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a b s t r a c t

In this paper we address the problem of measuring the degree of consensus/dissensus in a context where ex-

perts or agents express their opinions on alternatives or issues by means of cardinal evaluations. To this end

we propose a new class of distance-based consensus model, the family of the Mahalanobis dissensus mea-

sures for profiles of cardinal values. We set forth some meaningful properties of the Mahalanobis dissensus

measures. Finally, an application over a real empirical example is presented and discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Decision Making Theory and its applications, consensus mea-

surement and its reaching in a society (i.e., a group of agents or ex-

perts) are relevant research issues. Many studies investigating the

aforementioned subjects have been carried out under several frame-

works (see Cabrerizo, Moreno, Pérez, & Herrera-Viedma, 2010; Dong,

Xu, & Li, 2008; Dong, Xu, Li, & Feng, 2010; Dong & Zhang, 2014;

Fedrizzi, Fedrizzi, & Marques Pereira, 2007; Fu & Yang, 2012; Herrera-

Viedma, Herrera, & Chiclana, 2002; Liu, Liao, & Yang, 2015; Palo-

mares, Estrella-Liébana, Martínez, & Herrera, 2014; Wu & Chiclana,

2014a, 2014b; Wu, Chiclana, & Herrera-Viedma, 2015 among others)

and based on different methodologies (Chiclana, Tapia García, del

Moral, & Herrera-Viedma, 2013; Cook, 2006; Eklund, Rusinowska, &

de Swart, 2008; Eklund, Rusinowska, & Swart, 2007; Fedrizzi et al.,

2007; Fu & Yang, 2010, 2011; Gong, Zhang, Forrest, Li, & Xu, 2015;

González-Pachón & Romero, 1999; Liu et al., 2015; Palomares &

Martínez, 2014 among others).

Since the seminal contribution by Bosch (2005) several authors

have addressed the consensus measurement topic from an axiomatic

perspective. Earlier analyses can be mentioned, e.g., Hays (1960)

or Day and McMorris (1985). This issue is also seen as the prob-

lem of combining a set of ordinal rankings to obtain an indicator of

their ‘consensus’, a term with multiple possible meanings (Martínez-

Panero, 2011).
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Generally speaking, the usual axiomatic approaches assume that

each individual expresses his or her opinions through ordinal pref-

erences over the alternatives. A group of agents is characterized by

the set of their preferences – their preference profile. Then a consen-

sus measure is a mapping which assigns to each preference profile a

number between 0 and 1. The assumption is made that the higher the

values, the more consensus in the profile.

Technical restrictions on the preferences provide various ap-

proaches in the literature. In most cases the agents are presumed

to linearly order the alternatives (see Bosch, 2005 or Alcalde-Unzu

& Vorsatz, 2013). Since this assumption seems rather demanding (es-

pecially as the number of alternatives grows), an obvious extension

is to allow for ties. This is the case where the agents have complete

preorders on the alternatives (e.g., García-Lapresta & Pérez-Román,

2011). Alcantud, de Andrés Calle, and Cascón (2013a, 2015) take a dif-

ferent position. They study the case where agents have dichotomous

opinions on the alternatives, a model that does not necessarily re-

quire pairwise comparisons.

Notwithstanding the use of different ordinal preference frame-

works, the problem of how to measure consensus is an open-ended

question in several research areas. This fact is due to that method-

ology used in each case is a relevant element in the problem ad-

dressed. To date various methods have been developed to measure

consensus under ordinal preference structures based on distances

and association measures like Kemeny’s distance, Kendall’s coeffi-

cient, Goodman-Kruskal’s index and Spearman’s coefficient among

others (see e.g., Cook & Seiford, 1982; Goodman & Kruskal, 1979; Ke-

meny, 1959; Kendall & Gibbons, 1990; Spearman, 1904).

In this paper we first tackle the analysis of coherence that derives

from profiles of cardinal rather than ordinal evaluations. Modern
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convention applies the term cardinal to measurements that assign

significance to differences (cf., Basu, 1982; Chiclana, Herrera-Viedma,

Alonso, & Herrera, 2009; High & Bloch, 1989). In contrast ordinal pref-

erences only permit to order the alternatives from best to worst with-

out any additional information. To see how this affects the analysis of

our problem, let us consider a naive example of a society with two

agents. They evaluate two public goods with monetary amounts. One

agent gives a value of 1€ for the first good and 2€ for the second good.

The other agent values these goods at 10€ and 90€ respectively. If

we only use the ordinal information in this case, we should conclude

that there is unanimity in the society: all members agree that ‘good

2 is more valuable than good 1’. However the agents disagree largely.

Therefore, the subtleties of cardinality clearly have an impact when

we aim at measuring the cohesiveness of cardinal evaluations.

Unlike previous references, we adopt the notion of dissensus mea-

sure as the fundamental concept. This seems only natural because it

resembles more the notion of a “measure of statistical dispersion”, in

the sense that 0 captures the natural notion of unanimity as total lack

of variability among agents, and then increasingly higher numbers

mean more disparity among evaluations in the profile.1

In order to build a particular dissensus measure we adopt a

distance-based approach. Firstly, one computes the distances be-

tween each pair of individuals. Then all these distances are aggre-

gated. In our present proposal the distances (or similarities) are com-

puted through the Mahalanobis distance (Mahalanobis, 1936). We

thus define the class of Mahalanobis dissensus measures.

The Mahalanobis distance plays an important role in Statistics and

Data Analysis. It arises as a natural generalization of the Euclidean

distance. A Mahalanobis distance accounts for the effects of differ-

ences in scales and associations among magnitudes. Consequently,

building on the well-known performance of the Mahalanobis dis-

tance, our novel proposal seems especially fit for the cases when the

measurement units of the issues are different, e.g., performance ap-

praisal processes when employees are evaluated attending to their

productivity and their leadership capacity; or where the issues are

correlated. For example, evaluation of related public projects. An an-

tecedent for the weaker case of profiles of preferences has been pro-

vided elsewhere, cf. Alcantud, de Andrés Calle, and González-Arteaga

(2013b), and an application to comparisons of real rankings on uni-

versities worldwide is developed. Here we apply our new indicator

to a real situation, namely, economic forecasts made by several agen-

cies. Since the forecasts concern economic quantities, they have an

intrinsic value which is naturally cardinal and also there are relations

among them.

The paper is structured as follows. In Section 2, we introduce ba-

sic notation and definitions. In Section 3, we set forth the class of the

Mahalanobis dissensus measures and their main properties. Section 4

provides a comparison of several Mahalanobis dissensus measures.

Next, a practical application with discussion is given in Section 5.

Finally, we present some concluding remarks. Appendices contain

proofs of some properties and a short review in matrix algebra.

2. Notation and definitions

This section is devoted to introduce some notation and a new

concept in order to compare group cohesiveness: namely, dissensus

measures. Then, a comparison with the standard approach is made.

We partially borrow notation and definitions from Alcantud et al.

(2013b). In addition, we use some elements of matrix analysis that

we recall in Appendix B to make the paper self-contained.

Let X = {x1, . . . , xk} be the finite set of k issues, options, alterna-

tives, or candidates. It is assumed that X contains at least two options,

1 As a remote antecedent of this position, we note that statistically variance-based

methods are commonly employed to measure consensus of verbal opinions (cf.,

Hoffman, 1994, and Mejias, Shepherd, Vogel, & Lazaneo, 1996.)

i.e., the cardinality of X is at least 2. Abusing notation, on occasions

we refer to issue xs as issue s for convenience. A population of agents

or experts is a finite subset N = {1, 2, . . . , N} of natural numbers. To

avoid trivialities we assume N > 1.

We consider that each expert evaluates each alternative by means

of a quantitative value. The quantitative information gathered from

the set of N experts on the set of k alternatives is summarized by an

N × k numerical matrix M:

M =
(
Mi j

)
N×k

We write Mi to denote the evaluation vector of agent i over the issues

(i.e., row i of M) and Mj to denote the vector with all the evaluations

for issue j (i.e., column j of M). For convenience, (1)N × k denotes the N

× k matrix whose cells are all equal to 1 and 1N denotes the column

vector whose N elements are equal to 1. We write MN×k for the set of

all N × k real-valued matrices. Any M ∈ MN×k is called a profile.

Any permutation σ of the experts {1, 2, . . . , N} determines a pro-

file Mσ by permutation of the rows of M: row i of the profile Mσ is row

σ (i) of the profile M. Similarly, any permutation π of the alternatives

{1, 2, . . . , k} determines a profile π M by permutation of the columns

of M: column i of the profile π M is column π (i) of the profile M.

For each profile M ∈ MN×k, its restriction to subprofile on the is-

sues in I ⊆ X, denoted MI, arises from exactly selecting the columns

of M that are associated with the respective issues in I (in the same

order). And for simplicity, if I = { j} then MI = M{ j} = M j is column

j of M. Any partition {I1, . . . , Is} of {1, 2, . . . , k}, that we identify

with a partition of X, generates a decompositionof M into subprofiles

MI1 , . . . , MIs . 2

A profile M ∈ MN×k is unanimous if the evaluations for all the al-

ternatives are the same across experts. In matrix terms, the columns

of M ∈ MN×k are constant, or equivalently, all rows of the profile are

coincident.

An expansion of a profile M ∈ MN×k of N on X = {x1, . . . , xk} is a

profile M̄ ∈ MN̄×k of N̄ = {1, . . . , N, N + 1, . . . , N̄} on X = {x1, ..., xk},
such that the restriction of M̄ to the first N experts of N coincides

with M.

Finally, a replication of a profile M ∈ MN×k of the society N on

X = {x1, . . . , xk} is the profile M � M ∈ M2N×k obtained by duplicat-

ing each row of M, in the sense that rows t and N + t of M�M are

coincident and equal to row t of M, for each t = 1, . . . , N.

We now define a dissensus measure as follows:

Definition 1. A dissensus measure on MN×k is a mapping defined by

δ : MN×k → [0,∞) with the property:

(i) Unanimity: for each M ∈ MN×k, δ(M) = 0 if and only if the pro-

file M ∈ MN×k is unanimous.

We also define a normal dissensus measure as a dissensus mea-

sure that additionally verifies:

(ii) Anonymity: δ(Mσ ) = δ(M) for each permutation σ of the

agents and M ∈ MN×k.

(iii) Neutrality: δ(π M) = δ(M) for each permutation π of the alter-

natives and M ∈ MN×k.

This definition does not attempt to state dissensus by opposition

to consensus. The literature usually deals with a formulation of con-

sensus where the higher the index, the more coherence in the so-

ciety’s opinions. The terms consensus and dissensus should not be

taken as formal antonyms, especially because a universally accepted

definition of consensus is not available and we do not intend to give

an absolute concept of dissensus. However, consensus measures in

the sense of Bosch (see Bosch, 2005, Definition 3.1) verify anonymity

and neutrality (see also Alcantud et al., 2013b, Definition 1), and from

2 A partition of a set S is a collection of pairwise disjoints non-empty subsets of S

whose union is S.
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a purely technical viewpoint, they relate to dissensus measures as fol-

lows.

Lemma 1. If μ is a consensus measure then 1 − μ is a normal dissensus

measure. Conversely, if δ is a normal dissensus measure then 1
δ+1

is a

consensus measure.

Proof 1. We just need to recall that the mapping i : [0, ∞) −→ (0, 1]

given by i(x) = 1
x+1 is strictly decreasing. �

3. The class of Mahalanobis dissensus measures and its

properties

In this section we introduce a broad class of dissensus measures

that depends on a reference matrix, namely the Mahalanobis dis-

sensus measures. We also give its more prominent properties.

Our interest is to cover the specific characteristics in cardinal

profiles, like possible differences in scales, and correlations among

the issues. Before providing our main definition, we recover the

definition of the Mahalanobis distance on which our measure is

based.

Definition 2. Let � ∈ Mk×k be a positive definite matrix and let us

assume that x and y vectors from Rk are row vectors. The Mahalanobis

(squared) distance on Rk associated with � is defined by 3

d�(x, y) = (x − y)�−1(x − y)t

The off-diagonal elements of � permit to account for cross re-

lations among the issues or alternatives. Through the diagonal el-

ements different measurement scales can be incorporated. The �

matrix contains variances and covariances among random variables

when the Mahalanobis distance is used in Statistical Data Analysis.

Definition 3. Let � ∈ Mk×k be a positive definite matrix. The Maha-

lanobis dissensus measure on MN×k associated with � is the mapping

δ� : MN×k → R given by

δ�(M) = 1

C2
N

·
∑
i< j

d�(Mi, Mj) = 1

C2
N

·
∑
i< j

(Mi − Mj)�
−1(Mi − Mj)

t

(1)

for each profile M ∈ MN×k on k alternatives, where C2
N = N(N−1)

2 is the

number of non-ordered pairs of the N agents.

Note that the above expression is the average of all distances be-

tween the evaluation vectors provided by all pairs of agents according

to the Mahalanobis distance associated with � (Definition 2).

It is immediate to check that δ� verifies conditions i) and ii) for

each positive definite � matrix. But δ� fails to satisfy neutrality like

the following example proves.

Example 1. Let � =
(

1 0
0 2

)
, k = 2 and N = 2. Then �−1 =

(
1 0

0 1
2

)
.

For M =
(

1 −1
3 0

)
one has M1 = (1,−1) and M2 = (3, 0). Then

δ�(M) = 1

C2
2

·
(
(1 − 3, −1 − 0)�−1 (1 − 3, −1 − 0)

t
)

= 9

2
.

If the columns of M are permuted in order to obtain π M =(−1 1
0 3

)
, then

δ�(π M) = 1

C2
2

·
(
(−1 − 0, 1 − 3)�−1 (−1 − 0, 1 − 3)

t
)

= 3.

3 Our choice of d� (x, y) coincides with the original Mahalanobis’ definition (see

Mahalanobis, 1936). In order to exploit the inclusion of the Euclidean distance, some

authors work with
√

d�(x, y) instead. In both cases we have distances on Rk .

Therefore

δ�(π M) = 3 �= 9

2
= δ�(M),

which proves that δ� does not verify neutrality.

Nevertheless, if the � matrix is adapted according to a specific

permutation of the alternatives then the Mahalanobis disensus mea-

sure verifies a kind of “soft” neutrality like the following result proves.

Proposition 1. Let � ∈ Mk×k be a positive definite matrix. For each pro-

file M ∈ MN×k and each permutation π of the alternatives, i.e., a permu-

tation of {1, . . . , k},
δ�(M) = δ�π (π M)

where �π = Pt
π � Pπ and Pπ is the permutation matrix corresponding

to π .

Proof 2. Using the definition of Mahalanobis dissensus measure

(Definition 3), it is sufficient to prove that d�π (π Mi,
π M j) =

d�(Mi, M j)

d�π (π Mi,
π Mj) = (π Mi −π Mj) (�π )

−1
(π Mi −π Mj)

t

= (MiPπ − MjPπ ) (Pt
π�Pπ )−1 (MiPπ − MjPπ )t

= (Mi − Mj) Pπ Pt
π�−1Pπ Pt

π (Mi − Mj)
t

= (Mi − Mj)�
−1(Mi − Mj)

t

= d�(Mi, Mj).

We have only used the fact that the permutation matrix Pπ is

orthogonal. �

3.1. Some particular specifications

Some special instances of Mahalanobis dissensus measures have

specific interpretations.

• If we have a single issue or alternative, then M ∈ MN×1 is a vector

and � can be identified as a number c > 0. Then

δc(M) = 1

C2
N

·
∑
i< j

1

c
(Mi − Mj)

2 = 1

c
· 2N

N − 1
· S2

M

where S2
M

is the sample variance of M.4 Therefore the dissensus

for a single issue is the result of correcting its sample variance by

a factor of 1
c · 2N

N−1 .

• If � is the identity, then δI(M) = 1

C2
N

· ∑i< j

∑k
r=1(Mir − M jr)

2. This

expression uses the square of the Euclidean distance between

real-valued vectors, thus it recovers a version of the consensus

measure for ordinal preferences based on this distance (Cook &

Seiford, 1982). Henceforth δI is called the Euclidean dissensus mea-

sure.
• If � = diag(c11, . . . , ckk) is a diagonal matrix then d�(Mi, Mj) gives

the weighted average of the square of the differences in assess-

ments for each alternative between agents i and j, where the

weight attached to alternative r is 1
crr

:

δ�(M) = 1

C2
N

·
∑
i< j

d�(Mi, Mj)

= 1

C2
N

·
∑
i< j

(
k∑

r=1

1

crr
· (Mir − Mjr)

2

)

=
k∑

r=1

1

crr
· δI(Mr).

4 In order to check this, we use a well-known property of the variance: given a vector

x = (x1, x2, . . . , xn), whose mean is x, S2
x = 1

n

∑n
i=1(xi − x)2 = 1

2n2

∑n
i=1

∑n
j=1(xi − x j )

2.
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This particular specification of the dissensus measure allows us

to incorporate different weights to the alternatives. This fact

increases the richness of the analysis in comparison with the

(square of the) Euclidean distance. Furthermore, if � = λI for

some λ > 0, then Proposition 2 below gives additional relation-

ships.

Proposition 2 gives the relation between the Euclidean dissensus

measure and the Mahalanobis dissensus measure associated with a

matrix which is a multiple of the identity matrix, � = λI.

Proposition 2. For each profile M ∈ MN×k and λ > 0,

δλI(M) = δI

(
1√
λ

· M

)
= 1

λ
· δI(M).

Proof 3. Using Definition 3, the assertion is direct if we

check dλI(Mi, M j) = dI(
1√
λ

· Mi,
1√
λ

· M j) and dλI(Mi, M j) =
1
λ

· dI(Mi, M j).

dλI(Mi, Mj) = (Mi − Mj)(λI)−1(Mi − Mj)
t

= (Mi − Mj)

⎛
⎜⎜⎜⎝

1

λ
· · · 0

...
. . .

...

0 · · · 1

λ

⎞
⎟⎟⎟⎠(Mi − Mj)

t

=
k∑

r=1

1

λ
· (Mir − Mjr)

2 =
k∑

r=1

(
1√
λ

· Mir − 1√
λ

· Mjr

)2

=
(

1√
λ

· Mi − 1√
λ

· Mj

)⎛
⎝1 · · · 0

...
. . .

...
0 · · · 1

⎞
⎠

×
(

1√
λ

· Mi − 1√
λ

· Mj

)t

= dI

(
1√
λ

· Mi ,
1√
λ

· Mj

)
.

dλI(Mi, Mj) = 1

λ
·

k∑
r=1

(Mir − Mjr)
2

= 1

λ
· (Mi − Mj)

⎛
⎝1 · · · 0

...
. . .

...
0 · · · 1

⎞
⎠(Mi − Mj)

t

= 1

λ
· dI(Mi, Mj).

�

3.2. Some properties of the class of Mahalanobis dissensus measures

Measuring cohesiveness by means of the Mahalanobis dissensus

measure ensures some interesting operational features. We pro-

ceed to examine them. The proofs of these properties are given in

Appendix A.

Let M ∈ MN×k denote a profile and let �, �1,�2 ∈ Mk×k be posi-

tive definite matrices. The following properties hold true:

1. Neutrality. A dissensus measure δ� verifies neutrality if and only

if the associated � matrix is a diagonal matrix whose diagonal

elements are the same. Formally:

δ�(M) = δ�(π M) any profile M ∈ MN×k and any permutation π
of {1, . . . , k}, if and only if � = diag{λ, . . . , λ} for some λ > 0.

2. Oneness. If for a particular size N of a society the Mahalanobis

dissensus measures associated with two matrices coincide for all

possible profiles, then the corresponding dissensus measures are

equal. Formally:

If for a fixed N it is the case that δ�1
(M) = δ�2

(M) for each profile

M ∈ MN×k, then �1 = �2 , i.e., for each N′ and M′ ∈ MN′×k, it is

also the case that

δ�1
(M′) = δ�2

(M′).
3. Cardinal transformations. In contrast to ordinal assessments, cardi-

nal evaluations are dependent on scales. So an important question

arises about if the scale choice disturbs the cohesiveness mea-

sures. In this regard, once we update the reference matrix accord-

ingly, the Mahalanobis dissensus measures associated to � do not

vary. This fact happens even if we modify the scales of all issues

in different way. In addition, a simple translation of each issue by

adding a number does not change the cohesiveness measure. For-

mally:

Let a = (a1, . . . , ak)
t be a column vector and B = diag(b1, . . . , bk)

be a diagonal matrix. The affine transformation of the profile M ∈
MN×k is M∗ = 1N at + M B, M∗ ∈ MN×k. Its columns are defined

by M∗ j = a j · 1N + b j · M j and its rows are defined by M∗
i

= (a1 +
b1Mi1, . . . , ak + bkMik) = a + Mi B .

If M∗ = 1N at + M B is a positive affine transformation of the pro-

file M ∈ MN×k and �∗ = B�Bt is the corresponding adjusted �,

then

δ�∗ (M∗) = δ�(M).

4. Replication monotonicity. When a non-unanimous society is repli-

cated, its dissensus measure increases. That is, if M ∈ MN×k is a

non-unanimous profile then

δ�(M � M) =
(

2N − 2

2N − 1

)
· δ�(M)

therefore

δ�(M � M ) > δ�(M).

We can note that the difference between such measures is negligi-

ble for large societies. In addition, if we have an unanimous profile

M ∈ MN×k then by Definition 1 i), δ� verifies

δ�(M � M) = δ�(M) = 0.

5. Splitting the set of alternatives. Suppose that the set of alternatives

is divided in two (or more) subgroups, in such way that we do

not consider any possible cross-effect among subgroups (perhaps

because we know that there is not interdependence). Then the

computation can be simplified by referring to measures of the dis-

sensus in sub-profiles as follows.

Given � =
(
�11 0

0 �22

)
, where �11 ∈ Mr×r , �22 ∈ M(k−r)×(k−r) ,

for each profile M = (MI1 , MI2 ) where MI1 ∈ MN×r , MI2 ∈
MN×(k−r)

δ�(M) = δ�11
(MI1 ) + δ�22

(MI2 ).

Remark 1. Note that if the � matrix was originally a block diag-

onal matrix in the form � = diag(�11, . . . ,�ss), then it is possi-

ble to take the corresponding partition of the set of alternatives,

X = I1 ∪ I2 ∪ . . . ∪ Is. Consequently, the original profile M ∈ MN×K

can be rewritten like M = (MI1 , MI2 , . . . , MIs ). Then

δ�(M) =
s∑

i=1

δ�ii
(MIi ).

6. Adding alternatives. Anextension of a profile M ∈ MN×k is a new

profile, M∗ ∈ MN×(k+r), such that M∗ includes r new alternatives.

Under this assumption, M∗ can be seen as a profile with two sub-

groups, the initial and the new alternatives, M∗ = (M, Mnew) ∈
MN×(k+r) . If the aforementioned subgroups of alternatives are not

related then Property 5 applies. Consequently,

δ�∗ (M∗) = δ�(M) + δ�new (Mnew)

12
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where �∗ =
(
� 0
0 �new

)
and �new ∈ Mr×r is the associated matrix

to the dissensus measure for the r new alternatives.

In the particular case where all the new alternatives added to the

profile M are evaluated equally by all agents,

δ�∗ (M∗) = δ�(M),

irrespective of �new because unanimous profiles produce dis-

sensus measures equal to zero. This particular case is defined

like a property called “independence of irrelevant alternatives” in

Alcantud, de Andrés Calle, and Cascón (2013a).

7. Adding agents to the society. Suppose that a new agent is added to

the society, and then the Mahalonabis dissensus measure of the

enlarged society does not decrease. In addition, the increment is

minimal when the“average agent” is added up. Formally:

Let M ∈ MN×k be a profile and M̄ ∈ M(N+1)×k be its expansion after

incorporating the evaluations of a new agent. The Mahalanobis

dissensus measure for M̄ is

δ�(M̄) = N − 1

N + 1
· δ�(M) + 1

C2
N+1

·
N∑

i=1

d�(Mi, M̄N+1)

where M̄N+1 is the row of M̄ which incorporates the new agent’s

assessments for the alternatives.

If the assessments of the new agent coincide with the average of

the original agents’ evaluations for each alternative, then the min-

imal increment of the dissensus measure is obtained.

Remark 2. A particular case is when the Mahalanobis dissensus

measure is zero, or equivalently, there exits unanimity. If we in-

clude a new agent whose evaluations coincide with the assess-

ments of the original agents, the Mahalanobis dissensus measure

continues being zero.

4. Comparison of Mahalanobis dissensus measures

In practical situations we could potentially use various Maha-

lanobis dissensus measures for profiles of cardinal information.5

Hence it is worth studying the relations among evaluations achieved

when we vary the reference matrices. This section addresses this

point.

Theorems 1 and 2 below identify conditions on matrices that en-

sure consistent comparisons between Mahalanobis dissensus mea-

sures, whatever the number of agents. Based on these theorems, a

final result gives bounds for the Mahalanobis dissensus measure.

Along this section �1, �2 ∈ Mk×k denote two positive defi-

nite matrices and d�1
, d�2

denote the corresponding Mahalanobis

(squared) distances on Rk associated to �1 and �2. Let λ(i)
1

≥ λ(i)
2

≥
· · · ≥ λ(i)

k
> 0 be the eigenvalues of �i, i = 1, 2.

Theorem 1. If there exists N for which each profile M ∈ MN×k verifies

δ�1
(M) ≥ δ�2

(M) then

λ(1)
i

≤ λ(2)
i

for i = 1, . . . , k (2)

Proof 4. We take a profile M ∈ Mk×k with Mi = 0 for i = 2, 3, . . . , N

and M1 = x ∈ Rk. By assumption

δ�1
(M) = 1

C2
N

· d�1
(x, 0) ≥ δ�2

(M) = 1

C2
N

· d�2
(x, 0).

Consequently, the hypothesis is reduced to d�1
(x, 0) ≥ d�2

(x, 0) for

x ∈ Rk. It means

x�−1
1 xt ≥ x�−1

2 xt ⇒ x
(
�−1

1 − �−1
2

)
xt ≥ 0 for x ∈ Rk.

5 This is the case of our real example in Section 5 below.

Then (�−1
1

− �−1
2

) is a non-negative definite matrix. Now we use

the result included in Appendix B (see Point 11) to finish the proof:

�−1
1 ≥ �−1

2 �⇒ 1

λ(1)
i

≥ 1

λ(2)
i

�⇒ λ(1)
i

≤ λ(2)
i

for i = 1, 2, . . . , k.

�

The converse of Theorem 1 is not always true like Example 2 below

shows. Nevertheless, Theorem 2 below proves that a partial converse

of Theorem 1 holds true under a technical restriction on the definite

matrices.

Example 2. Let us consider a particular case of two matrices

�1 =
(

0.18 −0.16
−0.16 0.42

)
�2 =

(
0.60 0.20
0.20 0.30

)
whose eigenvalues verify λ(1)

i
≤ λ(2)

i
for i = 1, 2 because λ(1)

1
= 0.5,

λ(1)
2

= 0.1 and λ(2)
1

= 0.7, λ(2)
2

= 0.2.

Let M ∈ M2×2 be the profile M =
(

4 60
0 0

)
. The Mahalanobis dis-

sensus measures for M associated with �1 and �2 produce

δ�1
(M) = 14630.4 ≤ 14777.14 = δ�2

(M).

Therefore it is not true that δ�1
(M) ≥ δ�2

(M) holds throughout.

Theorem 2. If �1,�2 ∈ Mk×k are commutable matrices and their

eigenvalues verify λ(1)
1

≤ λ(2)
k

then

δ�1
(M) ≥ δ�2

(M)

for each size N and each profile M ∈ MN×k.

Proof 5. Assuming �1,�2 ∈ Mk×k are commutable, we can apply

Point 12 in Appendix B to �−1
1

and �−1
2

. Consequently, there exists

an orthonormal matrix Q ∈ Mk×k such that

Qt�−1
1 Q = D1 and Qt�−1

2 Q = D2

being D1, D2 ∈ Mk×k diagonal matrices. It is possible to select Q in

such a way that the diagonal elements of D1 verify 1

λ(1)
1

≤ · · · ≤ 1

λ(1)
k

.

Thus

D1 = diag

(
1

λ(1)
1

, . . . ,
1

λ(1)
k

)
and D2 = diag

(
1

λ(2)
π(1)

, . . . ,
1

λ(2)
π(k)

)
,

where π is a permutation of {1, 2, . . . , k}.6

Let x, y ∈ Rk be two row vectors. Since Q is an orthonormal ma-

trix, there exists a vector z ∈ Rk such that (x − y)t = Qz

d�1
(x, y)= (x − y)�−1

1 (x − y)t = zt Qt�−1
1 Qz = zt D1z =

k∑
j=1

1

λ(1)
j

z2
j

d�2
(x, y)= (x − y)�−1

2 (x − y)t = zt Qt�−1
2 Qz = zt D2z=

k∑
j=1

1

λ(2)
π( j)

z2
j

From premise that λ(1)
1

≤ λ(2)
k

we have

1

λ(1)
k

≥ · · · ≥ 1

λ(1)
1

≥ 1

λ(2)
k

≥ · · · ≥ 1

λ(2)
1

.

Thus 1

λ(1)
j

≥ 1

λ(2)
π( j)

for j = 1, 2, . . . , k and as a result it is obtained

k∑
j=1

1

λ(1)
j

z2
j ≥

k∑
j=1

1

λ(2)
π( j)

z2
j .

In consequence, d�1
(x, y) ≥ d�2

(x, y).

6 When Q does not lead to a diagonal matrix with properly ordered eigenvalues, we

change Q for Q ′ = QPt , P being a permutation matrix. Q′ is also an orthogonal matrix

(see Appendix B, Point 10) which simultaneously diagonalizes �−1
1

and �−1
2

. In addi-

tion, we get a diagonal matrix D∗
1 with the same eigenvalues that D1 but in the proper

order.

13
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Fig. 1. Curves of equidistance to point A with d� (ellipse), dλ1 I and dλk I (circumferences).

Now, using Definition 3 the theorem is proven. �

Example 3 below shows the relevance of hypothesis on the eigen-

values (Theorem 2).

Example 3. Considering �1 and �2 from Example 2, we observe that

they are commutable matrices:

�1 �2 =
(

0.18 −0.16
−0.16 0.42

)(
0.6 0.2
0.2 0.3

)
=

(
0.076 −0.012

−0.012 0.094

)

�2 �1 =
(

0.6 0.2
0.2 0.3

)(
0.18 −0.16

−0.16 0.42

)
=

(
0.076 −0.012

−0.012 0.094

)

We can see that the assumption λ(1)
1

≤ λ(2)
k

even if k = 2 does not

imply λ(1)
i

≤ λ(2)
i

for i = 1, 2 (see Eq. (2), Theorem 1):

λ(1)
1

= 0.5 < 0.7 = λ(2)
1

,

λ(1)
2

= 0.1 < 0.2 = λ(2)
2

,

λ(1)
1

= 0.5 > 0.2 = λ(2)
2

.

Example 4 bellow reveals that the commutativity of �1 and �2 is

not superfluous in the statement of Theorem 2.

Example 4. Let us consider �1 =
(

0.05 0
0 0.1

)
and �2 =

(
0.6 0.2
0.2 0.3

)
,

with λ(1)
2

= 0.05, λ(1)
1

= 0.1 and λ(2)
2

= 0.2, λ(2)
1

= 0.7. These eigen-

values satisfy λ(1)
1

≤ λ(2)
2

and �1 and �2 matrices are not com-

mutable:

�1 �2 =
(

0.03 0.01
0.02 0.03

)
�=

(
0.03 0.02
0.01 0.03

)
= �2 �1

Let M ∈ M2×2 be a specific profile, M =
(

4 60
0 0

)
. The Mahalanobis

dissensus measures for M associated with �1 and �2 produce

δ�1
(M) = 360.8 ≤ 14, 777.14 = δ�2

(M). Therefore it is not true that

δ�1
(M) ≥ δ�2

(M) holds throughout.

Theorems 1 and 2 can be extended to r positive definite matrices

�1, . . . ,�r as a matter of course.

Apart from Theorems 1 and 2, the following corollary reveals

that the Mahalanobis dissensus measure associated to � is confined

within bounds depending only on the extreme eigenvalues of �.

Corollary 1. Let � ∈ Mk×k be a positive definite matrix with eigenval-

ues λ1 ≥ ��� ≥ λk, it is verified

δλ1I(M) ≤ δ�(M) ≤ δλkI(M)

or equivalently

1

λ1

· δI(M) ≤ δ�(M) ≤ 1

λk

· δI(M)

for each N and for each M ∈ MN×k.

Proof 6. This result is straightforward from Theorem 2. Observe that

such Theorem can be applied because λkI (resp., λ1I) and M are com-

mutable matrices and the eigenvalues of the diagonal matrix λkI

(resp., λ1I) are all equal to λk (resp. λ1). Proposition 2 is used. �

Fig. 1 illustrates the previous corollary regarding the distances

used for δλ1I, δ� and δλkI . We can observe that all points on the ellipse

have the same Mahalanobis distance to point A, namely d� . More-

over, distance d� is always between the values of the corresponding

distances dλ1I and dλkI .

5. Discussion on practical application using a real example

In this section we fully develop a real example. It aims at giving

an explicit application of our proposal and discussing some of its fea-

tures.

We are interested in assessing the cohesiveness of the forecasts

of various magnitudes for the Spanish Economy in 2014: GDP (Gross

Domestic Product), Unemployment Rate, Public Deficit, Public Debt

and Inflation. These forecasts have been published by different in-

stitutions and organizations, and each one was made at around the

same time. Specifically, three waves of forecasts were published in

14
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Table 1

Forecasts for several magnitudes for the Spanish Economy for the year 2014 pub-

lished in Spring of 2013.

GDP U. Rate P. Deficit P. Debt Inflation

IMF 0.70 26.40 −6.90 97.60 1.50

OECD 0.40 28.00 −6.40 97.00 0.40

European Commission 0.90 26.40 −7.00 91.30 0.80

BBVA research 0.90 26.40 −5.70 96.30 1.20

FUNCAS 0.50 26.00 −4.60 99.20 1.60

Abbreviations: Unemployment Rate (U. Rate), Public Deficit/Debt (P. Deficit/Debt),

Banco Bilbao Vizcaya Argentaria Reseach (BBVA Research), Fundación de las Cajas

de Ahorros (FUNCAS).

Table 2

Forecasts for several magnitudes for the Spanish Economy for the year 2014 pub-

lished in Autumn of 2013.

GDP U. Rate P. Deficit P. Debt Inflation

IMF 0.20 26.70 −5.80 99.10 1.50

OECD 0.50 26.30 −6.10 98.00 0.50

European Commission 0.50 26.40 −5.90 99.90 0.90

BBVA Research 0.90 25.60 −5.80 98.50 1.10

FUNCAS 1.00 25.90 −5.90 100.50 1.30

Abbreviations: Unemployment Rate (U. Rate), Public Deficit/Debt (P. Deficit/Debt),

Banco Bilbao Vizcaya Argentaria Reseach (BBVA Research), Fundación de las Cajas

de Ahorros (FUNCAS).

Table 3

Forecasts for several magnitudes for the Spanish Economy for the year 2014 pub-

lished in Spring of 2014.

GDP U. Rate P. Deficit P. Debt Inflation

IMF 0.90 25.50 −5.89 98.80 0.50

OECD 1.00 25.40 −5.50 98.30 0.10

European Commission 1.10 25.50 −5.60 103.80 0.10

BBVA Research 1.10 25.10 −5.80 98.40 1.10

FUNCAS 1.20 25.10 −6.00 100.00 0.10

Abbreviations: Unemployment Rate (U. Rate), Public Deficit/Debt (P. Deficit/Debt),

Banco Bilbao Vizcaya Argentaria Reseach (BBVA Research), Fundación de las Cajas

de Ahorros (FUNCAS).

the Spring of 2013 (Table 1), Autumn of 2013 (Table 2) and Spring of

2014 (Table 3).

We intend to measure the cohesiveness of the aforementioned

predictions. Since they are expressed by cardinal valuations, we need

to go beyond the traditional analyses referred to in this paper. To this

purpose, we first gather the data corresponding to Tables 1–3 in the

profiles M(S), M(A), M(lS) ∈ M5×5, respectively. Next, we select a suit-

able reference matrix and finally we make the computations of the

Mahalanobis dissensus measures.

5.1. Reference matrix

Once the profiles have been fixed, the following step to compute

their Mahalanobis dissensus measures is to avail oneself of a suit-

able reference matrix �. The choice of such a matrix can easily raise

controversy. Nevertheless, we can learn from the role of the � ma-

trix in the Mahalanobis distance from a statistical point of view. This

matrix contains the variances and covariances among the statistical

variables, therefore, those characteristics are brought into play in this

distance. We recall that covariances (or corresponding correlations)

among variables reveal their interdependence. In statistics, this �

matrix is usually unknown and it is estimated from a sample. One ex-

ception is the unlikely case when the data are generated by a known

multivariate probability distribution. This is not the case of our ex-

ample.

Therefore we employ a reference matrix � that captures the vari-

ances and covariances among the macroeconomic magnitudes of the

Table 4

Past data for the Spanish Economy (2001–2012). Source: Spanish

National Statistics Institute (INE) and Bank of Spain.

Year GDP U. Rate P. Deficit P. Debt Inflation

2001 3.70 10.55 0.50 55.60 2.70

2002 2.70 11.47 0.20 52.60 3.50

2003 3.10 11.48 0.30 48.80 3.00

2004 3.30 10.97 0.10 46.30 3.00

2005 3.60 9.16 –1.30 43.20 3.40

2006 4.10 8.51 –2.40 39.70 3.50

2007 3.50 8.26 –1.90 36.30 2.80

2008 0.90 11.33 4.50 40.20 4.10

2009 –3.70 18.01 11.20 53.90 –0.30

2010 –0.30 20.06 9.70 61.50 1.80

2011 0.40 21.64 9.40 69.30 3.20

2012 –1.40 25.03 10.60 84.20 2.40

Table 5

Correlations between macroeconomic magnitudes for historial data.

GDP U. Rate P. Deficit P. Debt Inflation

GDP 1.00 –0.81 –0.94 –0.59 0.73

U. Rate –0.81 1.00 0.93 0.92 –0.46

P. Deficit –0.94 0.93 1.00 0.75 –0.60

P. Debt –0.59 0.92 0.75 1.00 –0.30

Inflation 0.73 –0.46 –0.60 –0.30 1.00
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Fig. 2. A depiction of the correlation matrix of the Spanish macroeconomic data from

2001 to 2012.

Spanish Economy. It seems natural to produce such a matrix from

historical macroeconomic data corresponding to the issues under in-

spection. Table 4 contains such recorded data, and Table 5 gives the

corresponding correlation coefficients. 7 These values are depicted

in Fig. 2. Each ellipse represents the correlation between a pair of

variables. The ellipses slant upward (resp., downward) show a pos-

itive (resp., negative) correlation. Moreover, the narrower the ellipse

7 Given two vectors X = (x1, . . . , xn)
′ and Y = (y1, . . . , yn)

′ with x and y their respec-

tive means, the correlation coefficient between X and Y is computed by cor(X,Y ) =∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.
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Table 6

Dissensus between pairs of agents for the profiles of forecasts published in Spring of

2013 (in descending order), Autumn of 2013 and Spring of 2014.

Spring Autumn Spring

2013 2013 2014

OECD FUNCAS 23.18 2.85 0.27

European Comm. FUNCAS 19.65 1.21 0.61

IMF FUNCAS 9.31 3.63 1.15

OECD BBVA Research 8.05 2.50 2.04

European Comm. BBVA Research 5.62 1.25 2.86

IMF OECD 5.24 2.76 0.93

IMF European Comm. 4.87 1.47 2.62

BBVA Research FUNCAS 4.52 0.12 2.10

IMF BBVA Research 3.31 4.11 0.86

OECD European Comm. 0.79 0.60 1.61

the stronger correlation represented. For example, the pair formed by

GDP and Public Deficit holds the strongest negative correlation.

On the basis of Table 4, we compute the corresponding variance-

covariance matrix �8.

� =

⎛
⎜⎜⎝

6.11 −11.49 −12.43 −20.19 2.03
−11.49 32.74 28.43 72.42 −2.97
−12.43 28.43 28.41 55.41 −3.60
−20.19 72.42 55.41 190.52 −4.73

2.03 −2.97 −3.60 −4.73 1.28

⎞
⎟⎟⎠

5.2. Computation of the dissensus

Now we calculate the Mahalanobis dissensus measures associ-

ated with � for the profiles of the forecasts for the Spanish Economy,

namely, M(S), M(A) and M(lS).

We obtain the following Mahalanobis dissensus measures associ-

ated with the aforementioned �:

δ�(M(S)) = 8.45, δ�(M(A)) = 2.05, δ�(M(lS)) = 1.51.

Note that the measure of the dissensus decreases along the time.

This is what we intuitively expect, since the latter forecasts rest on

more accurate and factual information.

Apart from the measure of the cohesiveness of the profiles, our

proposal also produces a measure of divergence among the evalua-

tions of different agents on a set of issues. We can answer questions

like “Are the predictions of the European Commission for the Spanish

Economy similar to the predictions of the BBVA Reseach?” or “Is the pre-

vious comparison more or less similar than the comparison between the

predictions of the BBVA Research vs. the predictions of the IMF?”. Table 6

provides these items for comparison.

5.3. Other simpler approaches: drawbacks or limitations

The choice of the reference matrix is a key point in the applica-

tion of the Mahalanobis dissensus measure. As an explanatory exer-

cise in this subsection we discuss on the more simplistic approaches

where naive reference matrices are employed. If we use the identity

matrix as the reference matrix (for example, because we lack data to

make a better inference), then we get a Mahalanobis dissensus mea-

sure which gives the same importance to the differences in all the

issues (see Section 3.1). However the choice of the identity matrix

as the reference matrix discards much relevant information. We note

the variance of the Public Debt is 190.52, while Inflation has a vari-

ance of 1.28 (see �). So, a difference of one unit in the forecasts from

two agents does not signify the same if such a difference corresponds

to Inflation or to Public Debt.

8 Let X be a n × k matrix whose columns have means Xi, i = 1, . . . , k. The cells of the

variance-covariance matrix are �i j = 1

n − 1

n∑
r=1

(xri − Xi)(xr j − X j ).

Table 7

Dissensus for several profiles of economic forecasts for the Spanish Economy

for the year 2014. Data published in Spring of 2013, Autumn of 2013 and in

Spring of 2014.

Profiles

M(S) M(A) M(lS)

Reference matrix Spring 2013 Autumn 2013 Spring 2014

� δ� 8.45 2.05 1.51

Diagonal δ�σ
0.61 0.29 0.37

Identity δI 21.59 2.97 11.20

We could alternatively employ as the reference matrix, the diago-

nal matrix with the variances of the issues, that is,

�σ = diag(6.11, 32.74, 28.41, 190.52, 1.28).

In this case, we remove the effects of the interdependence among the

economic magnitudes on the dissensus measure.

In order to check that an inconvenient choice of the reference ma-

trix easily produces misleading conclusions. Table 7 shows the dis-

sensus measures derived from the three matrices mentioned above,

�, I and �σ . The dissensus δ� is decreasing along time as previously

reported. This intuitively appealing feature is not captured when we

utilize simpler matrices. Consequently, introducing corrections due

to variances or to cross-effects is crucial for a reliable final analysis.

6. Concluding remarks

We explore the problem of measuring the degree of cohesiveness

in a setting where experts express their opinions on alternatives or

issues by means of cardinal evaluations. We use the general concept

of dissensus measure and introduce one particular formulation based

on the Mahalanobis distance for numerical vectors, namely the Ma-

halanobis dissensus measure.

We provide some properties which make our proposal appealing.

We emphasize that the Mahalanobis dissensus measure on the pro-

files with k issues or alternatives is scale-independent for each issue

and it accounts for cross-relations of issues. In addition, the compari-

son between different Mahalanobis dissensus measures can be made

through the eigenvalues of their associated matrices.

We illustrate our proposal with a real numerical application about

forecasts for several magnitudes for the Spanish Economy. We discuss

the relevance of the choice of the reference matrix in this context.
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Appendix A. Proofs of properties in Section 3.2

Proof of property 1. Neutrality. Let us first prove sufficiency. If � =
diag{λ, . . . , λ} for a value λ > 0, the thesis is straightforward from the

Definition 3.

Let us now prove necessity. Due to the fact that δ� verifies

neutrality for any profile M ∈ MN×k and for any permutation π of

{1, . . . , k}
δ�(M) = δ�(π M),
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it must be deduced � = diag{λ, . . . , λ} for a value λ > 0.

Let M ∈ M2×k be a particular profile such that M =
(

M1

M2

)
.

The dissensus measure for M ∈ M2×k is given by δ�(M) = (M1 −
M2)�−1(M1 − M2)t according to Definition 3. If M is permuted by

means of π , we obtain the matrix π M ∈ M2×k and consequently its

dissensus measure is δ�(π M) = (π M1 −π M2)�−1(π M1 −π M2)t .

According to Point 10 in Appendix B, we can write π M = MPπ , be-

ing Pπ ∈ Mk×k the corresponding permutation matrix. Consequently,

δ�(π M) = (M1Pπ − M2Pπ )�−1(M1Pπ − M2Pπ )t

= (M1 − M2)Pπ�−1Pt
π (M1 − M2)

t .

Since δ� verifies neutrality, δ�(M) = δ�(π M) for any M ∈ M2×k,

�−1 = Pπ�−1Pt
π .

Using the spectral decomposition (see Appendix B, Points 15 and

16) �−1 can be written as �−1 = �D−1
λ

�t for a unique orthogonal

matrix �. Therefore

�−1 = Pπ�−1Pt
π = Pπ�D−1

λ
�t Pt

π .

Observe that the matrix Pπ� is orthogonal because it is the prod-

uct of two orthogonal matrices. Since the spectral decomposition as-

sures that � is unique, it must be

� = Pπ�

for every Pπ ∈ Mk×k permutation matrix. Note that this equation

implies that performing any permutation of the rows of � pro-

duces �.

Therefore � must be the identity matrix, i.e., � = I.

We can now deduce

�−1 = �D−1
λ

�t = D−1
λ

,

�−1 = Pπ�D−1
λ

�t Pt
π = Pπ D−1

λ
Pt
π .

Thus we conclude that � is a diagonal matrix.

Let us now prove that the diagonal elements of � = Dλ are all

equal.

From the above equalities of �−1, it is verified D−1
λ

= Pπ D−1
λ

Pt
π ,

for any permutation π of {1, . . . , k}.

For the particular permutation matrix

Pπ =

⎛
⎜⎜⎝

0 1 · · · 0
1 0 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎠,

we obtain Pπ D−1
λ

Pt
π = diag{λ−1

2
, λ−1

1
, . . . , λ−1

k
} and given that D−1

λ
=

Pπ D−1
λ

Pt
π , it must be λ1 = λ2. A routine modification of the argument

proves λ1 = λ j, j = 3, . . . , k. �

Proof of property 2. Oneness. Let N be a fixed value. We take a pro-

file M ∈ MN×k with Mi = 0 for i = 2, . . . , N and M1 = x ∈ Rk any row

vector. For this particular profile the hypothesis δ�1
(M) = δ�2

(M)

reduces to d�1
(x, 0) = d�2

(x, 0). It means that, x
(
�−1

1
− �−1

2

)
xt = 0

and
(
�−1

1
− �−1

2

)
is a non-negative definite matrix.

Let cij be the elements of the matrix
(
�−1

1
− �−1

2

)
. Consider-

ing the ith row vector of the canonical base ei = (0, . . . , 1, . . . , 0)

then, ei

(
�−1

1
− �−1

2

)
et

i
= cii = 0. Therefore c11 = · · · = ckk = 0 and

trace
(
�−1

1
− �−1

2

)
= 0. As a consequence, using Appendix B (Point

13), �1 = �2. �

Proof of property 3. Cardinal transformations. Let a = (a1, . . . , ak)
t

be a column vector and B = diag(b1, . . . , bk) be a diagonal matrix. The

affine transformation of the profile M ∈ MN×k is M∗ = 1N at + M B,

M∗ ∈ MN×k. Its columns are defined by M∗ j = a j · 1N + b j · M j and its

rows are defined by M∗
i

= (a1 + b1Mi1, . . . , ak + bkMik) = a + Mi B .

Let �∗ = B�Bt be the � matrix updated according to the affine

transformation. Then, all elements σ ∗
i j

of �∗ and all elements σ ij of �

are related by σ ∗
i j

= bib jσi j . Due to the fact that B is a diagonal matrix,

B = Bt and (�∗)−1 = B−1�−1B−1. We now proceed to compute the

Mahalanobis distance under the previous remarks:

d�∗ (M∗
i , M∗

j ) = (M∗
i − M∗

j )(�
∗)−1(M∗

i − M∗
j )

t

= (a + MiB−a−MjB)(B�Bt )−1 (a + MiB−a−MjB)t

= (Mi − Mj) BB−1�−1B−1B (Mi − Mj)
t

= (Mi − Mj)�
−1(Mi − Mj)

t

= d�(Mi, Mj).

Based on the previous distance, we obtain:

δ�∗ (M∗) = 1

C2
N

·
∑
i< j

d�∗ (M∗
i , M∗

j ) = 1

C2
N

·
∑
i< j

d�(Mi, Mj) = δ�(M)

�

Proof of property 4. Replication monotonicity. Let us compute the

Mahalanobis dissensus measure for M�M.

δ�(M � M) = 1

C2
2N

·
2N∑
i=1

2N∑
j=1
i< j

d�((M � M)i, (M � M) j)

= 1

C2
2N

·

⎛
⎝ N∑

i=1

N∑
j=1
i< j

d�(Mi, Mj) +
N∑

i=1

2N∑
j=N+1

d�(Mi, Mj)

⎞
⎠

+ 1

C2
2N

·

⎛
⎝ 2N∑

i=N

2N∑
j=1
i< j

d�(Mi, Mj)

⎞
⎠ = 1

C2
2N

· C2
N · δ�(M)

+ 1

C2
2N

·
N∑

i=1

N∑
r=1

d�(Mi, MN+r)

+ 1

C2
2N

·
N∑

i=1

N∑
j=1
i< j

d�(Mi, Mj)

= 1

C2
2N

·
(

4C2
N · δ�(M)

)
=

(
2N − 2

2N − 1

)
· δ�(M)

Therefore

δ�(M � M) =
(

2N − 2

2N − 1

)
· δ�(M)

and in particular

δ�(M � M ) > δ�(M).

�

Proof of property 5. Splitting the set of alternatives. We set X =
I1 ∪ I2 = {x1, . . . , xr} ∪ {xr+1, . . . , xk} as a partition of the alternatives.

Given � =
(
�11 0

0 �22

)
, where �11 ∈ Mr×r , �22 ∈ M(k−r)×(k−r) , for

each profile M = (MI1 , MI2 ) where MI1 ∈ MN×r , MI2 ∈ MN×(k−r) . Re-

calling Point 5 in Appendix B

�−1 =
(

�−1
11

0

0 �−1
22

)
.

We are now in a position to calculate d�(Mi, M j), the Maha-

lanobis distance between a pair of agents i and j:

d�(Mi, Mj) = (MI1
i

− MI1
j
)�−1

11 (MI1
i

− MI1
j
)t

+ (MI2
i

− MI2
j
)�−1

22 (MI2
i

− MI2
j
)t

= d�11
(MI1

i
, MI1

j
) + d�22

(MI2
i
, MI2

j
).
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Using Definition 3, the Mahalanobis dissensus measure on M as-

sociated with � is given by

δ�(M) = 1

C2
N

·
∑
i< j

d�(Mi, Mj)

= 1

C2
N

·
∑
i< j

(
d�11

(MI1
i
, MI1

j
) + d�22

(MI2
i
, MI2

j
)
)

= δ�11
(MI1 ) + δ�22

(MI2 ). (A.1)

It is easy to check that this property holds true for any size of

the partition. We set X = I1 ∪ I2 ∪ . . . ∪ Is as a partition of the al-

ternatives. Considering not cross-effects among the subsets of the

alternatives, the � ∈ Mk×k matrix has a block diagonal form, � =
diag(�11, . . . ,�ss). Analogously, a profile M ∈ MN×k can be written

as M = (MI1 , MI2 , . . . , MIs ). Then

δ�(M) =
s∑

i=1

δ�ii
(MIi ).

�

Proof of property 6. Adding alternatives. The proof is straightfor-

ward from Eq. (A.1). �

Proof of property 7. Adding agents to the society. Let M ∈ MN×k be

a profile on X of the society N, M̄ ∈ M(N+1)×k an expansion of M by

adding the evaluations of a new agent, M̄N+1. Then

δ�(M̄) = 1

C2
N+1

·
∑
i< j

d�(M̄i, M̄ j) = 1

C2
N+1

·
N+1∑
i=1

N+1∑
j=1
i< j

d�(M̄i, M̄ j)

= 1

C2
N+1

·

⎛
⎝ N∑

i=1

N∑
j=1
i< j

d�(Mi, Mj) +
N∑

i=1

d�(Mi, M̄N+1)

⎞
⎠

= 1

C2
N+1

·
(

C2
N · δ�(M) +

N∑
i=1

d�(Mi, M̄N+1)

)

= N − 1

N + 1
· δ�(M) + 1

C2
N+1

·
N∑

i=1

d�(Mi, M̄N+1).

Now we have to minimize δ�(M̄). Obviously, the vector which

minimizes δ�(M̄) is the vector that gathers the opinion of the agent

N + 1 in the profile M̄. For simplicity we recall M̄N+1 like x ∈ Rk. From

δ�(M̄) expression, it is enough to resolve

min
x

N∑
i=1

d�(Mi, x) = min
x

N∑
i=1

(
Mi�

−1Mt
i − 2Mi�

−1xt + x�−1xt
)
,

or equivalently,

min
x

N∑
i=1

(
−2Mi�

−1xt + x�−1xt
)
.

We solve it by the standard method using Point 14 in Appendix B.

∂

∂x

N∑
i=1

(
−2Mi�

−1xt + x�−1xt
)

= −2

N∑
i=1

(
Mi�

−1
)t +

N∑
i=1

2�−1xt

= −2

(
N∑

i=1

�−1Mt
i

)
+ 2N�−1xt

= −2�−1

(
N∑

i=1

Mt
i − Nxt

)
= 0.

N∑
i=1

Mt
i − Nxt = 0 �⇒ x = 1

N

N∑
i=1

Mi.

Due to the fact that the second derivative is 2N�−1, a positive definite

matrix, we have a minimum in x = 1
N

∑N
i=1 Mi. �

Appendix B. Review in matrix algebra

This appendix contains some technical results and background

material of matrix analysis which are particularly useful in this pa-

per. Let A be a real matrix of order n × n.

1. A diagonal matrix A with diagonal elements a11, a22, . . . , ann is

represented as A = diag(a11, a22, . . . , ann).

2. The trace of a matrix A of dimension n × n is the sum of its

diagonal elements, i.e., trace(A) =
n∑

i=1

= aii.

3. Two matrices A and B of dimensions n × n are commutable if

AB = BA. It is also said that they commute. We say that a family

of n × n matrices A1, A2, . . . , Ak is a commutable family if for

any i, j ∈ {1, . . . , k}, Ai and Aj commute.

4. A matrix A is orthogonal if AT A = AAT = I, i.e. A−1 = AT .

5. The inverse matrix of a partitioned matrix A =
(

A11 A12

A21 A22

)
,

where A11 and A22 are non-singular, is(
(A11 − A21A−1

22
A12)

−1 −A11A12 (A22 − A21A−1
11

A12)
−1

−(A22 − A21A−1
11

A12)
−1A21A−1

11
(A22 − A21A−1

11
A12)

−1

)
.

6. Let v be a vector n × 1. A symmetric matrix A is a positive semi-

definite matrix (or non-negative definite matrix) if vt Av ≥ 0

and A is a positive definite matrix if vt Av > 0 for all non-zero

vector v.

7. If there exist a scalar λ and a non-zero vector γ such that

Aγ = λγ , we call them an eigenvalue of A and an associated

eigenvector, respectively.

8. There are up to n eigenvalues λ1, . . . , λn of A. If A is a positive

semi-definite matrix, its eigenvalues are all non-negative.

9. If A is a positive definite matrix, its eigenvalues λ1, . . . , λn are

positive values and A−1 has eigenvalues λ−1
1

, . . . , λ−1
n .

10. A permutation matrix of order n × n is a square matrix ob-

tained from the same size identity matrix by a permutation of

rows. Let π be a permutation of {1, 2, ..., k} and let ei be the ith

vector of the canonical base of Rn, that is, ei j = 1 if i = j, ei j = 0

otherwise. We define the permutation matrix Pπ whose rows

are eπ (i). We rearrange the corresponding rows (resp. columns)

of A using the permutation π by left (resp., right) multiplica-

tion, Pπ A (resp., APπ ). Every row and every column of a per-

mutation matrix contain exactly one nonzero entry, which is

1. A product of permutation matrices is again a permutation

matrix. The inverse of a permutation matrix is again a permu-

tation matrix. In fact, P−1 = Pt .

11. Let A and B be p × p symmetric matrices. If A − B is a non-

negative definite matrix, then it is expressed as A ≥ B. In this

case chi(A) ≥ chi(B) for i = 1, . . . , p, where chi(A) denotes the

ith characteristic root of a symmetric matrix A, arranged in in-

creasing order (Fujikoshi, Ulyanov, & Shimizu, 2010, pp. 497

(A.1.9)).

12. A theorem on a simultaneous diagonizable family of matrices. A

set consisting of symmetric n × n matrices, A1, . . . , Ar, is simul-

taneously diagonalizable by an orthogonal matrix if and only if

they commute in pairs, that is to say, for each i �= j, AiA j = A jAi.

Simultaneously diagonalizable means that there exists an or-

thogonal matrix U such that Ut AiU = Di where Di is a diagonal

matrix for every Ai in the set (HorZXn & Johnson, 2010, pp. 52,

theorem 1.3.19) and (Harville, 1997, pp. 561).

13. If a non-negative definite matrix has trace equal to zero, then

this matrix is zero (Harville, 1997, pp. 238).
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14. If A is a symmetric matrix n × n, x and b are vectors of length

n, then

∂ Ax

∂x
= ∂ xt A

∂x
= A ;

∂ bt x

∂x
= ∂ xbt

∂x
= b ;

∂ xt Ax

∂x
= 2 · Ax.

See Harville (1997).

15. Spectral decomposition. Let � be a k × k real symmetric ma-

trix. There exists an orthogonal matrix � = (γ1, γ2, . . . , γk),

whose column vectors γ i are the normalized eigenvectors of

�, γ t
i
γi = 1. Its eigenvalues are λ1, . . . , λk. It is verified that

�t�� = Dλ where Dλ = diag(λ1, . . . , λk) is a diagonal matrix

with λ1 ≥ λ2 ≥ . . . ≥ λk. In this way � is unique. 9 We note that

� = �Dλ�
t , that is, � = ∑k

i=1 λiγiγ
t
i
.

16. When � is a positive semi-definite matrix, all its characteristic

roots or eigenvalues are real and greater than or equal to zero.

Accordingly, the inverse of � is �−1 = �D−1
λ

�t .

References

Alcalde-Unzu, J., & Vorsatz, M. (2013). Measuring the cohesiveness of preferences: An

axiomatic analysis. Social Choice and Welfare, 41, 965–988.
Alcantud, J., de Andrés Calle, R., & Cascón, J. (2015). Pairwise dichotomous cohesiveness

measures. Group Decision and Negotiation, 24(5), 833–854.
Alcantud, J. C. R., de Andrés Calle, R., & Cascón, J. M. (2013a). On measures of cohesive-

ness under dichotomous opinions: Some characterizations of approval consensus

measures. Information Sciences, 240, 45–55.
Alcantud, J. C. R., de Andrés Calle, R., & González-Arteaga, T. (2013b). Codifications of

complete preorders that are compatible with Mahalanobis consensus measures.
In B. Baets, J. Fodor, & S. Montes (Eds.), Eurofuse 2013 workshop on uncertainty and

imprecision modelling in decision making (pp. 19–26). Ediciones de la Universidad
de Oviedo.

Basu, K. (1982). On the measurement of inequality. Review of Economic Studies, 307–

311.
Bosch, R. (2005). Characterizations of voting rules and consensus measures. Tilburg

University (Ph.D. thesis)..
Cabrerizo, F., Moreno, J., Pérez, I., & Herrera-Viedma, E. (2010). Analyzing consensus

approaches in fuzzy group decision making: Advantages and drawbacks. Soft Com-
puting, 14(5), 451–463.

Chiclana, F., Herrera-Viedma, E., Alonso, S., & Herrera, F. (2009). Cardinal consistency
of reciprocal preference relations: A characterization of multiplicative transitivity.

Fuzzy Systems, IEEE Transactions on, 17(1), 14–23.

Chiclana, F., Tapia García, J., del Moral, M., & Herrera-Viedma, E. (2013). A statistical
comparative study of different similarity measures of consensus in group decision

making. Information Sciences, 221, 110–123.
Cook, W., & Seiford, L. (1982). On the Borda–Kendall consensus method for priority

ranking problems. Management Science, 28, 621–637.
Cook, W. D. (2006). Distance-based and ad hoc consensus models in ordinal preference

ranking. European Journal of Operational Research, 172(2), 369–385.

Day, W., & McMorris, F. (1985). A formalization of consensus index methods. Bulletin of
Mathematical Biology, 47, 215–229.

Dong, Y., Xu, Y., & Li, H. (2008). On consistency measures of linguistic preference rela-
tions. European Journal of Operational Research, 189(2), 430–444.

Dong, Y., Xu, Y., Li, H., & Feng, B. (2010). The owa-based consensus operator under lin-
guistic representation models using position indexes. European Journal of Opera-

tional Research, 203(2), 455–463.

Dong, Y., & Zhang, H. (2014). Multiperson decision making with different prefer-
ence representation structures: A direct consensus framework and its properties.

Knowledge-Based Systems, 58(0), 45–57.
Eklund, P., Rusinowska, A., & de Swart, H. (2008). A consensus model of political

decision-making. Annals of Operations Research, 158(1), 5–20.
Eklund, P., Rusinowska, A., & Swart, H. (2007). Consensus reaching in committees. Eu-

ropean Journal of Operational Research, 178(1), 185–193.

Fedrizzi, M., Fedrizzi, M., & Marques Pereira, R. A. (2007). Consensus modelling in group
decision making: Dynamical approach based on fuzzy preferences. New Mathemat-

ics and Natural Computation, 3(02), 219–237.

9 With this ordering Dλ is unique. If all the eigenvalues are different, � is unique. In

other case � is unique except for a postfactor (a matrix which allows a different base

for eigenvalues).

Fu, C., & Yang, S. (2011). An attribute weight based feedback model for multiple at-
tributive group decision analysis problems with group consensus requirements in

evidential reasoning context. European Journal of Operational Research, 212(1), 179–
189.

Fu, C., & Yang, S. L. (2010). The group consensus based evidential reasoning approach
for multiple attributive group decision analysis. European Journal of Operational Re-

search, 206(3), 601–608.
Fu, C., & Yang, S. L. (2012). An evidential reasoning based consensus model for multiple

attribute group decision analysis problems with interval-valued group consensus

requirements. European Journal of Operational Research, 223(1), 167–176.
Fujikoshi, Y., Ulyanov, V., & Shimizu, R. (2010). Multivariate statistics : High-dimensional

and large-sample approximations. New Jersey: Wiley.
García-Lapresta, J. L., & Pérez-Román, D. (2011). Measuring consensus in weak orders.

In E. Herrera-Viedma, J. L. García-Lapresta, J. Kacprzyk, M. Fedrizzi, H. Nurmi, &
S. Zadrozny (Eds.), Consensual processes: 267 (pp. 213–234). Springer Berlin Heidel-

berg.Studies in Fuzziness and Soft Computing

Gong, Z., Zhang, H., Forrest, J., Li, L., & Xu, X. (2015). Two consensus models based on
the minimum cost and maximum return regarding either all individuals or one

individual. European Journal of Operational Research, 240(1), 183–192.
González-Pachón, J., & Romero, C. (1999). Distance-based consensus methods: a goal

programming approach. Omega, 27(3), 341–347.
Goodman, L., & Kruskal, W. (1979). Measures of association for cross classifica-

tions. In Measures of association for cross classifications (pp. 2–34). Springer New

York.Springer Series in Statistics
Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer.

Hays, W. (1960). A note on average tau as a measure of concordance. Journal of the
American Statistical Association, (55), 331–341.

Herrera-Viedma, E., Herrera, F., & Chiclana, F. (2002). A consensus model for multi-
person decision making with different preference structures. IEEE Transactions on

Systems, Man, and Cybernetics – Part A: Systems and Humans, 32(3), 394–402.

High, J., & Bloch, H. (1989). On the history of ordinal utility theory: 1900-1932. History
of Political Economy, 21(2), 351–365.

Hoffman, D. (1994). Note on the ventana coefficient of consensus. technical report. Uni-
versity College, University of New South Wales.

Horn, R., & Johnson, C. (2010). Matrix analysis. Cambridge University Press.
Kemeny, J. (1959). Mathematics without numbers. Daedalus, 88, 577–591.

Kendall, M., & Gibbons, J. (1990). Rank correlation methods. London, Melbourne, Auck-

land: Edward Arnold.
Liu, J., Liao, X., & Yang, J. (2015). A group decision-making approach based on evidential

reasoning for multiple criteria sorting problem with uncertainty. European Journal
of Operational Research, 246(3), 858–873.

Mahalanobis, P. C. (1936). On the generalised distance in statistics. In Proceedings of the
National Institute of Science of India: vol. 12 (pp. 49–55).

Martínez-Panero, M. (2011). Consensus perspectives: Glimpses into theoretical ad-

vances and application. In E. Herrera-Viedma, J. L. García-Lapresta, J. Kacprzyk,
H. Nurmi, M. Fedrizzi, & S. Zadrozny (Eds.), Consensual processes: 267 (pp. 179–193).

Berlin: Springer-Verlag.
Mejias, R. J., Shepherd, M. M., Vogel, D., & Lazaneo, L. (1996). Consensus and per-

ceived satisfaction levels: A cross-cultural comparison of GSS and non-GSS out-
comes within and between the United States and Mexico. Journal of Management

Information Systems, 13(3), 137–161.
Palomares, I., Estrella-Liébana, F. J., Martínez, L., & Herrera, F. (2014). Consensus under

a fuzzy context: Taxonomy, analysis framework AFRYCA and experimental case of

study. Information Fusion, 20, 252–271.
Palomares, I., & Martínez, L. (2014). A semi-supervised multi-agent system model to

support consensus reaching processes. IEEE Transactions on Fuzzy Systems, 22(4),
762–777.

Spearman, C. (1904). The proof and measurement of association between two things.
American Journal of Psycology, 15, 72–101.

Wu, J., & Chiclana, F. (2014a). Multiplicative consistency of intuitionistic reciprocal pref-

erence relations and its application to missing values estimation and consensus
building. Knowledge-Based Systems, 71, 187–200.

Wu, J., & Chiclana, F. (2014b). A social network analysis trust-consensus based approach
to group decision-making problems with interval-valued fuzzy reciprocal prefer-

ence relations. Knowledge-Based Systems, 59, 97–107.
Wu, J., Chiclana, F., & Herrera-Viedma, E. (2015). Trust based consensus model for social

network in an incomplete linguistic information context. Applied Soft Computing,

35, 827–839.

19


