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a b s t r a c t 

The achievement of a ‘consensual’ solution in a group decision making problem depends on experts’ 

ideas, principles, knowledge, experience, etc. The measurement of consensus has been widely studied 

from the point of view of different research areas, and consequently different consensus measures have 

been formulated, although a common characteristic of most of them is that they are driven by the imple- 

mentation of either distance or similarity functions. In the present work though, and within the frame- 

work of experts’ opinions modelled via reciprocal preference relations, a different approach to the mea- 

surement of consensus based on the Pearson correlation coefficient is studied. The new correlation con- 

sensus degree measures the concordance between the intensities of preference for pairs of alternatives 

as expressed by the experts. Although a detailed study of the formal properties of the new correlation 

consensus degree shows that it verifies important properties that are common either to distance or to 

similarity functions between intensities of preferences, it is also proved that it is different to traditional 

consensus measures. In order to emphasise novelty, two applications of the proposed methodology are 

also included. The first one is used to illustrate the computation process and discussion of the results, 

while the second one covers a real life application that makes use of data from Clinical Decision-Making. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Consensus reaching is an important component in decision 

making processes, and indeed it plays a key role in the resolu- 

tion process of group decision making problems. One of the most 

significant current discussion in consensus research concerns the 

measurement and achievement of consensus from both a theo- 

retical and applied points of view. On the one hand, establish- 

ing and characterising different methodologies to measure consen- 

sus have been addressed from a Social Choice perspective [1,3,13] . 

On the other hand, within the Decision Making Theory frame- 

work, modelling group decision making problems in order to reach 

a higher level of cohesiveness has been managed successfully 

[15,32,34,38,39,65] . Outside of these main areas, it is possible to 

find other methodologies that use the idea of consensus in differ- 

ent ways to the aforementioned ones, with [41,46] being represen- 

tative examples of these methodologies. 

∗ Corresponding author. 

E-mail addresses: teresag@eio.uva.es (T. González-Arteaga), rocioac@usal.es (R. 

de Andrés Calle), chiclana@dmu.ac.uk (F. Chiclana). 

Despite the productive research on this area, consensus mea- 

surement is still an open-ended research question because the 

methodology to use in each case is an essential component of 

the problem. Up to now most studies on consensus measurement 

have focused on the use of distance/similarity function based mea- 

sures and association measures, respectively. Among the distance 

functions used, and worth highlighting, are the Kemeny, Maha- 

lanobis, Mannhattan, Jacard, Dice and Cosine distance functions 

[1,4,6,17,19,29,31] . Association measures are less widely used than 

distance functions but it is also possible to find the use of some 

of them such as the Kendall’s coefficient, the Goodman-Kruskal’s 

index and the Spearman’s coefficient [18,24,35,44,58] . In this pa- 

per we focus on establishing a new consensus measure following 

the tradition of association measures. Our proposal is based on the 

original statistical correlation concept, the Pearson correlation coef- 

ficient . Therefore, this new measure is an alternative to the use of 

the aforementioned approaches. The Pearson correlation coefficient 

plays an important role in Statistics and Data Analysis and it is ex- 

tensively used as a measure of the degree of linear dependence 

between two variables. It is easy to interpret as well as invariant 

to certain changes in the variables [52,55,57] . Specifically, in this 

paper the notion of dependence among elements from correlation 
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coefficient as a measure of the cohesiveness between opinions is 

adopted. This seems natural because the measurement of consen- 

sus resembles the notion of a “measure of statistical correlation”, 

in the sense that the maximum value 1 captures the notion of 

unanimity as a perfect relationship among agents’ preferences (ex- 

perts’ preferences follow the same direction), while the minimum 

value −1 captures the notion of total disagreement (experts’ pref- 

erences present a negative relationship). Furthermore, the higher 

the cohesiveness between experts’ preferences, the more positive 

correlated the preferences are. Similarly, the lower the cohesive- 

ness between experts’ preferences, the more negative correlated 

the preferences are. 

This new consensus measure will be developed within assump- 

tions of experts’ opinions or preferences being expressed by means 

of reciprocal preference relations, a framework that is currently of 

interest to the research community in decision theory under un- 

certainty [7,27,28,45] . Under reciprocal preference relations, on the 

one hand and as it was mentioned above, the new proposed ap- 

proach inherits advantages of previous approaches based on tradi- 

tional distance/similarity and association measures. On the other 

hand, maximum consensus traditionally represents the case when 

experts provide the same preference intensities for each possible 

pair of alternatives. This, though, is not the only possible scenario 

of maximum consensus. Indeed, the proposal here put forward ad- 

dresses this issue satisfactorily because maximum possible cohe- 

siveness or consensus between experts’ opinions does not neces- 

sary imply that all reciprocal preference relations have to coincide, 

and therefore all experts do not necessary need to have the same 

preference intensities in all possible pairs of alternatives. It is suf- 

ficient, though, that experts rank alternatives in the same way. To 

support all these claims, a set of properties verified by the new 

proposed measure of consensus, the correlation consensus degree , 

are proved. These properties ensure the suitability of the correla- 

tion consensus degree. Furthermore, in order to emphasise novelty, 

two applications of the proposed methodology are also included. 

The first one is used to illustrate the computation process and dis- 

cussion of the results, while the second one covers a real life ap- 

plication that makes use of data from Clinical Decision-Making. 

The rest of the paper is organised as follows. Section 2 con- 

tains a brief overview of the different approaches in literature to 

measure group cohesiveness. The basic notation and preliminaries 

are presented in Section 3 . Section 4 provides the new approach 

to consensus measurement based on the Pearson correlation coef- 

ficient. In Section 5 , properties of the new correlation consensus 

degree are studied. Section 6 presents two practical applications of 

the proposed methodology. Finally, some concluding remarks and 

future research are presented in Section 7 . 

2. Consensus measurement in the literature 

A considerable amount of literature has been published on 

measuring and reaching consensus in group decision making prob- 

lems. Consensus measurement is a prominent and active research 

subject in several areas such as Social Choice Theory and Decision 

Making Theory. A brief overview of how this issue has been ad- 

dressed in recent literature from the aforementioned research ar- 

eas is provided. 

From the Social Choice Theory, the first serious discussions 

and analysis of consensus measurement from an Arrovian per- 

spective emerged with Bosch’s PhD Thesis [13] , where both ab- 

solute and intrinsic measures of consensus were proposed, anal- 

ysed and axiomatically characterised. From the point of view of 

considering consensus among a family of voters, McMorris and 

Powers [48] characterised consensus rules defined on hierarchies, 

while García-Lapresta and Pérez-Román [29] focused on how to 

measure consensus using complete preorders on alternatives and 

introduced a class of consensus measures based on seven well- 

known distances. Subsequently, Alcalde-Unzu and Vorstatz in 

[1] characterised a family of linear and additive consensus mea- 

sures, whereas in [2] new ways to measure the similarity of pref- 

erences in a group of individuals were suggested. Alcantud, de An- 

drés Calle and Cascón [3] studied and characterised a class of con- 

sensus measure, called referenced consensus measure , that permits 

to produce a numerical social evaluation from purely ordinal indi- 

vidual information. This measure has to be specified by means of a 

voting mechanism and a measure of agreement between profiles of 

orderings and individual orderings. Moreover, Alcantud, de Andrés 

Calle and Cascón in [5] contributed to the formal and computa- 

tional analysis of the aforementioned referenced consensus mea- 

sure by focusing on two relevant and specific cases: the Borda and 

the Copeland rules under a Kemeny-type measure. There are, how- 

ever, situations where each member of a population classifies a 

list of options as either acceptable or non-acceptable; either agree 

or disagree, etc., and therefore generating a dichotomous prefer- 

ence structure. Under this assumption, Alcantud, de Andrés Calle 

and Cascón [4] proposed the concept of approval consensus mea- 

sure and gave axiomatic characterisations of two generic classes 

of such approval consensus measures. Alcantud, de Andrés Calle 

and González-Arteaga [6] introduced the use of the Mahalanobis 

distance for the analysis of the cohesiveness of a group of com- 

plete preorders and proved that arbitrary codifications of the pref- 

erences are incompatible with their formulation although affine 

transformations permit to compare profiles on the basis of such 

proposal. Finally, it is worth mentioning a distance-based approach 

to measure the degree of consensus considering approval informa- 

tion about alternatives as well as the rankings of them suggested 

by Erdamar et al. in [25] . 

From the Decision Making Theory, a considerable amount of 

contributions have been made since the 1980’s. As such, it is worth 

mentioning the first preliminary work on reaching consensus and 

its measurements carried out by Kacprzyk and Fedrizzi [42] , in 

which the concept of “degree of consensus” in the sense of ex- 

pressing the degree to which “most of” the individuals in a group 

agree to “almost all of” the options. The point of departure of this 

paper being that the experts’ opinions are expressed by fuzzy pref- 

erence relations. Within this framework of preference representa- 

tion, different consensus measurement based on similarity mea- 

sures have been put forward by Herrera-Viedma, et al. [37] and 

Wu and Chiclana [63] for both complete and incomplete informa- 

tion environments. The case when experts’ opinions are expressed 

by means of linguistic assessments has been extensively studied 

and it is worth mentioning the works of Ben-Arieh and Chen [12] , 

Cabrerizo, Alonso and Herrera-Viedma [14] , García-Lapresta, Pérez- 

Román [30] , Herrera, Herrera-Viedma and Verdegay [36] , Herrera- 

Viedma, et al. [40] , Pérez-Asurmendi and Chiclana [53] and Wu, 

Chiclana and Herrera-Viedma [65] . Finally, models to reach consen- 

sus where experts assess their preferences using different prefer- 

ence representation structures (preference orderings, utility func- 

tions, multiplicative preference relations and fuzzy preference re- 

lations) have also been studied and proposed by Dong and Zhang 

[23] , Fedrizzi et al. [26] and Herrera-Viedma, Herrera and Chiclana 

[39] . The problem of measuring and reaching consensus with in- 

tuitionistic fuzzy preference relations and triangular fuzzy comple- 

mentary preference relations have also been covered in detail by 

Wu and Chiclana in [62,64] . 

To conclude, Table 1 summarises and classifies the approaches 

that have been reviewed in this Section. 

3. Preliminaries 

This Section briefly presents the main concepts needed to 

make the paper self-contained, and as such a short review of 
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Table 1 

Summary table of studies related to consensus measures. 

Author(s)/Year Framework Measurement methodology 

Consensus measures in Social Choice Theory 

Bosch [13] , 2005 Ordinal Inf. Based on different distances 

McMorris and Powers [48] , 2009 Ordinal Inf. 

García-Lapresta and Pérez-Román [29] , 2011 Ordinal Inf. 

Alcalde and Vorsatz [1] , 2013 Ordinal Inf. 

Alcantud, de Andrés Calle and Cascón [3] [5] , 2013 Ordinal Inf. 

Alcantud, de Andrés Calle and Cascón [4] , 2013 Dichotomous Inf. 

Alcantud, de Andrés Calle and González-Arteaga [6] , 2013 Ordinal Inf. 

Erdamar, et al. [25] , 2014 Ordinal Inf. 

Alcalde and Vorsatz [2] , 2015 Ordinal Inf. 

Consensus measures in decision making theory 

Kacprzyk and Fedrizzi [42] , 1988 Fuzzy Inf. Based on collective solution 

Fedrizzi et al. [26] , 2010 Fuzzy Inf. 

Herrera-Viedma et al. [37] , 2007 Incomplete Fuz. Inf. 

Herrera, Herrera-Viedma and Verdegay [36] , 1996 Linguistic Inf. 

Herrera-Viedma et al. [40] , 2005 Linguistic Inf. 

Cabrerizo, Alonso and Herrera-Viedma [14] , 2009 Linguistic Inf. 

Wu and Chiclana [62–64] , 2014 Incomplete Fuz. and Ling. Inf. 

García-Lapresta, Pérez-Román and Falcó [30] , 2015 Linguistic Inf. 

Wu, Chiclana and Herrera-Viedma [65] , 2015 Incomplete Linguistic Inf. 

Herrera-Viedma, Herrera and Chiclana [39] , 2002 Different Inf. Based on individual solution 

Ben-Arieh and Chen [12] , 2006 Linguistic Inf. 

Dong and Zhang [23] , 2014 Different Inf. 

the terminology and the concept of fuzzy binary relation are pre- 

sented. The interested reader is advice to consult the following [7–

9,27,28,45,50,60] . 

Definition 1. Let X be a non empty set. A fuzzy binary relation P on 

X is a fuzzy subset of the Cartesian product X × X characterised by 

its membership function μP : X × X −→ [0 , 1] , where μP (x 1 , x 2 ) = 

p i j represents the strength of the relation between x 1 and x 2 . 

Henceforth, X is a finite set X = { x 1 . . . , x n } (n > 2) , whose el- 

ements will be referred to as alternatives. Abusing notation, on 

occasions alternative x i will be represented simply as i for conve- 

nience. 

Definition 2. A reciprocal preference relation on X is a fuzzy bi- 

nary relation P where μP (x i , x j ) = p i j ∈ [0 , 1] represents the par- 

tial preference intensity of element i over j and that verifies the 

following property: p i j + p ji = 1 ∀ x i , x j ∈ X . 

In order to realise the meaning of a reciprocal preference rela- 

tion, we suppose the following common situation: an expert com- 

pares two alternatives x i and x j . In this specific context, the expert 

not only establishes that the alternative x i is preferred to the alter- 

native x j , but also shows her/his intensity of preference between 

them by means of the value p ij . So, the higher p ij , the higher the 

preference intensity of alternative x i over alternative x j . Thus, 0 < 

p ij < 0.5 would indicate that x j is preferred to x i . If p i j = 0 . 5 then 

alternatives x i and x j are equally preferred. When 0.5 < p ij < 1, x i 
is preferred to x j . Moreover, p i j = 0 (resp. p i j = 1 ) indicates that x j 
(resp. x i ) is absolutely preferred to x i (resp. x j ). 

Let P be an n × n matrix that contains all the partial intensity 

degrees of a reciprocal preference relation on the set X : 

P = 

⎛ 

⎜ ⎜ ⎝ 

p 11 p 12 · · · p 1 n 
p 21 p 22 · · · p 2 n 

. . . 
. . . 

. . . 
. . . 

p n 1 p n 2 · · · p nn 

⎞ 

⎟ ⎟ ⎠ 

, 

verifying 0 ≤ p ij ≤ 1; p i j + p ji = 1 for i, j ∈ { 1 , . . . , n } . The set of 

all these matrices n × n is denoted by P n ×n . Here it is also no- 

ticed that a reciprocal preference relation can also be mathemati- 

cally represented by means of a vector, namely the essential vector 

of preference intensities . 

Definition 3. The essential vector of preference intensities, V P , of 

a reciprocal preference relation P = (p i j ) n ×n ∈ P n ×n is the vector 

made up with the 
n (n − 1) 

2 
elements above its main diagonal: 

V P = 

(
p 12 , p 13 , . . . , p 1 n , p 23 , . . . , p 2 n , . . . , p (n −1) n 

)
= 

(
v 1 , . . . , v r , . . . , v n (n −1) / 2 

)
. 

The reciprocity property of reciprocal preference relations al- 

lows the alternative definition of the essential vector of prefer- 

ence intensities of a reciprocal preference relation as the vector 

composed of the preference values below the main diagonal, V P t = 

(p 21 , p 31 , . . . , p n 1 , p 32 , . . . , p n 2 , . . . , p n (n −1) ) . 

4. A novel measurement of consensus based on the Pearson 

correlation coefficient 

Based on the concept of correlation, specifically the Pearson 

correlation coefficient, this section introduces a new consensus 

measure for group decision making problems under reciprocal 

preference relations. First, we recall such a correlation coefficient 

and its properties as necessary to define the new correlation con- 

sensus degree and associated properties. 

4.1. Pearson correlation coefficient 

The measurement of the relationship strength among variables 

is an important issue in Statistical Analysis, and the Pearson corre- 

lation coefficient is a traditional tool used for that purpose [52,55] . 

Definition 4. Given a sample of n pairs of real values 

{ (x 1 , y 1 ) , . . . , (x n , y n ) } , the Pearson correlation coefficient of the 

two n -dimensional vectors x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) , 

cor ( x, y ), is computed as 

cor(x , y ) = 

∑ n 
i =1 (x i − x )(y i − y ) √ ∑ n 

i =1 (x i − x ) 2 
√ ∑ n 

i =1 (y i − y ) 2 

where x = 

1 
n 

∑ n 
i =1 x i and y = 

1 
n 

∑ n 
i =1 y i are the arithmetic means of 

x and y , respectively. 

The standard interpretation of the Pearson correlation coeffi- 

cient states that positive coefficient values point out a positive 
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tendency relationship between x and y i.e., x and y increase (de- 

crease) in the same direction. Negative correlation coefficient val- 

ues point out towards a reverse direction between x and y . In ad- 

dition, the nearer the absolute correlation coefficient value is to 1, 

the stronger and more linear the tendency is. The Pearson correla- 

tion coefficient verifies the following well-known properties [57] : 

1. cor(x , y ) ∈ [ −1 , 1] ∀ x , y ∈ R 

n . 

2. cor(x , y ) = cor(y , x ) ∀ x , y ∈ R 

n . 

3. cor(x , x ) = 1 ∀ x ∈ R 

n . 

4. If cor(x , y ) = 1 then there exists a perfect positive linear cor- 

relation between x and y , i.e. ∃ a ∈ R , b ∈ R 

+ : y = a · 1 + b · x 

where 1 = (1 , . . . , 1) is a vector of n ones. Respectively, if 

cor(x , y ) = −1 there exists a perfect negative linear correla- 

tion between x and y . 

5. Let x ′ = a · 1 + b · x and y ′ = c · 1 + d · y be two vectors with 

a, b, c, d ∈ R , b and d non zero and of equal sign (both posi- 

tive or both negative). Then, cor( x ′ , y ′ ) = cor(x , y ) . 

4.2. A new consensus measure: Correlation consensus degree 

From the Social Choice Theory perspective, the measurement 

of the degree of agreement in a group is associated the range [0, 

1], with 0 representing total lack of agreement and 1 unanimous 

agreement [1,4,13] . Also, as aforementioned in Section 1 , the mea- 

surement of the degree of cohesiveness in a group has been based 

on the notion of distance or similarity between opinions or pref- 

erences of the members of such group. In this paper, a new way 

to measure the degree of consensus in a group based on the Pear- 

son correlation coefficient, the correlation consensus degree ( C C D ), 

is proposed within the framework of opinions on a set of elements, 

alternatives or options being represented by reciprocal preference 

relations. 

A set of agents or experts will be represented by a finite sub- 

set E = { 1 , 2 , ..., m } of natural numbers, m ≥ 2. Assume that the m 

experts provide their pairwise preferences on a finite set of n al- 

ternatives, n ≥ 3, X = { x 1 , ..., x n } using fuzzy preference relations 

{ P (1) , . . . , P (m ) } . As per Definition 3 , the essential vector of prefer- 

ence intensities associated to P ( k ) will be denoted by V P (k ) . 

Definition 5. The correlation consensus degree , C C D , for reciprocal 

preference relations is a mapping C C D : P n ×n × P n ×n → [0 , 1] that 

associates a pair of reciprocal preference relations ( P (1) , P (2) ) the 

following [0,1]-value: 

C C D (P (1) , P (2) ) = 

1 

2 

( 1 + cor(V P (1) , V P (2) ) ) . (1) 

Given P (1) , P (2) ∈ P n ×n , the elaborated expression of C C D (P (1) , 

P (2) ) is 

C C D (P (1) , P (2) ) 

= 

1 

2 

⎛ 

⎝ 1 + 

∑ n (n −1) / 2 
r=1 

(
v (1) 

r −V P (1) 

)(
v (2) 

r −V P (2) 

)
√ ∑ n (n −1) / 2 

r=1 

(
v (1) 

r −V P (1) 

)2 
√ ∑ n (n −1) / 2 

r=1 

(
v (2) 

r −V P (2) 

)2 

⎞ 

⎠ 

where V P (1) = 

1 
n (n −1) / 2 

∑ n (n −1) / 2 
r=1 

v (1) 
r and V P (2) = 

1 
n (n −1) / 2 ∑ n (n −1) / 2 

r=1 
v (2) 

r . 1 

Notice that the higher the value of C C D (P (1) , P (2) ) , the more 

positive correlated the reciprocal preferences of P (1) and P (2) 

are. The maximum possible value C C D (P (1) , P (2) ) = 1 implies that 

1 V P (i ) summarizes the general level of uncertainty of the expert i on the set of 

alternatives. 

cor(V P (1) , V P (2) ) = 1 which, contrary to previous consensus mea- 

sures based on distance/similarity functions, does not necessar- 

ily implies that both reciprocal preference relations coincide. Con- 

sequently, C C D could be 1 even in cases when experts pro- 

vide different preferences, although positive linearly correlated. 

On the other hand, the lower the value of C C D (P (1) , P (2) ) , the 

more negative correlated the reciprocal preference intensities are, 

with C C D (P (1) , P (2) ) = 0 representing the case when preferences 

are negative linearly correlated. The following proposition reflects 

these limit cases: 

Proposition 1. Let P (1) , P (2) ∈ P n ×n be two reciprocal preference re- 

lation matrices. Then C C D (P (1) , P (2) ) = 1 (resp. C C D (P (1) , P (2) ) = 0 ) 

if and only if ∃ a ∈ R , b > 0 (resp. b < 0 ) such that: p (2) 
i j 

= a + b ·
p (1) 

i j 
∀ i < j; p (2) 

i j 
= (1 − a − b) + b · p (1) 

i j 
∀ i > j. 

Proof. Using Eq. (1) , we have that C C D (P (1) , P (2) ) = 1 if and only 

if cor(V P (1) , V P (2) ) = 1 . Property 4 of the Pearson correlation coef- 

ficient ( Section 4.1 ) implies that ∃ a ∈ R , b ∈ R 

+ such that V P (2) = 

a · 1 + b · V P (1) , being 1 = (1 , . . . , 1) a vector of ones with suitable 

dimension, in this cases n (n − 1) / 2 , i.e.: 

p (2) 
i j 

= a + b · p (1) 
i j 

∀ i < j. 

When j < i , reciprocity of preferences means that 

p (2) 
i j 

= 1 − p (2) 
ji 

= 1 − (a + b · p (1) 
ji 

) 

= 1 − (a + b · (1 − p (1) 
i j 

)) = (1 − a − b) + b · p (1) 
i j 

. 

The proof for the case when C C D (P (1) , P (2) ) = 0 is obtained 

accordingly. �

Notice that if the set of alternatives is small, the experts can 

easily rank the alternatives and the possibility that the experts do 

it in a similar way (or opposite way) is high. Then, in this case the 

absolute value of the correlation coefficient tend to be close to 1. 

Meanwhile, when the set of alternatives is large, the experts may 

find it difficult to rank them (see [49] ) and the possibility that the 

experts rank the alternatives in a similar way (or opposite way) 

is low. Then, in this case it is easy that the absolute value of the 

correlation coefficient becomes small. 

The following proposition provides the sufficient condition for 

the correlation consensus degree to coincide for different pairs of 

reciprocal preference relations. 

Proposition 2. Let P (1) , P (2) ∈ P n ×n be reciprocal preference relation 

matrices such that C C D (P (1) , P (2) ) = 1 , then 

C C D (P, P (1) ) = C C D (P, P (2) ) ∀ P ∈ P n ×n . 

Proof. By Proposition 1 , ∃ a ∈ R and b > 0 such that V P (2) = a · 1 + 

b · V P (1) . Applying Property 5 of the Pearson correlation coefficient 

(see Subsection 4.1 ) we have that cor(V P , V P (1) ) = cor(V P , V P (2) ) ∀ P ∈ 

P n ×n and by Definition 5 it is equivalent to C C D (P, P (1) ) = 

C C D (P, P (2) ) ∀ P ∈ P n ×n . �

The measurement of the degree of agreement among the pref- 

erences expressed by two or more experts can be captured by 

using a summary measure like the mean of all possible corre- 

lation consensus degrees between all different pairs of experts’ 

reciprocal preference relations. The use of aggregation functions 

to merge inputs into a single output has been extensively anal- 

ysed in literature [11,28,33,43] . In the Decision Making context, 

the use of aggregation functions to derive the degree of agree- 

ment among a group of experts has been justified (see for example 

[11,29,31,43,47] ). Recall that the main aim of considering aggrega- 

tion functions is to produce an overall output that can be con- 

sidered representative of the aggregated values by incorporating 
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desirable properties. The arithmetic mean has been widely inves- 

tigated and it is considered the most common central tendency 

aggregation function. All these considerations are used to moti- 

vate the definition of the new correlation group consensus mea- 

sure, CD , within a reciprocal preference relation framework. 

Definition 6. Let E be a group of m experts with associated fuzzy 

preference relation relations P (1) , . . . , , P (m ) ∈ P n ×n on a set of al- 

ternatives X . The group consensus degree among the set of experts 

is 

CD (E ) = 

2 

m (m − 1) 

m −1 ∑ 

k =1 

m ∑ 

l= k +1 

C C D ( P (k ) , P (l) ) . 

4.3. Consistency under maximum correlation consensus degree 

Given a reciprocal preference relation on a set of alter- 

natives, the concept of non-dominance degree introduced by 

Orlovsky [51] has been extensively used to rank the alternatives 

[10,23,38,61,63,65,66] . In the following, and in order to improve the 

understanding of the proposed correlation consensus degree, the 

consistency of the correlation consensus degree with Orlovsky’s 

non-dominance degree is proved. Specifically, it is proved that 

when two reciprocal preference relations have a CCD equal to 1 

then their Orlovsky’s non-dominance degree orderings of the set 

of alternatives coincide. First, the concept of non-dominance de- 

gree is provided. 

Given a reciprocal preference relation on a finite set of al- 

ternatives X , P = (p i j ) n ×n ∈ P n ×n , when p ji − p i j > 0 then alter- 

native x i is dominated by alternative x j . Formally, it can be 

stated that alternative x i is dominated by alternative x j at de- 

gree d(x i , x j ) = max { p ji − p i j , 0 } . Thus, the value 1 − d(x i , x j ) = 1 −
max { p ji − p i j , 0 } represents the degree of non-dominance of alter- 

native x i by alternative x j . The degree up to which x i is not domi- 

nated by any of the elements of X is known as the non-dominance 

degree of alternative x i . This is summarised in the following defi- 

nition. 

Definition 7. Let P = (p i j ) n ×n ∈ P n ×n be a reciprocal preference re- 

lation on X . The non-dominance degree is a mapping μND : X −→ 

[0 , 1] such that 

μND (x i ) = min 

j : j 
 = i 

{
1 − d(x i , x j ) 

}
, 

where d(x i , x j ) = max { p ji − p i j , 0 } . 
The aforementioned non-dominance degree can be used to pro- 

vide a total ordering of alternatives by means of the following 

rule: 

x i � x j ⇔ μND (x i ) ≥ μND (x j ) . 

Notice that p i j − p ji = −(p ji − p i j ) , and therefore to compute 

d(x j , x i ) = max { p ji − p i j , 0 } when j > i , we use d(x j , x i ) = 

max 
{
−(p ji − p i j ) , 0 

}
. Now we are in disposition of introduce the 

following result. 

Proposition 3. Let P (1) , P (2) ∈ P n ×n be two reciprocal preference re- 

lation matrices such that C C D (P (1) , P (2) ) = 1 and 2 a + b = 1 . The 

non-dominance based orderings of the set of alternatives derived from 

both reciprocal preference relation matrices are identical. 

Proof. Let P (1) , P (2) ∈ P n ×n such that C C D (P (1) , P (2) ) = 1 . By 

Proposition 1 , ∃ a ∈ R and b > 0 such that p (2) 
i j 

= a + b · p (1) 
i j 

∀ i < 

j and p (2) 
i j 

= 1 − p (2) 
ji 

= 1 − (a + b · p (1) 
ji 

) = 1 − (a + b · (1 − p (1) 
i j 

)) = 

(1 − a − b) + b · p (1) 
i j 

∀ i < j. 

1. Notice that: 

(a) If i < j then 

p (2) 
ji 

− p (2) 
i j 

= [(1 − a − b) + b · p (1) 
ji 

] − [ a + b · p (1) 
i j 

] 

= (1 − 2 a − b) + b · (p (1) 
ji 

− p (1) 
i j 

) 

= b · (p (1) 
ji 

− p (1) 
i j 

) . 

(b) If i > j then 

p (2) 
ji 

− p (2) 
i j 

= [ a + b · p (1) 
ji 

] − [(1 − a − b) + b · p (1) 
i j 

] 

= −(1 − 2 a − b) + b · (p (1) 
ji 

− p (1) 
i j 

) 

= b · (p (1) 
i j 

− p (1) 
ji 

) . 

Thus: 

∀ i, j : p (2) 
ji 

− p (2) 
i j 

= b · (p (1) 
i j 

− p (1) 
ji 

) . 

2. Let us denote by μND (1) (x i ) and μND (2) (x i ) the non- 

dominance choice degree associated to alternative x i ob- 

tained from P (1) and P (2) , respectively. It is: 

μND (2) (x i ) = min 

x j ∈ X 

{
1 − max { p (2) 

ji 
− p (2) 

i j 
, 0 } }. 

Because b > 0 we have that p (2) 
ji 

− p (2) 
i j 

and p (1) 
i j 

− p (1) 
ji 

are 

both negative, both positive or both equal to zero. Therefore, 

it is: 

max { p (2) 
ji 

− p (2) 
i j 

, 0 } = max { b · (p (1) 
i j 

− p (1) 
ji 

) , 0 } 
= b · max { p (1) 

ji 
− p (1) 

i j 
, 0 } . (2) 

Let l be such that 

μND (1) (x i ) = min 

j : j 
 = i 

{
1 − max { p (1) 

ji 
− p (1) 

i j 
, 0 } }

= 1 − max { p (1) 
li 

− p (1) 
il 

, 0 } . 
The following inequalities yield: 

1 − max { p (1) 
li 

− p (1) 
il 

, 0 } ≤ 1 − max { p (1) 
ji 

− p (1) 
i j 

, 0 } 
for j = 1 , . . . , n. 

They can be re-written equivalently as 

max { p (1) 
li 

− p (1) 
il 

, 0 } ≥ max { p (1) 
ji 

− p (1) 
i j 

, 0 } for j = 1 , . . . , n. 

Consequently, 

1 − b · max { p (1) 
li 

− p (1) 
il 

, 0 } ≤ 1 − b · max { p (1) 
ji 

− p (1) 
i j 

, 0 } 
for j = 1 , . . . , n. 

Relation (2) implies that 

μND (2) (x i ) = min 

j : j 
 = i 

{
1 − max { p (2) 

ji 
− p (2) 

i j 
, 0 } }

= 1 − max { p (2) 
li 

− p (2) 
il 

, 0 } . (3) 

3. Finally, let us assume now that 

μND (1) (x i ) ≤ μND (1) (x k ) . 

Then there exist l and s such that 

1 − max { p (1) 
li 

− p (1) 
il 

, 0 } = μND (1) (x i ) ≤ μND (1) (x k ) 

= 1 − max { p (1) 
sk 

− p (1) 
sk 

, 0 } 
The following inequality derives from it: 

1 − b · max { p (1) 
li 

− p (1) 
il 

, 0 } ≤ 1 − b · max { p (1) 
sk 

− p (1) 
sk 

, 0 } . 
Applying again relation (2) and also expression (3) , it can be 

concluded that 

μND (1) (x i ) ≤ μND (1) (x k ) . 

�
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5. Formal properties of the new consensus measure 

As shown in Subsection 4.2 , given a set of m experts E , the fol- 

lowing correlation consensus degree matrix can be computed 

C C D = ( C C D i j ) 

with C C D i j = C C D (P (i ) , P ( j) ) . The following important properties 

are verified: 

Reflexivity : C C D ii = 1 ∀ i. 

The proof is immediate from the properties of the Pearson 

correlation coefficient. This property rules out that the cor- 

relation consensus degree is a distance function, which will 

be pointed out at the end of this section. 

Selfconsensus : C C D i j ≤ C C D ii ∀ i, j. 

In other words, the correlation consensus degree between 

one expert and herself/himself is not lower than the corre- 

lation consensus degree with another expert. This is obvious 

from Definition 5 and the reflexibity property above. 

Reciprocity : It was mentioned in Definition 3 that the essential 

vector of preference intensities of a reciprocal preference re- 

lation may also be defined as the vector with elements the 

preference values below the main diagonal of the reciprocal 

preference relation. Denoting by C C D 

t 
i j 

the corr elation con- 

sensus degree between the reciprocal preference relations 

P ( i ) and P ( j ) using essential vector of preference intensities 

below their main diagonal, respectively, we have that: 

C C D 

t 
i j = C C D i j for i, j = 1 , . . . , m. 

Indeed, because P ( i ) and P ( j ) are reciprocal then we 

have that V 
P (i ) t 

= 1 − V P (i ) and V 
P ( j) t 

= 1 − V P ( j) , respectively. 

Applying Property 4 of the Pearson correlation coeffi- 

cient ( Subsection 4.1 ), it is true that cor(V 
P (i ) t 

, V 
P ( j) t 

) = 

cor(V P (i ) , V P ( j) ) , and consequently it is C C D 

t 
i j 

= C C D i j . 

Symmetry : C C D i j = C C D ji f or i, j = 1 , . . . , n. The proof is 

straightforward from the symmetry property of the Pearson 

correlation coefficient. 

Transitivity under the maximum : If C C D i j = 1 and C C D jk = 1 

then C C D ik = 1 . 

In other words, when an expert has maximum correlation 

consensus degree with two different experts, then these two 

experts have also maximum correlation consensus degree. 

Indeed, from Proposition 1 we have that V P ( j) = a · 1 + b · V P (i ) 

for some a ∈ R and b > 0 and V P (k ) = a ′ · 1 + b ′ · V P ( j) for 

some a ′ ∈ R and b ′ > 0. Consequently, it is: V P (k ) = a ′ · 1 + 

b ′ · (a · 1 + b · V P (i ) ) = a ′ · 1 + b ′ a · 1 + b ′ b · V P (i ) , that is, V P (k ) = 

a ′′ · 1 + b ′′ · V P (i ) and because b ′ ′ > 0 it is C C D ik = 1 . 

Reversibility: The complementary reciprocal preference relation 

of a given reciprocal preference relation P , P , is defined as 

follows: P = (1) n ×n − P . It is: 

C C D (P, P ) = 0 . 

It is obvious that V 
P 

= 1 − V P and therefore applying 

Proposition 1 it is C C D (P, P ) = 0 . 

The correlation consensus degree, C C D , is neither a distance 

function, d , nor a similarity function, s . Firstly, C C D does not verify 

the property returning a zero value when an element is compared 

against itself, i.e. it does not verify d(x, x ) = 0 [22] . Indeed, reflex- 

ivity property implies that C C D (P, P ) = 1 rather than C C D (P, P ) = 0 . 

Secondly, a requirement for a similarity function [16,22] is that the 

similarity between two objects takes value 1 if and only if the two 

objects are equal, i.e. s (x, y ) = 1 iff x = y . This is not the case for 

C C D as two reciprocal preference relations do not necessarily need 

to coincide to have maximum correlation consensus degree, as the 

Illustrative Example 6.1 shows next. 

6. Practical applications and discussion 

In this Section we show the flexibility and applicability of our 

proposal. After discussing the basis of the measure we exemplify 

its use by means of two examples. The first one is an illustrative 

example that shows the various steps in our procedure and the in- 

terpretation of the results. The second one is a real example based 

on patients’ health preferences. 

6.1. An illustrative example 

In this illustrative example we establish the following problem. 

We consider a set X of four alternatives X = { x 1 , x 2 , x 3 , x 4 } and a 

set of four agents or experts E = { 1 , 2 , 3 , 4 } , who provide the fol- 

lowing reciprocal preference relations on X : 

P (1) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 10 0 . 20 0 . 30 

0 . 90 0 . 50 0 . 35 0 . 40 

0 . 80 0 . 65 0 . 50 0 . 45 

0 . 70 0 . 60 0 . 65 0 . 50 

⎞ 

⎟ ⎠ 

P (2) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 15 0 . 25 0 . 35 

0 . 85 0 . 50 0 . 40 0 . 45 

0 . 75 0 . 60 0 . 50 0 . 50 

0 . 65 0 . 55 0 . 50 0 . 50 

⎞ 

⎟ ⎠ 

P (3) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 75 0 . 55 0 . 35 

0 . 25 0 . 50 0 . 25 0 . 15 

0 . 45 0 . 75 0 . 50 0 . 05 

0 . 65 0 . 80 0 . 95 0 . 50 

⎞ 

⎟ ⎠ 

P (4) = 

⎛ 

⎜ ⎜ ⎝ 

0 . 50 0 . 40 0 . 20 0 . 60 

0 . 60 0 . 50 0 . 40 0 . 70 

0 . 80 0 . 60 0 . 50 0 . 80 

0 . 40 0 . 30 0 . 10 0 . 50 

⎞ 

⎟ ⎟ ⎠ 

Once experts’ preference matrices have been described we pro- 

ceed to the computations. 

Selection of essential vectors of intensities of preferences. 

For P (1) the elements above of the main diagonal are: 

P (1) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 10 0 . 20 0 . 30 

0 . 90 0 . 50 0 . 35 0 . 40 

0 . 80 0 . 65 0 . 50 0 . 45 

0 . 70 0 . 60 0 . 65 0 . 50 

⎞ 

⎟ ⎠ 

Thus, it is 

V P (1) = (0 . 10 , 0 . 20 , 0 . 30 , 0 . 35 , 0 . 40 , 0 . 45) . 

Similarly, the following essential vectors of intensities of 

preferences obtained: 

V P (2) = (0 . 15 , 0 . 25 , 0 . 35 , 0 . 40 , 0 . 45 , 0 . 50) , 
V P (3) = (0 . 75 , 0 . 55 , 0 . 35 , 0 . 25 , 0 . 15 , 0 . 05) , 
V P (4) = (0 . 40 , 0 . 20 , 0 . 60 , 0 . 40 , 0 . 70 , 0 . 80) . 

Computation of the correlation consensus degree matrix. The 

correlation consensus degree of all different pairs of essen- 

tial vectors are computed For example, for correlation coef- 

ficient between V P (1) and V P (2) is: 

cor(V P (1) , V P (2) ) = 

0 . 085 √ 

0 . 085 · √ 

0 . 085 

= 1 . 

Using Eq. (1) , the correlation consensus degree between P (1) 

and P (2) would be C C D (P (1) , P (2) ) = 1 . 

The correlation consensus degree matrix in this case is: 

C C D = 

⎛ 

⎜ ⎝ 

1 1 0 0 . 879 

1 1 0 0 . 897 

0 0 1 0 . 121 

0 . 879 0 . 897 0 . 121 1 

⎞ 

⎟ ⎠ 
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Fig. 1. Plots of essential vectors of intensities of preferences ( Subsection 6.1 ). Top left: case where C C D (P (1) , P (2) ) = 1 . Top right: case where C C D (P (1) , P (3) ) = 0 . On the 

bottom plots, cases where C C D t akes other non-extreme values. 

Table 2 

Control Preference Scale (CPS) [21] . 

Alternatives Description 

x 1 I prefer to make the final selection about which treatment I receive 

x 2 I prefer to make the final selection of my treatment after seriously considering my doctor’s opinion 

x 3 I prefer that my doctor and I share responsibility for deciding which treatment is best for me 

x 4 I prefer that my doctor makes the final decision about which treatment will be used, but seriously considers my opinion 

x 5 I prefer to leave all decisions regarding my treatment to my doctor 

Computation of the group consensus degree. Finally, the aver- 

age of all correlation consensus degrees is computed to de- 

rive the group consensus degree: 

CD (E ) = 

2 

12 

· (1 + 0 + 0 . 879 + 0 + 0 . 879 + 0 . 121) 

= 

2 

12 

· 2 . 879 = 0 . 480 

On discussion, it is worth pointing out the following interesting 

issues arising from the given example: 

• There is one case when the correlation consensus degree be- 

tween two experts is maximum, i.e is equal to 1, which hap- 

pens for the pair of experts e 1 and e 2 ( C C D (P (1) , P (2) ) = 1 ). As 

previously mentioned and this example illustrates, this does not 

necessarily imply that both experts have the same preferences 

on all the possible pairs of alternatives, but that their prefer- 

ences are positive linearly correlated as the top left scatter plot 

of the essential vectors V P (2) versus V P (1) in Fig. 1 shows. Indeed, 

the higher the value of an element in V P (1) , the higher the cor- 

responding element value of V P (2) . So, when one of the expert 

e 1 or e 2 increases her/his preference valuations, the other ex- 

pert does the same and in a perfect linear way. Hence, there 

29
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Fig. 2. Questionnaire based on CPS. 

Table 3 

Patients’ essential vector of preference intensities. OCD: Obsessive compulsive disorder. p ij is the intensity 

of preference of alternative i versus alternative j . 

Diagnoses Patient Intensities of preferences 

p 12 p 13 p 14 p 15 p 23 p 24 p 25 p 34 p 35 p 45 

Schizophrenia 1 0 .3 0 .2 0 .1 0 .1 0 .4 0 .3 0 .1 0 .5 0 .1 0 .1 

2 0 .4 0 .3 0 .2 0 .1 0 .5 0 .4 0 .1 0 .5 0 .1 0 .1 

3 0 .2 0 .2 0 .2 0 .1 0 .3 0 .2 0 .1 0 .3 0 .1 0 .1 

4 0 .6 1 .0 0 .8 0 .7 0 .9 0 .6 0 .7 0 .3 0 .4 0 .6 

Bipolar disorder 5 0 .6 1 .0 0 .8 0 .7 0 .9 0 .6 0 .7 0 .3 0 .4 0 .6 

6 0 .8 1 .0 0 .9 0 .8 1 .0 0 .8 0 .8 0 .2 0 .3 0 .5 

7 0 .1 0 .1 0 .1 0 .5 0 .5 0 .5 0 .9 0 .5 0 .9 0 .9 

8 0 .6 1 .0 0 .9 0 .7 0 .9 0 .6 0 .8 0 .3 0 .2 0 .6 

OCD 9 0 .1 0 .1 0 .1 0 .5 0 .5 0 .5 0 .9 0 .5 0 .9 0 .9 

10 0 .2 0 .1 0 .3 0 .5 0 .5 0 .5 0 .8 0 .5 0 .7 0 .9 

11 0 .1 0 .2 0 .2 0 .5 0 .6 0 .4 0 .9 0 .5 0 .8 0 .9 

12 0 .1 0 .2 0 .2 0 .5 0 .5 0 .4 0 .8 0 .5 0 .9 0 .9 

exists a maximum concordance between these two experts’ re- 

ciprocal preference relations. 
• Regarding experts e 1 and e 3 , it is noted that cor(V P (1) , V P (3) ) = 

−1 and consequently C C D (P (1) , P (3) ) = 0 . Thus, the disagree- 

ment is maximum. Indeed, when one expert increases his/her 

preferences the other expert does the opposite and in a perfect 

linear way. This is reflected in the top right scatter plot of the 

essential vectors V P (3) versus V P (1) in Fig. 1 . 
• This example also shows a particular instance of 

Propositions 1 and 2 where C C D (P (1) , P (2) ) = 1 . Indeed, 

Proposition 1 states that it is V P (2) = a · 1 + b · V P (1) , which in 

this case results in a = 0 . 05 , b = 1 . The effect is that every 

essential pairwise intensity of preference is shifted to a new 

value using a constant amount. The preference relationship 

between one alternative and the rest of alternatives is essen- 

tially the same both experts, and consequently there is no 

real difference in the degree of agreement between for both 

experts when considering the set of alternatives as a whole. 

Indeed, it is worth remarking that the difference of prefer- 

ences for both experts: p (1) 
13 

− p (1) 
12 

= 0 . 20 − 0 . 10 = 0 . 10 and 

p (2) 
13 

− p (2) 
12 

= 0 . 25 − 0 . 15 = 0 . 10 ; p (1) 
34 

− p (1) 
23 

= 0 . 45 − 0 . 40 = 

0 . 05 and p (2) 
34 

− p (2) 
23 

= 0 . 50 − 0 . 45 = 0 . 05 , etc. are the same 

for all pairs of alternatives compared. Thus, although the fuzzy 

relations P (1) and P (2) are not coincident, they are in the same 

tendency vein and they would lead to the same total ordering 

of the alternatives when the non-dominace degree is applied. 

As for Proposition 2 , it is also true that the correlation consen- 

sus degrees between expert e 1 and experts e 3 and e 4 are the 

same as the correlation consensus degrees between expert e 2 
and experts e 3 and e 4 , respectively. 

6.2. A real application: Concordance among patients’ preferences 

Recent developments in Clinical Decision-Making have led to a 

new interest on patient autonomy and their active involvement in 

decision making. Based on empirical evidences it has been tested 

that patients’ choices related to take responsibility about treatment 

decisions differ among patients. Among others, age, sex, and type 

of clinical problem have been described as factors that can influ- 

ence patients’ choice. Due to these fats, it could be interesting to 

understand better patients’ preferences in Clinical decision-making 

and the factors that could influence them (see e.g., De las Cuevas, 

Peñate and de Rivera [20] , Robison and Thomson [54] , Rodriguez 

et al. [56] and Tang et al. [59] among others). Most studies about 

patients’ decision making preferences have been carried out by 

means of the use of the Control Preference Scale (CPS) introduced by 

Degner [21] . The CPS scale has been validated like an instrument 

clinically relevant to measure patients’ preference roles in health 
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Table 4 

Correlation consensus degree ( C C D ) between pairs of patients. 

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) 

P (1) 1 .00 0 .98 0 .95 0 .97 0 .39 0 .30 0 .43 0 .41 0 .36 0 .35 0 .36 0 .33 

P (2) 1 .00 0 .97 0 .99 0 .50 0 .39 0 .55 0 .51 0 .26 0 .26 0 .26 0 .23 

P (3) 1 .00 0 .93 0 .54 0 .42 0 .56 0 .56 0 .24 0 .25 0 .26 0 .23 

P (4) 1 .00 0 .47 0 .39 0 .53 0 .48 0 .32 0 .30 0 .30 0 .28 

P (5) 1 .00 0 .95 0 .96 0 .98 0 .28 0 .28 0 .34 0 .29 

P (6) 1 .00 0 .96 0 .95 0 .33 0 .35 0 .38 0 .33 

P (7) 1 .00 0 .96 0 .23 0 .25 0 .28 0 .22 

P (8) 1 .00 0 .26 0 .30 0 .33 0 .27 

P (9) 1 .00 0 .98 0 .99 0 .99 

P (10) 1 .00 0 .98 0 .97 

P (11) 1 .00 0 .99 

P (12) 1 .00 
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Fig. 3. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia ( Subsection 6.2 ) and the best adjusted line. 

care decision making. This scale gathers the level of control that 

patients prefer to have in their own medical decisions by selecting 

one of five possible alternatives, given in Table 2 , when questioned 

“What is the statement that best describe your preferred role in 

decision making?”. 

In order to put in practice our proposal for measuring the co- 

hesiveness among a group of agents or experts, the field experi- 

ment carried out by De las Cuevas, Peñate and Rivera in [20] was 

considered. In this study, the authors examined the concordance 

among psychiatric patients’ preferences by means of a statistical 

approach based on a sample of 507 patients from the Community 

Mental Health Services on Tenerife Island, Spain. Patients were di- 

agnosed by the psychiatrists using the International Classification 

of Diseases and the CPS scale was used to gather patients’ pref- 

erences. For our study, and to facilitate the process and the cal- 

culations, 12 patients were considered with 4 of them were diag- 

nosed with schizophrenia , another 4 with bipolar disorder and other 

4 with obsessive compulsive disorder (OCD). Each patient filled out a 

questionnaire based on the CPS scale adapted to our proposal (see 

Fig. 2 ). Patients had to mark their degree of preference between 

pairs of options described in the CPS scale ( Table 2 above), which 

are considered as the alternatives in our preference framework. 

Once patients’ preferences were gathered ( Table 3 ) we pro- 

ceed to the apply computation process described in the previous 

Illustrative Example 6.1 . Table 4 shows the correlation consensus 

degree between all pairs of patients (only the values i ≤ j are 

shown). Finally, the global consensus degree among all studied 

patients, CD ( patients ) , which measures the coherence among pa- 

tients’ preferences was: 

CD ( patients ) = 0 . 518 

Taking into account the meaning of this measure as previously dis- 

cussed, we can deduce that the low degree of coherence among 

all patients’ preferences indicates heterogeneity among them. This 

fact could well respond to the combination of all patients’ prefer- 

ences without considering their diagnosed disorder. Indeed, when 

the consensus degree is computed within each collective of pa- 

tients, i.e. by distinguishing patients according to their disorder, 

the following values are obtained: 

• For patients suffering from schizophrenia: CD ( schizophrenia ) = 

0 . 963 
• For patients suffering from bipolar disorder: CD ( bipolar ) = 

0 . 961 
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Fig. 4. Scatterplots of essential vectors of intensities of preferences corresponding to patients diagnosed Bipolar disorder ( Subsection 6.2 ) and the best adjusted line. 
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Fig. 5. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed OCD ( Subsection 6.2 ) and the best adjusted line. 

• For patients suffering from obsessive compulsive disorder: 

CD ( OCD ) = 0 . 985 

Figs. 3 , 4 , Fig. 5 highlight the coherence among preferences 

inside the same collective of patients, while Fig. 6 , 7 , and. 8 

highlight the disagreement among patients’ preferences diagnosed 

with different disorders. As it was suspected, the coherence among 

the patients’ preferences for each disorder separately is very high. 

This fact could add to the consideration of the type of disor- 

der as a factor to be taken into account in Clinical Decision- 

Making. 
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Fig. 6. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia versus Bipolar disorder ( Subsection 6.2 ) and the best adjusted 

line. 
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Fig. 7. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia versus OCD ( Subsection 6.2 ) and the best adjusted line. 
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Fig. 8. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Bipolar disorder versus OCD ( Subsection 6.2 ) and the best adjusted line. 
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7. Concluding remarks and future research 

Research in the area of consensus measurement has advanced 

mainly in Social Choice Theory and Theory of Decision Making. In 

this work, a new consensus measure for reciprocal preference re- 

lations based on the classical definition of the Pearson correlation 

coefficient is studied. This new measure, the correlation consensus 

degree, pursues the measurement of the concordance between the 

intensities of pairwise preference values given by experts, decision 

makers or agents. This work open a new avenue to measure con- 

sensus. The correlation consensus degree between two reciprocal 

preference relations is neither a distance function nor a similarity 

function unlike the traditional consensus measures studied before. 

Nevertheless, the given correlation consensus degree verifies im- 

portant properties that are common either to distances and/or sim- 

ilarities measures as well as additional properties that have been 

described in this work and that are different to traditional consen- 

sus measures properties. The novelty of the proposed correlation 

consensus measure as well as its application is shown with two 

examples. The first of the examples is used to illustrate the compu- 

tation process and discussion of the results, while the second ex- 

ample covers a real life Clinical Decision-Making application. Both 

examples show the versatility and the applicability of the proposed 

measurement of consensus to a variety of real situations. 

A future line of enquiry is the investigation of flexible consen- 

sus reaching processes based on the new correlation consensus de- 

gree. These processes would allow to produce a consensus solu- 

tion by an iterative feedback mechanism accommodated to the this 

specific consensus measurement. We expect to conduct further in- 

vestigations of these issues and report our findings in the future. 
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