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Departamento de Economı́a e Historia Económica de la Universidad de Sa-
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cantud, ambos profesores del área de Fundamentos de Análisis Económico,
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Dra. Roćıo de Andrés Calle Dr. Jose Carlos Rodŕıguez Alcantud
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Abstract

The general objective of this doctoral thesis is to develop novel approaches

for measuring cohesiveness / consensus and for accomplishing social consensus

solutions in group decision making problems. In this line, this thesis expects to

broaden the scope of the traditional and related methodologies.

These general issues are then addressed in the three following contributions.

In the first contribution, the problem of measuring the degree of consen-

sus/dissensus in a context where experts or agents express their opinions on

alternatives or issues by means of cardinal evaluations is studied. The assum-

ption of considering cardinal evaluations to measure the cohesiveness had not

been previously examined in literature. To this end, a new class of distance-based

consensus methods, the family of the Mahalanobis dissensus measures for profiles

of cardinal values is proposed. The main advantage of this proposal is that it ta-

kes into account the effects of differences in scale and possible interrelated issues.

Moreover, some meaningful properties of the Mahalanobis dissensus measures are

set forth. Finally, an application over a real empirical example is presented and

discussed.

In the second contribution, a new approach to the measurement of consensus

based on the Pearson correlation coefficient is studied under the assumption of

xi



experts’ opinions modelled via reciprocal preference relations. The new correlation

consensus degree measures the concordance between the intensities of preference

for pairs of alternatives. Although a detailed study of the formal properties of

the new correlation consensus degree shows that it verifies relevant and desirable

properties common either to distance or to similarity functions, it is also proved

that it is different to traditional consensus measures. In order to emphasise the

novelty of our work, an application to Clinical Decision-Making realm is presented.

In the third contribution, three basic essentials are addressed: the management

of experts’ opinions when they are expressed by ordinal information; the measu-

rement of the degree of dissensus among such opinions; and the achievement of a

group solution that conveys the minimum dissensus to the experts’ group. Accor-

dingly, a new procedure to codify ordinal information is characterised. Likewise,

a new measurement of the degree of dissensus among individual preferences ba-

sed on the Mahalanobis distance is designed in such a way that it is especially

indicated for the case of possibly correlated alternatives. Finally, a procedure to

obtain a social consensus solution, that also includes the possibility of alternatives

that are correlated, is investigated. In addition, we examine the main traits of the

dissensus measurement as well as the social solution proposed. The operational

character and intuitive interpretation of these approaches are illustrated by an

explanatory example.
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Introduction

Every day, people make decisions and most of them are made subconsciously,

but also they often play an active role in decision making process. Many times

decisions are not an individual issue, however, they are question of a group of

people. Since the processes involved in decision-making are quite complex, getting

consistent group decisions is a hard challenge. Accordingly, several research topics

have emerged in several sciences to deal with problems that arise in this scenario

like Psychology, Political Science, Economics, Computer Science, and so on.

Among many possible aspects that could be investigation target in this

context, this dissertation focuses on cohesiveness in group decision making

problems. The concept of group cohesion has a wide appeal in Psychology and

Sociology. Much of this interest is due to the belief that keeping members’ group

together is important to get its successful performance. We would like to note

that, on one hand, the possibilities of achieving high levels of cohesion are, to

a considerable extent, a function of particular social or pre-group conditions

(Braaten (1991)). On the other hand, there are several interpersonal aspects

that affect group cohesiveness like that members’ group closeness, group size,

entry difficulties, etc. (Eisenberg (2007)). All these elements about social or

interpersonal cohesion are not the standpoint in this doctoral thesis.
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From another point of view, consensus is a multi-facet term as it has been

described in Mart́ınez-Panero’s survey (Mart́ınez-Panero (2011)). In this survey,

several perspectives and aspects of consensus and how it is used within different

formal developments like consensus measures in Social Choice Theory, Decision

Making Theory and applications in Biomathematics are presented. In this

dissertation the term cohesiveness refers to the degree of agreement among

individual opinions of a group of experts or agents (a society) over a set of

alternatives or issues. In this sense, the term consensus is considered in a similar

form to Mart́ınez-Panero.

Then, this thesis lies within the cross area between Social Choice Theory and

Decision Making Theory. In this regard, it should be pointed out that this cross

subject area has impacts within several fields of Economics, Computer Science,

Health Sciences, and Political Science.

Group cohesiveness from the Social Choice Theory was first dealt in the

literature by Bosch (2005) with the notion of consensus measure within a

group where several issues are involved. Alcalde-Unzu and Vorsatz (2013),

Garćıa-Lapresta and Pérez-Román (2011) and Alcantud et al. (2013b), among

others, extended and provided axiomatic supports of consensus measures in the

sense introduced by Bosch.

From the viewpoint of the Decision Making Theory and its applications,

consensus measurement and its reaching in a group of experts are a prominent

and active research areas. It is worth mentioning for instance the works provided

by Kacprzyk and Fedrizzi (1988), Fodor and Roubens (1994) and Herrera-Viedma

et al. (2014), among others.

Despite of all fruitful methodologies proposed to measure and achieve

consensus, there are some challenges that the existing approaches hardly address.
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In this sense we can mention as such challenges the measuring of cohesiveness

when experts’ opinions are expressed by means of cardinal evaluations and the

explicit consideration of possible cross-related alternatives in the problem. From

another perspective, it should be emphasised that most of the aforementioned

methodologies are based on distance or similarity functions. This fact could be a

limitation in some particular cases.

Taking into account the previous challenges and restrictions, the research per-

formed in this doctoral thesis has focused on overcoming them. Concretely, the

specific objectives of this thesis are listed below.

Objectives

The general objective of this doctoral thesis is to develop novel approaches

for measuring cohesiveness/consensus and for accomplishing social consensus so-

lutions in group decision making problems. In this line, this thesis expects to

broaden the coverage of traditional approaches. This general objective can be

detached into the following specific ones:

Developing cohesiveness measures having explicitly regard to possible cross-

related alternatives with the intent to cover lacunae and to complement the

existing literature in the measurement and the achievement of cohesiveness.

Opening a new via to measure cohesiveness that is neither a distance func-

tion nor a similarity function unlike the traditional consensus measures.

Building consensus/dissensus measures from a theoretical point of view as-

suming different frameworks where experts or agents express their evalua-

tions on the alternatives by means of diverse formats: ordinal information,

cardinal evaluations and reciprocal preference relations.
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The detailed study of formal and desirable properties of the proposed mea-

sures.

Defining a novel procedure to obtain a social consensus solution that inclu-

des the possible cross-relation among the alternatives and satisfies desirable

properties.

Showing practical applications of the innovative methodologies in order to

prove the applicability and interest of our approaches in real life situations.

Structure of the doctoral thesis

This doctoral thesis is divided in several chapters which are structured as

follows.

Chapter 1: Background and literature review. This chapter contains a short

literature review of how the cohesiveness/consensus in a group has been addressed.

Due to the subject of this dissertation, we focus on related literature from Social

Choice Theory and Group Decision Making Theory.

The next three chapters contain the complete publications arising from the

research carried out and therefore, the main contributions of this doctoral thesis.

Chapter 2: A cardinal dissensus measure based on the Mahalanobis distance.

In this work, after introducing basic notation and definitions, the class of the

Mahalanobis dissensus measures for profiles of cardinal evaluations and their main

properties are set forth. Then, a comparison of several Mahalanobis dissensus

measures is provided. To end, a practical application with discussion is given.

Chapter 3: A new measure of consensus with reciprocal preference relations:

The correlation consensus degree. This contribution starts with a brief overview

of different approaches in literature to measure group cohesiveness. Then, a new

approach for measuring the consensus for reciprocal preference relations, the co-

rrelation consensus degree is formally built and its main properties are examined.
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Finally, a practical application to Shared Clinical Decision Making of the proposed

methodology is presented.

Chapter 4: A new consensus ranking approach for correlated ordinal infor-

mation based on Mahalanobis distance. First, the problem of transforming ordinal

information about individual preferences into numerical vectors is addressed. Se-

condly, we introduce the basic definition of dissensus measure and the Mahalanobis

class of dissensus measures together with their main traits. Thirdly, we set forth

the definition of our proposal of Mahalanobis social consensus solution that allows

possible correlated alternatives and we prove some of its properties. Eventually, a

visually appealing example is solved.

Chapter 5: Concluding remarks and future research. A summary of this thesis

is presented, highlighting its major contributions and sketching its future lines of

enquiry.

In addition to these five chapters, there are two appendices to fulfil the spe-

cific academic regulations for this doctoral thesis format. The first appendix, Pu-

blication quality indicators, encloses some quality indicators of scientific journals

realising the scientific publications included in this doctoral thesis. The second

appendix provides a Spanish summary of the main aspects of this doctoral thesis.

The dissertation finishes with a list of references which lists all the literature

cited in the entire thesis.

Publications derived from this doctoral thesis included in the Jour-

nal Citation Report (JCR)

T. González-Arteaga, J.C.R. Alcantud, R. de Andrés Calle (2016).A cardi-

nal dissensus measure based on the Mahalanobis distance. European Journal

of Operational Research, 251, 575-585. DOI: 10.1016/j.ejor.2015.11.019.
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Chapter 1

Background and literature review

This chapter contains a brief overview on recent literature about group cohesi-

veness from the perspective of Social Choice Theory and Decision Making Theory.

Nevertheless, for the sake of completeness, it should be mentioned there are some

other research areas that propose different definitions and applications of consen-

sus measures like those which can be seen for instance in Jaime et al. (2014) and

López-Molina et al. (2016), among others.

To the best of our knowledge, one of the first analysis about cohesiveness is

found in Hays (1960). In this earlier contribution, Hays proposed an “analysis of

agreement” among a group of rankings and a method for obtaining a rank order

of “best fit” to such a group rankings. Another former example is the approach

provided by Day and McMorris (1985) where a formalization of a consensus index

was introduced as a measure of agreement among “profile objects”. Both contri-

butions may not be clearly included in one of the aforementioned theories due to

the fact that it is sometimes cumbersome to determine a boundary between them.
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2 Background and literature review

From now on, we will review separately the related literature to both theories

with the aim of providing a clear and overall background on the subject of this

doctoral thesis.

The cohesiveness from Social Choice Theory

Bosch’s Ph.D. thesis (Bosch (2005)) is considered the first serious analysis of

consensus measurement from an Arrovian perspective in Social Choice Theory. In

his work, both absolute and intrinsic measures of consensus were proposed, analy-

sed and axiomatically characterised. Bosch introduced the notion of consensus

measure within a group of experts where several issues are involved. Concretely,

he defined a consensus measure as a function that assigns a number in the unit in-

terval to each profile of individual strict linear orderings verifying some properties.

From the point of view of considering consensus among a family of voters,

McMorris and Powers (2009) characterised consensus rules defined on hierar-

chies. Alcalde-Unzu and Vorsatz (2010, 2013, 2016) went one step further by

characterizing axiomatically some absolute cohesiveness measures under the

assumption of agents order alternatives linearly. Later on, Garćıa-Lapresta

and Pérez-Román (2011) focused on how to measure consensus using complete

preorders on alternatives (indifferences are permitted) and introduced a class of

consensus measures based on seven well-known distance functions.

Apart from the above contributions, Alcantud et al. (2013a,c) characterised

a class of consensus measure, the referenced consensus measure, that permits to

produce a numerical social evaluation from ordinal individual information. They

also contributed to the formal and computational analysis of such measures by

focusing on two relevant and specific cases: the Borda and the Copeland rules
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under a Kemeny-type measure.

Furthermore, Alcantud, de Andrés Calle and Cascón in Alcantud et al.

(2013b, 2015) took a different position. They studied the case where agents have

dichotomous opinions on alternatives providing a model that does not necessarily

require pairwise comparisons. These proposals are conceptually rich to the aim

of assuring axiomatic support to these consensus indexes.

In addition, it is worth mentioning the work Erdamar et al. (2014) due to

the fact they presented a distance-based approach to measure the degree of con-

sensus considering two different types of information: approval information about

alternatives as well as rankings of them.

The cohesiveness from Decision Making Theory

In Decision Making Theory and its applications, consensus measurement and

its reaching (for simplicity we will call “consensus problem”) have attracted

research attention for a long time and consequently, a considerable amount of

contributions have been made under several frameworks and methodologies.

In group decision making problems, the way in which experts express their

opinions about alternatives plays an important role. Then, it is essential to

establish a suitable framework for each problem. Generally speaking, experts’

opinions can be express by means of different formats. Therefore, it is possible to

distinguish ordinal and cardinal information. The former being more extensively

used, while cardinal information is not so common in the subject being addressed

in this dissertation.



4 Background and literature review

Ordinal information implies that experts order alternatives by linear orders,

complete preorders or partial orderings. We may cite, among the great variety of

contributions in the literature, as examples of works that address the “consensus

problem” under ordinal information: Cook and Kress (1991), González-Pachón

and Romero (2001), Emond and Mason (2002), Cook (2006), Leyva López and

Alvarez Carrillo (2015) and Amodio et al. (2016).

Cardinal information implies that experts assign numerical values to each

alternative. This kind of information has mainly been dealt under the Utility

Theory, e.g., Keeney and Kirkwood (1975), Farquhar (1984) and Fishburn

(1994). Nonetheless, there are some contributions related to “consensus problem”

managing cardinal information. In this respect, it should be noted the approaches

proposed in Herrera-Viedma et al. (2002), González-Pachón and Romero (2009),

González-Pachón et al. (2014) and so on.

Apart from ordinal and cardinal information, experts can express their

opinions by means of different preference structures. One of the most related

classical reference is the contribution Kacprzyk and Fedrizzi (1988). This work

introduces the concept of “degree of consensus” in the sense of expressing the

degree to which “most of” individuals in a group agree to “almost all of” options.

The point of departure is a set of individual fuzzy preference relations. Moreover,

taking into account the called “consensus problem”, it may be appropriate to

refer to the works Nurmi (1981), Kacprzyk and Fedrizzi (1988), Herrera-Viedma

et al. (2007) for reciprocal fuzzy preference relations, Saaty (1980) for mul-

tiplicative preference relations, Wu and Chiclana (2014a) for interval-valued

fuzzy reciprocal preference relations, Herrera et al. (1996), Ben-Arieh and

Chen (2006), Cabrerizo et al. (2009)) and Sun and Ma (2015) for linguistic

preference relations, Xu and Liao (2015) for intuitionistic fuzzy preference

relations, Wu and Chiclana (2014b) for triangular fuzzy complementary prefe-

rence relations, Garćıa-Lapresta and Pérez-Román (2016a,b)) for linguistic terms.
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In addition, there are contributions where different experts can express their

opinions on the alternatives using different preference structures like Valls and

Torra (2000), Herrera-Viedma et al. (2002), Fedrizzi et al. (2010) and Dong and

Zhang (2014).

Regarding methodologies, most of the contributions on “consensus problem”

are based on distance and similarity functions. We can point out some of them

like Kemeny and Snell (1962), Cook (2006), Garćıa-Lapresta and Pérez-Román

(2011) and Chiclana et al. (2013) that make use of Kemeny, Mannhattan, Dice

and Cosine distance functions. Association measures are less widely used than

distance functions but it is also possible them in Cook and Seiford (1982), Emond

and Mason (2002), Goodman and Kruskal (1979), Kendall and Gibbons (1990),

where Kendall’s coefficient, Goodman-Kruskal’s index and Spearman’s coefficient

are handled.

Once the measurement of consensus has been provided, it is relevant finding

the “solution” which more agreement conveys to the group. Traditionally, the

achievement of a global solution (or social solution) has been considered as an

aggregation problem of experts’ opinions. Different methods have been proposed

and analysed to this end. Borda first examined this problem in a voting context

(Borda (1781)) and, afterwards, Kendall revised Borda’s method in a statistical

framework (Kendall (1962)). Kemeny and Snell approached the problem from a

different direction, and employed the distance metric form for measuring ranking

agreement (Kemeny and Snell (1962)).

Moreover, other authors also proposed alternative distance-based aggregation

rules for obtaining social solutions among them it should be cited the works e.g.,

Saari and Merlin (2000), Ratliff (2001, 2002)),Klamler (2004, 2008), Meskanen

and Nurmi (2006)) and (Eckert and Klamler (2011)).

Cook and Seiford (Cook and Seiford (1982)) developed a method based on

“minimum variance” for determining a consensus ranking. This approach includes
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the Borda-Kendall method if ties are not allowed. Their proposal is connected to

the Euclidean distance. Later, González-Pachón and Romero (González-Pachón

and Romero (1999)) developed a general framework for distance-based consensus

models under the assumption of a generic lp metric. These authors also deals

with group decision-making problems where experts can give partial orders on

alternatives within distance-based methodology with lp metric (González-Pachón

and Romero (2001)). They also designed socially optimal decisions in a consensus

scenario (González-Pachón and Romero (2011)).

Recently, the contribution of Pérez-Fernández, Rademaker and De Baets

(Pérez-Fernández et al. (2017)) presents the search for the closest profile of

rankings in a consensus state like an optimization problem based on monometric

functions instead of distance functions.

Besides of building social solutions in the vein previously mentioned, there

have been developed a lot of approaches in which there is a moderator to drive

the consensus reaching process. In this spirit, it may be pointed out Herrera et al.

(1996), Ben-Arieh and Chen (2006), Herrera-Viedma et al. (2007), Parreiras

et al. (2012), Chiclana et al. (2013), Palomares and Mart́ınez (2014), Wu et al.

(2015), Gong et al. (2015) and Liu et al. (2015), among numerous contributions.



Chapter 2

Publication I:

A cardinal dissensus measure based on

the Mahalanobis distance

T. González-Arteaga, J.C.R. Alcantud, R. de Andrés Calle. A cardinal dissen-

sus measure based on the Mahalanobis distance. European Journal of Operational

Research, 251, Issue 2, 575-585. 2016. DOI: 10.1016/j.ejor.2015.11.019.
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a b s t r a c t

In this paper we address the problem of measuring the degree of consensus/dissensus in a context where ex-

perts or agents express their opinions on alternatives or issues by means of cardinal evaluations. To this end

we propose a new class of distance-based consensus model, the family of the Mahalanobis dissensus mea-

sures for profiles of cardinal values. We set forth some meaningful properties of the Mahalanobis dissensus

measures. Finally, an application over a real empirical example is presented and discussed.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

In Decision Making Theory and its applications, consensus mea-

surement and its reaching in a society (i.e., a group of agents or ex-

perts) are relevant research issues. Many studies investigating the

aforementioned subjects have been carried out under several frame-

works (see Cabrerizo, Moreno, Pérez, & Herrera-Viedma, 2010; Dong,

Xu, & Li, 2008; Dong, Xu, Li, & Feng, 2010; Dong & Zhang, 2014;

Fedrizzi, Fedrizzi, & Marques Pereira, 2007; Fu & Yang, 2012; Herrera-

Viedma, Herrera, & Chiclana, 2002; Liu, Liao, & Yang, 2015; Palo-

mares, Estrella-Liébana, Martínez, & Herrera, 2014; Wu & Chiclana,

2014a, 2014b; Wu, Chiclana, & Herrera-Viedma, 2015 among others)

and based on different methodologies (Chiclana, Tapia García, del

Moral, & Herrera-Viedma, 2013; Cook, 2006; Eklund, Rusinowska, &

de Swart, 2008; Eklund, Rusinowska, & Swart, 2007; Fedrizzi et al.,

2007; Fu & Yang, 2010, 2011; Gong, Zhang, Forrest, Li, & Xu, 2015;

González-Pachón & Romero, 1999; Liu et al., 2015; Palomares &

Martínez, 2014 among others).

Since the seminal contribution by Bosch (2005) several authors

have addressed the consensus measurement topic from an axiomatic

perspective. Earlier analyses can be mentioned, e.g., Hays (1960)

or Day and McMorris (1985). This issue is also seen as the prob-

lem of combining a set of ordinal rankings to obtain an indicator of

their ‘consensus’, a term with multiple possible meanings (Martínez-

Panero, 2011).
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Generally speaking, the usual axiomatic approaches assume that

each individual expresses his or her opinions through ordinal pref-

erences over the alternatives. A group of agents is characterized by

the set of their preferences – their preference profile. Then a consen-

sus measure is a mapping which assigns to each preference profile a

number between 0 and 1. The assumption is made that the higher the

values, the more consensus in the profile.

Technical restrictions on the preferences provide various ap-

proaches in the literature. In most cases the agents are presumed

to linearly order the alternatives (see Bosch, 2005 or Alcalde-Unzu

& Vorsatz, 2013). Since this assumption seems rather demanding (es-

pecially as the number of alternatives grows), an obvious extension

is to allow for ties. This is the case where the agents have complete

preorders on the alternatives (e.g., García-Lapresta & Pérez-Román,

2011). Alcantud, de Andrés Calle, and Cascón (2013a, 2015) take a dif-

ferent position. They study the case where agents have dichotomous

opinions on the alternatives, a model that does not necessarily re-

quire pairwise comparisons.

Notwithstanding the use of different ordinal preference frame-

works, the problem of how to measure consensus is an open-ended

question in several research areas. This fact is due to that method-

ology used in each case is a relevant element in the problem ad-

dressed. To date various methods have been developed to measure

consensus under ordinal preference structures based on distances

and association measures like Kemeny’s distance, Kendall’s coeffi-

cient, Goodman-Kruskal’s index and Spearman’s coefficient among

others (see e.g., Cook & Seiford, 1982; Goodman & Kruskal, 1979; Ke-

meny, 1959; Kendall & Gibbons, 1990; Spearman, 1904).

In this paper we first tackle the analysis of coherence that derives

from profiles of cardinal rather than ordinal evaluations. Modern

http://dx.doi.org/10.1016/j.ejor.2015.11.019
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convention applies the term cardinal to measurements that assign

significance to differences (cf., Basu, 1982; Chiclana, Herrera-Viedma,

Alonso, & Herrera, 2009; High & Bloch, 1989). In contrast ordinal pref-

erences only permit to order the alternatives from best to worst with-

out any additional information. To see how this affects the analysis of

our problem, let us consider a naive example of a society with two

agents. They evaluate two public goods with monetary amounts. One

agent gives a value of 1€ for the first good and 2€ for the second good.

The other agent values these goods at 10€ and 90€ respectively. If

we only use the ordinal information in this case, we should conclude

that there is unanimity in the society: all members agree that ‘good

2 is more valuable than good 1’. However the agents disagree largely.

Therefore, the subtleties of cardinality clearly have an impact when

we aim at measuring the cohesiveness of cardinal evaluations.

Unlike previous references, we adopt the notion of dissensus mea-

sure as the fundamental concept. This seems only natural because it

resembles more the notion of a “measure of statistical dispersion”, in

the sense that 0 captures the natural notion of unanimity as total lack

of variability among agents, and then increasingly higher numbers

mean more disparity among evaluations in the profile.1

In order to build a particular dissensus measure we adopt a

distance-based approach. Firstly, one computes the distances be-

tween each pair of individuals. Then all these distances are aggre-

gated. In our present proposal the distances (or similarities) are com-

puted through the Mahalanobis distance (Mahalanobis, 1936). We

thus define the class of Mahalanobis dissensus measures.

The Mahalanobis distance plays an important role in Statistics and

Data Analysis. It arises as a natural generalization of the Euclidean

distance. A Mahalanobis distance accounts for the effects of differ-

ences in scales and associations among magnitudes. Consequently,

building on the well-known performance of the Mahalanobis dis-

tance, our novel proposal seems especially fit for the cases when the

measurement units of the issues are different, e.g., performance ap-

praisal processes when employees are evaluated attending to their

productivity and their leadership capacity; or where the issues are

correlated. For example, evaluation of related public projects. An an-

tecedent for the weaker case of profiles of preferences has been pro-

vided elsewhere, cf. Alcantud, de Andrés Calle, and González-Arteaga

(2013b), and an application to comparisons of real rankings on uni-

versities worldwide is developed. Here we apply our new indicator

to a real situation, namely, economic forecasts made by several agen-

cies. Since the forecasts concern economic quantities, they have an

intrinsic value which is naturally cardinal and also there are relations

among them.

The paper is structured as follows. In Section 2, we introduce ba-

sic notation and definitions. In Section 3, we set forth the class of the

Mahalanobis dissensus measures and their main properties. Section 4

provides a comparison of several Mahalanobis dissensus measures.

Next, a practical application with discussion is given in Section 5.

Finally, we present some concluding remarks. Appendices contain

proofs of some properties and a short review in matrix algebra.

2. Notation and definitions

This section is devoted to introduce some notation and a new

concept in order to compare group cohesiveness: namely, dissensus

measures. Then, a comparison with the standard approach is made.

We partially borrow notation and definitions from Alcantud et al.

(2013b). In addition, we use some elements of matrix analysis that

we recall in Appendix B to make the paper self-contained.

Let X = {x1, . . . , xk} be the finite set of k issues, options, alterna-

tives, or candidates. It is assumed that X contains at least two options,

1 As a remote antecedent of this position, we note that statistically variance-based

methods are commonly employed to measure consensus of verbal opinions (cf.,

Hoffman, 1994, and Mejias, Shepherd, Vogel, & Lazaneo, 1996.)

i.e., the cardinality of X is at least 2. Abusing notation, on occasions

we refer to issue xs as issue s for convenience. A population of agents

or experts is a finite subset N = {1, 2, . . . , N} of natural numbers. To

avoid trivialities we assume N > 1.

We consider that each expert evaluates each alternative by means

of a quantitative value. The quantitative information gathered from

the set of N experts on the set of k alternatives is summarized by an

N × k numerical matrix M:

M =
(
Mi j

)
N×k

We write Mi to denote the evaluation vector of agent i over the issues

(i.e., row i of M) and Mj to denote the vector with all the evaluations

for issue j (i.e., column j of M). For convenience, (1)N × k denotes the N

× k matrix whose cells are all equal to 1 and 1N denotes the column

vector whose N elements are equal to 1. We write MN×k for the set of

all N × k real-valued matrices. Any M ∈ MN×k is called a profile.

Any permutation σ of the experts {1, 2, . . . , N} determines a pro-

file Mσ by permutation of the rows of M: row i of the profile Mσ is row

σ (i) of the profile M. Similarly, any permutation π of the alternatives

{1, 2, . . . , k} determines a profile π M by permutation of the columns

of M: column i of the profile π M is column π (i) of the profile M.

For each profile M ∈ MN×k, its restriction to subprofile on the is-

sues in I ⊆ X, denoted MI, arises from exactly selecting the columns

of M that are associated with the respective issues in I (in the same

order). And for simplicity, if I = { j} then MI = M{ j} = M j is column

j of M. Any partition {I1, . . . , Is} of {1, 2, . . . , k}, that we identify

with a partition of X, generates a decompositionof M into subprofiles

MI1 , . . . , MIs . 2

A profile M ∈ MN×k is unanimous if the evaluations for all the al-

ternatives are the same across experts. In matrix terms, the columns

of M ∈ MN×k are constant, or equivalently, all rows of the profile are

coincident.

An expansion of a profile M ∈ MN×k of N on X = {x1, . . . , xk} is a

profile M̄ ∈ MN̄×k of N̄ = {1, . . . , N, N + 1, . . . , N̄} on X = {x1, ..., xk},
such that the restriction of M̄ to the first N experts of N coincides

with M.

Finally, a replication of a profile M ∈ MN×k of the society N on

X = {x1, . . . , xk} is the profile M � M ∈ M2N×k obtained by duplicat-

ing each row of M, in the sense that rows t and N + t of M�M are

coincident and equal to row t of M, for each t = 1, . . . , N.

We now define a dissensus measure as follows:

Definition 1. A dissensus measure on MN×k is a mapping defined by

δ : MN×k → [0,∞) with the property:

(i) Unanimity: for each M ∈ MN×k, δ(M) = 0 if and only if the pro-

file M ∈ MN×k is unanimous.

We also define a normal dissensus measure as a dissensus mea-

sure that additionally verifies:

(ii) Anonymity: δ(Mσ ) = δ(M) for each permutation σ of the

agents and M ∈ MN×k.

(iii) Neutrality: δ(π M) = δ(M) for each permutation π of the alter-

natives and M ∈ MN×k.

This definition does not attempt to state dissensus by opposition

to consensus. The literature usually deals with a formulation of con-

sensus where the higher the index, the more coherence in the so-

ciety’s opinions. The terms consensus and dissensus should not be

taken as formal antonyms, especially because a universally accepted

definition of consensus is not available and we do not intend to give

an absolute concept of dissensus. However, consensus measures in

the sense of Bosch (see Bosch, 2005, Definition 3.1) verify anonymity

and neutrality (see also Alcantud et al., 2013b, Definition 1), and from

2 A partition of a set S is a collection of pairwise disjoints non-empty subsets of S

whose union is S.

10
Publication I:

A cardinal dissensus measure based on the Mahalanobis distance



T. González-Arteaga et al. / European Journal of Operational Research 251 (2016) 575–585 577

a purely technical viewpoint, they relate to dissensus measures as fol-

lows.

Lemma 1. If μ is a consensus measure then 1 − μ is a normal dissensus

measure. Conversely, if δ is a normal dissensus measure then 1
δ+1

is a

consensus measure.

Proof 1. We just need to recall that the mapping i : [0, ∞) −→ (0, 1]

given by i(x) = 1
x+1 is strictly decreasing. �

3. The class of Mahalanobis dissensus measures and its

properties

In this section we introduce a broad class of dissensus measures

that depends on a reference matrix, namely the Mahalanobis dis-

sensus measures. We also give its more prominent properties.

Our interest is to cover the specific characteristics in cardinal

profiles, like possible differences in scales, and correlations among

the issues. Before providing our main definition, we recover the

definition of the Mahalanobis distance on which our measure is

based.

Definition 2. Let � ∈ Mk×k be a positive definite matrix and let us

assume that x and y vectors from Rk are row vectors. The Mahalanobis

(squared) distance on Rk associated with � is defined by 3

d�(x, y) = (x − y)�−1(x − y)t

The off-diagonal elements of � permit to account for cross re-

lations among the issues or alternatives. Through the diagonal el-

ements different measurement scales can be incorporated. The �

matrix contains variances and covariances among random variables

when the Mahalanobis distance is used in Statistical Data Analysis.

Definition 3. Let � ∈ Mk×k be a positive definite matrix. The Maha-

lanobis dissensus measure on MN×k associated with � is the mapping

δ� : MN×k → R given by

δ�(M) = 1

C2
N

·
∑
i< j

d�(Mi, Mj) = 1

C2
N

·
∑
i< j

(Mi − Mj)�
−1(Mi − Mj)

t

(1)

for each profile M ∈ MN×k on k alternatives, where C2
N = N(N−1)

2 is the

number of non-ordered pairs of the N agents.

Note that the above expression is the average of all distances be-

tween the evaluation vectors provided by all pairs of agents according

to the Mahalanobis distance associated with � (Definition 2).

It is immediate to check that δ� verifies conditions i) and ii) for

each positive definite � matrix. But δ� fails to satisfy neutrality like

the following example proves.

Example 1. Let � =
(

1 0
0 2

)
, k = 2 and N = 2. Then �−1 =

(
1 0

0 1
2

)
.

For M =
(

1 −1
3 0

)
one has M1 = (1,−1) and M2 = (3, 0). Then

δ�(M) = 1

C2
2

·
(
(1 − 3, −1 − 0)�−1 (1 − 3, −1 − 0)

t
)

= 9

2
.

If the columns of M are permuted in order to obtain π M =(−1 1
0 3

)
, then

δ�(π M) = 1

C2
2

·
(
(−1 − 0, 1 − 3)�−1 (−1 − 0, 1 − 3)

t
)

= 3.

3 Our choice of d� (x, y) coincides with the original Mahalanobis’ definition (see

Mahalanobis, 1936). In order to exploit the inclusion of the Euclidean distance, some

authors work with
√

d�(x, y) instead. In both cases we have distances on Rk .

Therefore

δ�(π M) = 3 �= 9

2
= δ�(M),

which proves that δ� does not verify neutrality.

Nevertheless, if the � matrix is adapted according to a specific

permutation of the alternatives then the Mahalanobis disensus mea-

sure verifies a kind of “soft” neutrality like the following result proves.

Proposition 1. Let � ∈ Mk×k be a positive definite matrix. For each pro-

file M ∈ MN×k and each permutation π of the alternatives, i.e., a permu-

tation of {1, . . . , k},
δ�(M) = δ�π (π M)

where �π = Pt
π � Pπ and Pπ is the permutation matrix corresponding

to π .

Proof 2. Using the definition of Mahalanobis dissensus measure

(Definition 3), it is sufficient to prove that d�π (π Mi,
π M j) =

d�(Mi, M j)

d�π (π Mi,
π Mj) = (π Mi −π Mj) (�π )

−1
(π Mi −π Mj)

t

= (MiPπ − MjPπ ) (Pt
π�Pπ )−1 (MiPπ − MjPπ )t

= (Mi − Mj) Pπ Pt
π�−1Pπ Pt

π (Mi − Mj)
t

= (Mi − Mj)�
−1(Mi − Mj)

t

= d�(Mi, Mj).

We have only used the fact that the permutation matrix Pπ is

orthogonal. �

3.1. Some particular specifications

Some special instances of Mahalanobis dissensus measures have

specific interpretations.

• If we have a single issue or alternative, then M ∈ MN×1 is a vector

and � can be identified as a number c > 0. Then

δc(M) = 1

C2
N

·
∑
i< j

1

c
(Mi − Mj)

2 = 1

c
· 2N

N − 1
· S2

M

where S2
M

is the sample variance of M.4 Therefore the dissensus

for a single issue is the result of correcting its sample variance by

a factor of 1
c · 2N

N−1 .

• If � is the identity, then δI(M) = 1

C2
N

· ∑i< j

∑k
r=1(Mir − M jr)

2. This

expression uses the square of the Euclidean distance between

real-valued vectors, thus it recovers a version of the consensus

measure for ordinal preferences based on this distance (Cook &

Seiford, 1982). Henceforth δI is called the Euclidean dissensus mea-

sure.
• If � = diag(c11, . . . , ckk) is a diagonal matrix then d�(Mi, Mj) gives

the weighted average of the square of the differences in assess-

ments for each alternative between agents i and j, where the

weight attached to alternative r is 1
crr

:

δ�(M) = 1

C2
N

·
∑
i< j

d�(Mi, Mj)

= 1

C2
N

·
∑
i< j

(
k∑

r=1

1

crr
· (Mir − Mjr)

2

)

=
k∑

r=1

1

crr
· δI(Mr).

4 In order to check this, we use a well-known property of the variance: given a vector

x = (x1, x2, . . . , xn), whose mean is x, S2
x = 1

n

∑n
i=1(xi − x)2 = 1

2n2

∑n
i=1

∑n
j=1(xi − x j )

2.
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This particular specification of the dissensus measure allows us

to incorporate different weights to the alternatives. This fact

increases the richness of the analysis in comparison with the

(square of the) Euclidean distance. Furthermore, if � = λI for

some λ > 0, then Proposition 2 below gives additional relation-

ships.

Proposition 2 gives the relation between the Euclidean dissensus

measure and the Mahalanobis dissensus measure associated with a

matrix which is a multiple of the identity matrix, � = λI.

Proposition 2. For each profile M ∈ MN×k and λ > 0,

δλI(M) = δI

(
1√
λ

· M

)
= 1

λ
· δI(M).

Proof 3. Using Definition 3, the assertion is direct if we

check dλI(Mi, M j) = dI(
1√
λ

· Mi,
1√
λ

· M j) and dλI(Mi, M j) =
1
λ

· dI(Mi, M j).

dλI(Mi, Mj) = (Mi − Mj)(λI)−1(Mi − Mj)
t

= (Mi − Mj)

⎛
⎜⎜⎜⎝

1

λ
· · · 0

...
. . .

...

0 · · · 1

λ

⎞
⎟⎟⎟⎠(Mi − Mj)

t

=
k∑

r=1

1

λ
· (Mir − Mjr)

2 =
k∑

r=1

(
1√
λ

· Mir − 1√
λ

· Mjr

)2

=
(

1√
λ

· Mi − 1√
λ

· Mj

)⎛
⎝1 · · · 0

...
. . .

...
0 · · · 1

⎞
⎠

×
(

1√
λ

· Mi − 1√
λ

· Mj

)t

= dI

(
1√
λ

· Mi ,
1√
λ

· Mj

)
.

dλI(Mi, Mj) = 1

λ
·

k∑
r=1

(Mir − Mjr)
2

= 1

λ
· (Mi − Mj)

⎛
⎝1 · · · 0

...
. . .

...
0 · · · 1

⎞
⎠(Mi − Mj)

t

= 1

λ
· dI(Mi, Mj).

�

3.2. Some properties of the class of Mahalanobis dissensus measures

Measuring cohesiveness by means of the Mahalanobis dissensus

measure ensures some interesting operational features. We pro-

ceed to examine them. The proofs of these properties are given in

Appendix A.

Let M ∈ MN×k denote a profile and let �, �1,�2 ∈ Mk×k be posi-

tive definite matrices. The following properties hold true:

1. Neutrality. A dissensus measure δ� verifies neutrality if and only

if the associated � matrix is a diagonal matrix whose diagonal

elements are the same. Formally:

δ�(M) = δ�(π M) any profile M ∈ MN×k and any permutation π
of {1, . . . , k}, if and only if � = diag{λ, . . . , λ} for some λ > 0.

2. Oneness. If for a particular size N of a society the Mahalanobis

dissensus measures associated with two matrices coincide for all

possible profiles, then the corresponding dissensus measures are

equal. Formally:

If for a fixed N it is the case that δ�1
(M) = δ�2

(M) for each profile

M ∈ MN×k, then �1 = �2 , i.e., for each N′ and M′ ∈ MN′×k, it is

also the case that

δ�1
(M′) = δ�2

(M′).
3. Cardinal transformations. In contrast to ordinal assessments, cardi-

nal evaluations are dependent on scales. So an important question

arises about if the scale choice disturbs the cohesiveness mea-

sures. In this regard, once we update the reference matrix accord-

ingly, the Mahalanobis dissensus measures associated to � do not

vary. This fact happens even if we modify the scales of all issues

in different way. In addition, a simple translation of each issue by

adding a number does not change the cohesiveness measure. For-

mally:

Let a = (a1, . . . , ak)
t be a column vector and B = diag(b1, . . . , bk)

be a diagonal matrix. The affine transformation of the profile M ∈
MN×k is M∗ = 1N at + M B, M∗ ∈ MN×k. Its columns are defined

by M∗ j = a j · 1N + b j · M j and its rows are defined by M∗
i

= (a1 +
b1Mi1, . . . , ak + bkMik) = a + Mi B .

If M∗ = 1N at + M B is a positive affine transformation of the pro-

file M ∈ MN×k and �∗ = B�Bt is the corresponding adjusted �,

then

δ�∗ (M∗) = δ�(M).

4. Replication monotonicity. When a non-unanimous society is repli-

cated, its dissensus measure increases. That is, if M ∈ MN×k is a

non-unanimous profile then

δ�(M � M) =
(

2N − 2

2N − 1

)
· δ�(M)

therefore

δ�(M � M ) > δ�(M).

We can note that the difference between such measures is negligi-

ble for large societies. In addition, if we have an unanimous profile

M ∈ MN×k then by Definition 1 i), δ� verifies

δ�(M � M) = δ�(M) = 0.

5. Splitting the set of alternatives. Suppose that the set of alternatives

is divided in two (or more) subgroups, in such way that we do

not consider any possible cross-effect among subgroups (perhaps

because we know that there is not interdependence). Then the

computation can be simplified by referring to measures of the dis-

sensus in sub-profiles as follows.

Given � =
(
�11 0

0 �22

)
, where �11 ∈ Mr×r , �22 ∈ M(k−r)×(k−r) ,

for each profile M = (MI1 , MI2 ) where MI1 ∈ MN×r , MI2 ∈
MN×(k−r)

δ�(M) = δ�11
(MI1 ) + δ�22

(MI2 ).

Remark 1. Note that if the � matrix was originally a block diag-

onal matrix in the form � = diag(�11, . . . ,�ss), then it is possi-

ble to take the corresponding partition of the set of alternatives,

X = I1 ∪ I2 ∪ . . . ∪ Is. Consequently, the original profile M ∈ MN×K

can be rewritten like M = (MI1 , MI2 , . . . , MIs ). Then

δ�(M) =
s∑

i=1

δ�ii
(MIi ).

6. Adding alternatives. Anextension of a profile M ∈ MN×k is a new

profile, M∗ ∈ MN×(k+r), such that M∗ includes r new alternatives.

Under this assumption, M∗ can be seen as a profile with two sub-

groups, the initial and the new alternatives, M∗ = (M, Mnew) ∈
MN×(k+r) . If the aforementioned subgroups of alternatives are not

related then Property 5 applies. Consequently,

δ�∗ (M∗) = δ�(M) + δ�new (Mnew)
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where �∗ =
(
� 0
0 �new

)
and �new ∈ Mr×r is the associated matrix

to the dissensus measure for the r new alternatives.

In the particular case where all the new alternatives added to the

profile M are evaluated equally by all agents,

δ�∗ (M∗) = δ�(M),

irrespective of �new because unanimous profiles produce dis-

sensus measures equal to zero. This particular case is defined

like a property called “independence of irrelevant alternatives” in

Alcantud, de Andrés Calle, and Cascón (2013a).

7. Adding agents to the society. Suppose that a new agent is added to

the society, and then the Mahalonabis dissensus measure of the

enlarged society does not decrease. In addition, the increment is

minimal when the“average agent” is added up. Formally:

Let M ∈ MN×k be a profile and M̄ ∈ M(N+1)×k be its expansion after

incorporating the evaluations of a new agent. The Mahalanobis

dissensus measure for M̄ is

δ�(M̄) = N − 1

N + 1
· δ�(M) + 1

C2
N+1

·
N∑

i=1

d�(Mi, M̄N+1)

where M̄N+1 is the row of M̄ which incorporates the new agent’s

assessments for the alternatives.

If the assessments of the new agent coincide with the average of

the original agents’ evaluations for each alternative, then the min-

imal increment of the dissensus measure is obtained.

Remark 2. A particular case is when the Mahalanobis dissensus

measure is zero, or equivalently, there exits unanimity. If we in-

clude a new agent whose evaluations coincide with the assess-

ments of the original agents, the Mahalanobis dissensus measure

continues being zero.

4. Comparison of Mahalanobis dissensus measures

In practical situations we could potentially use various Maha-

lanobis dissensus measures for profiles of cardinal information.5

Hence it is worth studying the relations among evaluations achieved

when we vary the reference matrices. This section addresses this

point.

Theorems 1 and 2 below identify conditions on matrices that en-

sure consistent comparisons between Mahalanobis dissensus mea-

sures, whatever the number of agents. Based on these theorems, a

final result gives bounds for the Mahalanobis dissensus measure.

Along this section �1, �2 ∈ Mk×k denote two positive defi-

nite matrices and d�1
, d�2

denote the corresponding Mahalanobis

(squared) distances on Rk associated to �1 and �2. Let λ(i)
1

≥ λ(i)
2

≥
· · · ≥ λ(i)

k
> 0 be the eigenvalues of �i, i = 1, 2.

Theorem 1. If there exists N for which each profile M ∈ MN×k verifies

δ�1
(M) ≥ δ�2

(M) then

λ(1)
i

≤ λ(2)
i

for i = 1, . . . , k (2)

Proof 4. We take a profile M ∈ Mk×k with Mi = 0 for i = 2, 3, . . . , N

and M1 = x ∈ Rk. By assumption

δ�1
(M) = 1

C2
N

· d�1
(x, 0) ≥ δ�2

(M) = 1

C2
N

· d�2
(x, 0).

Consequently, the hypothesis is reduced to d�1
(x, 0) ≥ d�2

(x, 0) for

x ∈ Rk. It means

x�−1
1 xt ≥ x�−1

2 xt ⇒ x
(
�−1

1 − �−1
2

)
xt ≥ 0 for x ∈ Rk.

5 This is the case of our real example in Section 5 below.

Then (�−1
1

− �−1
2

) is a non-negative definite matrix. Now we use

the result included in Appendix B (see Point 11) to finish the proof:

�−1
1 ≥ �−1

2 �⇒ 1

λ(1)
i

≥ 1

λ(2)
i

�⇒ λ(1)
i

≤ λ(2)
i

for i = 1, 2, . . . , k.

�

The converse of Theorem 1 is not always true like Example 2 below

shows. Nevertheless, Theorem 2 below proves that a partial converse

of Theorem 1 holds true under a technical restriction on the definite

matrices.

Example 2. Let us consider a particular case of two matrices

�1 =
(

0.18 −0.16
−0.16 0.42

)
�2 =

(
0.60 0.20
0.20 0.30

)
whose eigenvalues verify λ(1)

i
≤ λ(2)

i
for i = 1, 2 because λ(1)

1
= 0.5,

λ(1)
2

= 0.1 and λ(2)
1

= 0.7, λ(2)
2

= 0.2.

Let M ∈ M2×2 be the profile M =
(

4 60
0 0

)
. The Mahalanobis dis-

sensus measures for M associated with �1 and �2 produce

δ�1
(M) = 14630.4 ≤ 14777.14 = δ�2

(M).

Therefore it is not true that δ�1
(M) ≥ δ�2

(M) holds throughout.

Theorem 2. If �1,�2 ∈ Mk×k are commutable matrices and their

eigenvalues verify λ(1)
1

≤ λ(2)
k

then

δ�1
(M) ≥ δ�2

(M)

for each size N and each profile M ∈ MN×k.

Proof 5. Assuming �1,�2 ∈ Mk×k are commutable, we can apply

Point 12 in Appendix B to �−1
1

and �−1
2

. Consequently, there exists

an orthonormal matrix Q ∈ Mk×k such that

Qt�−1
1 Q = D1 and Qt�−1

2 Q = D2

being D1, D2 ∈ Mk×k diagonal matrices. It is possible to select Q in

such a way that the diagonal elements of D1 verify 1

λ(1)
1

≤ · · · ≤ 1

λ(1)
k

.

Thus

D1 = diag

(
1

λ(1)
1

, . . . ,
1

λ(1)
k

)
and D2 = diag

(
1

λ(2)
π(1)

, . . . ,
1

λ(2)
π(k)

)
,

where π is a permutation of {1, 2, . . . , k}.6

Let x, y ∈ Rk be two row vectors. Since Q is an orthonormal ma-

trix, there exists a vector z ∈ Rk such that (x − y)t = Qz

d�1
(x, y)= (x − y)�−1

1 (x − y)t = zt Qt�−1
1 Qz = zt D1z =

k∑
j=1

1

λ(1)
j

z2
j

d�2
(x, y)= (x − y)�−1

2 (x − y)t = zt Qt�−1
2 Qz = zt D2z=

k∑
j=1

1

λ(2)
π( j)

z2
j

From premise that λ(1)
1

≤ λ(2)
k

we have

1

λ(1)
k

≥ · · · ≥ 1

λ(1)
1

≥ 1

λ(2)
k

≥ · · · ≥ 1

λ(2)
1

.

Thus 1

λ(1)
j

≥ 1

λ(2)
π( j)

for j = 1, 2, . . . , k and as a result it is obtained

k∑
j=1

1

λ(1)
j

z2
j ≥

k∑
j=1

1

λ(2)
π( j)

z2
j .

In consequence, d�1
(x, y) ≥ d�2

(x, y).

6 When Q does not lead to a diagonal matrix with properly ordered eigenvalues, we

change Q for Q ′ = QPt , P being a permutation matrix. Q′ is also an orthogonal matrix

(see Appendix B, Point 10) which simultaneously diagonalizes �−1
1

and �−1
2

. In addi-

tion, we get a diagonal matrix D∗
1 with the same eigenvalues that D1 but in the proper

order.

13
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Fig. 1. Curves of equidistance to point A with d� (ellipse), dλ1 I and dλk I (circumferences).

Now, using Definition 3 the theorem is proven. �

Example 3 below shows the relevance of hypothesis on the eigen-

values (Theorem 2).

Example 3. Considering �1 and �2 from Example 2, we observe that

they are commutable matrices:

�1 �2 =
(

0.18 −0.16
−0.16 0.42

)(
0.6 0.2
0.2 0.3

)
=

(
0.076 −0.012

−0.012 0.094

)

�2 �1 =
(

0.6 0.2
0.2 0.3

)(
0.18 −0.16

−0.16 0.42

)
=

(
0.076 −0.012

−0.012 0.094

)

We can see that the assumption λ(1)
1

≤ λ(2)
k

even if k = 2 does not

imply λ(1)
i

≤ λ(2)
i

for i = 1, 2 (see Eq. (2), Theorem 1):

λ(1)
1

= 0.5 < 0.7 = λ(2)
1

,

λ(1)
2

= 0.1 < 0.2 = λ(2)
2

,

λ(1)
1

= 0.5 > 0.2 = λ(2)
2

.

Example 4 bellow reveals that the commutativity of �1 and �2 is

not superfluous in the statement of Theorem 2.

Example 4. Let us consider �1 =
(

0.05 0
0 0.1

)
and �2 =

(
0.6 0.2
0.2 0.3

)
,

with λ(1)
2

= 0.05, λ(1)
1

= 0.1 and λ(2)
2

= 0.2, λ(2)
1

= 0.7. These eigen-

values satisfy λ(1)
1

≤ λ(2)
2

and �1 and �2 matrices are not com-

mutable:

�1 �2 =
(

0.03 0.01
0.02 0.03

)
�=

(
0.03 0.02
0.01 0.03

)
= �2 �1

Let M ∈ M2×2 be a specific profile, M =
(

4 60
0 0

)
. The Mahalanobis

dissensus measures for M associated with �1 and �2 produce

δ�1
(M) = 360.8 ≤ 14, 777.14 = δ�2

(M). Therefore it is not true that

δ�1
(M) ≥ δ�2

(M) holds throughout.

Theorems 1 and 2 can be extended to r positive definite matrices

�1, . . . ,�r as a matter of course.

Apart from Theorems 1 and 2, the following corollary reveals

that the Mahalanobis dissensus measure associated to � is confined

within bounds depending only on the extreme eigenvalues of �.

Corollary 1. Let � ∈ Mk×k be a positive definite matrix with eigenval-

ues λ1 ≥ ��� ≥ λk, it is verified

δλ1I(M) ≤ δ�(M) ≤ δλkI(M)

or equivalently

1

λ1

· δI(M) ≤ δ�(M) ≤ 1

λk

· δI(M)

for each N and for each M ∈ MN×k.

Proof 6. This result is straightforward from Theorem 2. Observe that

such Theorem can be applied because λkI (resp., λ1I) and M are com-

mutable matrices and the eigenvalues of the diagonal matrix λkI

(resp., λ1I) are all equal to λk (resp. λ1). Proposition 2 is used. �

Fig. 1 illustrates the previous corollary regarding the distances

used for δλ1I, δ� and δλkI . We can observe that all points on the ellipse

have the same Mahalanobis distance to point A, namely d� . More-

over, distance d� is always between the values of the corresponding

distances dλ1I and dλkI .

5. Discussion on practical application using a real example

In this section we fully develop a real example. It aims at giving

an explicit application of our proposal and discussing some of its fea-

tures.

We are interested in assessing the cohesiveness of the forecasts

of various magnitudes for the Spanish Economy in 2014: GDP (Gross

Domestic Product), Unemployment Rate, Public Deficit, Public Debt

and Inflation. These forecasts have been published by different in-

stitutions and organizations, and each one was made at around the

same time. Specifically, three waves of forecasts were published in

14
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Table 1

Forecasts for several magnitudes for the Spanish Economy for the year 2014 pub-

lished in Spring of 2013.

GDP U. Rate P. Deficit P. Debt Inflation

IMF 0.70 26.40 −6.90 97.60 1.50

OECD 0.40 28.00 −6.40 97.00 0.40

European Commission 0.90 26.40 −7.00 91.30 0.80

BBVA research 0.90 26.40 −5.70 96.30 1.20

FUNCAS 0.50 26.00 −4.60 99.20 1.60

Abbreviations: Unemployment Rate (U. Rate), Public Deficit/Debt (P. Deficit/Debt),

Banco Bilbao Vizcaya Argentaria Reseach (BBVA Research), Fundación de las Cajas

de Ahorros (FUNCAS).

Table 2

Forecasts for several magnitudes for the Spanish Economy for the year 2014 pub-

lished in Autumn of 2013.

GDP U. Rate P. Deficit P. Debt Inflation

IMF 0.20 26.70 −5.80 99.10 1.50

OECD 0.50 26.30 −6.10 98.00 0.50

European Commission 0.50 26.40 −5.90 99.90 0.90

BBVA Research 0.90 25.60 −5.80 98.50 1.10

FUNCAS 1.00 25.90 −5.90 100.50 1.30

Abbreviations: Unemployment Rate (U. Rate), Public Deficit/Debt (P. Deficit/Debt),

Banco Bilbao Vizcaya Argentaria Reseach (BBVA Research), Fundación de las Cajas

de Ahorros (FUNCAS).

Table 3

Forecasts for several magnitudes for the Spanish Economy for the year 2014 pub-

lished in Spring of 2014.

GDP U. Rate P. Deficit P. Debt Inflation

IMF 0.90 25.50 −5.89 98.80 0.50

OECD 1.00 25.40 −5.50 98.30 0.10

European Commission 1.10 25.50 −5.60 103.80 0.10

BBVA Research 1.10 25.10 −5.80 98.40 1.10

FUNCAS 1.20 25.10 −6.00 100.00 0.10

Abbreviations: Unemployment Rate (U. Rate), Public Deficit/Debt (P. Deficit/Debt),

Banco Bilbao Vizcaya Argentaria Reseach (BBVA Research), Fundación de las Cajas

de Ahorros (FUNCAS).

the Spring of 2013 (Table 1), Autumn of 2013 (Table 2) and Spring of

2014 (Table 3).

We intend to measure the cohesiveness of the aforementioned

predictions. Since they are expressed by cardinal valuations, we need

to go beyond the traditional analyses referred to in this paper. To this

purpose, we first gather the data corresponding to Tables 1–3 in the

profiles M(S), M(A), M(lS) ∈ M5×5, respectively. Next, we select a suit-

able reference matrix and finally we make the computations of the

Mahalanobis dissensus measures.

5.1. Reference matrix

Once the profiles have been fixed, the following step to compute

their Mahalanobis dissensus measures is to avail oneself of a suit-

able reference matrix �. The choice of such a matrix can easily raise

controversy. Nevertheless, we can learn from the role of the � ma-

trix in the Mahalanobis distance from a statistical point of view. This

matrix contains the variances and covariances among the statistical

variables, therefore, those characteristics are brought into play in this

distance. We recall that covariances (or corresponding correlations)

among variables reveal their interdependence. In statistics, this �

matrix is usually unknown and it is estimated from a sample. One ex-

ception is the unlikely case when the data are generated by a known

multivariate probability distribution. This is not the case of our ex-

ample.

Therefore we employ a reference matrix � that captures the vari-

ances and covariances among the macroeconomic magnitudes of the

Table 4

Past data for the Spanish Economy (2001–2012). Source: Spanish

National Statistics Institute (INE) and Bank of Spain.

Year GDP U. Rate P. Deficit P. Debt Inflation

2001 3.70 10.55 0.50 55.60 2.70

2002 2.70 11.47 0.20 52.60 3.50

2003 3.10 11.48 0.30 48.80 3.00

2004 3.30 10.97 0.10 46.30 3.00

2005 3.60 9.16 –1.30 43.20 3.40

2006 4.10 8.51 –2.40 39.70 3.50

2007 3.50 8.26 –1.90 36.30 2.80

2008 0.90 11.33 4.50 40.20 4.10

2009 –3.70 18.01 11.20 53.90 –0.30

2010 –0.30 20.06 9.70 61.50 1.80

2011 0.40 21.64 9.40 69.30 3.20

2012 –1.40 25.03 10.60 84.20 2.40

Table 5

Correlations between macroeconomic magnitudes for historial data.

GDP U. Rate P. Deficit P. Debt Inflation

GDP 1.00 –0.81 –0.94 –0.59 0.73

U. Rate –0.81 1.00 0.93 0.92 –0.46

P. Deficit –0.94 0.93 1.00 0.75 –0.60

P. Debt –0.59 0.92 0.75 1.00 –0.30

Inflation 0.73 –0.46 –0.60 –0.30 1.00
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Fig. 2. A depiction of the correlation matrix of the Spanish macroeconomic data from

2001 to 2012.

Spanish Economy. It seems natural to produce such a matrix from

historical macroeconomic data corresponding to the issues under in-

spection. Table 4 contains such recorded data, and Table 5 gives the

corresponding correlation coefficients. 7 These values are depicted

in Fig. 2. Each ellipse represents the correlation between a pair of

variables. The ellipses slant upward (resp., downward) show a pos-

itive (resp., negative) correlation. Moreover, the narrower the ellipse

7 Given two vectors X = (x1, . . . , xn)
′ and Y = (y1, . . . , yn)

′ with x and y their respec-

tive means, the correlation coefficient between X and Y is computed by cor(X,Y ) =∑n
i=1(xi − x)(yi − y)√∑n

i=1(xi − x)2
√∑n

i=1(yi − y)2
.
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Table 6

Dissensus between pairs of agents for the profiles of forecasts published in Spring of

2013 (in descending order), Autumn of 2013 and Spring of 2014.

Spring Autumn Spring

2013 2013 2014

OECD FUNCAS 23.18 2.85 0.27

European Comm. FUNCAS 19.65 1.21 0.61

IMF FUNCAS 9.31 3.63 1.15

OECD BBVA Research 8.05 2.50 2.04

European Comm. BBVA Research 5.62 1.25 2.86

IMF OECD 5.24 2.76 0.93

IMF European Comm. 4.87 1.47 2.62

BBVA Research FUNCAS 4.52 0.12 2.10

IMF BBVA Research 3.31 4.11 0.86

OECD European Comm. 0.79 0.60 1.61

the stronger correlation represented. For example, the pair formed by

GDP and Public Deficit holds the strongest negative correlation.

On the basis of Table 4, we compute the corresponding variance-

covariance matrix �8.

� =

⎛
⎜⎜⎝

6.11 −11.49 −12.43 −20.19 2.03
−11.49 32.74 28.43 72.42 −2.97
−12.43 28.43 28.41 55.41 −3.60
−20.19 72.42 55.41 190.52 −4.73

2.03 −2.97 −3.60 −4.73 1.28

⎞
⎟⎟⎠

5.2. Computation of the dissensus

Now we calculate the Mahalanobis dissensus measures associ-

ated with � for the profiles of the forecasts for the Spanish Economy,

namely, M(S), M(A) and M(lS).

We obtain the following Mahalanobis dissensus measures associ-

ated with the aforementioned �:

δ�(M(S)) = 8.45, δ�(M(A)) = 2.05, δ�(M(lS)) = 1.51.

Note that the measure of the dissensus decreases along the time.

This is what we intuitively expect, since the latter forecasts rest on

more accurate and factual information.

Apart from the measure of the cohesiveness of the profiles, our

proposal also produces a measure of divergence among the evalua-

tions of different agents on a set of issues. We can answer questions

like “Are the predictions of the European Commission for the Spanish

Economy similar to the predictions of the BBVA Reseach?” or “Is the pre-

vious comparison more or less similar than the comparison between the

predictions of the BBVA Research vs. the predictions of the IMF?”. Table 6

provides these items for comparison.

5.3. Other simpler approaches: drawbacks or limitations

The choice of the reference matrix is a key point in the applica-

tion of the Mahalanobis dissensus measure. As an explanatory exer-

cise in this subsection we discuss on the more simplistic approaches

where naive reference matrices are employed. If we use the identity

matrix as the reference matrix (for example, because we lack data to

make a better inference), then we get a Mahalanobis dissensus mea-

sure which gives the same importance to the differences in all the

issues (see Section 3.1). However the choice of the identity matrix

as the reference matrix discards much relevant information. We note

the variance of the Public Debt is 190.52, while Inflation has a vari-

ance of 1.28 (see �). So, a difference of one unit in the forecasts from

two agents does not signify the same if such a difference corresponds

to Inflation or to Public Debt.

8 Let X be a n × k matrix whose columns have means Xi, i = 1, . . . , k. The cells of the

variance-covariance matrix are �i j = 1

n − 1

n∑
r=1

(xri − Xi)(xr j − X j ).

Table 7

Dissensus for several profiles of economic forecasts for the Spanish Economy

for the year 2014. Data published in Spring of 2013, Autumn of 2013 and in

Spring of 2014.

Profiles

M(S) M(A) M(lS)

Reference matrix Spring 2013 Autumn 2013 Spring 2014

� δ� 8.45 2.05 1.51

Diagonal δ�σ
0.61 0.29 0.37

Identity δI 21.59 2.97 11.20

We could alternatively employ as the reference matrix, the diago-

nal matrix with the variances of the issues, that is,

�σ = diag(6.11, 32.74, 28.41, 190.52, 1.28).

In this case, we remove the effects of the interdependence among the

economic magnitudes on the dissensus measure.

In order to check that an inconvenient choice of the reference ma-

trix easily produces misleading conclusions. Table 7 shows the dis-

sensus measures derived from the three matrices mentioned above,

�, I and �σ . The dissensus δ� is decreasing along time as previously

reported. This intuitively appealing feature is not captured when we

utilize simpler matrices. Consequently, introducing corrections due

to variances or to cross-effects is crucial for a reliable final analysis.

6. Concluding remarks

We explore the problem of measuring the degree of cohesiveness

in a setting where experts express their opinions on alternatives or

issues by means of cardinal evaluations. We use the general concept

of dissensus measure and introduce one particular formulation based

on the Mahalanobis distance for numerical vectors, namely the Ma-

halanobis dissensus measure.

We provide some properties which make our proposal appealing.

We emphasize that the Mahalanobis dissensus measure on the pro-

files with k issues or alternatives is scale-independent for each issue

and it accounts for cross-relations of issues. In addition, the compari-

son between different Mahalanobis dissensus measures can be made

through the eigenvalues of their associated matrices.

We illustrate our proposal with a real numerical application about

forecasts for several magnitudes for the Spanish Economy. We discuss

the relevance of the choice of the reference matrix in this context.
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Appendix A. Proofs of properties in Section 3.2

Proof of property 1. Neutrality. Let us first prove sufficiency. If � =
diag{λ, . . . , λ} for a value λ > 0, the thesis is straightforward from the

Definition 3.

Let us now prove necessity. Due to the fact that δ� verifies

neutrality for any profile M ∈ MN×k and for any permutation π of

{1, . . . , k}
δ�(M) = δ�(π M),
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it must be deduced � = diag{λ, . . . , λ} for a value λ > 0.

Let M ∈ M2×k be a particular profile such that M =
(

M1

M2

)
.

The dissensus measure for M ∈ M2×k is given by δ�(M) = (M1 −
M2)�−1(M1 − M2)t according to Definition 3. If M is permuted by

means of π , we obtain the matrix π M ∈ M2×k and consequently its

dissensus measure is δ�(π M) = (π M1 −π M2)�−1(π M1 −π M2)t .

According to Point 10 in Appendix B, we can write π M = MPπ , be-

ing Pπ ∈ Mk×k the corresponding permutation matrix. Consequently,

δ�(π M) = (M1Pπ − M2Pπ )�−1(M1Pπ − M2Pπ )t

= (M1 − M2)Pπ�−1Pt
π (M1 − M2)

t .

Since δ� verifies neutrality, δ�(M) = δ�(π M) for any M ∈ M2×k,

�−1 = Pπ�−1Pt
π .

Using the spectral decomposition (see Appendix B, Points 15 and

16) �−1 can be written as �−1 = �D−1
λ

�t for a unique orthogonal

matrix �. Therefore

�−1 = Pπ�−1Pt
π = Pπ�D−1

λ
�t Pt

π .

Observe that the matrix Pπ� is orthogonal because it is the prod-

uct of two orthogonal matrices. Since the spectral decomposition as-

sures that � is unique, it must be

� = Pπ�

for every Pπ ∈ Mk×k permutation matrix. Note that this equation

implies that performing any permutation of the rows of � pro-

duces �.

Therefore � must be the identity matrix, i.e., � = I.

We can now deduce

�−1 = �D−1
λ

�t = D−1
λ

,

�−1 = Pπ�D−1
λ

�t Pt
π = Pπ D−1

λ
Pt
π .

Thus we conclude that � is a diagonal matrix.

Let us now prove that the diagonal elements of � = Dλ are all

equal.

From the above equalities of �−1, it is verified D−1
λ

= Pπ D−1
λ

Pt
π ,

for any permutation π of {1, . . . , k}.

For the particular permutation matrix

Pπ =

⎛
⎜⎜⎝

0 1 · · · 0
1 0 · · · 0
...

...
. . .

...
0 0 · · · 1

⎞
⎟⎟⎠,

we obtain Pπ D−1
λ

Pt
π = diag{λ−1

2
, λ−1

1
, . . . , λ−1

k
} and given that D−1

λ
=

Pπ D−1
λ

Pt
π , it must be λ1 = λ2. A routine modification of the argument

proves λ1 = λ j, j = 3, . . . , k. �

Proof of property 2. Oneness. Let N be a fixed value. We take a pro-

file M ∈ MN×k with Mi = 0 for i = 2, . . . , N and M1 = x ∈ Rk any row

vector. For this particular profile the hypothesis δ�1
(M) = δ�2

(M)

reduces to d�1
(x, 0) = d�2

(x, 0). It means that, x
(
�−1

1
− �−1

2

)
xt = 0

and
(
�−1

1
− �−1

2

)
is a non-negative definite matrix.

Let cij be the elements of the matrix
(
�−1

1
− �−1

2

)
. Consider-

ing the ith row vector of the canonical base ei = (0, . . . , 1, . . . , 0)

then, ei

(
�−1

1
− �−1

2

)
et

i
= cii = 0. Therefore c11 = · · · = ckk = 0 and

trace
(
�−1

1
− �−1

2

)
= 0. As a consequence, using Appendix B (Point

13), �1 = �2. �

Proof of property 3. Cardinal transformations. Let a = (a1, . . . , ak)
t

be a column vector and B = diag(b1, . . . , bk) be a diagonal matrix. The

affine transformation of the profile M ∈ MN×k is M∗ = 1N at + M B,

M∗ ∈ MN×k. Its columns are defined by M∗ j = a j · 1N + b j · M j and its

rows are defined by M∗
i

= (a1 + b1Mi1, . . . , ak + bkMik) = a + Mi B .

Let �∗ = B�Bt be the � matrix updated according to the affine

transformation. Then, all elements σ ∗
i j

of �∗ and all elements σ ij of �

are related by σ ∗
i j

= bib jσi j . Due to the fact that B is a diagonal matrix,

B = Bt and (�∗)−1 = B−1�−1B−1. We now proceed to compute the

Mahalanobis distance under the previous remarks:

d�∗ (M∗
i , M∗

j ) = (M∗
i − M∗

j )(�
∗)−1(M∗

i − M∗
j )

t

= (a + MiB−a−MjB)(B�Bt )−1 (a + MiB−a−MjB)t

= (Mi − Mj) BB−1�−1B−1B (Mi − Mj)
t

= (Mi − Mj)�
−1(Mi − Mj)

t

= d�(Mi, Mj).

Based on the previous distance, we obtain:

δ�∗ (M∗) = 1

C2
N

·
∑
i< j

d�∗ (M∗
i , M∗

j ) = 1

C2
N

·
∑
i< j

d�(Mi, Mj) = δ�(M)

�

Proof of property 4. Replication monotonicity. Let us compute the

Mahalanobis dissensus measure for M�M.

δ�(M � M) = 1

C2
2N

·
2N∑
i=1

2N∑
j=1
i< j

d�((M � M)i, (M � M) j)

= 1

C2
2N

·

⎛
⎝ N∑

i=1

N∑
j=1
i< j

d�(Mi, Mj) +
N∑

i=1

2N∑
j=N+1

d�(Mi, Mj)

⎞
⎠

+ 1

C2
2N

·

⎛
⎝ 2N∑

i=N

2N∑
j=1
i< j

d�(Mi, Mj)

⎞
⎠ = 1

C2
2N

· C2
N · δ�(M)

+ 1

C2
2N

·
N∑

i=1

N∑
r=1

d�(Mi, MN+r)

+ 1

C2
2N

·
N∑

i=1

N∑
j=1
i< j

d�(Mi, Mj)

= 1

C2
2N

·
(

4C2
N · δ�(M)

)
=

(
2N − 2

2N − 1

)
· δ�(M)

Therefore

δ�(M � M) =
(

2N − 2

2N − 1

)
· δ�(M)

and in particular

δ�(M � M ) > δ�(M).

�

Proof of property 5. Splitting the set of alternatives. We set X =
I1 ∪ I2 = {x1, . . . , xr} ∪ {xr+1, . . . , xk} as a partition of the alternatives.

Given � =
(
�11 0

0 �22

)
, where �11 ∈ Mr×r , �22 ∈ M(k−r)×(k−r) , for

each profile M = (MI1 , MI2 ) where MI1 ∈ MN×r , MI2 ∈ MN×(k−r) . Re-

calling Point 5 in Appendix B

�−1 =
(

�−1
11

0

0 �−1
22

)
.

We are now in a position to calculate d�(Mi, M j), the Maha-

lanobis distance between a pair of agents i and j:

d�(Mi, Mj) = (MI1
i

− MI1
j
)�−1

11 (MI1
i

− MI1
j
)t

+ (MI2
i

− MI2
j
)�−1

22 (MI2
i

− MI2
j
)t

= d�11
(MI1

i
, MI1

j
) + d�22

(MI2
i
, MI2

j
).
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Using Definition 3, the Mahalanobis dissensus measure on M as-

sociated with � is given by

δ�(M) = 1

C2
N

·
∑
i< j

d�(Mi, Mj)

= 1

C2
N

·
∑
i< j

(
d�11

(MI1
i
, MI1

j
) + d�22

(MI2
i
, MI2

j
)
)

= δ�11
(MI1 ) + δ�22

(MI2 ). (A.1)

It is easy to check that this property holds true for any size of

the partition. We set X = I1 ∪ I2 ∪ . . . ∪ Is as a partition of the al-

ternatives. Considering not cross-effects among the subsets of the

alternatives, the � ∈ Mk×k matrix has a block diagonal form, � =
diag(�11, . . . ,�ss). Analogously, a profile M ∈ MN×k can be written

as M = (MI1 , MI2 , . . . , MIs ). Then

δ�(M) =
s∑

i=1

δ�ii
(MIi ).

�

Proof of property 6. Adding alternatives. The proof is straightfor-

ward from Eq. (A.1). �

Proof of property 7. Adding agents to the society. Let M ∈ MN×k be

a profile on X of the society N, M̄ ∈ M(N+1)×k an expansion of M by

adding the evaluations of a new agent, M̄N+1. Then

δ�(M̄) = 1

C2
N+1

·
∑
i< j

d�(M̄i, M̄ j) = 1

C2
N+1

·
N+1∑
i=1

N+1∑
j=1
i< j

d�(M̄i, M̄ j)

= 1

C2
N+1

·

⎛
⎝ N∑

i=1

N∑
j=1
i< j

d�(Mi, Mj) +
N∑

i=1

d�(Mi, M̄N+1)

⎞
⎠

= 1

C2
N+1

·
(

C2
N · δ�(M) +

N∑
i=1

d�(Mi, M̄N+1)

)

= N − 1

N + 1
· δ�(M) + 1

C2
N+1

·
N∑

i=1

d�(Mi, M̄N+1).

Now we have to minimize δ�(M̄). Obviously, the vector which

minimizes δ�(M̄) is the vector that gathers the opinion of the agent

N + 1 in the profile M̄. For simplicity we recall M̄N+1 like x ∈ Rk. From

δ�(M̄) expression, it is enough to resolve

min
x

N∑
i=1

d�(Mi, x) = min
x

N∑
i=1

(
Mi�

−1Mt
i − 2Mi�

−1xt + x�−1xt
)
,

or equivalently,

min
x

N∑
i=1

(
−2Mi�

−1xt + x�−1xt
)
.

We solve it by the standard method using Point 14 in Appendix B.

∂

∂x

N∑
i=1

(
−2Mi�

−1xt + x�−1xt
)

= −2

N∑
i=1

(
Mi�

−1
)t +

N∑
i=1

2�−1xt

= −2

(
N∑

i=1

�−1Mt
i

)
+ 2N�−1xt

= −2�−1

(
N∑

i=1

Mt
i − Nxt

)
= 0.

N∑
i=1

Mt
i − Nxt = 0 �⇒ x = 1

N

N∑
i=1

Mi.

Due to the fact that the second derivative is 2N�−1, a positive definite

matrix, we have a minimum in x = 1
N

∑N
i=1 Mi. �

Appendix B. Review in matrix algebra

This appendix contains some technical results and background

material of matrix analysis which are particularly useful in this pa-

per. Let A be a real matrix of order n × n.

1. A diagonal matrix A with diagonal elements a11, a22, . . . , ann is

represented as A = diag(a11, a22, . . . , ann).

2. The trace of a matrix A of dimension n × n is the sum of its

diagonal elements, i.e., trace(A) =
n∑

i=1

= aii.

3. Two matrices A and B of dimensions n × n are commutable if

AB = BA. It is also said that they commute. We say that a family

of n × n matrices A1, A2, . . . , Ak is a commutable family if for

any i, j ∈ {1, . . . , k}, Ai and Aj commute.

4. A matrix A is orthogonal if AT A = AAT = I, i.e. A−1 = AT .

5. The inverse matrix of a partitioned matrix A =
(

A11 A12

A21 A22

)
,

where A11 and A22 are non-singular, is(
(A11 − A21A−1

22
A12)

−1 −A11A12 (A22 − A21A−1
11

A12)
−1

−(A22 − A21A−1
11

A12)
−1A21A−1

11
(A22 − A21A−1

11
A12)

−1

)
.

6. Let v be a vector n × 1. A symmetric matrix A is a positive semi-

definite matrix (or non-negative definite matrix) if vt Av ≥ 0

and A is a positive definite matrix if vt Av > 0 for all non-zero

vector v.

7. If there exist a scalar λ and a non-zero vector γ such that

Aγ = λγ , we call them an eigenvalue of A and an associated

eigenvector, respectively.

8. There are up to n eigenvalues λ1, . . . , λn of A. If A is a positive

semi-definite matrix, its eigenvalues are all non-negative.

9. If A is a positive definite matrix, its eigenvalues λ1, . . . , λn are

positive values and A−1 has eigenvalues λ−1
1

, . . . , λ−1
n .

10. A permutation matrix of order n × n is a square matrix ob-

tained from the same size identity matrix by a permutation of

rows. Let π be a permutation of {1, 2, ..., k} and let ei be the ith

vector of the canonical base of Rn, that is, ei j = 1 if i = j, ei j = 0

otherwise. We define the permutation matrix Pπ whose rows

are eπ (i). We rearrange the corresponding rows (resp. columns)

of A using the permutation π by left (resp., right) multiplica-

tion, Pπ A (resp., APπ ). Every row and every column of a per-

mutation matrix contain exactly one nonzero entry, which is

1. A product of permutation matrices is again a permutation

matrix. The inverse of a permutation matrix is again a permu-

tation matrix. In fact, P−1 = Pt .

11. Let A and B be p × p symmetric matrices. If A − B is a non-

negative definite matrix, then it is expressed as A ≥ B. In this

case chi(A) ≥ chi(B) for i = 1, . . . , p, where chi(A) denotes the

ith characteristic root of a symmetric matrix A, arranged in in-

creasing order (Fujikoshi, Ulyanov, & Shimizu, 2010, pp. 497

(A.1.9)).

12. A theorem on a simultaneous diagonizable family of matrices. A

set consisting of symmetric n × n matrices, A1, . . . , Ar, is simul-

taneously diagonalizable by an orthogonal matrix if and only if

they commute in pairs, that is to say, for each i �= j, AiA j = A jAi.

Simultaneously diagonalizable means that there exists an or-

thogonal matrix U such that Ut AiU = Di where Di is a diagonal

matrix for every Ai in the set (HorZXn & Johnson, 2010, pp. 52,

theorem 1.3.19) and (Harville, 1997, pp. 561).

13. If a non-negative definite matrix has trace equal to zero, then

this matrix is zero (Harville, 1997, pp. 238).
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14. If A is a symmetric matrix n × n, x and b are vectors of length

n, then

∂ Ax

∂x
= ∂ xt A

∂x
= A ;

∂ bt x

∂x
= ∂ xbt

∂x
= b ;

∂ xt Ax

∂x
= 2 · Ax.

See Harville (1997).

15. Spectral decomposition. Let � be a k × k real symmetric ma-

trix. There exists an orthogonal matrix � = (γ1, γ2, . . . , γk),

whose column vectors γ i are the normalized eigenvectors of

�, γ t
i
γi = 1. Its eigenvalues are λ1, . . . , λk. It is verified that

�t�� = Dλ where Dλ = diag(λ1, . . . , λk) is a diagonal matrix

with λ1 ≥ λ2 ≥ . . . ≥ λk. In this way � is unique. 9 We note that

� = �Dλ�
t , that is, � = ∑k

i=1 λiγiγ
t
i
.

16. When � is a positive semi-definite matrix, all its characteristic

roots or eigenvalues are real and greater than or equal to zero.

Accordingly, the inverse of � is �−1 = �D−1
λ

�t .
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a b s t r a c t 

The achievement of a ‘consensual’ solution in a group decision making problem depends on experts’ 

ideas, principles, knowledge, experience, etc. The measurement of consensus has been widely studied 

from the point of view of different research areas, and consequently different consensus measures have 

been formulated, although a common characteristic of most of them is that they are driven by the imple- 

mentation of either distance or similarity functions. In the present work though, and within the frame- 

work of experts’ opinions modelled via reciprocal preference relations, a different approach to the mea- 

surement of consensus based on the Pearson correlation coefficient is studied. The new correlation con- 

sensus degree measures the concordance between the intensities of preference for pairs of alternatives 

as expressed by the experts. Although a detailed study of the formal properties of the new correlation 

consensus degree shows that it verifies important properties that are common either to distance or to 

similarity functions between intensities of preferences, it is also proved that it is different to traditional 

consensus measures. In order to emphasise novelty, two applications of the proposed methodology are 

also included. The first one is used to illustrate the computation process and discussion of the results, 

while the second one covers a real life application that makes use of data from Clinical Decision-Making. 

© 2016 Elsevier B.V. All rights reserved. 

1. Introduction 

Consensus reaching is an important component in decision 

making processes, and indeed it plays a key role in the resolu- 

tion process of group decision making problems. One of the most 

significant current discussion in consensus research concerns the 

measurement and achievement of consensus from both a theo- 

retical and applied points of view. On the one hand, establish- 

ing and characterising different methodologies to measure consen- 

sus have been addressed from a Social Choice perspective [1,3,13] . 

On the other hand, within the Decision Making Theory frame- 

work, modelling group decision making problems in order to reach 

a higher level of cohesiveness has been managed successfully 

[15,32,34,38,39,65] . Outside of these main areas, it is possible to 

find other methodologies that use the idea of consensus in differ- 

ent ways to the aforementioned ones, with [41,46] being represen- 

tative examples of these methodologies. 

∗ Corresponding author. 

E-mail addresses: teresag@eio.uva.es (T. González-Arteaga), rocioac@usal.es (R. 

de Andrés Calle), chiclana@dmu.ac.uk (F. Chiclana). 

Despite the productive research on this area, consensus mea- 

surement is still an open-ended research question because the 

methodology to use in each case is an essential component of 

the problem. Up to now most studies on consensus measurement 

have focused on the use of distance/similarity function based mea- 

sures and association measures, respectively. Among the distance 

functions used, and worth highlighting, are the Kemeny, Maha- 

lanobis, Mannhattan, Jacard, Dice and Cosine distance functions 

[1,4,6,17,19,29,31] . Association measures are less widely used than 

distance functions but it is also possible to find the use of some 

of them such as the Kendall’s coefficient, the Goodman-Kruskal’s 

index and the Spearman’s coefficient [18,24,35,44,58] . In this pa- 

per we focus on establishing a new consensus measure following 

the tradition of association measures. Our proposal is based on the 

original statistical correlation concept, the Pearson correlation coef- 

ficient . Therefore, this new measure is an alternative to the use of 

the aforementioned approaches. The Pearson correlation coefficient 

plays an important role in Statistics and Data Analysis and it is ex- 

tensively used as a measure of the degree of linear dependence 

between two variables. It is easy to interpret as well as invariant 

to certain changes in the variables [52,55,57] . Specifically, in this 

paper the notion of dependence among elements from correlation 

http://dx.doi.org/10.1016/j.knosys.2016.06.002 
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coefficient as a measure of the cohesiveness between opinions is 

adopted. This seems natural because the measurement of consen- 

sus resembles the notion of a “measure of statistical correlation”, 

in the sense that the maximum value 1 captures the notion of 

unanimity as a perfect relationship among agents’ preferences (ex- 

perts’ preferences follow the same direction), while the minimum 

value −1 captures the notion of total disagreement (experts’ pref- 

erences present a negative relationship). Furthermore, the higher 

the cohesiveness between experts’ preferences, the more positive 

correlated the preferences are. Similarly, the lower the cohesive- 

ness between experts’ preferences, the more negative correlated 

the preferences are. 

This new consensus measure will be developed within assump- 

tions of experts’ opinions or preferences being expressed by means 

of reciprocal preference relations, a framework that is currently of 

interest to the research community in decision theory under un- 

certainty [7,27,28,45] . Under reciprocal preference relations, on the 

one hand and as it was mentioned above, the new proposed ap- 

proach inherits advantages of previous approaches based on tradi- 

tional distance/similarity and association measures. On the other 

hand, maximum consensus traditionally represents the case when 

experts provide the same preference intensities for each possible 

pair of alternatives. This, though, is not the only possible scenario 

of maximum consensus. Indeed, the proposal here put forward ad- 

dresses this issue satisfactorily because maximum possible cohe- 

siveness or consensus between experts’ opinions does not neces- 

sary imply that all reciprocal preference relations have to coincide, 

and therefore all experts do not necessary need to have the same 

preference intensities in all possible pairs of alternatives. It is suf- 

ficient, though, that experts rank alternatives in the same way. To 

support all these claims, a set of properties verified by the new 

proposed measure of consensus, the correlation consensus degree , 

are proved. These properties ensure the suitability of the correla- 

tion consensus degree. Furthermore, in order to emphasise novelty, 

two applications of the proposed methodology are also included. 

The first one is used to illustrate the computation process and dis- 

cussion of the results, while the second one covers a real life ap- 

plication that makes use of data from Clinical Decision-Making. 

The rest of the paper is organised as follows. Section 2 con- 

tains a brief overview of the different approaches in literature to 

measure group cohesiveness. The basic notation and preliminaries 

are presented in Section 3 . Section 4 provides the new approach 

to consensus measurement based on the Pearson correlation coef- 

ficient. In Section 5 , properties of the new correlation consensus 

degree are studied. Section 6 presents two practical applications of 

the proposed methodology. Finally, some concluding remarks and 

future research are presented in Section 7 . 

2. Consensus measurement in the literature 

A considerable amount of literature has been published on 

measuring and reaching consensus in group decision making prob- 

lems. Consensus measurement is a prominent and active research 

subject in several areas such as Social Choice Theory and Decision 

Making Theory. A brief overview of how this issue has been ad- 

dressed in recent literature from the aforementioned research ar- 

eas is provided. 

From the Social Choice Theory, the first serious discussions 

and analysis of consensus measurement from an Arrovian per- 

spective emerged with Bosch’s PhD Thesis [13] , where both ab- 

solute and intrinsic measures of consensus were proposed, anal- 

ysed and axiomatically characterised. From the point of view of 

considering consensus among a family of voters, McMorris and 

Powers [48] characterised consensus rules defined on hierarchies, 

while García-Lapresta and Pérez-Román [29] focused on how to 

measure consensus using complete preorders on alternatives and 

introduced a class of consensus measures based on seven well- 

known distances. Subsequently, Alcalde-Unzu and Vorstatz in 

[1] characterised a family of linear and additive consensus mea- 

sures, whereas in [2] new ways to measure the similarity of pref- 

erences in a group of individuals were suggested. Alcantud, de An- 

drés Calle and Cascón [3] studied and characterised a class of con- 

sensus measure, called referenced consensus measure , that permits 

to produce a numerical social evaluation from purely ordinal indi- 

vidual information. This measure has to be specified by means of a 

voting mechanism and a measure of agreement between profiles of 

orderings and individual orderings. Moreover, Alcantud, de Andrés 

Calle and Cascón in [5] contributed to the formal and computa- 

tional analysis of the aforementioned referenced consensus mea- 

sure by focusing on two relevant and specific cases: the Borda and 

the Copeland rules under a Kemeny-type measure. There are, how- 

ever, situations where each member of a population classifies a 

list of options as either acceptable or non-acceptable; either agree 

or disagree, etc., and therefore generating a dichotomous prefer- 

ence structure. Under this assumption, Alcantud, de Andrés Calle 

and Cascón [4] proposed the concept of approval consensus mea- 

sure and gave axiomatic characterisations of two generic classes 

of such approval consensus measures. Alcantud, de Andrés Calle 

and González-Arteaga [6] introduced the use of the Mahalanobis 

distance for the analysis of the cohesiveness of a group of com- 

plete preorders and proved that arbitrary codifications of the pref- 

erences are incompatible with their formulation although affine 

transformations permit to compare profiles on the basis of such 

proposal. Finally, it is worth mentioning a distance-based approach 

to measure the degree of consensus considering approval informa- 

tion about alternatives as well as the rankings of them suggested 

by Erdamar et al. in [25] . 

From the Decision Making Theory, a considerable amount of 

contributions have been made since the 1980’s. As such, it is worth 

mentioning the first preliminary work on reaching consensus and 

its measurements carried out by Kacprzyk and Fedrizzi [42] , in 

which the concept of “degree of consensus” in the sense of ex- 

pressing the degree to which “most of” the individuals in a group 

agree to “almost all of” the options. The point of departure of this 

paper being that the experts’ opinions are expressed by fuzzy pref- 

erence relations. Within this framework of preference representa- 

tion, different consensus measurement based on similarity mea- 

sures have been put forward by Herrera-Viedma, et al. [37] and 

Wu and Chiclana [63] for both complete and incomplete informa- 

tion environments. The case when experts’ opinions are expressed 

by means of linguistic assessments has been extensively studied 

and it is worth mentioning the works of Ben-Arieh and Chen [12] , 

Cabrerizo, Alonso and Herrera-Viedma [14] , García-Lapresta, Pérez- 

Román [30] , Herrera, Herrera-Viedma and Verdegay [36] , Herrera- 

Viedma, et al. [40] , Pérez-Asurmendi and Chiclana [53] and Wu, 

Chiclana and Herrera-Viedma [65] . Finally, models to reach consen- 

sus where experts assess their preferences using different prefer- 

ence representation structures (preference orderings, utility func- 

tions, multiplicative preference relations and fuzzy preference re- 

lations) have also been studied and proposed by Dong and Zhang 

[23] , Fedrizzi et al. [26] and Herrera-Viedma, Herrera and Chiclana 

[39] . The problem of measuring and reaching consensus with in- 

tuitionistic fuzzy preference relations and triangular fuzzy comple- 

mentary preference relations have also been covered in detail by 

Wu and Chiclana in [62,64] . 

To conclude, Table 1 summarises and classifies the approaches 

that have been reviewed in this Section. 

3. Preliminaries 

This Section briefly presents the main concepts needed to 

make the paper self-contained, and as such a short review of 
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Table 1 

Summary table of studies related to consensus measures. 

Author(s)/Year Framework Measurement methodology 

Consensus measures in Social Choice Theory 

Bosch [13] , 2005 Ordinal Inf. Based on different distances 

McMorris and Powers [48] , 2009 Ordinal Inf. 

García-Lapresta and Pérez-Román [29] , 2011 Ordinal Inf. 

Alcalde and Vorsatz [1] , 2013 Ordinal Inf. 

Alcantud, de Andrés Calle and Cascón [3] [5] , 2013 Ordinal Inf. 

Alcantud, de Andrés Calle and Cascón [4] , 2013 Dichotomous Inf. 

Alcantud, de Andrés Calle and González-Arteaga [6] , 2013 Ordinal Inf. 

Erdamar, et al. [25] , 2014 Ordinal Inf. 

Alcalde and Vorsatz [2] , 2015 Ordinal Inf. 

Consensus measures in decision making theory 

Kacprzyk and Fedrizzi [42] , 1988 Fuzzy Inf. Based on collective solution 

Fedrizzi et al. [26] , 2010 Fuzzy Inf. 

Herrera-Viedma et al. [37] , 2007 Incomplete Fuz. Inf. 

Herrera, Herrera-Viedma and Verdegay [36] , 1996 Linguistic Inf. 

Herrera-Viedma et al. [40] , 2005 Linguistic Inf. 

Cabrerizo, Alonso and Herrera-Viedma [14] , 2009 Linguistic Inf. 

Wu and Chiclana [62–64] , 2014 Incomplete Fuz. and Ling. Inf. 

García-Lapresta, Pérez-Román and Falcó [30] , 2015 Linguistic Inf. 

Wu, Chiclana and Herrera-Viedma [65] , 2015 Incomplete Linguistic Inf. 

Herrera-Viedma, Herrera and Chiclana [39] , 2002 Different Inf. Based on individual solution 

Ben-Arieh and Chen [12] , 2006 Linguistic Inf. 

Dong and Zhang [23] , 2014 Different Inf. 

the terminology and the concept of fuzzy binary relation are pre- 

sented. The interested reader is advice to consult the following [7–

9,27,28,45,50,60] . 

Definition 1. Let X be a non empty set. A fuzzy binary relation P on 

X is a fuzzy subset of the Cartesian product X × X characterised by 

its membership function μP : X × X −→ [0 , 1] , where μP (x 1 , x 2 ) = 

p i j represents the strength of the relation between x 1 and x 2 . 

Henceforth, X is a finite set X = { x 1 . . . , x n } (n > 2) , whose el- 

ements will be referred to as alternatives. Abusing notation, on 

occasions alternative x i will be represented simply as i for conve- 

nience. 

Definition 2. A reciprocal preference relation on X is a fuzzy bi- 

nary relation P where μP (x i , x j ) = p i j ∈ [0 , 1] represents the par- 

tial preference intensity of element i over j and that verifies the 

following property: p i j + p ji = 1 ∀ x i , x j ∈ X . 

In order to realise the meaning of a reciprocal preference rela- 

tion, we suppose the following common situation: an expert com- 

pares two alternatives x i and x j . In this specific context, the expert 

not only establishes that the alternative x i is preferred to the alter- 

native x j , but also shows her/his intensity of preference between 

them by means of the value p ij . So, the higher p ij , the higher the 

preference intensity of alternative x i over alternative x j . Thus, 0 < 

p ij < 0.5 would indicate that x j is preferred to x i . If p i j = 0 . 5 then 

alternatives x i and x j are equally preferred. When 0.5 < p ij < 1, x i 
is preferred to x j . Moreover, p i j = 0 (resp. p i j = 1 ) indicates that x j 
(resp. x i ) is absolutely preferred to x i (resp. x j ). 

Let P be an n × n matrix that contains all the partial intensity 

degrees of a reciprocal preference relation on the set X : 

P = 

⎛ 

⎜ ⎜ ⎝ 

p 11 p 12 · · · p 1 n 
p 21 p 22 · · · p 2 n 

. . . 
. . . 

. . . 
. . . 

p n 1 p n 2 · · · p nn 

⎞ 

⎟ ⎟ ⎠ 

, 

verifying 0 ≤ p ij ≤ 1; p i j + p ji = 1 for i, j ∈ { 1 , . . . , n } . The set of 

all these matrices n × n is denoted by P n ×n . Here it is also no- 

ticed that a reciprocal preference relation can also be mathemati- 

cally represented by means of a vector, namely the essential vector 

of preference intensities . 

Definition 3. The essential vector of preference intensities, V P , of 

a reciprocal preference relation P = (p i j ) n ×n ∈ P n ×n is the vector 

made up with the 
n (n − 1) 

2 
elements above its main diagonal: 

V P = 

(
p 12 , p 13 , . . . , p 1 n , p 23 , . . . , p 2 n , . . . , p (n −1) n 

)
= 

(
v 1 , . . . , v r , . . . , v n (n −1) / 2 

)
. 

The reciprocity property of reciprocal preference relations al- 

lows the alternative definition of the essential vector of prefer- 

ence intensities of a reciprocal preference relation as the vector 

composed of the preference values below the main diagonal, V P t = 

(p 21 , p 31 , . . . , p n 1 , p 32 , . . . , p n 2 , . . . , p n (n −1) ) . 

4. A novel measurement of consensus based on the Pearson 

correlation coefficient 

Based on the concept of correlation, specifically the Pearson 

correlation coefficient, this section introduces a new consensus 

measure for group decision making problems under reciprocal 

preference relations. First, we recall such a correlation coefficient 

and its properties as necessary to define the new correlation con- 

sensus degree and associated properties. 

4.1. Pearson correlation coefficient 

The measurement of the relationship strength among variables 

is an important issue in Statistical Analysis, and the Pearson corre- 

lation coefficient is a traditional tool used for that purpose [52,55] . 

Definition 4. Given a sample of n pairs of real values 

{ (x 1 , y 1 ) , . . . , (x n , y n ) } , the Pearson correlation coefficient of the 

two n -dimensional vectors x = (x 1 , . . . , x n ) and y = (y 1 , . . . , y n ) , 

cor ( x, y ), is computed as 

cor(x , y ) = 

∑ n 
i =1 (x i − x )(y i − y ) √ ∑ n 

i =1 (x i − x ) 2 
√ ∑ n 

i =1 (y i − y ) 2 

where x = 

1 
n 

∑ n 
i =1 x i and y = 

1 
n 

∑ n 
i =1 y i are the arithmetic means of 

x and y , respectively. 

The standard interpretation of the Pearson correlation coeffi- 

cient states that positive coefficient values point out a positive 
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tendency relationship between x and y i.e., x and y increase (de- 

crease) in the same direction. Negative correlation coefficient val- 

ues point out towards a reverse direction between x and y . In ad- 

dition, the nearer the absolute correlation coefficient value is to 1, 

the stronger and more linear the tendency is. The Pearson correla- 

tion coefficient verifies the following well-known properties [57] : 

1. cor(x , y ) ∈ [ −1 , 1] ∀ x , y ∈ R 

n . 

2. cor(x , y ) = cor(y , x ) ∀ x , y ∈ R 

n . 

3. cor(x , x ) = 1 ∀ x ∈ R 

n . 

4. If cor(x , y ) = 1 then there exists a perfect positive linear cor- 

relation between x and y , i.e. ∃ a ∈ R , b ∈ R 

+ : y = a · 1 + b · x 

where 1 = (1 , . . . , 1) is a vector of n ones. Respectively, if 

cor(x , y ) = −1 there exists a perfect negative linear correla- 

tion between x and y . 

5. Let x ′ = a · 1 + b · x and y ′ = c · 1 + d · y be two vectors with 

a, b, c, d ∈ R , b and d non zero and of equal sign (both posi- 

tive or both negative). Then, cor( x ′ , y ′ ) = cor(x , y ) . 

4.2. A new consensus measure: Correlation consensus degree 

From the Social Choice Theory perspective, the measurement 

of the degree of agreement in a group is associated the range [0, 

1], with 0 representing total lack of agreement and 1 unanimous 

agreement [1,4,13] . Also, as aforementioned in Section 1 , the mea- 

surement of the degree of cohesiveness in a group has been based 

on the notion of distance or similarity between opinions or pref- 

erences of the members of such group. In this paper, a new way 

to measure the degree of consensus in a group based on the Pear- 

son correlation coefficient, the correlation consensus degree ( C C D ), 

is proposed within the framework of opinions on a set of elements, 

alternatives or options being represented by reciprocal preference 

relations. 

A set of agents or experts will be represented by a finite sub- 

set E = { 1 , 2 , ..., m } of natural numbers, m ≥ 2. Assume that the m 

experts provide their pairwise preferences on a finite set of n al- 

ternatives, n ≥ 3, X = { x 1 , ..., x n } using fuzzy preference relations 

{ P (1) , . . . , P (m ) } . As per Definition 3 , the essential vector of prefer- 

ence intensities associated to P ( k ) will be denoted by V P (k ) . 

Definition 5. The correlation consensus degree , C C D , for reciprocal 

preference relations is a mapping C C D : P n ×n × P n ×n → [0 , 1] that 

associates a pair of reciprocal preference relations ( P (1) , P (2) ) the 

following [0,1]-value: 

C C D (P (1) , P (2) ) = 

1 

2 

( 1 + cor(V P (1) , V P (2) ) ) . (1) 

Given P (1) , P (2) ∈ P n ×n , the elaborated expression of C C D (P (1) , 

P (2) ) is 

C C D (P (1) , P (2) ) 

= 

1 

2 

⎛ 

⎝ 1 + 

∑ n (n −1) / 2 
r=1 

(
v (1) 

r −V P (1) 

)(
v (2) 

r −V P (2) 

)
√ ∑ n (n −1) / 2 

r=1 

(
v (1) 

r −V P (1) 

)2 
√ ∑ n (n −1) / 2 

r=1 

(
v (2) 

r −V P (2) 

)2 

⎞ 

⎠ 

where V P (1) = 

1 
n (n −1) / 2 

∑ n (n −1) / 2 
r=1 

v (1) 
r and V P (2) = 

1 
n (n −1) / 2 ∑ n (n −1) / 2 

r=1 
v (2) 

r . 1 

Notice that the higher the value of C C D (P (1) , P (2) ) , the more 

positive correlated the reciprocal preferences of P (1) and P (2) 

are. The maximum possible value C C D (P (1) , P (2) ) = 1 implies that 

1 V P (i ) summarizes the general level of uncertainty of the expert i on the set of 

alternatives. 

cor(V P (1) , V P (2) ) = 1 which, contrary to previous consensus mea- 

sures based on distance/similarity functions, does not necessar- 

ily implies that both reciprocal preference relations coincide. Con- 

sequently, C C D could be 1 even in cases when experts pro- 

vide different preferences, although positive linearly correlated. 

On the other hand, the lower the value of C C D (P (1) , P (2) ) , the 

more negative correlated the reciprocal preference intensities are, 

with C C D (P (1) , P (2) ) = 0 representing the case when preferences 

are negative linearly correlated. The following proposition reflects 

these limit cases: 

Proposition 1. Let P (1) , P (2) ∈ P n ×n be two reciprocal preference re- 

lation matrices. Then C C D (P (1) , P (2) ) = 1 (resp. C C D (P (1) , P (2) ) = 0 ) 

if and only if ∃ a ∈ R , b > 0 (resp. b < 0 ) such that: p (2) 
i j 

= a + b ·
p (1) 

i j 
∀ i < j; p (2) 

i j 
= (1 − a − b) + b · p (1) 

i j 
∀ i > j. 

Proof. Using Eq. (1) , we have that C C D (P (1) , P (2) ) = 1 if and only 

if cor(V P (1) , V P (2) ) = 1 . Property 4 of the Pearson correlation coef- 

ficient ( Section 4.1 ) implies that ∃ a ∈ R , b ∈ R 

+ such that V P (2) = 

a · 1 + b · V P (1) , being 1 = (1 , . . . , 1) a vector of ones with suitable 

dimension, in this cases n (n − 1) / 2 , i.e.: 

p (2) 
i j 

= a + b · p (1) 
i j 

∀ i < j. 

When j < i , reciprocity of preferences means that 

p (2) 
i j 

= 1 − p (2) 
ji 

= 1 − (a + b · p (1) 
ji 

) 

= 1 − (a + b · (1 − p (1) 
i j 

)) = (1 − a − b) + b · p (1) 
i j 

. 

The proof for the case when C C D (P (1) , P (2) ) = 0 is obtained 

accordingly. �

Notice that if the set of alternatives is small, the experts can 

easily rank the alternatives and the possibility that the experts do 

it in a similar way (or opposite way) is high. Then, in this case the 

absolute value of the correlation coefficient tend to be close to 1. 

Meanwhile, when the set of alternatives is large, the experts may 

find it difficult to rank them (see [49] ) and the possibility that the 

experts rank the alternatives in a similar way (or opposite way) 

is low. Then, in this case it is easy that the absolute value of the 

correlation coefficient becomes small. 

The following proposition provides the sufficient condition for 

the correlation consensus degree to coincide for different pairs of 

reciprocal preference relations. 

Proposition 2. Let P (1) , P (2) ∈ P n ×n be reciprocal preference relation 

matrices such that C C D (P (1) , P (2) ) = 1 , then 

C C D (P, P (1) ) = C C D (P, P (2) ) ∀ P ∈ P n ×n . 

Proof. By Proposition 1 , ∃ a ∈ R and b > 0 such that V P (2) = a · 1 + 

b · V P (1) . Applying Property 5 of the Pearson correlation coefficient 

(see Subsection 4.1 ) we have that cor(V P , V P (1) ) = cor(V P , V P (2) ) ∀ P ∈ 

P n ×n and by Definition 5 it is equivalent to C C D (P, P (1) ) = 

C C D (P, P (2) ) ∀ P ∈ P n ×n . �

The measurement of the degree of agreement among the pref- 

erences expressed by two or more experts can be captured by 

using a summary measure like the mean of all possible corre- 

lation consensus degrees between all different pairs of experts’ 

reciprocal preference relations. The use of aggregation functions 

to merge inputs into a single output has been extensively anal- 

ysed in literature [11,28,33,43] . In the Decision Making context, 

the use of aggregation functions to derive the degree of agree- 

ment among a group of experts has been justified (see for example 

[11,29,31,43,47] ). Recall that the main aim of considering aggrega- 

tion functions is to produce an overall output that can be con- 

sidered representative of the aggregated values by incorporating 
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desirable properties. The arithmetic mean has been widely inves- 

tigated and it is considered the most common central tendency 

aggregation function. All these considerations are used to moti- 

vate the definition of the new correlation group consensus mea- 

sure, CD , within a reciprocal preference relation framework. 

Definition 6. Let E be a group of m experts with associated fuzzy 

preference relation relations P (1) , . . . , , P (m ) ∈ P n ×n on a set of al- 

ternatives X . The group consensus degree among the set of experts 

is 

CD (E ) = 

2 

m (m − 1) 

m −1 ∑ 

k =1 

m ∑ 

l= k +1 

C C D ( P (k ) , P (l) ) . 

4.3. Consistency under maximum correlation consensus degree 

Given a reciprocal preference relation on a set of alter- 

natives, the concept of non-dominance degree introduced by 

Orlovsky [51] has been extensively used to rank the alternatives 

[10,23,38,61,63,65,66] . In the following, and in order to improve the 

understanding of the proposed correlation consensus degree, the 

consistency of the correlation consensus degree with Orlovsky’s 

non-dominance degree is proved. Specifically, it is proved that 

when two reciprocal preference relations have a CCD equal to 1 

then their Orlovsky’s non-dominance degree orderings of the set 

of alternatives coincide. First, the concept of non-dominance de- 

gree is provided. 

Given a reciprocal preference relation on a finite set of al- 

ternatives X , P = (p i j ) n ×n ∈ P n ×n , when p ji − p i j > 0 then alter- 

native x i is dominated by alternative x j . Formally, it can be 

stated that alternative x i is dominated by alternative x j at de- 

gree d(x i , x j ) = max { p ji − p i j , 0 } . Thus, the value 1 − d(x i , x j ) = 1 −
max { p ji − p i j , 0 } represents the degree of non-dominance of alter- 

native x i by alternative x j . The degree up to which x i is not domi- 

nated by any of the elements of X is known as the non-dominance 

degree of alternative x i . This is summarised in the following defi- 

nition. 

Definition 7. Let P = (p i j ) n ×n ∈ P n ×n be a reciprocal preference re- 

lation on X . The non-dominance degree is a mapping μND : X −→ 

[0 , 1] such that 

μND (x i ) = min 

j : j 
 = i 

{
1 − d(x i , x j ) 

}
, 

where d(x i , x j ) = max { p ji − p i j , 0 } . 
The aforementioned non-dominance degree can be used to pro- 

vide a total ordering of alternatives by means of the following 

rule: 

x i � x j ⇔ μND (x i ) ≥ μND (x j ) . 

Notice that p i j − p ji = −(p ji − p i j ) , and therefore to compute 

d(x j , x i ) = max { p ji − p i j , 0 } when j > i , we use d(x j , x i ) = 

max 
{
−(p ji − p i j ) , 0 

}
. Now we are in disposition of introduce the 

following result. 

Proposition 3. Let P (1) , P (2) ∈ P n ×n be two reciprocal preference re- 

lation matrices such that C C D (P (1) , P (2) ) = 1 and 2 a + b = 1 . The 

non-dominance based orderings of the set of alternatives derived from 

both reciprocal preference relation matrices are identical. 

Proof. Let P (1) , P (2) ∈ P n ×n such that C C D (P (1) , P (2) ) = 1 . By 

Proposition 1 , ∃ a ∈ R and b > 0 such that p (2) 
i j 

= a + b · p (1) 
i j 

∀ i < 

j and p (2) 
i j 

= 1 − p (2) 
ji 

= 1 − (a + b · p (1) 
ji 

) = 1 − (a + b · (1 − p (1) 
i j 

)) = 

(1 − a − b) + b · p (1) 
i j 

∀ i < j. 

1. Notice that: 

(a) If i < j then 

p (2) 
ji 

− p (2) 
i j 

= [(1 − a − b) + b · p (1) 
ji 

] − [ a + b · p (1) 
i j 

] 

= (1 − 2 a − b) + b · (p (1) 
ji 

− p (1) 
i j 

) 

= b · (p (1) 
ji 

− p (1) 
i j 

) . 

(b) If i > j then 

p (2) 
ji 

− p (2) 
i j 

= [ a + b · p (1) 
ji 

] − [(1 − a − b) + b · p (1) 
i j 

] 

= −(1 − 2 a − b) + b · (p (1) 
ji 

− p (1) 
i j 

) 

= b · (p (1) 
i j 

− p (1) 
ji 

) . 

Thus: 

∀ i, j : p (2) 
ji 

− p (2) 
i j 

= b · (p (1) 
i j 

− p (1) 
ji 

) . 

2. Let us denote by μND (1) (x i ) and μND (2) (x i ) the non- 

dominance choice degree associated to alternative x i ob- 

tained from P (1) and P (2) , respectively. It is: 

μND (2) (x i ) = min 

x j ∈ X 

{
1 − max { p (2) 

ji 
− p (2) 

i j 
, 0 } }. 

Because b > 0 we have that p (2) 
ji 

− p (2) 
i j 

and p (1) 
i j 

− p (1) 
ji 

are 

both negative, both positive or both equal to zero. Therefore, 

it is: 

max { p (2) 
ji 

− p (2) 
i j 

, 0 } = max { b · (p (1) 
i j 

− p (1) 
ji 

) , 0 } 
= b · max { p (1) 

ji 
− p (1) 

i j 
, 0 } . (2) 

Let l be such that 

μND (1) (x i ) = min 

j : j 
 = i 

{
1 − max { p (1) 

ji 
− p (1) 

i j 
, 0 } }

= 1 − max { p (1) 
li 

− p (1) 
il 

, 0 } . 
The following inequalities yield: 

1 − max { p (1) 
li 

− p (1) 
il 

, 0 } ≤ 1 − max { p (1) 
ji 

− p (1) 
i j 

, 0 } 
for j = 1 , . . . , n. 

They can be re-written equivalently as 

max { p (1) 
li 

− p (1) 
il 

, 0 } ≥ max { p (1) 
ji 

− p (1) 
i j 

, 0 } for j = 1 , . . . , n. 

Consequently, 

1 − b · max { p (1) 
li 

− p (1) 
il 

, 0 } ≤ 1 − b · max { p (1) 
ji 

− p (1) 
i j 

, 0 } 
for j = 1 , . . . , n. 

Relation (2) implies that 

μND (2) (x i ) = min 

j : j 
 = i 

{
1 − max { p (2) 

ji 
− p (2) 

i j 
, 0 } }

= 1 − max { p (2) 
li 

− p (2) 
il 

, 0 } . (3) 

3. Finally, let us assume now that 

μND (1) (x i ) ≤ μND (1) (x k ) . 

Then there exist l and s such that 

1 − max { p (1) 
li 

− p (1) 
il 

, 0 } = μND (1) (x i ) ≤ μND (1) (x k ) 

= 1 − max { p (1) 
sk 

− p (1) 
sk 

, 0 } 
The following inequality derives from it: 

1 − b · max { p (1) 
li 

− p (1) 
il 

, 0 } ≤ 1 − b · max { p (1) 
sk 

− p (1) 
sk 

, 0 } . 
Applying again relation (2) and also expression (3) , it can be 

concluded that 

μND (1) (x i ) ≤ μND (1) (x k ) . 

�
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5. Formal properties of the new consensus measure 

As shown in Subsection 4.2 , given a set of m experts E , the fol- 

lowing correlation consensus degree matrix can be computed 

C C D = ( C C D i j ) 

with C C D i j = C C D (P (i ) , P ( j) ) . The following important properties 

are verified: 

Reflexivity : C C D ii = 1 ∀ i. 

The proof is immediate from the properties of the Pearson 

correlation coefficient. This property rules out that the cor- 

relation consensus degree is a distance function, which will 

be pointed out at the end of this section. 

Selfconsensus : C C D i j ≤ C C D ii ∀ i, j. 

In other words, the correlation consensus degree between 

one expert and herself/himself is not lower than the corre- 

lation consensus degree with another expert. This is obvious 

from Definition 5 and the reflexibity property above. 

Reciprocity : It was mentioned in Definition 3 that the essential 

vector of preference intensities of a reciprocal preference re- 

lation may also be defined as the vector with elements the 

preference values below the main diagonal of the reciprocal 

preference relation. Denoting by C C D 

t 
i j 

the corr elation con- 

sensus degree between the reciprocal preference relations 

P ( i ) and P ( j ) using essential vector of preference intensities 

below their main diagonal, respectively, we have that: 

C C D 

t 
i j = C C D i j for i, j = 1 , . . . , m. 

Indeed, because P ( i ) and P ( j ) are reciprocal then we 

have that V 
P (i ) t 

= 1 − V P (i ) and V 
P ( j) t 

= 1 − V P ( j) , respectively. 

Applying Property 4 of the Pearson correlation coeffi- 

cient ( Subsection 4.1 ), it is true that cor(V 
P (i ) t 

, V 
P ( j) t 

) = 

cor(V P (i ) , V P ( j) ) , and consequently it is C C D 

t 
i j 

= C C D i j . 

Symmetry : C C D i j = C C D ji f or i, j = 1 , . . . , n. The proof is 

straightforward from the symmetry property of the Pearson 

correlation coefficient. 

Transitivity under the maximum : If C C D i j = 1 and C C D jk = 1 

then C C D ik = 1 . 

In other words, when an expert has maximum correlation 

consensus degree with two different experts, then these two 

experts have also maximum correlation consensus degree. 

Indeed, from Proposition 1 we have that V P ( j) = a · 1 + b · V P (i ) 

for some a ∈ R and b > 0 and V P (k ) = a ′ · 1 + b ′ · V P ( j) for 

some a ′ ∈ R and b ′ > 0. Consequently, it is: V P (k ) = a ′ · 1 + 

b ′ · (a · 1 + b · V P (i ) ) = a ′ · 1 + b ′ a · 1 + b ′ b · V P (i ) , that is, V P (k ) = 

a ′′ · 1 + b ′′ · V P (i ) and because b ′ ′ > 0 it is C C D ik = 1 . 

Reversibility: The complementary reciprocal preference relation 

of a given reciprocal preference relation P , P , is defined as 

follows: P = (1) n ×n − P . It is: 

C C D (P, P ) = 0 . 

It is obvious that V 
P 

= 1 − V P and therefore applying 

Proposition 1 it is C C D (P, P ) = 0 . 

The correlation consensus degree, C C D , is neither a distance 

function, d , nor a similarity function, s . Firstly, C C D does not verify 

the property returning a zero value when an element is compared 

against itself, i.e. it does not verify d(x, x ) = 0 [22] . Indeed, reflex- 

ivity property implies that C C D (P, P ) = 1 rather than C C D (P, P ) = 0 . 

Secondly, a requirement for a similarity function [16,22] is that the 

similarity between two objects takes value 1 if and only if the two 

objects are equal, i.e. s (x, y ) = 1 iff x = y . This is not the case for 

C C D as two reciprocal preference relations do not necessarily need 

to coincide to have maximum correlation consensus degree, as the 

Illustrative Example 6.1 shows next. 

6. Practical applications and discussion 

In this Section we show the flexibility and applicability of our 

proposal. After discussing the basis of the measure we exemplify 

its use by means of two examples. The first one is an illustrative 

example that shows the various steps in our procedure and the in- 

terpretation of the results. The second one is a real example based 

on patients’ health preferences. 

6.1. An illustrative example 

In this illustrative example we establish the following problem. 

We consider a set X of four alternatives X = { x 1 , x 2 , x 3 , x 4 } and a 

set of four agents or experts E = { 1 , 2 , 3 , 4 } , who provide the fol- 

lowing reciprocal preference relations on X : 

P (1) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 10 0 . 20 0 . 30 

0 . 90 0 . 50 0 . 35 0 . 40 

0 . 80 0 . 65 0 . 50 0 . 45 

0 . 70 0 . 60 0 . 65 0 . 50 

⎞ 

⎟ ⎠ 

P (2) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 15 0 . 25 0 . 35 

0 . 85 0 . 50 0 . 40 0 . 45 

0 . 75 0 . 60 0 . 50 0 . 50 

0 . 65 0 . 55 0 . 50 0 . 50 

⎞ 

⎟ ⎠ 

P (3) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 75 0 . 55 0 . 35 

0 . 25 0 . 50 0 . 25 0 . 15 

0 . 45 0 . 75 0 . 50 0 . 05 

0 . 65 0 . 80 0 . 95 0 . 50 

⎞ 

⎟ ⎠ 

P (4) = 

⎛ 

⎜ ⎜ ⎝ 

0 . 50 0 . 40 0 . 20 0 . 60 

0 . 60 0 . 50 0 . 40 0 . 70 

0 . 80 0 . 60 0 . 50 0 . 80 

0 . 40 0 . 30 0 . 10 0 . 50 

⎞ 

⎟ ⎟ ⎠ 

Once experts’ preference matrices have been described we pro- 

ceed to the computations. 

Selection of essential vectors of intensities of preferences. 

For P (1) the elements above of the main diagonal are: 

P (1) = 

⎛ 

⎜ ⎝ 

0 . 50 0 . 10 0 . 20 0 . 30 

0 . 90 0 . 50 0 . 35 0 . 40 

0 . 80 0 . 65 0 . 50 0 . 45 

0 . 70 0 . 60 0 . 65 0 . 50 

⎞ 

⎟ ⎠ 

Thus, it is 

V P (1) = (0 . 10 , 0 . 20 , 0 . 30 , 0 . 35 , 0 . 40 , 0 . 45) . 

Similarly, the following essential vectors of intensities of 

preferences obtained: 

V P (2) = (0 . 15 , 0 . 25 , 0 . 35 , 0 . 40 , 0 . 45 , 0 . 50) , 
V P (3) = (0 . 75 , 0 . 55 , 0 . 35 , 0 . 25 , 0 . 15 , 0 . 05) , 
V P (4) = (0 . 40 , 0 . 20 , 0 . 60 , 0 . 40 , 0 . 70 , 0 . 80) . 

Computation of the correlation consensus degree matrix. The 

correlation consensus degree of all different pairs of essen- 

tial vectors are computed For example, for correlation coef- 

ficient between V P (1) and V P (2) is: 

cor(V P (1) , V P (2) ) = 

0 . 085 √ 

0 . 085 · √ 

0 . 085 

= 1 . 

Using Eq. (1) , the correlation consensus degree between P (1) 

and P (2) would be C C D (P (1) , P (2) ) = 1 . 

The correlation consensus degree matrix in this case is: 

C C D = 

⎛ 

⎜ ⎝ 

1 1 0 0 . 879 

1 1 0 0 . 897 

0 0 1 0 . 121 

0 . 879 0 . 897 0 . 121 1 

⎞ 

⎟ ⎠ 
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Fig. 1. Plots of essential vectors of intensities of preferences ( Subsection 6.1 ). Top left: case where C C D (P (1) , P (2) ) = 1 . Top right: case where C C D (P (1) , P (3) ) = 0 . On the 

bottom plots, cases where C C D t akes other non-extreme values. 

Table 2 

Control Preference Scale (CPS) [21] . 

Alternatives Description 

x 1 I prefer to make the final selection about which treatment I receive 

x 2 I prefer to make the final selection of my treatment after seriously considering my doctor’s opinion 

x 3 I prefer that my doctor and I share responsibility for deciding which treatment is best for me 

x 4 I prefer that my doctor makes the final decision about which treatment will be used, but seriously considers my opinion 

x 5 I prefer to leave all decisions regarding my treatment to my doctor 

Computation of the group consensus degree. Finally, the aver- 

age of all correlation consensus degrees is computed to de- 

rive the group consensus degree: 

CD (E ) = 

2 

12 

· (1 + 0 + 0 . 879 + 0 + 0 . 879 + 0 . 121) 

= 

2 

12 

· 2 . 879 = 0 . 480 

On discussion, it is worth pointing out the following interesting 

issues arising from the given example: 

• There is one case when the correlation consensus degree be- 

tween two experts is maximum, i.e is equal to 1, which hap- 

pens for the pair of experts e 1 and e 2 ( C C D (P (1) , P (2) ) = 1 ). As 

previously mentioned and this example illustrates, this does not 

necessarily imply that both experts have the same preferences 

on all the possible pairs of alternatives, but that their prefer- 

ences are positive linearly correlated as the top left scatter plot 

of the essential vectors V P (2) versus V P (1) in Fig. 1 shows. Indeed, 

the higher the value of an element in V P (1) , the higher the cor- 

responding element value of V P (2) . So, when one of the expert 

e 1 or e 2 increases her/his preference valuations, the other ex- 

pert does the same and in a perfect linear way. Hence, there 
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Fig. 2. Questionnaire based on CPS. 

Table 3 

Patients’ essential vector of preference intensities. OCD: Obsessive compulsive disorder. p ij is the intensity 

of preference of alternative i versus alternative j . 

Diagnoses Patient Intensities of preferences 

p 12 p 13 p 14 p 15 p 23 p 24 p 25 p 34 p 35 p 45 

Schizophrenia 1 0 .3 0 .2 0 .1 0 .1 0 .4 0 .3 0 .1 0 .5 0 .1 0 .1 

2 0 .4 0 .3 0 .2 0 .1 0 .5 0 .4 0 .1 0 .5 0 .1 0 .1 

3 0 .2 0 .2 0 .2 0 .1 0 .3 0 .2 0 .1 0 .3 0 .1 0 .1 

4 0 .6 1 .0 0 .8 0 .7 0 .9 0 .6 0 .7 0 .3 0 .4 0 .6 

Bipolar disorder 5 0 .6 1 .0 0 .8 0 .7 0 .9 0 .6 0 .7 0 .3 0 .4 0 .6 

6 0 .8 1 .0 0 .9 0 .8 1 .0 0 .8 0 .8 0 .2 0 .3 0 .5 

7 0 .1 0 .1 0 .1 0 .5 0 .5 0 .5 0 .9 0 .5 0 .9 0 .9 

8 0 .6 1 .0 0 .9 0 .7 0 .9 0 .6 0 .8 0 .3 0 .2 0 .6 

OCD 9 0 .1 0 .1 0 .1 0 .5 0 .5 0 .5 0 .9 0 .5 0 .9 0 .9 

10 0 .2 0 .1 0 .3 0 .5 0 .5 0 .5 0 .8 0 .5 0 .7 0 .9 

11 0 .1 0 .2 0 .2 0 .5 0 .6 0 .4 0 .9 0 .5 0 .8 0 .9 

12 0 .1 0 .2 0 .2 0 .5 0 .5 0 .4 0 .8 0 .5 0 .9 0 .9 

exists a maximum concordance between these two experts’ re- 

ciprocal preference relations. 
• Regarding experts e 1 and e 3 , it is noted that cor(V P (1) , V P (3) ) = 

−1 and consequently C C D (P (1) , P (3) ) = 0 . Thus, the disagree- 

ment is maximum. Indeed, when one expert increases his/her 

preferences the other expert does the opposite and in a perfect 

linear way. This is reflected in the top right scatter plot of the 

essential vectors V P (3) versus V P (1) in Fig. 1 . 
• This example also shows a particular instance of 

Propositions 1 and 2 where C C D (P (1) , P (2) ) = 1 . Indeed, 

Proposition 1 states that it is V P (2) = a · 1 + b · V P (1) , which in 

this case results in a = 0 . 05 , b = 1 . The effect is that every 

essential pairwise intensity of preference is shifted to a new 

value using a constant amount. The preference relationship 

between one alternative and the rest of alternatives is essen- 

tially the same both experts, and consequently there is no 

real difference in the degree of agreement between for both 

experts when considering the set of alternatives as a whole. 

Indeed, it is worth remarking that the difference of prefer- 

ences for both experts: p (1) 
13 

− p (1) 
12 

= 0 . 20 − 0 . 10 = 0 . 10 and 

p (2) 
13 

− p (2) 
12 

= 0 . 25 − 0 . 15 = 0 . 10 ; p (1) 
34 

− p (1) 
23 

= 0 . 45 − 0 . 40 = 

0 . 05 and p (2) 
34 

− p (2) 
23 

= 0 . 50 − 0 . 45 = 0 . 05 , etc. are the same 

for all pairs of alternatives compared. Thus, although the fuzzy 

relations P (1) and P (2) are not coincident, they are in the same 

tendency vein and they would lead to the same total ordering 

of the alternatives when the non-dominace degree is applied. 

As for Proposition 2 , it is also true that the correlation consen- 

sus degrees between expert e 1 and experts e 3 and e 4 are the 

same as the correlation consensus degrees between expert e 2 
and experts e 3 and e 4 , respectively. 

6.2. A real application: Concordance among patients’ preferences 

Recent developments in Clinical Decision-Making have led to a 

new interest on patient autonomy and their active involvement in 

decision making. Based on empirical evidences it has been tested 

that patients’ choices related to take responsibility about treatment 

decisions differ among patients. Among others, age, sex, and type 

of clinical problem have been described as factors that can influ- 

ence patients’ choice. Due to these fats, it could be interesting to 

understand better patients’ preferences in Clinical decision-making 

and the factors that could influence them (see e.g., De las Cuevas, 

Peñate and de Rivera [20] , Robison and Thomson [54] , Rodriguez 

et al. [56] and Tang et al. [59] among others). Most studies about 

patients’ decision making preferences have been carried out by 

means of the use of the Control Preference Scale (CPS) introduced by 

Degner [21] . The CPS scale has been validated like an instrument 

clinically relevant to measure patients’ preference roles in health 
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Table 4 

Correlation consensus degree ( C C D ) between pairs of patients. 

P (1) P (2) P (3) P (4) P (5) P (6) P (7) P (8) P (9) P (10) P (11) P (12) 

P (1) 1 .00 0 .98 0 .95 0 .97 0 .39 0 .30 0 .43 0 .41 0 .36 0 .35 0 .36 0 .33 

P (2) 1 .00 0 .97 0 .99 0 .50 0 .39 0 .55 0 .51 0 .26 0 .26 0 .26 0 .23 

P (3) 1 .00 0 .93 0 .54 0 .42 0 .56 0 .56 0 .24 0 .25 0 .26 0 .23 

P (4) 1 .00 0 .47 0 .39 0 .53 0 .48 0 .32 0 .30 0 .30 0 .28 

P (5) 1 .00 0 .95 0 .96 0 .98 0 .28 0 .28 0 .34 0 .29 

P (6) 1 .00 0 .96 0 .95 0 .33 0 .35 0 .38 0 .33 

P (7) 1 .00 0 .96 0 .23 0 .25 0 .28 0 .22 

P (8) 1 .00 0 .26 0 .30 0 .33 0 .27 

P (9) 1 .00 0 .98 0 .99 0 .99 

P (10) 1 .00 0 .98 0 .97 

P (11) 1 .00 0 .99 

P (12) 1 .00 
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Fig. 3. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia ( Subsection 6.2 ) and the best adjusted line. 

care decision making. This scale gathers the level of control that 

patients prefer to have in their own medical decisions by selecting 

one of five possible alternatives, given in Table 2 , when questioned 

“What is the statement that best describe your preferred role in 

decision making?”. 

In order to put in practice our proposal for measuring the co- 

hesiveness among a group of agents or experts, the field experi- 

ment carried out by De las Cuevas, Peñate and Rivera in [20] was 

considered. In this study, the authors examined the concordance 

among psychiatric patients’ preferences by means of a statistical 

approach based on a sample of 507 patients from the Community 

Mental Health Services on Tenerife Island, Spain. Patients were di- 

agnosed by the psychiatrists using the International Classification 

of Diseases and the CPS scale was used to gather patients’ pref- 

erences. For our study, and to facilitate the process and the cal- 

culations, 12 patients were considered with 4 of them were diag- 

nosed with schizophrenia , another 4 with bipolar disorder and other 

4 with obsessive compulsive disorder (OCD). Each patient filled out a 

questionnaire based on the CPS scale adapted to our proposal (see 

Fig. 2 ). Patients had to mark their degree of preference between 

pairs of options described in the CPS scale ( Table 2 above), which 

are considered as the alternatives in our preference framework. 

Once patients’ preferences were gathered ( Table 3 ) we pro- 

ceed to the apply computation process described in the previous 

Illustrative Example 6.1 . Table 4 shows the correlation consensus 

degree between all pairs of patients (only the values i ≤ j are 

shown). Finally, the global consensus degree among all studied 

patients, CD ( patients ) , which measures the coherence among pa- 

tients’ preferences was: 

CD ( patients ) = 0 . 518 

Taking into account the meaning of this measure as previously dis- 

cussed, we can deduce that the low degree of coherence among 

all patients’ preferences indicates heterogeneity among them. This 

fact could well respond to the combination of all patients’ prefer- 

ences without considering their diagnosed disorder. Indeed, when 

the consensus degree is computed within each collective of pa- 

tients, i.e. by distinguishing patients according to their disorder, 

the following values are obtained: 

• For patients suffering from schizophrenia: CD ( schizophrenia ) = 

0 . 963 
• For patients suffering from bipolar disorder: CD ( bipolar ) = 

0 . 961 
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Fig. 4. Scatterplots of essential vectors of intensities of preferences corresponding to patients diagnosed Bipolar disorder ( Subsection 6.2 ) and the best adjusted line. 
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Fig. 5. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed OCD ( Subsection 6.2 ) and the best adjusted line. 

• For patients suffering from obsessive compulsive disorder: 

CD ( OCD ) = 0 . 985 

Figs. 3 , 4 , Fig. 5 highlight the coherence among preferences 

inside the same collective of patients, while Fig. 6 , 7 , and. 8 

highlight the disagreement among patients’ preferences diagnosed 

with different disorders. As it was suspected, the coherence among 

the patients’ preferences for each disorder separately is very high. 

This fact could add to the consideration of the type of disor- 

der as a factor to be taken into account in Clinical Decision- 

Making. 
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Fig. 6. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia versus Bipolar disorder ( Subsection 6.2 ) and the best adjusted 

line. 
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Fig. 7. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Schizophrenia versus OCD ( Subsection 6.2 ) and the best adjusted line. 
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Fig. 8. Plots of essential vectors of intensities of preferences corresponding to patients diagnosed Bipolar disorder versus OCD ( Subsection 6.2 ) and the best adjusted line. 
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7. Concluding remarks and future research 

Research in the area of consensus measurement has advanced 

mainly in Social Choice Theory and Theory of Decision Making. In 

this work, a new consensus measure for reciprocal preference re- 

lations based on the classical definition of the Pearson correlation 

coefficient is studied. This new measure, the correlation consensus 

degree, pursues the measurement of the concordance between the 

intensities of pairwise preference values given by experts, decision 

makers or agents. This work open a new avenue to measure con- 

sensus. The correlation consensus degree between two reciprocal 

preference relations is neither a distance function nor a similarity 

function unlike the traditional consensus measures studied before. 

Nevertheless, the given correlation consensus degree verifies im- 

portant properties that are common either to distances and/or sim- 

ilarities measures as well as additional properties that have been 

described in this work and that are different to traditional consen- 

sus measures properties. The novelty of the proposed correlation 

consensus measure as well as its application is shown with two 

examples. The first of the examples is used to illustrate the compu- 

tation process and discussion of the results, while the second ex- 

ample covers a real life Clinical Decision-Making application. Both 

examples show the versatility and the applicability of the proposed 

measurement of consensus to a variety of real situations. 

A future line of enquiry is the investigation of flexible consen- 

sus reaching processes based on the new correlation consensus de- 

gree. These processes would allow to produce a consensus solu- 

tion by an iterative feedback mechanism accommodated to the this 

specific consensus measurement. We expect to conduct further in- 

vestigations of these issues and report our findings in the future. 
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a b s t r a c t 

We investigate from a global point of view the existence of cohesiveness among experts’ 

opinions. We address this general issue from three basic essentials: the management of 

experts’ opinions when they are expressed by ordinal information; the measurement of 

the degree of dissensus among such opinions; and the achievement of a group solution 

that conveys the minimum dissensus to the experts’ group. 

Accordingly, we propose and characterize a new procedure to codify ordinal information. 

We also define a new measurement of the degree of dissensus among individual prefer- 

ences based on the Mahalanobis distance. It is especially designed for the case of possi- 

bly correlated alternatives. Finally, we investigate a procedure to obtain a social consensus 

solution that also includes the possibility of alternatives that are correlated. In addition, 

we examine the main traits of the dissensus measurement as well as the social solution 

proposed. The operational character and intuitive interpretation of our approaches are il- 

lustrated by an explanatory example. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

A considerable amount of literature has contributed to the research issue of obtaining consensus in group decision mak- 

ing problems. This issue is an active subject in several areas such as Social Choice Theory and Decision Making Theory. 

From the Social Choice perspective several contributions can be emphasized, e.g., [2,4,9,25,26,49] , among others. From the 

Decision Making Theory, it has been successfully tackled by a great amount of contributions, e.g., [28,32,35,36,58] , among 

others. Besides these main areas, there are some other methodologies that proposed different definitions of the consensus 

concept. It is worth mentioning the work of González Jaime et al. [38] and López Molina, De Baets and Bustince [47] . 

Any group decision making problem focused on obtaining consensus involves at least three key pillars. The first one is 

the way in which experts give their opinions on a set of alternatives and how such an information is managed. Once the 

opinions of the agents have been gathered it seems natural to measure how much cohesiveness these opinions generate. 

Thus, the second pillar is to establish a mechanism able to provide such measurements. Apart from determining the degree 
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of consensus among experts the main aim of a group decision making problem is to determine a solution. The better so- 

lution the greater agreement this solution generates among experts. Consequently, supplying a method to achieve a group 

consensus solution is the third pillar. 

We now briefly review the previous literature related to each basic essentials. 

Information formats. Generally speaking, experts can express their opinions by means of ordinal or cardinal information, 

the former being more extensively used in the research issue addressed in this work. Nonetheless, contributions dealing 

with cardinal information include the approaches proposed by Herrera-Viedma, Herrera and Chiclana [36] , González-Pachón 

and Romero [30] and González-Arteaga, Alcantud and de Andrés Calle [26] . The representation of ordinal information has 

been a subject of study for over two centuries for linear orders (see e.g., [3,9] ), weak orders(see e.g., [4,16,24] ) and fuzzy 

preferences (see e.g., [12,22,51,56] , among others). 

Regardless of the experts’ information format, it is necessary to manipulate it in order to make suitable computations. In 

the literature several procedures to codify linear and complete preorders into numerical values can be found (see [7,8,14,25] , 

among others), Borda [8] being the first author to manage ordinal preferences in such way. 

Consensus measurement. This topic was initiated by Bosch [9] from the Social Choice perspective. In this vein McMorris and 

Powers [49] characterized consensus rules defined on hierarchies, while García-Lapresta and Pérez-Román [25] introduced a 

class of consensus measures based on distances. Subsequently, Alcalde-Unzu and Vorsatz [2,3] proposed and characterized a 

family of linear and additive consensus measures based on measuring similarity among preferences. From another point of 

view, Alcantud, de Andrés Calle and Cascón [5,6] introduced the analysis when opinions are dichotomous. 

The use of distance and similarity functions has provided interesting insights about cohesiveness measurement. We high- 

light the role of the Kemeny, Mannhattan, Jacard, Dice and Cosine distance functions (see e.g., [5,13,15,25] ). Moreover, it is 

also possible to apply some association measures to that purpose (see e.g., [14,21,27,33,42,55] ). 

Group consensus solution. Finding the best option or solution from alternatives is the main aim in group decision making 

problems. Recently, various approaches have been developed to solve this problem from a variety of science areas: Opera- 

tional Research (see e.g., [17,20] ), Statistical Analysis (see e.g., [1,23,45] ), Fuzzy Theory (see e.g., [18,46,59] ), and Computational 

Analysis (see e.g., [37,60] ). 

Traditionally, the achievement of a global solution has been considered as an aggregation problem of experts’ opinions 

in order to obtain a social solution. Different methods have been proposed and analyzed for aggregating agents’ opinions 

(preferences in the case of ordinal information) into a social solution. Borda [8] first examined this problem in a voting 

context and Kendall [41] subsequently revised Borda’s method in a statistical framework. 

Other authors also proposed alternative distance-based aggregation rules e.g., Eckert and Klamler [19] , Klamler [43,44] , 

Meskanen and Nurmi [50] , Ratliff [52,53] , and Saari and Merlin [54] , even though Kemeny’s rule [39] could be considered 

as a landmark in aggregation procedures based on distances. Following Kemeny’s rule, Cook and Seiford [14] established 

an equivalence between the Borda-Kendall method [40] and their approach. González-Pachón and Romero [28] developed 

a general framework for distance-based consensus models under the assumption of a generic l p metric. These authors have 

recently designed socially optimal decisions in a consensus scenario [31] . 

Once we have reviewed the related literature we now summarize the main contributions of this paper. 

• We focus on group decision making problems where agents or experts provide their opinions on a set of alterna- 

tives by complete preorders. In this regard, we propose a new codification procedure to transform the original opin- 

ions/preferences of agents into numerical vectors in order to manage them. For the purpose of better understanding this 

process we investigate exactly which vectors are realizations by a canonical codification procedure of generic complete 

preorders. The characterization of the new codification procedure is a key point because it ensures consistency of our 

approach and its use in any methodology. 
• In order to measure the degree of cohesiveness among agents’ preferences, we design an indicator of dissensus for 

a finite collection of complete preorders on a finite set of alternatives based on the Mahalonobis distance, which is 

dependent on a positive definite matrix (the parameter) that captures the importance and possible cross-relations of 

each alternative, namely, the Mahalanobis dissensus measures . Any such indicator ranks the profiles of complete preorders 

(in the form of codified matrices) according to their inherent cohesiveness. The strength of our measurement unlike other 

aforementioned approaches based on distances is the inclusion of the relationships among alternatives. Then, the new 

measure incorporates relevant information that in other way is ignored. Moreover, we investigate the main characteristics 

of the novel measure and prove that a partial order can be naturally induced on the parametric class of all Mahalanobis 

dissensus measures . 
• Then we exploit these measures in order to propose a consensus solution especially designed for profiles of preferences 

on possibly correlated alternatives and to overcome the drawbacks of the aforementioned distance-based methodologies. 

That solution aggregates individual opinions into a social preference on the alternatives by minimizing dissensus with 

respect to the original profile of preferences. In order to facilitate the computation of such compromise solution we 

prove that the problem is equivalent to minimizing the Mahalanobis distance to a single average vector. Whatever the 

statement of the minimization problem, the objective function is restricted to feasible codified vectors, which emphasizes 
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the importance of our characterization for the canonical codification procedure. Some properties of our Mahalanobis 

consensus solution are proven and discussed. 

In addition, an explanatory example illustrates the operational characteristics and intuitive interpretation of our ap- 

proaches to find rankings that best agree with the original opinions. 

This paper is organized as follows. Section 2 is devoted to the problem of transforming ordinal information about indi- 

vidual preferences into numerical vectors as well as essential notation. Section 3 introduces the basic definition of dissensus 

measure and the Mahalanobis class of dissensus measures. Here we also explore their main traits too. In Section 4 we set 

forth the definition of our proposal of Mahalanobis social consensus solutions, prove some of its properties, and solve a 

visually appealing example. Finally, some concluding remarks are pointed out in Section 5 . 

2. Ordinal information 

Most group decision making problems can usually manage different types of information. In this contribution we focus 

on the representation of agents’ opinions by means of rankings allowing ties since most real situations involve such a kind of 

information. Dealing with this type of information necessarily entails determining how it is represented. In the specialized 

literature it is possible to find several approaches or procedures to codify ordinal information into numerical values (see 

[7,8,14,25] , among others). 

Due to the importance of the choice of the codification procedure to accomplish any methodology over ordinal infor- 

mation, it should be relevant to dispose of a consistent codification procedure. Accordingly, in this section we provide and 

characterize a new method to handle ordinal information as well as the basic notation of our proposal. 

2.1. Notation 

Consider a society of agents or experts N = { 1 , 2 , . . . , N} , N > 1. Let X = { x 1 , . . . , x k } be a finite set of k issues, options or 

alternatives | X | ≥ 2. Abusing notation, on occasions we refer to issue x s as issue s for convenience. 

Assume experts grade alternatives by means of complete preorders (also known as weak orders). Technically speaking, 

a complete preorder R on X means a complete and transitive binary relation on X . We write W ( X ) to denote the set of all 

complete preorders on X . 1 

Let R ∈ W ( X ) be a complete preorder on X , then x s �R x k means x s is strictly preferred to x k , x s ∼ R x k means x s and x k are 

equally preferred and x s �R x k means alternative x s is at last as good as x k . For a complete preorder R ∈ W ( X ), let R −1 be the 

inverse of R such that x s �R −1 x k ⇔ x k �R x s for all x s , x k ∈ X . 

A profile P = (R 1 , . . . , R N ) ∈ W (X ) × . . . × W (X ) = W (X ) N of the society N on the set of alternatives X is a collection of N 

complete preorders, where R i represents the preferences of the individual i on the k alternatives for each i = 1 , . . . , N. Given 

a profile P = (R 1 , . . . , R N ) , its inverse is denoted by P 

−1 = (R −1 
1 

, . . . , R −1 
N 

) . 

Any permutation σ of the agents/experts { 1 , 2 , . . . , N} determines a permutation of P by P 

σ = (R σ (1) , . . . . . . , R σ (N) ) . Anal- 

ogously, any permutation π of the alternatives { 1 , 2 , . . . , k } determines a permutation of every complete preorder R ∈ W ( X ) 

such that the permuted profile is denoted by πP = ( π R 1 , . . . . . . , 
π R N ) . We write P (X ) = ∪ N� 1 W (X ) N to denote the set of all 

profiles for arbitrary societies. 

The codification of preferences by numerical vectors has been used extensively in both theoretical and practical situ- 

ations. Borda [8] was first to manage ordinal preferences in such way. His method, known as the “method of marks” or 

“Borda-Kendall method”, has been widely disseminated in several areas. 

Following the Social Choice tradition, the components of a numerical vector represent the rank or priority assigned to 

each alternative, or their average in case of ties. This convention has been exemplified by Black [7] , Cook and Seiford [14] and 

García-Lapresta and Pérez-Román [25] . 

We now introduce notation related to the codification of linear and complete preorders by means of numerical vectors. 

Let R ∈ W ( X ) be a complete preorder on X , a codified complete preorder is a real-valued vector M R = (m 1 , . . . , m k ) where 

m j represents the codification value corresponding to alternative x j . It relates to R in the sense that x i �R x j ⇔ m i ≥ m j . 

A codified profile of P is a N × k real-valued matrix 

M P = 

⎛ 

⎝ 

m 11 . . . m 1 k 

. . . 
. . . 

. . . 
m N1 . . . m Nk 

⎞ 

⎠ 

N×k 

where m ij is the codification value of expert i over the alternative x j . We write M N×k for the set of all N × k real-valued 

matrices. Thus M P = (M R 1 
, . . . , M R N 

) ∈ M N×k produces a unique profile P of complete preorders, although every profile of 

complete preorders can be associated with infinitely many matrices from M N×k . For simplicity, on occasions we refer to M P 
as M . 

1 It is assumed that a linear order on X is an antisymmetric weak order on X . 
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Row i of the profile M P is identified by M i . It describes the codification preferences of expert i over all alternatives, 

M i = M R i 
∈ M 1 ×k . Similarly, column j of the codification profile M P captures the codification of agents’ preferences on the 

alternative j , and it is denoted by M 

j ∈ M N×1 . 

Any permutation σ of the experts { 1 , 2 , . . . , N} determines a codified profile M 

σ = (M σ (1) , . . . , M σ (N) ) ∈ M N×k by permu- 

tation of the rows of M : row i of the profile M 

σ is row σ ( i ) of the profile M ∈ M N×k . Similarly, any permutation π of the 

alternatives { 1 , 2 , . . . , k } determines a codified profile π M ∈ M N×k by permutation of the columns of M ∈ M N×k : column j of 

the profile π M is column π ( j ) of the codification profile M . Notice that M P σ = (M P ) σ and M π P = 

π (M P ) . 

2.2. The canonical codification. Definition and characterization 

In this subsection we define a new way to represent ordinal preferences by numerical vectors, namely, the canonical 

codification . Moreover, we characterize the new codification procedure to associate every profile of complete preorders with 

a unique matrix. Therefore, the use of this particular codification procedure is consistence and it could be used in any 

approach or methodology. Along this section, some illustrative examples are included to put it in practice. 

Definition 1. The canonical codified complete preorder associated with R ∈ W ( X ) is defined by the numerical vector K R = 

(c 1 , . . . , c k ) ∈ ({ 1 , . . . , k } ) k where c j = |{ q : x j � R x q }| and therefore c j accounts for the number of alternatives that are graded 

at most as good as x j . 

A canonical codified profile associated with P = (R 1 , . . . , R N ) ∈ W (X ) N is an N × k real-valued matrix denoted as K P = 

(K R 1 
, . . . , K R N 

) ∈ M N×k . Each K R i 
is row i in K P and it corresponds to the canonical codified complete preorder associated 

with R i . 

Let us now provide an example in order to improve the understanding of our codification proposal. 

Example 1. Let R 1 , R 2 , R 3 be the complete preorders on { x 1 , x 2 , x 3 } such that: 

R 1 : x 1 �R 1 x 2 ∼R 1 x 3 , 
R 2 : x 2 �R 2 x 1 �R 2 x 3 , 
R 3 : x 3 �R 3 x 1 ∼R 3 x 2 . 

Following Definition 1 their respective canonical codifications are K R 1 
= (3 , 2 , 2) , K R 2 

= (2 , 3 , 1) , and K R 3 
= (2 , 2 , 3) . We con- 

sider only for illustration that these complete preorders define a profile, P = (R 1 , R 2 , R 3 ) . Then its respective canonical cod- 

ified profile is 

K P = 

( 

3 2 2 

2 3 1 

2 2 3 

) 

. 

In order to motivate the main result of this section, let us observe that not all vectors of natural values are feasible 

canonical codified complete preorders. For example, by means of the canonical codification it is not possible to get K R = 

(1 , 1 , 1) with k = 3 because if there is a tie among the three alternatives Definition 1 produces (3, 3, 3). 

Considering these limitations, we now proceed to identify exactly which vectors correspond to a canonical codified com- 

plete preorder. 

Proposition 1. Given a vector c = (c 1 , . . . , c k ) ∈ ({ 1 , . . . , k } ) k , this vector is the canonical codified complete preorder K R associ- 

ated with R ∈ W ( X ) if and only if the increasingly ordered vector (c (1) , . . . , c (k ) ) verifies 

(i) c (1) = t 1 , 

(ii) c ( j+1) = c ( j) + t j+1 · D j+1 , j ∈ { 1 , . . . , k − 1 } , 
where t j is the number of values equal to c ( j ) among the components of c and 

D j+1 = 

{
0 if c ( j+1) = c ( j) , 

1 otherwise . 

Proof. Let R ∈ W ( X ) be a complete preorder whose canonical codification is K R = (c 1 , . . . , c k ) . Given a permutation on the 

alternatives τ , R τ denotes the permutation τ on the complete preorder R ∈ W ( X ) such that K R τ = (c (1) , . . . , c (k ) ) and c (1) � 

. . . � c (k ) . 

Throughout the proof, t ∈ N 

k stands for the vector containing the number of coincidences for the elements of K R , 

t = (t 1 , t 2 , . . . , t k ) = (| T 1 | , | T 2 | , . . . , | T k | ) where T j = { t ∈ { 1 , . . . , k } | c t = c ( j) } for j ∈ { 1 , . . . , k } . Thus | T j | is the number of ties 

equal to c ( j ) . The t vector is also called the ties vector of K R . 

Let us first examine necessity . Given a canonical codified complete preorder K R = (c 1 , . . . , c k ) ∈ ({ 1 , . . . , k } ) k of R ∈ W ( X ), 

let us check conditions (i) and (ii) . 

(i) To deduce c (1) = t 1 , we consider Definition 1 

c (1) = |{ q : x (1) � x q }| , 
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where x (1) is the alternative associated with c (1) . Then, c (1) = t 1 due to the fact that c (1) is the number of alternatives 

equally preferred to x (1) . 

(ii) To deduce c ( j+1) = c ( j) + t j+1 · D j+1 , j ∈ { 1 , . . . , k − 1 } , we claim that if alternative x ( j+1) is equally preferred to alter- 

native x ( j ) , then c ( j+1) = c ( j) . In other case, by Definition 1 

c ( j+1) = |{ q : x ( j+1) � x q }| . 
Hence, c ( j+1) is the sum of the number of the strictly less preferred alternatives to x ( j+1) plus the number of equally 

preferred alternatives to x ( j+1) . Formally, 

c ( j+1) = |{ q : x ( j+1) � x q }| + |{ q : x ( j+1) ∼ x q }| . 
Then, c ( j+1) = c ( j) + t j+1 . 

We now proceed to prove sufficiency . Suppose a numerical vector that verifies conditions (i) and (ii) , c = (c 1 , . . . , c k ) ∈ 

({ 1 , . . . , k } ) k . We are in a position to build a complete preorder R ∈ W ( X ) such that K R = c as follows. 

By ordering in an increasing order the vector c , we obtain an ordered vector, c () = (c (1) , . . . , c (k ) ) and it is easy to compute 

its associated ties vector t = (t 1 , . . . , t k ) = (| T 1 | , . . . , | T k | ) . Then 

c () = (c (1) , . . . , c (k ) ) = ( 

t 1 times ︷ ︸︸ ︷ 
t 1 , . . . , t 1 , 

t 2 times ︷ ︸︸ ︷ 
t 1 + t 2 , . . . , t 1 + t 2 , . . . , 

t k times ︷ ︸︸ ︷ 
k, . . . , k ) 

and consequently, we can deduce the complete preorder R τ : 

x k −t k +1 ∼ . . . ∼ x k � . . . � x t 1 +1 ∼ . . . ∼ x t 1 + t 2 � x 1 ∼ . . . ∼ x t 1 

whose associated canonical codification is c () . The proof is completed due to K R = c. �

Now we proceed to exemplify the relevance of this result. 

Example 2. In order to verify the necessity of establishing a characterization of the codification procedure, let us check if 

some numerical vectors can actually represent codified complete preorders for the case of four alternatives. 

• Consider the numerical vector c = (3 , 4 , 1 , 1) . First, its increasingly ordered vector and its corresponding ties vector are 

determined, c () = (1 , 1 , 3 , 4) and (| T 1 | , | T 2 | , | T 3 | , | T 4 | ) = (2 , 2 , 1 , 1) , respectively. Second, by Proposition 1 , we check that 

if c represents a canonical codification K R for some complete preorder R ∈ W ( X ) then the first element of K R should be 

2. Therefore, c is not a canonical codified complete preorder. 
• We repeat the previous exercise for the numerical vector c = (2 , 3 , 3 , 1) . Then, c () = (1 , 2 , 3 , 3) is its increasingly ordered 

vector and (| T 1 | , | T 2 | , | T 3 | , | T 4 | ) = (1 , 1 , 2 , 2) is its ties vector. Using Proposition 1 , the first, second and third element of 

K R should be 1, 2 and 2 + 2 = 4 , respectively. However, the latter is not true since c (3) = 3 . Thus, the vector c does not 

represent any complete preorder by the canonical codification. 
• Finally, given c = (4 , 2 , 2 , 1) a numerical vector, being its corresponding increasingly ordered vector c () = (1 , 2 , 2 , 4) and 

its ties vector (| T 1 | , | T 2 | , | T 3 | , | T 4 | ) = (1 , 2 , 2 , 1) . By means of Proposition 1 , if c represents a canonical codification K R for 

some complete preorder R ∈ W ( X ), the first and second element of K R should be 1 and 1 + 2 = 3 respectively, but it is 

not true because c (2) = 2 . Therefore, c does not represent any complete preorder by the canonical codification. 

3. A new dissensus measure for ordinal information: the class of Mahalanobis dissensus measures 

A considerable amount of the most cited contributions on consensus measurement have addressed this topic considering 

functions that assign to every ranking profile a real number from the unit interval . Therefore, the higher the assignment, the 

more coherence among agents’ preferences. 

In this contribution we focus on the notion of dissensus measurement, concretely, our approach resembles the notion 

of a “measure of statistical dispersion”, in the sense that 0 captures the natural notion of unanimity as total lack of vari- 

ability, and then increasingly higher numbers mean more disagreement among rankings in the profile. Then, we introduce 

a new broad class of dissensus measures associated with a reference matrix, namely the Mahalanobis dissensus measures 

that includes the possibility of cross-related alternatives. Moreover, some important properties of the new measurement are 

included. 

Definition 2. A dissensus measure is a mapping δ: W ( X ) N → [0, ∞ ) given by 

δ(P) = δ∗(M P ) 

for each profile P ∈ W (X ) N and its codified profile M P ∈ M N×k , where δ∗ is a mapping δ∗ : M N×k → [0 , ∞ ) with the property: 

(I) δ(P) = 0 if and only if P is unanimous. In other words, δ∗(M P ) = 0 if and only if M P is unanimous. 

Henceforth we also deal with dissensus measures that are normal, in the following sense: 

Definition 3. A dissensus measure is normal if it further verifies: 

43



T. González-Arteaga et al. / Information Sciences 372 (2016) 546–564 551 

(II) Anonymity : δ(P 

σ ) = δ∗( (M P ) σ ) = δ∗(M P ) = δ(P) for each permutation σ of the agents and M P ∈ M N×k . 

(III) Neutrality : δ( πP) = δ∗( π (M P ) ) = δ∗(M P ) = δ(P) for each permutation π of the alternatives and M P ∈ M N×k . 

Before providing our main definition, we recall the Mahalanobis distance [48] on which our measure is based. This dis- 

tance is a common tool in multivariate statistical analysis, e.g., in regression models. We select it in our proposal because it 

allows to take into account cross relations among alternatives which is frequent in real situations. 

Definition 4. Let � ∈ M k ×k be a positive definite matrix and x, y ∈ R 

k be two row vectors. The Mahalanobis (squared) dis- 

tance on R 

k associated with � is defined by 2 

d �(x, y ) = (x − y )�−1 (x − y ) t 

The Mahalanobis distance includes some particular distances such as the (squared) Euclidean distance when � is the 

identity matrix. 

Definition 5. Let � ∈ M k ×k be a positive definite matrix and let us fix a codification procedure for profiles of complete 

preorders, P ∈ W (X ) N . The Mahalanobis dissensus measure associated with � is the mapping δ�: W ( X ) N → [0, ∞ ) given by 

δ�(P) = δ∗
�(M P ) , 

for each profile P ∈ W (X ) N and its codified profile M P ∈ M N×k , where δ∗
�

is the mapping δ∗
�

: M N×k → [0 , ∞ ) given by 

δ∗
�(M P ) = 

1 

C 2 
N 

·
∑ 

i< j 

d �(M i , M j ) , 

and C 2 N = 

N (N −1) 
2 is the number of unordered pairs of the N agents. 

Notice that δ∗
�

is the arithmetic mean of the Mahalanobis distances between each pair of codified complete preorders 

for each agent following Hays’s approach [34] . 

Remark 1. The Mahalanobis dissensus measure satisfies the assumption of Definition 2 because 

δ�(P) = δ∗
�(M P ) = 0 

if and only if P is unanimous. This fact is easy to prove since d � is a distance. 

Along this contribution we use the codification procedure given in Section 2 even though the Mahalanobis dissensus 

measure is compatible with different codification procedures. 

To emphasize the advantages of our proposal, it could be interesting not only to obtain values but to compare them in 

order to rank the original profiles attending to their degree of dissensus. In this sense, next definition is provided. 

Definition 6. Each dissensus measure δ� , for a positive definite matrix � ∈ M k ×k , produces a ranking of profiles of complete 

preorders � δ�
by establishing that 

P � δ�
P 

′ iff δ∗
�(M P ′ ) � δ∗

�(M P ) , 

for P , P 

′ ∈ W (X ) N two profiles with codified profiles M P , M P ′ ∈ M N×k . 

This is to say, a profile P conveys at least as much consensus as the profile P 

′ when the dissensus measure of codified 

profile of P 

′ is at least as large as the dissensus measure of the codified profile of P . 3 

By way of illustration, we present the following example. 

Example 3. Let � be the identity matrix and P 1 , P 2 ∈ W (X ) 2 be two profiles whose numerical codifications are 

M P 1 = 

(
3 2 2 

2 2 3 

)
and M P 2 = 

(
3 2 2 

2 3 1 

)
. 

Their Mahalanobis dissensus measures are computed as: 

• δ�( P 1 ) = δ∗
�

(M P 1 ) = (1 , 0 , −1)�−1 (1 , 0 , −1) t = 2 . 
• δ�( P 2 ) = δ∗

�
(M P 2 ) = (1 , −1 , 1)�−1 (1 , −1 , 1) t = 3 . 

Assuming Definition 6 we can conclude P 1 �δ�
P 2 . 

The major source of uncertainty in the Mahalanobis dissensus measure is the choice of the � matrix. In this regard, 

we propose next definition for establishing a partial order on the set of all Mahalanobis dissensus measures and then to 

overcome this possible drawback. 

2 Our choice of d � ( x , y ) coincides with Mahalanobis’ original definition [48] . 
3 As is standard practice, the asymmetric part of the complete preorder � δ�

is denoted by �δ�
. 
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Definition 7. Let � be the set of all Mahalanobis dissensus measures. For any δ�1 
, δ�2 

∈ � associated with �1 , �2 ∈ M k ×k , 

a binary relation R � is defined by 

δ�1 
� R � δ�2 

⇔ δ∗
�1 

(M) ≥ δ∗
�2 

(M) , 

for each N and for all codified profile M ∈ M N×k . 

This relation verifies the property of reflexivity, antisymmetry and transitivity. Therefore, R � is a partial order in �. 

In order to analize the properties of the Mahalanobis dissensus measures, it seems reasonable that we initially explore 

if these measures satisfy anonymity and neutrality, that is, if the Mahalanobis dissensus measures are normal dissensus 

measures and then the rest of their properties. 

Let � ∈ M k ×k be a positive definite matrix and let us fix a codification procedure for profiles of complete preorders, 

P ∈ W (X ) N such that for each profile P produces its codified profile M P ∈ M N×k . The Mahalanobis dissensus measures verify: 

Anonymity . Given permutation σ of the agents in the profile P, a Mahalanobis dissensus measure δ� verifies anonymity 

since 

δ�(P) = δ∗
�(M P ) = δ∗

�

(
(M P ) 

σ
)

= δ�(P 

σ ) 

for any codified profile M P ∈ M N×k . 

Neutrality . A Mahalanobis dissensus measure δ� verifies neutrality if and only if the associated � matrix is a diagonal 

matrix whose diagonal elements have to be equal among them. Formally: 

δ�(P) = δ∗
�(M P ) = δ∗

�( π M P ) = δ�( πP) , 

for any codified profile M P ∈ M N×k and for any permutation π of { 1 , . . . , k } if and only if � = diag{ λ, . . . , λ} for a 

value λ > 0. 4 

Noting the previous result and being critical of our measure, it could be considered as a drawback the fact that 

neutrality is only verified when � matrix is so specific. Thinking about it, we can point out that the main contribution 

of our approach is to allow different roles for alternatives. This fact produces that traditional neutrality property is only 

verified when alternatives are not related and are exchangeable. 

In order to overcome this drawback and emphasize the advantages of the Mahalanobis dissensus measures (cross 

relations among alternatives allowed), we propose to recall the neutrality property. If the alternatives are rela- 

beled, there exists a way to recover the same value of the Mahalanobis dissensus measure, δ� for each profile, as 

Proposition 2 shows. 

Proposition 2 (Weak neutrality) . Let � ∈ M k ×k be a positive definite matrix. For each profile P ∈ W (X ) N , its codified profile 

M ∈ M N×k and for each permutation π of the alternatives, it is verified 

δ�(P) = δ∗
�(M P ) = δ∗

�π ( π M P ) = δ�π ( πP) , 

where �π = 	t 
π � 	π and 	π ∈ M k ×k the permutation matrix corresponding to π . 5 

Proof. Proposition 2 proof is similar to analogous result in González-Arteaga, Alcantud and de Andrés Calle [26] . �

Compatibility . Let P , P 

′ ∈ W (X ) N be two profiles and M P , M P ′ ∈ M N×k be their respective codified profiles. A Mahalanobis 

dissensus measure δ� is compatible with linear transformations of codified profiles if 

δ∗
�(M P ′ ) � δ∗

�(M P ) ⇔ δ∗
�( f (M P ′ )) � δ∗

�( f (M P )) 

where f (M P ) , f (M P ′ ) are respective cell-by-cell transformations of the codified profiles M P and M P ′ by any linear 

transformation f . 

Note compatibility refers to the behavior of the ranking of the profiles previously provided in Definition 6 . 

Proof. Let f be a linear transformation f : R −→ R defined by f (x ) = a + bx . Using this transformation cell-by-cell on M P 
and M P ′ , it is obtained f (M P ) = a · 1 N + b · M P and f (M P ′ ) = a · 1 N + b · M P ′ , where 1 N = (1 , 1 , . . . , 1) . Then, ( f (M P )) i = 

a · 1 N + b · (M P ) i = f ((M P ) i ) and analogously for M P ′ . This implies 

f ((M P ) i ) − f ((M P ) j ) = a · 1 N + b · (M P ) i − a · 1 N + b · (M P ) j = b · ((M P ) i − (M P ) j ) . 

δ∗
�( f (M P )) = 

1 

C 2 
N 

∑ 

i< j 

d �
[
( f (M P )) i , ( f (M P )) j 

]
= 

4 A diagonal matrix � with diagonal elements { λ, . . . , λ} is represented as � = diag(λ, . . . , λ) . 
5 Let π be a permutation of { 1 , 2 , . . . , k } and e i be the i -th vector of the canonical base of R n , that is, e i j = 1 if i = j, e i j = 0 otherwise. The matrix 

	π ∈ M k ×k whose rows are e π ( i ) is called the permutation matrix associated to π . The rearrangement of the corresponding rows (resp. columns) of a 

matrix A using π is obtained by left (resp., right) multiplication of 	π , 	π A (resp., A 	π ). 
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= 

1 

C 2 
N 

∑ 

i< j 

d �
[

f ((M P ) i ) , f ((M P ) j ) 
]

= 

= 

1 

C 2 
N 

∑ 

i< j 

d �
(

a · 1 N + b · (M P ) i , a · 1 N + b · (M P ) j 
)

= 

= 

1 

C 2 
N 

∑ 

i< j 

[ (
f ((M P ) i ) − f ((M P ) j ) 

)
�−1 

(
f ((M P ) i ) − f ((M P ) j ) 

)t 
] 

= 

= 

1 

C 2 
N 

∑ 

i< j 

[ (
b · (M P ) i − b · (M P ) j 

)
�−1 

(
b · (M P ) i − b · (M P ) j 

)t 
] 

= 

= 

1 

C 2 
N 

∑ 

i< j 

b 2 
[ (

(M P ) i − (M P ) j 
)
�−1 

(
(M P ) i − (M P ) j 

)t 
] 

= 

= b 2 
1 

C 2 
N 

∑ 

i< j 

d �
[
(M P ) i , (M P ) j 

]
= 

= b 2 δ∗
�(M P ) . 

Therefore, we have δ∗
�

( f (M P )) = b 2 δ∗
�

(M P ) and δ∗
�

( f (M P ′ )) = b 2 δ∗
�

(M P ′ ) . 
Now, it is easy to complete the proof. �

Reciprocity . Reciprocity means that if all individual complete preorders are reversed, then the degree of dissensus does 

not change. A Mahalanobis dissensus measure δ� is reciprocal if 

δ�(P) = δ∗
�(M P ) = δ∗

�(M P −1 ) = δ�(P 

−1 ) 

for all P = (R 1 , . . . , R N ) ∈ W (X ) N and a codification procedure such that M P −1 = (k + 1) · 1 N − M P where 1 N = 

(1 , 1 , . . . , 1) . 

Proof. Let P = (R 1 , . . . , R N ) ∈ W (X ) N be a profile whose codified profile is M P ∈ M N×k . The reverse of the complete preorders 

produces a new profile P 

−1 = (R −1 
1 

, . . . , R −1 
N 

) ∈ W (X ) N whose codified profile is M P −1 ∈ M N×k . The proof is easy from 

d �(M R −1 
i 

, M R −1 
j 
) = d �((k + 1) · 1 N − M R i , (k + 1) · 1 N − M R j ) = 

= d �(M R i , M R j ) . 

�

4. Reaching a social consensus solution based on Mahalanobis distance 

The problem of reaching a social consensus solution intends to determine the ranking of alternatives that best agrees 

with individual preferences, or in other words, the ranking that minimizes the disagreement among individuals. 

In this section we present a new proposal to obtain a social consensus solution based on the Mahalanobis distance as 

well as its properties. The Mahalanobis social consensus solution preserves the advantages of the Mahalanobis distance 

since it takes into account the correlation among alternatives. In addition, an illustrative example is included to show the 

graphical interpretation of our proposal. 

4.1. Our proposal: the Mahalanobis social consensus solution 

Our aim is to determine a complete preorder ˆ R that provides the best agreement for N rankings taking into account the 

Mahaloanobis distance. This relation 

ˆ R is called the Mahalanobis social consensus solution . 

Following the traditional approaches and in order to obtain a consensus solution, first of all it is necessary to establish the 

objective function to optimize. In this contribution, this function is called Mahalanobis consensus distance function (MCDF). 

Definition 8. Let � ∈ M k ×k be a definite positive matrix and P = (R 1 , . . . , R N ) ∈ W (X ) N be a profile of complete preorders. 

Given a codification procedure, M P = (M R 1 
, . . . , M R N 

) ∈ M N×k is the codified profile of P . The Mahalanobis consensus distance 

function (MCDF) is a mapping C �, P : M N×k −→ [0 , ∞ ) defined by 

C �, P (M R ) = 

N ∑ 

i =1 

d �(M R i , M R ) = 

N ∑ 

i =1 

(M R i − M R )�
−1 (M R i − M R ) 

t 

and it regards the sum of the Mahalanobis distances from each of the N agent’s preferences to a complete preorder R whose 

codification is M R . 
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Once the Mahalanobis consensus distance function has been defined, we proceed to establish our optimization problem: 

min 

M R 

C �, P (M R ) = min 

M R 

N ∑ 

i =1 

d �(M R i , M R ) 

s.t. M R ∈ F s.t. M R ∈ F 

where the feasible set F is the set with elements M R that are codified complete preorders, so that M R = (m 1 , . . . , m k ) . 

Solving the above optimization problem we obtain the following solution, M ˆ R 
. 

Definition 9. A Mahalanobis consensus solution is an ordinal ranking of the alternatives obtained by solving 

min 

M R 

C �, P (M R ) = min 

M R 

N ∑ 

i =1 

d �(M R i , M R ) = C �, P (M ˆ R 
) 

s.t. M R ∈ F s.t. M R ∈ F 

where M ˆ R 
= ( ̂  m 1 , . . . , ˆ m k ) is a vector which minimizes the Mahalanobis consensus distance function. 

The proposed optimization problem can generate complete preorders or linear orders like ranking solutions. If no ties 

are required, the set of constraints in F has to provide for. 

In order to simplify and facilitate the computation of Mahalanobis consensus solutions we present Theorem 1 . This new 

result allows to establish an equivalence between rankings obtained by the method of minimized Mahalanobis consensus 

distance function (MCDF) and rankings closest to the mean vector M defined by the component-wise averages. This theorem 

makes the method analytically rigorous and provides an intuitively appealing approach. 6 

Theorem 1. Let � ∈ M k ×k be a positive definite matrix and M P ∈ M N×k be a codified profile. The following statements are equiv- 

alent: 

1. M ˆ R 
minimizes C �, P (M R ) = 

∑ N 
i =1 d �(M R i 

, M R ) . 

2. M ˆ R 
minimizes d �( M P , M R ) being 

M P = ( M 

1 , . . . , M 

k ) = 

( 

1 

N 

N ∑ 

i =1 

m i 1 , . . . , 
1 

N 

N ∑ 

i =1 

m ik 

) 

. 

Proof. 

C �, P (M R ) = 

N ∑ 

i =1 

d �(M R i , M R ) = 

N ∑ 

i =1 

(M R i − M R )�
−1 (M R i − M R ) 

t = 

= 

N ∑ 

i =1 

(
M R i �

−1 M 

t 
R i 

− 2 M R i �
−1 M 

t 
R + M R �

−1 M 

t 
R 

)
= 

= 

( 

N ∑ 

i =1 

M R i �
−1 M 

t 
R i 

) 

− 2 

( 

N ∑ 

i =1 

M R i �
−1 M 

t 
R 

) 

+ 

( 

N ∑ 

i =1 

M R �
−1 M 

t 
R 

) 

= 

= 

( 

N ∑ 

i =1 

M R i �
−1 M 

t 
R i 

) 

− 2 

( 

N ∑ 

i =1 

M R i 

) 

�−1 M 

t 
R + NM R �

−1 M 

t 
R = 

= 

( 

N ∑ 

i =1 

M R i �
−1 M 

t 
R i 

) 

− 2 N M �−1 M 

t 
R + NM R �

−1 M 

t 
R = 

= 

( 

N ∑ 

i =1 

M R i �
−1 M 

t 
R i 

) 

+ N 

(
−2 M �−1 M 

t 
R + M R �

−1 M 

t 
R 

)
d �( M P , M R ) = ( M P − M R )�

−1 ( M P − M R ) 
t = 

= M P �
−1 M P 

t + 

(
−2 M P �

−1 M 

t 
R + M R �

−1 M 

t 
R 

)
As we can observe the minimization of C �, P (M R ) and d �( M P , M R ) only depends, in both cases, on −2 M P �−1 M 

t 
R 

+ 

M R �
−1 M 

t 
R 

. Then, both problems are equivalent. �

6 The degree of computational complexity of our approach is not higher than other related well-known approaches [11] . Nowadays there are several 

powerful computational tools able to solve this kind of problems for a reasonable size (see e.g., [10] and [57] , among others). 
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A strong evidence of the strength of our proposal to obtain a social consensus solution is given through the consis- 

tency between the methodology proposed by Cook and Seiford [14] based on Euclidean distance and ours based on Maha- 

lanobis distance. Concretely, Cook and Seiford [14] formalized the so-called monotone non-decreasing property for the case of 

the Minimum Variance method in order to realize the potential of the alignment between the average point and the ranking 

that minimizes the Euclidean distance. If we apply Cook and Seiford’s idea but using a Mahalanobis distance associated with 

� ∈ M k ×k , then their relationship is satisfied when the vectors are expressed in the space of the eigenvectors of the matriz 

�. More precisely, the Mahalanobis consensus solution and the mean vector are linked like the next proposition shows. 

Proposition 3. A Mahalanobis consensus solution M ˆ R 
= ( ̂  m 1 , . . . , ˆ m k ) does not reverse preferences given by the average point 

M = ( M 

1 , . . . , M 

k ) when both are expressed in the basis of the eigenvectors of the matrix �, M 

e 
and M 

e 
ˆ R 
, respectively. More 

precisely: 

M 

i e < M 

j e ⇒ ˆ m 

e 
i < ˆ m 

e 
j for i, j ∈ { 1 , . . . , k } , i � = j 

Proof. Consider the spectral decomposition of the matrix � = 
t D λ
 where 
 and D λ contain eigenvectors (by columns) 

and the corresponding eigenvalues of � as diagonal elements, respectively. 

Let E = 
 D 

− 1 
2 

λ
be the matrix that defines the linear transformation in order to change N -dimensional vectors to coordi- 

nates of the eigenspace of �. 

Applying the aforementioned transformation on the vectors M , and M ˆ R 
, it yields M 

e = M E = ( M 

1 e , . . . , M 

k e ) and M 

e 
ˆ R 
= 

M ˆ R 
E = ( ̂  m 

e 
1 
, . . . , ˆ m 

e 
k 
) , respectively. 

We must prove that if M 

i e < M 

j e then ˆ m 

e 
i 

≤ ˆ m 

e 
j 

for i, j ∈ { 1 , . . . , k } , i � = j . Suppose M 

i e < M 

j e and ˆ m 

e 
i 

> ˆ m 

e 
j 
. Let M 

′ 
be a 

vector such that M 

′ e = M 

′ 
E = (m 

′ e 
1 

, . . . , m 

′ e 
k 
) and its elements are obtained from M 

e 
ˆ R 

by interchanging ˆ m 

e 
i 

and ˆ m 

e 
j 
, i.e., 

m 

′ e 
r = 

⎧ ⎨ 

⎩ 

ˆ m 

e 
j 

if r = i, 

ˆ m 

e 
i 

if r = j, 

ˆ m 

e 
r otherwise . 

First, we obtain d �( M , M ˆ R 
) : 

d �( M , M ˆ R 
) = ( M − M ˆ R 

)�−1 ( M − M ˆ R 
) t 

= ( M − M ˆ R 
)
D 

−1 
λ


t ( M − M ˆ R 
) t 

= ( M − M ˆ R 
)
D 

− 1 
2 

λ
D 

− 1 
2 

λ

t ( M − M ˆ R 

) t 

= ( M − M ˆ R 
) E E t ( M − M ˆ R 

) t 

= ( M E − M ˆ R 
E)( M E − M ˆ R 

E) t 

= ( M 

e − M 

e 
ˆ R 
)( M 

e − M 

e 
ˆ R 
) t 

Analogously, we compute d �( M , M 

′ 
) : 

d �( M , M 

′ 
) = ( M − M 

′ 
)�−1 ( M − M 

′ 
) t = ( M 

e − M 

′ e )( M 

e − M 

′ e ) t . 

Next, we must get d �( M , M ˆ R 
) − d �( M , M 

′ 
) : 

d �( M , M ˆ R 
) − d �( M , M 

′ 
) 

= ( M 

e − M 

e 
ˆ R 
)( M 

e − M 

e 
ˆ R 
) t − ( M 

e − M 

′ e )( M 

e − M 

′ e ) t 

= 

(
M 

e 
M 

e t − 2 M 

e 
M 

e t 
ˆ R 

+ M 

e 
ˆ R 
M 

e t 
ˆ R 

)
−

(
M 

e 
M 

e t − 2 M 

e 
M 

′ e t + M 

′ e M 

′ e t 
)

= ( M 

e 

1 , . . . , M 

e 

i , . . . M 

e 

j , . . . M 

e 

k ) 
(
m 

′ e 
1 , . . . , m 

′ e 
i , . . . , m 

′ e 
j , . . . , m 

′ e 
k 

)
− ( M 

e 

1 , . . . , M 

e 

i , . . . M 

e 

j , . . . M 

e 

k ) 
(

ˆ m 

e 
1 , . . . , ˆ m 

e 
i , . . . , ˆ m 

e 
j , . . . , ˆ m 

e 
k 

)
= ( M 

e 

1 , . . . , M 

e 

i , . . . M 

e 

j , . . . M 

e 

k ) 
(

ˆ m 

e 
1 , . . . , ˆ m 

e 
j , . . . , ˆ m 

e 
i , . . . , ˆ m 

e 
k 

)
− ( M 

e 

1 , . . . , M 

e 

i , . . . M 

e 

j , . . . M 

e 

k ) 
(

ˆ m 

e 
1 , . . . , ˆ m 

e 
i , . . . , ˆ m 

e 
j , . . . , ˆ m 

e 
k 

)
= 2 

(
M 

e 
M 

′ e t − M 

e 
M 

e t 
ˆ R 

)
= 2 

(
m 

e 
i ˆ m 

e 
j + m 

e 
j ˆ m 

e 
i − m 

e 
i ˆ m 

e 
i − m 

e 
j ˆ m 

e 
j 

)
= 2( ̂  m 

e 
i − ˆ m 

e 
j )(m 

e 
j − m 

e 
i ) . 

Then, d �( M , M ˆ R 
) − d �( M , M 

′ 
) = 2 ( ̂  m 

e 
i 
− ˆ m 

e 
j 
)(m 

e 
j 
− m 

e 
i 
) > 0 , so d �( M , M ˆ R 

) > d �( M , M 

′ 
) and, thus d �( M , M ˆ R 

) is not mini- 

mal and M ˆ R 
is not the Mahalanobis consensus solution. In that way, a contradiction is reached. Consequently, the hypothesis 

M 

i e < M 

j e ⇒ ˆ m 

e 
i 

< ˆ m 

e 
j 

is verified. �

48
Publication III:

A new consensus ranking approach for correlated ordinal information



556 T. González-Arteaga et al. / Information Sciences 372 (2016) 546–564 

Additionally to the previous results it should be interesting to study if Mahalanobis social consensus solutions satisfy 

other properties usually claimed in Social Choice Theory. In the next subsection we explore some of them. 

4.2. Properties of the Mahalanobis social consensus solution 

We now proceed to define and prove the main properties of the Mahalanobis social consensus solution. These properties 

ensure the suitability and avoid weird behaviors of the new approach. Moreover, these good theoretical properties make it 

easier to accept the social solution obtained for the group. 

• Anonymity . Any member’s ranking is considered equal in importance to the ranking preferred by any other member. More 

precisely, given a profile P ∈ W (X ) N , a Mahalanobis social consensus solution does not change for each permutation σ
of the agents. The problem to solve then is 

min 

M R 

N ∑ 

i =1 

d �(M σ (i ) , M R ) 

s.t. M R ∈ F 

Proof. It is straightforward that a ranking ˆ R whose codified complete preorder is M ˆ R 
given by Definition 9 is also a solution 

to the above problem since C �, P (M R ) = C �, P σ (M 

σ
R 
) for all M R and σ . �

• Unanimity . If all agents show the same preferences on all alternatives, then a Mahalanobis social consensus solution 

coincides with such common complete preorder. 

Proof. This is easily seen since the column means of the codified profile is equal to that common codified complete pre- 

order. That means, it belongs to the feasible set F and Theorem 1 produces the result. �

• Neutrality . Generally speaking, this property means all alternatives are treated strictly equal. More precisely, any rela- 

belling of the alternatives or issues induces the corresponding permutation of a Mahalanobis social consensus solution. 

Due to the fact that our proposal presents a collection of functions MCDFs, relying on � matrix, it should be reasonable 

that the verification of this property depends on �. 

Consider a Mahalanobis social consensus solution M ˆ R 
obtaining by Definition 9 . Given π a permutation of the set of 

alternatives. The MCDF after permuting the alternatives can be written as 

C �, π P (M R ) = 

N ∑ 

i =1 

d �(M 

π R i , M R ) = 

N ∑ 

i =1 

d �( π M R i , M R ) 

Due to the previous reasoning, the property to prove is: 

min 

M R 

C �, π P (M R ) = min 

M R 

N ∑ 

i =1 

d �(M 

π R i , M R ) = C �, π P (M π ˆ R 
) 

s.t. M R ∈ F s.t. M R ∈ F 

where M π ˆ R 
= 

π M ˆ R 
= ( ̂  m π(1) , . . . , ˆ m π(k ) ) is a consensus solution for this problem if and only if � = diag{ λ, . . . , λ} for some 

λ > 0. 

Proof. We consider the following two problems to solve: 

• min 

M R 

C �, P (M R ) = min 

M R 

N ∑ 

i =1 

d �(M R i , M R ) 

s.t. M R ∈ F s.t. M R ∈ F 

• min 

M R 

C �, π P (M R ) = min 

M R 

N ∑ 

i =1 

d �(M 

π R i , M R ) 

s.t. M R ∈ F s.t. M R ∈ F 

By Theorem 1 the resolution of these problems can be reduced to minimize d �( M , M R ) and d �( π M , M R ) , respectively. 

d �( M , M R ) = ( M − M R )�
−1 ( M − M R ) 

t . 

In order to simplify the notation and due to the equivalence among the set of complete preorders and the set of their 

permutations, we can write π M R for some M R . Thus, 

49



T. González-Arteaga et al. / Information Sciences 372 (2016) 546–564 557 

d �( π M , π M R ) = ( π M − π M R ) �
−1 ( π M i − π M R ) 

t = 

= ( M 	π − M R 	π ) �−1 ( M 	π − M R 	π ) t = 

= ( M − M R ) 	π �−1 	t 
π ( M − M R ) 

t . 

Let us first prove sufficiency . If � = diag{ λ, . . . , λ} for a value λ > 0, then 	π �−1 	t 
π = �−1 and consequently, 

d �( M , M R ) = d �( π M , π M R ) 

that is, the distance to minimize coincides for both problems and the result is straightforward. 7 

Let us now prove necessity . Assuming that given a codified profile M ∈ M N×k and for each π , d �( M , M R ) = d �( π M , π M R ) , 

therefore 	π �−1 	t 
π = �−1 , we must prove that � = diag{ λ, . . . , λ} . 

The proof of this point is similar to the demonstration included in González-Arteaga, Alcantud and de Andrés Calle [26, 

Appendix A, Proof of Property 1] . �

In the same way that happens to the Mahalanobis dissensus measure, the Mahalanobis social consensus solution pre- 

serves the advantages of the Mahalanobis distance, concretely, it takes into account the correlation among alternatives. 

Therefore, on the question of neutrality for the consensus solution, the reasons and the clarifications aforementioned in 

Section 3 (Property 2) are maintained. We now present a weak version of the neutrality property. 

• Weak neutrality . Any relabelling of the alternatives or issues induces the corresponding permutation of the Mahalanobis 

social consensus solution associated to the appropriate permutation on �. Formally: 

Let � ∈ M k ×k be a positive definite matrix. For each profile P ∈ W (X ) N whose codified profile is M ∈ M N×k and for each 

permutation π of the alternatives, the problem to solve is 

min 

M R 

C �π , π P (M R ) = min 

M R 

N ∑ 

i =1 

d �π ( π M R i , M R ) , 

s.t. M R ∈ F s.t. M R ∈ F 

where �π = 	t 
π � 	π . 

Therefore, the minimization of the MCDF, C �π , π P (M R ) produces a Mahalanobis social consensus solution 

π M ˆ R 
= M π ˆ R 

obtained from M ˆ R 
. 

Proof. Let us consider the set of codified complete preorders in the form 

π M R = M π R like possible solutions. Since 

Definition 9 , it is sufficient to prove 

d �π ( π M R i , 
π M R ) = d �(M R i , M R ) for i = 1 , . . . , N. 

Using the fact that the permutation matrix 	π is orthogonal 

d �π ( π M R i , 
π M R ) = ( π M R i − π M R ) (�

π ) 
−1 

( π M R i − π M R ) 
t = 

= (M R i 	π − M R 	π ) (	t 
π�	π ) −1 (M R i 	π − M R 	π ) t = 

= (M R i − M R ) 	π 	t 
π�−1 	π 	t 

π (M R i − M R ) 
t = 

= (M R i − M R )�
−1 (M i − M R ) 

t = 

= d �(M R i , M R ) . 

Then, the proof is straightforward. �

• Consistency . Given a set of agents divided in two disjoint subcommittees. Suppose that Mahalanobis social consensus so- 

lutions obtained for each subcommittee coincide. Then, Mahalanobis social consensus solutions derived from the original 

set of agents are the same that the obtained for the subcommittees. 

Proof. Let N = N 

(1) ∪ N 

(2) be a partition of the set N of agents in two disjoint subcommittees. The Mahalanobis social con- 

sensus solutions for each subcommittee are M ˆ R (1) and M ˆ R (2) , respectively. According to the hypothesis: M ˆ R (1) = M ˆ R (2) . The 

MCDF for the set of agents N can be written as 

C �, P (M R ) = 

N ∑ 

i =1 

d �(M R i , M R ) = 

= 

∑ 

i ∈ N (1) 

d �(M R i , M R ) + 

∑ 

i ∈ N (2) 

d �(M R i , M R ) = 

= C �, P (1) (M R (1) ) + C �, P (2) (M R (2) ) . 

M ˆ R (1) = M ˆ R (2) minimizes the first and the second summand. Therefore, the minimum of the first term in the above equal- 

ity is reached in M ˆ R (1) = M ˆ R (2) because both summands are positive. �

7 Recall 	π is the permutation matrix corresponding to π . 
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• Compatibility . Let M 

∗ = a · 1 N + b · M the matrix arising from an affine transformation of M ∈ M N×k which represents the 

codified profile associated with P ∈ W (X ) N . The Mahalanobis social consensus solution obtained for M 

∗ is M 

∗
ˆ R 
= a · 1 N + 

b · M ˆ R 
being M ˆ R 

the corresponding Mahalanobis social consensus solution for M . 

Proof. The problem to solve is 

min 

M 

∗
R 

N ∑ 

i =1 

d �(M 

∗
R i 

, M 

∗
R ) 

s.t. M 

∗
R ∈ F ∗

where F ∗ is the set of all possible vectors that represent codified complete preorders using the affine transformation. 

Replacing M 

∗
R i 

= a · 1 N + b · M R i 
and M 

∗
R = a · 1 N + b · M R , we obtain: 

N ∑ 

i =1 

d �(M 

∗
i , M 

∗
R ) = 

N ∑ 

i =1 

(M 

∗
i − M 

∗
R )�

−1 (M 

∗
i − M 

∗
R ) 

t = 

= b 2 
N ∑ 

i =1 

(M i − M R )�
−1 (M i − M R ) 

t = 

= b 2 
N ∑ 

i =1 

d �(M i , M R ) . 

Therefore, M 

∗
ˆ R 
∈ F ∗ if and only if there exists M ˆ R 

∈ F such that M 

∗
ˆ R 
= a · 1 N + b · M ˆ R 

. 

�

• Reciprocity . Reciprocity means that if all individual rankings in a profile are reversed, then the consensus solution is 

obtained by reversing the original solution. This is true for Mahalanobis social consensus solution under a basic condition 

on the codification procedure. Formally: 

Let P ∈ W (X ) N be a profile and P 

−1 ∈ W (X ) N be its reverse, whose associated codified profiles are M P , M P −1 ∈ M N×k , 

respectively. Fixed a positive definite matrix � ∈ M k ×k , the problems to solve are the following: 

(P 1) min 

M R 

C �, P −1 (M R ) = min 

M R 

N ∑ 

i =1 

d �(M P −1 ) i , M R ) 

s.t. M R ∈ F s.t. M R ∈ F 

(P 2) min 

M R 

C �, P (M R ) = min 

M R 

N ∑ 

i =1 

d �(M P ) i , M R ) 

s.t. M R ∈ F s.t. M R ∈ F 

Then, the solution of the problem ( P 1) has to be the reverse of the solution of the problem ( P 2). 

Reciprocity is fulfilled if the codification procedure used on R ∈ W ( X ) verifies M R −1 = a · 1 N + b · M R = (a + bm 1 , . . . , a + 

bm k ) for a, b ∈ R . Therefore, (M P −1 ) i = a · 1 N + b · (M P ) i . 
Notice that our codification proposal, the canonical codification, satisfies the aforementioned condition since 

M R −1 = a · 1 N + b · M R = (a + bm 1 , . . . , a + bm k ) = 

= (n + 1 − m 1 , . . . , n + 1 − m k ) = 

= (n + 1) · 1 N − M R . 

Proof. In order to solve problems ( P 1) and ( P 2), Theorem 1 is used. Thus, it is enough to minimize d �( M P −1 , M R ) and 

d �( M P , M R ) subject to M R ∈ F , respectively. 

Considering that M P −1 = a · 1 N + b · M P and being M ˆ R 
a solution of problem ( P 1), it is easy to check that a · 1 N + b · M ˆ R 

is 

a solution of problem ( P 2) since 

d �( M P −1 , a · 1 N + b · M ˆ R 
) = d �(a · 1 N + b · M P , a · 1 N + b · M ˆ R 

) = 

= b 2 d �( M P , M ˆ R 
) . 

�

• Non-dictatorship . The Mahalanobis social consensus solution is never dictatorial. Recall that in a dictatorship, social 

choices are based on the preferences of only one expert or agent. Formally, an agent j ∈ N exists such that for all al- 

ternatives x r , x s ∈ X and for all profiles P ∈ W (X ) N 

x r � R j x s ⇒ x r � ˆ R 
x s . 

Proof. Immediate from Theorem 1 . �
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Table 1 

Formulation of the optimization problem. 

Min d �(M R e 1 
, M R )+ d �(M R e 2 

, M R )+ d �(M R e 3 
, M R ) 

Subject to M R belongs to: 

(3, 3, 3) (3, 3, 1) (1, 3, 2) 

(2, 2, 3) (3, 1, 3) (2, 3, 1) 

(3, 2, 2) (1, 3, 3) (2, 1, 3) 

(2, 3, 2) (1, 2, 3) (3, 1, 2) 

(3, 2, 1) 

4.3. Graphical interpretation and discussion: An illustrative example 

To clarify and discuss the new approach presented in Section 4.1 , we develop an explanatory example. 

By way of illustration, we suppose the following group decision making problem: a set of students have to choose the 

destination of their graduation trip. Students should order destinations offered by a travel agency. 

We consider a set of three students of the Faculty of Sciences (experts) N = { e 1 , e 2 , e 3 } and a set of three destinations 

(alternatives) X = { x 1 = Paris , x 2 = Berlin , x 3 = Istanbul } . Each student participates in a survey about her/his preferences on 

the trip destinations where she/he is asked to order them. 

Their responses are summarized as follows: 

Student e 1 : x 3 �R e 1 
x 1 ∼R e 1 

x 2 
Student e 2 : x 3 �R e 2 

x 1 ∼R e 2 
x 2 

Student e 3 : x 1 ∼R e 3 
x 2 �R e 3 

x 3 

The previous complete preorders generate a particular profile P . Applying Definition 1 to each complete preorder the codi- 

fied profile for P is 

M P = 

( 

2 1 3 

2 1 3 

3 3 1 

) 

, 

or also M P = (M R e 1 
, M R e 2 

, M R e 3 
) . 

In order to obtain a group solution that captures the minimum possible dissensus among students’ preferences (i.e., the 

maximum possible consensus), we must solve the following general optimization problem: 

min 

M R 

C �, P (M R ) 

s.t. M R ∈ F 

where F is the feasible set computed by Proposition 1 and 

C �, P (M R ) = 

N ∑ 

i =1 

d �(M R i , M R ) = 

N ∑ 

i =1 

(M R i − M R )�
−1 (M R i − M R ) 

t . 

This problem adapted to our specific case takes the form gathered in Table 1 . Moreover, the corresponding feasible set is 

displayed in Fig. 1 . 

This optimization problem can be simplified by means of Theorem 1 hence it boils down to: 

Min d �( M , M R ) = Min ( M − M R )�
−1 ( M − M R ) 

t 

Subject to M R belongs to: 

(3 , 3 , 3) (3 , 3 , 1) (1 , 3 , 2) 
(2 , 2 , 3) (3 , 1 , 3) (2 , 3 , 1) 
(3 , 2 , 2) (1 , 3 , 3) (2 , 1 , 3) 
(2 , 3 , 2) (1 , 2 , 3) (3 , 1 , 2) 
(3 , 2 , 1) 

where M = (2 . 34 , 1 . 67 , 2 . 34) is the vector of column means of M P . 
The solution of this problem hinges on the � matrix. We now provide Mahalanobis social consensus solutions under the 

assumption of three different � matrices to enrich the case of study and promote the discussion: 

1. Case 1. In the simplest case, the � matrix is the identity matrix, � = I = diag(1 , 1 , 1) . In our example this means that all 

destinations are equally treated. By solving the corresponding optimization problem the following solutions are obtained 

(see Table 2 ): 
• M R 2 

= (2 , 2 , 3) , that is, x 3 �x 1 ∼ x 2 . 
• M R 3 

= (3 , 2 , 2) , that is, x 1 �x 2 ∼ x 3 . 
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Fig. 1. Graphical display of complete preorders included in Tables 1 and 2 . M R i is labeled by v i . 

Table 2 

Mahalanobis distances d I (M R i , M ) , d D (M R i , M ) and d �1 
(M R i , M ) from codified complete preorders M R i 

(elements in F ) to the mean point M . 

Complete preorders Codified complete preorders Graphic labels d I d D d �1 

R 1 : x 1 ∼ x 2 ∼ x 3 M R 1 = (3 , 3 , 3) v1 2 .67 4 .07 4 .43 

R 2 : x 3 �x 1 ∼ x 2 M R 2 = (2 , 2 , 3) v2 0 .67 0 .88 1 .99 

R 3 : x 1 �x 2 ∼ x 3 M R 3 = (3 , 2 , 2) v3 0 .67 1 .71 2 .85 

R 4 : x 2 �x 1 ∼ x 3 M R 4 = (2 , 3 , 2) v4 2 .00 2 .69 12 .51 

R 5 : x 1 ∼ x 2 �x 1 M R 5 = (3 , 3 , 1) v5 4 .00 5 .19 3 .07 

R 6 : x 1 ∼ x 3 �x 2 M R 6 = (3 , 1 , 3) v6 1 .33 2 .41 14 .45 

R 7 : x 2 ∼ x 3 �x 1 M R 7 = (1 , 3 , 3) v7 4 .00 8 .52 39 .08 

R 8 : x 3 �x 2 �x 1 M R 8 = (1 , 2 , 3) v8 2 .33 6 .44 22 .04 

R 9 : x 2 �x 3 �x 1 M R 9 = (1 , 3 , 2) v9 3 .67 8 .24 47 .00 

R 10 : x 2 �x 1 �x 3 M R 10 
= (2 , 3 , 1) v10 3 .67 4 .07 18 .27 

R 11 : x 3 �x 1 �x 2 M R 11 
= (2 , 1 , 3) v11 1 .00 1 .30 0 .77 

R 12 : x 1 �x 3 �x 2 M R 12 
= (3 , 1 , 2) v12 1 .00 2 .13 9 .77 

R 13 : x 1 �x 2 �x 3 M R 13 
= (3 , 2 , 1) v13 2 .33 3 .10 2 .32 

About graphical interpretation, on the left of Fig. 2 the elements of the feasible set F are displayed like dots using a 

color scale. Dots have different colors depending on their Mahalanobis distance, d I , to the mean point M (black triangle). 

Associated distance values are shown in Table 2 . 

Additionally, Fig. 3 shows the minimum equidistant surface to M , that in this case is a blue sphere centered at M . 

Moreover, Fig. 3 includes two different perspectives in order to improve the view. 

Notice that considering the � matrix as the identity matrix is equivalent to using the Euclidean distance ( l p = l 2 ) to 

compute a solution. The Euclidean distance has been extensively used in other approaches like [14,29,30] . Then, Case 1 

could be used to compare our approach with other methods and to show its efficiency. Next cases include the importance 

and the cross-relations of alternatives by means of several � matrices. 

2. Case 2. Now we account for a case where alternatives are considered differently by means of a diagonal � matrix. In our 

example this means that all destinations are not equally treated. Suppose for instance � = D = diag(0 . 3 , 0 . 8 , 1 . 2) where 

the third alternative has the biggest significance. In Table 2 we can find the social consensus solution for this particular 

case: 
• M R 2 

= (2 , 2 , 3) , that is, x 3 �x 1 ∼ x 2 . 
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Fig. 2. A display of elements in F with colored dots depending on the distance (on the left d I and on the right d D ) to the mean point M (black triangle). 

In addition, squares denotes the codified complete preorders ( M R 5 and M R 11 
) included in M . 
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Fig. 3. Graphical interpretation of case 1 in Section 4.3 using d I . 

Analogously to the previous case, on the right of Fig. 2 the elements of the feasible set are shown. The color scale is 

built for the Mahalanobis distance, d D , between dots and the mean point M (black triangle). Such distance values are 

also shown in Table 2 . 

In addition, the aforementioned social solution can be found in Fig. 4 from two perspectives. It shows the minimum 

equidistant surface to M , that is a blue ellipsoid centered at M . On the right, after rotating the ellipsoid, our figure 

makes clear that dots with labels v 1 and v 3 are outside of the ellipsoid, farther away than the dot v 2 . 
3. Case 3. Finally, we examine the case of a non-diagonal matrix, which allows to incorporate the interdependence of the 

alternatives because the role of � in the Mahalanobis distance. Let us assume the following particular matrix 

� = �1 = 

( 

0 . 30 0 . 37 −0 . 36 

0 . 37 0 . 80 −0 . 29 

−0 . 36 −0 . 29 1 . 20 

) 

. 
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Fig. 4. Graphical interpretation of case 2 in Section 4.3 using d D . 
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Fig. 5. Graphical interpretation of case 3 in Section 4.3 using d �1 
. 

Since � matrix can be considered as a variance-covarince matrix in the Mahalanobis distance, it is easy to compute the 

corresponding correlation matrix Corr , that is, the correlation among the alternatives. 8 

C orr = C orr 1 = 

( 

1 . 00 0 . 75 −0 . 60 

0 . 75 1 . 00 −0 . 30 

−0 . 60 −0 . 30 1 . 00 

) 

. 

In our example this matrix implies not only that all destinations are not equally treated but they are also correlated. 

Alternatives x 1 and x 2 are highly positively correlated whereas alternatives x 1 and x 3 , and x 2 and x 3 , are negatively 

correlated. Therefore, it is assumed that Paris and Berlin are “positively” correlated destinations. However, the preferences 

relative to Paris versus Istanbul are more intensively opposite than Berlin versus Istanbul. 

8 The element ij of the corelation matrix Corr is 
�i j √ 

�ii 

√ 

� j j 

, where �ij is the element ij of variance-covariance matrix �. 

55



T. González-Arteaga et al. / Information Sciences 372 (2016) 546–564 563 

In order to solve the optimization problem for this case we observe the corresponding distance values, d �1 
, contained 

in Table 2 . In this case, we conclude that the solution is: 
• M R 11 

= (2 , 1 , 3) , that is, x 3 �x 1 �x 2 

Regarding graphical interpretation, Fig. 5 shows the minimum equidistant surface to M . In this case, it is a blue oriented 

ellipsoid centered at M . After a rotation, the graph on the right reveals that dots v 2 and v 4 are outside of the ellipsoid, 

farther than the dot v 11 . 

5. Concluding remarks 

This study is aimed at proposing a new approach to obtain a group consensus solution under the assumption of ordinal 

information. A new procedure based on an optimization model has been developed, obtaining a social consensus solution 

based on the Mahalanobis distance . To accomplish such target two new contributions have been developed in addition of the 

main result: the characterization of a codification procedure for ordinal information, namely, the canonical codification and 

the definition and analysis of a new dissensus measure, namely, the Mahalanobis dissensus measure . The use of the Maha- 

lanobis distance as a base of our approaches brings advantage by considering possible cross relations among alternatives. 

Moreover, the operational character and intuitive interpretation of our approaches have been illustrated by an explanatory 

example. 

The findings of this study have a number of important implications for future practice. Many problems from a variety 

of fields can be managed by our methods such as the performance of consumers’ preferences, Clinical Decision Making 

problems, allocation of projects, Human Resources Department problems, etc. 
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Chapter 5

Concluding remarks and future research

In this chapter we present the main results obtained and some concluding

remarks drawn along this doctoral thesis as well as some possible future works.

Concluding remarks and obtained results

Group decision making problems have been attaining importance in many

real-life application and scientific areas, such as Economics, Social Sciences,

Engineering, Medicine, so on. In this kind of problems it can be interesting

to know the level of agreement among members of a group. In this sense,

different authors have proposed in the literature a great variety of approaches

to measure and to achieve cohesiveness although they present some drawbacks.

Such drawbacks inspired and motivated the objectives pursued in this doctoral

thesis. So, the interest of this research was focused on overcoming them by means

of a number of proposals which are summed up below.
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For one thing, the research studies made during the development of this

doctoral thesis take into account possible cross-related alternatives in measure-

ment of cohesiveness. To this end we introduce the Mahalanobis distance that

is regularly used in Statistical Analysis and it had hardly been employed in

Decision Making.

For another thing, a new via to measure consensus is opened in this doctoral

thesis. A novel procedure based on the Pearson correlation coefficient is proposed.

This new measure of cohesiveness among experts is neither a distance function

nor a similarity function.

From another point of view, in this dissertation, we have provided theoretical

definitions of different cohesiveness measures assuming several frameworks.

Concretely, the class of Mahalanobis dissensus measures is put forth to cardinal

evaluations, the correlation consensus degree is defined for reciprocal preference

relations and the Mahalanobis dissensus measure is adopted for ordinal evalua-

tions.

We also propose a new approach based on an optimization problem to

achieve a group consensus solution under the assumption of ordinal information

(complete preorders), the Mahalanobis social consensus solution. The use of the

Mahalanobis distance as a base of our approach allows to consider possible cross

relations among alternatives. Furthermore, a new outcome is added to that main

result to accomplish such target: the characterization of an important codification

procedure for ordinal information, namely, the canonical codification.

In addition, each one of the proposed measures or procedures for measuring

or achieving cohesiveness is accompanied by a detailed study of desirable formal

properties in order to show its consistency and applicability.
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Finally, it is worth emphasizing that the three supplied contributions contain

real and practical applications of the proposed innovative measures and procedu-

res.

As can be seen, all the objectives pursued at the beginning of this research

have been successfully achieved by means of the contributions presented in this

thesis memory.

Future research

The most straightforward lines of enquiry that could benefit from further

study are pointed out below.

One of the challenge of our proposals is that the Mahalanobis dissensus

measure requires to have a reference matrix suitable to the problem at hand.

Therefore, it is essential to develop procedures to determine such a reference

matrix in order to improve our proposals. In this sense, it should be interesting

to design methodologies that could use information from the original profile.

Therefore, we would be in position to assure that the matrix provided is

appropriate to each specific decision making problem. This could be a kind of

“endogenous” measure.

From another point of view, it could be appealing to design flexible consensus

reaching processes. In our case, we would propose a consensus reaching process

based on the correlation consensus degree. This process would allow to produce

a consensus solution by an iterative feedback mechanism accommodated to this

specific consensus measurement.

Finally, in order to improve and to extend our proposal of Mahalanobis

social consensus solutions, we would research on the implementation of the

optimization problem used to obtain such solutions, particularly when the

number of alternatives is not small.
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ARTÍCULO I:

T́ıtulo: A cardinal dissensus measure based on the Mahalanobis distance.
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Autores: T. González-Arteaga1, J.C.R. Alcantud2, R. de Andrés Calle2.

Revista: Information Sciences, 372, 546-564, 2016.

DOI: 10.1016/j.ins.2016.08.071.

WoS-JCR 2015: 3,364, Q1 (8/143) in Computer Science, Information Sys-

tems.

Afiliaciones:
1Dpto. Estad́ıstica e Investigación Operativa, Universidad de Valladolid.
2 Dpto. Economı́a e Historia Económica, Universidad de Salamanca.
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Resumen

El objetivo general de esta tesis doctoral es el desarrollo de enfoques novedo-

sos para la medición de la cohesión/consenso y metodoloǵıas que proporcionan

soluciones sociales de consenso en problemas de toma de decisiones en grupo, am-

pliando el campo de investigación de los enfoques tradicionales. Estas cuestiones

han sido abordadas y desarrolladas en las tres contribuciones que describimos a

continuación.

En la primera contribución se estudia el problema de la medición del grado

de consenso/disenso, en un contexto donde los expertos o agentes expresan sus

opiniones sobre las alternativas mediante evaluaciones cardinales. La suposición

de evaluaciones cardinales en la medición del consenso apenas ha sido examinada

previamente en la literatura relativa a la toma de decisiones. Para este objetivo

se propone una nueva clase de medidas de consenso basadas en la distancia de

Mahalanobis: la familia de medidas de disenso de Mahalanobis para perfiles de

valoraciones cardinales. La principal ventaja de esta propuesta es que tiene en

cuenta los efectos de diferencias en escala y las posibles interrelaciones entre las

alternativas. Además, se analizan y se prueban algunas propiedades relevantes

de dichas medidas. Para finalizar esta contribución, se presenta y se discute una

aplicación de las medidas en un caso emṕırico real.

En la segunda contribución se estudia un nuevo enfoque para la medición de

consenso basado en el coeficiente de correlación de Pearson, bajo la suposición de

que las opiniones de los expertos se modelan mediante relaciones de preferencia

rećıprocas. El nuevo grado de consenso basado en la correlación mide la con-

cordancia entre las intensidades de preferencia de pares de alternativas. Aunque

un estudio detallado de las propiedades formales de la nueva medida propuesta

muestra que verifica propiedades deseables y relevantes que son comunes, o bien

a funciones de distancia o bien de similaridad, también se prueba que es diferente

a las medidas de consenso tradicionales. Para reforzar la novedad de este trabajo
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se presenta una aplicación de la medida en el ámbito de la toma de decisiones

cĺınicas compartidas.

En la tercera contribución se abordan tres pilares fundamentales para el es-

tudio del consenso: el tratamiento de las opiniones de los expertos cuando se ex-

presan mediante información ordinal, la medición del grado de consenso/disenso

entre tales opiniones y la obtención de una solución colectiva que recoja el mı́nimo

disenso en el grupo de expertos.

Primero se caracteriza un nuevo procedimiento para codificar información ordinal.

Posteriormente se diseña una nueva medida de disenso entre preferencias indivi-

duales basada en la distancia de Mahalanobis, una medida especialmente indicada

en el caso de alternativas posiblemente correlacionadas. Por último, se propone un

procedimiento para la obtención de una solución social de consenso que incluya

la posibilidad de alternativas interrelacionadas.

Además, se examinan las principales caracteŕısticas de la medida de disenso y de

la solución social propuestas. El carácter operacional y la interpretación intuitiva

de estos enfoques se ilustran mediante un ejemplo explicativo.
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Introducción

Todos los d́ıas se toman multitud de decisiones y, aunque la mayoŕıa de las

veces sucede de forma inconsciente, en otras ocasiones los individuos juegan un

papel activo. Sin embargo, muchas de estas decisiones no se toman de manera

individual sino que se toman en grupo, y los procesos implicados en estas oca-

siones son complejos; alcanzar decisiones consistentes en este contexto puede ser

complicado.

Como consecuencia de esta dificultad, en los últimos años han surgido diferen-

tes tópicos de investigación en varias áreas cient́ıficas tales como Psicoloǵıa, las

Ciencias poĺıticas, la Economı́a, etc. para tratar de abordar los problemas que

aparecen en este escenario.

Entre los muchos aspectos que podŕıan ser objeto de investigación en este

contexto, esta tesis se centra en el análisis del consenso en la toma de decisiones

en grupo.

El concepto de consenso ó cohesión se ha estudiado ampliamente en Psicoloǵıa

y Socioloǵıa. Gran parte del interés que suscita este tema se debe a la creencia de

que mantener la unidad del grupo es importante para conseguir un rendimiento

exitoso del mismo. Debemos notar que, por un lado, las posibilidades de alcanzar

altos niveles de cohesión dependen en gran parte de ciertas condiciones sociales

(Braaten (1991)) y. por otro lado, hay varios aspectos interpersonales que afectan

a la cohesión de los grupos tales como la cercańıa de sus miembros, el tamaño del

grupo, la dificultad de entrada en el mismo, etc. (Eisenberg (2007)). Todos estos

elementos sobre la cohesión, sociales o interpersonales, no son objeto de estudio

en esta tesis doctoral.

Desde otro punto de vista, consenso es un término multifacético, como puede

verse en el trabajo recopilatorio de Mart́ınez-Panero (Mart́ınez-Panero (2011)).

En dicho trabajo se presentan varias perspectivas sobre la noción de consenso

y cómo este concepto se utiliza en desarrollos formales tales como medidas de
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consenso en la Teoŕıa de la Elección Social, en la Teoŕıa de la Toma de Decisiones

y en aplicaciones de Biomatemáticas.

En esta memoria el término cohesión/consenso se refiere al grado de acuerdo

existente entre las opiniones individuales emitidas por un grupo de expertos o

agentes (una sociedad) sobre un conjunto de alternativas. Aśı, el término consenso

se considera de la misma forma que en el trabajo de Mart́ınez-Panero.

Este trabajo se enmarca entre la Teoŕıa de la Elección Social y la Teoŕıa de la

Toma de Decisiones. A este respecto, cabe destacar que este área temática tiene

impacto en distintos campos cient́ıficos en Economı́a, Ciencias de Computación y

Ciencias de la Salud.

Desde el punto de vista de la Teoŕıa de la Elección Social, la medición de

la cohesión de un grupo fue introducida en primer lugar por Bosch (2005) con la

noción de medida de consenso. Alcalde-Unzu and Vorsatz (2013), Garćıa-Lapresta

and Pérez-Román (2011) y Alcantud et al. (2013b), entre otros, extendieron y

desarrollaron soporte axiomático para varias medidas de consenso en el sentido

introducido por Bosch.

Desde la perspectiva de la Teroŕıa de Toma de Decisiones y sus aplicaciones, la

medición del consenso y su obtención en un grupo de expertos son áreas de inves-

tigación destacadas y muy activas. Se pueden señalar, por ejemplo, los trabajos

de Kacprzyk and Fedrizzi (1988) y Herrera-Viedma et al. (2014), entre otros.

Aunque existe una variada y amplia literatura sobre metodoloǵıas para medir

y alcanzar consenso, todav́ıa existen algunos retos de los cuales apenas se ocupan

los enfoques existentes. En este sentido, podemos mencionar como retos la me-

dición de la cohesión/consenso cuando las opiniones de los expertos se expresan

mediante evaluaciones cardinales, aśı como la consideración de alternativas con

relaciones cruzadas. Desde otra perspectiva, debe resaltarse que la mayoŕıa de las

metodoloǵıas mencionadas se basan en funciones de distancia o de similaridad, lo

que puede suponer una limitación en algunos casos.
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La investigación realizada en esta tesis se dirige a la superación de los retos y

limitaciones anteriormente expuestos. A continuación, se enumeran los objetivos

concretos que han sido tratados en esta tesis docotoral.

Objetivos

El objetivo general del trabajo presentado en esta tesis doctoral es el desarrollo

de nuevos enfoques para la medición de la cohesión/consenso y para la obtención

de soluciones sociales de consenso en problemas de toma de decisiones en grupo,

ampliando el campo de las propuestas tradicionales.

Este objetivo general puede desglosarse en los siguientes particulares:

Desarrollar nuevas medidas de cohesión, prestando atención expĺıcitamente

a la posibilidad de que las alternativas tengan relaciones cruzadas con la

intención de cubrir esta laguna, y complementar la literatura existente sobre

la medición y el logro del consenso.

Construir medidas de consenso/disenso desde un punto de vista teórico asu-

miendo un marco de trabajo donde los expertos o agentes expresen sus

evaluaciones sobre las alternativas mediante los siguientes formatos: evalua-

ciones ordinales, evaluaciones cardinales y relaciones de preferencia rećıpro-

ca.

Estudiar detalladamente las propiedades teóricas de las medidas y metodo-

loǵıas propuestas.

Definir procedimientos novedosos para obtener soluciones sociales de con-

senso que contemplen la posibilidad de que existan relaciones cruzadas entre

las alternativas. Además, dichos procedimientos deben satisfacer propieda-

des deseables.

Mostrar aplicaciones prácticas reales de las nuevas metodoloǵıas, con el ob-

jeto de acreditar su aplicabilidad.
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Resumen de los resultados

En esta sección presentamos un resumen de cada art́ıculo que integra esta

tesis doctoral en formato de compendio de publicaciones cient́ıficas. Este resumen

incluye objetivos, medodoloǵıa, resultados y conclusiones para cada publicación.

Art́ıculo I:

T. González-Arteaga, J.C.R. Alcantud, R. de Andrés Calle. A cardinal dissen-

sus measure based on the Mahalanobis distance. European Journal of Operational

Research, 251, Issue 2, 575-585. 2016. DOI: 10.1016/j.ejor.2015.11.019.

El objetivo principal de esta contribución es construir nuevas medidas de cohe-

sión/consenso, o de ausencia de la misma, en problemas de toma de decisiones en

grupo donde los expertos o agentes expresan sus opiniones sobre un conjunto de

alternativas mediante evaluaciones cardinales. Existe un especial interés en que

las medidas resultantes contemplen la posibilidad de que las alternativas se en-

cuentren interrelacionadas.

Como metodoloǵıa para la construcción de dichas medidas se adopta el en-

foque de consenso basado en funciones de distancia. Este trabajo utiliza como

herramienta central la distancia de Mahalanobis (Mahalanobis (1936)) amplia-

mente reconocida en Estad́ıstica.

Como resultado de examinar el problema de medición del grado de cohe-

sión/consenso planteado y teniendo en cuenta las caracteŕısticas peculiares de

las evaluaciones expresadas mediante valores cardinales, en este art́ıculo se intro-

duce en primer lugar una definición general de medida de disenso para perfiles

de evaluaciones cardinales. Posteriormente se presenta la clase de medidas de di-

senso de Mahalanobis que contiene todas las medidas de disenso de Mahalanois

http://www.sciencedirect.com/science/article/pii/S0377221715010681
http://www.sciencedirect.com/science/article/pii/S0377221715010681
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asociadas a matrices definidas no negativas, denominadas matrices de referencia.

A través de estas matrices es posible incorporar las interrelaciones entre las alter-

nativas. Aśı mismo, se puede destacar que se obtuvieron resultados formales que

demuestran la consistencia de las medidas propuestas.

Además, en esta publicación se demuestra el cumplimiento de propiedades

deseables y resultados teóricos relativos a las medidas de la clase propuesta tales

como neutralidad, invariancia frente a transformaciones lineales, monotońıa en la

replicación del perfil, comportamiento ante la partición del conjunto de alternati-

vas, adición de alternativas y adición de agentes a la sociedad.

Finalmente, el trabajo incluye una aplicación de la medida propuesta a las

previsiones realizadas por diferentes instituciones y organizaciones de varias mag-

nitudes económicas relativas a la economı́a española.

En esta contribución se concluye que la clase de medidas de disenso de Maha-

lanobis resulta adecuada para la medición del grado de cohesión en un escenario

donde los expertos o agentes expresan su opinión sobre las alternativas con evalua-

ciones cardinales dado que posee buenas propiedades. Aśı imismo, cabe destacar

que estas medidas pueden incorporar relaciones cruzadas y diferencias de escalas

en las evaluaciones de las alternativas.

Art́ıculo II:

T. González-Arteaga, R. de Andrés Calle, and F.Chiclana. A new mea-

sure of consensus with reciprocal preference relations: The correlation

consensus degree. Knowledge-Based Systems, 107, 104–116. 2016. DOI:

10.1016/j.knosys.2016.06.002.

El objetivo de este trabajo es el desarrollo de un enfoque novedoso en la me-

dición del consenso bajo la premisa de que los expertos expresan sus valoraciones

mediante relaciones de preferencia rećıprocas.

http://www.sciencedirect.com/science/article/pii/S0950705116301654
http://www.sciencedirect.com/science/article/pii/S0950705116301654
http://www.sciencedirect.com/science/article/pii/S0950705116301654
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Esta nueva medida, a diferencia de los enfoques tradicionales, no se fundamen-

ta ni en funciones de distancia ni en funciones de similaridad. La metodoloǵıa en

este trabajo se aleja de la usual en este escenario ya que no utiliza procedimientos

basados en dichas funciones, sino que usa como herramienta básica el coeficiente

de correlación de Pearson.

En este trabajo se define una nueva medida de cohesión entre dos expertos,

denominada grado de consenso basado en la correlación, que utiliza como elemeto

central el coeficiente de correlación de Pearson y produce valores en el intervalo

unitario, como es tradiccional en la Teoŕıa de la Elección Social. Aśı mismo, se

incluye una extensión de la medida a un grupo de expertos denominada grado de

consenso de un grupo. También se prueban varios resultados teóricos y propieda-

des de la medida tales como reflexividad, simetŕıa, reversibilidad y transitividad

bajo el máximo. Finalmente, en este trabajo se presenta una aplicación de la me-

dida propuesta a la Toma de Decisiones Cĺınicas Compartidas para mostrar la

aplicabilidad y versatilidad de la medida propuesta.

Como conclusión señalamos que se presenta una nueva medida de consenso

constrúıda para medir la concordancia entre las intensidades de preferencia para

pares de alternativas dadas por dos expertos o agentes, aśı como una extensión

de la misma para un grupo de expertos o agentes. A diferencia de otras medidas

de consenso, la nueva medida presentada no se apoya en funciones de distancia ni

funciones de similaridad y abre una nueva v́ıa para la medición del consenso.

Art́ıculo III:

T. González-Arteaga, J.C.R. Alcantud, R. de Andrés Calle. A new consensus

ranking approach for correlated ordinal information based on Mahalanobis dis-

tance. Information Sciences, 372, 546 - 564. 2016. DOI: 10.1016/j.ins.2016.08.071

http://www.sciencedirect.com/science/article/pii/S0020025516306557
http://www.sciencedirect.com/science/article/pii/S0020025516306557
http://www.sciencedirect.com/science/article/pii/S0020025516306557
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El objetivo principal de este trabajo consiste en desarrollar de manera teórica

medidas de cohesión y soluciones sociales de consenso para un marco de tra-

bajo donde los expertos manifiestan sus valoraciones con evaluaciones ordinales

(preórdenes completos) contemplando la posibilidad de interrelación entre las al-

ternativas.

En esta contribución se ha utilizado el procedimiento de construcción de medi-

das de consenso basadas en funciones de distancia. La herramienta empleada para

incorporar la posible interrelación de las alternativas es la distancia de Mahala-

nobis.

En este trabajo se define y se caracteriza un nuevo sistema de codificación

de preórdenes completos mediante vectores numéricos. Este resultado nos propor-

ciona un procedimiento que hace posible comprobar si, dado un vector numérico

determinado, éste se corresponde con algún preorden completo y en su caso, qué

ordenación concreta de las alternativas representa, es decir, la ordenación de las

alternativas mostrada en las preferencias del experto. Para conseguir este objetivo

se formula la clase de medidas de disenso de Mahalanobis y se prueba que se verifi-

can algunas propiedades formales deseables tales como el anonimato, neutralidad

débil, compatibilidad y reciprocidad.

Como resultado fundamental de esta contribución se establece un procedimien-

to para la obtención de una solución social de consenso denominada solución social

de consenso de Mahalanobis, para perfiles de preferencias, que posee la originali-

dad de haberse diseñado especialmente para contemplar posibles interrelaciones

entre las alternativas. Además, se demuestra que dicha solución verifica propieda-

des deseables tales como anonimato, unanimidad, neutralidad débil, consistencia,

compatibilidad, reciprocidad y la imposibilidad de ser dictatoriales.

Para concluir resaltamos que en este trabajo se ha conseguido definir formal-

mente una clase de medidas de cohesión bajo la suposición de información ordinal

(perfiles de preórdenes completos) que contempla la posibilidad de alternativas
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interrelacionas. Aśı mismo, se construyen soluciones sociales de consenso para las

situaciones señaladas explotando las caracteŕısticas de la distancia de Mahalano-

bis. Tanto las nuevas medidas como las soluciones sociales de consenso verifican

propiedades de interés para su aplicación a situaciones reales.

Conclusiones y trabajos futuros

A continuación se recogen los principales resultados obtenidos en esta memo-

ria. Del mismo modo, se exponen posibles ĺıneas de trabajo futuro que se derivan

de los resultados obtenidos.

Conclusiones y resultados obtenidos

Los problemas de toma de decisiones en grupo han cobrado importancia en

muchas áreas de investigación tales como Economı́a, Ciencias Sociales, Ingenieŕıa

o Ciencias de la Salud, etc. En esta clase de problemas es interesante conocer el

grado de acuerdo entre los miembros del grupo. En este ámbito, distintos autores

han realizado diversas contribuciones sobre cómo medir y logar la cohesión en los

grupos.

A pesar de la gran variedad de enfoques disponibles, existen algunas limitacio-

nes o problemas que inspiraron y motivaron los objetivos perseguidos en esta tesis

doctoral. Aśı, el interés de esta investigación se focalizó en superarlos mediante

algunas propuestas cuyos resultados y conclusiones se resumen a continuación.

Por un lado, en la investigación realizada durante el desarrollo de esta tesis

relativa a la medición de la cohesión se tuvo en cuenta la posible relación cruzada

entre las alternativas. Para este objetivo se introdujo la distancia de Mahalanobis

que se usa habitualmente en Estad́ıstica y que apenas ha sido empleada en la
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Teoŕıa de Toma de Decisiones.

Por otro lado, se abre un nuevo enfoque en la medición del consenso basado en

el coeficiente de correlación de Pearson a diferencia de los tradicionales basados

en funciones de distancia o de similaridad.

Desde otra perspectiva, en esta memoria se proporcionan definiciones teóricas

de diferentes medidas de cohesión, asumiendo varios marcos de trabajo donde

los agentes o expertos miembros del grupo pueden expresar sus evaluaciones

sobre las alternativas. Concretamente, se define la clase de medidas de disenso

de Mahalanobis para evaluaciones cardinales, el grado de consenso basado en la

correlación para relaciones de preferencia rećıprocas y las medidas de disenso de

Mahalanobis para evaluaciones ordinales.

También se propone una nueva metodoloǵıa basada en problemas de optimiza-

ción para lograr una solución social de consenso bajo la suposición de información

ordinal (preórdenes completos) denominada solución social de consenso basada

en Mahalanobis. La utilización de la distancia de Mahalanobis como fundamento

de nuestra propuesta permite considerar posibles relaciones cruzadas entre las

alternativas. Aśı mismo, un nuevo resultado necesario para alcanzar tal solución

acompaña al principal: la caracterización de un procedimiento de codificación

para la información ordinal, concretamente, la codificación canónica.

Además, cada uno de los procedimientos propuestos para medir o alcanzar la

cohesión en problemas de toma de decisiones en grupo se acompaña con un estu-

dio detallado de sus propiedades formales con el objeto de mostrar su consistencia.

Finalmente, hay que destacar que las tres contribuciones aportadas en esta

tesis contienen una aplicación práctica y real de las medidas y procedimientos

novedosos propuestos.
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Trabajos futuros

A continuación se señalan las ĺıneas de trabajo más directas que se benefi-

ciaŕıan de futuras investigaciones.

Uno de los retos de las propuestas presentadas en esta memoria supone

que la medida de disenso de Mahalanobis requiere disponer de una matriz de

referencia adecuada al problema que se esté tratando. Por tanto, para mejorarla

es preciso desarrollar procedimientos que permitan determinar tales matrices

de referencia. En esta ĺınea, seŕıa interesante diseñar metodoloǵıas que puedan

utilizar información del perfil original. De ese modo, se podŕıa garantizar que la

matriz proporcionada resulta apropiada a cada problema espećıfico de toma de

decisiones, lo que podŕıa ser considerado una medida “endógena” de consenso.

Desde otro punto de vista, se podŕıan diseñar procesos de obtención de

consenso flexibles. En este caso, se propondŕıa plantear un proceso de obtención

de consenso fundamentado en el grado de consenso basado en la correlación. Este

proceso permitiŕıa producir una solución de consenso mediante un mecanismo

iterativo de retroalimentación adaptado a esta medida.

Finalmente, para mejorar y extender la propuesta de soluciones sociales de

consenso de Mahalanobis, seŕıa interesante indagar sobre la implementación del

problema de optimización utilizado para obtener tales soluciones, especialmente

cuando el número de alternativas resulte elevado.
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Borda, J., 1781. Mémoire sur les Elections au Scrutin. Histoire de l’Academie

Royale des Sciences, Paris.

Bosch, R., 2005. Characterizations of voting rules and consensus measures. Ph.D.

thesis, Tilburg University.

Braaten, L., 1991. Group cohesion: A new multidimensional model. Group 15 (1),

39–55.

Cabrerizo, F. J., Alonso, S., Herrera-Viedma, E., 2009. A consensus model for

group decision making problems with unbalanced fuzzy linguistic information.

International Journal of Information Technology & Decision Making 08 (01),

109–131.
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