated to iceberg
discharges and/or migrations of the polar front (eg., Bond et al., 1992; Cayre et al.,,
1999; de Abreu et al., 2003; Eynaud et al.,, 2009). At present, this species is absent
from plankton tows (Ottens, 1991) and surface sediments (Pflaumann et al., 2003)

(Simmax database) collected in the study area (Fig. 111-2).

Turborotalita quinqueloba (Tq) has a temperature tolerance range of 4.62C —
10.82C (Tolderlund and Bé, 1971), with an optimum of 129C (Stangeew, 2001) and is
usually associated to high phytoplankton productivity (Bé, 1977; Johannessen et al.,

1994). High percentages of this species are found south of Iceland (Pujol, 1980), and its
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maximal abundance has been recognized as associated with the arctic front

(Johannessen et al., 1994; Cayre et al., 1999; Wright and Flower, 2002).

Globigerina bulloides (Gb) lives in the upper 50-60 m of the water column, with a
tolerance range between 2 and 16 2C (Tolderlund and Bé, 1971; Bé, 1977; Schiebel et
al.,, 1997; King and Howard, 2005). This species is abundant in areas of high
phytoplankton productivity and deep mixing layer, as well as in subpolar waters (north
of 48 2N), which are rich in nutrients (Reynolds and Thunell, 1985; Schiebel et al.,
2001) (Fig. IlI-2). It is traditionally considered a proxy for upwelling (Prell, 1984),
particularly in the northeastern subtropical Atlantic (Chapman et al., 1996) and at the

Iberian margin (de Abreu et al., 2005; Salgueiro et al., 2008).

N. pachyderma (s) G. bulloides
801) f — - 800
sool 60°
40° 40°
20° 20°
60° 40° 20° 0° 20° 60° 40° 20° 0° 20°

Figure III-2. Distribution of Neogloboquadrina pachyderma sinistral and Globigerina
bulloides in the North Atlantic (from Kandiano and Bauch, 2007; data set: Pflaumann et al.,
2003).

Neogloboquadrina pachyderma dextral (Npd) has a temperature optimum
between 10-18 2C and the limit with Nps is associated to the April isotherm of 7.2 eC
(Ericson, 1959). It lives at ~100 m water depth, near the thermocline and the
chlorophyll deep maximum (Reynolds and Thunell, 1989). In the region, this species is
typical of the stratified, low productivity waters produced toward the end of upwelling
season (Rogerson et al., 2004) and has been used as a proxy for the Portugal Current

(Salgueiro et al., 2008).

26



Chapter III: Introduction

Globorotalia inflata represents the transitional North Atlantic water (Ottens,
1992) and can tolerate a wide temperature range, with higher percentages occurring
between 10.4 — 19.92C (Bé and Tolderlund, 1971). It is a deep dweller (100-250 m) and
thrives below the chlorophyll deep maximum (Fairbanks et al., 1980; Mortyn and
Charles, 2003; King and Howard, 2005). High percentages of this species (>15%) occur
at the present day western boundary of the upwelling front in the region, coinciding
with oligotrophic waters (Salgueiro et al., 2008).

Globigerinita glutinata is a non-spiny species that feed on diatoms (Hemleben et
al.,, 1989). The study of the living planktonic fauna in the eastern Atlantic has
confirmed that this opportunistic species prefers productive environments (Ottens,
1992) and high percentages of it are observed in relation to surface current eddies that
help to increase the nutrient input to the mixed layer (Schmuker and Schiebel, 2002;
Olson and Smart, 2004). This early bloom species (Schiebel, 2000) has been used as a
tracer for changing paleoproductivity (Mohtadi and Hebbeln, 2004; Vautravers and
Shackleton, 2006).

Globigerinoides ruber is a surface dweller of subtropical waters (Ottens, 1991)
(Fig. 11-3) and can tolerate a wide range of salinity (Bijma et al., 1990). It is present
today in the area during non-upwelling months (Salgueiro et al., 2008).

Globigerina falconensis is a tropically adapted symbiont-bearing form of G.
bulloides (Hemleben et al., 1989) and its presence may suggest warm conditions.
However, in the Arabian Sea it has been found related to conditions of enhanced
productivity and mixing of water (Schulz et al., 2002).

Globorotalia scitula is a deep-dwelling cosmopolitan species, most frequent in
temperate waters (Bé, 1977; Hemleben et al., 1989). In the surface sediments of the
North Atlantic, this species reaches its maximum abundance in the Azores region to
the north of the Azores Front (Prell et al.,, 1999). In consequence, changes in
abundance of this species can be used as an indicator of the Azores Front position
(Schiebel et al., 2002).

Globorotalia truncatulinoides (Got) (250-300 m) has been used to detect possible
changes in the structure of the deep thermocline (e.g., Hemleben et al., 1989;

Abrantes et al., 2001; Matzumoto and Lynch-Stieglitz, 2003; de Abreu et al., 2005). The
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left coiling variety of this species preferentially lives in cold waters (Fig. 11I-3) and is
considered an index for the influence of oligotrophic intermediate water masses (e.g.,
Globorotalia hirsuta is another deep dweller that, similarly to Got, needs good mixing
of water in order to develop (e.g., Hemleben et al., 1989).Peeters et al., 2002;

Matzumoto and Lynch-Stieglitz, 2003; de Abreu et al., 2005).

G. ruber (w) G. truncatulinoides (d) G. truncatulinoides (s)
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Figure III-3. Distribution of Globigerinoides ruber white and of Globorotalia truncatulinoides
dextral and sinistral in the North Atlantic (from Kandiano and Bauch, 2007; data set: Pflaumann
et al., 2003).

2.2. Planktonic foraminifer assemblages

Works on surface water masses and surface sediments have identified several
distinct assemblages of planktonic foraminifer fauna for the North Atlantic (e.g., Kipp,
1976; Ottens, 1991; Cayre et al., 1999; Chaisson et al., 2002; Schiebel et al., 2002;
Vautravers et al., 2004; de Abreu et al.,, 2005; Salgueiro et al.,, 2008). These
assemblages (Appendix IV) have been used to characterize the different water masses

in the region.

3. OCEAN SEDIMET CORES - RECORDING THE PAST

The bottom of the ocean constitute depositional environments which register not
only events and conditions of the bottom, but also those happening at the surface of
the ocean, in the continents and even in ice sheets like central Greenland (e.g.,
Ruddiman and Bowles, 1977; Heinrich, 1988; Shackleton et al., 2000; Sanchez Goiii et
al., 2002). As deposition prevails over erosion throughout most of the ocean, the
oceanic sedimentary record provides useful data along prolonged time series, which

allows faithful reconstruction of past climate and oceanographic characteristics.
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Several oceanic drilling actions have been conducted to retrieve sediment cores
from the different seas and oceans. After the Deep Sea Drilling Project, 1985 saw the
start of the Ocean Drilling Program (ODP), which was an international cooperative
effort to explore and study the composition and structure of the Earth's sub-seafloors.
The Integrated Ocean Drilling Program (IODP 2003-2013), built upon the international
partnerships and scientific success of previous joint-campaigns, was financed by the

contributions from 26 participating nations and conducted 52 expeditions.

Figure 111-4. JOIDES Resolution at Lisbon, during Expedition 339 (Expedition 339 Scientists,
2012).

4. EXPEDITION IODP-339

Integrated Ocean Drilling Program (IODP) Expedition 339 combined IODP
Proposal 644-Full2 and ancillary proposal letter (APL)-763. The expedition focused
mainly in the significance of Mediterranean Outflow Water (MOW) on North Atlantic
Ocean circulation and climate (Stow et al.,, 2012). This expedition provided the
opportunity to understand the global link between paleoceanography, climate

variations and sea level changes from Messinian to recent time and focussed on the
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importance of ocean gateways in regional and global ocean circulation and climate
variations. Nevertheless, a second objective was addressed, to produce a continuous
marine reference section of Pleistocene climate variability and changes in surface and

deep-water circulation along western Iberian margin (Expedition 339 Scientists, 2012).

Seven sites were cored during the campaign (Fig. llI-5, 11l-6). Six Sites, located in
the Gulf of Cadiz and on the West Iberian margin, addressed the study of the
sedimentary and paleoceanographic implications of the MOW and the evolution of its
influence since the Messinian. Site U1385 was cored further offshore to serve the

second objective of Expedition 339 (APL)-763.

IODP core U1385 was retrieved using the APC and nonmagnetic core barrels on
board the scientific drillship, D/V JOIDES Resolution. A total of 622 m of hemipelagic
sediments were recovered, covering a continuous sedimentary succession extending
back to 1.4 Ma (Fig. llI-6). Five holes (A, B, C, D and E) were cored to produce a primary
splice and two secondary ones, the later using intervals from only two holes each.
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Figure III-5. Expedition 339 sites in the Gulf of Cadiz and West Iberian margin (Expedition
339 Scientists, 2012).
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Figure I11-6. Expedition 339 sites” coring information (Hernandez-Molina et al., 2013).
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1. SITE IODP-U1385
1.1. Importance of the Shackleton Site

The Southwestern Iberian margin is a focal location for comprehensive evaluation
of climatic variability in both hemispheres over long time periods. A number of studies
have been conducted on sediment cores obtained in this margin to characterize the
late Pleistocene (Shackleton et al., 2000, 2004; de Abreu et al., 2003; Roucoux et al.,
2005; Martrat el al., 2007; Rodrigues et al., 2011; Hodell et al., 2013a). Nick Shackleton
was the first in highlighting the global importance of a specific area of this margin
(Shackleton et al.,, 2000) that has ever since been known as the Shackleton site.
Sediments in this area preserve a high-fidelity record of millennial-scale climate
variability for the last glacial cycle that can be correlated precisely to polar ice cores in
both hemispheres (Fig. IV-1). Moreover, the narrow continental shelf off Portugal
results in rapid delivery of terrestrial material (e.g., pollen) to the deep-sea
environment, thereby permitting correlation of marine and ice-core records to
European terrestrial sequences (e.g., Shackleton et al., 2000, 2004; Sanchez Goii et al.,
2002; Margari et al., 2010). The continuity, high sedimentation rate and fidelity of the
record in the area make this Site a key location for paleoclimate and oceanographic

researches (Hodell el al., 2013b).
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(Previous page) Figure IV — 1. Correlation of 8'*0 record of GISP ice core (red line; 1-18 =
marine isotope stages) to 8'*0 of Planktonic foraminifer Globigerina bulloides (black line) in
Core MD95-2042. Resulting correlation of Vostok 8D (green line; A1-AS = oscillation events)
and benthic §'*0 of Core MD95-2042 (blue line) based on methane synchronization. V-PDB =
Vienna Peedee belemnite, V-SMOW = Vienna standard mean ocean water. Age is from
Shackleton et al. (2004). (Expedition 339 Scientists, 2012)

1.2. Site description

Site IODP-U1385 was drilled at the same location of piston Core MD01-2444, off
the western Iberian margin (37234.284°N, 1027.562°W) at 2589 metres water depth,
on a spur on the upper slope that is elevated above the abyssal plain on the
continental rise, far from submarine canyons and out of the direct influence of the
Tagus river (Fig. 1V-2). Pelagic sedimentation prevails during interglacials, while
terrigenous input is enhanced during glacials due to a lowered sea level. Both during
glacial and interglacial periods, a high sedimentation rate (~ 10 cm/ky) prevails (Stow

et al., 2012).
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Figure IV - 2a. Three-dimensional regional bathymetric map of the southwestern Iberian
margin (Expedition 339 Scientists, 2012). BLM = Beira litoral margin, NC = Nazaré Canyon,
LM = Lisbon margin, CC = Cascais Canyon, 7C = Tagus Canyon, SC = Setibal Canyon, St. V'C
= Sdo Vicente Canyon, AIM = Algarve margin, SM = Sudiberic margin, PC = Portimao Canyon,
GB = Guadalquivir Bank, GM = Guadalquivir margin, BM = Betic domain margin.
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Figure IV - 2b. Detailed bathymetric map of the Shackleton Site showing the position of Site
U1385 and nearby Marion Dufresne piston Cores (after Stow et al., 2013).

2. GEOLOGICAL SETTING

The southwestern margin of the Iberian Peninsula, at the eastern segment of the
Azores—Gibraltar fracture zone, is the location of the diffuse plate boundary between
Eurasia (lberia) and Africa (Nubia). The present plate convergence rate between the
African and Eurasia plates in the Gulf of Cadiz area is ~4 mmyr™ (e.g., Stich et al,,
2006) with a WNW-ESE direction. A series of thrusts (Fig. IV-3) and dextral strike- slip
faults (Zitellini et al., 2009) can be identified. The tectonic structure of this area,
related with the rifting of the central and North Atlantic basins, was mainly set up from
the Late Triassic to the Early Cretaceous (Maldonado et al., 1999) and later modified
during the Cainozoic, especially in the Miocene (Zitellini et al., 2009; Duarte et al.,

2011).
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ENACW= North Atlantic Central Water

MOW= Mediterranean Outflow Water
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Figure IV - 3. Tectonic setting of the Gulf of Cadiz and location of Expedition 339 sites
(yellow solid circles) (Hernandez-Molina et al., 2013).

3. OCEANOGRAPHYC SETTING

The western Iberian margin lies under the influence of several distinct water
masses clearly identified and characterized (e.g. Filza et al., 1998; Hernandez-Molina
et al., 2011). These are, from top to bottom: the North Atlantic Central Water (NACW),
reaching around 500-600 m depth and characterized by a complex circulation pattern;
the Mediterranean Outflow Water, warm and very saline, flowing to the north and
west along the middle slope between the NACW and 1,500m; the Labrador Sea Water
(LSW), flowing towards the southwest across the Northeast Atlantic, can reach 2,200 m
depth, depending on the thermohaline equilibrium with the North Atlantic Deep Water
(NADW), which flows below or at the same depth than the LSW down to 4,000 m

depth; and, across the lower slope and abyssal plains, the Lower Deep Water,
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composed mainly of Antarctic Bottom Water and carbonate corrosive. The studied site

is under the influence of NACW in the surface and the NADW in the bottom (Fig. IV-4).
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Surface water circulation in the region (Fig. IV-5) is determined by the eastern
gyre of the North Atlantic (Eastern North Atlantic Central Water or ENACW) which
consists of two branches with different origin and distinct thermohaline
characteristics. The North Atlantic Current in the north, of sub polar origin (ENACWsp),
is formed in the eastern Atlantic north of 462 (McCartney and Talley, 1982; Branbilla
and Talley, 2008) and the Azores Current in the south, of subtropical origin and formed
along the Azores Front at about 35-372 N (Rios et al., 1992). The subtropical branch
(ENACWst) is saltier (S = 35.8 — 36.75), warmer (13.132C - 18.502C) and less dense than
the subpolar branch (S = 35.4 — 35-66; T = 102C — 12.22C) and overflows it with a
decreasing lower limit from south to north until around 42.792N, where a transition
zone limiting the two different masses of water in surface has been identified (the
“Galicia Front”, Fiuza el al., 1998), but the actual transition between both water
masses depends on the variability of their thermohaline characteristics. The general
circulation in the upper layers of the Central Water in the eastern North Atlantic is an
eastward flow, due to the Azores Current, that bifurcates while approaching the
Iberian coast in the north and the African one in the south; the northern branch of the
ENACWSst takes the designation of Portugal Coastal Countercurrent and advects warm

waters northwards (Peliz et al., 2005).

This general distribution of water masses is influenced by the seasonal migration
of the Azores anticyclonic cell and its associated large-scale wind pattern. During most
of the year coastal convergence conditions prevail, favouring convection of surface
waters that can reach depths between 700 m, in the north of the Iberian margin, and
less than 200 m towards the south (Fiuza el al., 1998). In summer, the weakening of
the Iceland Low Pressure area allows the strengthened Azores high-pressure cell to
migrate northwards; the strong northerlies produced along west Iberia induce the
southward Portugal Coastal Current, responsible for the onset of a coastal upwelling of
cold, less salty and nutrient-rich waters of the deeper layers of Eastern North Atlantic
Central Water (ENACW). Upwelled waters form an averaged 50 km wide band along
the coast, with extensions and filaments that can penetrate more than 200 km

offshore (Sousa and Bricaud, 1992). Site U1385 is located inside this band.
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Figure IV - 5. Map showing the location of Site IODP-U1385 in the Iberian margin and its
oceanographic setting (Position of the Arctic Front, from: Swift, 1986 and Pflaumann et al.,
2003). PC Portugal Current, /PC Iberian Poleward Current, ENACWsp Eastern North Atlantic
Central Water of subpolar origin, ENACWst Eastern North Atlantic Central Water of subtropical
origin. Sites mentioned in this work are also depicted. Geographical data of these core sites are

listed in Table IV-1.

Site Latitude Longitude Water depth
ODP-984 61225°N 24°204°'W 1650 m
IODP-U1314 58.42 N 27.92 W 2820 m
ODP-980 55229.09'N 14942.13'W 2168 m
IODP-U1302/03 50910°N 45938.3'W 3520 m
I0DP-U1308 49952.67°N 24214.3'W 3427 m
DSDP 94-607 // 10DP-U1313 41°00.07'N 32957.40'W 3412 m
MDO01-2446 39903.35'N 12937.44°'W 3570 m
MDO03-2699 39202.20°N 10239.63'W 1865 m
I0DP-U1385 37934.284'N 1097.562'W 2589 m

Table IV- 1: Location of core sites mentioned in this work.
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4. THE NORTH ATLANTIC OCEANIC CIRCULATION ALONG THE PLEISTOCENE

Present-day North Atlantic is characterized (Fig. IV-6) by a continuous flow of warm
and salty surface water originated in the tropical region and transported northwards
by the Gulf Stream, which continues as the NAC. The NAC forms the transition zone
between the cold and productive waters located at the North of the Arctic Front (AF)
(eg., Johannessen et al., 1994), and the warm and oligotrophic waters from the
subtropical gyre in the South. During Pleistocene glacial periods, the AF and associated
productivity maximum moved southward into mid-latitude North Atlantic (Stein et al.,
2009; Villanueva et al., 2001), cold polar waters expanded to lower latitudes and the
NAC did not reach as far North as during interglacials (Pflaumann et al., 2003; Alonso-
Carcia et al., 2011). After MIS 21 a northwest shift in the position of the AF began, both
during interglacials (Hernandez-Almeida et al., 2013) and glacials (Alonso-Garcia et al.,
2011b), which culminated after MIS 16 in similar positions as it occupies today (Wright
and Flower, 2002), and allowed increased influence of the NAC in higher latitudes

during glacials.

Various studies have shown that surface water characteristics in the mid-latitude
North Atlantic depend on the strength and position of the NAC and the associated
oceanic fronts (e.g., Calvo et al., 2001; Naafs et al., 2010; Voelker et al., 2010). Over
the last glacial cycle, the northern Iberian margin recorded peak displacement events
of the AF (Eynaud et al., 2009) and was, in general, more affected by the subpolar
water masses than the southern part, which was more influenced by the subtropical
water masses from the Azores Current (Rodrigues et al., 2011). Core I0DP-U1385 lies
near the present day boundary (Fiuza et al.,, 1998) between both areas of different
water masses predominance, which makes it privileged to study in detail the variations
of the distribution of North Atlantic currents and the fluctuations in the position of

subtropical and subpolar fronts, along the Pleistocene.
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1. LITHOLOGY

Site U1385 cores consist of hemipelagic sediments, very uniform in lithology
throughout the whole Pleistocene-Holocene section and with an average
sedimentation rate of ~10 cm/ky. The sedimentary succession is dominated by
bioturbated calcareous muds and calcareous clays, with the occasional occurrence of
ice rafted debris (IRD). Carbonate material is mainly of biogenic origin and varies from
23% to 39%, this difference being reflected in color variation (lighter - more
calcareous, darker - more terrigenous) (Fig. V-1). Towards the upper part of the
sequence the lithology becomes more terrigenous; nevertheless the variation is not
enough to define additional lithological units (Fig. V-2). No primary sedimentary
structures are observed and the most obvious secondary one is bioturbation, which
ranges from sparse to moderate. Other features, such as small-scale, subvertical
microfaults and contoured beds, have been identified at several intervals, but they are
local and of minor importance and do not seriously disrupt the continuity of the

stratigraphic section (Expedition 339 Scientists, 2012).

Depth (mcd)

Figure V-1. Spliced
colour reflectance
records and polarity
reversal  stratigraphy
for Site  U1385
(Expedition 339
Scientists, 2012).
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Figure V-2. Uniform lithology of sediments in site U1385 (http://web.iodp.tamu.edu).
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Cyclic variations in physical properties (Fig. V-3) and color (fig. V-1) reflect cyclic
changes in the proportion of biogenic carbonate and detrital material delivered to the

site (Hodell el al., 2013).

Magnetic susceptibility Natural gamma radiation
Site U1385 core recovery (105 81) (cps)
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Figure V-3. Core recovery, magnetic susceptibility, natural gamma radiation and polarity
reversal boundaries for the spliced composite section (Expedition 339 Scientists, 2012).

This work covers a section from the secondary splice U1385D/E (Hodell et al.,

2013a) between 54.60 and 99.33 crmcd (corrected revised meters composite depth).
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2. SAMPLING AND FORAMINIFERAL STUDY

2.1. Sample preparation

Samples were taken every 20 cm for the intervals 54.60-55.14 crmcd and 60.65—
99.33, providing an average estimated 1.76-ky resolution record. For the interval in
between samples were taken at an average 4.4 cm separation, with an estimated
average 0.74 ky resolution. A total of 336 samples 1 cm thick were dried, weighed and
washed over a 63 um mesh sieve. The >63 um residue was dried, weighed and sieved
again to separate and weigh the >150 um fraction.

Counts of detrital grains were conducted in the >150 um fraction for samples
between 54.60 and 65.75 crmcd and its quantitative abundance in number per gram of

dry sediment, calculated.

2.2. Foraminifer identification

Census counts of planktonic foraminifera taxa and of planktonic foraminifer
fragments were conducted on the sediment fraction larger than 150 um, using a
stereomicroscope. Each sample was successively split until a minimum of 300
specimens was obtained. The identification of the planktonic foraminifer species is
based on the work of Kennett and Srinivasan (1983). A total of twenty-eight different
species and ten morphotypes of planktonic foraminifers have been identified
(Appendix 1) all belonging to the living fauna in the area (Duprat, 1983; Levy et al.,
1995; Martins and Gomes, 2004).

Relative abundance of each different species and morphotypes of planktonic
foraminifer were calculated, as well as the number of specimens per gram of dry
sediment. To monitor carbonate dissolution, planktonic foraminifer fragmentation
index was calculated as percentage of test fragments related to the total amount of
fragments plus specimens (Thunell, 1976).

Counts of total benthic foraminifer tests were conducted on the same sediment

fraction and the aliquot used for planktonic counting.
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3. AGE MODEL

The age model of this work (Fig. V-4) is based on the correlation of the benthic
oxygen isotope record with the global benthic LRO4 isotope stack (Lisiecki and Raymo,
2005) using Analyseries software (Paillard et al., 1996). The age control points are from

Hodell et al. (2015).
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Figure V-4. Age model construction for site U1385. Blue dots represent the age control points
defined for this site (Hodell et al., 2015).

4. RECONSTRUCTION OF SEA SURFACE TEMPERATURE

According to the Charles Lyell’s uniformitarian principle, the present-day
relationship between physic-chemical conditions and faunal distribution can be used
to reconstruct the palaeoenvironments corresponding to sediments whose fossil
assemblage is known. Furthermore, if this relationship could be expressed by a
mathematical formula the palaeoenvironmental reconstruction could be quantified
and expressed in units. In this context, the transfer function approach, involving
mathematical analysis of census counts of microfossil assemblages, is the most
commonly used physical paleoproxy. This approach was firstly used in 1971, to
reconstruct the paleotemperature of the surface ocean by Imbrie and Kipp, and later

improved and brought to prominence by the CLIMAP group by reconstructing surface
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ocean paleothermometry for the last glacial maximum (CLIMAP Project Members,
1976, 1981). Since then new, high-quality data sets have been produced and several
approaches been developed, all of them based on the comparison of fossil
assemblages with modern calibration data sets.

For constructing a modern geographically constrained calibration data set, data of
faunal assemblages (e.g., count of planktonic foraminifer taxa) in recent ocean
sediments are needed, as well as values of modern oceanographic parameters (e.g.,
sea surface temperature) instrumentally recorded at the same locations of the
measured assemblages. The most important property of a calibration data set is its
coverage, both in terms of geographical area and the range of the environmental
variable or parameter. A good calibration data set has to include samples representing
the entire range of the environmental variable as observed today (Kucera et al., 2005).
With this objective, the MARGO project compiled a database with different partitions

for the different oceans (Fig. V-5).

Figure V-5. Location of

coretop samples with
planktonic foraminifer counts
used for regional SST
calibration in MARGO
database. = North  Atlantic
coretops are represented as
solid blue circles. (From
Kucera et al.. 2005)

In this work two different methods have been used to reconstruct past sea surface
temperature (SST), the Modern Analogue Technique and the Artificial Neural Network.
In both reconstructions fossil assemblages from IODP site U1385 are compared with

the North Atlantic partition of the MARGO database.

4.1. Modern Analogue Technique (MAT)
Developed by Hutson (1980), this method searches the database of modern fauna

for samples with assemblages that most resemble the fossil one. The

53



G.M. Martin Garcia

paleotemperature estimated for the fossil sample is then reconstructed from the SST
recorded in the best modern analog samples. To improve the reconstruction, a subset
of 10 best analogs from the database is used to obtain 10 SST values for each sample
and then, estimate the average. The prediction error of this method for the North
Atlantic dataset of MAGO ranges between 1.26-1.42 C (Kucera et al., 2005).

Although conceptually in line with Lyell’s unifomitarianism, MAT can only provide
the most similar modern situations to the fossil one, but it cannot extrapolate; in
consequence it performs poorly at the extremes of the range of the estimated
environmental parameter (Kucera et al., 2005). This technique is completely
dependent on the size and coverage of the calibration data set (Kucera and Darling,

2002) and its power to generalise may be limited (Kucera et al., 2005).

4.2. Artificial Neural Network (ANN)

Malmgren and Nordlund (1997) first proved this approach efficient in
reconstructing paleoceanographic conditions. The method relies on the assumption
that there is a relationship between the distribution of fauna and the physical
properties (SST) of the environment and can overcome problems of non-linear
relationships between sets of input (faunal assemblages) and output (e.g., SST)
variables. Generally a set of 10 neural networks are used, which provides 10 different
SST reconstructions for each component (winter, summer, annual and seasonality).
The average value of these ten estimations is used as the final SST reconstruction. The
prediction error of this method for the North Atlantic dataset of MAGO ranges
between 0.96-1.14 2C (Kucera et al., 2005). This method allows extrapolation, is very
good at generalizing and it is not dependent on the size of the calibration data set as
MAT (Kucera et al., 2005).

To compare IODP-U1385 planktonic foraminifer assemblages with the MARGO
North Atlantic database, | used the commercial software NeuroGenetic Optimiser v2.6
(Biocomp).

When trained on the same database ANN performed slightly better than MAT, but
when applied to an independent validation data set and fossil data set, the ANN

approach proved much better than the other method (Malmgren et al., 2001). This
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difference can be observed in the different SST reconstructions obtained for site
U1385 (Fig. V-6). In consequence, the method favoured for SST reconstructions in this

work was ANN.
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Figure V-6. Sea surface temperature reconstructions for Site U1385 by both MAT and ANN
methods. Benthic & '*0 is from Hodell et al. (2015); filling enhances the ice volume threshold
separating glacial and interglacial conditions for the North Atlantic (McManus et al., 1999).

5. RECONSTRUCTION OF EXPORT PRODUCTIVITY

Export productivity was reconstructed with the modern analogue technique (MAT)
(Hutson, 1980), as described by Salgueiro et al., (2008), comparing IODP-U1385
planktonic fossil assemblage with the modern analog database compiled by Salgueiro

et al (2010).
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the Southwestern Iberian margin from MIS 21 to 13 (IODP site U1385). Global and
Planetary Change, doi:10.1016/j.gloplacha.2015.11.001 (Appendix VII)
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ABSTRACT

Here we reconstruct past sea surface water conditions on the SW Iberian Margin by
analysing planktonic foraminifer assemblages from |ODP Site U1385 sediments
(37234.285°N, 1097.562°W; 2585 m depth). The data provide a continuous climate
record from Marine Isotope Stages (MIS) 21 to 13, extending the existing paleoclimate
record of the Iberian Margin back to the ninth climatic cycle (867 ka). Millennial-scale
variability in Sea Surface Temperature (SST) occurred during interglacial and glacial
periods, but with wider amplitude (> 5 2C) at glacial onsets and terminations.
Pronounced stadial events were recorded at all deglaciations, during the middle
Pleistocene. These events are recorded by large amplitude peaks in the percentage of
Neogloboquadrina pachyderma sinistral coincident with heavy values of planktonic
6180 and low Ca/Ti ratios. This prominent cooling of surface waters along the
Portuguese margin is the result of major reorganizations of North Atlantic surface and
deep-water circulation in response to freshwater release to the North Atlantic when
ice sheets collapse at the onset of deglaciations. In fact, most of these cooling events
occurred at times of maximum or increasing northern Hemisphere summer insolation.
The slowdown of deep North Atlantic deep-water formation reduced the northward
flow of the warm subtropical North Atlantic Drift, which was recorded on the Iberian
margin by enhanced advection of northern cold subpolar waters. Following each
episode of severe cooling at the onset of deglaciations, surface water experienced
abrupt warming that initiated the climatic optimum during the early phase of
interglacials. Abrupt warming was recorded by a sudden increase of the subtropical
assemblage that indicates enhanced northward transport of heat through the North
Atlantic Drift. At the onset of glaciations, SST along the Portuguese margin remained
relatively warm while the surface waters of the North Atlantic experienced cooling,

generating a large latitudinal SST gradient.
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1. INTRODUCTION

The western l|berian margin has proven to be a crucial location for the
comprehensive evaluation of millennial climate variability between hemispheres over
the late Pleistocene, offering a direct comparison with Antarctic and Greenland ice
core records (e.g. Shackleton et al., 2000; Martrat et al., 2007). A large number of
studies have been conducted using piston cores from this area to partially characterize
the last six climatic cycles (Cayre et al., 1999; Bard et al., 2000; de Abreu et al., 2003;
Roucoux et al., 2005; Vautravers and Shackleton 2006; Martrat el al., 2007; Rodrigues
et al., 2011).

The western part of the Iberian Peninsula is very sensitive to variations in the
North Atlantic surface circulation dynamics. The Iberian margin is located in a key
region characterized by the interplay of subpolar waters brought by the Portugal
Current, which constitutes the descending branch of the North Atlantic Drift, and
subtropical waters brought by the Azores Current. Changes in the intensity of the
northward flow of the North Atlantic Drift drive a deep impact on the north Atlantic
subpolar and subtropical gyres, as well as on the position of the Polar, Arctic and
subtropical fronts. For the last climatic cycles various studies have illustrated the
relationship between ice sheets instabilities in the northern Hemisphere and the
southward migrations of the Arctic Front (AF) as far south as the Iberian margin (Bard
et al., 2000) via the recirculation of cold water through the subtropical gyre eastern
current. Millennial-scale oscillations of Sea Surface Temperature (SST) at the
Portuguese margin have been related to changes in North Atlantic surface circulation
driven by freshwater perturbations at high latitudes (eg., Lebreiro et al., 1996,1997;
Zahn et al., 1997; Cayre et al., 1999; de Abreu et al., 2005; Vautravers and Shackleton,
2006; Martrat et al. 2007; Eynaud et al.,, 2009; Rodrigues et al., 2011). These
oscillations also affected the continental climate across southern Europe via
atmosphere-ocean coupling (Allen et al., 1999; Roucoux et al., 2005; Sanchez-Goifii et

al., 2008; 2013).

During the last glacial cycle a series of layers with high abundances of the polar
species Neogloboquadrina pachyderma sinistral (Nps) were recorded along the

Portuguese margin during Heinrich events (e.g., Lebreiro et al., 1997; de Abreu et al.,
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2003). In certain sites those layers also contained important amounts of Ice rafted
debris (IRD) although the presence or absence of IRD rich layers off the Iberian margin
during these events depends on the proximity to the shore. Sites located further
offshore usually record IRD layers (Lebreiro et al., 1996; Bard et al., 2000) whereas

sites nearshore rarely register them (Zahn et al., 1997).

At the same time, the Portuguese margin provides an excellent location to
monitor past changes in deep water circulation and heat and salt exchange between
Hemispheres (Hodell et al., 2013a). Millennial-scale oscillations in surface circulation
recorded along the Portuguese margin were linked to significant changes in deep
water circulation. Shutdown or reduced deep water formation in the North Atlantic in
response to freshwater perturbations is registered in the SW Iberian margin by
reduced flux of the North Atlantic Deep Water (NADW) and a rapid replacement by the
northward flux of the Antarctic Bottom Water (AABW) (Shackleton et al. 2000; Skinner
et al. 2003)

Before Integrated Ocean Drilling Program (IODP) Expedition 339 the existing
sediment cores in the western Iberian margin only provided climatic and
oceanographic reconstructions back to late Marine Isotope Stage 15 (e.g. Bard et al.,
2000; Rodrigues et al., 2011). The sediment cores from Site U1385 (Shackleton Site),
retrieved during Expedition 339, allow us to extend the record back to 870 ka and
investigate the response of the mid-latitude eastern North Atlantic to climatic changes
during the interval between 870 and 490 ka. In this work we studied planktonic
foraminifer assemblages and combined them with the oxygen isotopes records from
IODP Site U1385 to reconstruct the history of sea surface temperature on the
southwest |berian Margin from MIS 21 to MIS 13, thereby extending the existing

record in the area back to the ninth climatic cycle.

Given that previous works suggested the Iberian Margin can play a pivotal role in
understanding the millennial-scale climate variability during the last glacial cycle
(Shackleton et al., 2000, Vautravers and Shackleton, 2006), in this work we aim to
study the suborbital climate variability at this location during the last part of the

middle Pleistocene transition (MPT, ~1250-700 ka; Clark et al., 2006) and state the
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influence that subpolar North Atlantic climatic oscillations and meridional SST

gradients had on climatic events during and since the emergence of the 100-ky cycles.

2. MATERIAL AND METHODS

Sediments at Site U1385 define a single lithological unit dominated by calcareous
muds and calcareous clays, with varying proportions of biogenic carbonate (23% - 39%)
and terrigenous sediment. Pelagic sedimentation prevails during interglacials, while
terrigenous input is enhanced during glacials; however, sedimentation rates remain
high (~ 10 cm/ky) for glacial and interglacial periods (Stow et al., 2012). Occasional
occurrence of ice rafted debris (IRD) is also recorded. Cyclic variations in physical
properties and color reflect cyclic changes in the proportion of biogenic carbonate and
detrital material delivered to the site (Hodell el al., 2013b).

This study covers a section from the secondary splice U1385D/E (Hodell et al.,
2013a) between 59.95 and 99.84 crmcd (corrected revised meters composite depth)
(MIS 21 - MIS 13). Samples for the microfaunal analysis were taken every 20 cm,
providing an average estimated 1.76-ky resolution record. A total of 210 samples 1 cm
thick were dried, weighed and washed over a 63 um mesh sieve. The >63 um residue
was dried, weighed and sieved again to separate and weigh the >150 um fraction.
Census counts of planktonic foraminifera taxa and of planktonic foraminifer fragments
were conducted on the sediment fraction larger than 150 um, using a
stereomicroscope. Each sample was successively split until a minimum of 300
specimens was obtained. A total of twenty-eight species and ten morphotypes
(Kennett and Srinivasan, 1983) of planktonic foraminifers have been identified
(Appendix A) and their relative abundances, calculated, as well as the number of
specimens per gram of dry sediment. To monitor carbonate dissolution, planktonic
foraminifer fragmentation index was calculated as percentage of test fragments
related to the total amount of fragments plus specimens (Thunell, 1976).

Sea surface temperature (SST) values (annual, winter, summer and seasonality -
difference between winter and summer parameters) were reconstructed according to

the Artificial Neural Network (ANN) method, using a back propagation neural network
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system (Malmgren et al., 2001) to compare our fossil planktonic foraminifera
assemblages with MARGO North Atlantic database. We used the commercial software
NeuroGenetic Optimiser v2.6 (Biocomp), as described in Kucera et al. (2005), who
calculated an error of prediction of 1.02 C. The same set of 10 neural networks as in
Kucera et al. (2005) was used in this study, providing 10 different SST reconstructions
for each component (winter, summer, annual and seasonality). The average value of
these ten estimations was used as the final SST reconstruction. Additionally, in order to
calculate a similarity index and corroborate the ANN results, we applied a Modern
Analog Technique (Prell, 1985) on the fossil data using the same MARGO modern
dataset as was used for the training of the ANN (Kucera et al., 2005). The same
methodology has been followed to reconstruct winter SST of Site U1314, using the
same planktonic foraminifer assemblages as in Alonso-Garcia et al. (2011b). Site
U1314 (~1 ky resolution) has been included in this work to better compare with the

subpolar North Atlantic.

The age model of the studied section is based on the correlation of the benthic
oxygen isotope record to the global benthic LR04 isotope stack (Lisiecki and Raymo,

2005) (see Hodell et al., 2015, this issue).

3. RESULTS

Preservation in the studied interval is analysed considering the planktonic
foraminifer fragmentation index. This index remains generally lower than 20% (Fig. VI-
1g), which informs of a very good preservation in the samples, except for some short
intervals of increased dissolution. Nevertheless, the fragmentation index did not
surpass the 40% threshold above which planktonic foraminifer assemblages begin to
suffer modifications due to dissolution (Miao et al., 1994). Therefore, we can assume
that the assemblages used for this work are not modified by dissolution and they are
suitable to infer water mass properties.

Planktonic foraminifer accumulation rate ranges between 500 and 49,800
specimens per gram of dry sediment and ky, lowest values corresponding to levels of
high bioturbation, where metallic deposits conform most of the coarse fraction of the

sediment.
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Figure VI - 1. Down-core results for marine isotope stages 13 to 21 from IODP-1385 and
comparison with global LR04 benthic stack. (a) Age control points used to correlate both stacks
(marked with crosses). (b) Benthic 8'*0 profiles from LR-04 stack (Lisiecki and Raymo, 2005)
and from U1385; filling enhances the ice volume threshold separating stable and unstable
climatic regimes, which has been identified for the North Atlantic in 8'°0 value of 3.5 %o
(McManus et al., 1999). This threshold has been used to locate in the core the limits between
glacial and interglacial conditions and determine the duration of climatic cycles. Substages are
named according to Railsback et al. (2015). U1385 benthic 8'°0 record shows a much higher
variability and around 0.5 % VPDB lower values than the global stack. (c) Winter ANN-
reconstructed sea surface temperature. (d) Summer ANN-reconstructed sea surface temperature.
Both winter and summer records are compared with present day temperatures on the site
(horizontal dashed lines) from Locarnini et al. (2010). (¢) ANN-reconstructed seasonality
compared with present-day seasonality on the site (dashed line). (f) MAT-reconstructed
similarity index (Prell, 1985) between fossil planktonic foraminifer assemblage in Site U1385
and MARGO dataset (Kucera et al., 2005). (g) Planktonic foraminifer fragmentation index
(number of test fragments related to the total amount of fragments plus specimens) (Thunell,
1976) and averaged with a 3-point running mean.
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3.1. Planktonic foraminifer results

The microfaunal analysis focuses on species and assemblages that can be directly
used to monitor any change in climatic or oceanographic conditions in North Atlantic
surface water.

The species Neogloboquadrina pachyderma sinistral (Nps), with a temperature
tolerance range between —1 and 8 2C and an optimum of 22C (Bé and Tolderlund,
1971; Tolderlund and Bé, 1971; Bauch et al., 1997; Pflaumann et al.,, 2003), is
particularly abundant in the Arctic water (Johannessen et al., 1994). This species has
been used to monitor southward penetrations of polar water masses, usually
associated with iceberg discharges in mid-latitude North Atlantic (eg., Bond et al.,
1992) as well as in the Portuguese margin (Cayre et al., 1999; de Abreu et al., 2003;
Vautravers and Shackleton, 2006; Eynaud et al., 2009). This species ranges from 0 % to
a maximum of almost 50 % during MIS 18. The species is more abundant before MIS 16
where high values occurred during interglacials, except for MIS 19, as well as glacials
(Fig. VI-2e).

The subtropical assemblage (Ottens, 1991) consists mainly of species of
Globigerinoides genus and it is usually linked to the subtropical branch of ENACW,
transported to the Northeast Atlantic by the Azores Current, which flows northward
over the site during non-upwelling months (Peliz et al., 2005). Variations in the
abundance of the subtropical assemblage (Fig. VI-2f) are consistent with climatic
cycles. Variations in the subtropical assemblage resemble the planktonic 6'%0 record,
during both glacial and interglacial periods (Fig. VI-2).

3.2. Sea Surface Temperature variations

The similarity index of MAT (Fig. VI-1f) ranges between 0.9 and 1 for almost all the
interval, suggesting that the studied samples are well represented in the modern
dataset and that SST reconstructions (Fig. VI-1) are not affected by no-analog artefacts

(Kucera et al., 2005).

Figure VI — 2. Comparison between IODP-U1385 record and orbital parameters. (a) Benthic
8'%0 profile: LR-04 stack (Lisiecki and Raymo, 2005) in dashed line, and record from U1385
(Hodell et al., 2015); filling enhances the ice volume threshold separating stable and unstable
climatic regimes (McManus et al., 1999). Substages are named according to Railsback et al.
(2015) (b) Planktonic foraminifer Globigerina bulloides 8'*0 record from U1385 (Hodell et al.,
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2015). (c) Log Ca/Ti record from U1385 (Hodell et al., 2015) (d) Winter SST for Site U1385
(values above average are shaded). (e) Relative abundance of the planktonic foraminifer polar
species Neogloboquadrina pachyderma sinistral in U1385. (f) Relative abundance of the
subtropical assemblage (Ottens, 1991) in U1385. (g) Orbital parameters: obliquity (Laskar et al.,
2004) (black) and 65 °N 21st June Insolation values (W/m?®) (blue) (Huybers, 2006) and
integrated summer energy at 65 °N (>275 W/m2) (red) (Huybers, 2006). Vertical bands mark
pronounced cooling coinciding with deglaciations; grey bands mark events close to obliquity
maxima and green bands mark the exceptions (no obliquity maxima or no deglaciation). Blue
lines mark other pronounced cooling not linked to either deglaciations or obliquity maxima.
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In general, winter SST off the southwestern Iberian Margin resemble the
planktonic oxygen isotope variations (Fig. VI-2, b and d). Minimum temperature
occurred during Terminations or during glacial inceptions. SST in the area was
generally colder during the studied interval (mean annual value, 16.6 2C) than at
present (18 2C) (Locarnini et al., 2010), even during interglacials. During interglacial
periods, summer SST (Fig. VI-1d) were on average 1 to 2 2C colder than at present and,
during glacials, they were 2 to 42C colder. Nevertheless, during cooling episodes,
summer SST dropped 6 2C below Holocene levels (18 2C, Bard et al., 2000) and those of
previous interglacial, MIS 3, (17-18 2C, de Abreu et al., 2003; Vautravers and
Shackleton, 2006). Winter SST (Fig. VI-1c) remained, on average, less than 1 2C lower
than at present during all interglacials and during glacials MIS 20 and MIS 14, and were
higher than today during most of MIS 19, in the warmest periods of MIS 21 and 15, and
even in some very short spells during glacial stages MIS 18, MIS 16 and MIS 14. Only
during MIS 18 winter SST were considerably lower (2.5 2C in average) than at present.
The warmest period of the studied interval was MIS 19 and the coldest one was MIS
18. Isotope stages 17 and 13 were the coldest interglacial periods, with summer SST
between 1 and 2 °C colder than at present and closer to the values recorded during
glacial periods, and winter SST generally below modern values.

SST oscillations were, in general, less frequent and less pronounced during
interglacials (less than 7 2C drop or rise) than during glacials (up to 11 2C oscillation),
except for MIS 21f, that shows one of the steepest sea surface temperature

oscillations (7.3 2C) of the whole studied interval.

ANN-reconstructed seasonality (Fig. VI-1e) during middle Pleistocene is lower than
today and, in general, it shows small amplitude variability along the whole interval.
Most of the deep oscillations in seasonality correspond to outstanding SST fluctuations
in SST. Increases in seasonality coincide with drops in winter SST and vice-versa. The
highest seasonality values occurred in MIS 16b (6.2 2C), MIS 15e (6 2C) and 15b (5.9
2C). Since MIS 15a seasonality values were lower and show a slow increasing trend
until the end of MIS 13, encompassing the cooling trend recorded by SST. During
isotope stages 16 and 15 the amplitude of seasonality oscillations was between 1 and 2

oC higher than during the rest of the interval.

68



Chapter VI: Severe cooling episodes at the onset of deglaciations from MIS 21 to 13

4. DISCUSSION
4.1. Sea surface cooling on the Portuguese margin at deglaciations during
middle Pleistocene

The planktonic foraminifer assemblages, SST and oxygen isotope data studied at
Site U1385 indicate that during this period, and superimposed on the glacial-
interglacial variations, suborbital millennial-scale climatic variability off Iberia reflects
the influence of millennial changes in surface circulation in the NE Atlantic.

In order to identify millennial-scale climate events that may not be resolved with
the resolution of our SST record we compare our data with the Ca/Ti record (Hodell et
al., 2015), which provides an estimated resolution of 0.1 ky. Previous studies along the
Portuguese margin reported that Ca/Ti reflects millennial-scale climate changes as well
as sea level variations (Hodell et al., 2013a). Higher Ca/Ti ratios are linked to higher
productivity of calcareous plankton during warmer periods and lower siliciclastic input
from the continent (Hodell et al., 2013a).

Summer SST at the Portuguese margin remained relatively warm from MIS 21 to
MIS 13, although lower than present-day summer SST, oscillating between 15 and 18
oC irrespective of the glacial or interglacial periods (Fig. VI-1d). This relatively warm
temperature was, however, punctuated by abrupt SST cooling events, recorded
throughout the record by pronounced peaks in abundance of Nps and sharp increases
of G. bulloides §'®0 values, as well as very low values of the Ca/Ti ratio (Fig. VI-1, 2).

A close comparison of SST with the benthic 6'20 record for U1385 and the global
benthic oxygen isotope stack (LRO4) shows that all these cooling events were
coetaneous with drops in the benthic 6'®0. Longer and more pronounced cooling
episodes in the Portuguese margin occurred at Terminations (Fig. VI-1a-c), particularly
during Termination IX and VIII, but also at the transitions from glacial-interglacial
substages MIS 21b to 21a, MIS 18e to 18d, and, especially, MIS 15b to 15a.

4.1.1. MIS 21-20

During the ninth climatic cycle (MIS 21 - MIS 20) four main cooling events (6 to 8
oC drop) were recorded, all of them at transitions from higher to lower 80 values in
the benthic oxygen isotope record. The amplitude and duration of these cooling

episodes are related to the amplitude of the benthic isotope change (Fig. VI-1a-c). The
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most pronounced cooling occurred at Termination IX corresponding with a high
amplitude change in the isotopes undoubtedly related to a major sea level rise and
deglaciation. Another major cooling (6.4 2C) occurred at the transition MIS21b/a, also
related to an important deglaciation and sea level rise. The first two cooling events
recorded in this period also occurred at glacial/interglacial transitions, MIS 21f/e and
MIS 21d/c. All these events of cool surface temperatures are also registered by heavier

planktonic §1%0 and lower Ca/Ti values (Fig. VI-2b-d).

Based on the benthic 60 record climatic cycle MIS 21-20 encompasses two
glacial, obliquity-driven cycles, the two more pronounced cooling events reflecting the
culmination of these two glacial cycles. These cooling events were followed by
remarkably warm intervals, showing the characteristic millennial-scale, stadial-
interstadial climate oscillations (Fig. VI-2a,d,g). In particular, the four cool-warm
oscillations recorded in MIS 21 have also been recorded in various sites of the North
Atlantic (Flower et al., 2000; Kleiven et al., 2003; Hodell et al., 2008; Ferretti et al.,
2010; Hernandez-Almeida et al, 2012) during the stage of progressive extension of the
northern Hemisphere ice sheets during MIS 21. The cooling events off Iberia were
marked by high percentages of the polar species Nps (Fig. VI-2e) but they were not
linked to high IRD as has been reported for the same events at sites 984, 980 (Wright
and Flower, 2002; hereafter, W&F02) and U1314 (Hernandez-Almeida et al, 2013) in
the North Atlantic.

4.1.2 MIS 19-18

During this cycle, sea surface waters along the Portuguese margin experienced a
pronounced cooling during three episodes (Fig. VI-2d), being the greatest in amplitude
(7.2 2C) and the coldest (6.2 2C, winter SST), the one recorded at Termination VIII. The
other two cooling events were also linked to global drops in benthic 60 at the
transitions MIS 18e/d and MIS 18b/c (Fig. VI-2a,d). Like in the previous climate cycle
the amplitude of the cooling events is related to the amplitude of the deglaciations,
being the cooling event associated to MIS 18b/c of lesser amplitude. Low Ca/Ti ratios,
high planktonic 20 and high percentages of Nps also registered these cooling events
that, with the exception of Termination VIII when SST increased gradually, were

followed by abrupt warming (Fig. VI-2b-e).
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Similar cooling episodes have been recorded in the subpolar North Atlantic at sites
980 (W&F02), U1314 (Alonso-Garcia et al., 2011a) (Fig. VI-3b) and U1302 (Channell et
al., 2012), as well as at site U1308 (Hodell et al., 2008), but in that region they were
associated to ice-rafting events (Fig.VI-3c).
4.1.3.MIS17 - 16

Based on the global benthic Stack (LR04) MIS 16 was the longest and the most
prominent glacial of the middle Pleistocene. Ice sheets grew continuously from 695 to
630 ka, with a lower rate of growth or retreat between 660 and 650 ka. It is at this
time when surface waters in the Portuguese margin experienced a prominent drop (8
oC) in temperature (Fig. VI-2d). The beginning of this prominent cooling (659 ka) was
synchronous with a low-amplitude warming phase recorded in Antarctic ice cores (Fig.
VI-3b,d) and occurred nearly in phase with maximum obliquity of Earth’s axis (Fig. VI-
2d,g).

Unlike other Terminations, a weak cooling event (12.2 °C winter SST) was
recorded at Termination VII, although this is one of the largest amplitude
deglaciations. An also low amplitude drop in Ca/Ti reflects the small magnitude of this
event (Fig. VI-2c). Nevertheless, it coincided with IRD accumulation in site 980 (Fig. VI-
3c) and was contemporaneous with Heinrich event 16.1 recorded at sites U1308 and
U1302/03 (Hodell et al., 2008; Channell et al., 2012).
4.1.4.MIS15-13

In the upper part of our record, again SST experienced prominent cooling events
at deglaciation between MIS 15b/a (7.7 2C winter SST) and at transition MIS 13b/a
(11.4 winter SST). Two more short cooling events (9 and 9.7 2C winter SST) occurred at
561.35 and 555.87 ka, similar to those recorded in the subpolar cores 980 and U1314
(Fig. VI-3b).

A less pronounced cooling (52C drop) occurred at Termination VI that is also

marked by a decrease in Ca/Ti (Fig. VI-2c-d).

(Next page) Figure VI — 3. Comparison between SST record from site IODP-U1385 (this
work) and other climatic records from ninth to fifth climatic cycles. (a) Benthic 6 Bc profile
from U1385 (pink) and ODP-980 (W&F02) (brown). (b) Winter SST records from 58° N site
U1314 (this work, grey), from 55°N site 980 (W&F02) (blue) and from site U1385 (green). SST
above average for the interval are shaded in all the plots. (c) IRD content (in number of particles
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per gram of sediment) from site 980 (W&FO02). The age model for site 980 has been
recalculated according to LR04. (d) Antarctic Dome C 6D record (purple) and reconstructed
temperature (black dashed line) (Jouzel et al., 2007) (e) Content of greenhouse gases CHy
(green) and CO, (red) in the Antarctic ice (Loulergue et al., 2008 and Liithi et al., 2008,
respectively).
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4.2. Important reorganizations of North Atlantic circulation at the onset of
northern Hemisphere ice sheet retreats

While in other North Atlantic sites, especially those that are at higher latitude, SST
remained relatively low during glacial times, the Portuguese margin was under the
influence of relatively warm temperate waters during most glacial periods (Fig. VI-3b).
The occurrence of temperate-warm surface waters at site U1385 during long time
periods reflects the persistent influence of the North Atlantic Current (NAC) and its
continuous advection of temperate-warm waters to the eastern margin of the
subtropical North Atlantic gyre. The stadial-interstadial oscillations observed in this
study were the result of enhanced/reduced advection of heat to the Southern Iberian
Margin through the NAC. However, during most deglaciations a major reorganization
of surface circulation in the North Atlantic reduced the northward flow of the NAC,
promoting the southward expansion of cold subpolar waters along the western
European margin.

The severe cooling episodes associated to most deglaciations were followed by a
prominent warming event that marks the onset of a climate optimum interstadial
event usually present in the first stage of interglacial periods. This climate optimum
event was the warmest interstadial of each interglacial. Good examples of these high
amplitude changes in temperature can be seen at Termination IX, when SST rose from
8.3 to 19 9C, and at transitions MIS 21f/e, MIS 21b/a, MIS 15b/a, etc (Fig. VI-1c-d, VI-
2d).

In parallel to the pronounced surface cooling events, the record of the Portuguese
margin shows that deep-water circulation was also severely affected. A remarkable
decrease in the benthic 8"*C is observed at deglaciations (Fig. VI-3a), especially in
Terminations IX and VIII, but also at other glacial-interglacial transitions. These drops in
benthic 8'°C have been recognized in other sites from the North Atlantic (W&F02;
Hodell et al., 2008; Alonso-Garcia et al., 2011b; Ferretti et al., 2015). Drops in the
benthic 8°C have traditionally been attributed to slowdown of NADW formation
triggered by lower sea surface salinities in the north Atlantic. In more recent climate
cycles lower benthic 8"*C have been observed during Heinrich events that were

triggered by freshwater discharge at times of ice sheet collapse (Shackleton et al. 2000;
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Skinner et al. 2006, 2007; Martrat et al. 2007). Pulses of repeated freshwater release
to the North Atlantic originate the millennial-scale, stadial-interstadial oscillations of
late Pleistocene caused by reduced/enhanced Atlantic meridional overturning
circulation (AMOC) alternations. Events of reduced AMOC led to lower rates of heat
transfer to the North Atlantic that resulted in decreased SST (e.g: Broecker, 1989;
Stocker, 1999; McManus et al., 2004; Pisias et al., 2010). Although these millennial-
scale climate oscillations are recorded at site U1385, the highest amplitude
cooling/warming oscillations on the Portuguese margin coincided with deglaciations,
both Terminations and the transitions from glacial to interglacial substages, and were
marked by significant changes in the planktonic foraminifer assemblage from high
percentages of Nps to increased relative abundance of subtropical species (Fig.VI-2e-f).

We interpret that the pronounced cooling events observed along the Iberian
margin were triggered by freshwater released to the Atlantic at the onset of northern
Hemisphere ice sheet retreats. The mechanism is similar to what happened during
Heinrich stadials recorded at the end of the last two glacial periods (e.g. Rihlemann et
al., 1999; B6hm et al., 2014), when the extension of the polar water and icebergs have
been reported to reach the latitude of Southern lberia (e.g., Skinner et al., 2003;
Skinner and Shackleton, 2006). Although IRD were not recorded at site U1385 the
advection of polar waters to the Portuguese margin only at deglaciations suggests that
only freshwater perturbations of a certain magnitude, such as those related to ice-
sheet retreats, had a profound effect on the SW Iberian margin.

The remarkable warming episodes that immediately followed deglaciations (Fig.
VlI-1a-c, VI-1a,d) were triggered by the resumption of NADW formation after the end of
freshwater perturbations originated during ice sheet collapse. An increase in the
strength of the AMOC led to invigoration of the NAC and the transport of warm surface
waters to the Portuguese margin, which is recorded by a significant increase in the
subtropical species in the planktonic foraminifer assemblage (Fig. VI-2f).

Ice sheets during Middle Pleistocene tended to collapse at times of high northern
Hemisphere summer insolation that resulted from the combination of high obliquity
and minimum precession (Imbrie et al. 1993; Huybers and Wunsch, 2003; Huybers

2011). While obliquity mainly governed the time between deglaciations, precession
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determined the precise timing of deglaciations (Huybers 2011) and ice discharge to the
Ocean. This, in turn, triggered the major reorganizations of surface circulation in the
North Atlantic and the advection of polar water to the Iberian margin. The coincidence
in timing between these pronounced cooling events in Portugal with increasing
northern Hemisphere summer insolation (Fig. VI-2d,g), strongly suggests a causal
effect with ice sheet collapse events and deglaciations. Most of these events occurred
at times of obliquity maxima when obliquity governs insolation at high latitudes.
However there are two notable exceptions, the cooling episodes recorded at 650 and
710 ka when obliquity was relatively low or decreasing (Fig. VI-2g). Instead, these two
cooling events occurred at times of increasing summer insolation driven by precession
when the perihelion was aligned with northern Hemisphere summer solstice.

Recently it has been proposed that the energy received during summer (called
integrated summer insolation, with summer defined as the period when insolation
intensity exceeds the ~275 W/m? threshold) is the parameter that better reflects the
amount of ice sheet melting (Huybers, 2006). The summer energy at 65°N (using the
275 W/m? threshold) shows high values during all terminations and transitions from
glacial to interglacial substages (Fig. VI-2g), and may be advocated as the trigger for the
major reorganizations in North Atlantic circulation observed in our Iberian margin

record, in response to deglaciations.

4.3. North Atlantic SST gradient during ice sheet growth

One of the most characteristic features of the SST record in the Portuguese margin
is that both the early phase of ice sheet growth, as recorded by the rapid increase in
the benthic and planktonic 80, and glacial maxima, were coeval with warm SST at
Site U1385 (Fig. VI-1a-c, VI-2a,b,d). In fact, off the Iberian margin none of the ice
volume maxima corresponded to the lowest SST. When comparing SST records of this
study with those from northern sites 980 and U1314 (Fig. VI-3b) an increasing N-S
latitudinal SST gradient can be observed. After the pronounced warming recorded at
the beginning of interglacials, millennial-scale climate changes are recorded both at
high and at middle latitudes, but southern waters remained relatively warm, while the

northern ones cooled as a result of the progressive extension of the northern
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Hemisphere ice sheets and associated southward advance of the AF (WF02; Alonso-
Garcia et al., 2011a). This pattern is particularly noticeable at transitions MIS 19/18,
MIS17/16 and MIS15/14. During the early phase of glacials, areas at latitudes of 372N
were influenced by the warm subtropical waters of the Azores current, as indicated by
the presence of the subtropical assemblage in our Site (Fig. VI-2f). SST were similar
during glacials, especially MIS 20, and interglacials, especially during MIS 20. A similar
situation was observed in site U1313 during MIS 16, when warm and stratified surface
waters coexisted with the presence of IRD layers produced by Heinrich-like Events
(Naafs et al., 2011).

This lack of correspondence between SST and ice volume maxima was also
recorded in the mid-latitude North Atlantic in more recent isotope stages, like MIS 6
(Martrat et al., 2007) and the Last Glacial Maximum, when surface water temperature
was almost as high as today, according to SST reconstructions from the Portuguese
margin (Cayre et al., 1999; de Abreu et al., 2003) and the North Atlantic at the same
latitude (Chapman and Shackleton, 1998).

This mismatch between increasing global ice volume, cool SST in the northern
latitudes and warm surface waters off Iberia supports the instrumental role that warm
surface waters of mid-latitude North Atlantic had in building northern hemisphere ice
sheets, providing an important source of water vapor to promote ice growth

(Ruddiman and Mclntyre, 1981; Sanchez-Goiii et al. 2013).

6. CONCLUSIONS

Our study of the variation of planktonic foraminifers assemblages and SST, from
the Shackleton site during the middle Pleistocene, as well as the comparison of our
results with both benthic and planktonic §'®0 records and Ca/Ti data from the same
Site (Hodell et al., 2015), allows the characterization of climatic conditions in the North
Atlantic back to the ninth climatic cycle (867 ka). SST was generally colder during the
middle Pleistocene than today off the southwestern Iberian margin, especially summer
temperature, which was higher than today only during very short periods in some
interglacials. During this period and superimposed on the glacial-interglacial variations,

millennial-scale climatic variability was recorded.
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All deglaciations on the Portuguese margin, both Terminations (particularly T IX
and VIII) and the transitions from glacial to interglacial substages (MIS 21b/a, MIS
18e/d and especially MIS 15b/a), show a prominent (up to 102C in amplitude) cold-
warm climate oscillation. This high amplitude variation in temperature during
deglaciations is recorded by a remarkable change in the planktonic foraminifer
assemblages from high relative abundance of the polar species Nps to high relative
abundance of the subtropical association (Fig. VI-2e-f).

These high amplitude oscillations in temperature were the result of major
reorganizations of Sea surface and deep water circulation in the North Atlantic
triggered by freshwater releases to the Ocean when Ice sheets in the northern
Hemisphere started to retreat. Reduced salinities at surface shutdown NADW
formation and reduced the northward advection of heat and the transport of warm
waters to the eastern margin of the subtropical gyre, causing the advection of subpolar
waters to the SW Iberian margin. This scenario rapidly changed when the freshwater
perturbation stopped. The re-initiation of NADW formation enhanced the strength of
the AMOC leading to an intensification of the NAC and the flux of warm waters to the
Iberian margin.

The comparison with SST records from higher latitudes of the North Atlantic
reveals the development of a steeper latitudinal SST gradient between the sub-tropical
and the sub-polar North Atlantic as ice sheets were growing in the northern
Hemisphere, providing a source of water vapour that could promote the growth of ice

sheets.
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CHAPTER VII

VARIATION IN NORTH ATLANTIC
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*This Chapter is based on: Martin-Garcia, G.M., Sierro, F.J., Flores, J.A., Variations
in North Atlantic circulation during glacials MIS 20, 18, 16 and 14. Insights from
planktonic foraminiferal fauna. Marine Microplaleontology. (in preparation)
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ABSTRACT

The Southwest Iberian margin is highly sensitive to changes in the distribution of
North Atlantic currents and water masses, as well as to changes in the position of the
Arctic and subtropical fronts. In this work we reconstruct the evolution of
oceanographic parameters during glacial stages from 814 ka (MIS 20) to 530 ka (MIS
14), based on planktonic foraminifers analysis of core IODP-U1385 (37234.285°N,
1027.562°W; 2585 mbsl). By comparing our findings with records from other North
Atlantic core sites located between 39 and 58.4 ©N, we are able to trace
palaeoceanographic conditions across the North Atlantic for the interval. Variations in
abundance of microfaunal assemblages indicate a change in the general North Atlantic
circulation during MIS 16, associated with the shift in the Arctic Front (AF) position and
intensification of North Atlantic Deep Water (NADW) formation that happened at the
time. During glacials previous to MIS 16 the southern position of the AF and the surges
of icebergs and associated production of meltwater severely reduced the NADW
formation, which resulted in a weakened North Atlantic Current and the dispersal of
polar water over the North Atlantic. The NAC followed an almost pure west to east
drift, and off the SW Iberian margin warm subtropical water overflowed (probably
northward) the colder polar and subpolar water masses advected southward. Since
MIS 16, the northern position of the Arctic Front and increased production of NADW
reactivated the North Atlantic Current, which advected warmer water to higher
latitudes. Off the Iberian margin, the Portugal Current became stronger and diverted
warmer water offshore, reducing the relative abundance of warm surface-dwelling

species in Site U1385.
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1. INTRODUCTION

The North Atlantic is characterized by a continuous flow of warm and salty surface
water originated in the tropical region and transported northwards by the Gulf Stream,
which continues as the North Atlantic Current (NAC). This mass of water returns,
cooler, southward along the western European continental margin. The NAC forms the
transition zone between the cold and productive waters located at the North of the
Arctic Front (AF) (eg., Johannessen et al., 1994), and the warm and oligotrophic waters
from the subtropical gyre in the South. Linked to the different water masses the
planktonic foraminiferal fauna can be grouped into different assemblages, such as
polar, subpolar, transitional, North Atlantic Current, Azores Current and tropicical (eg.,
Bé, 1977; Ottens, 1992; Johannessen et al., 1994; Cayre et al., 1999; Salgueiro et al.,
2008). During glacials, the AF and associated productivity maximum moved southward
into mid-latitude North Atlantic (Stein et al., 2009; Villanueva et al., 2001), cold polar
waters expanded to lower latitudes and the NAC did not reach as far North as during
interglacials (Pflaumann et al., 2003). After MIS 21 a northwest shift in the position of
the AF began, both during interglacials (Hernandez-Almeida et al., 2013) and glacials
(Alonso-Garcia et al., 2011b), which culminated after MIS 16 in similar positions as it
occupies today (Wright and Flower, 2002) (Fig. VII-1), and allowed increased influence

of the NAC in higher latitudes during glacials.

Various studies have shown that surface water characteristics in the mid-latitude
North Atlantic depend on the strength and position of the NAC and the associated
oceanic fronts (e.g., Calvo et al., 2001; Naafs et al., 2010; Voelker et al., 2010). Over
the last glacial cycle, the northern Iberian margin recorded peak displacement events
of the AF (Eynaud et al., 2009) and was, in general, more affected by the subpolar
water masses than the southern part, which was more influenced by the subtropical
water masses from the Azores Current (Rodrigues et al., 2011). As a consequence, a
latitudinal temperature gradient was produced along the western Iberian margin
which can be observed in SST reconstructions based both in alkenone (eg., Martrat et
al.,, 2007) and in planktonic foraminifera data (Salgueiro et al., 2010). Nevertheless,
there is evidence that polar to tropical planktonic foraminifers assemblages co-

occurred in a latitudinal band around 352 —40°2N during the Last Glacial Maximum,
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which suggests the absence of the North Atlantic Drift but the presence of a strong
subpolar gyre (Mclintyre et al., 1976). Core IODP-U1385 is located near the present day
boundary (Filza et al., 1998) between different water masses and we expect it to have
been close to the Arctic Front during some of the extreme cold events that punctuated
the period between MIS 21 to 14, but also to have stayed under the influence of the
tropical climate through surface current connections for a significant portion of this
time interval. We think that faunal data from Site U1385 can provide valuable insight
into the variations of the distribution of North Atlantic currents and the fluctuations in
the position of subtropical and arctic fronts along the Pleistocene.

Previous studies (e.g., Cayre et al., 1999; Bard et al., 2000; de Abreu et al., 2003;
Roucoux et al., 2005; Vautravers and Shackleton 2006; Martrat el al., 2007; Rodrigues
et al.,, 2011) of oceanographic conditions off Iberia and reconstruction of surface
circulation in the North Atlantic reach back to isotope stage MIS 15. As a contribution
toward the improvement of palaeoceanographic reconstructions along the
Pleistocene, this paper aims to describe the evolution of the sea surface circulation in
the North Atlantic during glacial marine isotope stages (MIS) 20, 18, 16 and 14, based
on planktonic foraminifer analysis of sediments from the IODP core U1385. To fit our
finding into a larger context, we discuss surface water conditions across the North
Atlantic by comparing our results with previous works conducted on cores from

different locations in the North Atlantic.

84



Chapter VII: Variations in North Atlantic circulation during MIS 20, 18, 16 and 14

(previous page) Figure VII - 1. Position of the Arctic Front (AF) during glacials (dashed line)
and interglacials (dotted line) before (a) and after (b) MIS 16 (from Wright and Flower, 2002).
Site U1385 and other sites mentioned in this chapter are shown in the map.

2. MATERIAL AND METHODS

Sediments at Site U1385 define a single lithological unit, very uniform and
dominated by calcareous muds and calcareous clays, with varying proportions of
biogenic carbonate (23% - 39%) and terrigenous sediment and the occasional
occurrence of ice rafted debris (IRD). Cyclic variations in physical properties and color
reflect cyclic changes in the proportion of biogenic carbonate and detrital material
delivered to the site (Hodell el al., 2013b).

This study covers four sections from the secondary splice U1385D/E comprised
between 57.70-58.62, 60.18-62.94, 66.77—74.02 and 76.3—-80.4 crmcd (MIS 14, 16, 18
and 20). Sampling was performed every 20 cm (1 cm for isotopic analysis), providing
estimated resolution records of 1.4, 2.8, 1.5 and 1.4 ky for each of the four intervals. A
total of 92 samples 1 cm thick were dried, weighed and washed over a 63 mm mesh
sieve. The >63 mm residue was dried, weighed and sieved again to separate and weigh
the >150 mm fraction. Census counts of planktonic foraminifera taxa were conducted
on the sediment fraction larger than150 mm, which was successively split until a
minimum of 300 specimens was obtained. A total of twenty-eight species and ten
morphotypes (Kennett and Srinivasan, 1983) of planktonic foraminifers have been
identified (Appendix 1) and their relative abundances, calculated.

The age model of the studied section is based on the correlation of the benthic
oxygen isotope record to the global benthic LR04 isotope stack (Lisiecki and Raymo,
2005) (see Hodell et al., 2015)

Sea surface temperature (Martin-Garcia et al., 2015) was reconstructed from
planktonic foraminifer census counts according to the Artificial Neural Network
method and comparing with MARGO North Atlantic database, as described in Kucera
et al. (2005).

For sites U1314, 980 and 607(U1313), percentages of planktonic foraminifer
assemblages have been estimated using original published data (Alonso-Garcia et al.,

2011a; Wright and Flower, 2002 and Ruddiman et al., 1989, respectively). The age
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model for these sites has been recalculated referred to the U1385 Age model, using

Analyseries software (Paillard et al., 1996).

3. RESULTS: Micropaleontological analysis

Microfaunal analysis focuses on species and assemblages (Appendix V) that can be
directly used to monitor changes in North Atlantic water masses and currents.

The polar species Neogloboquadrina pachyderma sinistral (Nps) has a temperature
tolerance range between -1 and 8 2C and an optimum of 2 2C (Tolderlund and Bé,
1971). In site U1385 this species presented generally higher relative abundance before
MIS 16 than afterwards (Fig. VII-2c). The highest percentages of Nps occurred during
deglaciations, both Terminations and partial reduction of ice sheets volume, and
coincided with decrease of benthic 8"*C, especially so during MIS 20 and 18. This
suggests that the reduction of the North Atlantic Deep Water (NADW) formation and
reduction of the Atlantic Meridional Overturning Circulation (AMOC) resulted in the
increase of very cold water of polar origin advected southward.

Turborotalita quinqueloba (Tq) has a temperature tolerance range of 4.62C —
10.82C (Tolderlund and Bé, 1971), with an optimum of 122C (Stangeew, 2001). High
percentages of this species are found south of Iceland (Pujol, 1980), and its maximal
abundance has been recognized as associated with the AF (Johannessen et al., 1994;
Cayre et al., 1999; Wright and Flower, 2002). In site U1385 this species became more
abundant at 655 ka, in MIS 16b, and since then it kept higher percentages than before
(Fig. VII-2d).

The North Atlantic Current (NAC) assemblage (Ottens, 1991) was more abundant
during MIS 16 and 14 than before, the increase in its relative abundance happened
~655 ka, coinciding with the decrease of Nps (Fig. VII-2). During MIS 18 the relative
abundance of this assemblage decreased progressively towards the end of the isotope
stage.

Dextral Neogloboquadrina pachyderma (Npd) has a temperature optimum
between 10-18 2C and the limit with Nps is the April isotherm of 7.2 2C (Ericson, 1959).
This species is considered a proxy for the present-day Portugal Current (Salgueiro et

al.,, 2008) and a component of the NAC assemblage (Ottens, 1991). Its record in site
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U1385 is similar to the NAC assemblage one and during MIS 14 Npd becomes the

species with highest percentage in this assemblage (Fig. VII-2e).

N AN Q L N N AN Q N QS N} AN Q L S O AN N
¥ & &8 & & & & & a4 L L L E @

L L L L L L L L L L L L L B L B L L L L L L L L L LN B L B L AL L L

z >
e

%PRODUCTIVITY
(G. bullo + G. glutin)
0 10 20 30

f E% .Z= TIX
0 10 20 30
% G.ruber
% Warm surface

% NAC
% N. pachyderma dex

0 10 20
% SUBPOLAR
Turborotalita quinqueloba

40
|

% POLAR
N.pachyderma sin
0

(=}
-
=@ W\ M
oo L. \Yfm/
25 °r = /\ﬂ\/\/\/\f \‘| \/v ©
- o Ire)
L gl l s £ 7
m r o3 € m
- —_ © c 0
L - % © w oa
g % 8 ) £>°
& © B © 52
© ?_’ ‘Lg O © - [ © O © m
g g g 8 8¢ ¢
|||\[\llllllll[l‘?‘lllllll‘\[“\‘Illllll[\‘llllll}[l[\‘\l
Q Q Q Q Q Q O Q Q Q Q Q S Q Q
@ @€ & &K & & F & & A L L A L ¢

Age (ka)

Figure VII - 2. Relative abundance of planktonic foraminifer species and assemblages in Site
U1385. Benthic foraminifer "0 (a), and 8"*C (b) (Hodell et al., 2015). Relative abundances of
(c) Neogloboquadrina pachyderma (sinistral); (d) Turborotalita quinqueloba; (¢) North Atlantic
Current assemblage (as defined by Ottens, 1991) and (filled) the percentage of
Neogloboquadrina pachyderma (dextral); (f) Warm surface assemblage (as defined by
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Vautravers et al., 2004) and (filled) Globigerinoides ruber (white); (g) Productivity assemblage
(Globigerina bulloides + Globigerinita glutinata) and (filled) Globigerina bulloides. Marine
isotope substages are named according to Railsback et al. (2015).

The surface-dweller subtropical species Globigerinoides ruber (Ottens, 1991) can
tolerate a wide range of salinity (Bijma et al., 1990) and is a component of the warm
surface assemblage (Vautravers et al., 2004). This assemblage is recorded in U1385
during all studied glacials (Fig. 2), even coinciding with high values of polar and
subpolar species, which suggests the presence of subtropical surface water
overflowing colder water of subpolar or polar origin, either during the whole year or
seasonally. Since glacial maximum MIS 16a generally lower values of this assemblage
occur, coinciding with generally high percentages of the North Atlantic Current
assemblage and increasing abundance of the Portugal Current proxy (Fig. VIl-2e-f).

The Azores Current assemblage (Globigerinoides ruber and Globorotalia inflata) is
typical of the present-day subtropical branch of ENACW, transported to the Northeast
Atlantic by the AzC and northward in Site U1385 during non-upwelling months
(Salgueiro, 2008).

Globigerina bulloides is abundant in areas of high phytoplankton productivity and
deep mixing layer, as well as in subpolar waters (north of 48 2N), which are rich in
nutrients (Reynolds and Thunell, 1985; Schiebel et al., 2001). It is traditionally
considered a proxy for upwelling (Prell, 1984), particularly in the northeastern
subtropical Atlantic (Chapman et al., 1996) and at the Iberian margin (de Abreu et al.,
2005; Salgueiro et al., 2008). Globigerinita glutinata is an opportunistic species that
prefers productive environments (Ottens, 1992) and high percentages of it are
observed in relation to surface current eddies that help to increase the nutrient input
to the mixed layer (Schmuker and Schiebel, 2002; Olson and Smart, 2004). Both
species are grouped into a productivity assemblage (Fig. VII-2g) that keeps similar
values during all glacials. Higher percentages of it coincide indistinctly with either
warm, polar or NAC waters. This suggests an active upwelling throughout the study

interval, with different source of upwelled waters.
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4. DISCUSSION: changes in the distribution of currents in the North Atlantic
Variations in surface water characteristics at Site U1385 are interpreted to reflect

changes in the influence of the different oceanic water masses present in the North

Atlantic. To include our findings in the general oceanic context, we compare our results

with data from other North Atlantic locations.

4.1. Marine Isotope Stage 20

The polar species Nps has been used to monitor southward penetrations of polar-
sub polar waters in North Atlantic mid-latitudes that reached the Iberian margin (eg.,
Bond et al., 1992; Cayre et al., 1999; de Abreu et al., 2003; Eynaud et al., 2009; Martin-
Garcia et al., 2015). The percentage of this species in Site U1385 remained relatively
low until MIS 20b. Increase of the NAC assemblage is also recorded at the time (Fig.
VII-3b-c).

Microfaunal data from site ODP-980 inform that the AF advanced rapidly
southward towards its ~502N position during MIS 20d (Wright and Flower, 2002; hence
for, W&F02). As the AF migrated southward, the area of NADW formation was affected
and the AMOC weakened, assuming a close correlation between the rate of
thermohaline circulation and benthic 8"C levels (Zahn et al, 1997) (Fig. VII-3a-b). The
progressive reduction of the AMOC during MIS 20d-b was punctuated by episodes of
sharp decrease of NADW formation, probably related with sudden coverage of the
area of sinking by the AF; after each one of these episodes the locus of deep water
formation shifted to a southeastern position and allowed the recovery of the AMOC, as
informed by rapid increase of ">C. This progressive reduction of the AMOC resulted in
the spread of polar waters into mid-latitude central ocean, which was recorded in site
607 as high percentage of the polar Nps and deep and prolonged cooling (Fig. VII-3b,e)
(Ruddiman et al., 1989). The southward migration of the AF should have deflected the
NAC eastward, similarly to what happened during the Last Glacial Maximum
(Pflaumann et al., 2003) or the most severe cold glacials of early Pleistocene (Naafs et
al., 2010), when the NAC acquired an almost pure west to east flow.

Contrary to what happened in the middle ocean, Site U1385 recorded warm SST
during most of MIS 20 (Fig. VII-3e), and only the drastic reduction of the AMOC during
MIS 20a produced substantial decrease of SST (Martin-Garcia et al., 2015) by the
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advection of polar water via the Portugal Current (PC). The west-east surface
temperature gradient that developed in the mid-latitude North Atlantic suggests that
the subtropical gyre was deflected eastwards, at least during some episodes of
southward advance of the AF in the western ocean, and warm surface water reached

the Iberian margin but not site 607 in the central North Atlantic (Fig. VII-3d).
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Figure VII - 3. Comparison between mid-latitude and subpolar North Atlantic during MIS 20. (a)
Benthic 80 profile from U1385 (purple); benthic 8"°C record from U1385 (golden) and subpolar site
ODP-980 (black). (b) Relative abundance of N. pachyderma (sinistral) from sites U1385 (filled purple)
607 (green) and 980 (blue). (c) Relative abundance of the NAC assemblage (as defined by Ottens, 1991)
from sites 980 (blue) and U1385 (dark purple). (d) Relative abundance of G. ruber white from sites 607
(green) and U1385 (red). (e) SST data for sites 607 (green) and U1385 (purple). (f) IRD concentration in
site 980. Data from site 980 are from W&F02; and data from site 607 are from Ruddiman et al. (1989).

4.2. Marine Isotope Stage 18

During MIS 18e, as ice sheets grew continuous iceberg discharges happened —
recorded as thick IRD layers in subpolar North Atlantic (W&F02; Alonso-Garcia et al.,
2011b) (Fig. VII-4f), with associated meltwater surges and the advection of fresh water,
which gradually reduced the NADW formation. Mid-latitude site U1385 registered
more 13C—depleted bottom water than northern site 980 (Fig. VII-4a), which suggests
that the formation of NADW was very weak at the time. The reduction of the AMOC

resulted in the southward advance of the AF and the deflection of the NAC, which is
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recorded by the progressive decrease of percentage of the NAC assemblage, mirroring
the increase of the polar Nps, in site 980 (Fig. VII-4b-c). Site U1385 did not register
substantial decrease of the NAC assemblage prior to the deglaciation of MIS 18e and
associated drastic reduction of AMOC, which suggests that during MIS 18e the NAC
progressively acquired a west - eastward flow and remained active in mid-latitude
ocean. Towards deglaciation site 607 recorded higher percentages of the polar species
Nps than U1385, which suggests that the in the western North Atlantic the AF would
have acquired a more southern position than in the eastern, which would have

diverted the NAC eastwards of site 607.

The NAC reached the subpolar North Atlantic during MIS 18d-b, when the ice
sheets size was similar to interglacial conditions, the AF retreated northward and the
AMOC was vigorous, as similar 8'°C from site 980 and site U1385 suggests (Fig. VII-
4a,c). This allowed the northward advection of warm water, registered in mid-latitude

North Atlantic by increased percentages of G. ruber and increased SST (Fig. VII-4d-e).

Since the glacial inception of MIS 18b, the continued southward migration of the
AF produced a rapid weakening of the AMOC that resulted in drastic reduction of the
surface circulation and the rapid spread of polar water across mid-latitude North
Atlantic (Fig. VII-4b). Although during most of MIS 18a values of §"*C from site 980
(W&F02) suggest NADW formation at the site, abyssal water in site U1385 was “*C-
depleted AABW (Fig. VII-4a), which indicates that the overturning was very shallow and
not enough to maintain a vigorous surface circulation. Since the glacial maximum of
MIS 18a, increasing frequency of IRD in high latitudes (W&F02) (Fig. VII-4f) informs of
continuous massive surges and melting of iceberg that culminated in Termination VI
and drastically weakened the export of NADW, similarly to what happened during
deglaciations in Terminations | and Il (McManus et al., 2004). During T VIII the AMOC
descended to its minimum value in the whole mid-Pleistocene, as minima in **C from
site U1385 suggest (Fig. VII-2b), and produced even further weakening of the NAC and
southward advection of polar water. This is recorded by lowered percentages of the
NAC assemblage both in subpolar and in middle latitudes as well as by lowered SST in

site 607 (Ruddiman et al., 1989) and U1385 (Martin-Garcia et al., 2015) (Fig. VIl-4c,e).
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The presence of the warm surface water assemblage in site U1385 coinciding with
high percentages of the polar Nps (Fig. VII-2) suggests that a warm subtropical water
mass overflowed colder water of polar origin that was being advected southward in
increasing quantity during MIS 18. This interpretation is consistent with warm surface

alkenone-based SST data from the mid-latitude open ocean (Naafs et al., 2011b).
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Figure VII - 4. Comparison between mid-latitude and subpolar North Atlantic during MIS 18. (a)
Benthic 'O profile from U1385 (purple); benthic 8"°C record from U1385 (golden) and subpolar site
ODP-980 (black). (b) Relative abundance of N. pachyderma (sinistral) from sites U1385 (filled purple)
607 (green) and 980 (blue). (c) Relative abundance of the NAC assemblage (as defined by Ottens, 1991)
from sites 980 (blue) and U1385 (dark purple). (d) Relative abundance of G. ruber white from sites 607
(green) and U1385 (red). (e) SST data for sites 607 (green) and U1385 (purple). (f) IRD concentration in
site 980. Data from site 980 are from W&F02, and data from site 607 are from Ruddiman et al. (1989).

4.3. Marine Isotope Stage 16

During MIS 16, sea surface waters remained warm and stratified across the whole
mid-latitude North Atlantic, due to the northward position of the AF (Naafs et al.,
2011), similarly to what happened in MIS 6, when the AF occupied a more northward

position than that occupied during the Last Glacial Maximum (Calvo et al., 2001). This
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position of the AF at the time combined with an increased production of NADW, as
benthic 8">C record in the subtropical North Atlantic documents (Poirier and Billups,
2014), allowed the arrival of warmer, mid-latitudes North Atlantic water to higher
latitudes, providing more humidity to the area and, thus, enhancing the growth of ice
sheets, as indicated by 580 records. Internal instabilities in the ice sheets or the
calving effect of the continuously advected warm water masses, produced the
intermittent collapse of the ice cap and the subsequent icebergs surges, which
interfered with thermohaline overturn, without completely stopping it. Despite this
apparent contradiction with the established deep circulation mode (Rahmstorf et al.,
2002) for ice rafting episodes, recent studies for the last glacial cycle (B6hm et al.,
2014) prove that shutdowns of NADW formation only occurred during Heinrich stadials
close to glacial maxima with increased ice coverage. This interpretation is consistent
with an important, yet highly oscillating, abundance of NAC assemblage in high latitude
North Atlantic coetaneous with IRD layers and low 8"C values in the region (W&F02)
(Fig. VII-5a,c,f). In this sense, the outstanding episode that occurred ~645 ka, with the
second lowest 8">C value for the whole mid-Pleistocene in coincidence with very high
abundance of the NAC assemblage in site 980 (W&F02) (Fig. VII-5a,c), points to an
exceptionally vigorous but shallow NA overturning cell, underlain by significant
volumes of southern-sourced water, similarly to the situation at the end of
Termination Il (Bohm et al., 2014). In the subtropical eastern North Atlantic, the sub
polar species Tqg gained importance along this stage, and since mid-MIS 16 it became
more abundant than Nps (Fig. VII-2). As the maximum abundance of Tq is linked to the
limit between the Artic and the NAC water masses (Johannessen et al., 1994), the
foretold substitution of species can be interpreted as a change in the water mass that
reached the Iberian margin during cold periods before — polar water — and after — NA
water of sub-polar origin (ENAWsp) — mid-MIS 16, due to the retreat of the AF to a
more northern position. Between 660 and 645 ka the southwester Iberian margin
recorded a severe and prolonged cooling that was not recorded in the open ocean,
probably because of the persistent influence of the Gulf Stream that blocked polar
waters from the central North Atlantic and re-directed them eastwards, similarly to

what happened during the glacial inception of MIS 11.32 (Stein et al., 2009).
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For the whole MIS 16 the NAC maintained a Northeast direction, recirculating
relatively warm waters to the sub-polar regions and southward again along the Iberian
margin. As the ice sheets grew, and as a consequence of the more northern position
occupied by the AF respect to previous glacials, the NAC was only slightly diverted
southward and was still able to block almost completely the flooding of cold northern
water masses into the subtropical ocean. Paradoxically, this blockage increased as the
glacial advanced, as the low abundance of polar — subpolar species and the increasing

importance of NAC assemblage from U1385 sediments suggest.
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Figure VII - 5. Comparison between mid-latitude and subpolar North Atlantic during MIS 16. (a)
Benthic 80 profile from U1385 (purple); benthic 8"°C record from U1385 (golden) and subpolar site
ODP-980 (black). (b) Relative abundance of N. pachyderma (sinistral) from sites U1385 (filled purple)
607 (green) and 980 (blue). (c) Relative abundance of the NAC assemblage (as defined by Ottens, 1991)
from sites 980 (blue) and U1385 (dark purple). (d) Relative abundance of G. ruber white from sites 607
(green) and U1385 (red). (e) SST data for sites 607 (green) and U1385 (purple). (f) IRD concentration in
site 980. Data from site 980 are from W&F02, and data from site 607 are from Ruddiman et al. (1989).
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4.4. Marine Isotope Stage 14

Off Iberia, Npd was the most abundant species during this interval and, contrary to
previous glacials, during MIS 14 the NAC assemblage was almost exclusively composed
of Npd (Fig. VII-2). Today this species is linked to the presence of ENACWsp, brought
southward into the region via the PC, the descending branch of the NAC eastern drift
(Salgueiro et al., 2008) and its continued and high abundance during this interval
suggests an almost permanent, very vigorous southern drift of the ENAC and thus, a
very active NAC. Nevertheless, the Npd percentage shows deep and sharp oscillations
that happened in synchronicity with peaks in either polar — subpolar species (Nps and
Tqg) or warm subtropical ones (warm surface assemblage and G.ruber), which means
that the general influence of the NAC over the whole North Atlantic was interrupted by
episodes of southward flows of subpolar waters and others of northward migration of
the subtropical gyre as far northward as to induce the advection of very warm waters
along the Iberian margin. These cold episodes happened at the glacial inception of MIS
14d, and were probably caused by the combined action of a fast southward migration
of the AF with iceberg discharges (W&F02; Alonso-Garcia et al., 2011b) that produced
important surges of fresh waters in the source of the overturning, which temporarily
reduced the NADW formation, weakened the NAC drift and subsequently favoured the
spread of very cold waters across the North Atlantic (Fig. VII-6a-c). The afore
mentioned warmest episodes happened always in association with sharp increases in
benthic 8"C (Fig. VIl-6a,d), which suggests that sudden and sharp recovery of the
AMOC, with the subsequent reactivation of the NAC, might have produced the
northward migration of the ITCZ and the arrival of subtropical waters (ENACWst) to the

southwester Iberian margin.

Other records from different latitudes in the North Atlantic support this
interpretation. Site ODP-980 records fast and deep oscillations of the NAC assemblage
that are consistent with data off Iberia in this way: increases of the NAC assemblage in
Site 980 correlate with peaks of warm fauna in U1385, and sharp decreases of NAC
assemblage in the northern Atlantic correlate with high values of polar — subpolar
species off Iberia (Fig. VII-6). The different faunal distribution, as well as and increased

SST gradient between middle and high latitudes (Martin-Garcia et al., 2015), suggest
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and almost purely west to east flow direction of the NAC and a southern position of
the AF, similarly to reconstructions for the Last Glacial Maximum (Pflauman et al.,
2003). Icebergs and meltwater surges that produced episodes of sharp reduction of
NADW formation were recorded in high latitudes by deep decreases in benthic 8*°C,
IRD layers and peaks in the polar Nps record (Wright and Flower, 2002) and in middle
latitudes, by pronounced decreases of SSTs especially the most superficial water layer,
according to alkenone-based reconstructions for U1313 (Naafs et al., 2011b) and for
MDO03-2699 in the lberian margin (Rodrigues et al., 2011). Some of these cold
episodes, like the one that occurred at the glacial inception of MIS 14, recorded the
presence of IRD also in the mid-latitude ocean and were interpreted as Heinrich-like
events (Stein et al., 2009; Rodrigues et al., 2011). Warmest episodes were recorded at
high latitude by sharp increases of the NAC assemblage (Wright and Flower, 2002) and
at middle latitude by sharp increases of temperature of the more superficial water

layer (Naafs et al., 2011b).
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Figure VII - 6. Comparison between mid-latitude and subpolar North Atlantic during MIS 14. (a)
Benthic 80 profile from U1385 (purple); benthic 8"°C record from U1385 (golden) and subpolar site
ODP-980 (black). (b) Relative abundance of N. pachyderma (sinistral) from sites U1385 (filled purple)
607 (green) and 980 (blue). (c) Relative abundance of the NAC assemblage (as defined by Ottens, 1991)
from sites 980 (blue) and U1385 (dark purple). (d) Relative abundance of G. ruber white from site
U1385. (e) SST data from sites U1313 (green) and U1385 (purple). Data from site 980 are from W&FO02,
and data from site U1313 are from Naafs et al. (2011b).
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5. CONCLUSIONS

Study of variations of planktonic microfaunal assemblages from the subtropical
North-East Atlantic (IODP-U1385), and the comparison of our findings with records
from other core sites of the North Atlantic, allow to trace paleoceanographic
conditions across the North Atlantic during glacials MIS 20, 18, 16 and 14, and draw
the following main conclusions.

The southwester Iberian margin is highly sensitive to changes in the distribution of
North Atlantic currents and water masses, as well as to changes in the position of
arctic and subtropical fronts.

Variations in abundance of microfaunal assemblages associated to different water
masses indicate a change in the general North Atlantic circulation during MIS 16.

Previous to MIS 16, when the arctic front (AF) was located at a more southerly
position during both glacials and interglacials, the North Atlantic circulation was
determined by its southward migration as glacial conditions progressed. During peak
glacial conditions of MIS 20 and MIS 18, coinciding with the southernmost position of
the AF, the North Atlantic Current (NAC) was diverted southward and followed and
almost pure west to east drift, transporting less heat to high latitudes. During these
two glacials, especially during MIS 20, the Azores current (AzC) transported warm
subtropical waters along the Iberian margin superficially over waters of polar origin.

Off Iberia, the shift in the AF position was recorded at ~655 ka by the decrease of
relative abundance of the polar species Neogloboquadrina pachyderma (sinistral) and
the increase of the subpolar one, Turborotalita quinqueloba.

Since MIS 16, the general circulation across the North Atlantic was lesser
influenced by the different positions of the AF than before. The NAC reached high
latitudes more frequently during MIS 16 than during previous glacials, and during MIS
14 the NAC became more important in the subpolar North Atlantic as glacial conditions
progressed. In the subtropical eastern boundary the faunal assemblage associated
with the NAC became the most abundant since MIS 16, which indicates that the PC
became stronger along the l|berian margin and diverted warmer water offshore,

reducing the relative abundance of warm surface-dwelling species in site U1385.
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ABSTRACT

Integrative research including facies characterization, ichnological composition
and foraminifers analysis has been conducted on cores from Site U1385 of the IODP
Expedition 339 to evaluate the incidence of Marine Isotope Stage (MIS) 12 and 11 on
deep-sea environmental changes. Four color facies groups have been differentiated,
showing variable transitions between them (bioturbated, gradual and sharp contacts).
Trace fossil assemblage, assigned to the Zoophycos ichnofacies, consists of light and
dark filled structures, with Alcyonidiopsys, Chondrites, Nereites, Planolites,
Spirophyton, Thalassinoides, Thalassinoides-like structures, and Zoophycos. A deep-sea
multi-tiered trace fossil community is interpreted, revealing predominance of well-
oxygenated bottom and pore-waters, as well as abundance of food in the sediment for
macrobenthic tracemaker community. Changes in environmental parameters are
interpreted associated to significant variations in trace fossil distribution according to
the differentiated intervals (A to M). Benthic foraminifer concentration in the
sediments and variations of the planktonic foraminifer assemblages suggest significant
changes in surface productivity and food supply to the sea floor since the ending of
MIS 13 to the end of MIS 11 that could be correlated with the registered changes in
facies and trace fossil assemblages. At the end of MIS 13 values of Annual Export
Productivity were very low, that together with the presence of light-color sediments
and the continuous presence of light Planolites and Thalassinoides, reveals lower
organic carbon flux to the bottom and high oxygen conditions (interval A). Afterwards
the organic matter supply increased rapidly and remained very high until Termination
V, determining an eutrophic environment, expressed by high benthic foraminifer
accumulation rates, and reduced availability of oxygen, that correlate with the record
of Spirophyton and Zoophycos, and the presence of Chondrites, observed in the
intervals B and D. Lower benthic foraminifer accumulation rates during MIS 11 suggest
an oligotrophic environment at the bottom consistent with lower inputs of organic
carbon, associated to high oxygen content of bottom waters that agrees with the
lighter color of the sediments as well as by the continuous presence of light Planolites
and Thalassinoides in the differentiated interval M. The evolution of the macrobenthic

tracemaker community during MIS 12 and 11 responds to major changes in bottom
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water ventilation probably linked to variations in deep water (North Atlantic)

thermohaline circulation, determining variations in oxygen and food availability.

1. INTRODUCTION

Glacial/interglacial climatic cycles occurring during the Quaternary have been
extensively studied due to their incidence on variations in the atmosphere/ocean
dynamics and on the involved biota, including hominids. From the several
glacial/interglacial episodes, some of them are of special interest, as occurs with those
corresponding with the Marine Isotope Stage (MIS) 12 and 11 (MIS 12 and MIS 11).
The time interval involving the MIS 12 and 11 is considered one of the most extreme
glacial and interglacial periods of the middle Pleistocene. The glacial MIS 12 is
characterized by strong cold conditions, and the interglacial MIS 11 is one
exceptionally long interglacial warm period. The Mid-Brunhes Event (MBE), close to
the MIS 12/11 transition, at around 450 ka BP, a climatic transition between MIS 13
and MIS 11, separates 2 significantly different climatic modes, with interglacials
characterized by only moderate warmth previous to this event (early Middle
Pleistocene interglacials; 780-450 ka), and interglacial characterized by greater warmth
after this event (Middle and Late Pleistocene interglacials; after 450 ka) (i.e., Candy et
al., 2010). The transition MIS 12/11, corresponding with Termination V, is the longest
glacial Termination of the past 450 ka, having major incidence for the biogeography
and human occupation (Candy et al., 2014).

MIS 11 is considered as one of the appropriate climate analogue for the Holocene,
being of special interest even for the analysis of future climate variations, which is
reflected by the amount of information obtained on this episode (see two consecutive
reviews by Droxler et al., 2003 and Candy et al., 2014). All this information allows a
detailed characterization of MIS 11, the warm climatic features, and the induced
changes in the atmosphere/ocean dynamics. Thus, according to the last revision by
Candy et al. (2014), and references therein, several features of MIS 11 are the
following: a) the warm episode MIS 11 consists of an interglacial (MIS 11c) and several
interstadial and stadial events (i.e., MIS 11a and MIS 11b), with differences in the

number and magnitude according to the studied records, b) the MIS 11c is a long warm
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climate period that lasted for about 25-30 ky, c) temperature data reveals that MIS 11
was an interglacial of relatively moderate warmth, similar to, or slightly cooler than the
Holocene, and d) most of the evidences suggest that MIS 11c is characterized by sea
levels significantly above those from the Holocene, even turnover in fauna are
consistent with prolonged period of lower sea levels at the beginning and middle part

of MIS 11c.

Detailed analyses of MIS 11 and MIS 12 have been conducted in a number of
studies on marine, ice core, lacustrine and terrestrial sequences, involving numerous
biotic (i.e., pollen and foraminiferal assemblages) and abiotic (i.e., stable isotope and
elemental chemistry) proxies, allowing interpretation of environmental parameters
such as the global ice volume, or sea surface temperatures. In this sense, as pointed
out by Candy et al. (2014) for the identification of MIS 11 in British terrestrial record,
terrestrial deposits contain numerous proxies allowing interpretation of different
environmental parameters, whereas ice and marine core records contain, frequently, a
single proxy. In marine sediment cores the usually applied biotic proxies are
foraminiferal (benthic and planktonic) assemblages. In this sense, little attention has
been focused on the ichnological record, being very scarce or near absent, the
approaches based on the study of the trace fossil assemblage (see Lowemark et al.,
2006 and 2012, on trace fossil assemblages studies including MIS 11 in the eastern
Mediterranean Sea and Artic Ocean, respectively). Here we present a detailed
ichnological analysis of MIS 11 and MIS 12 on cores from IODP Expedition 339 Site
U1385, in order to interpret changes in deep-sea environmental conditions, affecting
the macrobenthic environment. Integration with information from benthic and
planktonic ~ foraminifers, allows integrative interpretations. Moreover,

paleoceanographic implications will be assessed.

2. MATERIAL AND METHODS

The research has been conducted on Cores 7H-4 to 7H-1 from Hole U1385D
(“Shackleton Site”). Facies characterization has been integrated with the analysis of

trace fossils and benthic/planktonic foraminifers.
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Facies analysis is based on the study of lithological composition, type of contacts
and primary sedimentary structures, with special attention to stratigraphic variations.
Digital image treatment allows recognition of variations in color, difficult to recognize
based, exclusively, on visual observations (Dorador and Rodriguez-Tovar, 2014a).
Ichnological analysis focused on trace fossil assemblages, including trace fossil
composition, infilling material, cross-cutting relationships, tiering structure, and
relative abundances. Ichnotaxonomical classification was conducted at the ichnogenus
level, as usual for core analysis. Ichnological analysis was conducted on detailed
observations of half-cut sections of the core in the IODP core repository at Bremen
(Germany), together with the study of high-resolution images. Several techniques of
digital image treatment to improve the trace fossil visibility were applied for
ichnological characterization (Dorador and Rodriguez-Tovar, 2014; Dorador et al.,
2014a, b; Rodriguez-Tovar and Dorador, 2014, in press).

Sampling for Export productivity (Pexp) reconstruction and isotope studies was
performed every 20 cm providing an estimated average 2 ky resolution record, and for
counts on both benthic and planktonic foraminifers sampling was performed at an
average 4.6 cm separation, providing an estimated average 0.79 ky resolution. Samples
(1 cm thick) were freeze-dried, weighed and washed over a 63 um mesh sieve. The >63
um residue was dried, weighed and sieved again to separate and weigh the >150 um
fraction. Counts on planktonic and benthic foraminifers taxa were conducted on this
sediment fraction, which was successively split until a minimum of 300 specimens
were obtained. Planktonic species (Appendix Ill) were used to reconstruct Pexp with
the modern analogue technique (MAT) (Hutson, 1980) and the modern analog data-
base compiled by Salgueiro et al (2010). Stable isotopes were measured on the
planktonic foraminifer Globigerina bulloides picked from the 250 to 355 um size
fraction and the benthic foraminifer Cibicidoides wuellerstorfi from the >212 um
fraction (see Hodell et al., 2015). Isotopic measurements were performed at the
Godwin Laboratory (University of Cambridge, Cambridge, United Kingdom) on a VG
SIRA mass spectrometer with automatic carbonate preparation system and calibrated
to the Vienna Peedee Belemnite (VPB) standard, allowing an analytical precision better

than 0.08%o.
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The age model of the studied section is based on the correlation of the benthic
oxygen isotope record to the global benthic LR04 isotope stack (Lisiecki and Raymo,

2005; see Hodell et al., 2015).

3. RESULTS
3.1. Facies characterization

As in general for the entire Site U1385, the studied interval consists of bioturbated
calcareous muds and calcareous clays (Expedition 339 Scientists, 2013a, b). Primary
sedimentary structures (i.e., lamination) are near absent; occasionally horizontal
lamination into the darker/black intervals is observed. Moreover, no significant
changes in grain size are observed. In this general, homogenized, pattern, clear
differentiations can be recognized, mainly related to variations in color, probably
associated to the organic matter content, usually linked to changes in the trace fossil
assemblage (see below). These variations in color can be observed directly on cores,
but are even more evident when digital image treatment is applied (Dorador and
Rodriguez-Tovar, 2015). Thus, mainly according to variations in color, upper and lower
contact, and ichnological composition, several intervals have been differentiated (A to
M); see Table 1 and Fig. VIII-1 for a detailed characterization of the intervals. These
intervals can be grouped into four colors groups, from light tone grey/greenish, middle
dark tone grey/greenish, very dark tone grey/greenish and dark/black, showing
variable transitions between them (bioturbated, gradual and sharp contacts). From

here we will refer to grey tone in substitution to grey/greenish.

As a general picture, light tone grey sediments are dominant, mainly registered
and thicker in the lower/middle part of Core U1385D-7H-4 (interval A), and in the
upper part of U1385D-7H-2 and the entire U1385D-7H-1 (interval M). Another thinner
light interval is registered at the base of Core U1385D-7H-3 (interval E). In general

these intervals show a relatively scarce trace fossils filled with light material.

At the opposite, dark/black intervals are scarce and thin, being located exclusively
in the middle and upper parts of Core U1385D-7H-4 (intervals B and D). These intervals
are characterized by dark trace fossils, which occasionally are also observed downward

into the upper parts of the lighter intervals below (intervals A and C).
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Middle and dark grey tone intervals are dominant in Cores U1385D-7H-2 and 3

(intervals F, G, H, |, J, K, and L), and are also registered in the upper part of Core

U1385D-7H-4 (interval C). Middle grey tone intervals (intervals C, G, |, and lower K)

mainly consist of a well developed light trace fossils assemblage on a mottled

background. In the very dark tone grey intervals (intervals F, H, J and upper K) light and

dark trace fossils are observed on a light/dark mottled background. Two intervals

(intervals J and L) into the dark grey intervals show slightly differences in color, with

the presence of greyish/blue/pink sediments.
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(Previous page) Figure VIII - 1. Studied cores from 1385D-7H-1 to 1385D-7H-4, showing the
recognized intervals A to M, as well as contacts and colour differentiation. Photographs before
(left side) and after (right side) digital image treatment are represented for each core.

3.2. Ichnological analysis
Digital image treatment allows a clear differentiation between biodeformational

structures and trace fossils (Dorador and Rodriguez-Tovar, 2014; Dorador et al., 2014a,
b; Rodriguez-Tovar and Dorador, 2014, in press). Biodeformational structures, showing
undifferentiated outlines and the absence of a defined geometry, which impede an
ichnotaxonomical classification (see Uchman and Wetzel, 2011; Wetzel and Uchman,
2012), are registered as a mottled background, with color mixture and predominance
of lighter or darker sediments related to the recognized intervals. Trace fossils show a
variable degree of diffusiveness, from diffuse to discrete structures, as well as variable
infilling material, from light to dark, being clearly distinguished from the host sediment
based on their characteristic shape, although, sometimes, this differentiation is
difficult.
3.2.1. Trace fossil assemblage

In general, a relatively diverse trace fossil assemblage was recognized, including
structures filled with light and dark sediments (light and dark filled structures),
consisting of Alcyonidiopsys, Chondrites, Nereites, Planolites, Spirophyton,
Thalassinoides, Thalassinoides-like structures, and Zoophycos (Fig. VIII-2, VIII-3).
Moreover, undifferentiated sinuous traces have been observed in interval L. Light
infilling traces refer to those light traces slightly darker than the light host sediment.
Light infilling Planolites and Thalassinoides are the dominant, near exclusive,
ichnotaxa, whereas light Nereites are locally observed (Fig. VIII-2). Dark infilling traces
can be produced into the middle and very dark tone grey intervals or into the
dark/black sediments. In the dark trace fossil assemblage Zoophycos is dominant,
Planolites and Thalassinoides are frequent, while Alcyonidiopsis, Chondrites,

Spirophyton, and Thalassinoides-like structures are rare (Fig. VIII-3).

Figure VIII - 2. Light trace fossils and local dark Zoophycos from grey (light, middle and dark
tone) intervals. (A) Diffuse dark Zooophycos (dZo) from dark tone grey Interval K (U1385D-
7H-2) on a well-developed mottled background. (B) Light Thalassinoides (1Th) and Planolites
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(IPl) from light tone grey Interval E (U1385D-7H-3). (C) Light Thalassinoides (1Th) and
Planolites (1PI), and dark Zoophycos (dZo) from middle tone grey Interval C (U1385D-7H-4).
(D) Light Thalassinoides (1Th) and Planolites (1P[), and Nereites (Ne) from light tone grey
Interval E (U1385D-7H-1).

| 9
|

Ly Oy 6€ 8€ L€
Zel LEL OEL 621 82l

-
w
(%]

oL 6€lL 8EL LEL 9€L GEL VEL

L Lyl

H
N
i
(2
H
»
B
(4]
H
[}
H
~
H
(e
H
©
(4]
o
(3]
ey

‘@Zi

€5 25
|
|

|

I B

EvL Lyl OvL 6€L 8EL LEL 9€L SEL VEL €EL CEL LEL OEL 621 8ClL
1

109



G.M. Martin Garcia

The trace fossil assemblage can be assigned to the Zoophycos ichnofacies, typical
for deep-sea environments, as was previously proposed for Site U1385 (Rodriguez-
Tovar and Dorador, 2014). As a general rule, dark trace fossils are registered as cross-
cutting light ones. Into the dark trace fossil assemblage, usually Chondrites and
Zoophycos are observed cross-cutting the rest of traces, such as Planolites, Spirophyton
and Thalassinoides. A brief description of the differentiated ichnotaxa is as follow:

Alcyonidiopsis corresponds to a single elongate cylinder, slightly oblique, dark
filled, 30 mm long and 6 mm wide, showing a pelloidal-like outline (see Uchman, 1999;
Rodriguez-Tovar and Uchman, 2010 for interpretation).

Chondrites is generally observed as dense clusters of circular to elliptical spots,
and short tubes, filled with dark sediment; occasionally branching. Mainly small forms
(< 1.5 mm wide) are observed that could correspond to C. intricatus (Brogniart, 1823).

Nereites consists of small-medium size (2-5 mm diameter) circular to elliptical
forms, with a dark-filled internal zone surrounded by a light filled envelope, observed
as closed (paired) structures in horizontal planes.

Planolites occurs as unlined, unbranched, and mainly as circular to subcircular
cylindrical tubular forms (4-7 mm in diameter, 5-2.5 mm in length). It is largely
registered as horizontal or slightly oblique, filled with light or dark sediment, with a
variable grade of diffusiveness. Fill is structureless, with different lithology from the
host rock.

Spirophyton is registered as a single trace consisting of a central, axial, J-shaped
shaft (around 8 cm high), with alternating horizontal structures (around 2-3 mm wide
and 20 mm long) extending from the axial shaft. Spreite has not been observed. Similar

to Zoophycos, it differs by the small size and shape of horizontal structures.

(Next page) Figure VIII - 3. Dark trace fossils from grey (middle and dark tone) and dark/black
intervals. (A) Dark Zoophycos (dZo) from the dark/black Interval D (U1385-7H-4). (B) Dark
Chondprites (dCh), Planolites (dP!), Spirophyton (dSp) and Thalassinoides (dTh) from the upper
part of the middle grey tone Interval C transition to dark/black Interval D (U1385-7H-4). (C)
Dark Thalassinoides (dTh) and dark Zoophycos (dZo) from the upper part of dark grey tone
Interval H to middle grey tone Interval I  (U1385-7H-2) (D) Dark Alcyonidiopsis (dAl),
Chondrites (dCh), Planolites (dPI), Thalassinoides (dTh) and Zoophycos (dZo) from the upper
part of the middle grey tone Interval G transition to dark grey tone Interval H (U1385-7H-2).
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Thalassinoides is observed as large, oval spots, circular to subcircular (6-12 mm
wide), together with straight or slightly winding, horizontal to oblique smooth
cylinders (20-43 mm long), showing a variable grade of diffusiveness. Structures are
filled with light or dark sediment. Occasionally, mainly light filled Thalassinoides, are
observed in clusters of circular to elliptical spots, corresponding to variable cross-
sections of branching burrow systems.

Thalassinoides-like structures occur locally as circular to subcircular sections, 6-12
mm wide, filled with dark sediment. Shape is similar to Thalassinoides, but showing a
variably developed irregular wall, resembling Ophiomorpha.

Zoophycos is registered as repeated, more or less horizontal, spread structures (2-
8 mm wide), consisting of alternating dark and light material. Variable degree of
diffusiveness is observed, determining a more or less clear differentiation of the
lamellae into the lamina. Frequently several horizontal traces (up to 6), probably
belonging to a unique structure, are observed, evidencing a depth of penetration at
least of 16 cm.

3.2.2. Distribution

The trace fossil assemblage shows clear variations along the differentiated
intervals that can be related to the features (color) of the host sediment (Fig. VIII-4).
Light trace fossils assemblage, consisting of Planolites and dominant Thalassinoides, is
registered in most of the intervals, except, in the dark/black interval D, being dominant
by light and middle grey tone intervals (A, C, E, G, | and M). However, in the light tone
intervals (A and M), this light trace fossil assemblage is comparatively scarce, and the
mottled background is less developed. The light trace fossil assemblage represents the
bioturbation of tracemakers during deposition of the lighter host sediment. The dark
trace fossil assemblage consist of frequent Planolites and Thalassinoides, associated to
middle and very dark grey tone intervals, reflecting the mixture of phases of
sedimentation corresponding to different color; bioturbation by shallowest and

shallow tier organisms produce the observed mixture of colored sediment.

Figure VIII - 4. Distribution of light and dark trace fossils in the studied cores from Hole
1385D-7H-4 (bottom) to U1385D-7H-1 (top), according to the differentiated intervals A to M.

112



in deep sea environmental conditions from MIS 13 to 11

Chapter VIII: Response of macrobenthic and foraminifer communities to changes

$0241ydoo7 yrep

g
NI[-Saproutssovy |

HIEP

1S

SapLoUISSDIY |

A%ep |

31|

sajjoupyq .
uoytydoandg yrep
Saj1ada)] Jep
SaLIpUOY) Yrep
sisdopruodopy yiep

TVAYALNI

113



G.M. Martin Garcia

These trace dark Planolites and Thalassinoides are also observed in intervals
showing a more or less developed alternation, not mixture, of colored sediments, such
as in interval M. Occasionally, this assemblage is also registered at the base of
black/dark color sediment (intervals B and D), probably reflecting a progressive,
gradual, change. Zoophycos is the dominant dark trace fossil, observed in middle and
very dark grey intervals, as well as in the black/dark ones. This trace originated during
deposition of darker sediments, probably revealing latter phases of bioturbation by the
dark trace fossil community, after Planolites and Thalassinoides producer. Chondrites
and Spirophyton are mainly related to the dark/black intervals (B and D), even are
located downward in the lighter intervals below, and associated to the particular

environmental conditions of these dark/black sediments.

3.3. Micropaleontological analysis

Benthic oxygen-isotopes values have been used to identify MIS 13 to 11 in the
sediment cores. Based on the benthic oxygen isotope record glacial Termination V was
recorded in IODP Site U1385 at around 55.70 crmcd. The previously described intervals
A to M correspond to the final stage of MIS 13 (Intervals A, B and half of the C), MIS 12
(half of intervalC intervals D-L and the first 20 cm of interval M), and early MIS 11 (the
rest of interval M) (Fig. VIII-5).

Analysis of the planktonic-benthic foraminifer ratio (Fig. VIII -5) reveals that planktonic
microfauna is more abundant, in general, during interglacial conditions. However,
during early glacial substage MIS 12b (and coinciding with interval G) elevated
percentages of planktonic foraminifers were also recorded. These high
planktonic/benthic values are mainly due to low benthic production, expressed both
by concentration (Fig. VIII -5e) and accumulation rate (Fig. VIII -5f). Benthic
accumulation rate (measured in number of tests per cm” and ky) is higher during the
glacial stage, especially at the beginning and end of the stage. The extraordinarily high
number of benthic foraminifers per mass of sediment (Fig. VIII -5e) during the glacial
maximum MIS 12a, is probably due to low accumulation of other sedimentary
components at this time (Fig. VIII -5). Export productivity (Pexp) is low during MIS 11

and much higher in MIS 12, especially in the early part of this stage, as well as during
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the last part of MIS 13. In consequence, during the interglacial periods MIS 11 and 13
low Pexp at surface corresponds to low concentration of benthic foraminifers at the
sea floor (Fig. VIII-5e,h). By contrast, high Pexp in MIS 12 is linked, in general, to higher

benthic foraminifer production.
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(Previous page) Figure VIII - 5. Stratigraphic and temporal distribution of the intervals A to
M, differentiated according to color and trace fossil assemblage, and comparison with
foraminifers records and other data from IODP-U1385. a) Benthic 8'°0 (%o VPDB) (Hodell et
al., this issue); substages are named according to Railsback et al. (2015); horizontal dashed line
shows the ice volume threshold separating stable and unstable climatic conditions (McManus et
al., 1999). b) Benthic 8"°C record (%. VPDB); filling indicates typical values for Antarctic
Botom Water (AABW) according to Adkins et al. (2005) c¢) Log Ca/Ti record (Hodell et al., this
issue). d) Planktonic / benthic foraminifers ratio. ¢) Benthic foraminifers concentration in
number of tests per gram of dry sediment. f) Benthic foraminifers accumulation rate in number
of tests per cm’® and ky (dashed line) and 3-point running mean (solid). g) Total alkenone
concentration (ng/g) of 37 carbon atoms (Maiorano et al., this issue; courtesy of T. Rodrigues)
reflects the coccolithophore productivity (dashed line) and 5-point running mean (solid). h)
Export productivity (dashed line) and 3-point running mean (solid). Glacial and interglacial
stages are highlighted by horizontal bands. Vertical bands correspond to the differentiated
intervals with lithological and ichnological features, with its facies color highlighted: light grey
(in white) — middle dark grey — very dark/black. Control points linking depth (crmcd) to LR04-
reconstructed age (Hodell et al., 2015) are represented by arrows.

4. INTERPRETATION AND DISCUSSION
4.1. Facies distribution and trace fossil composition

Major factors determining ichnological features (i.e., abundance, composition and
diversity of trace fossil assemblages) in a deep-sea setting are food availability, bottom
and pore-water oxygenation, substrate consistency, and rate of sedimentation
(Wetzel, 1991; Uchman et al., 2008, 2013a, b; Rodriguez-Tovar et al., 2009a, b;
Rodriguez-Tovar and Uchman, 2010; Uchman and Wetzel, 2011; Wetzel and Uchman,
2012; Rodriguez-Tovar and Reolid, 2013; Rodriguez-Tovar and Dorador, 2014). In the
case study, the generalized mottled background, together with the observed trace
fossil assemblage, reveals a deep-sea multi-tiered trace fossil community, interpreted
as revealing predominance of well-oxygenated bottom and pore-waters, as well as
abundance of food in the sediment for macrobenthic tracemaker community, as
previously interpreted for Site U1385 (Rodriguez-Tovar and Dorador, 2014). In the
generalized context of relatively good environmental conditions for the macrobenthic
habitat, several changes can be interpreted, determining variations in facies and
ichnological features.

Lighter sediments, as those represented by intervals A, E and M, are characterized

by a relatively poorly developed mottled background together with light
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Thalassinoides and Planolites. Thalassinoides and Planolites, as facies-crossing forms,
are found in a great variety of marine environments, usually associated with
oxygenated sediments. Thalassinoides is related to soft but cohesive sediments (see
Firsich, 1973; Ekdale et al., 1984; Ekdale, 1992; Schlirf, 2000), and Planolites, an
actively filled burrow, is interpreted as a pascichnion in shallow tiers (see Pemberton
and Frey, 1982; Keighley and Pickerill, 1995 for discussion). Thus, good environmental
conditions (bottom and pore-water oxygenation, and food availability) can be
interpreted, at least in the upper centimeters of the substrate, where shallowest and
shallow tiers communities are developed. Variations in the relative abundance of light
Planolites and Thalassinoides, as well as in the diffusiveness can correspond with the
rate of deposition and the firmness. Presence of dark Planolites and Thalassinoides,
together with the local record of Nereites at interval M could reveal fluctuations in the
organic matter content probably associated with variations in the detrital input and in
the surface export productivity as revealed by planktonic foraminifer-reconstructed
Pexp (Fig. VIII-5h); the latter is interpreted as a shallow tier, pascichnia structure, in
deep-marine, low energetic, oxygenated, environments (Uchman, 1995; Mdangano et
al., 2002; Wetzel, 2002; Lowemark et al., 2012), associated with increase food flux,
feeding on microbes that occurs in high concentrations (Wetzel, 2002; Lowemark et

al., 2012).

Dark/black sediments, as represented by intervals B and D, reveal significant
changes in the environmental conditions. Presence of dark Planolites and
Thalassinoides at the base of the intervals, and then Zoophycos and dominant
Chondrites could be interpreted as a gradual deterioration of the environmental
conditions, probably related to increase in the organic matter content and decreasing
oxygenation more favorable for Zoophycos and Chondrites tracemakers. Both,
Zoophycos and Chondrites are deep tier feeding structures. As general, Zoophycos
producer has been related to variations in energy, sedimentation rate, food content, or
bottom-water oxygenation; its relative independence of substrate features would
allow for colonization of sediments with comparative low oxygenation, or even to
collect food particles from the sea floor (e.g., Ldwemark and Schafer, 2003; Rodriguez-

Tovar and Uchman, 2006, 2008). Several ethological models have been proposed of
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Zoophycos tracemaker (see Lowemark and Werner, 2001; Leuschner et al. 2002;
Bromley and Hanken, 2003, Lowemark and Schafer, 2003; Léwemark and Grootes,
2004; Lowemark et al., 2004; Léwemark, 2015). Chondrites tracemaker is associated to
poorly oxygenated bottom or pore waters, able to live in dysaerobic conditions, at the
aerobic-anoxic interface, as a chemosymbiotic organism (Seilacher, 1990; Fu, 1991).
Upwards in the dark/black intervals, a progressive return improvement can be
envisaged by the presence of light structures (i.e., light Thalassinoides) in the upper
part. The presence in the interval D of a well-developed dark trace fossil assemblage
consisting of discrete structures, could be associated to a decrease in the
sedimentation rate, increase in firmness and higher time of bioturbation, together
with local concentration of food. This agrees with the record of delicate, complex,
structures of Spirophyton and Zoophycos. Spirophyton has been interpreted, mainly for
marine-margin deposits, as revealing an opportunistic strategy; formed rapidly after
sudden influxes of organic material (Miller and Johnson, 1981; Miller, 1991, 2003;
Bromley, 1996; Gaillard et al., 1999). The Zoophycos tracemaker is interpreted as
bioturbating firmer, organic rich substrates with oxygen depleted pore waters (e.g.,
Rodriguez-Tovar and Uchman, 2004a, b; Rodriguez-Tovar and Dorador, 2014, and
references therein). Distribution of Zoophycos has been related to Milankovicth orbital
scale climatic changes, determining variations in the organic matter content and flux

(Rodriguez-Tovar et al., 2011).

Middle and dark grey tone sediments, corresponding to intervals C, F, G, H, |, J, K,
and L, reveal, in general, variable intermediate cases between dark/black sediments
and the lighter ones. Both types of sediments consist of a well-developed mottled
background in the first case with dominance of light color sediments while in the
second a mixture between light and dark sediments is observed. In both cases
Planolites and Thalassinoides are the most abundant traces, being light structures
dominant in the first case while in dark grey tone sediments dark Planolites and
Thalassinoides are also observed. Dark Zoophycos are also registered, especially in the
dark grey tone intervals, but dark Chondrites are not observed. Middle and dark grey
tone sediments could reflect a generalized good bottom and pore-water oxygen

conditions and higher abundance in the organic matter content at the surface but also
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in the first centimeters of the sediment, allowing bioturbation by shallowest, shallow
and middle tiers tracemakers. When input of organic matter content (as indicated by
Pexp) is maintained during a comparatively long time (Intervals F, or H to K), deep tier
traces, i.e., Zoophycos, can be developed, probably reflecting a latter comparatively
higher organic matter content and a slight decrease in oxygenation oxygenation related
to the presence of the poorly ventilated and benthic 8"°C-deplected Antarctic bottom
water AABW (Adkins et al., 2005; Hoogakker et al., 2006) (Fig. VIII -5b).

4.2. Environmental conditions during MIS 13-11 and the macrobenthic and
foraminiferal record

The benthic foraminifer concentration in the sediments and variations of the
planktonic foraminifer assemblages suggest significant changes in surface water
productivity and food supply to the sea floor occurring in the Portuguese margin
during MIS 12 and 11 that could be correlated with the registered changes in facies
and trace fossil assemblages (Fig. VIII -5). Similar changes occurred across the more
recent Terminations IV, Il and | (Grunert et al., 2015; Rodriguez-Tovar et al., 2015).

Benthic communities living at the sea floor are limited by the flux of organic
carbon reaching the sea floor that, in turn, are a function of Pexp and oxygen content
along the water column and interstitial waters within the sediments. Higher densities
of benthic foraminifers in bottom sediments have been related to higher rates of
organic carbon supply to the sea floor, both in the same Site U1385 (Grunert et al., this
issue; Rodriguez-Tovar et al., this issue) and in other locations (Schmiedl et al., 1997;
Wollenburg et al., 2004; Mojtahid et al., 2009).

A trend of increased productivity both primary, according to coccolithophores
(NAR) and alkenones data (Maiorano et al., 2015), and secondary, according to
planktonic foraminifer-reconstructed Pexp (Fig. VIII -5g-h), occurred during the final
stage of MIS 13 coinciding with warm SST inferred from the Ca/Ti record in our site
(Hodell et al., 2015). Low abundance of the coccolithophore Florisphaera profunda
(Maiorano et al., 2015), suggests a less stratified upper water column. During MIS 11
Pexp was very low and both intervals coincided with the presence of light-color

sediments as well as with the continuous presence of light Planolites and
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Thalassinoides in the differentiated interval A and M (Fig. VIII-5). By contrast, during
MIS 12 Pexp is higher, especially in the early part, but decreases towards the end of
the stage. Benthic foraminifer accumulation rates do not follow this trend. This
decoupling between Pexp, and benthic accumulation rates can be the result of the
changing conditions of water column oxidation that are mainly reflected by the benthic
8"C record. The high benthic "*C during MIS 11 and MIS13 reflects the high bottom
water oxygenation during these interglacial periods. Higher bottom water ventilation
tends to decrease the accumulation of organic matter in the sediments and therefore

reduce food availability for the macrobenthic and microbenthic communities.

Microbenthic fauna proliferated during the glacial stage as reflected by the higher
benthic foraminifer accumulation rates, which can reach values over 800
individuals/cm?/ky. Values of Pexp were very low at the final part of MIS 13 and
coincide with the presence of light-color sediments as well as by the continuous
presence of light Planolites and Thalassinoides in the differentiated interval A (Fig. VIII-
5), but afterwards the organic matter supply increased rapidly and maintained very
high until Termination V, as indicated by darker sediments and the presence of
Zoophycos and Chondrites. Similar enhanced fluxes of organic matter occurred also in
the South Atlantic upwelling region during this glacial period (Schmiedl and
Mackensen, 1997). This high organic carbon flux to the bottom, combined with
adequate bottom water ventilation, allowed an eutrophic environment expressed by
high benthic foraminifer accumulation rates. Nevertheless, high amounts of organic
matter reaching the bottom could reduce the availability of oxygen and produce a
subsequent impoverishment of the benthic habitat when bottom water ventilation is
low. These conditions happened during short intervals along MIS 12 and in
Termination V, and are registered by the micro benthos, as an increase in Export
Productivity coupled with a decrease in benthic foraminifer accumulation rate (Fig.
VIII-5). Macrobenthos also reveals the punctual pulse (increasing) in organic matter
reaching the bottom, by the record of Spirophyton and Zoophycos, and the associated
decrease in oxygen availability mainly revealed by the presence of Chondrites,
observed in the intervals B and D (Fig. VIII-5). Differentiation of several intervals (A to

L) during the ending of MIS 13 and the whole MIS 12, based on the trace fossil record
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agree with the idea that tracemakers are more sensitive than foraminifers to depth
variations in the redox boundary in near-surface sediments leading to the movement
of trace-fossil tiers, as indicated by Baas et al. (1998) and also recently demonstrated

by Rodriguez-Tovar et al. (this issue).

By contrast with MIS 12, lower benthic foraminifer accumulation rates during MIS11
indicate an oligotrophic environment at the bottom and are consistent with lower
inputs of organic carbon inferred from total alkenone accumulation (Maiorano et al.,
2015) and planktonic foraminifer Pexp, as well as with low NAR (Maiorano et al.,
2015). This oligotrophic environment is characteristic of peak interglacial periods in
this region, as studies on sediments ranging from MIS 6 to the Holocene show (Pailler
and Bard, 2002). Oxygen consumption in deep sea waters during MIS 11 due to the
weak organic carbon supply was low which, together with the presence of the more
ventilated North Atlantic Deep Water (NADW) as can be inferred from the high values
of benthic "°C (Fig. VIII-5b), resulted in higher oxygen content of bottom waters. This
agrees with the lighter color of the sediments in the differentiated interval M, as well
as by the continuous presence of light Planolites and Thalassinoides. This higher
bottom-water oxygen concentration during the interglacial compared to the previous
glacial maximum occurred on the Portuguese margin also during the last two climatic
cycles (Hoogakker et al., 2015), and can be related to increased ventilation linked to a
reorganization of ocean circulation after deglaciations (McManus et al., 2004).
Oscillations in Pexp during this interglacial produced fluctuations of the organic matter
content in the bottom, which is registered in the macrobenthos by the presence of
dark Planolites and Thalassinoides, and the local record of Nereites. North Atlantic
coccolithophore analyses allow envisaged a relationship between lighter color
sediments and high coccolith content in the MIS 11 (Amore et al., 2012; Marino et al.,
2014; Maiorano et al, 2015).

The low availability of organic matter for benthic macro and micro fauna along
MIS 11 could evidence a possible stratification of the superficial water masses in the
area, as indicated by higher percentage of the coccolithophore Florisphaera profunda
compared with the previous interglacial (Maiorano et al., 2015), or be related to a

reduced input of land-derived nutrients during the sea level highstand (Rodrigues et
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al., 2011). Such possibility should be explored with the study of planktonic fauna and
the evolution of the sea surface conditions for the same period in the same site.

In a few cases, trace fossil assemblage in sediments corresponding to MIS 12 and
MIS 11 has been characterized. At the eastern Mediterranean Sea, and in relation with
the ichnological response to late Quaternary sapropel formation, a detailed trace fossil
analysis was conducted on two cores from the last 400 ka, involving at the base of MIS
11 (Léowemark et al., 2006). As a general pattern, the sediment in the two cores is
characterized by mottled burrows, with few trace fossils of Scolicia, Thalassinoides,
Chondrites, and Trichichnus, attributed to well-oxygenated and warm bottom waters in
an oligotrophic environment typical for non-sapropel times (Lowemark et al., 2006).
Recently, variability in trace fossil abundance and diversity associated to glacial-
interglacial cycles, including MIS 11, was recognized in Late Quaternary sediment cores
from the Artic Ocean; during interglacial periods the increase food flux, rather than
changes in deep water circulation, is responsible of higher abundance and diversity
(i.e., Scolicia, Planolites or Nereites), while in glacial interval characterized by
extremely low food flux consist of impoverished ichnofauna dominated by Trichichnus
and Chondrites (Lowemark et al., 2012).

Obtained results allow addressing interpretations on local (?) paleocenographic
dynamics. Although higher resolution climatic records need to be carried out in this
time period, benthic "°C data prove that the evolution of macrobenthic tracemaker
community during MIS 12 and 11 responded to major changes in bottom water
ventilation probably linked to variations in deep water thermohaline circulation,
determining variations in oxygen and food availability.

During glacial MIS 12 a higher planktonic foraminifer-reconstructed Pexp from
surface waters, together with reduced deep water formation in the North Atlantic
probably resulted in higher accumulation rates of organic matter in the sea floor,
favoring the developing of macrobenthic communities typically living in these
environments, characterized by comparatively high food, and low oxygen availability.
This was probably more intense at some particular time periods such as intervals B and
D that may be linked to times of extremely poor bottom-water ventilation associated

with cooling events at surface. In particular, dark intervals during MIS 12 show low
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Ca/Ti ratios (figure VIII-5¢) that are usually associated to cool stadials in the Portuguese
margin (Hodell et al. 2013b, 2015). The low benthic 8C values during MIS 12,
especially in the dark intervals, indicate low bottom water ventilation probably due to
a higher influence of AABW during this time period. Low bottom water oxygenation
favored the preservation of organic matter, increasing food availability for the benthic
macrofauna, even though the flux of organic matter from the surface was low.
By contrast, intense North Atlantic deep water formation during MIS 11 (interval
M) (Poirier and Billups, 2014), and probably late MIS 13 (interval A), together with
lower export production at surface led to more oxygenated bottom waters in the
Portuguese margin, determining a well-developed deep-sea tiered assemblage.
Near Termination V an extremely low sedimentation rate has been recognized
based on the chronology elaborated for this site (Hodell et al. this issue). Around 30 ky
are condensed in the lowermost 40 cm at the base of MIS 11 (bottom of interval M),

with a more extreme condensation recorded in the first 5 cm at the base of interval.

5. CONCLUSIONS

The present study including facies characterization, ichnological composition and
foraminifer analysis, allowed interpretation of deep-sea paleoenvironmental
conditions during the transition MIS 13/12, MIS 12 and MIS 11.

A generalized context of well-oxygenated bottom and pore-waters, as well as
abundance of food in the sediment for macrobenthic tracemaker community can be
interpreted, with marked changes in these paleoenviromental factors as revealed by
variations in composition and distribution of trace fossils according to the
differentiated intervals A to M.

Benthic foraminifer concentration in the sediments and variations of the
planktonic foraminifer assemblages suggest significant changes in surface productivity
and food supply to the sea floor during MIS 12 and 11 that could be correlated with
the registered changes in facies and ichnology.

The end of MIS 13 is characterized by very low values of annual export
productivity, that together with the presence of light-color sediments and the

continuous presence of light Planolites and Thalassinoides at interval A, reveals
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relatively low organic carbon flux to the bottom and high oxygen conditions. These
initial conditions were changed during development of MIS 12, showing the rapid
increase in the organic matter supply and then remaining very high until Termination
V, determining a eutrophic environment, as is revealed by high benthic foraminifer
accumulation rates. This change and the associated reduced availability of oxygen,
correlate with the record of Spirophyton and Zoophycos, and the presence of
Chondrites, observed in the intervals B and D. During MIS 11 lower benthic foraminifer
accumulation rates are registered suggesting an oligotrophic environment at the
bottom, associated with lower inputs of organic carbon, and high oxygen content of
bottom waters, in agreement with the lighter color of the sediments as well as the
continuous presence of light Planolites and Thalassinoides at the interval M.

In conclusion, the evolution of macrobenthic tracemaker community during MIS
13 to 11 responded to major changes in bottom water ventilation probably linked to

variations in North Atlantic deep-water thermohaline circulation.
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Table VIII-1

Differentiated intervals with lithological and ichnological features.

. Interval . Facies color Contacts Background Light Traces Dark traces Cross-cutting relationships
(thickness/location)
A (75 cm): from 150 to . . .
around 75 cm of U1385 Light tone grey Bioturbated upper Mottled Diffuse Thalastvznozdes (7h) Chondprites (dCh) from 89 to 75 cm dCh crosscutting 1Th & 1P!
TH4 contact background & Planolites (1PI)
B (14 cm): from 75 to 61 Gradual upper Mottled Thalassinoides from 67 to 61 | Dominant Chondrites (dCh). Planolites (dPI) .
cm of U1385 7H4 Dark/black contacts background cm & Thalassinoides (dTh) at the base dCh crosscutting dTh & dPI
C (43 cm): from 61 to 18 Middle dark tone grey Bioturbated upper Mottled Diffuse Thalassinoides (1Th) Dominant Chgnc{rztes (dCh), P.l anolites Dark traces crosscuttmg light
m of U1385 7H4 contact backeround and Planolites (IP1) (dP)), Thalassinoides (dTh), Spirophyton traces & dCh crosscutting dP/,
cmo grou anoftes (dSp) & Zoophycos (dZo) dTha & dSp
D (13 cm): from 18 to 5 Dark/black More or less shap Dominant Chondrites (dCh) & Zoophycos .
cm of U1385 7H4 upper contact (dZo). Thalassinoides (dTh) at the base dCh crosscutting dTh
E (35 cm): from 5 cm of Lioht tone ere Sharp ubper contact Mottled Discrete, dominant
U1385D 7H4 to 119 cm & grey chanlr)l elp r11)1 orpholo ’ background, Thalassinoides (1Th), and
of U1385 7H3 P gy especially on top few Planolites (1PI)
. Mottled Planolites (dPl) &Thalassinoides (dTh), then
F (58 cm): from 119 to | Very dark tone grey, with . e P
61 cm of U1385 7H3 increasing darker upward Sharp upper contact background Planolites (1PI), on top Zoophycos (dZofi.kIZrE)(‘;);Z_lle) Thalassinoides dZo cross-cutting dTh on top
Diffuse, abundant Zoophycos (dZo), but also dZo cross-cutting d7h
Middle dark tone ore Thalassinoides (1Th) and Thalassinoides (dTh-1), and probable
G (74 cm): from 61 of ith a thick (56 fm)y ’ Bioturbated upper Mottled Planolites (1PI) as exclusive Planolites (dPI) in the darker horizon
U1385 7H3 to 137 cm of (\{erk r horizon at the contact pp background at the | in the lighter part, and also in Alcyonidiopsis (dAl), Chondrites (dCh),
U1385 7H2 Tni d(c)llezoart lighter parts the upper part of the darker Planolites (dPI), Thalassinoides (dTh) &
p horizon Zoophycos (dZo) in the upper light interval, dCh cross-cutting the rest of
coming from the next dark interval traces
H (33 cm): from 137 to Bioturbated upper Mottled Probable Thalassinoides
104 em of U1385 7H?2 Very dark tone grey contact background (ITh) on top Dominant, near exclusive, Zoophycos (dZo)
Sharp/bioturbated . : L
I (12 cm): from 104 to 92 . o M- Mottled Planolites (1Pl) & probable Planolites (dPI), Thalassinoides (dTh) & -
cm of U1385 7H2 Middle dark tone grey | upper conact? Minor | kground Thalassinoides (1Th) dominant, diffuse, Zoophycos (dZo) dZo cross-cutting dP and dTh
J (18 cm): from 92 to 74 Very dark Msl)}(lzlre/&t;isfgzzgts Mottled Thalassinoides (1Th) & Diffuse Planolites (dPI) 470 cross-cuttine dTh
cm of U1385 7H2 greyish/blue/pink uprlfer contact? background Planolites (1PI) Thalassinoides,(dTh) and Zoophycos (dZo) &
K (47 cm): from 74 to 27 | Middle to very dark tone | Darker color upward. Mottled Diffuse Planolites (1P]) & .
cm of U1385 7H2 grey/pink Sharp upper contact? background Thalassinoides (1Th) Diffuse Zoophycos (dZo)
Gradual contact to L
L (12 cm): from 27 to 15 Very dark lighter colour & Mottled Thaf)@;zﬁgzzj:i&gh) & Planolites (dPI), sinuous, bifurcate traces
cm of U1385 7H2 greyish/blue/pink decreasing background . ’ ’ ’
. . smuous traces
bioturbation
M (165 cm); from 15 cm Light tone grey with Gradual alternations Mottled lefus.e }?lanolltes (1P, Diffuse Planolites (dPIl) and Thalassinoides
of U1383D 7H2 to 0 of darker intercalation in color background Thalassinoides (ITh) & local (dTh), probably Zoophycos (dZo)
U1385D 7H1 grou Nereites (INe) » Probably £oophy :
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ABSTRACT

Using a high-resolution record of planktonic foraminifer assemblages from IODP Site
U1385 (37234.285°N, 1027.562°'W; 2585 m depth) covering a time interval between
530 and 395 ka, we reconstruct millennial scale climate variation from MIS 13 to MIS
11 in the Portuguese margin. Sea surface temperature (SST) in the region registered
abrupt climate changes similar to Dansgaard-Oeschger events of Late Pleistocene.
Seven sequences (Bond cycles) of progressive cooling happened in the North Atlantic
during MIS 13 — 12 that were registered in the lberian margin by both microfaunal
assemblages, Ca/Ti ratios and planktonic and benthic isotopic records. These cycles can
be correlated with the synthetic record of Greenland climate and, during MIS 12, the
final cooling of each sequence coincided with a Heinrich-type event recorded in high
latitude North Atlantic. We demonstrate that the cooling events in the mid-latitude
ocean are related with the advance of the Arctic front, via reduction of deep-water

formation in the North Atlantic and associated weakening of thermohaline circulation.

1. INTRODUCTION

During most recent glacial cycles, a series of high-frequency (~1.5-3 ky)
temperature swings termed Dansgaard—Oeschger (D—0) oscillations registered in the
Greenland ice-core records (Dansgaard et al., 1993; Grootes et al., 1993); the final
event coincided with the Younger Dryas (e.g. Bond et al.,, 1992). These stadial-
interstadial oscillations appear to be grouped in sequences — known as “Bond cycles”
(e.g., Broecker et al., 1990) — of progressively cooler events, the end of each sequence
marked by the deepest cooling. Most of Heinrich events happened at the end of the
colder phase of a Bond cycle and were followed by warming to almost interglacial
temperatures (e.g. Bond et al., 1992; Wright and Flower, 2002).

Numerous studies spanning late Pleistocene have related millennial-scale cooling
events in the North Atlantic with changes in the strength of the thermohaline
circulation (e.g., Hemming, 2004; Alley, 2007). Reduced formation of deep water in the
North Atlantic would result in stratification of the water column, reduction of

thermohaline circulation rate and spread of cold water across the whole North
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Atlantic. Such deep cooling events have been recorded as far south as the Portuguese
margin since the last glacial cycle (Bard et al., 2000) back to MIS 21 (Martin-Garcia et
al., 2015). During the last glacial, these events of general cooling in the Northern
Hemisphere were related with warming in Antarctica (Blunier et al., 1998) by the so-
called see-saw mechanism (Stocker and Johnsen, 2003), which consisted in changes in
the interhemispheric heat transport in response to changes in the strength of the
meridional overturning circulation. However, the occurrence of this mechanism during

older glacials is not well supported by data.

The southwester Iberian margin has been proven a key area to reconstruct
millennial-scale climate variability. Nick Shackleton was the first in highlighting the
global importance of a specific area of this margin (Shackleton et al., 2000) that has
ever since been known as the Shackleton site. This area has a high sedimentation rate,
which allows a high-resolution climatic record. Its depth allows the presence of the
same bottom water masses than in the rest of the basin. In consequence, sediments in
this area generate climatic signals that can be consistently used to interpret basin-wide
climatic phenomena. Studies for the most recent climatic cycles proved that the
benthic d'®0 variation was similar to the Antarctic temperature record, while the
planktonic isotopic signal and reconstructed sea surface temperature (SST) resembled
the Greenland ice d*®0 (Shackleton et al., 2000; Martrat et al., 2007; Skinner et al.,
2007). Hodell et al. (2011b) demonstrated that sediment composition in this region
records orbital-scale and millennial-scale climate variation - the ratio Ca/Ti reflecting
the proportion between carbonate and detrital components of the sediment. Cold
events are recorded by low values ratios, either because of a decrease in biogenic
production (Hodell et al., 2013b), or because increased detrital sedimentation
(Lebreiro et al., 2009).

In this work we study planktonic foraminifer assemblages, Ca/Ti record, as well as
both benthic and planktonic isotopes from sediment core IODP-U1385, in the
Shackleton site, to reconstruct millennial-scale climate variations from MIS 13 to MIS
11 and their relation with global climate. This time period was selected for three
reasons. (1) Although numerous climatic records show that MIS 12 was the most

severe glacial during the Pleistocene (e.g. Helmke and Bauch, 2003; Lisiecki and
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Raymo, 2005), sea surface temperature (SST) recorded in site U1385 was not so cold as
that recorded during previous glacials in the same site (Martin-Garcia et al.,2015). (2)
MIS 13 was an unusual interglacial in which interglacial optimum happened at the end
of the stage, not at the beginning both in terms of minimum global ice volume (Lisiecki
and Raymo, 2005) and SST recorded in site U1385 (Martin-Garcia et al.,2015). (3) The
published time scale for U1385 (Hodell et al., 2015) identified a hiatus in the vicinity of

Termination V whose spanning age needed to be constrained.

2. MATERIAL AND METHODS

Sediments at Site U1385 define a single lithological unit dominated by calcareous
muds and calcareous clays, with varying proportions of biogenic carbonate (23% - 39%)
and terrigenous sediment. Pelagic sedimentation prevails during interglacials, while
terrigenous input is enhanced during glacials (Stow et al., 2012). Cyclic variations in
physical properties and color reflect changes in the proportion of biogenic carbonate
and detrital material delivered to the site (Hodell el al., 2013b).

This study covers a section from the secondary splice U1385D/E (Hodell et al.,
2013a) between 54.60 and 67.53 crmcd (corrected revised meters composite depth)
(MIS 11 - MIS 13). For the intervals 54.60-55.14 and 60.65—67.53 crmcd, sampling was
performed every 20 cm, and for the interval in between samples were taken at an
average 4.4 cm separation. The estimated average resolution for each interval down
coreis 1.3,0.33 and 1.02 ky.

A total of 164 samples (1 cm-thick) were freeze-dried, weighed and washed over a
63 um mesh sieve. The >63 um residue was dried, weighed and sieved again to
separate and weigh the >150 mm fraction. Counts of detrital particles were conducted
on the whole of this fraction, while counts of planktonic foraminifer taxa and
planktonic foraminifer fragments were conducted on representative subsamples of
this sediment fraction containing at least 300 whole specimens. Twenty-eight species
and ten morphotypes (Kennett and Srinivasan, 1983) of planktonic foraminifers have
been identified (Appendix 1) and their relative abundances, calculated.

Sea surface temperature (SST) values (annual, winter, summer and seasonality)

were reconstructed according to the Artificial Neural Network (ANN) method, using a
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back propagation neural network system (Malmgren et al., 2001) to compare our fossil
planktonic foraminifers assemblages with a set of 10 neural networks of the MARGO
North Atlantic database, as described in Kucera et al. (2005). The average value of the

10 different SST reconstructions obtained for each component (winter, summer,

annual and seasonality) was used as the final SST reconstruction.

HIATUS

Figure IX - 1. Detail from core U1385D-7H-2, showing the identified hiatus. The right part of
the panel was obtained after digital image treatment. The photography has been taken from
Rodriguez-Tovar et al. (2015).
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2.1. Age model

The age model of the studied section is modified from the one firstly published for
site U1385 (Hodell et al., 2015) using the correlation of the benthic oxygen isotope
record to the global benthic LR04 isotope stack (Lisiecki and Raymo, 2005). Due to the
low resolution of the LR0O4 stack, additional control points were added based on the
North Atlantic core U1308 (Table IX-1). A hiatus has been identified at 55.73 crmcd (Fig.
IX-1), marked by a sharp transition in colour and other sediment characteristic that
have been used to define distinct intervals (Rodriguez-Tovar et al., 2015). The age of
the sediments limiting the hiatus was calculated using the extrapolated sedimentation
rate. According to our age model this hiatus spans from 431.09 to 400.87 ka. As a
consequence, Termination V and the interglacial optimum of MIS 11 were not
recorded in site U1385, according to both isotopic (Fig. IX-2), and microfaunal data
(Fig. IX-3). At the base of the hiatus, the percentage of the polar species
Neogloboquadrina pachyderma sin was 4.22%, very low when compared to values
recorded in the same site during previous Terminations (8-49%) by Martin-Garcia et al.
(2015). Above the hiatus, the recorded percentages of warm microfauna were lower
than during interglacial MIS 13 optimum (Fig. I1X-3d) and much lower than the ~45%
recorded in nearby site MD01-2443 during MIS 11 optimum (de Abreu et al., 2005).
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Figure IX - 2. Age model for the study interval. (a) Sedimentation rate in cmky™. (b) Age
control points (see Table I for details). (c) Benthic 5'*0 profiles from LR-04 stack (Lisiecki and
Raymo, 2005) in black, from IODP-U1308 (Hodell et al., 2008) in green, and from IODP-
U1385 (Hodell et al., 2015) in purple. Substages are named according to Railsback et al. (2015).

3. RESULTS
3.1. Planktonic foraminifer results

This study focuses on species and assemblages that can be directly used to
monitor past changes in climatic conditions in North Atlantic surface water.

The polar species Neogloboquadrina pachyderma sinistral (Nps), with a
temperature tolerance range between —1 and 8 2C and an optimum of 2 2C (Tolderlund
and Bé, 1971), has been extensively used within the North Atlantic as a proxy for
climate cooling (Ruddiman et al., 1986; Bond et al., 1993) and to monitor southward
penetrations of very cold water masses of polar origin, usually associated to iceberg
discharges and/or migrations of the arctic front (AF) (eg., Bond et al., 1992; Cayre et
al.,, 1999; de Abreu et al., 2003; Eynaud et al., 2009; Martin-Garcia et al., 2015). At
present, this species is absent from plankton tows (Ottens, 1991) and surface
sediments (Pflaumann et al., 2003) (Simmax database) collected in the study area. In
our study interval this species keeps low relative abundance during both the glacial
and interglacial stages. Percentages are higher than 15 % only at 454.68 ka and at
504.52 ka, in coincidence with a decrease in benthic 820 of 0.5%o (Fig. IX-3b).

Turborotalita quinqueloba (Tq) has a temperature tolerance range of 4.62C —
10.82C, with an optimum of 12°2C and is usually associated to high phytoplankton
productivity (Bé, 1977; Johannessen et al., 1994). High percentages of this species are
found south of Iceland (Pujol, 1980), and its maximal abundance has been recognized
as associated with the Arctic front (Cayre et al., 1999; Wright and Flower, 2002). In the
study interval, higher percentages of Tq occur during the glacial substage MIS 13b and
its subsequent deglaciation, as well as during MIS 12c (Fig. IX-3c).

Globigerinoides ruber (Gr), which can tolerate a wide range of salinity (Bijma et al.,
1990), is a surface dweller of subtropical waters (ENACWSst) transported by the AzC to
the Northeast Atlantic (eg. Ottens, 1991) and it is present today in the site during non-

upwelling months (Salgueiro et al., 2008). Highest percentages of this species occurred
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during the transition MIS 13b/a and during interglacial MIS 13a, coinciding with the

presence of the pink morphotype (Fig. IX-3d-e).

The group of warm surface water species as defined in the Gulf Stream area
(Vautravers et al., 2004) includes only tropical mixed layer dwelling species. Most of
these species live in the warm waters south of the Azores front (AzF) and have been
used to trace the influence of tropical waters originating in the Gulf Stream on the
region after the upwelling season (Vautravers and Shackleton, 2006). Postupwelling
conditions in Site U1385 remained relatively warm during most of the study interval.
Interglacial MIS 13 was the richest in tropical species; maximum percentages of this
assemblage occurred during the early phases of ice sheets growth during MIS 13c and

13a, as well as during the deglaciation of substage MIS 13b (Fig. IX-3d).
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Figure IX - 3. Microfaunal results from IODP-U1385. (a) Benthic 80 profile: LR-04 stack
(Lisiecki and Raymo, 2005) in dashed line, and record from U1385 (Hodell et al., 2015);
substages are named according to Railsback et al. (2015). (b) Relative abundance of the
planktonic foraminifer polar species Neogloboquadrina pachyderma sinistral. (c) Percentage of
Turborotalita quinqueloba. (d) Relative abundance of the subtropical species Globigerinoides
ruber (solid green) and of the warm surface assemblage as defined by Vautravers et al. (2004).
(e) Relative abundance of the pink morphotype of G. ruber.

3.2. Sea Surface Temperature reconstruction
We estimated SST based on faunal counts for the coldest (winter) and warmest

months.

At present, at this site, the warmest month is August (20.5 2C; Locarnini et al.,
2010) coinciding with the end of the upwelling. However, except for MIS 11, SST in the
area was generally colder during the study interval (16.4 2C annual mean) than at
present (18 2C; Locarnini et al., 2010). Summer temperature (SSTsum) oscillated
between 14.6 and 21.9 2C while winter values (SSTw) varied between 9 and 17.9 oC
(Fig. IX-4c). Seasonality was generally higher during MIS 12 than during both
interglacials, and higher values coincided with lower SSTw, that is, cooling events on
site U1385 occurred mainly in winter, while in the warmest season surface water kept
similar values during the study interval (Fig. IX-4c-d). The widest SST oscillations (~8
oC), as well as the coldest events (SSTw ~9 °C), happened during the MIS 13b/a
transition and during the glacial inception at the end of MIS 13a. During the rest of
interglacial MIS 13 and during MIS 11 SST fluctuations were of lesser amplitude (< 3
2C), and during MIS 12 SST oscillations displayed intermediate width (< 5.5 2C). This
difference in the amplitude of temperature oscillations was also recorded by the Ca/Ti

ratio (Hodell et al., 2015) (Fig. IX-4b).

3.3. Ice Rafted Debris (IRD)
Considerable amount of detrital material particles was recorded ~455 ka. The rest

of the study interval show none or very low amount of IRD (Fig. IX-5f).

Several IRD events have been recorded in the Portuguese margin during MIS 12

(Voelker et al., 2010; Rodrigues et al., 2011), but at northern locations than site U1385.

137



G.M.Martin Garcia

400 410 420 430 440 450 460 470 480 490 500 510 520 530

II|IIIIIIIII|IIII|IIIIIIIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|IIII|

1st _
— 35 A~
i (&)
e
7 c
4 >
?
=
— 40
i (V)
a 0
[a]
o
> \/\l
S
o
= d)
o 2
g
[Ze]
N Summer SST
AM (°C)
c) Winter SST
—2
0 -
©
16 ©
o
1 3
=~ 25
[u1] _
8
>
(-]
R % IODP-U1385
o
4
§ L&R04
45
9
[2e]

(3,1

12a

b b b b b b b b b b b b b |
400 410 420 430 440 450 460 470 480 490 500 510 520 530

Age (ka)

Figure IX - 4. Comparison between SST records from site IODP-U1385 and the synthetic
record of Greenland climate. (a) Benthic §'*0 profile: LR-04 stack (Lisiecki and Raymo, 2005)
in dashed line, and record from U1385 (Hodell et al., 2015). Substages are named according to
Railsback et al. (2015). (b) Log Ca/Ti record (Hodell et al., 2015). (c) Foraminifer-based SST
and 3-points moving average: winter (blue) and summer (red). Present-day values (Locarnini et
al., 2010) are represented in dashed line. (d) Planktonic 8'*0 profile (Hodell et al., 2015). (e)
Reconstructed temperature for Greenland (Barker et al., 2011). Yellow bands mark interglacial
stages and green arrows represent observed climatic sequences.
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4. DISCUSSION
4.1. Climate variations during interglacial MIS 13

Numerous studies have established that in the mid-latitude North Atlantic, stadials
coinciding with Heinrich events were more pronounced than other stadial and
interstadial temperature fluctuations (e.g., Bond et al. 1999; Labeyrie, 2000). On the
SW Iberian margin, SST was lower by 102C during HEs of MIS 3 (Vautravers and
Shackleton, 2006) and Heinrich-type (H-type) events of MIS 20 and MIS 15b (Martin-
Garcia et al., 2015). It has been noticed that most of Heinrich events occurred at the
end of the so-called Bond cycles. These cycles were first identified during MIS 3-2 as a
series of high-frequency SST variations superimposed on HE 1-6, five of which occurred
at the end of the cool phase of a Bond cycle and were followed by warming to almost
interglacial temperatures (Bond et al., 1992); such cycles have also been identified in
the northern Atlantic during MIS 16 (Wright and Flower, 2002; Hodell et al., 2008) and
in mid-latitude site U1313 also during MIS 12 (Naafs et al., 2014).

Main cooling events recorded in site U1385 during both MIS 13 and MIS 12
occurred at the end of similar progressive cooling sequences (fig. 1X-4) and were
marked by 24.7% of the polar species Nps, usually accompanied by an increase in the
percentage of the subpolar Tq. All of them were followed by sharp and steep SST rise
(Fig. 1X-5d-e), which is a characteristic of H-type events recorded in the same site from
MIS 21 to MIS 14 (Martin-Garcia et al., 2015) and also of HE occurring at the end of
Bond cycles (Bond et al., 1992).

As interglacial MIS 13 progressed, North Atlantic surface water experienced sharp
and high-amplitude temperature oscillations, especially during winter (Fig. IX-4c). Two
cooling sequences were recorded by both SSTw and Ca/Ti, while SSTsum and
planktonic 8'0 recorded only the first one, which lasted more and reached colder SST
(Fig. IX-4b-d) than the second one. This first Bond cycle coincided with the ice-building
phase between MIS 13c-b, according to benthic 80, and finished with the most
pronounced cooling event recorded in Site U1385 during the whole study interval,
which occurred linked to the deglaciation of MIS 13b (Fig. IX-4c). This event consisted
in two deep cooling phases separated by a short-lived, high-amplitude warming. The

first phase, ~508 ka, coincided with a sharp and important decrease in °C and an
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increase of 0.4%. in benthic 8'®0 while the subsequent warming, which reached the
highest SST values of MIS 13, coincided with a steep increase of 8'°C, (Fig. I1X-5a,b,d).
As deglaciation completed, according to benthic 8'®0 data, the fresh water input
reduced the NADW formation, which resulted in the advection of subpolar water to
the mid-latitude ocean and the occurrence o a new, colder event ~504.4 ka. It was
during this second cooling phase that highest percentages of the polar species Nps for
the whole study interval were recorded in site U1385 (Fig. IX-5e).

Nearby site MD03-2699 also registered the advection of subpolar water during a
prolonged interval at the time (Rodrigues et al., 2011), coinciding with the first cooling
cycle recorded in site U1385

The second climate sequence was better registered by SSTw and Ca/Ti than by
other records (Fig. IX-4). It coincided with the final phase of reduction of ice volume of
MIS 13a. Towards the end of this phase the NADW formation weakened slightly,
according to the light decrease of 8'C (Fig. IX-5b), which resulted in the advection of
subpolar water to the Iberian margin in winter, while postupwelling conditions
remained relatively warm. The final cooling of this cycle was not the coldest one, but it
was marked by a peak in Nps and coincided with a IRD layer recorded in the mid-
latitude site U1313 (Stein et al., 2009) (Fig. I1X-5d,g)

When comparing with the reconstructed temperature for Greenland (GLTsyn)
(Barker et al., 2011), a similar pattern to that recorded in site U1385 can be identified,
with high-amplitude Dansgaard-Oeschger oscillations that define a cooling sequence
towards MIS 13b, and progressively warmer temperatures toward MIS 13a. During this
prolonged warming a shorter, less marked cooling cycle was recorded previous to the
pronounced warming of the interglacial optimum that also initiates the following cycle

(Fig. IX-4e).

Figure IX - 5. (a) Benthic § 0 profile: LR-04 stack (Lisiecki and Raymo, 2005) in dashed
line, and record from U1385 (Hodell et al., 2015). Substages are named according to Railsback
et al. (2015). (b) Benthic & "*C from U1385 (Hodell et al., 2015); filling indicates typical values
for Antarctic Bottom Water (AABW) according to Adkins et al. (2005). (c) Log Ca/Ti from
U1385 (Hodell et al., 2015). (d) Winter SST; filling represents average value for the studied
period. (e) Relative abundance of the polar species Neogloboquadrina pachyderma sinistral
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(Nps) (blue) and percentage of the addition of Nps + Turborotalita quinqueloba (pink). (f) IRD
recorded in site U1385. (g) Bulk benthic & '*O from site U1308 (crimsom) marking H-type
events (Hodell et al., 2008). (h) Reconstructed temperature for Greenland (Barker et al., 2011).
Green bands mark the final cooling event of each Bond cycle.

o

1S)

<
I

— 410
— 420
— 430
— 440
— 450
— 460
— 470
— 480
— 500
— 510
—{ 520
— 530

g &
c
>
)
5
§ ©
'
|
|
'\\\
AN
1 1
S s 1
g o 3 T
el
LS '
x 5
S
m « B .
2DE 8-
81
—_— )
=g -
=% 0
JA ]
o = ]
c -
= ° 5
= 9 g
3o eb Q
T —_
2 l
Qo o |
37 80 I
3 - I
=4 | ©
X ] - | —~
T)
5
=
n
17
_— S
s :
s
N —
’:w__M
E -r
S el
e -3
e =L
4 T L
~ [
N
5 =
UOQO_
gg;—s AABW
s oL
8 L
8i,v__ 11c 13a
o

I

\L

\

<

/

\

\
-

4
Benthic 5180 (% VPDB)

_ “
©
Te]
12a
IIIllllllllllIlIIlllIlIllIllllIlllllllllIIlIllllllllllllllll
o o o o o o o o o o o o o o
o -~ o (3] < 0 © N~ «© (=] o -~ N (523
< < < < < < < < wn 'e} [Ye] [Te}

< <
Age (ka)

141



G.M.Martin Garcia

4.2. Glacial inception and climate variations during MIS 12

Millennial climate variability during MIS 12 shows the occurrence of five
sequences of progressive cooling, sequences 3" to 7™ in figure 5, that again share
many similarities with Bond cycles. Each sequence is characterized by more intense
cooling events towards its end, culminating with a major cooling (Fig. IX-5d), and is
followed by a warming episode. The five identified climate sequences coincided with
five vaguely recorded stages of gradual increase in benthic §'20 that was interrupted,
or decreased, towards the end of each sequence. This expression in the benthic 820
record points to a relationship between these climate sequences and stages of ice
volume increase during the glaciation of MIS 12.

The first sequence started with a pronounced warming event that occurred at
glacial inception of MIS 12 as illustrated by the onset of increasing benthic §'20 values.
Winter and summer SST in site U1385 margin were among the highest during the
studied period. This warming event was also recorded by the highest Ca/Ti values
during the whole interval (Fig. IX-4a-c). Cooling at site U1385 only started ~3 ky after
the glacial inception. By contrast, at higher latitudes of the NW Atlantic the onset of
glaciation is recorded by an abrupt drop in SST from 12 to 3 2C (Alonso-Garcia et al.
2011). This suggests a marked thermal gradient between the northern and middle
latitudes or the northwest and northeast regions of the Atlantic when ice sheets
started to expand and is similar to the scenario described for more recent glacial cycles
(Barker et al., 2015). This seems to point to a rapid southeast-wards migration of the
Arctic Front at glacial inception, displacing the influence of the warmer waters of the
North Atlantic current to more eastern or southeastern positions, especially the
southwester margins of Europe.

Three ky after the glacial inception, SST at the Portuguese margin started to
gradually drop to culminate the first climate sequence of this glacial with two
pronounced cooling events separated by a warming episode, which is recorded in site
U1385 by SST, planktonic 8*20 and Ca/Ti (Fig. IX-6¢-e). The initial part of this sequence,
during the early stage of ice sheets growth, characterized by still relatively intense
NADW formation and vigorous AMOC as recorded by the relatively high benthonic §*C

values (Fig. IX-5b,d). This suggests that during the glacial inception, when as the AF
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advanced southeastwards, the area of formation of NADW also migrated towards the

east or southeast and remained active even after the ice volume had reached fully

glacial levels (Fig. IX-5a-b). This would have diverted the NAC eastwards but allowed

the arrival of warm water to the northern ocean, where the continuous supply of

water vapour would have helped in the building of ice sheets. Only at ~481 and ~478.5

ka, coinciding with the final cooling events of the sequence, two very short and abrupt

decreases in benthic 8C were recorded (Fig. IX-6), signalling abrupt and brief

interruptions of the AMOC and reduced NADW at site U1385. These two cooling

events were characterized by the first two marked drops in the benthicd 8'®0 record,

which could be related to events of
ice-sheet retreat or to higher influence
of the 18O—depleted Antarctic bottom
Water (AABW) in site U1385 during
these episodes. This would be in line
with the evolution of the AF proposed
by Barker et al. (2015) for more recent
glacials, in which a gradual cooling
pushed the southward migration of
the front until a threshold point, after
which an  abrupt shift even
southwards occurred with associated
stadial conditions.

Although the percentage of Nps
was lower during these two events
than during the cooling at ~504.4, SST
was colder (Fig. IX-5d-e). This apparent
contradiction could be related with
the occurrence of cooling during the
glacial inception or during the
interglacial, and be in line with the

generally lower SST recorded off
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Iberia during glacials in comparison to interglacials (e.g.: Martrat et al., 2007;
Rodrigues et al., 2011; Martin-Garcia et al., 2015).

The combined relative abundance of the polar species Nps and the subpolar Tq
during MIS 12 (Fig. IX-5e) suggest that the AF was distant from the site for the whole
period. Variation of this assemblage also reveals less influence of water of subpolar
origin during glacial MIS 12 than during MIS 13b/a, although SST was generally colder
during MIS 12 than during both interglacials, especially in winter months. Contrary to
this, site U1313 recorded sequences of increasingly colder SST towards the glacial
maximum, the three last stadials coinciding with a H-type event (Naafs et al., 2014).
This suggests that the AF during MIS 12 acquired a southwest-northeast position and a
west-east thermal gradient developed in the North Atlantic during MIS 12b-a, as well
as the pre-existing north-south one.

The four cooling sequences similar to Bond cycles that occurred after the glacial
inception, were registered by different amplitude changes both in Ca/Ti, SSTw and
planktonic 80 records, and can be correlated to those in the GLT synthetic record of
Barker et al. (2011) (Fig. IX-4). The first of these sequences (sequence 4™ in Fig.IX-4)
coincided with a period of rapid growing of ice sheets after the glacial inception and
ended with a sharp and pronounced increase of 18O—depleted bottom water mass.
During this cycle the NADW formation decreased rapidly, producing the surface
advection to the mid-latitude ocean of subpolar water, cold and rich in Nps; in the
bottom the weakened AMOC allowed the arrival of AABW to site U1385 (Fig. IX-5a-b,d-
e). The last, more pronounced cooling of this sequence coincided with a HE recorded in
the northern site U1308 (Hodell et al., 2008) as well as in the mid-latitude site U1313
(Stein et al., 2009) (fig. IX-5d,g-h).

The following cycle (sequence 5™ in Fig. IX-4) began with a pronounced warming
that reached interglacial values, as is typical in Bond cycles (Bond et al., 1992), and was
formed by four progressively colder climate oscillations, culminating with the greatest
SST drop (52C) of MIS 12 and the only H-type event recorded in the site for the study
period (Fig. IX-5d,f). This pattern was similar to that observed in other North Atlantic
sites for several HE occurring during MIS 3 (Bond and Lotti, 1995). The increase in

percentage of Nps recorded during this event in our site was not very great,
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considering the high amount of IRD recorded (Fig. IX-5e-f). IRD layers were also
recorded during this event in the subpolar site U1308 (Hodell et al., 2008) and also in
the mid-latitude site U1313 (Stein et al., 2009) (Fig. IX-5g-h). A sharp decrease of the
AMOC was recorded by a reduction of 0.77%o in 8"C from site U1385 (Fig. IX-5b).

Sequence 6" was the shortest and generally coldest of the studied interval (Fig. IX-
4). Initial SSTw was much colder than present-day value, but the final cooling was
milder than those of preceding sequences. In terms of bottom circulation this climate
sequence characterized by two episodes of rapid weakening of the NADW formation
that occurred at the transition from sequence 5™ to 6™ and towards the end of this
cycle. These two episodes were recorded by the lowest values of benthic dtc
throughout MIS 13 and 12, which can be related to larger influence of AABW in site
U1385 (Fig. IX-5a-b). The last of these two episodes was registered at nearby site
MDO03-2699 by the advection of subpolar water during the last and prolonged cooling
of this cycle (Rodrigues et al., 2011) that coincided also with a HE recorded in site
U1308 (Hodell et al., 2008) (Fig. IX-5g).

The last sequence of this glacial coincided with the last stage of ice sheets growth
towards the glacial maximum (Fig. IX-4) and was characterized by lower variability and
lesser cooling. Planktic "0 and SSTsum show the less variability. SST registered an
increasing trend toward the glacial maximum, but again a cooling event marked the
end of the sequence and was registered by low SSTw and Ca/Ti. During this prolonged
and gradual increase of ice volume a weakening of the NADW seems to have occurred,
as reflected by the gradual lowering of the benthic 83C, however no abrupt
disruptions were observed (Fig. IX-5b). The last part of this sequence coincided with a
HE recorded in the northern site U1308 (Hodell et al., 2008).

In a similar way to what has been recorded in more recent glacial cycles (Margari
et al., 2014), climate oscillations during MIS 12 were of wider amplitude during the
expansion of ice sheets; by contrast, the reduction of climate variability when
approaching glacial maximum led to a more stable glacial state that culminated into
one of the most extremely pronounced Quaternary glaciations that was MIS 12 (e.g.
Helmke and Bauch, 2003; Lisiecki and Raymo, 2005). Generally cold climate with very

cold and dry winters happened over Iberia during MIS 12, according to pollen records

145



G.M.Martin Garcia

from the same site (Sanchez-Goiii et al., 2016), which were similar to those observed in
the region during other periods of large ice volume like MIS 2, MIS 4 and MIS 6.4
(Fletcher et al., 2010; Margari et al., 2014).

Major cooling events recorded in site U1385 during MIS 13 and MIS 12 can be
correlated with stadials in GLTsyn (Barker et al., 2011) (Fig. IX-5d,h) - the possible lags
due to the different chronological framework of both records - and, with exceptions,
also with high values of temperature reconstructions from Antarctica (Jouzel et al.,
2007). This suggests that the see-saw mechanism (Stocker and Johnsen, 2003;
Schmittner and Galbraith, 2008), by which disruptions in the AMOC caused by iceberg
discharges into the North Atlantic led to cooling in the Northern Hemisphere and
warming in Antarctica since MIS 6 (Blunier et al., 1998; Hemming, 2004; Margari et al.,
2010), was also a characteristic feature during MIS 13 and MIS 12. This interpretation
is supported by the coincidence of cooling events with steep decreases and/or low

values of **C recorded in U1385 (Fig. IX-5b,d).

4.3. Climate variations during MIS 11c

The short interval of MIS 11c recorded in site U1385 was characterized by very
stable climate with warm winters (Fig. IX-4c) and especially, very low seasonality, in
line with the low eccentricity and reduced precession at the time (Laskar et al., 2004).
These climatic conditions led to the weakening of the regional upwelling system
registered in site U1385 at the time (Rodriguez-Tovar et al., 2015). In the Iberian
Peninsula, warm winters and increased humidity allowed the rapid expansion of
vegetation, mainly Mediterranean forest (Tzedakis et al., 2009; Sanchez Goiii et al.,
2016).

During this interval, SST variations recorded in our site are very similar to the
pattern observed in the GLTsyn record (Barker et al.,, 2011), in line with the strong
climate connection between low and high latitudes noticed between different North

Atlantic locations across MIS 11 (Helmke et al., 2008).
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4.4. Variation of the influence of subtropical waters on Site U1385

Variations in the warm surface-water assemblage (Fig. IX-7d) show that at the
northern edge of the subtropical area, post-upwelling conditions remained relatively
warm during most of the study interval, and especially warm during the early stage of
ice sheets growth. This suggests an increasing influence of tropical water via
reinforcement of the AzC, at least on the post-upwelling season, during the intervals of
ice sheets growth. Such warm conditions could be the consequence of subtropical
warming, by a similar mechanism to that proposed for more recent isotope stages
when heat was stored in the subtropical region as a consequence of the reduction of
the AMOC and the subsequent cooling of high latitudes (Rihlemann et al., 1999; Huls
and Zahn, 2000). Warm surface assemblage variations are almost symmetrical to those
of benthic %0 (Fig. IX-7a,d), which points toward a connection between the presence
of subtropical fauna in mid-latitude North Atlantic and the ice sheet volume.
Southward migrations of the Arctic front probably related to a change in the region of
formation of NADW towards a more eastern or southern location promoted the
continuous flow of the NAC and AzC towards the southwestern European margin while

intense cooling prevailed in the NW Atlantic.

This scenario was very evident during the climatic optimum of interglacial MIS
13a, when warmest SST occurred ~3 ky after the minimum ice volume and coincided
with the new expansion of ice sheets, according to the benthic 8'0 record. Maximal
values of summer boreal energy (Huybers, 2006) happening during this climatic
optimum produced the warmest interstadial in the North Hemisphere during both MIS
13 and 12 and kept the polar ocean free of ice, allowing the northward migration of
the subtropical gyre and the increase of subtropical species in the mid-latitude North

Atlantic.

During the transition MIS 12b/a ice sheet growth was not accompanied by the
southward migration of the subtropical gyre, as no relevant decrease in surface warm
microfauna is recorded. The most probable explanation is that the AMOC, although
weakened, remained active and thus no further disturbance of North Atlantic surface

circulation was produced during the glacial maximum, at least in the eastern North
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Atlantic. This interpretation is corroborated by values of §**C at the time, which were

~0.5 %o higher than during other intervals of MIS 12 (Fig. IX-7b-d).
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Figure IX - 7. (a) Benthic 5'*0 profile: LR-04 stack (Lisiecki and Raymo, 2005) in dashed line,
and record from U1385 (Hodell et al., 2015). Substages are named according to Railsback et al.
(2015). (b) Benthic & *C from U1385 (Hodell et al., 2015); filling indicates typical values for
Antarctic Bottom Water (AABW) according to Adkins et al. (2005). (c¢) Planktonic & 0) profile
(Hodell et al., 2015) (d) Relative abundance of the subtropical species Globigerinoides ruber
(solid red) and of the warm surface assemblage as defined by Vautravers et al. (2004) (green
line).
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6. CONCLUSIONS

Our high-resolution study of the evolution of planktonic foraminiferal assemblages
and reconstructed SST from the Shackleton Site, as well as the comparison of our
results with both benthic and planktonic isotope records and Ca/Ti data from the same
Site (Hodell et al., 2015), allows the characterization of climatic conditions in the North
Atlantic from MIS 13 to 11. SST was generally colder than today off the southwestern
Iberian margin, especially during the warmest months, which showed higher SST than
today only during peak interglacial optima. Less pronounced cooling was recorded in

this site during MIS 13-11, than during MIS 20 or MIS 15 (Martin-Garcia et al., 2015).

During MIS 12 surface water in the mid-latitude ocean was generally colder than
during interglacials, with reduced seasonality and less amplitude SST fluctuations,
especially in the warmest months. Climate oscillations were greater during the
expansion of ice sheets, while the reduction of climate variability prior the glacial

maximum led to one of the most pronounced glaciations of the last million years.

MIS 11c was characterized by climatic stability, with warm winters and very low
seasonality, in line with the low eccentricity and reduced precession at the time. These
climatic conditions led to the weakening of the regional upwelling system and the

stratification of surface water recorded in site U1385 (Rodriguez-Tovar et al., 2015).

Millennial climate variability from MIS 13 to MIS 11 shows the occurrence of seven
sequences of progressive cooling; each sequence culminated with a major cooling
event and was followed by a warming episode. These sequences are similar to Bond
cycles defined for the late Pleistocene and most of the final cooling events recorded in
site U1385 coincided with H-type events registered in northern sites. These identified
climate sequences coincided with vaguely recorded stages of gradual increase in
benthic 80 that was interrupted, or decreased, towards the end of each sequence.
Such sequences can also be identified in the reconstructed record of Greenland
temperature (GLTsyn of Barker et al., 2011). Major cooling coincided with steep
reduction and/or low AMOC, Greenland stadials and, with exceptions, also with high
temperature over Antarctica. This suggests that the see-saw mechanism was also a

characteristic feature during the fifth climatic cycle.
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A lag between SST and ice volume, as informed by benthic §'®0, was clearly
recorded both during MIS 13 and the subsequent glacial inception. Warmest SST
during MIS 13a occurred ~4.5 ky after the minimum ice volume, and SST began to
decrease again only ~3 ky after the new ice growth phase. During this glacial inception
a very steep SST gradient developed between the northwest Atlantic and the mid-
latitude ocean in response to the advance of the AF toward the east or the southeast.

Variations of planktonic foraminifer assemblages in this site indicate a strong
connection between the presence of warm surface water off Iberia and migration of
the AF. The advance of the AF over the northern Atlantic would displace the
subtropical gyre southwards, while episodes of retreat of the AF would allow the
northward migration of the gyre and the arrival of warm water masses to more
northern latitudes. During the transition MIS 12b/a the increase in ice volume was not
accompanied by the southward migration of the subtropical gyre, which indicates that
the North Atlantic surface circulation was not greatly disturbed in the eastern margin,
probably because the AF had a southwest-northeast orientation and the locus of deep
water formation was not affected during this period. This interpretation is supported
by values of 8'*C ~0.5 %o higher than in other intervals of MIS 12, which suggests a
reduced but still active AMOC at the time, compared with other intervals of the same

glacial period.
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Table IX- I: Age model for Core IODP-U1385 (for MIS 11, 12 and 13)

Core Depth Age (ka
(crmcd) B.P.) Proxies used for correlation Source
51.506 372.21 Benthic §'%0 LR04 stack® Lisiecki and Raymo (2005)
55.322 400.84 Benthic '°0 LR04 stack Lisiecki and Raymo (2005)
55.728 400.87 Extrapolated sedimentation rate  This work
55.737 431.09 Extrapolated sedimentation rate  This work
55.753 431.10 Benthic §'%0 LR04 stack® Lisiecki and Raymo (2005)
56.58 454.33 Benthic §'°0 U1308 Hodell et al. (2008)
58.62 478.36 Benthic §'°0 U1308 Hodell et al. (2008)
59.19 480.25  Benthic §'°0 U1308 Hodell et al. (2008)
60.50 491.00 Benthic '°0 LR04 stack Lisiecki and Raymo (2005)
62.83 503.76 Benthic §'°0 U1308 Hodell et al. (2008)
63.53 508.00 Benthic '°0 LR04 stack Lisiecki and Raymo (2005)
66.43 525.265  Benthic 5'°0 LR04 stack Lisiecki and Raymo (2005)
67.33 529.50 Benthic 8'°0 U1308 Hodell et al. (2008)
67.93 533.93  Benthic "0 LRO04 stack® Lisiecki and Raymo (2005)

(a) Age control point published by Hodell et al. (2015)

151



G.M.Martin Garcia

152



CAPITULO IX

CONCLUSIONES / CONCLUSIONS




G.M. Martin Garcia

154



Capitulo IX: Conclusiones / Conclusions

CAPITULO IX

CONCLUSIONES / CONCLUSIONS

CONCLUSIONES

El estudio de las asociaciones de foraminiferos planctdnicos procedentes del
sondeo U1385 en el margen atlantico ibérico, asi como la comparacidon de los
resultados obtenidos con datos de §'®0, tanto bentdnicos como plancténicos, y el
registro de Ca/Ti del mismo sitio (Hodell et al., 2015), permite la caracterizacion
climdtica y paleoceanografica del Atlantico Norte de los estadios isotdpicos (MIS) 21 al
11. A continuacidon se presentan las principales conclusiones obtenidas para este
intervalo.

Todas las desglaciaciones registradas en el margen portugués, tanto las
Terminaciones (particularmente T IX y VIII) como las transiciones glacial/interglacial
entre subestadios (MIS 21b/a, MIS 18e/d y especialmente MIS 15b/a), muestran una
prominente oscilacidon climatica que puede alcanzar los 10 °C de variacién. Esta
importante oscilacion térmica durante las desglaciaciones coincide con un cambio
notable en las asociaciones de foraminiferos plancténicos, pasando rapidamente de
una alta abundancia relativa de la especie polar Nps a una alta abundancia relativa de
la Asociacion subtropical. Estas oscilaciones térmicas de alta amplitud se produjeron
como consecuencia de importantes reorganizaciones de la circulacion superficial y
profunda en el Atlantico Norte provocadas, a su vez, por aportes de agua dulce al
océano cuando las masas de hielo del hemisferio norte comenzaron a retirarse. La
reduccion de salinidad superficial paralizd la formacion de aguas profundas en el
Atlantico Norte y, como consecuencia, el aporte de calor hacia latitudes altas y la
llegada de aguas cdlidas al margen oriental del giro subtropical, lo que provocé el
aporte de aguas subpolares al margen occidental ibérico. Esta situacidn cambio
rapidamente tras cesar la perturbacién del agua dulce. La reiniciacion de la formacién
de NADW reactivo la circulacion profunda y condujo a una intensificacion de la NACy

la llegada de aguas cdlidas al margen ibérico.
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La comparacion con registros de temperatura oceanica superficial a latitudes altas
del Atlantico Norte revela el desarrollo de un acusado gradiente térmico latitudinal
entre el Atlantico Norte subtropical y el polar a medida que las masas de hielo del
hemisferio norte se van formando. Este acusado gradiente proporciona una fuente de
vapor de agua que podria favorecer el crecimiento de las masas de hielo.

Durante el intervalo MIS 13-11, la temperatura ocednica superficial del margen
SW ibérico era, en general, mds fria que en la actualidad, en especial durante los
meses mas cdlidos. La temperatura oceanica superd los valores actuales sélo durante
cortos intervalos de los 6ptimos interglaciales. Los enfriamientos registrados en el
U1385 durante el intervalo MIS 13-11 fueron menos pronunciados que los registrados
durante MIS 20 6 MIS 15.

Durante MIS 12 el agua superficial en latitudes medias era, en general, mas fria
que durante los interglaciales, con baja estacionalidad y menor amplitud de oscilacion
térmica, especialmente durante los meses cdlidos. Las oscilaciones climaticas eran
mayores durante la expansion de las masas de hielo y se cree que la disminucién de la
variacion climatica antes del maximo glacial condujo a una de las glaciaciones mas
pronunciadas del ultimo millén de afios.

El MIS 11c se caracterizé por estabilidad climatica, inviernos templados y muy baja
estacionalidad, como corresponde a una baja excentricidad y precesién reducida. Tales
condiciones climaticas provocaron la estratificacion del agua superficial y el
debilitamiento del sistema de upwelling regional en la zona de estudio.

Las variaciones climaticas desde el MIS 13 al MIS 11 muestran la existencia de
siete secuencias climaticas formadas por episodios progresivamente mas frios y que
culminaban con un enfriamiento importante que era seguido por un repentino y
drastico calentamiento. Dichas secuencias son similares a los ciclos Bond descritos en
el Pleistoceno superior y la mayor parte de los episodios finales de enfriamiento
registrados en el U1385 coincidieron con eventos tipo Heinrich registrados en altas
latitudes del océano Atlantico. Estas secuencias climaticas se corresponden con
periodos de incremento gradual en el registro de §'20 que se interrumpe, o disminuye,
hacia el final de cada secuencia; también se corresponden con secuencias similares en

del registro sintético de temperatura sobre Groenlandia (GLTsyn of Barker et al., 2011).
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Los principales enfriamientos coincidieron con la abrupta disminucién y/o valores
bajos de la AMOC, estadiales sobre Groenlandia y, salvo excepciones, también con alta
temperatura sobre Antdrtica. Esto sugiere que el modelo en dientes de sierra, que
explica las oscilaciones climaticas del ultimo ciclo glacial, funcioné también durante el
quinto ciclo climatico.

Durante el MIS 13 y el inicio de la siguiente glaciacion se registrd un claro desfase
entre las variaciones de SST y el volumen del hielo, segtn el §'0 bentdnico. Los
valores mas altos de SST durante MIS 13a se alcanzaron ~4.5 ky después del minimo
volumen de hielo, y la SST empez6 a descender de nuevo ~3 ky después del inicio de la
nueva fase del crecimiento del hielo. Durante este inicio glacial se formd un gradiente
térmico superficial muy acusado entre el Atlantico NW vy latitudes medias, en
respuesta al avance del AF en direccidn este o el sureste.

Las variaciones de las asociaciones de foraminiferos plancténicos del U1385
indican una fuerte conexidn entre la presencia del agua cdlida superficial en el margen
Ibérico y la migracién del AF. El avance del frente artico en latitudes altas produciria el
desplazamiento hacia el sur del giro subtropical, mientras que los episodios del
retroceso del AF permitirian la migracion hacia el norte de dicho giro y la llegada de
masas superficiales calidas a latitudes mas altas. Durante la transicion MIS 12b/a el
aumento en volumen del hielo no se acompaind de la migracién hacia el sur del giro
subtropical, lo que indica que la circulacién superficial de Atlantico Norte se mantuvo
sin grandes alteraciones en el margen del este, probablemente debido a que el AF
tenia una orientacion sudoeste-noreste y el lugar de hundimiento de aguas no resulté
afectado durante este periodo. Esta interpretacion se respalda por valores del §"°C,
que son ~0.5%o0 mas altos que durante otros intervalos del MIS 12, lo que sugiere la
existencia de una AMOC reducida, pero aun activa comparada con otros intervalos del
mismo periodo glacial.

El margen suroeste ibérico es muy sensible a los cambios en la distribucion de las
corrientes del Atlantico Norte y las masas de agua, asi como a los cambios en la
posicion de los frentes artico y subtropical. Las variaciones en la abundancia de las
asociaciones de microfauna asociadas a las diversas corrientes del Atlantico Norte

indican un cambio en la circulacion general de esta parte del océano durante el estadio
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MIS 16. Antes del MIS 16, cuando la posicién del frente Artico (AF) era mdas meridional,
tanto durante los glaciales como los interglacials, la circulacion del Atlantico Norte
estaba condicionada por la migracién del AF hacia el sur conforme avanzaba las
condiciones glaciales. Durante los maximos glaciales de MIS 20 y MIS 18, coincidiendo
con la posicién mas meridional del AF, la corriente del Atlantico Norte (NAC) quedd
desviada hacia el sur y adquiridé una posicion casi puramente oeste-este, lo que
produjo un menor transporte de calor a latitudes altas. Durante estos dos estadios
glaciales, especialmente durante MIS 20, la corriente subtropical de las Azores
aportaba aguas subtropicales cdlidas a lo largo del margen ibérico, fluyendo
superficialmente sobre las aguas mas frias que llegaban procedentes de latitudes
subpolares en direccién sur.

En el margen ibérico el cambio de posicion del AF quedd registrado en torno a los
655 ka mediante el descenso en porcentaje de la especie polar Neogloboquadrina
pachyderma (sinistral) y el incremento de la especie subpolar, Turborotalita
quinqueloba.

Desde el MIS 16 la circulacion general del Atlantico Norte estaba menos
condicionada por las diferentes posiciones del AF que en estadios anteriores. Durante
MIS 14 la NAC llegaba con mayor intensidad a latitudes altas, coincidiendo con el
avance de la glaciacion. Desde el MIS 16, la microfauna caracteristica de la NAC
domind la asociacién registrada en el margen oriental subtropical, indicando una
reactivacion importante de la corriente de Portugal, rama descendente de la NAC, a lo
largo del margen Ibérico. Esta corriente produciria el desvio del agua cdlida superficial
hacia mar abierto y, en consecuencia, la disminucién en el porcentaje de especies
calida en el U1385.

La evolucion de las comunidades bentdnicas durante el intervalo MIS 13 al 11
responde a importantes cambios en la ventilacion del fondo, probablemente ligada a
variaciones en la circulacién termohalina profunda del Atlantico Norte.

Las condiciones ambientales del fondo para el intervalo de tiempo MIS 13 - 11 se
pueden interpretar como de buena oxigenacion, tanto del fondo como del agua
intersticial del sedimento, asi como de abundancia de nutrientes para las comunidades

bentodnicas.
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La concentracién de foraminiferos bentdnicos y las variaciones en las asociaciones
de planctonicos, sugieren cambios significativos en la productividad superficial y el
aporte de nutrientes al fondo ocednico durante MIS 13-11 que pueden correlacionarse
con los cambios registrados de icnofacies.

El final del MIS 13 se caracteriza por valores muy bajos de la productividad anual
exportada, lo que conjuntamente con la presencia de sedimentos claros indica un flujo
relativamente bajo de carbono organico hacia el fondo, asi como buena oxigenacién.
Estas condiciones iniciales cambiaron durante el MIS 12, con un rapido incremento del
aporte de materia organica, que mantuvo altos valores hasta la Terminacion V.
Durante este tiempo las condiciones eran eutréficas, como indica la elevada tasa de
acumulacién de foraminiferos bentdnicos. Durante MIS 11 se registré una menor tasa
de acumulacién de foraminiferos bentdnicos, lo que sugiere un ambiente oligotréfico
en el fondo asociado a menores aportes de carbono organico y alto contenido de

oxigeno en el fondo, lo que produjo sedimentos de color mas claro.

CONCLUSIONS

The study of the variation of planktonic foraminifers assemblages and SST from
the Shackleton site during the middle Pleistocene, as well as the comparison of results
with both benthic and planktonic §'®0 records and Ca/Ti data from the same Site
(Hodell et al., 2015), allows the characterization of climatic and palaeoceanographic
conditions in the North Atlantic back to the ninth climatic cycle (867 ka). Main
conclusions for marine isotope stages MIS 21 to 11 are the following:

All deglaciations on the Portuguese margin, both Terminations (particularly T IX
and VIII) and the transitions from glacial to interglacial substages (MIS 21b/a, MIS
18e/d and especially MIS 15b/a), show a prominent (up to 102C in amplitude) cold-
warm climate oscillation. This high amplitude variation in temperature during
deglaciations is recorded by a remarkable change in the planktonic foraminifer
assemblages from high relative abundance of the polar species Nps to high relative
abundance of the subtropical association. These high amplitude oscillations in

temperature were the result of major reorganizations of Sea surface and deep water
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circulation in the North Atlantic triggered by freshwater releases to the Ocean when
Ice sheets in the northern Hemisphere started to retreat. Reduced salinities at surface
shutdown NADW formation and reduced the northward advection of heat and the
transport of warm waters to the eastern margin of the subtropical gyre, causing the
advection of subpolar waters to the SW Iberian margin. This scenario rapidly changed
when the freshwater perturbation stopped. The re-initiation of NADW formation
enhanced the strength of the AMOC leading to an intensification of the NAC and the
flux of warm waters to the Iberian margin.

The comparison with SST records from higher latitudes of the North Atlantic
reveals the development of a steeper latitudinal SST gradient between the sub-tropical
and the sub-polar North Atlantic as ice sheets were growing in the northern
Hemisphere, providing a source of water vapour that could promote the growth of ice
sheets.

During the interval between MIS 13-11, SST was generally colder than today off
the southwester Iberian margin, especially during the warmest months, which showed
higher SST than today only during peak interglacial optima. Less pronounced cooling
was recorded in this site during MIS 13-11, than during MIS 20 or MIS 15.

During MIS 12 surface water in the mid-latitude ocean was generally colder than
during interglacials, with reduced seasonality and less amplitude SST fluctuations,
especially in the warmest months. Climate oscillations were greater during the
expansion of ice sheets, while the reduction of climate variability prior the glacial
maximum led to one of the most pronounced glaciations of the last million years.

MIS 11c was characterized by climatic stability, with warm winters and very low
seasonality, in line with the low eccentricity and reduced precession at the time. These
climatic conditions led to the weakening of the regional upwelling system and the
stratification of surface water recorded in site U1385.

Millennial climate variability from MIS 13 to MIS 11 shows the occurrence of seven
sequences of progressive cooling; each sequence culminated with a major cooling
event and was followed by a warming episode. These sequences are similar to Bond
cycles defined for the late Pleistocene and most of the final cooling events recorded in

site U1385 coincided with H-type events registered in northern sites. These identified
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climate sequences coincided with vaguely recorded stages of gradual increase in
benthic 80 that was interrupted, or decreased, towards the end of each sequence.
Such sequences can also be identified in the reconstructed record of Greenland
temperature (GLTsyn of Barker et al., 2011). Major cooling coincided with steep
reduction and/or low AMOC, Greenland stadials and, with exceptions, also with high
temperature over Antarctica. This suggests that the see-saw mechanism was also a
characteristic feature during the fifth climatic cycle.

A lag between SST and ice volume, as informed by benthic §'®0, was clearly
recorded both during MIS 13 and the subsequent glacial inception. Warmest SST
during MIS 13a occurred ~4.5 ky after the minimum ice volume, and SST began to
decrease again only ~3 ky after the new ice growth phase. During this glacial inception
a very steep SST gradient developed between the northwest Atlantic and the mid-
latitude ocean in response to the advance of the AF toward the east or the southeast.

Variations of planktonic foraminifer assemblages in this site indicate a strong
connection between the presence of warm surface water off Iberia and migration of
the AF. The advance of the AF over the northern Atlantic would displace the
subtropical gyre southwards, while episodes of retreat of the AF would allow the
northward migration of the gyre and the arrival of warm water masses to more
northern latitudes. During the transition MIS 12b/a the increase in ice volume was not
accompanied by the southward migration of the subtropical gyre, which indicates that
the North Atlantic surface circulation was not greatly disturbed in the eastern margin,
probably because the AF had a southwest-northeast orientation and the locus of deep
water formation was not affected during this period. This interpretation is supported
by values of 8'*C ~0.5 %o higher than in other intervals of MIS 12, which suggests a
reduced but still active AMOC at the time, compared with other intervals of the same
glacial period.

The southwester Iberian margin is highly sensitive to changes in the distribution of
North Atlantic currents and water masses, as well as to changes in the position of
arctic and subtropical fronts. Variations in abundance of microfaunal assemblages
associated to different water masses indicate a change in the general North Atlantic

circulation during MIS 16. Previous to MIS 16, when the arctic front (AF) was located at
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a more southerly position during both glacials and interglacials, the North Atlantic
circulation was determined by its southward migration as glacial conditions
progressed. During peak glacial conditions of MIS 20 and MIS 18, coinciding with the
southernmost position of the AF, the North Atlantic Current (NAC) was diverted
southward and followed and almost pure west to east drift, transporting less heat to
high latitudes. During these two glacials, especially during MIS 20, the Azores current
(AzC) transported warm subtropical waters along the Iberian margin superficially over

waters of polar origin.

Off Iberia, the shift in the AF position was recorded at ~655 ka by the decrease of
relative abundance of the polar species Neogloboquadrina pachyderma (sinistral) and
the increase of the subpolar one, Turborotalita quinqueloba. Since MIS 16, the general
circulation across the North Atlantic was lesser influenced by the different positions of
the AF than before. The NAC reached high latitudes more frequently during MIS 16
than during previous glacials, and during MIS 14 the NAC became more important in
the subpolar North Atlantic as glacial conditions progressed. In the subtropical eastern
boundary the faunal assemblage associated with the NAC became the most abundant
since MIS 16, which indicates that the PC became stronger along the Iberian margin
and diverted warmer water offshore, reducing the relative abundance of warm

surface-dwelling species in site U1385.

The evolution of benthic communities during MIS 13 to 11 responded to major
changes in bottom water ventilation probably linked to variations in North Atlantic

deep-water thermohaline circulation.

During MIS 13 - 11, a generalized context of well-oxygenated bottom and pore-
waters, as well as abundance of food in the sediment for benthic communities can be
interpreted, with marked changes in these paleoenviromental factors as revealed by

variations in composition and distribution of trace fossils.

Benthic foraminifer concentration in the sediments and variations of the
planktonic foraminifer assemblages suggest significant changes in surface productivity
and food supply to the sea floor during MIS 13 and 11 that could be correlated with

the registered changes in facies and ichnology.
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The end of MIS 13 is characterized by very low values of annual export
productivity, which together with the presence of light-color sediments, reveals
relatively low organic carbon flux to the bottom and high oxygen conditions. These
initial conditions were changed during development of MIS 12, showing the rapid
increase in the organic matter supply and then remaining very high until Termination
V, determining a eutrophic environment, as is revealed by high benthic foraminifer
accumulation rates. During MIS 11 lower benthic foraminifer accumulation rates are
registered suggesting an oligotrophic environment at the bottom, associated with
lower inputs of organic carbon, and high oxygen content of bottom waters, in
agreement with the lighter color of the sediments as well as the continuous presence

of light Planolites and Thalassinoides at the interval M.
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ANEXO I: CLASIFICACION TAXONOMICA DE LAS
ESPECIES IDENTIFICADAS EN EL TESTIGO IODP-
U1385 Y ESTUDIADAS PARA ESTA MEMORIA

REINO PROTOCTISTA
FILUM PROTOZOA
Subfilum SARCODINA
Clase FORAMINIFERA d’Orbigny, 1826
Orden FOMAMINIIFERIDA Eichwald, 1830
Suborden GLOBIGERININA Delage & Hérouard, 1896
Superfamilia GLOBIGERINOIDEA Carpenter, Parker & Jones, 1862
Familia GLOBIGERINIDAE (Carpenter, Parker & Jones) Schultze, 1877
Subfamilia GLOBIGERININAE (Carpenter, Parker & Jones) Cushman, 1927
Beella Banner and Blow, 1960
B. digitata Brady, 1879
Globigerina d’Orbigny, 1826
G. bulloides d’Orbigny, 1826
G. falconensis Blow, 1959
Globigerinella Cushman, 1927
G. calida Parker, 1962
G. aequilateralis Brady, 1884
= Globigerina siphonifera d’Orbigny, 1839
Globigerinoides (d’Orbigny) Cushman, 1927
G. conglobatus (Brady) Parker, 1962
G. ruber (d’Orbigny) Bé, 1967
G. sacculifer (Brady) Bé, 1967
G. tenellus Paker, 1958
Globoturborotalita Hofker, 1976
G. rubescens Hofker, 1956
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Globorotaloides Bolli, 1957
G. hexagonus Natland, 1938
Sphaeroidinella Cushman, 1927
S. dehiscens Parker and Jones, 1865
Subfamilia ORBULININAE Schultze, 1854
Orbulina d’Orbigny, 1839
O. universa d’Orbigny, 1839
O. suturalis Broennimann, 1951
Familia TURBOROTALITIDAE Hofker, 1976
Subfamilia TURBOROTALITINAE Hofker, 1976
Turborotalita (Brady) Blow & Banner, 1962
T. quinqueloba Natland, 1938
T. humilis Brady, 1884
Familia GLOBOROTALIIDAE Cushman ,1927
Globorotalia Cushman & Bermudez, 1949
G. crassaformis Galloway and Wissler, 1927
G. hirsuta (d"Orbigny) Parker, 1962
G. inflata (d’Orbigny) Parker, 1962
G. scitula (Brady) Parker, 1962
G. truncatulinoides (d"Orbigny) Bé, 1967
Neogloboquadrina Bandy et al., 1967
N. dutertrei d’Orbigny, 1839
N. pachyderma (Ehrenberg) Brady, 1884
Familia PULLENIATINIDAE Cushman, 1927
Pulleniatina Cushman, 1927
P. obliquiloculata Parker and Jones, 1865
Superfamilia GLOBOROTALIOIDEA Cushman, 1927
Familia CANDEINIDAE Cushman, 1927
Subfamilia CANDEININAE Cushman, 1927
Candenia d’Orbigny, 1839
C. nitida d"Orbigny, 1839
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Subfamilia GLOBIGERINITINAE Bermudez, 1961
Globigerinita Bronnimann, 1951
G. glutinata (Egger) Parker 1962
G. uvula Ehrenberg, 1861
Tenuitellinata Li, 1987
T. iota Parker, 1962
Subfamilia TENUITELLINAE Banner, 1982
Tenuitella Fleisher, 1974
T. munda Jenkins, 1966
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ANEXO II: ESPECIES Y MORFOTIPOS DE
FORAMINIFEROS PLANKTONICOS UTILIZADOS PARA
RECONSTRUIR LA PALEOTEMPERATURA OCEANICA
SUPERFICIAL

Beella digitata

Candenia nitida

Globigerina bulloides

Globigerina falconensis

Globigerinella calida

Globigerinella siphonifera (aequilateralis)
Globigerinita glutinata

Globigerinita uvula

Globigerinoides conglobatus
Globigerinoides ruber (pink)
Globigerinoides ruber (white)
Globigerinoides sacculifer (con saco)
Globigerinoides sacculifer (sin saco)
Globorotalia crassaformis (dextrorsa)
Globorotalia crassaformis (sinistrorsa)
Globorotalia hirsuta

Globorotalia inflata

Globorotalia scitula (dextrorsa)
Globorotalia scitula (sinistrorsa)
Globorotalia truncatulinoides (dextrorsa)
Globorotalia truncatulinoides (sinistrorsa)
Globorotaloides hexagonus

Globoturborotalita rubescens
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Globoturborrotalita tenella
Neogloboquadrina dutertrei
Neogloboquadrina pachyderma (dextrorsa)
Neogloboquadrina pachyderma (sinistrorsa)
Orbulina universa

Pulleniatina obliquiloculata

Sphaeroidinella dehiscens

Tenuitella munda

Turborotalita humilis

Turborotalia quinqueloba
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ANEXO II: ESPECIES Y MORFOTIPOS DE
FORAMINIFEROS PLANKTONICOS UTILIZADOS PARA
RECONSTRUIR LA PALEOPRODUCTIVIDAD
EXPORTADA

Beella digitata

Globigerina bulloides

Globigerina falconensis
Globigerinella calida

Globigerinella siphonifera (aequilateralis)
Globigerinita glutinata
Globigerinoides ruber (rosa)
Globigerinoides ruber (blanco)
Globigerinoides sacculifer
Globigerinoides trilobus
Globorotalia hirsuta

Globorotalia inflata

Globorotalia scitula

Globorotalia truncatulinoides
Globoturborotalita rubescens
Globoturborrotalita tenella
Neogloboquadrina dutertrei
Neogloboquadrina pachyderma (dextrorsa)
Neoglobog. pachyderma (sinistrorsa)
Orbulina universa

Pulleniatina obliquiloculata
Turborotalita humilis

Turborotalia quinqueloba
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ANEXO IV: ASOCIACIONES DE FORAMINIFEROS
PLANKTONICOS UTILIZADAS PARA IDENTIFICAR LAS
DISTINTAS MASAS DE AGUA Y CORRIENTES DEL
ATLANTICO NORTE

ASOCIACION SUBTROPICAL (Cayre et al., 1999)
Beela digitata
Candenia nitida
Globigerinella aequilateralis
Globigerinoides sps
Globoturborotalita rubescens
Globoturborotalita tenella
Pulleniatina obliquiloculata

CORRIENTE NORD-ATLANTIC A (North Atlantic Current) (Ottens, 1991)
Globigerina bulloides
Globigerinella siphonifera (aequilateralis)
Globorrotalia inflata
Neogloboquadrina pachyderma (dextrorsa)

CORRIENTE DE LAS AZORES (Azores Current) (Ottens, 1991)
Globigerinella siphonifera (aequilateralis)
Globigerinita glutinata
Globigerinoides conglobatus
Globigerinoides ruber
Globorotalia crassaformis
Globorotalia scitula
Globoturborotalita rubescens
Globoturborotalita tenella
Neogloboquadrina dutertrei
Pulleniatina obliquiloculata

CORRIENTE DE LAS AZORES (Azores Current) (Salgueiro et al., 2008)

Globigerinoides ruber (blanco)
Globorotalia inflata
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ASOCIACION CALIDA SUPERFICIAL (Vautravers et al., 2004)
Beela digitata
Globigerina falconensis
Globigerinella siphonifera (aequilateralis)
Globigerinoides ruber
Globigerinoides sacculifer
Globoturborotalita rubescens
Globoturborotalita tenella
Orbulina universa
Pulleniatina obliquiloculata
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ANEXO VI: LISTADO DE ABREVIATURAS Y
ACRONIMOS UTILIZADOS

A continuacién se relacionan alfabéticamente los acrénimos y abreviaturas
utilizados en esta memoria. En algunos casos se incluye su traduccion al espafiol o una

pequefia explicacidn de su significado.

AABW: Antarctic Bottom Water

AF: Arctic Front

AMOC: Atlantic Meridional Overturning Circulation (circulacién profunda en direccién
Sur de aguas originadas en el Atlantico Norte)

ANN: Artificial Neural Networks (método para reconstruir paleotemperaturas a partir
de asociaciones fosiles)

AR: Accummulation Rate

AzC: Azores Current

AzH: Azores High-pressure area

CLIMAP: Climate Long Range Investigation, Mapping and Prediction

crmcd: corrected revised meters of composite depth (profundidad en metros, revisada
y corregida, de la composicidn realizada utilizando todos los testigos de una
localizacion de sondeo)

EDC: Epica Dome C (uno de los sondeos efectuados en hielo Antartico)

ENACW: Eastern North Atlantic Central Water (masa de agua superficial presente en el
Este del Atlantico Norte)

ENACWSsp: Eastern North Atlantic Central Water of subpolar origin

ENACWSst: Eastern North Atlantic Central Water of subtropical origin

EPICA: European Project for Ice Coring in Antarctica

Fl: Fragmentation Index

IODP: International Ocean Discovery Program

IPC: Iberian Poleward Current (corriente de aguas cdlidas en direccién norte formada a

lo largo del margen oeste ibérico)
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IRD: Ice Rafted Debris (material arrastrado por glaciares, que es transportado y
depositado mar adentro por témpanos flotantes)

ITCZ: Intertropical Convergence Zone

ka: kilo-annii

ky: kilo-years

LDW: Lower Deep Water (agua abisal compuesta principalmente por AABW)

LGM: Last Glacial Maximum

LNADW: Lower North Atlantic Deep Water

LRO4 / L&R-04: Benthic d*°0 stack (Lisiecki and Raymo, 2005)

LSW: Labrador Sea Water (masa de agua fria y profunda originada en el Labrador y que
circula en el Atlantico Norte a profundidades medias)

MARGO: Multiproxy Approach for the Reconstruction of the Glacial Ocean surface

MAT: Modern Analog Technique (técnica para reconstruir condiciones oceanograficas
de registros fésiles: temperatura de aguas superficiales, productividad, etc.)

MIS: Marine Isotope Stage

NAC: North Atlantic Current

NACW: North Atlantic Central Water (masa de agua superficial en el Atlantico Norte
que llega hasta los 500-600 m de profundidad)

NADW: North Atlantic Deep Water (masa de agua mas profunda originada en el
Atlantico Norte; fluye sobre la LDW)

NHG: Northern Hemisphere Glaciation

NAO: North Atlantic Oscillation

ODP: Ocean Drilling Program

PC: Portugal Current (rama en direccion sur de la NAC a lo largo del margen ibérico)

PF: Polar Front

rmcd: revised meters of composite depth (profundidad en metros revisada de la
composicion realizada utilizando todos los testigos de una localizacién de
sondeo)

SST: Sea Surface Temperature

VPDB: Vienna Pee Dee Belemnite
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minifer assemblages from IODP Site U1385 sediments (37°34.285'N, 10°7.562"W; 2585 m depth). The data pro-
vide a continuous climate record from Marine Isotope Stages (MIS) 21 to 13, extending the existing paleoclimate
record of the Iberian Margin back to the ninth climatic cycle (867 ka). Millennial-scale variability in Sea Surface
Temperature (SST) occurred during interglacial and glacial periods, but with wider amplitude (>5 °C) at glacial
onsets and terminations. Pronounced stadial events were recorded at all deglaciations, during the middle
Pleistocene. These events are recorded by large amplitude peaks in the percentage of Neogloboquadrina
pachyderma sinistral coincident with heavy values of planktonic 880 and low Ca/Ti ratios. This prominent
cooling of surface waters along the Portuguese margin is the result of major reorganizations of North Atlantic sur-
face and deep-water circulation in response to freshwater release to the North Atlantic when ice sheets collapse
at the onset of deglaciations. In fact, most of these cooling events occurred at times of maximum or increasing
northern Hemisphere summer insolation. The slowdown of deep North Atlantic deep-water formation reduced
the northward flow of the warm subtropical North Atlantic Drift, which was recorded on the Iberian margin by
enhanced advection of northern cold subpolar waters. Following each episode of severe cooling at the onset of
deglaciations, surface water experienced abrupt warming that initiated the climatic optimum during the early
phase of interglacials. Abrupt warming was recorded by a sudden increase of the subtropical assemblage that in-
dicates enhanced northward transport of heat through the North Atlantic Drift. At the onset of glaciations, SST
along the Portuguese margin remained relatively warm while the surface waters of the North Atlantic experi-
enced cooling, generating a large latitudinal SST gradient.
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1. Introduction

The western Iberian margin has proven to be a crucial location for
the comprehensive evaluation of millennial climate variability between
hemispheres over the late Pleistocene, offering a direct comparison with
Antarctic and Greenland ice core records (e.g. Shackleton et al., 2000;
Martrat et al., 2007). A large number of studies have been conducted
using piston cores from this area to partially characterize the last six cli-
matic cycles (Cayre et al.,, 1999; Bard et al., 2000; de Abreu et al., 2003;
Roucoux et al., 2005; Vautravers and Shackleton, 2006; Martrat et al.,
2007; Rodrigues et al., 2011).

The western part of the Iberian Peninsula is very sensitive to varia-
tions in the North Atlantic surface circulation dynamics. The Iberian
margin is located in a key region characterized by the interplay of

* Corresponding author.
E-mail address: gm.martin@usal.es (G.M. Martin-Garcia).

http://dx.doi.org/10.1016/j.gloplacha.2015.11.001
0921-8181/© 2015 Elsevier B.V. All rights reserved.

subpolar waters brought by the Portugal Current, which constitutes
the descending branch of the North Atlantic Drift, and subtropical wa-
ters brought by the Azores Current. Changes in the intensity of the
northward flow of the North Atlantic Drift drive a deep impact on the
north Atlantic subpolar and subtropical gyres, as well as on the position
of the Polar, Arctic and subtropical fronts.

For the last climatic cycles various studies have illustrated the rela-
tionship between ice sheets instabilities in the northern Hemisphere
and the southward migrations of the Arctic Front (AF) as far south as
the Iberian margin (Bard et al., 2000) via the recirculation of cold
water through the subtropical gyre eastern currents. Millennial-scale
oscillations of Sea Surface Temperature (SST) at the Portuguese margin
have been related to changes in North Atlantic surface circulation driven
by freshwater perturbations at high latitudes (eg., Lebreiro et al., 1996,
1997; Zahn et al., 1997; Cayre et al., 1999; de Abreu et al., 2005;
Vautravers and Shackleton, 2006; Martrat et al., 2007; Eynaud et al.,
2009; Rodrigues et al., 2011). These oscillations also affected the conti-
nental climate across southern Europe via atmosphere-ocean coupling
(Allen et al., 1999; Roucoux et al., 2005; Sanchez Goiii et al., 2008, 2013).
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During the last glacial cycle a series of layers with high abundances
of the polar species Neogloboquadrina pachyderma sinistral (Nps) were
recorded along the Portuguese margin during Heinrich events
(e.g., Lebreiro et al., 1997; de Abreu et al., 2003). In certain sites those
layers also contained important amounts of Ice rafted debris (IRD) al-
though the presence or absence of IRD rich layers off the Iberian margin
during these events depends on the proximity to the shore. Sites located
further offshore usually record IRD layers (Lebreiro et al., 1996; Bard
et al.,, 2000) whereas sites nearshore rarely register them (Zahn et al.,
1997).

At the same time, the Portuguese margin provides an excellent loca-
tion to monitor past changes in deep water circulation and heat and salt
exchange between Hemispheres (Hodell et al., 2013a). Millennial-scale
oscillations in surface circulation recorded along the Portuguese margin
were linked to significant changes in deep water circulation. Shutdown
or reduced deep water formation in the North Atlantic in response to
freshwater perturbations is registered in the SW Iberian margin by re-
duced flux of the North Atlantic Deep Water (NADW) and a rapid re-
placement by the northward flux of the Antarctic Bottom Water
(AABW) (Shackleton et al., 2000; Skinner et al., 2003).

Before Integrated Ocean Drilling Program (IODP) Expedition 339 the
existing sediment cores in the western Iberian margin only provided cli-
matic and oceanographic reconstructions back to late Marine Isotope
Stage 15 (e.g. Bard et al., 2000; Rodrigues et al., 2011). The sediment
cores from Site U1385 (Shackleton Site), retrieved during Expedition
339, allow us to extend the record back to 870 ka and investigate the re-
sponse of the mid-latitude eastern North Atlantic to climatic changes
during the interval between 870 and 490 ka. In this work we studied
planktonic foraminifer assemblages and combined them with the oxy-
gen isotopes records from IODP Site U1385 to reconstruct the history
of sea surface temperature on the southwest Iberian Margin from MIS
21 to MIS 13, thereby extending the existing record in the area back to
the ninth climatic cycle.

Given that previous works suggested the Iberian Margin can play a
pivotal role in understanding the millennial-scale climate variability
during the last glacial cycle (Shackleton et al., 2000, Vautravers and
Shackleton, 2006), in this work we aim to study the suborbital climate
variability at this location during the last part of the middle Pleistocene
transition (MPT, ~1250-700 ka; Clark et al., 2006) and state the influ-
ence that subpolar North Atlantic climatic oscillations and meridional
SST gradients had on climatic events during and since the emergence
of the 100-ka cycles.

2. Regional and oceanographic setting

10DP Site U1385 was drilled at the “Shackleton site”, off the western
Iberian margin (37°34.284'N, 10°7.562'W), at 2578 m water depth.

The western Iberian margin lies at present under the influence of
several distinct water masses, which have been clearly identified and
characterized (e.g. Fiiza et al., 1998; Peliz et al., 2005; Serra et al.,
2010). These are, from top to bottom: the North Atlantic Central Water
(NACW), reaching around 500-600 m depth and characterized by a
complex circulation pattern; the Mediterranean Outflow Water, warm
and very saline, between the NACW and 1500 m; the Labrador Sea
Water (LSW) can reach 2200 m depth, depending on the density
difference with the Northeast Atlantic Deep Water (NEADW), which
flows down to 4000 m depth; and, across the lower slope and abyssal
plains, the Lower Deep Water, composed mainly of Antarctic Bottom
Water (AABW). The studied site (Fig. 1) is currently under the influence
of NACW at the surface and NEADW at the sea floor. Surface
water circulation in the area is determined by the eastern gyre of the
North Atlantic (Eastern North Atlantic Central Water or ENACW)
which consists of two branches, the Portugal Current in the north, of
sub polar origin, and the Azores Current in the south, of subtropical
origin. The general distribution of water masses is influenced by the
seasonal migration of the Azores anticyclonic cell and its associated

large-scale wind pattern. In summer, strong northerly Trade winds
along west Iberia induce a coastal upwelling of the deeper layers of
ENACW.

3. Material and methods

Sediments at Site U1385 define a single lithological unit dominated
by calcareous muds and calcareous clays, with varying proportions of
biogenic carbonate (23%-39%) and terrigenous sediment. Pelagic sedi-
mentation prevails during interglacials, while terrigenous input is en-
hanced during glacials; however, sedimentation rates remain high
(~10 cm/ka) for glacial and interglacial periods (Stow et al., 2012).
Occasional occurrence of ice rafted debris (IRD) is also recorded. Cyclic
variations in physical properties and color reflect cyclic changes in the
proportion of biogenic carbonate and detrital material delivered to the
site (Hodell et al., 2013b).

This study covers a section from the secondary splice U1385D/E
(Hodell et al., 2013a) between 59.95 and 99.84 crmcd (corrected re-
vised meters composite depth) (MIS 21-MIS 13). Samples for the mi-
crofaunal analysis were taken every 20 cm, providing an average
estimated 1.76-ka resolution record. A total of 210 samples 1 cm thick
were dried, weighed and washed over a 63 pm mesh sieve. The
>63 um residue was dried, weighed and sieved again to separate and
weigh the >150 pm fraction. Census counts of planktonic foraminifera
taxa and of planktonic foraminifer fragments were conducted on the
sediment fraction larger than 150 pm, using a stereomicroscope.
Each sample was successively split until a minimum of 300 specimens
was obtained. A total of twenty-eight species and ten morphotypes
(Kennett and Srinivasan, 1983) of planktonic foraminifers have been
identified (Appendix A) and their relative abundances, calculated, as
well as the number of specimens per gram of dry sediment. To monitor
carbonate dissolution, planktonic foraminifer fragmentation index was
calculated as percentage of test fragments related to the total amount
of fragments plus specimens (Thunell, 1976).

Sea surface temperature (SST) values (annual, winter, summer and
seasonality -difference between winter and summer parameters)
were reconstructed according to the Artificial Neural Network (ANN)
method, using a back propagation neural network system (Malmgren
et al., 2001) to compare our fossil planktonic foraminifera assemblages
with MARGO North Atlantic database. We used the commercial soft-
ware NeuroGenetic Optimiser v2.6 (Biocomp), as described in Kucera
et al. (2005), who calculate an error of prediction of 1.02 °C. The same
set of 10 neural networks as in Kucera et al. (2005) was used in this
study, providing 10 different SST reconstructions for each component
(winter, summer, annual and seasonality). The average value of these
ten estimations was used as the final SST reconstruction. Additionally,
in order to calculate a similarity index and corroborate the ANN results,
we applied a Modern Analog Technique (Prell, 1985) on the fossil data
using the same MARGO modern dataset as was used for the training
of the ANN (Kucera et al., 2005). The same methodology has been
followed to reconstruct winter SST of Site U1314, using the same plank-
tonic foraminifer assemblages as in Alonso-Garcia et al. (2011b). Site
U1314 (~1 ka resolution) has been included in this work to better com-
pare with the subpolar North Atlantic.

The age model of the studied section is based on the correlation of
the benthic oxygen isotope record to the global benthic LR04 isotope
stack (Lisiecki and Raymo, 2005) (see Hodell et al., 2015).

4. Results

Preservation in the studied interval is analyzed considering the
planktonic foraminifer fragmentation index. This index remains
generally lower than 20% (Fig. 2g), which informs of a very good preser-
vation in the samples, except for some short intervals of increased
dissolution. Nevertheless, the fragmentation index did not surpass
the 40% threshold above which planktonic foraminifer assemblages
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Fig. 1. (a) Map showing the location of Site IODP-U1385 in the Iberian margin and its oceanographic setting (Position of the Arctic Front, from: Swift, 1986 and Pflaumann et al., 2003). PC:
Portugal Current; IPC: Iberian Poleward Current; ENACWsp: Eastern North Atlantic Central Water of subpolar origin; ENACWst: Eastern North Atlantic Central Water of subtropical origin.
Other cores mentioned in this paper are also shown. (b) Bathymetric map of the southwester Iberian margin showing the position of Site U1385 and nearby piston Cores MD01-2444,
located at approximately the same position as Site U1385, and MD95-2042 (After Hodell et al., 2013a).

begin to suffer modifications due to dissolution (Miao et al., 1994). Planktonic foraminifer accumulation rate ranges between 500 and
Therefore, we can assume that the assemblages used for this work are 49,800 specimens per gram of dry sediment and ka, lowest values cor-
not modified by dissolution and they are suitable to infer water mass responding to levels of high bioturbation, where metallic deposits con-
properties. form most of the coarse fraction of the sediment.
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Fig. 2. Down-core results for stages 13 to 21 from IODP-U1385 and comparison with global LR04 benthic stack. (a) Age control points used to correlate both stacks (marked with crosses).
(b) Benthic 6'%0 profiles from LR-04 stack (Lisiecki and Raymo, 2005) in dashed line, and from U1385 (Hodell et al., 2015); filling enhances the ice volume threshold separating stable and
unstable climatic regimes, which has been identified for the North Atlantic in 6'%0 value of 3.5 % (McManus et al., 1999). This threshold has been used to locate in the core the limits be-
tween glacial and interglacial conditions and determine the duration of climatic cycles. Substages are named according to Railsback et al. (2015). U1385 benthic 6'%0 record shows a much
higher variability and around 0.5 %. VPDB lower values than the global stack. (c) Winter ANN-reconstructed sea surface temperature. (d) Summer ANN-reconstructed sea surface tem-
perature. Both winter and summer records are compared with present day temperatures on the site (horizontal dashed lines) from Locarnini et al. (2010). (e) ANN-reconstructed season-
ality compared with present-day seasonality on the site (dashed line). (f) MAT-reconstructed similarity index (Prell, 1985) between fossil planktonic foraminifer assemblage in Site U1385
and MARGO dataset (Kucera et al., 2005). (g) Planktonic foraminifer fragmentation index (number of test fragments related to the total amount of fragments plus specimens) (Thunell,

1976) and averaged with a 3-point running mean.

4.1. Planktonic foraminifer results

The microfaunal analysis focuses on species and assemblages that
can be directly used to monitor any change in climatic or oceanographic
conditions in North Atlantic surface water.

The species Neogloboquadrina pachyderma sinistral (Nps), with a
temperature tolerance range between — 1 and 8 °C and an optimum
of 2 °C (Bé and Tolderlund, 1971; Tolderlund and Bé, 1971; Bauch
et al,, 1997; Pflaumann et al., 2003), is particularly abundant in the Arc-
tic water (Johannessen et al., 1994). This species has been used to

monitor southward penetrations of polar water masses, usually associ-
ated with iceberg discharges in mid-latitude North Atlantic (eg., Bond
et al,, 1992) as well as in the Portuguese margin (Cayre et al., 1999; de
Abreu et al., 2003; Vautravers and Shackleton, 2006; Eynaud et al.,
2009). This species ranges from 0% to a maximum of almost 50% during
MIS 18. The species is more abundant before MIS 16 where high values
occurred during interglacials, except for MIS 19, as well as glacials
(Fig. 3e).

The subtropical assemblage (Ottens, 1991) consists mainly of spe-
cies of Globigerinoides genus and it is usually linked to the subtropical

Fig. 3. Comparison between IODP-U1385 record and orbital parameters. (a) Benthic 5'®0 profile: LR-04 stack (Lisiecki and Raymo, 2005) in dashed line, and record from U1385 (Hodell
et al,, 2015); filling enhances the ice volume threshold separating stable and unstable climatic regimes (McManus et al., 1999). Substages are named according to Railsback et al. (2015)
(b) Planktonic foraminifer Globigerina bulloides 5'®0 record from U1385 (Hodell et al., 2015). (c) Log Ca/Ti record from U1385 (Hodell et al., 2015) (d) Winter SST for Site U1385 (values
above average are shaded). (d) Relative abundance of the planktonic foraminifer polar species Neogloboquadrina pachyderma sinistral in U1385. (e) Relative abundance of the subtropical
assemblage (Ottens, 1991) in U1385. (g) Orbital parameters: obliquity (Laskar et al., 2004) (black) and 65 °N 21st June Insolation values (W/m?) (blue) (Huybers, 2006) and integrated
summer energy at 65 °N (>275 W/m?) (red) (Huybers, 2006). Vertical bands mark pronounced cooling coinciding with deglaciations; gray bands mark events close to obliquity maxima
and green bands mark the exceptions (no obliquity maxima or no deglaciation). Blue lines mark other pronounced cooling not linked either with deglaciations or with obliquity maxima.
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branch of ENACW, transported to the Northeast Atlantic by the Azores
Current, which flows northward over the site during non-upwelling
months (Peliz et al.,, 2005). Variations in the abundance of the subtrop-
ical assemblage (Fig. 3f) are consistent with climatic cycles. Variations in
the subtropical assemblage resemble the planktonic 5'%0 record, during
both glacial and interglacial periods (Fig. 3).

4.2. Sea surface temperature variations

The similarity index of MAT (Fig. 2f) ranges between 0.9 and 1 for al-
most all the interval, suggesting that the studied samples are well repre-
sented in the modern dataset and that SST reconstructions (Fig. 2) are
not affected by no-analog artifacts (Kucera et al., 2005).

In general, winter SST off the southwestern Iberian Margin resemble
the planktonic oxygen isotope variations (Fig. 3, b and d). Minimum tem-
perature occurred during Terminations or during glacial inceptions. SST
in the area was generally colder during the studied interval (mean annu-
al value, 16.6 °C) than at present (18 °C) (Locarnini et al., 2010), even
during interglacials. During interglacial periods, summer SST (Fig. 2d)
were on average 1 to 2 °C colder than at present and, during glacials,
they were 2 to 4 °C colder. Nevertheless, during cooling episodes, sum-
mer SST dropped 6 °C below Holocene levels (18 °C, Bard et al., 2000)
and those of previous interglacial, MIS 3, (17-18 °C, de Abreu et al.,
2003; Vautravers and Shackleton, 2006). Winter SST (Fig. 2c) remained,
on average, less than 1 °C lower than at present during all interglacials
and during glacials MIS 20 and MIS 14, and were higher than today dur-
ing most of MIS 19, in the warmest periods of MIS 21 and 15, and even in
some very short spells during glacial stages MIS 18, MIS 16 and MIS 14.
Only during MIS 18 winter SST were considerably lower (2.5 °C in aver-
age) than at present. The warmest period of the studied interval was MIS
19 and the coldest one was MIS 18. Isotope stages 17 and 13 were the
coldest interglacial periods, with summer SST between 1 and 2 °C colder
than at present and closer to the values recorded during glacial periods,
and winter SST generally below modern values.

SST oscillations were, in general, less frequent and less pronounced
during interglacials (less than 7 °C drop or rise) than during glacials
(up to 11 °C oscillation), except for MIS 21f, that shows one of the
steepest sea surface temperature oscillations (7.3 °C) of the whole
studied interval.

ANN-reconstructed seasonality (Fig. 2e) during middle Pleistocene
is lower than today and, in general, it shows small amplitude variability
along the whole interval. Most of the deep oscillations in seasonality
correspond to outstanding SST fluctuations. Increases in seasonality co-
incide with drops in winter SST and vice-versa. The highest seasonality
values occurred in MIS 16b (6.2 °C), MIS 15e (6 °C) and 15b (5.9 °C).
Since MIS 15a seasonality values were lower and show a slow increasing
trend until the end of MIS 13, encompassing the cooling trend recorded
by SST. During isotope stages 16 and 15 the amplitude of seasonality os-
cillations was between 1 and 2 °C higher than during the rest of the
interval.

5. Discussion

5.1. Sea surface cooling on the Portuguese margin at deglaciations during
middle Pleistocene

The planktonic foraminifer assemblages, SST and oxygen isotope data
studied at Site U1385 indicate that during this period, and superimposed
on the glacial-interglacial variations, suborbital millennial-scale climatic
variability off Iberia reflects the influence of millennial changes in surface
circulation in the NE Atlantic.

In order to identify millennial-scale climate events that may not be
resolved with the resolution of our SST record we compare our data
with the Ca/Ti record (Hodell et al., 2015), which provides an estimated
resolution of 0.1 ka. Previous studies along the Portuguese margin re-
ported that Ca/Ti reflects millennial-scale climate changes as well as

sea level variations (Hodell et al., 2013a). Higher Ca/Ti ratios are linked
to higher productivity of calcareous plankton during warmer periods
and lower siliciclastic input from the continent (Hodell et al., 2013a).

Summer SST at the Portuguese margin remained relatively warm
from MIS 21 to MIS 13, although lower than present-day summer SST,
oscillating between 15 and 18 °C irrespective of the glacial or intergla-
cial periods (Fig. 2d). This relatively warm temperature was, however,
punctuated by abrupt SST cooling events, recorded throughout the re-
cord by pronounced peaks in abundance of Nps and sharp increases of
G. bulloides 5'80 values, as well as very low values of the Ca/Ti ratio
(Fig. 2, 3).

A close comparison of SST with the benthic 6'®0 record for U1385
and the global benthic oxygen isotope stack (LRO4) shows that all
these cooling events were coetaneous with drops in the benthic 6'20.
Longer and more pronounced cooling episodes in the Portuguese mar-
gin occurred at Terminations (Fig. 2a-c), particularly during Termina-
tion IX and VIII, but also at the transitions from glacial-interglacial
substages MIS 21b to 21a, MIS 18e to 18d, and, especially, MIS 15b to
15a.

5.1.1. MIS 21-20

During the ninth climatic cycle (MIS 21-MIS 20) four main cooling
events (6 to 8 °C drop) were recorded, all of them at transitions from
higher to lower §'80 values in the benthic oxygen isotope record. The
amplitude and duration of these cooling episodes are related to the am-
plitude of the benthic isotope change (Fig. 2a—c). The most pronounced
cooling occurred at Termination IX corresponding with a high ampli-
tude change in the isotopes undoubtedly related to a major sea level
rise and deglaciation. Another major cooling (6.4 °C) occurred at the
transition MIS21b/a, also related to an important deglaciation and sea
level rise. The first two cooling events recorded in this period also oc-
curred at glacial/interglacial transitions, MIS 21f/e and MIS 21d/c. All
these events of cool surface temperatures are also registered by heavier
planktonic 6'80 and lower Ca/Ti values (Fig. 3b-d).

Based on the benthic 6'20 record climatic cycle MIS 21-20 encom-
passes two glacial, obliquity-driven cycles, the two more pronounced
cooling events reflecting the culmination of these two glacial cycles.
These cooling events were followed by remarkably warm intervals, show-
ing the characteristic millennial-scale, stadial-interstadial climate oscilla-
tions (Fig. 3a,d,g). In particular, the four cool-warm oscillations recorded
in MIS 21 have also been recorded in various sites of the North Atlantic
(Flower et al., 2000; Kleiven et al., 2003; Hodell et al., 2008; Ferretti
et al,, 2010; Hernandez-Almeida et al,, 2012) during the stage of progres-
sive extension of the northern Hemisphere ice sheets during MIS 21. The
cooling events off Iberia were marked by high percentages of the polar
species Nps (Fig. 3e) but they were not linked to high IRD as has been re-
ported for the same events at sites 984, 980 (Wright and Flower, 2002;
hereafter, W&F02) and U1314 (Hernandez-Almeida et al., 2013) in the
North Atlantic.

5.1.2. MIS 19-18

During this cycle, sea surface waters along the Portuguese margin
experienced a pronounced cooling during three episodes (Fig. 3d),
being the greatest in amplitude (7.2 °C) and the coldest (6.2 °C, winter
SST), the one recorded at Termination VIIL The other two cooling events
were also linked to global drops in benthic 6'20 at the transitions MIS
18e/d and MIS 18b/c (Fig. 3a,d). Like in the previous climate cycle the
amplitude of the cooling events is related to the amplitude of the degla-
ciations, being the cooling event associated to MIS 18b/c of lesser ampli-
tude. Low Ca/Ti ratios, high planktonic 6'80 and high percentages of Nps
also registered these cooling events that, with the exception of Termina-
tion VIII when SST increased gradually, were followed by abrupt
warming (Fig. 3b-e).

Similar cooling episodes have been recorded in the subpolar North
Atlantic at sites 980 (W&F02), U1314 (Alonso-Garcia et al., 2011a)
(Fig. 4b) and U1302 (Channell et al., 2012), as well as at site U1308
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Fig. 4. Comparison between SST record from site IODP-U1385 (this work) and other climatic records from ninth to fifth climatic cycles. (a) Benthic §'3C profile from U1385 (pink) and ODP-
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are shaded in all the plots. (c) IRD content (in number of particles per gram of sediment) from site 980 (W&F02). The age model for site 980 has been recalculated according to LR0O4.
(d) Antarctic Dome C 8D record (purple) and reconstructed temperature (black dashed line) (Jouzel et al., 2007) (e) Content of greenhouse gases CH4 (green) and CO, (red) in the
Antarctic ice (Loulergue et al.,, 2008 and Liithi et al., 2008, respectively).
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(Hodell et al., 2008), but in that region they were associated to ice-
rafting events (Fig.4c).

5.1.3.MIS 17-16

Based on the global benthic Stack (LRO4) MIS 16 was the longest and
the most prominent glacial of the middle Pleistocene. Ice sheets grew
continuously from 695 to 630 ka, with a lower rate of growth or retreat
between 660 and 650 ka. It is at this time when surface waters in the
Portuguese margin experienced a prominent drop (8 °C) in temperature
(Fig. 3d). The beginning of this prominent cooling (659 ka) was syn-
chronous with a low-amplitude warming phase recorded in Antarctic
ice cores (Fig. 4b,d) and occurred nearly in phase with maximum oblig-
uity of Earth's axis (Fig. 3d,g).

Unlike other Terminations, a weak cooling event (12.2 °C winter
SST) was recorded at Termination VII, although this is one of the largest
amplitude deglaciations. An also low amplitude drop in Ca/Ti reflects
the small magnitude of this event (Fig.3c). Nevertheless, it coincided
with IRD accumulation in site 980 (Fig. 4c) and was contemporaneous
with Heinrich event 16.1 recorded at sites U1308 and U1302/03
(Hodell et al., 2008; Channell et al., 2012).

5.1.4. MIS 15-13

In the upper part of our record, again SST experienced prominent
cooling events at deglaciation between MIS 15b/a (7.7 °C winter SST)
and at transition MIS 13b/a (11.4 winter SST). Two more short cooling
events (9 and 9.7 °C winter SST) occurred at 561.35 and 555.87 ka, sim-
ilar to those recorded in the subpolar cores 980 and U1314 (Fig. 4b).

A less pronounced cooling (5 °C drop) occurred at Termination VI
that is also marked by a decrease in Ca/Ti (Fig. 3c-d).

5.2. Important reorganizations of North Atlantic circulation at the onset of
northern hemisphere ice sheet retreats

While in other North Atlantic sites, especially those that are at higher
latitude, SST remained relatively low during glacial times, the Portu-
guese margin was under the influence of relatively warm temperate
waters during most glacial periods (Fig. 4b). The occurrence of
temperate-warm surface waters at site U1385 during long time periods
reflects the persistent influence of the North Atlantic Current (NAC) and
its continuous advection of temperate-warm waters to the eastern mar-
gin of the subtropical North Atlantic gyre. The stadial-interstadial oscil-
lations observed in this study were the result of enhanced/reduced
advection of heat to the Southern Iberian Margin through the NAC.
However, during most deglaciations a major reorganization of surface
circulation in the North Atlantic reduced the northward flow of the
NAC, promoting the southward expansion of cold subpolar waters
along the western European margin.

The severe cooling episodes associated to most deglaciations were
followed by a prominent warming event that marks the onset of a cli-
mate optimum interstadial event usually present in the first stage of in-
terglacial periods. This climate optimum event was the warmest
interstadial of each interglacial. Good examples of these high amplitude
changes in temperature can be seen at Termination IX, when SST rose
from 8.3 to 19 °C, and at transitions MIS 21f/e, MIS 21b/a, MIS 15b/a,
etc. (Figs. 2c-d, 3d).

In parallel to the pronounced surface cooling events, the record of
the Portuguese margin shows that deep-water circulation was also se-
verely affected. A remarkable decrease in the benthic 8'C is observed
at deglaciations (Fig. 4a), especially in Terminations IX and VIII, but
also at other glacial-interglacial transitions. These drops in benthic
6'3C have been recognized in other sites from the North Atlantic
(W&F02; Hodell et al., 2008; Alonso-Garcia et al., 2011b; Ferretti et al.,
2015). Drops in the benthic '3C have traditionally been attributed to
slowdown of NADW formation triggered by lower sea surface salinities
in the north Atlantic. In more recent climate cycles lower benthic §!3C
have been observed during Heinrich events that were triggered by

freshwater discharge at times of ice sheet collapse (Shackleton et al.,
2000; Skinner and Elderfield, 2007; Martrat et al., 2007). Pulses of re-
peated freshwater release to the North Atlantic originate the
millennial-scale, stadial-interstadial oscillations of late Pleistocene
caused by reduced/enhanced Atlantic meridional overturning circula-
tion (AMOC) alternations. Events of reduced AMOC led to lower rates
of heat transfer to the North Atlantic that resulted in decreased SST
(e.g: Broecker et al., 1989; Stocker, 1999; McManus et al., 2004; Pisias
et al., 2010). Although these millennial-scale climate oscillations are re-
corded at site U1385, the highest amplitude cooling/warming oscilla-
tions on the Portuguese margin coincided with deglaciations, both
Terminations and the transitions from glacial to interglacial substages,
and were marked by significant changes in the planktonic foraminifer
assemblage from high percentages of Nps to increased relative abun-
dance of subtropical species (Fig. 3e-f).

We interpret that the pronounced cooling events observed along the
Iberian margin were triggered by freshwater released to the Atlantic at
the onset of northern Hemisphere ice sheet retreats. The mechanism is
similar to what happened during Heinrich stadials recorded at the end
of the last two glacial periods (e.g. Rithlemann et al., 1999; Bo6hm
et al., 2014), when the extension of the polar water and icebergs have
been reported to reach the latitude of Southern Iberia (e.g., Skinner
et al,, 2003; Skinner and Shackleton, 2006). Although IRD were not re-
corded at site U1385 the advection of polar waters to the Portuguese
margin only at deglaciations suggests that only freshwater perturba-
tions of a certain magnitude, such as those related to ice-sheet retreats,
had a profound effect on the SW Iberian margin.

The remarkable warming episodes that immediately followed degla-
ciations (Figs. 2a-c, 3a,d) were triggered by the resumption of NADW
formation after the end of freshwater perturbations originated during
ice sheet collapse. An increase in the strength of the AMOC led to invig-
oration of the NAC and the transport of warm surface waters to the Por-
tuguese margin, which is recorded by a significant increase in the
subtropical species in the planktonic foraminifer assemblage (Fig. 3f).

Ice sheets during Middle Pleistocene tended to collapse at times of
high northern Hemisphere summer insolation that resulted from the
combination of high obliquity and minimum precession (Imbrie et al.,
1993; Huybers and Wunsch, 2003; Huybers, 2011). While obliquity
mainly governed the time between deglaciations, precession determined
the precise timing of deglaciations (Huybers, 2011) and ice discharge to
the Ocean. This, in turn, triggered the major reorganizations of surface
circulation in the North Atlantic and the advection of polar water to the
Iberian margin. The coincidence in timing between these pronounced
cooling events in Portugal with increasing northern Hemisphere sum-
mer insolation (Fig. 3d,g), strongly suggests a causal effect with ice
sheet collapse events and deglaciations. Most of these events occurred
at times of obliquity maxima when obliquity governs insolation at high
latitudes. However there are two notable exceptions, the cooling epi-
sodes recorded at 650 and 710 ka when obliquity was relatively low or
decreasing (Fig. 3g). Instead, these two cooling events occurred at
times of increasing summer insolation driven by precession when the
perihelion was aligned with northern Hemisphere summer solstice.

Recently it has been proposed that the energy received during sum-
mer (called integrated summer insolation, with summer defined as the
period when insolation intensity exceeds the ~275 W/m? threshold) is
the parameter that better reflects the amount of ice sheet melting
(Huybers, 2006). The summer energy at 65°N (using the 275 W/m?
threshold) shows high values during all terminations and transitions
from glacial to interglacial substages (Fig. 3g), and may be advocated
as the trigger for the major reorganizations in North Atlantic circulation
observed in our Iberian margin record, in response to deglaciations.

5.3. North Atlantic SST gradient during ice sheet growth

One of the most characteristic features of the SST record in the
Portuguese margin is that both the early phase of ice sheet growth, as
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recorded by the rapid increase in the benthic and planktonic 620, and
glacial maxima, were coeval with warm SST at Site U1385 (Figs. 2a-c,
3a,b,d). In fact, off the Iberian margin none of the ice volume maxima
corresponded to the lowest SST. When comparing SST records of this
study with those from northern sites 980 and U1314 (Fig. 4b) an
increasing N-S latitudinal SST gradient can be observed. After the
pronounced warming recorded at the beginning of interglacials,
millennial-scale climate changes are recorded both at high and at mid-
dle latitudes, but southern waters remained relatively warm, while the
northern ones cooled as a result of the progressive extension of the
northern Hemisphere ice sheets and associated southward advance of
the AF (WF02; Alonso-Garcia et al., 2011a). This pattern is particularly
noticeable at transitions MIS 19/18, MIS17/16 and MIS15/14. During
the early phase of glacials, areas at latitudes of 37°N were influenced
by the warm subtropical waters of the Azores current, as indicated by
the presence of the subtropical assemblage in our Site (Fig. 3f). SST
were similar during glacials, especially MIS 20, and interglacials,
especially during MIS 20. A similar situation was observed in site
U1313 during MIS 16, when warm and stratified surface waters
coexisted with the presence of IRD layers produced by Heinrich-like
Events (Naafs et al,, 2011).

This lack of correspondence between SST and ice volume maxima
was also recorded in the mid-latitude North Atlantic in more recent iso-
tope stages, like MIS 6 (Martrat et al., 2007) and the Last Glacial Maxi-
mum, when surface water temperature was almost as high as today,
according to SST reconstructions from the Portuguese margin (Cayre
etal., 1999; de Abreu et al., 2003) and the North Atlantic at the same lat-
itude (Chapman and Shackleton, 1998).

This mismatch between increasing global ice volume, cool SST in the
northern latitudes and warm surface waters off Iberia supports the in-
strumental role that warm surface waters of mid-latitude North Atlantic
had in building northern hemisphere ice sheets, providing an important
source of water vapor to promote ice growth (Ruddiman and Mcintyre,
1981; Sanchez Goiii et al., 2013).

6. Conclusions

Our study of the variation of planktonic foraminifers assemblages
and SST, from the Shackleton site during the middle Pleistocene, as
well as the comparison of our results with both benthic and planktonic
580 records and Ca/Ti data from the same Site (Hodell et al., 2015), al-
lows the characterization of climatic conditions in the North Atlantic
back to the ninth climatic cycle (867 ka). SST was generally colder dur-
ing the middle Pleistocene than today off the southwestern Iberian mar-
gin, especially summer temperature, which was higher than today only
during very short periods in some interglacials. During this period and
superimposed on the glacial-interglacial variations, millennial-scale cli-
matic variability was recorded.

All deglaciations on the Portuguese margin, both Terminations (par-
ticularly T IX and VIII) and the transitions from glacial to interglacial
substages (MIS 21b/a, MIS 18e/d and especially MIS 15b/a), show a
prominent (up to 10 °C in amplitude) cold-warm climate oscillation.
This high amplitude variation in temperature during deglaciations is re-
corded by a remarkable change in the planktonic foraminifer assem-
blages from high relative abundance of the polar species Nps to high
relative abundance of the subtropical association (Fig. 3e-f).

These high amplitude oscillations in temperature were the result of
major reorganizations of Sea surface and deep water circulation in the
North Atlantic triggered by freshwater releases to the Ocean when Ice
sheets in the northern Hemisphere started to retreat. Reduced salinities
at surface shutdown NADW formation and reduced the northward ad-
vection of heat and the transport of warm waters to the eastern margin
of the subtropical gyre, causing the advection of subpolar waters to the
SW Iberian margin. This scenario rapidly changed when the freshwater
perturbation stopped. The reinitiating of NADW formation enhanced

the strength of the AMOC leading to an intensification of the NAC and
the flux of warm waters to the Iberian margin.

The comparison with SST records from higher latitudes of the North
Atlantic reveals the development of a steeper latitudinal SST gradient
between the sub-tropical and the sub-polar North Atlantic as ice sheets
were growing in the northern Hemisphere, providing a source of water
vapor that could promote the growth of ice sheets.
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Appendix A. Planktonic foraminifer species and morphotypes
identified

Beella digitata

Candenia nitida

Globigerina bulloides

Globigerina falconensis

Globigerinella calida

Globigerinella siphonifera (aequilateralis)
Globigerinita glutinata

Globigerinita uvula

Globigerinoides conglobatus
Globigerinoides ruber (pink)
Globigerinoides ruber (white)
Globigerinoides sacculifer (with sac)
Globigerinoides sacculifer (without sac)
Globorotalia crassaformis (dextral)
Globorotalia crassaformis (sinistral)
Globorotalia hirsuta

Globorotalia inflata

Globorotalia scitula (dextral)
Globorotalia scitula (sinistral)
Globorotalia truncatulinoides (dextral)
Globorotalia truncatulinoides (sinistral)
Globorotaloides hexagonus
Globoturborotalita rubescens
Globoturborrotalita tenella
Neogloboquadrina dutertrei
Neogloboquadrina pachyderma (dextral)
Neogloboquadrina pachyderma (sinistral)
Orbulina universa

Pulleniatina obliquiloculata
Sphaeroidinella dehiscens

Tenuitella munda

Turborotalita humilis

Turborotalia quinqueloba
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Integrative research including facies characterization, ichnological composition and foraminifer analysis has been
conducted on cores from Site U1385 of the [ODP Expedition 339 to evaluate the incidence of Marine Isotope Stage
(MIS) 12 and MIS 11 on deep-sea environmental changes. Four color facies groups have been differentiated,
showing variable transitions between them (bioturbated, gradual and sharp contacts). Trace fossil assemblage,
assigned to the Zoophycos ichnofacies, consists of light and dark filled structures, with Alcyonidiopsis, Chondrites,
Nereites, Planolites, Spirophyton, Thalassinoides, Thalassinoides-like structures, and Zoophycos. A deep-sea multi-

Keywords: . . e . .

Integrated Ocean Drilling Program tiered trace fossil community is interpreted, revealing predominance of well-oxygenated bottom and pore-
Expedition 339 waters, as well as abundance of food in the sediment for macrobenthic tracemaker community. Changes in
Site U1385 environmental parameters are interpreted to be associated with significant variations in trace fossil distribution

according to the differentiated intervals (A to M). Benthic foraminifer concentration in the sediments and
variations of the planktonic foraminifer assemblages suggest significant changes in surface productivity and
food supply to the sea floor since the ending of MIS 13 to the end of MIS 11 that could be correlated with the
registered changes in facies and trace fossil assemblages. At the end of MIS 13 values of annual export productiv-
ity were very low, that together with the presence of light-color sediments and the continuous presence of light
Planolites and Thalassinoides, reveal lower organic carbon flux to the bottom and high oxygen conditions (interval
A). Afterwards the organic matter supply increased rapidly and remained very high until Termination V,
determining an eutrophic environment, expressed by high benthic foraminifer accumulation rates, and reduced
availability of oxygen, that correlate with the record of Spirophyton and Zoophycos, and the presence of Chondrites,
observed in intervals B and D. Lower benthic foraminifer accumulation rates during MIS 11 suggest an oligotro-
phic environment at the bottom consistent with lower inputs of organic carbon, associated with high oxygen
content of bottom waters that agrees with the lighter color of the sediments as well as by the continuous
presence of light Planolites and Thalassinoides in the differentiated interval M. The evolution of the macrobenthic
tracemaker community during MIS 12 and MIS 11 responds to major changes in bottom water ventilation
probably linked to variations in deep water (North Atlantic) thermohaline circulation, determining variations
in oxygen and food availability.

Marine Isotope Stages 12 and 11
Trace fossils
Planktonic and benthic foraminifers

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Glacial/interglacial climatic cycles occurring during the Quaternary
have been extensively studied due to their incidence on variations in
the atmosphere/ocean dynamics and on the involved biota, including
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hominids. From several glacial/interglacial episodes, some of them are
of special interest, as occurs with those corresponding with the Marine
Isotope Stage (MIS) 12 and 11 (MIS 12 and MIS 11). The time interval
involving MIS 12 and MIS 11 is considered one of the most extreme
glacial and interglacial periods of the middle Pleistocene. The glacial
MIS 12 is characterized by strong cold conditions, and the interglacial
MIS 11 is one exceptionally long interglacial warm period. The Mid-
Brunhes Event (MBE), close to the MIS 12/MIS 11 transition, at around
450 ka BP, a climatic transition between MIS 13 and MIS 11, separates
2 significantly different climatic modes, with interglacials characterized
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by only moderate warmth previous to this event (early Middle Pleisto-
cene interglacials; 780-450 ka), and interglacial characterized by greater
warmth after this event (Middle and Late Pleistocene interglacials; after
450 ka) (i.e., Candy etal,, 2010). The transition MIS 12/11, corresponding
with Termination V, is the longest glacial Termination of the past 450 ka,
having major incidence for the biogeography and human occupation
(Candy et al., 2014).

MIS 11 is considered as one of the appropriate climate analogs for the
Holocene, being of special interest even for the analysis of future climate
variations, which is reflected by the amount of information obtained on
this episode (see two consecutive reviews by Droxler et al., 2003;
Candy et al., 2014). All this information allows a detailed characterization
of MIS 11, the warm climatic features, and the induced changes in the at-
mosphere/ocean dynamics. Thus, according to the last revision by Candy
et al. (2014), and references therein, several features of MIS 11 are the
following: a) the warm episode MIS 11 consists of an interglacial (MIS
11c) and several interstadial and stadial events (i.e., MIS 11a and MIS
11b), with differences in the number and magnitude according to the
studied records, b) MIS 11c is a long warm climate period that lasted
for about 25-30 ka, c¢) temperature data reveals that MIS 11 was an
interglacial of relatively moderate warmth, similar to, or slightly cooler
than the Holocene, and d) most of the evidences suggest that MIS 11c
is characterized by sea levels significantly above those from the
Holocene, even turnovers in fauna are consistent with prolonged period
of lower sea levels at the beginning and middle part of MIS 11c.

Detailed analyses of MIS 11 and MIS 12 have been conducted in a
number of studies on marine, ice core, lacustrine and terrestrial
sequences, involving numerous biotic (i.e., pollen and foraminiferal
assemblages) and abiotic (i.e., stable isotope and elemental chemistry)
proxies, allowing interpretation of environmental parameters such as
the global ice volume or sea surface temperatures. In this sense, as
pointed out by Candy et al. (2014) for the identification of MIS 11 in
British terrestrial record, terrestrial deposits contain numerous proxies

N Atlantic

- Upper core of MOW
[*< Lower core of MOW

allowing interpretation of different environmental parameters, whereas
ice and marine core records contain, frequently, a single proxy. In
marine cores the usually applied biotic proxies are foraminiferal
(benthic and planktonic) assemblages. In this sense, little attention
has been focused on the ichnological record; being very scarce, near
absent, the approaches are based on the study of the trace fossil assem-
blage (see Lowemark et al., 2006, 2012, on trace fossil assemblage
studies including MIS 11 in the eastern Mediterranean Sea and Artic
Ocean, respectively). Here we present a detailed ichnological analysis
of MIS 11 and MIS 12 on cores from IODP Expedition 339 Site U1385,
in order to interpret changes in deep-sea environmental conditions,
affecting the macrobenthic environment. Integration with information
from benthic and planktonic foraminifers, allows integrative interpreta-
tions. Moreover, paleoceanographic implications will be assessed.

2. Site U1385 at IODP Expedition 339

IODP Site U1385 is located off the west Iberian Margin (37°34.285'N,
10°7.562'W; Fig. 1), on a spur, the Promontorio dos Principes de Avis,
along the continental slope of the southwestern Iberian margin, at a
water depth of 2578 m b.s.l. (Hodell et al., 2013a). This Site U1385,
was drilled near the position of core MD01-2444 (Vautravers and
Shackleton, 2006; Martrat et al., 2007; Skinner and Elderfield, 2007;
Margari et al., 2010; Expedition 339 Scientists, 2013a; Hodell et al.,
2013b), one of the cores retrieved from the SW Iberian Margin by
the R/V Marion Dufresne in 1995, 1999 and 2011, including Core
MD95-2042 (the “Shackleton Site”) used as a key archive to approach
millennial-scale climate variability over the last glacial cycle
(Shackleton et al., 2000, 2004). Site U1385 was drilled to create a marine
reference section of sub-Milankovitch (millennial-scale) climate vari-
ability and changes in surface and deep-water circulation occurring
during the Pleistocene (Expedition 339 Scientists, 2013a,b).

Fig. 1. General circulation pattern of the Mediterranean Outflow Water (MOW) (Expedition 339 Scientists, 2013b), with location of IODP Expedition 339 drill sites (red point for Site U1385
and orange points for the rest of sites), together with sites MD01-2447 (Desprat et al., 2005) in the North, MD01-2446 and MD03-2699 (Voelker et al., 2010) in the central, and MD01-2443
(de Abreu et al., 2005) in the South of the West Iberian Margin (blue points). Note: GB, Galicia Bank; EP, Extremadura Promontory; GoB, Gorringe Bank.
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At Site U1385 five Holes were cored, recovering a total of around
622 m of a uniform lithologic unit dominated by bioturbated calcareous
muds and calcareous clays (Expedition 339 Scientists, 2013a,b), with no
notable gaps or disturbed intervals to 166.5 mcd (Expedition 339
Scientists, 2013a; Hodell et al., 2013a). Recently a very low sedimenta-
tion rate, a condensed section in which the complete interval from
415 to 431 ka is compressed into 4 cm, has been recognized at the
early MIS 11 (Hodell et al., 2015-in this issue; Sanchez-Gofii et al.,
submitted for publication). The site contains a complete record from
the Holocene to 1.43 Ma (MIS 46), allowing a fine-tuning by correlation
of millennial events to ice core and speleothem records for the last
800 ka (Hodell et al., 2013a, 2015-in this issue). High-resolution sam-
pling at 1 cm intervals enables resolving millennial climate events, as
well as glacial-interglacial cycles, including their corresponding
Terminations.

Site U1385 is close to site MD01-2443 (Fig. 1; de Abreu et al., 2005)
in the South of the West Iberian Margin, that yielded significant records
of MIS 11 for the interpretation of the involved climatic changes. On this
base, Site U1385 is of major interest to study MIS 11 and MIS 12.

3. Material and methods

The research has been conducted on Cores 7H-4 to 7H-1 from
Hole U1385D (“Shackleton Site”). Facies characterization has been
integrated with the analysis of trace fossils, and benthic/planktonic
foraminifers.

Facies analysis is based on the study of lithological composition, type
of contacts, and primary sedimentary structures, with special attention
to stratigraphic variations. Digital image treatment allows recognition of
variations in color, difficult to recognize based, exclusively, on visual ob-
servations (Dorador and Rodriguez-Tovar, submitted for publication).
Ichnological analysis focused on trace fossil assemblages, including
trace fossil composition, infilling material, cross-cutting relationships,
tiering structure, and relative abundances. Ichnotaxonomical classifica-
tion was conducted as the ichnogenus level, as usual for core analysis.
Ichnological analysis consists of detailed observations of half-cut
sections of the core in the IODP core repository at Bremen (Germany),
together with the study of high-resolution images. Several techniques
of digital image treatment to improve the trace fossil visibility were ap-
plied for ichnological characterization (Dorador and Rodriguez-Tovar,
2014; Dorador et al., 2014a,b; Rodriguez-Tovar and Dorador, 2014, in
press).

Sampling for export productivity (Pexp) reconstruction and isotope
studies was performed every 20 cm providing an estimated average 2 ka
resolution record, and for counts on both benthic and planktonic fora-
minifers sampling was performed at an average 4.6 cm separation, pro-
viding an estimated average 0.79 ka resolution. Samples (1 cm-thick)
were freeze-dried, weighed and washed over a 63 um mesh sieve. The
>63 um residue was dried, weighed and sieved again to separate
and weigh the >150 um fraction. Counts on planktonic and benthic
foraminifer taxa were conducted on this sediment fraction, which was
successively split until a minimum of 300 specimens were obtained.
Planktonic species were used to reconstruct Pexp with the modern
analog technique (MAT) (Hutson, 1980) and the modern analog data-
base compiled by Salgueiro et al. (2010). Stable isotopes were measured
on the planktonic foraminifer Globigerina bulloides picked from the
250 to 355 pm size fraction and the benthic foraminifer Cibicidoides
wuellerstorfi from the >212 um fraction (see Hodell et al., 2015-in this
issue). Isotopic measurements were performed at the Godwin Laborato-
ry (University of Cambridge, Cambridge, United Kingdom) on a VG SIRA
mass spectrometer with automatic carbonate preparation system and
calibrated to the Vienna Peedee Belemnite (VPB) standard, allowing
an analytical precision better than 0.08%..

The age model of the studied section is based on the correlation of
the benthic oxygen isotope record to the global benthic LR04 isotope
stack (Lisiecki and Raymo, 2005; see Hodell et al., 2015-in this issue).

4. Results
4.1. Facies characterization

As in general for the entire Site U1385, the studied interval consists
of bioturbated calcareous muds and calcareous clays (Expedition 339
Scientists, 2013a,b). Primary sedimentary structures (i.e., lamination)
are near absent; occasionally horizontal lamination into the darker/
black intervals is observed (Expedition 339 Scientists, 2013a,b). More-
over, no significant changes in grain size are observed. In this general,
homogenized, pattern, clear differentiations can be recognized, mainly
related to variations in color, probably associated with the organic
matter content, usually linked to changes in the trace fossil assemblage
(see below). These variations in color can be observed directly on cores,
but are even more evident when digital image treatment is applied
(Dorador and Rodriguez-Tovar, submitted for publication). Thus,
mainly according to variations in color, upper and lower contacts, and
ichnological composition, several intervals have been differentiated
(A to M); see Table 1 and Fig. 2 for a detailed characterization of the
intervals. These intervals can be grouped into four color groups, from
light tone gray/greenish, middle dark tone gray/greenish, very dark
tone gray/greenish and dark/black, showing variable transitions
between them (bioturbated, gradual and sharp contacts). From here
we will refer to gray tone in substitution for gray/greenish.

As a general picture, light tone gray sediments are dominant, mainly
registered and thicker in the lower/middle part of Core U1385D-7H-4
(interval A), and in the upper part of U1385D-7H-2 and the entire
U1385D-7H-1 (interval M). Another thinner light interval is registered
at the base of Core U1385D-7H-3 (interval E). In general these intervals
show a relatively scarce trace fossils filled with light material.

At the opposite, dark/black intervals are scarce and thin, being
located exclusively in the middle and upper parts of Core U1385D-7H-4
(intervals B and D). These intervals are characterized by dark trace fossils,
which occasionally are also observed downward into the upper parts of
the lighter intervals below (intervals A and C).

Middle and dark gray tone intervals are dominant in Cores U1385D-
7H-2 and 3 (intervals F, G, H, I, ], K, and L), and are also registered in the
upper part of Core U1385D-7H-4 (interval C). Middle gray tone intervals
(intervals C, G, I, and lower K) mainly consist of a well developed light
trace fossil assemblage on a mottled background. In the very dark
tone gray intervals (intervals F, H, ] and upper K) light and dark trace
fossils are observed on a light/dark mottled background. Two intervals
(intervals J and L) into the dark gray intervals show slight differences
in color, with the presence of grayish/blue/pink sediments.

4.2. Ichnological analysis

Digital image treatment allows a clear differentiation between
biodeformational structures and trace fossils (Dorador and Rodriguez-
Tovar, 2014; Dorador et al., 2014a,b; Rodriguez-Tovar and Dorador,
2014, in press). Biodeformational structures, showing undifferentiated
outlines and the absence of a defined geometry, which impede an
ichnotaxonomical classification (see Uchman and Wetzel, 2011; Wetzel
and Uchman, 2012), are registered as a mottled background, with color
mixture and predominance of lighter or darker sediments related to the
recognized intervals. Trace fossils show a variable degree of diffusiveness,
from diffuse to discrete structures, as well as variable infilling material,
from light to dark, being clearly distinguished from the host sediment
based on their characteristic shape, although, sometimes, this differentia-
tion is difficult.

4.2.1. Trace fossil assemblage

In general, a relatively diverse trace fossil assemblage was recognized,
including structures filled with light and dark sediments (light and dark
filled structures), consisting of Alcyonidiopsis, Chondrites, Nereites,
Planolites, Spirophyton, Thalassinoides, Thalassinoides-like structures, and



Table 1

Differentiated intervals with lithological and ichnological features.

Interval (thickness/location) Facies color Contacts Background Light traces Dark traces Cross-cutting relationships
A (75 cm): from 150 to around Light tone gray Bioturbated upper contact Mottled background Diffuse Thalassinoides (ITh) & Chondrites (dCh) from 89 to 75 cm dCh crosscutting ITh & IPI
75 cm of U1385 7H4 Planolites (1PI)
B (14 cm): from 75 to 61 cm of Dark/black Gradual upper contacts Mottled background Thalassinoides from 67 to 61 cm  Dominant Chondrites (dCh). Planolites (dPl)  dCh crosscutting dTh & dPl
U1385 7H4 & Thalassinoides (dTh) at the base
C (43 cm): from 61 to 18 cm of Middle dark tone gray Bioturbated upper contact Mottled background Diffuse Thalassinoides (1Th) and ~ Dominant Chondrites (dCh), Planolites (dPl), Dark traces crosscutting
U1385 7H4 Planolites (1PI) Thalassinoides (dTh), Spirophyton (dSp) & light traces & dCh
Zoophycos (dZo) crosscutting dPl, dTha & dSp
D (13 cm): from 18 to 5 cm of  Dark/black More or less shap upper contact Dominant Chondrites (dCh) & Zoophycos dCh crosscutting dTh
U1385 7H4 (dZo). Thalassinoides (dTh) at the base
E (35 cm): from 5 cm of Light tone gray Sharp upper contact, channel Mottled Discrete, dominant
U1385D 7H4 to 119 cm of morphology background, Thalassinoides (ITh), and few
U1385 7H3 especially on top Planolites (1PI)
F (58 cm): from 119 to 61 cm  Very dark tone gray, with Sharp upper contact Mottled background Planolites (1PI), on top Planolites (dPl) &Thalassinoides (dTh), then  dZo cross-cutting dTh on
of U1385 7H3 increasing darker upward Zoophycos (dZo). Probable top
Thalassinoides-like (dTh-1)
G (74 cm): from 61 0f U1385  Middle dark tone gray, witha  Bioturbated upper contact Mottled background Thalassinoides (1Th) and Diffuse, abundant Zoophycos (dZo), but also  dZo cross-cutting dTh
7H3 to 137 cm of U1385 7H2  thick (56 cm) darker horizon at the lighter parts  Planolites (IPI) as exclusive in Thalassinoides (dTh-1), and probable dCh cross-cutting the rest of
at the middle part the lighter part, and also in the  Planolites (dPl) in the darker horizon traces
upper part of the darker horizon Alcyonidiopsis (dAl), Chondrites (dCh),
Planolites (dPl), Thalassinoides (dTh) &
Zoophycos (dZo) in the upper light interval,
coming from the next dark interval
H (33 cm): from 137 to 104 cm  Very dark tone gray Bioturbated upper contact Mottled background Probable Thalassinoides (ITh) on Dominant, near exclusive, Zoophycos (dZo)
of U1385 7H2 top
1(12 cm): from 104 to 92 cm  Middle dark tone gray Sharp/bioturbated upper contact? Mottled background Planolites (IPl) & probable Planolites (dPl), Thalassinoides (dTh) & dZo cross-cutting dPl and
of U1385 7H2 Minor erosion? Thalassinoides (1Th) dominant, diffuse, Zoophycos (dZo) dTh
J (18 cm): from 92 to 74 cm of  Very dark grayish/blue/pink Mixture of sediments Mottled background Thalassinoides (1Th) & Planolites  Diffuse Planolites (dPl) Thalassinoides,(dTh)  dZo cross-cutting dTh
U1385 7H2 Sharp/bioturbated upper contact? (1P and Zoophycos (dZo)
K (47 cm): from 74 to 27 cm of Middle to very dark tone Darker color upward. Sharp upper Mottled background Diffuse Planolites (IPl) & Diffuse Zoophycos (dZo)
U1385 7H2 gray/pink contact? Thalassinoides (1Th)
L (12 cm): from 27 to 15 cm of Very dark grayish/blue/pink Gradual contact to lighter color & Mottled background Thalassinoides (ITh) & Planolites  Planolites (dPl), sinuous, bifurcate traces
U1385 7H2 decreasing bioturbation (1PI), sinuous traces
M (165 cm); from 15 cm of Light tone gray with darker Gradual alternations in color Mottled background Diffuse Planolites (1PI), Diffuse Planolites (dPl) and Thalassinoides

U1385D 7H2 to 0 of U1385D
7H1

intercalation

Thalassinoides (1Th) & local
Nereites (INe)

(dTh), probably Zoophycos (dZo),
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Fig. 2. Studied cores from Hole U1385D-7H-1 to U1385D-7H-4, showing the recognized intervals A to M, contacts, and color differentiation. Left and right parts of the cores before and after

digital image treatment.

Zoophycos (Figs. 3, 4). Moreover, undifferentiated sinuous traces have
been observed in interval L. Light infilling traces refer to those light traces
slightly darker than the light host sediment. Light infilling Planolites and
Thalassinoides are the dominant, near exclusive, ichnotaxa, whereas
light Nereites are locally observed (Fig. 3). Dark infilling traces can be
produced into the middle and very dark tone gray intervals or into the
dark/black sediments. In the dark trace fossil assemblage Zoophycos is
dominant, Planolites and Thalassinoides are frequent, while Alcyonidiopsis,
Chondrites, Spirophyton, and Thalassinoides-like structures are rare (Fig. 4).

The trace fossil assemblage can be assigned to the Zoophycos
ichnofacies, typical for deep-sea environments, as was previously
proposed for Site U1385 (Rodriguez-Tovar and Dorador, 2014). As
a general rule, dark trace fossils are registered as cross-cutting
light ones. Into the dark trace fossil assemblage, usually Chondrites
and Zoophycos are observed cross-cutting the rest of traces, such as
Planolites, Spirophyton and Thalassinoides. A brief description of the
differentiated ichnotaxa is as follows:

Alcyonidiopsis corresponds to a single elongate cylinder, slightly
oblique, dark filled, 30 mm long and 6 mm wide, showing a pelloidal-
like outline (see Uchman, 1999; Rodriguez-Tovar and Uchman, 2010
for interpretation).

Chondrites is generally observed as dense clusters of circular to ellip-
tical spots, and short tubes, filled with dark sediment; occasionally
branching. Mainly small forms (<1.5 mm wide) are observed that
could correspond to Chondrites intricatus (Brongniart, 1823).

Nereites consists of small-medium size (2-5 mm diameter) circular to
elliptical forms, with a dark-filled internal zone surrounded by a light
filled envelope, observed as closed (paired) structures in horizontal
planes.

Planolites occurs as unlined, unbranched, and mainly as circular to
subcircular cylindrical tubular forms (4-7 mm in diameter, 5-2.5 mm

in length). It is largely registered as horizontal or slightly oblique, filled
with light or dark sediment, with a variable grade of diffusiveness. Fill is
structureless, with different lithologies from the host rock.

Spirophyton is registered as a single trace consisting of a central,
axial, J-shaped shaft (around 8 cm high), with alternating horizontal
structures (around 2-3 mm wide and 20 mm long) extending from
the axial shaft. Spreite has not been observed. Similar to Zoophycos, it
differs by the small size and shape of horizontal structures.

Thalassinoides is observed as large, oval spots, circular to subcircular
(6-12 mm wide), together with straight or slightly winding, horizontal
to oblique smooth cylinders (20-43 mm long), showing a variable grade
of diffusiveness. Structures are filled with light or dark sediment.
Occasionally, mainly light filled Thalassinoides, are observed in clusters
of circular to elliptical spots, corresponding to variable cross-sections
of branching burrow systems.

Thalassinoides-like structures occur locally as circular to subcircular
sections, 6-12 mm wide, filled with dark sediment. The shape is similar
to Thalassinoides, but showing a variably developed irregular wall,
resembling Ophiomorpha.

Zoophycos, is registered as repeated, more or less horizontal, spreiten
structures (2-8 mm wide), consisting of alternating dark and light
material. A variable degree of diffusiveness is observed, determining a
more or less clear differentiation of the lamellae into the lamina.
Frequently several horizontal traces (up to 6), probably belonging to a
unique structure, are observed, evidencing a depth of penetration at
least of 16 cm.

4.2.2. Distribution

The trace fossil assemblage shows clear variations along the differ-
entiated intervals that can be related to the features (color) of the host
sediment (Fig. 5). Light trace fossil assemblage, consisting of Planolites
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Fig. 3. Light trace fossils and local dark Zoophycos from gray (light, middle and dark tones)
intervals. (A) Diffuse dark Zooophycos (dZo) from dark tone gray interval K (U1385D-7H-2)
on a well-developed mottled background. (B) Light Thalassinoides (1Th) and Planolites (1Pl)
from light tone gray interval E (U1385D-7H-3). (C) Light Thalassinoides (ITh) and Planolites
(1P1), and dark Zoophycos (dZo) from middle tone gray interval C (U1385D-7H-4). (D) Light
Thalassinoides (1Th) and Planolites (1Pl), and Nereites (Ne) from light tone gray interval E
(U1385D-7H-1).

and dominant Thalassinoides, is registered in most of the intervals, ex-
cept, in the dark/black interval D, being dominated by light and middle
gray tone intervals (A, G, E, G, and M). However, in the light tone inter-
vals (A and M), this light trace fossil assemblage is comparatively scarce,
and the mottled background is less developed. The light trace fossil as-
semblage represents the bioturbation of tracemakers during deposition
of the lighter host sediment. The dark trace fossil assemblage consists of
frequent Planolites and Thalassinoides, associated with middle and very
dark gray tone intervals, reflecting the mixture of phases of sedimenta-
tion corresponding to different colors; bioturbation by shallowest and
shallow tier organisms produces the observed mixture of colored
sediment. These trace dark Planolites and Thalassinoides are also ob-
served in intervals showing a more or less developed alternation, not
mixture, of colored sediments, such as in interval M. Occasionally, this
assemblage is also registered at the base of black/dark color sediment
(intervals B and D), probably reflecting a progressive, gradual, change.
Zoophycos is the dominant dark trace fossil, observed in middle and
very dark gray intervals, as well as in the black/dark ones. This trace
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Fig. 4. Dark trace fossils from gray (middle and dark tone) and dark/black intervals.
(A) Dark Zoophycos (dZo) from the dark/black interval D (U1385-7H-4). (B) Dark
Chondrites (dCh), Planolites (dPl), Spirophyton (dSp) and Thalassinoides (dTh) from the
upper part of the middle gray tone interval C transition to dark/black interval D (U1385-
7H-4). (C) Dark Thalassinoides (dTh) and dark Zoophycos (dZo) from the upper part of
dark gray tone interval H to middle gray tone interval I (U1385-7H-2) (D) Dark
Alcyonidiopsis (dAl), Chondrites (dCh), Planolites (dPl), Thalassinoides (dTh) and Zoophycos
(dZo) from the upper part of the middle gray tone interval G transition to dark gray tone
interval H (U1385-7H-2).

originated during deposition of darker sediments, probably revealing
latter phases of bioturbation by the dark trace fossil community, after
Planolites and Thalassinoides producer. Chondrites and Spirophyton are
mainly related to the dark/black intervals (B and D), are even located
downward in the lighter intervals below, and associated with the partic-
ular environmental conditions of these dark (black) sediments.

4.3. Micropaleontological analysis

Benthic oxygen-isotope values have been used to identify MIS 13 to
MIS 11 in the sediment cores. Based on the benthic oxygen isotope re-
cord glacial Termination V was recorded in IODP Site U1385 at around
55.70 crmcd. The previously described intervals A to M correspond to
the final stages of MIS 13 (intervals A, B and half of the C), MIS 12
(half of interval C, intervals D-L and the first 20 cm of interval M), and
early MIS 11 (the rest of interval M) (Fig. 6).

Analysis of the planktonic/benthic foraminifer ratio (Fig. 6d) reveals
that planktonic microfauna is more abundant, in general, during inter-
glacial conditions. However, during early glacial substage MIS 12b
(and coinciding with interval G) elevated percentages of planktonic
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Fig. 5. Distribution of light and dark trace fossils in the studied cores from Hole 1385D-7H-4
(bottom) to U1385D-7H-1 (top), according to the differentiated intervals A to M.

foraminifers were also recorded. These high planktonic/benthic values
are mainly due to low benthic production, expressed both by concentra-
tion (Fig. 6e) and accumulation rate (Fig. 6f). Benthic accumulation rate
(measured in number of tests per cm? and ka) is higher during the
glacial stage, especially at the beginning and end of the stage. The ex-
traordinarily high number of benthic foraminifers per mass of sediment
(Fig. 6e) during the glacial maximum MIS 123, is probably due to low
accumulation of other sedimentary components at this time (Fig. 6).
Export productivity (Pexp) is low during MIS 11 and much higher in
MIS 12, especially in the early part of this stage, as well as during the
last part of MIS 13. In consequence, during the interglacial periods MIS
11 and MIS 13 low Pexp at the surface corresponds to low concentration
of benthic foraminifers at the sea floor (Fig. 6e, h). By contrast, high Pexp
in MIS 12 is linked, in general, to higher benthic foraminifer production.

5. Interpretation and discussion
5.1. Facies distribution and trace fossil composition

Major factors determining ichnological features (i.e., abundance,
composition and diversity of trace fossil assemblages) in a deep-sea set-
ting are food availability, bottom and pore-water oxygenation, substrate
consistency, and rate of sedimentation (Wetzel, 1991; Uchman et al.,
2008, 2013a,b; Rodriguez-Tovar et al., 2009a,b; Rodriguez-Tovar and
Uchman, 2010; Uchman and Wetzel, 2011; Wetzel and Uchman,
2012; Rodriguez-Tovar and Reolid, 2013; Rodriguez-Tovar and
Dorador, 2014). In the case study, the generalized mottled background,
together with the observed trace fossil assemblage, reveals a deep-sea
multi-tiered trace fossil community, interpreted as revealing predomi-
nance of well-oxygenated bottom and pore-waters, as well as abundance
of food in the sediment for macrobenthic tracemaker community, as pre-
viously interpreted for Site U1385 (Rodriguez-Tovar and Dorador, 2014).
In the generalized context of relatively good environmental conditions
for the macrobenthic habitat, several changes can be interpreted,
determining variations in facies and ichnological features.

Lighter sediments, as those represented by intervals A, E and M,
are characterized by a relatively poorly developed mottled background
together with light Thalassinoides and Planolites. Thalassinoides
and Planolites, as facies-crossing forms, are found in a great variety of
marine environments, usually associated with oxygenated sediments.
Thalassinoides is related to soft but cohesive sediments (see Fiirsich,
1973; Ekdale et al., 1984; Ekdale, 1992; Schlirf, 2000), and Planolites,
an actively filled burrow, is interpreted as a pascichnion in shallow
tiers (see Pemberton and Frey, 1982; Keighley and Pickerill, 1995 for
discussion). Thus, good environmental conditions (mainly bottom and
pore-water oxygenation, and food availability) can be interpreted, at
least in the upper centimeters of the substrate, where shallowest and
shallow tier communities are developed. Variations in the relative
abundance of light Planolites and Thalassinoides, as well as in the diffu-
siveness can correspond with the rate of deposition and the firmness.
The presence of dark Planolites and Thalassinoides, together with the
local record of Nereites at interval M could reveal fluctuations in the or-
ganic matter content probably associated with variations in the detrital
input and in the surface export productivity as revealed by planktonic
foraminifer-reconstructed Pexp (Fig. 6h); the latter is interpreted as a
shallow tier, pascichnia structure, in deep-marine, low energetic,
oxygenated, environments (Uchman, 1995; Mangano et al., 2002;
Wetzel, 2002; Lowemark et al., 2012), associated with increase food
flux, feeding on microbes that occur in high concentrations (Wetzel,
2002; Lowemark et al., 2012).

Dark/black sediments, as represented by intervals B and D, reveal
significant changes in the environmental conditions. The presence of
dark Planolites and Thalassinoides at the base of the intervals, and then
Zoophycos and dominant Chondrites could be interpreted as a gradual
deterioration of the environmental conditions, probably related to
increase in the organic matter content and decreasing oxygenation
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more favorable for Zoophycos and Chondrites tracemakers. Both,
Zoophycos and Chondrites are deep tier feeding structures. In general,
Zoophycos producer has been related to variations in energy, sedimenta-
tion rate, food content, or bottom-water oxygenation; its relative
independence of substrate features would allow for colonization of
sediments with comparative low oxygenation, or even to collect food
particles from the sea floor (e.g., Lowemark and Schdfer, 2003;
Rodriguez-Tovar and Uchman, 2006, 2008). Several ethological models
have been proposed of Zoophycos tracemaker (see Lowemark and
Werner, 2001; Bromley and Hanken, 2003; Léwemark and Schéfer,
2003; Lowemark et al,, 2004; Lowemark, 2015). Chondrites tracemaker
is associated with poorly oxygenated bottom or pore waters, able to
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live in dysaerobic conditions, at the aerobic-anoxic interface, as a
chemosymbiotic organism (Seilacher, 1990; Fu, 1991). Upwards in the
dark/black intervals, a progressive return improvement can be envis-
aged by the presence of light structures (i.e., light Thalassinoides) in
the upper part. The presence in the interval D of a well-developed
dark trace fossil assemblage consisting of discrete structures, could be
associated with a decrease in the sedimentation rate, increase in firm-
ness and higher time of bioturbation, together with local concentration
of food. This agrees with the record of delicate, complex, structures of
Spirophyton and Zoophycos. Spirophyton has been interpreted, mainly
for marine-margin deposits, as revealing an opportunistic strategy;
formed rapidly after sudden influxes of organic material (Miller and
Johnson, 1981; Miller, 1991, 2003; Bromley, 1996; Gaillard et al., 1999).
The Zoophycos tracemaker is interpreted as bioturbating firmer, organic
rich substrates with oxygen depleted pore waters (e.g., Rodriguez-Tovar
and Uchman, 2004a,b; Rodriguez-Tovar and Dorador, 2014, and refer-
ences therein). Distribution of Zoophycos has been related to Milankovicth
orbital scale climatic changes, determining variations in the organic
matter content and flux (Rodriguez-Tovar et al., 2011).

Middle and dark gray tone sediments, corresponding to intervals C,
F, G, H, I, ], K, and L, reveal, in general, variable intermediate cases
between dark/black sediments and the lighter ones. Both types of sedi-
ments consist of a well-developed mottled background in the first case
with dominance of light color sediments while in the second a mixture
between light and dark sediments is observed. In both cases Planolites
and Thalassinoides are the most abundant traces, being light structures
dominant in the first case while in dark gray tone sediments dark
Planolites and Thalassinoides are also observed. Dark Zoophycos are also
registered, especially in the dark gray tone intervals, but dark Chondrites
are not observed. Middle and dark gray tone sediments could reflect a
generalized good bottom and pore-water oxygen conditions and higher
abundance in the organic matter content at the surface but also in the
first centimeters of the sediment, allowing bioturbation by shallowest,
shallow and middle tiers tracemakers. When input of organic matter
content (as indicated by Pexp) is maintained during a comparatively
long time (Intervals F, or H to K), deep tier traces, i.e., Zoophycos, can
be developed, probably reflecting a comparatively higher organic
matter content and a slight decrease in oxygenation probably related
to the presence of the poorly ventilated and benthic 6'>C-deplected Ant-
arctic bottom water AABW (Adkins et al., 2005; Hoogakker et al., 2006)
(Fig. 6b).

5.2. Environmental conditions during MIS 13-MIS 11 and the macrobenthic
and foraminifer record

The benthic foraminifer concentration in the sediments and varia-
tions of the planktonic foraminifer assemblages suggest significant
changes in surface water productivity and food supply to the sea floor
occurring in the Portuguese margin during MIS 12 and MIS 11 that
could be correlated with the registered changes in facies and trace fossil

Fig. 6. Stratigraphic and temporal distribution of intervals A to M, differentiated according
to color and trace fossil assemblage, and comparison with foraminifer records and other
data from I0DP-U1385. a) Benthic 6'30 (%. VPDB) (Hodell et al., 2015-in this issue); sub-
stages are named according to Railsback et al. (2015); horizontal dashed line shows the ice
volume threshold separating stable and unstable climatic conditions (McManus et al.,
1999). b) Benthic 8'>C record (%. VPDB); filling indicates typical values for Antarctic
Botom Water (AABW) according to Adkins et al. (2005). c) Log Ca/Ti record (Hodell
et al,, 2015-in this issue). d) Planktonic/benthic foraminifer ratio. e) Benthic foraminifer
concentration in number of tests per gram of dry sediment. f) Benthic foraminifer accumu-
lation rate in number of tests per cm? and ka (dashed line) and 3-point running mean (sol-
id). g) Total alkenone concentration (ng/g) of 37 carbon atoms (Maiorano et al., 2015-in
this issue; courtesy of T. Rodrigues) reflects the coccolithophore productivity (dashed line)
and 5-point running mean (solid). h) Export productivity (dashed line) and 3-point run-
ning mean (solid). Glacial and interglacial stages are highlighted by horizontal bands. Ver-
tical bands correspond to the differentiated intervals with lithological and ichnological
features, with its facies color highlighted: light gray (in white)-middle dark gray-very
dark/black. Control points linking depth (crmcd) to LRO4-reconstructed age (Hodell
et al,, 2015-in this issue) are represented by arrows.
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assemblages (Fig. 6). Similar changes occurred across the more recent
Terminations IV, II and I (Grunert et al., 2015-in this issue;
Rodriguez-Tovar et al., 2015-in this issue).

Benthic communities living at the sea floor are limited by the flux of
organic carbon reaching the sea floor that, in turn, are a function of
Pexp and oxygen content along the water column and interstitial waters
within the sediments. Higher densities of benthic foraminifers in bottom
sediments have been related to higher rates of organic carbon supply to
the sea floor, both in the same Site U1385 (Grunert et al., 2015-in this
issue; Rodriguez-Tovar et al., 2015-in this issue) and in other locations
(Schmiedl et al., 1997; Wollenburg et al., 2004; Mojtahid et al., 2009).

A trend of increased productivity both primary, according to
coccolithophores (NAR) and alkenone data (Maiorano et al., 2015-in
this issue), and secondary, according to planktonic foraminifer-
reconstructed Pexp (Fig. 6g-h), occurred during the final stage of MIS
13 coinciding with warm SST inferred from the Ca/Ti record in our site
(Hodell et al., 2015-in this issue). Low abundance of the coccolithophore
Florisphaera profunda (Maiorano et al., 2015-in this issue), suggests a
less stratified upper water column. During MIS 11 Pexp was very low
and both intervals coincided with the presence of light-color sediments
as well as with the continuous presence of light Planolites and
Thalassinoides in the differentiated intervals A and M (Fig. 6). By
contrast, during MIS 12 Pexp is higher, especially in the early part, but
decreases towards the end of the stage. Benthic foraminifer accumula-
tion rates do not follow this trend. This decoupling between Pexp, and
benthic accumulation rates can be the result of the changing conditions
of water column oxidation that are mainly reflected by the benthic §'3C
record. The high benthic 6'C during MIS 11 and MIS 13 reflects the high
bottom water oxygenation during these interglacial periods. Higher
bottom water ventilation tends to decrease the accumulation of organic
matter in the sediments and therefore reduce food availability for the
macrobenthic and microbenthic communities.

Microbenthic fauna proliferated during the glacial stage as reflected
by the higher benthic foraminifer accumulation rates, which can reach
values over 800 individuals/cm?ka. Similar enhanced fluxes of organic
matter occurred also in the South Atlantic upwelling region during
this glacial period (Scmiedl and Mackensen, 1997). This high organic
carbon flux to the bottom, due to high Pexp and/or poor bottom water
ventilation, allowed an eutrophic environment expressed by high
benthic foraminifer accumulation rates. Nevertheless, high amounts of
organic matter reaching the bottom could reduce the availability of ox-
ygen and produce a subsequent impoverishment of the benthic habitat
when bottom water ventilation is low (Grunert et al., 2015-in this issue;
Rodriguez-Tovar et al., 2015-in this issue). These conditions happened
during short intervals along MIS 12 and in Termination V when the
Site was under the influence of less oxygenated bottom water
(AABW), and are registered by the micro-benthos, as a decrease in ben-
thic foraminifer accumulation rate coupled with increase in both Pexp
and total alkenone production (Fig. 6). Macrobenthos also reveals the
punctual pulse (increasing) in organic matter reaching the bottom, by
the record of Spirophyton and Zoophycos, and the associated decrease
in oxygen availability mainly revealed by the presence of Chondrites, ob-
served in intervals B and D (Fig. 6). Differentiation of several intervals (A
to L) during the ending of MIS 13 and the whole MIS 12, based on the
trace fossil record agrees with the idea that tracemakers are more
sensitive than foraminifers to depth variations in the redox boundary
in near-surface sediments leading to the movement of trace-fossil
tiers, as indicated by Baas et al. (1998) and also recently demonstrated
by Rodriguez-Tovar et al. (2015-in this issue). Termination V, similarly
to more recent Terminations Il and IV and in opposition to Termination
I (Rodriguez-Tovar et al., 2015-in this issue), was characterized by in-
creasing Pexp and accumulation of organic matter without depletion
of oxygenation, as increasing 8'>C coinciding with the lighter color in-
terval M suggests (Fig. 6).

By contrast with MIS 12, lower benthic foraminifer accumulation rates
during MIS 11 indicate an oligotrophic environment at the bottom and

are consistent with lower inputs of organic carbon inferred from total
alkenone accumulation (Maiorano et al., 2015-in this issue) and plank-
tonic foraminifer Pexp, as well as with low NAR (Maiorano et al., 2015-
in this issue). This oligotrophic environment is characteristic of peak in-
terglacial periods in this region, as studies on sediments ranging from
MIS 6 to the Holocene show (Pailler and Bard, 2002). Oxygen consump-
tion in deep sea waters during MIS 11 due to the weak organic carbon
supply was low which, together with the presence of the more ventilated
North Atlantic Deep Water (NADW) as can be inferred from the high
values of benthic 6'3C (Fig. 6b), resulted in higher oxygen content of bot-
tom waters. This agrees with the lighter color of the sediments in the
differentiated interval M, as well as by the continuous presence of light
Planolites and Thalassinoides. This higher bottom-water oxygen concen-
tration during the interglacial compared to the previous glacial maximum
occurred on the Portuguese margin also during the last two climatic cy-
cles (Hoogakker et al., 2015), and can be related to increased ventilation
linked to a reorganization of ocean circulation after deglaciations
(McManus et al., 2004). Oscillations in Pexp during these interglacial pro-
duced fluctuations of the organic matter content in the bottom, which is
registered in the macrobenthos by the presence of dark Planolites
and Thalassinoides, and the local record of Nereites. North Atlantic
coccolithophore analyses allow for envisaging a relationship between
lighter color sediments and high coccolith content in MIS 11 (Amore
et al,, 2012; Marino et al.,, 2014; Maiorano et al., 2015-in this issue).

The low availability of organic matter for benthic macro- and micro-
fauna along MIS 11 could evidence a possible stratification of the super-
ficial water masses in the area, as indicated by higher percentage of the
coccolithophore F. profunda compared with the previous interglacial
(Maiorano et al., 2015-in this issue), or be related to a reduced input
of land-derived nutrients during the sea level highstand (Rodrigues
et al., 2011). Such possibility should be explored with the study of
planktonic fauna and the evolution of the sea surface conditions for
the same period in the same site.

In a few cases, trace fossil assemblage in sediments corresponding to
MIS 12 and MIS 11 has been characterized. At the eastern Mediterranean
Sea, and in relation with the ichnological response to late Quaternary
sapropel formation, a detailed trace fossil analysis was conducted on
two cores from the last 400 ka, involving the base part of MIS 11
(Lowemark et al., 2006). As a general pattern, the sediment in the two
cores is characterized by mottled burrows, with few trace fossils of
Scolicia, Thalassinoides, Chondrites, and Trichichnus, attributed to well-
oxygenated and warm bottom waters in an oligotrophic environment
typical for non-sapropel times (Lowemark et al., 2006). Recently,
variability in trace fossil abundance and diversity associated with
glacial-interglacial cycles, including MIS 11, was recognized in Late Qua-
ternary sediment cores from the Artic Ocean; during interglacial periods
the increase food flux, rather than changes in deep water circulation, is
responsible for higher abundance and diversity (i.e., Scolicia, Planolites
or Nereites), while in glacial interval characterized by extremely low
food flux consist of impoverished ichnofauna dominated by Trichichnus
and Chondrites (Lowemark et al., 2012).

Obtained results allow addressing interpretations on local (?)
paleoceanographic dynamics. Although higher resolution climatic
records need to be carried out in this time period, benthic 6'3C data
prove that the evolution of macrobenthic tracemaker community dur-
ing MIS 12 and MIS 11 responded to major changes in bottom water
ventilation probably linked to variations in deep water thermohaline
circulation, determining variations in oxygen and food availability.

During glacial MIS 12 a higher planktonic foraminifer-reconstructed
Pexp from surface waters, together with reduced deep water formation
in the North Atlantic probably resulted in higher accumulation rates
of organic matter in the sea floor, favoring the development of
macrobenthic communities typically living in these environments,
characterized by comparatively high food, and low oxygen availability.
This was probably more intense at some particular time periods such
as intervals B and D that may be linked to times of extremely poor
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bottom-water ventilation associated with cooling events at the surface. In
particular, dark intervals during MIS 12 show low Ca/Ti ratios (Fig. 6¢)
that are usually associated with cool stadials in the Portuguese margin
(Hodell et al,, 2013b, 2015-in this issue). The low benthic §'3C values dur-
ing MIS 12, especially in the dark intervals, indicate low bottom water
ventilation probably due to a higher influence of AABW during this time
period. Low bottom water oxygenation favored the preservation of or-
ganic matter, increasing food availability for the benthic macrofauna,
even though the flux of organic matter from the surface was low.

By contrast, intense North Atlantic deep water formation during MIS
11 (interval M) (Poirier and Billups, 2014), and probably late MIS 13
(interval A), together with lower export production at the surface
led to more oxygenated bottom waters in the Portuguese margin,
determining a well-developed deep-sea tiered assemblage.

Near Termination V an extremely low sedimentation rate has been
recognized based on the chronology elaborated for this site (Hodell
et al., 2015-in this issue). The lowermost 40 cm at the base of MIS 11
(bottom of interval M) represent a condensed interval of 30 ka, with a
more extreme condensation recorded in the first 5 cm at the base of
this interval.

6. Conclusions

The present study including facies characterization, ichnological
composition and foraminifer analysis, allowed interpretation of deep-
sea paleoenvironmental conditions during the transition MIS 13/MIS
12, MIS 12 and MIS 11.

A generalized context of well-oxygenated bottom and pore-waters,
as well as abundance of food in the sediment for macrobenthic
tracemaker community can be interpreted, with marked changes in
these paleoenviromental factors as revealed by variations in composi-
tion and distribution of trace fossils according to the differentiated
intervals A to M.

Benthic foraminifer concentration in the sediments and variations of
the planktonic foraminifer assemblages suggest significant changes in
surface productivity and food supply to the sea floor during MIS 12
and MIS 11 that could be correlated with the registered changes in facies
and ichnology.

The end of MIS 13 is characterized by low values of annual export pro-
ductivity, that together with the presence of light-color sediments and
the continuous presence of light Planolites and Thalassinoides at interval
A, reveals relatively low organic carbon flux to the bottom and high oxy-
gen conditions. These initial conditions were changed during develop-
ment of MIS 12, showing the rapid increase in the organic matter
supply and then remaining very high until Termination V, determining
a eutrophic environment, as is revealed by high benthic foraminifer accu-
mulation rates. This change and the associated reduced availability of
oxygen, correlate with the record of Spirophyton and Zoophycos, and the
presence of Chondrites, observed in intervals B and D. During MIS 11
lower benthic foraminifer accumulation rates are registered suggesting
an oligotrophic environment at the bottom, associated with lower inputs
of organic carbon, and high oxygen content of bottom waters, in agree-
ment with the lighter color of the sediments as well as the continuous
presence of light Planolites and Thalassinoides at interval M.

In conclusion, the evolution of macrobenthic tracemaker community
during MIS 12 and MIS 11 responded to major changes in bottom water
ventilation probably linked to variations in deep water (North Atlantic)
thermohaline circulation.
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Appendix A. Planktic foraminifer species and morphotypes used to
reconstruct export productivity

Beella digitata

Globigerina bulloides

Globigerina falconensis
Globigerinella calida
Globigerinella siphonifera (aequilateralis)
Globigerinita glutinata
Globigerinoides ruber (pink)
Globigerinoides ruber (white)
Globigerinoides sacculifer
Globigerinoides trilobus
Globorotalia hirsuta

Globorotalia inflata

Globorotalia scitula

Globorotalia truncatulinoides
Globoturborotalita rubescens
Globoturborrotalita tenella
Neogloboquadrina dutertrei
Neoglobogq. pachyderma (dextral)
Neogloboq. pachyderma (sinistral)
Orbulina

Pulleniatina obliquiloculata
Turborotalita humilis
Turborotalia quinqueloba
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INTRODUCCION

El estudio de las variaciones climaticas y ambientales a lo largo de la historia
geoldgica responde al interés por conocer el funcionamiento de los sistemas naturales
y sus efectos. Una cuestion clave para su comprension reside en el conocimiento de la
forma concreta en que cada sistema terrestre responde a los cambios ambientales y la
escala temporal a la que lo hace. En el caso del océano, la respuesta dinamica a las
influencias climaticas tiene como consecuencia la reorganizacion de la circulacién
superficial global y el reajuste de la circulacién termohalina (“conveyor belt model”).
Como consecuencia, el registro de las variaciones climaticas pasadas y los procesos
paleoceanograficos asociados a ellas ha venido centrando el interés de la comunidad
cientifica en los ultimos afnos. La comprensién de los mecanismos y procesos que han
actuado a lo largo de la historia geoldgica reciente permitird interpretar los procesos
ambientales que estdn ocurriendo en la actualidad, asi como predecir el

comportamiento y evolucidn del sistema climatico en un futuro préximo.

Para resolver tales cuestiones es clave la utilizacién de registros sedimentarios
marinos cuya localizacion geografica y alta resolucion temporal permitan estudiar los
distintos procesos que integran el sistema climatico terrestre. El margen occidental de
la peninsula Ibérica es una de estas dreas estratégicas. Se ha demostrado que su
registro sedimentario puede compararse directamente con los registros de hielo
antartico y de Groenlandia, ofreciendo datos fiables para el estudio de variaciones
climdticas a escala milenaria tanto del hemisferio norte como del sur. Esto es
especialmente interesante para reconstruir el sistema climatico de épocas para las que

no se dispone de registros de hielo.

El margen occidental ibérico esta en el area de influencia del giro subtropical del
Atlantico Norte y recibe aguas tanto de la corriente de las Azores, como de la corriente
de Portugal, rama descendente de la Corriente del Atlantico Norte. Esta especial
localizacion, en el limite entre distintas masas de agua, hace de esta un drea muy
sensible a cambios de intensidad en el flujo de dichas corrientes y, por lo tanto, clave

para el estudio de variaciones paleoceanograficas en el Atlantico Norte. De hecho,
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diversos estudios han relacionado las variaciones climaticas milenarias registradas en
esta region durante el Cuaternario con cambios en los frentes ocednicos y en la
distribucidn de las corrientes.

Sin embargo ningun estudio realizado en el margen ibérico alcanzaba mas alla de
los 580 ka, puesto que no existian registros sedimentarios anteriores. La campafia de
IODP 339, con su sondeo U1385, ha permitido extender el registro sedimentario
disponible hasta el millén de ahos. Para la elaboracién de esta tesis doctoral he
estudiado las asociaciones de foraminiferos plancténicos y los datos isotdpicos
obtenidos de los sedimentos de este sondeo para reconstruir la historia climatica y
oceanografica de esta regidn a escala milenaria entre los estadios isotdpicos MIS 21y
MIS 11, asi como su correlacidon con eventos oceanograficos en el Atlantico Norte y
climaticos a escala global.

Los principales objetivos de esta tesis podrian resumirse en:

* Elaboracion de un registro de las variaciones en las asociaciones de

foraminiferos plancténicos durante el periodo estudiado

* Reconstruccion de paleotemperaturas mediante distintas funciones de

transferencia, basadas en asociaciones de foraminiferos planctdnicos

* Reconstruccién de la paleoproductividad exportada mediante funciones de

transferencia, basadas en asociaciones de foraminiferos planctdnicos
* Estudiar las oscilaciones climaticas a escala milenaria durante los estadios
isotopicos 21 al 11

* |dentificar las causas de dichas variaciones climaticas y el agente responsable
(orbital, oceanogréfico...)

* Estudiar el comportamiento de las corrientes ocednicas superficiales del
Atlantico Norte que afectan al drea de estudio durante los estadios glaciales del
MIS 20 al MIS 14

* Estudiar variaciones ambientales tanto superficiales como profundas, que
afectan a la distribucién de comunidades bentdnicas durante los estadios
isotopicos MIS 13 al MIS 11

* Comparar los registros obtenidos con datos publicados procedentes de otras

regiones para poder establecer variaciones ambientales a nivel global
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METODOS
Preparacion del sedimento y estudio de foraminiferos

Las muestras de sedimento se liofilizan, se pesan y se tamizan bajo el
chorro de agua con un tamiz de 63 um. La fraccién obtenida se seca en
estufa y se vuelve a pesar. Posteriormente se tamiza para separar la
fraccion >150 um, que es la que se utilizard. Esta fraccidn se cuartea hasta
obtener una alicuota que contenga entre 300 y 500 ejemplares, que se
identifican utilizando un microscopio estereoscdpico. Se calculan las

abundancias relativas de las especies y morfotipos identificados.

Reconstruccion de la paleotemperatura oceanica

Los valores de temperatura oceanica superficial se reconstruyen
utilizando un sistema de redes neuronales (ANN). Este sistema consiste en
la comparacion de cada muestra fésil con una base de datos de
asociaciones faunisticas modernas en que, para cada localizacién, se han
medido valores reales de temperatura de agua de mar.

Para comprobar el grado de similaridad de las reconstrucciones
obtenidas, se calcula un indice de similaridad mediante el método de

analogos modernos.

Reconstruccion de la paleoproductividad exportada
La productividad exportada de cada muestra fésil se reconstruye
mediante el método de analogos modernos, utilizando una base de datos

actual desarrollada para la misma area en que se realiza este estudio.
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RESUMEN

En esta tesis se reconstruyen las condiciones paleoceanograficas superficiales en
el margen occidental ibérico mediante el andlisis de las asociaciones de foraminiferos
plancténicos de sedimentos procedentes del testigo I0DP-U1385 (37234.285'N,
1027.562°W; 2585 m de profundidad). Los datos proporcionan un registro climatico
continuo y de alta resolucién para los estadios isotdpicos marinos (MIS) 21 a 11,
ampliando el registro existente del margen ibérico hasta el noveno ciclo climatico (867
ka).

Se identifican oscilaciones en la temperatura del agua superficial a escala
milenaria tanto durante los periodos interglaciales como los glaciales, pero las
oscilaciones de mayor amplitud (>5 2 C) suceden en los inicios y terminaciones
glaciales. En todas las desglaciaciones del Pleistoceno medio se registraron eventos de
extremando enfriamiento marcados por mdaximos en el porcentaje de
Neogloboquadrina pachyderma sinistral, con valores altos de 5%0 medido en
foraminiferos plancténicos y minimos en la relacién Ca/Ti. Estos eventos de
prominente enfriamiento de las aguas superficiales a lo largo del margen ibérico son el
resultado de importantes reorganizaciones de la circulacién en el Atlantico Norte,
tanto a nivel de superficie como de aguas profundas, que tuvieron lugar como
consecuencia del aporte de grandes cantidades de agua dulce al Atlantico Norte al
inicio de las deglaciaciones. De hecho, la mayor parte de estos eventos frios ocurrieron
cuando la insolacion de verano del hemisferio norte estaba préxima a sus valores
maximos. La disminucion de la formacién de agua profunda en el Atlantico Norte
redujo el aporte de aguas calidas hacia el norte, que tiene lugar mediante el giro
subtropical del Atlantico Norte. Esta disminucion de aporte calido fue registrada en el
margen ibérico por el incremento en el aporte de aguas subpolares frias. Después de
cada episodio de enfriamiento profundo asociado a las deglaciaciones, el agua
superficial experimentd un rapido calentamiento que marcaba el inicio del dptimo
climdtico durante la fase temprana de los interglaciales. Los calentamientos bruscos

guedaron registrados por un aumento repentino de la asociacién subtropical, lo que
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indica incremento en el transporte del calor hacia latitudes altas a través de la
corriente del Atlantico Norte. En el inicio de las glaciaciones, la temperatura de
superficie en el margen portugués se mantuvo relativamente calida, mientras que las
aguas superficiales del Atlantico Norte se enfriaban, generando un alto gradiente

latitudinal de temperatura superficial oceanica.

Se ha demostrado que el margen Ibérico suroeste es muy sensible a cambios en la
distribucidn de corrientes ocednicas y masas de agua superficiales del Atlantico norte,
asi como a variaciones en la posicion de los frentes artico y subtropical. Durante los
estadios glaciales del final del Calabriense y el Pleistoceno medio, tuvo lugar una
importante reorganizaciéon en la circulacion del Atlantico Norte que afecté a la
distribucidn superficial de las distintas masas de agua y el trazado de las corrientes
oceanicas. Este cambio tuvo lugar principalmente durante el estadio isotépico MIS 16,
asociado al cambio de posicion del frente artico y a la intensificacién en la formacion
de agua profunda Nord-atlantica, fendmenos ambos que tuvieron lugar durante este
estadio glacial y el interglacial previo. Durante los periodos glaciales anteriores al MIS
16 el frente artico estaba localizado en latitudes medias, lo que unido a los continuos
flujos de hielo que al fundirse producian grandes cantidades de agua de muy baja
salinidad, y por tanto muy baja densidad, dificultaba en gran medida la formacién de
aguas profundas Nord-atlanticas. La drdstica reduccién de la circulacion profunda
debilito la circulacién superficial, afectando a la corriente Nord-atlantica y facilitando la
dispersién de aguas polares por latitudes medias del Atlantico Norte. La corriente del
Atlantico Norte quedaba desviada al sur, adquiriendo una trayectoria casi oeste-este, y
las aguas cdlidas subtropicales llegaban al margen de Portugal circulando
superficialmente sobre las aguas polares que llegaban desde el norte. Desde el MIS 16
el frente artico adquiere una posicion mas al norte, lo que unido al incremento en la
formacidén de aguas profundas reactivé la NAC y facilito el aporte de aguas templadas
altas latitudes. La corriente de Portugal incrementé su intensidad a lo largo del margen
oeste ibérico, impidiendo que las aguas subtropicales aportadas por la corriente de las
Azores llegaran cerca de la costa, como quedé registrado en el sondeo U1385 por la

reducida abundancia relativa de la asociacion calida superficial.
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Parte del trabajo de esta tesis consiste en el estudio integrado de las condiciones
oceanicas superficiales y las profundas durante los estadios isotdpicos 13 al 11. Este
estudio revela el predominio de aguas bien oxigenadas en el fondo, asi como
abundancia de disponibilidad de alimento para las comunidades bentdnicas. La
concentracion de foraminiferos bentdnicos en los sedimentos y las variaciones de las
asociaciones de foraminiferos plancténicos sugieren cambios significativos en Ia
productividad superficial y el aporte de nutrientes hacia el fondo marino desde el final
del MIS 13 hasta el final del MIS 11. Hacia el final del MIS 13 la productividad
exportada fue muy baja. Este hecho, junto a la presencia de sedimentos claros indica
bajo aporte de carbono organico al fondo y altos niveles de oxigenacién.
Posteriormente, el aporte de materia organica se incrementd considerablemente y
mantuvo altos valores hasta la Terminacién V, permitiendo condiciones eutrdficas,
indicadas por valores altos de la tasa de acumulacidon de foraminiferos benténicos.
Durante el MIS 11 se registraron valores mas bajos en la tasa de acumulacién de
foraminiferos bentdnicos, lo que sugiere condiciones oligotréficas en el fondo y menor
aporte de carbono organico. Esta variacién de las condiciones ambientales bentdnicas
responde a cambios importantes en la ventilacion del agua, probablemente ligados a
variaciones en la circulacion termohalina profunda del Atlantico Norte que, en ultimo
término determina el contenido de oxigeno y la disponibilidad de alimento en los

sedimentos.
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CONCLUSIONES

El estudio de las asociaciones de foraminiferos planctdnicos procedentes del
sondeo U1385 en el margen atlantico ibérico, asi como la comparacion de los
resultados obtenidos con datos de §'®0, tanto bentdnicos como planctdnicos, y el
registro de Ca/Ti del mismo sitio (Hodell et al., 2015), permite la caracterizacion
climdtica y paleoceanografica del Atlantico Norte de los estadios isotdpicos (MIS) 21 al
11. A continuacidon se presentan las principales conclusiones obtenidas para este

intervalo.

Todas las desglaciaciones registradas en el margen portugués, tanto las
Terminaciones (particularmente T IX y VIII) como las transiciones glacial/interglacial
entre subestadios (MIS 21b/a, MIS 18e/d y especialmente MIS 15b/a), muestran una
prominente oscilacidon climatica que puede alcanzar los 10 °C de variacién. Esta
importante oscilacion térmica durante las desglaciaciones coincide con un cambio
notable en las asociaciones de foraminiferos plancténicos, pasando rapidamente de
una alta abundancia relativa de la especie polar Nps a una alta abundancia relativa de
la Asociacion subtropical. Estas oscilaciones térmicas de alta amplitud se produjeron
como consecuencia de importantes reorganizaciones de la circulacion superficial y
profunda en el Atlantico Norte provocadas, a su vez, por aportes de agua dulce al
océano cuando las masas de hielo del hemisferio norte comenzaron a retirarse. La
reduccion de salinidad superficial paralizd la formacion de aguas profundas en el
Atlantico Norte y, como consecuencia, el aporte de calor hacia latitudes altas y la
llegada de aguas cdlidas al margen oriental del giro subtropical, lo que provocé el
aporte de aguas subpolares al margen occidental ibérico. Esta situacidn cambid
rapidamente tras cesar la perturbacién del agua dulce. La reiniciacion de la formacién
de NADW reactivo la circulacion profunda y condujo a una intensificacion de la NACy

la llegada de aguas cdlidas al margen ibérico.

La comparacion con registros de temperatura oceanica superficial a latitudes altas
del Atlantico Norte revela el desarrollo de un acusado gradiente térmico latitudinal

entre el Atlantico Norte subtropical y el polar a medida que las masas de hielo del

12
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hemisferio norte se van formando. Este acusado gradiente proporciona una fuente de
vapor de agua que podria favorecer el crecimiento de las masas de hielo.

Durante el intervalo MIS 13-11, la temperatura ocednica superficial del margen
SW ibérico era, en general, mas fria que en la actualidad, en especial durante los
meses mas calidos. La temperatura oceanica superd los valores actuales sélo durante
cortos intervalos de los 6ptimos interglaciales. Los enfriamientos registrados en el
U1385 durante el intervalo MIS 13-11 fueron menos pronunciados que los registrados
durante MIS 20 6 MIS 15.

Durante MIS 12 el agua superficial en latitudes medias era, en general, mas fria
que durante los interglaciales, con baja estacionalidad y menor amplitud de oscilacion
térmica, especialmente durante los meses cdlidos. Las oscilaciones climaticas eran
mayores durante la expansion de las masas de hielo y se cree que la disminucién de la
variacion climatica antes del maximo glacial condujo a una de las glaciaciones mas
pronunciadas del ultimo millén de afios.

El MIS 11c se caracterizd por estabilidad climatica, inviernos templados y muy baja
estacionalidad, como corresponde a una baja excentricidad y precesién reducida. Tales
condiciones climaticas provocaron la estratificacion del agua superficial y el
debilitamiento del sistema de upwelling regional en la zona de estudio.

Las variaciones climaticas desde el MIS 13 al MIS 11 muestran la existencia de
siete secuencias climaticas formadas por episodios progresivamente mas frios y que
culminaban con un enfriamiento importante que era seguido por un repentino y
drastico calentamiento. Dichas secuencias son similares a los ciclos Bond descritos en
el Pleistoceno superior y la mayor parte de los episodios finales de enfriamiento
registrados en el U1385 coincidieron con eventos tipo Heinrich registrados en altas
latitudes del océano Atlantico. Estas secuencias climaticas se corresponden con
periodos de incremento gradual en el registro de §'20 que se interrumpe, o disminuye,
hacia el final de cada secuencia; también se corresponden con secuencias similares en
del registro sintético de temperatura sobre Groenlandia (GLTsyn of Barker et al., 2011).
Los principales enfriamientos coincidieron con la abrupta disminucién y/o valores
bajos de la AMOC, estadiales sobre Groenlandia y, salvo excepciones, también con alta

temperatura sobre Antartica. Esto sugiere que el modelo en dientes de sierra, que
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explica las oscilaciones climaticas del ultimo ciclo glacial, funcion6é también durante el
quinto ciclo climatico.

Durante el MIS 13 y el inicio de la siguiente glaciacion se registrd un claro desfase
entre las variaciones de SST y el volumen del hielo, segtn el §'®0 bentdnico. Los
valores mas altos de SST durante MIS 13a se alcanzaron ~4.5 ky después del minimo
volumen de hielo, y la SST empez6 a descender de nuevo ~3 ky después del inicio de la
nueva fase del crecimiento del hielo. Durante este inicio glacial se formd un gradiente
térmico superficial muy acusado entre el Atlantico NW vy latitudes medias, en
respuesta al avance del AF en direccidn este o el sureste.

Las variaciones de las asociaciones de foraminiferos plancténicos del U1385
indican una fuerte conexidn entre la presencia del agua calida superficial en el margen
Ibérico y la migracion del AF. El avance del frente artico en latitudes altas produciria el
desplazamiento hacia el sur del giro subtropical, mientras que los episodios del
retroceso del AF permitirian la migracion hacia el norte de dicho giro y la llegada de
masas superficiales calidas a latitudes mas altas. Durante la transicion MIS 12b/a el
aumento en volumen del hielo no se acompafié de la migracién hacia el sur del giro
subtropical, lo que indica que la circulacién superficial de Atlantico Norte se mantuvo
sin grandes alteraciones en el margen del este, probablemente debido a que el AF
tenia una orientacién sudoeste-noreste y el lugar de hundimiento de aguas no resulté
afectado durante este periodo. Esta interpretacion se respalda por valores del §"°C,
que son ~0.5%o0 mas altos que durante otros intervalos del MIS 12, lo que sugiere la
existencia de una AMOC reducida, pero aun activa comparada con otros intervalos del
mismo periodo glacial.

El margen suroeste ibérico es muy sensible a los cambios en la distribucion de las
corrientes del Atlantico Norte y las masas de agua, asi como a los cambios en la
posicion de los frentes artico y subtropical. Las variaciones en la abundancia de las
asociaciones de microfauna asociadas a las diversas corrientes del Atlantico Norte
indican un cambio en la circulacion general de esta parte del océano durante el estadio
MIS 16. Antes del MIS 16, cuando la posicién del frente Artico (AF) era mdas meridional,
tanto durante los glaciales como los interglacials, la circulacion del Atlantico Norte

estaba condicionada por la migracion del AF hacia el sur conforme avanzaba las
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condiciones glaciales. Durante los maximos glaciales de MIS 20 y MIS 18, coincidiendo
con la posicién mas meridional del AF, la corriente del Atlantico Norte (NAC) quedd
desviada hacia el sur y adquiridé una posicion casi puramente oeste-este, lo que
produjo un menor transporte de calor a latitudes altas. Durante estos dos estadios
glaciales, especialmente durante MIS 20, la corriente subtropical de las Azores
aportaba aguas subtropicales cdlidas a lo largo del margen ibérico, fluyendo
superficialmente sobre las aguas mas frias que llegaban procedentes de latitudes

subpolares en direccién sur.

En el margen ibérico el cambio de posicion del AF quedd registrado en torno a los
655 ka mediante el descenso en porcentaje de la especie polar Neogloboquadrina
pachyderma (sinistral) y el incremento de la especie subpolar, Turborotalita

quinqueloba.

Desde el MIS 16 la circulacion general del Atlantico Norte estaba menos
condicionada por las diferentes posiciones del AF que en estadios anteriores. Durante
MIS 14 la NAC llegaba con mayor intensidad a latitudes altas, coincidiendo con el
avance de la glaciacion. Desde el MIS 16, la microfauna caracteristica de la NAC
domind la asociacién registrada en el margen oriental subtropical, indicando una
reactivacion importante de la corriente de Portugal, rama descendente de la NAC, a lo
largo del margen Ibérico. Esta corriente produciria el desvio del agua cdlida superficial
hacia mar abierto y, en consecuencia, la disminucién en el porcentaje de especies

calida en el U1385.

La evolucion de las comunidades bentdnicas durante el intervalo MIS 13 al 11
responde a importantes cambios en la ventilacion del fondo, probablemente ligada a

variaciones en la circulacién termohalina profunda del Atlantico Norte.

Las condiciones ambientales del fondo para el intervalo de tiempo MIS 13 - 11 se
pueden interpretar como de buena oxigenacion, tanto del fondo como del agua
intersticial del sedimento, asi como de abundancia de nutrientes para las comunidades

bentodnicas.

La concentracién de foraminiferos bentdnicos y las variaciones en las asociaciones

de planctonicos, sugieren cambios significativos en la productividad superficial y el

1A



Millennial-scale climatic and oceanographic variations in the North Atlantic
across MIS 21 to 11

aporte de nutrientes al fondo ocednico durante MIS 13-11 que pueden correlacionarse

con los cambios registrados de icnofacies.

El final del MIS 13 se caracteriza por valores muy bajos de la productividad anual
exportada, lo que conjuntamente con la presencia de sedimentos claros indica un flujo
relativamente bajo de carbono organico hacia el fondo, asi como buena oxigenacién.
Estas condiciones iniciales cambiaron durante el MIS 12, con un rapido incremento del
aporte de materia organica, que mantuvo altos valores hasta la Terminacion V.
Durante este tiempo las condiciones eran eutréficas, como indica la elevada tasa de
acumulacién de foraminiferos bentdnicos. Durante MIS 11 se registré una menor tasa
de acumulacién de foraminiferos bentdnicos, lo que sugiere un ambiente oligotréfico
en el fondo asociado a menores aportes de carbono organico y alto contenido de

oxigeno en el fondo, lo que produjo sedimentos de color mas claro.
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