Gonzalez, A., Gomez, D. A., Segrera, S., Theron, R., Moreno, M. N., & Garcia-Pefialvo, F. J. (2008). Uncovering the Relationships among Classes and
Packages in Software Evolution. In M. N. Moreno Garcia, A. B. Gil Gonzalez, & V. F. Lopez Batista (Eds.), Web Mining and Semantic Web. I
Workshop, MiWebSe 2008 (27 October — 9 November, 2008) (pp. 11-20). Salamanca, Spain: Departamento de Informatica y Automatica de la

Universidad de Salamanca.

Uncovering the relationships among classes and
packages in software evolution

Antonio Gonzélez, Diego A. Gémez, Saddys Segrera, Roberto Therén, Maria
N. Moreno, and Francisco J. Garcia

Department of Computer Science and Automatics,
University of Salamanca,
Plaza de la Merced s/n, 37008 Salamanca, Spain
{agtorres,dialgoag, saddys, theron,mmg, fgarcia}@usal.es
http://informatica.usal.es

Abstract. This paper proposes the uncovering and representation of
the hierarchy and implementation relationships among software items
using data stored in online software repositories. Software Configura-
tion Management (SCM) tools and software repositories provide infor-
mation about software item revisions and support“evolution data ex-
traction as well as the automatic retrieval-of,source code. Hence, the
proposal presented here performs static analysis on,the source code of
software item revisions for collecting relevant, data about relationships
and dependencies among items. The visualization contributes to the com-
parison between revisions in order to provide a better understanding of
structure changes on software projects:

Key words: Information retrieval, software repositories, information vi-
sualization, search engine

1 Introduction

Web mining is defined-as the application of data mining techniques to discover
and extract information/from web documents and services automatically [1].
Nevertheless, data mining techniques are no easy of applying to web data due
to problems related as much to the underlying technology as with the absence
of standards in the design and implementation of Web pages.

Web mining consists of three tasks: source discovery, selection and informa-
tion preprocessing, and general pattern discovery from web sites. This paper is
aimed to the first of the Web mining tasks applied to online open source software
repositories and the gathering of software evolution data. The information source
discovery or the information retrieval (IR) consists of the automatic recovery of
relevant documents, whereas it makes sure at the same time, as it is possible,
that the non relevant ones are not considered.

At this point, it is relevant to consider that the use of online software reposi-
tories and SCM tools has become widespread in middle and large size software



12 A. Gonzdlez et al.

projects. Besides, many commercial and non-commercial SCM and software ver-
sioning tools are available in the marketplace. According to [2] SCM enhances
the environment of developers, managing concurrency and collaboration, and
recording changes in software repositories; including time, date, which modules
were affected, how long the modification took and information about who per-
formed the change. SCM tools support many other functions, but the above
functions are shared by most code versioning tools; such as Subversion [3].

Furthermore, online software repositories have been the information source
for several researches in mining software repositories [4], and the visualization
of the evolution of software projects and items [5,6]. However, they had been
ignored for a long time [7] despite their richness in providing valuable infor-
mation on the detection of errors, pattern identification, structure changes and
project management [8].

Moreover, the researches on IR admit modeling, user interface development,
data visualization, and filters [9]. The Web content visualization is possibly the
most complex part of the Web mining visualization. Not_only by the vast and
diverse contents of the web, but also by complexity of its'semantics [10].

In recent years, the field of information visualizationthas played an important
role in providing insight through visual representations.combined with interac-
tion techniques that take advantage of the human eye’s broad bandwidth path-
way to the mind, allowing experts to see, explore, and understand large amounts
of information at once [11]. If the visualization, takes place in an interface whose
objective is information retrieval, the expression used for this type of system is
Visual Information Retrieval Interfaces (VIRIs) [12].

The main contributions of this paper are the uncovering and representation of
hierarchy and implementation rélationships between Java software items, within
the software project and external”software items that belongs to the Java API
or libraries used by the project under consideration. Our proposal considers the
visualization of these relationships through several revisions for contributing to
the comparison of structure changes on software projects.

This papeér is structured in 5 sections, as follows: section 2 reviews related
works, section 3_discusses our visualization design, section 4 presents a case
study, and, section 5«discusses the conclusions.

2 Related work

2.1 Information retrieval on the Web

Traditional information retrieval, which was developed for isolated databases,
is not suitable for Web applications. The main differences between traditional
and Web-based information retrieval are the number of simultaneous users of
popular search engines, the number of documents which can be accessed [13]
and technologies [14].

On the one hand, the number of simultaneous users of a search engine at an
specific moment can not be predicted and it may overload a system and on the



Uncovering the relationships among classes and packages 13

other hand, the number of publicly accessible documents on the Web outperforms
those quantities associated with traditional databases. In addition the number of
Web search engine providers, Web users and Web pages have experienced a dizzy
growth in the last years; an average page requires more space, uses more memory
and involves more different types of multimedia information in relation to an
average traditional document [13]. Furthermore, much of the Web information
is semi-structured due to the nested structure of HTML code; it is linked and
redundant. The Web is noisy, a Web page typically contains a mixture of many
kinds of information such as main contents, advertisements, navigational panels,
copyright notices [14].

Various techniques attempt to improve the search performance of Web pages
by taking Web page structures into account, for example: giving more credit to
words appearing in the title field, considering the distance between search key-
words appearing within a page, assigning appropriate weights to each search key-
word, or suggesting different paradigms (probabilistic, logic or language-based
model) or formulas when computing the degree of similarity between a Web page
and the user’s query [9].

There are three Web-based information retrieval architeetures: centralized
[15], distributed [16, 15] and metasearch [17, 18, 15].

2.2 Software configuration management and mining software
repositories

SCM tools and software versioning=tools have been traditionally used by most
software projects for providing, a collaboration means between software deve-
lopers. Nowadays, CVS.~{19}, and\Subversion [3] are the most widely used soft-
ware versioning tools. According-to the definition of the IEEE Standard 828-1990
[20] “Softwareconfiguration management (SCM) activities include the identifica-
tion and establishment of baselines; the review, approval, and control of changes;
the tracking and réporting of such changes; the audits and reviews of the evol-
ving software preduct; and the control of interface documentation and project
supplier SCM” ~Thus, SCM and software versioning tools use software reposito-
ries that provide-data structures for storing and retrieving software items’revision
changes. As a result, these tools can provide snapshots of the project code for
each revision.

Some authors [21] support the idea that SCM repositories are valuable for
project accounting, development audits and understanding the evolution of soft-
ware projects. Furthermore, other authors [22] discuss about the challenges of
retrieving and analyzing data automatically from software repositories. Addi-
tionally, the mining of software repositories have focused on specific dissimila-
rities between revisions and changes to artifacts on different granularity levels,
such as classes and methods [4]. A framework for describing and understanding
mining tools has been proposed in [23].



14 A. Gonzdlez et al.

2.3 Information and software visualization

Information visualization deals with the representation and display of a large
number of data elements, and provides visual representations to help the inter-
pretation of a data element through its relation with other data elements. It
takes under consideration several techniques to support navigation, interpreta-
tion of visual elements and understanding relationships among visual items in
their full context [24]. Tufte states that the visual distinctions between visual
elements should be as subtle as possible, yet clear and effective [25] adding that
information consists of differences that make the difference [26].

A visualization for SCM repositories is proposed in [27]. That proposal
demonstrated that the adequate use of 2D visualizations in conjunction with
colors and textures contribute to the development of powerful multidimensional
visualization solutions.

Finally, [28] present a visualization of a Dependency. Structure Matrix for
representing modules dependencies on software projects and [29] propose an
evolutionary approach applied to the visualization ef.software item dependency.

3 Description of the proposal

This paper focuses on the mining of omnline software repositories and the vi-
sualization of software items-dependency through several revisions. We consider
the proposal presented by', [30N\that discuss the restructuring of hierarchical
relationships between «£lassestand defines four types of hierarchy relationships:
self-to-self, external-to external, self to external and external to self; where self
refers to the current project and external to another project.

Hence, [we have extended and redefined these definitions as self-to-self, library
to library,\Java“API to Java API, self to library, self to Java API, library to
Java API, JavaAPI to/library, library to self and Java API to self. Where self
refers to the current project, library to an external library or another project
and Java API to the Java API itself. Moreover, we have also considered the
implementation of interfaces and classes, interfaces, enums and annotations as
the software items that can participate of inheritance and implementation.

The information extraction about software items dependency is done for each
revision of the project on a static based analysis. The SoftMiner tool locally
stores each source code revision and then the Analyzer takes the class header
and determines if its parent (in case it has one) belongs to the current project,
an external library or the Java API. The analyzer follows a similar approach for
the interfaces specified under the implements keyword; additional details can be
reviewed on algorithm 3.1.



Uncovering the relationships among classes and packages 15

Algorithm 3.1: EXTRACTION OF SOFTWARE ITEM DEPENDENCY (1epos)

Tepository < repos
while n < repository.last Revision()
revisionClasses «— SoftMiner.get RevisionClasses(n)
for each class € revisionClasses
if class.hasParent()
par «— class.getParent()
self «— Analyzer.isParentOnProj(par)
if self
then location «— “Sel f”
else java «— Analyzer.isParentOnJava(par)
then < if java
then location — “Java”
else location «— “Library”
package «— Analyzer.getClassPackage(par)
extends(z) = (parent location package)
do vector.add(extends)
do (< if class.hasImplements()
inter faces «— classgetlnterfaces()
for each int € inter faces
self «<£ Analyzer.isIntOnProj(int)
if sel f
then location «— “Self”
else java «— Analyzer.isIntOnJava(int)
if java
then location — “Java”
else location «— “Library”
package «— Analyzer.getInt Package(int)
implements(z) = (parent location package)
vector.add(implements)

then
do

return (vector)

A descriptior’ of thé visualization is presented on figure 1. It shows three
packages containing “i” and “c” ovals linked by black lines. Ovals labeled with
“c” letters represent classes and ovals labeled with “i” letters represent interfaces
and the small black oval in one of the line ends represents the linking to a parent
class or to an interface. Furthermore, the size of ovals represents the number of
relationships with other software items.

This representation uses ovals for the grouping of classes in the same package
and graph of forces for placing closely classes that have and inheritance or im-
plementation relationship. It is a valuable visualization because it represents the
dependency relationship among software items and their packages, as well as
the location of classes within the structure of the software project. The main
limitation of this representation is that it only analyzes classes written in Java.



16 A. Gonzdlez et al.

Fig. 1. Software item dependency design:

We support our visualization proposal through, linked and focus+context
views, selection, navigation, filtering and zoomsinteraction mechanisms, in addi-
tion to polyfocal display, a tree hierarchies@and'a timeline visualization technique.

4 Case study

This section discusses the application of the proposal to jEdit, an open source
software project which started on December, 1999 and currently has nearly 612
classes and 3050 revisions:

We propose the following list of questions for evaluating our visual represen-
tation: )

1. Items
1.1 Which software item is the parent of other software items?
1.2 Which interfaces do the software item implements?
1.3 Does the software item inherits from a class or interface located on the
same package, the same project, the Java API or an external library?
1.4 Does the software item implements interfaces located on the same package,
the same project, the Java API or an external library?
1.5 How many levels of inheritance a software item has?
1.6 Which software item has more relationships with other software items?
1.7 What is the location of the software item?
2. Packages
2.1 How many packages are part in the project?
2.2 Which package has more relationships with other packages?
3. Tool



Uncovering the relationships among classes and packages 17

3.1 Does the tool provide zoom and selection?

When assessing the tool, see figure 2, with the above questions it is easy to
realize after selecting a software item which are its children (question 1.1) as
well as which interfaces it implements (question 1.2) . Additionally, it shows the
relationship of a software item with other software items on the same package,
the same project, the Java API or an external library (questions 1.3 and 1.4).

Fig. 2. Global view of the representation.

The representation proposal offers the possibility of disclosing the levels of
inheritance of software items, consequently reveals the propagation of changes
when software items on the top of the hierarchy change (question 1.5). Figure
3 shows the selection of interface Node and highlights its parent interface, the
classes that implements it, and even the software items with an indirect relation-
ship. This visualization also displays visual information about the relationships
of a software item with others (question 1.6) and the package where a software
item is located (question 1.7).



18 A. Gonzdlez et al.

In addition, one can determine how many packages are in the project easily
(question 2.1); it is only required to do some selection or zooming (question 3.1).
Finally, the identification of which packages have more or less relationships with
other packages is clear at first glance.

This visualization supports many additional features that help answer many
more questions after a carefully visual inspection.

5 Conclusions

The visual representation proposed on this paper allows to answer several ques-
tions at a glance without much effort. It supports the visualization of the project
structure, dependency information and highlights project features.

This visualization is effective for the discovery of relationships among soft-
ware items and determining the impact of one software item on other software



Uncovering the relationships among classes and packages 19

items due to inheritance level and feature propagation when changes take place.
The representation is powerful because of its simplicity, intuitive design and
support to make evident what usually is not easy to identify on large software
projects. It is part of a larger visualization proposal and contributes to the com-
parison of structure changes on software projects when two or more revisions
are selected.

The main contributions of the proposal are the uncovering and representa-
tion of hierarchy and implementation relationships between Java software items,
within the software project and external software items that belongs to the Java
API or libraries used by the project under consideration.

References

1. Etzioni, O.: The World-Wide Web: quagmire or gold mine? Communications of
the ACM 39(11) (1996) 65-68

2. Estublier, J.: Software Configuration Management: A Reoadmap. The Future of
Software Engineering (2000) ISBN 1-58113-253-0.

3. Collins-Sussman, B., Fitzpatrick, B., Pilato, M.: VersionnControl with Subversion.
Sebastopol, CA USA: O’Reilly Media, Inc. (2004), ISBN=-02596-00448-6.

4. Kagdi, H., Collard, M., Maletic, J.: A survey and,taxonomy of approaches for mi-
ning software repositories in the context of software evolution. Journal of Software
Maintenance and Evolution: Research and Practice 19(2) (March/April 2007)

5. Xie, X., Poshyvanyk, D., Marcus, A.: Visualization of CVS Repository Informa-
tion. In: WCRE ’06: Proceedings_ of the 18th Working Conference on Reverse
Engineering (WCRE 2006), Benevento, Italy, IEEE Computer Society (October
2006) 231-242

6. Therdn, R., Gonzalez, A., GarciasF.J.; Santos, P.: The Use of Information Vi-
sualization to Support Seftware Configuration Management. In Baranauskas, C.,
Palanque, P., Abascal, J Barbosa, S., eds.: Human-Computer Interaction - IN-
TERACT 2007. Proceedings_of the 11th IFIP TC 13 International Conference.
Volume 4663-of Lecture/Notes in Computer Science., Springer Berlin / Heidelberg
(Septemper 2007) 317-331 ISBN: 978-3-540-74799-4.

7. Voinea, L., Telea,"A.: \CVSgrab: Mining the History of Large Software Projects.
In Santos, B.S; Ertl, T., Joy, K.I., eds.: EuroVis06: Joint Eurographics - IEEE
VGTC Symposium on/ Visualization, Lisbon, Portugal, Eurographics Association
(May 2006) 187-194

8. Weissgerber, P.; Diehl, S., Zimmermann, T., Zeller, A.: Mining Version Histories
to Guide Software Changes. IEEE Transactions on Software Engineering 31(6)
(June 2005) 429-445 Student Member-Thomas Zimmermann and Member-Andreas
Zeller, ISSN: 0098-5589.

9. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. Addison Wesley
(May 1999)

10. Diirsteler, J.: Visualizacién del Contenido de la Web. Revista Digital de InfoVis.net
(175) (2005)

11. Therén, R.: Hierarchical-temporal Data Visualization using a Tree-Ring Metaphor.
In Butz, A., Fisher, B., Kriiger, A., Olivier, P., eds.: Smart Graphics. Proceedings
of the 6th International Symposium, SG 2006. Volume 4073 of Lecture Notes in
Computer Science., Springer Verlag (July 2006) 70-81 ISBN: 978-3-540-36293-7.



20

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

A. Gonzdlez et al.

Marcos, M.: Visual Elements in Search and Information Retrieval Systems. Hiper-
text.net (3) (2005)

Kobayashi, M., Takeda, K.: Information Retrieval on the Web. ACM Computing
Surveys 32(2) (2000) 144-173

Henzinger, M.: Information Retrieval on the Web. In: 39th Annual Symposium on
Foundations of Computer Science (FOCS98), Palo Alto, CA (1998)

Motro, A.: INFS-623: Classical and Web Information Retrieval. Information Re-
trieval from the Web. Technical report, George Mason University, Computer
Science Department (2007)

Paltoglou, G., Salampasis, M., Satratzemi, M.: A results merging algorithm for dis-
tributed information retrieval environments that combines regression methodolo-
gies with a selective download phase. Information Processing & Management 44(4)
(July 2008) 1580-1599

Pokorny, J.: Web Searching and Information Retrieval. Computing in Science and
Engineering 6(4) (2004) 43-48

Glover, E., Lawrence, S., Birmingham, W., Giles, C.: Architecture of a Metasearch
Engine that supports user information needs. In: CIKM ’99: Proceedings of the
Eighth International Conference on Information and Knowlédge Management, New
York, NY, USA, ACM (1999) 210-216

Vesperman, J.: Essential CVS. Sebastopol, CA USA: O’Reilly Media, Inc. (2006)
ISBN: 0-596-52703-9.

IEEE: IEEE Standard for Software Configuration*"Management Plans. IEEE Std
828-2005 (Revision of IEEE Std 828-1998) (2005) 11-19

Voinea, L., Telea, A.: An open framework-for, ¢vs-repository querying, analysis
and visualization. In: MSR ’06: Proceedings of the 2006 international workshop
on Mining software repositories, New York;NY, USA, ACM Press (2006) 33-39
Gonzélez-Barahona, J.M., Robles,/G., Herraiz, I.: Challenges in Software Evolu-
tion: the Libre Software Perspectivey, In:“International ERCIM-ESF Workshop on
Challenges in Software Evolution (ChaSE). (2005)

German, D.M., Cubranié, D.=Storey, M.A.D.: A framework for describing and
understanding mining tools in,_software development. In: MSR ’05: Proceedings
of the 2005 Internatienial Workshop on Mining Software Repositories, New York,
NY, USA, ACM (2005) 1-5

Leung, Y.K:, Apperleyf M.D.: A review and taxonomy of distortion-oriented pre-
sentation techniques. "ACM Trans. Comput.-Hum. Interact. 1(2) (1994) 126-160
Tufte, E.: Envisioning information. Graphics Press, Cheshire, CT, USA (1990)
Tufte, E.R.: Misual explanations: images and quantities, evidence and narrative.
Graphics Press; Cheshire, CT, USA (1997)

Voinea, L, Telea, A”: Mining software repositories with CVSgrab. In: MSR ’06:
Proceedings of the 2006 international workshop on Mining software repositories,
New York, NY, USA, ACM Press (2006) 167-168

Sangal, N., Jordan, E., Sinha, V., Jackson, D.: Using dependency models to manage
complex software architecture. SIGPLAN Not. 40(10) (2005) 167-176
Pei-Breivold, H., Crnkovic, I., Land, R., Larsson, S.: Using Dependency Model to
Support Software Architecture Evolution. In: 4th International ERCIM Workshop
on Software Evolution and Evolvability (Evol08), L’Aquila, Italy, IEEE (September
2008)

Rysselberghe, F.V., Demeyer, S.: Studying Versioning Information to Understand
Inheritance Hierarchy Changes. In: MSR ’07: Proceedings of the Fourth Interna-
tional Workshop on Mining Software Repositories, Minneapolis, MN, USA, IEEE
Computer Society (May 2007) ISBN:0-7695-2950-X.



