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Abstract

(1+1)-dimensional N = 1 super-symmetric field theory and (3+1)-dimensional N = 2
super-symmetric gauge theory are discussed in a, more or less, unified way, designed to
identify the quantum BPS states in both systems. Euclidean 4-dimensional gauge theory with
N = 2 twisted super-symmetry is also analized. C∞-topological invariants are identified as
certain n-point correlation functions in this QFT framework. The twist of the effective dual
Abelian gauge theory is briefly described, both from mathematical and physical viewpoints.
The physical nature of the topological defects arising in these systems, kinks, BPS and
Dirac monopoles, BPST instantons, Liouville and Abrikosov-Nielsen-Olesen selfdual vortices,
etcetera, is analyzed,

The thread of the story connecting the QFT systems treated respectively in Sections §.3
and §.4 is the process of TWIST that leads from a conventional extended Supersymetric
Gauge Theory to the topological N = 2 SUSY Donaldson QFT. Within Section §.3 the
SL(2,Z-dualities establish a link between the weak coupling regime of the original gauge
theory and the Wilsonian (abelian) effective gauge theory arising at low energies. We shall
also look after the reminiscences of these dualities between the twisted TQFT systems of
Section §.4.
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1 Introduction

The MacPherson Manifesto on the IAS/Princeton Quantum Field Theory Program ends with this
sentence: “the goal is to develop the sort of intuition common among physicists for those who are
used to thought processes stemming from geometry and algebra”, see [1].
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These Lecture notes are, somehow, conceived in this spirit. To contribute to this goal I have
tried to make explicit some concepts which are second nature to physicists whereas are crucial in
the realm of the Mathematical Physics, so productive in the last twenty years. In particular, I shall
discuss the ubiquitous phenomena of quantum BPS states and anomalies in two supersymmetric
field theory models. Quantum BPS states and anomalies in the central charge of the SUSY
algebra play an important rôle in both (1+1)dimensional N = 1 supersymmetric field theory and
(3+1)-dimensional N = 2 supersymmetric gauge theory. I shall explain, first, these concepts in
the (1+1)-D baby model because the complexities that plague the higher dimensional systems are
minimized.

The count of the BPS states and the derivation of the anomaly is much more difficult in N = 2
SUSY Yang-Mills, but I will present this topic in a way as close to the (1+1)-D case as possible.
The electric-magnetic duality transformation is behind the astonishing discovery of the Wilson
effective action for any energy scale. The Seiberg-Witten proposal for the Wilson action allows to
identify the anomaly in the central charge and elucidate the properties of the BPS states in terms
of beautiful mathematics involving elliptic curves, holomorphic differentials and modular forms.
The remarkable fact is that the whole construction is based on a few highly plausible physical
facts.

Similar structures appear in: (a) supersymmetric sigma models where BPS states are related
to hyper-Kahler metrics in 4n-dimensional target manifolds. (b) twisted N = 2 supersymmetric
gauge theory leading to Donaldson and Seiberg-Witten invariants of differentiable 4-manifolds.
(c) dimensional reduction of supersymmetric string theory. Calabi-Yau and mirror symmetry of
6-dimensional manifolds arise using the same circle of ideas. (d) dimensional reduction of M
theory. Short multiplets give rise to 7-dimensional manifolds with either Spin7 or G2 holonomy.
No wonder on the interest in the magic of these supersymmetric phenomena.

We organize the material in three, non-homogeneous neither in size nor in difficulty, Chapters.
In the first Chapter we describe the N = 1 supersymmetric extension of (1+1)-dimensional scalar
field theory as a warmup. Our construction is standard but we apply the general framework to
a particular system with two scalar fields and a rich variety of BPS kinks. In particular we offer
a computation of the central charge arising in the Supersymmetric algebra as an anomaly in
the (1 + 1)-dimensional QFT system. The second Chapter is devoted to the development of the
Seiberg-Witten formulation of N = 2 Supersymmetric Yang-Mills Theory in (3 + 1) dimensions.
The treatment is standard following, besides Seiberg-Witten original paper [12], the comprehensive
reviews of Bilal [2] and Alvarez-Gaumé/Hassan [3]. Particular attention is concentrated on the
definition of the effective theory that appears at low energies and the description of its structure
and topological properties. The last Chapter addresses the construction of topological gauge
theories in Euclidean four manifolds. Starting from supersymmetric Yang-Mills systems we end in
Euclidean N = 2 SUSY through the process of twisting. We discuss both the high energy regime,
where one meets with Donaldson invariants of four manifolds, and the low energy effective theory
touching with the Seiberg-Witten equations.
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2 N = 1 (1+1)-dimensional Supersymmetric Field Theory

2.1 The classical theory

Points (xµ, θ) in the physical R2|2 superspace , see [1] , are characterized in terms of local coordi-

nates xµ ∈ R1,1 in Minkowski space-time and θ =

(
θ1
θ2

)
Grassman Majorana spinors:

θ∗α = θα, α = 1, 2 ; θ21 = θ22 = θ1θ2 + θ2θ1 = 0

We choose the metric tensor xµxµ = gµνxµxν as g = diag(1,−1) and specify the Clifford algebra
{γµ, γν} = gµν in the Majorana representation in terms of the Pauli matrices:

γ0 = σ2 , γ1 = iσ1 ; γ5 = γ0 γ1 = σ3

The Dirac adjoint is θ̄ = θtγ0 and θθ̄ = −2iθ1θ2.
If ε is a Grassman Majorana spinor parameter, the “vector field” Q = ∂

∂θ̄
+ i γµθ∂µ is the

generator of infinitesimal supertranslations in R2|2:

θ → θ + iε ∼= iQ̄εθ = iε xµ → xµ + θ̄γµε ∼= iQ̄εxµ = θ̄γµε

The components Qα of the super-charge Q satisfy the anti-commutation relations:

{Qα, Qβ} = QαQβ +QβQα = 2 (γµC)αβ Pµ (1)

= −2i

(
∂0 − ∂1 0

0 ∂0 + ∂1

)

αβ

; C = −γ0

Our aim is to build the most general theory for the super-field

~Φ(xµ, θ) =
N∑

a=1

Φa(x
µ, θ)~ea : R2|2 → R

N ; ~ea · ~eb = δab

invariant with respect to the super-Poincare algebra, i.e. symmetry under the Poincare and the
(1) SUSY transformations, the super-Poincare algebra, is required. ~Φ(xµ, θ) is a map from the
super-space to the RN “internal” space - ~ea, a = 1, 2, · · · , N are ortho-normal vectors in RN - that
, through the power series expansion

~Φ(xµ, θ) = ~φ(xµ) + θ̄ ~ψ(xµ)− 1

2
θ̄θ ~F (xµ),

can be seen as including N scalar fields, ~φ(xµ) =
N∑

a=1

φa(x
µ)~ea , N Majorana spinor fields ,

~ψ(xµ) =

N∑

a=1

ψa(x
µ)~ea , and N auxiliary scalar fields ~F (xµ) =

∑N
a=1 Fa(x

µ)~ea.
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2.1.1 The supersymmetric action

Bearing in mind that the action of the SUSY charges on the superfield is

δ~Φ = iε̄ Q ~Φ ⇒





δ~φ = iε̄ ~ψ

δ ~ψ =
(
γµ∂µ~φ+ ~F

)
ε

δ ~F = iε̄γµ∂µ ~ψ

and realizing that the covariant derivative D = ∂
∂θ̄

− iγµθ∂µ anti-commutes with Q, it is not
difficult to achieve this goal. The dynamics of the N = 1 supersymmetric field theory on R1,1

with no interactions is governed by the action:

S0[~Φ] = −1

2

∫
d2xd2θ D̄~ΦD~Φ

=
1

2

∫
d2x

{
∂µ~φ∂

µ~φ+ i~̄ψγµ∂µ ~ψ − 1

2
~F ~F

}

The last identity is obtained through Berezin integration along the odd (Grasmann) variables in
the superspace. To switch on supersymmetric interactions the recipe is well known: one adds

SI [~Φ] = 2

∫
d2xd2θW [~Φ] ,

where W [~Φ] is a unspecified “superpotential”, to the free action S0.

Expanding W [~Φ] in a power series in the Grassman variables

W [~Φ] = W [~φ] + ~∇W · θ̄ ~ψ − 1

2
θ̄θ

(
i~∇W · ~F +

1

2
~̄ψ · ~~∆W · ~ψ

)

~∇W =
N∑

a=1

∂W

∂φa
· ~ea; ~~∆W = ~∇⊗ ~∇W =

N∑

a=1

N∑

b=1

~ea ⊗ ~eb
∂2W

∂φa∂φb

~̄ψ · ~~∆W · ~ψ =
N∑

a=1

N∑

b=1

ψ̄a ·
∂2W

∂φa∂φb
· ψb

and performing the Berezin integration, we find

SI [~Φ] = −
∫
d2x

(
i~∇W · ~F +

1

2
~̄ψ · ~~∆W · ~ψ

)

as the interacting piece of the N = 1 supersymmetric action S = S0 + SI .
Solving for the auxiliary fields in the constraint equations ~F = −i~∇W one checks that the “on

shell” action reads

S =
1

2

∫
d2x

{
∂µ~φ∂

µ~φ+ i~̄ψγµ∂µ ~ψ − ~∇W · ~∇W − ~̄ψ · ~~∆ · ~ψ
}

so that the field equations are:

�~φ+ ~∇W · ~~∆W + ~̄ψ ·
~~~∆W · ~ψ = ~0 (2)
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i ∂µ
~̄ψγµ + ~̄ψ · ~~∆W = ~0 (3)

The Nöther theorem provides us with the Hamiltonian functions associated to the vector fields
Q1 and Q2:

Q̃ =

∫
dx
{
γµγ0 ~ψ∂µ~φ+ iγ0 ~ψ~∇W

}

Q̃1 and Q̃2 induce respectively the flows associated to the super-translations θ1 + iε1 and θ2 + iε2

in the co-tangent bundle to the configuration space, the space of initial conditions for the PDE
system (2)-(3).

2.1.2 BPS and non-BPS super-solutions

We shall not discuss the super-solutions to the field equations (2)-(3) in full generality, see instead
[1]. We describe in this sub-section several types of specially significant super-waves.

A. Homogeneous.
Let us choose choose W such that exist space-time independent scalar field configurations ~φc

for which ~∇W
∣∣∣
~φc

= ~0. Then,

~φ(xµ) = ~φc , ~ψ(xµ) = ~ψc = ~0

are the homogeneous super-solutions to (2)-(3).
B. Plane super-waves.
Considering small fluctuations of the scalar and spinor fields around one homogeneous solution,

~φ(x, t) = ~φc + δ~φ(x, t) , ~ψ(x, t) = ~ψc + δ ~ψ(x, t) ,

such that second order effects are negligible - O(δΦ)2 -, one checks that

δ~φ(x, t) =

N∑

j=1

∑

kj∈Z
(~a(kj) e

iωjt−ikjx + ~a∗(kj) e
−iωjt+ikjx) (4)

δ ~ψ(x, t) =
N∑

j=1

∑

kj∈Z
(~u(kj) e

iωjt−ikjx + ~u∗(kj) e
−iωjt+ikjx) (5)

are the plane super-wave solutions on a large but finite interval of (2)-(3) if and only if:

ω2
j = k2j + λ2j , λ2j ∈ Spec

(
~~∆W

∣∣∣
~φc
.
~~∆W

∣∣∣
~φc

)
.

C. Super-solitons.
For time-independent super fields, ~Φ[x, θ] 6= ~f(t), the field equations reduce to the ODE system:

d2~φ

dx2
= ~∇W · ~~∆W + ~̄ψ~∇~~∆W · ~ψ (6)

i
d~̄ψ

dx
· γ1 = ~̄ψ

~~∆W (7)
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The “on shell” energy is,

E =
1

2

∫
dx

(
d~φ

dx
· d
~φ

dx
+ ~∇W · ~∇W + i~̄ψγ1

d~ψ

dx
+ ~̄ψ

~~∆W ~ψ

)

and the bosonic contribution can be arranged á la Bogomolny.

EB =
1

2

∫
dx

(
d~φ

dx
± ~∇W

)(
d~φ

dx
± ~∇W

)
∓
∫
dx
d~φ

dx
· ~∇W

The Bogomolny bound EBPS =

∣∣∣∣
∫
dW

∣∣∣∣ is saturated by the solutions of

d~φ

dx
= ∓~∇W (8)

and
dψa±
dx

= −
N∑

b=1

∂2W

∂φa∂φb
· ψb± , (9)

where ~ψ± = 1√
2

(
~ψ1 ± ~ψ2

)
are chiral (Majorana-Weyl) spinors.

Note that the solutions of (8) solve also (6) whereas the system (9) is nothing but (7) diago-
nalized. Super-solitons are (bosonic) flow lines of ±gradW - solutions of (8)- and their fermionic
partners, the solutions of (9), which do not contribute to the energy.

A central element in supersymmetric/topological field theory and its application to Geometry
and Topology is the concept of BPS state. Why are super-solitons so distinguished? The answer
is because they are annihilated by some combination of the super-symmetry generators. Acting
on shell static super-fields;,

~Φ[x, θ] = ~φ(x) + θ̄ ~ψ(x)− 1

2
θ̄θ~∇W

the effective super-charges are: Q = ∂
∂θ̄

− iγ1θ d
dx
. Therefore,

Q~Φ = −iγ1θd
~φ

dx
+ ~ψ − θ~∇W ⇔






(
Q~Φ
)
1
= θ2

d~φ
dx

+ ~ψ1 − θ1~∇W(
Q~Φ
)

2
= θ1

d~φ
dx

+ ~ψ2 − θ2~∇W

The classical BPS states are those for which
(
Q~Φ
)

1
±
(
Q~Φ
)

2
= ~0 but,

(
Q~Φ
)

1
±
(
Q~Φ
)

2
= (θ2 ± θ1)

d~φ

dx
+ (~ψ1 ± ~ψ2)− (θ1 ± θ2)~∇W .

Thus, the super-solitons which satisfy

d~φ

dx
± ~∇W = ~0 , ~ψ± = ~0 and

d~ψ∓
dx

= − ~~∆W
∣∣∣
~φ0
· ~ψ∓ (10)

are classical BPS states. Witten’s list [7] -gradient flow lines, holomorphic curves, gauge theory
instantons, monopoles , Seiberg-Witten solutions, hyper-Kahler structures, Calabi-Yau metrics,
metrics of G2 and Spin7 holonomy- of this aristocracy shows the importance, both in Physics and
Mathematics, of the BPS states
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2.2 A rapid look at the quantum theory

The standard canonical quantization procedure promotes the field configurations to field operators
by decreeing that the Poisson super-brackets of the classical theory ought be replaced by super-

commutators; if ~π(x) = ~̇φ(x) is the momentum,
[
~̂φ
a

(x), ~̂π
b
(y)

]
= iδabδ(x− y) ,

{
~̂ψ
a

α(x),
~̂ψ
b

β(y)

}
= δabδαβδ(x− y) (11)

in the natural system of units ~ = c = 1.
The quantum SUSY charges

Q̂ =

∫
dx
{
γµγ0 ~̂ψ∂µ ~̂φ+ iγ0 ~̂ψ~∇Ŵ

}

becomes also operators, and the quantum SUSY algebra
{
Q̂α, Q̂β

}
= 2(γµγ0)αβP̂µ − 2γ1αβT̂ (12)

is given not only in terms of the energy-momentum Nöther invariants,

Ĥ = P̂0 =
1

2

∫
dx



~̂π~̂π +

d~̂φ

dx

d~̂φ

dx
+ i ~̂ψ

t

γ5
d ~̂ψ

dx
+ ~∇Ŵ ~∇Ŵ +

ˆ̄~ψ
~~∆Ŵ ~̂ψ





P̂1 =

∫
dx



~̂π · d

~̂φ

dx
+
i

2
~̂ψ
d ~̂ψ

dx





but also includes the central charge:

T̂ =

∫
dx

d~̂φ

dx
· ~∇Ŵ ,

and old friend in the disguise of Bogomolny bound.
One can ask a natural question: what is the röle of the classical super-solitons in the quantum

theory ? In perturbation theory 1 one expands H around ~Φc and splits the Hamiltonian in “free”
and “interaction parts: Ĥ = Ĥ0 + Ĥint,

Ĥ0 =
1

2

∫
dx







~̂π~̂π +
d~̂φ

dx

d~̂φ

dx
+ ~̂φ

(
~~∆W

∣∣∣
~φc

)2

~̂φ



 +



i ~̂ψ
t

γ5
~̂ψ

dx
+ ~̂̄ψ

~~∆W
∣∣∣
~φc

~̂ψ







 (13)

The plane super-waves (4)-(5) are compatible with the canonical quantization rules (11) if the
Fourier coefficients become non-commuting operators that satisfy:

[
â†a(kj), âb(ql)

]
= δabδkjql ,

{
û†aα(kj), ûbβ(ql)

}
= δabδαβδkjql (14)

From (14) one easily derives the spectrum of the operators N̂B
a (kj) = â†a(kj)âa(kj) and N̂

F
aα(kj) =

û †aα (kj)ûaα(kj):

N̂B
a (kj)|nBa (kj)〉 = nBa (kj)|nBa (kj)〉 , N̂F

aα(kj)|nFaα(kj)〉 = nFaα(kj)|nFaα(kj)〉
1For a lucid analysis of the mathematical meaning of the Fock space and perturbation theory see [8]
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where nBa (kj) is a natural number and nFaα(kj) = 0, 1. Because ( after normal-ordering )

Ĥ0 =

N∑

j=1

ωj
∑

a,kj

(
N̂B
a (kj) + N̂F

aα(kj)
)

,

the ground state of the free theory -the eigen-state with smallest eigenvalue of Ĥ0- is the vacuum
state:

|0〉 = ⊗
j, a, kj

|nBa (kj) = 0〉 ⊗
α
|nFaα(kj) = 0〉

âa(kj) |0〉 = ûaα(kj) |0〉 = 0, ∀j, a, α, kj

Thus, the expectation value of ~̂φ(xµ) at the vacuum is

〈0|~̂φ(xµ)|0〉 = ~φc

and there is a one-to-one correspondence between the ground states of the quantum free theory
and the homogeneous super-solutions of the classical theory.

The two types of one-particle states

â†a(kj)|0〉 = |nBa (kj) = 1〉 , û†aα(kj)|0〉 = |nFaα(kj) = 1〉

are degenerated in energy, which is ωj. There is a one-to-one correspondence between plane
super-waves in the classical theory and the one-particle states with definite momentum in the free
quantum theory. Multi-particle states show the statistics of each type of particle: bosonic, the
state remains the same under the exchange of two particles or fermionic, the state changes sign
under such an exchange.

Before of trying to identify the states in the quantum theory related to the BPS super-solitons
there is the need of addressing a very delicate point: we are dealing in fact not with operator-
valued functions but with operator-valued distributions. Note the delta-functions in (11). The näıf
SUSY algebra relations (12) are therefore non-sense because undefined products of distributions at
the same points of space-time are involved. Fortunately, there is a unique method for calculating
equal time (super)commutators from the (known) Green’s functions of renormalized perturbation
theory: the Bjorken-Johnson-Low limit, [9].

Consider the Fourier transform of the matrix elements of the “chronological ” product of two
supercharge operators between any two states |S1〉, |S2〉 in the Fock space:

T (qµ) =

∫
d2xeiq

µxµ 〈S1|TQ̂α(x
µ)Q̂β(0)|S2〉 (15)

TQ̂α(x
µ)Q̂β(0) = Q̂α(x

µ)Q̂β(0) , x0 > 0

= Q̂β(0)Q̂α(x
µ) , x0 < 0

The BJL definition of such matrix elements is:

lim
q0→∞

q0T (qµ) ≡︸︷︷︸
def

i

∫
dxe−iqx 〈S1| {Q̂α(0, x), Q̂β(0, 0)}|S2〉 (16)

We also need the Wick’s theorem. If,

〈0|T φ̂a(xµ1 )φ̂a(xµ2 )|0〉 = ∆B
aa(x

µ
1 − xµ2 ) , 〈0|T ψ̂ta(xµ1 )ψ̂a(xµ2 )|0〉 = ∆F

aa(x
µ
1 − xµ2 )

9



are the one-particle Green’s functions, the chronological product of a string of n field operators is:

TA1(x
µ
1 )...An(x

µ
n) =: A1(x

µ
1 )...An(x

µ
n) : + (17)

+∆(xµ1 − xµ2 ) : A3(x
µ
3 )...An(x

µ
n) : ... + ...+ (18)

+∆(xµ1 − xµ2 )∆(xµ3 − xµ4 )...∆(xµn−1 − xµn) , (19)

where : A1(x
µ
1 ) · · ·An(xµn) : is the normal-ordered product - all the creation operators are put to

the left of all the annihilation operators -. Here, by A(xµ) we mean either φ̂a(x
µ) or ψ̂aα(x

µ) and
by ∆(xµ − yµ) we denote either ∆B

aa(x
µ − yµ) or ∆F

aa(x
µ − yµ).

The procedure for finding the quantum (super)commutator (12) is now clear:

• Wick’s theorem applied to T (qµ) tells what states |S1〉, |S2〉 give a non-zero answer.

• Choose |S1〉 and |S2〉 accordingly, and compute limq0→∞ q0T (qµ).

• After a long calculation one finds a result compatible with the new relation:

{Q̂α, Q̂β} = 2(γµγ0)αβP̂µ − 2γ1αβT̂R (20)

where T̂R = T̂ + 1
4π

∣∣∣
∫
dx d

dx
(∆Ŵ )

∣∣∣ ,∆W = ~∇~∇W .

The quantum SUSY algebra is anomalous: the classical and quantum central charges differ in
something proportional to the difference between the values of the Laplacian of the super-potential
at x = ±∞. Only if the super-potential is harmonic, the central charge does not receive quantum
corrections; but a harmonic super-potential is the necessary condition for the existence of N = 2
super-symmetry.

From(20) one writes the Hamiltonian operator in the form:

P̂0 = (Q̂1 ± Q̂2)
2 +

∣∣∣T̂R
∣∣∣

Thus, the expectation value of the energy operator at any state |S〉 satisfies the inequality:

〈S| P̂0|S〉 ≥ 〈S| |T̂R| |S〉

Equality is attained by the quantum BPS states -〈BPS| (Q̂1 ± Q̂2)
2|BPS〉 = 0 -

〈BPS| P̂0|BPS〉 = 〈BPS| |T̂R||BPS〉 =
=
∣∣∣W
(
< ~̂φ > |∞

)
−W

(
< ~̂φ > |−∞

)∣∣∣ +
1

4π

∣∣∣∆W
(
< ~̂φ > |∞

)
−∆W

(
< ~̂φ > |−∞

)∣∣∣

The quantum BPS states are coherent states such that 〈BPS| ~̂φ(x)|BPS〉, 〈BPS| ~̂ψ(x)|BPS〉 are
the classical super-solitons which solve (10).

2.3 The super-symmetric BNRT model

Let us study a N = 2 N = 1 super-symmetric system where the super-potential is.

W [~Φ] =
√
λ~Φ · ~e1

[
4

3
(~Φ · ~e1)2 −

m2

λ
+ 2σ2(~Φ · ~e2)2

]
,

10



and λ , m are coupling constants with dimensions of inverse length whereas σ2 is a non-dimensional
parameter. For more details on the so-called BNRT model, see [10].

It is convenient to use non-dimensional super-space and field variables:

xµ → 1

m
xµ, θα → 1√

m
θα, dθα → √

mdθα

~Φ −→ m√
λ
~Φ ⇔ {~φ→ m√

λ
~φ , ~ψ → m

√
m

λ
~ψ , ~F → m2

√
λ
~F}

Thus, D~Φ → m
√

m
λ
D~Φ , W [~Φ] → m3

λ
W [~Φ] and the N = 1 SUSY action reads:

S[~Φ] = −m
2

λ

{∫
d2xd2θ

(
1

2
D̄~ΦD~Φ+ 2~Φ~e1[

4

3
(~Φ~e1)

2 − 1 + 2σ2(~Φ~e2)
2]

)}

From ~∇W = [(4φ2
1 + 2σ2φ2

2 − 1)~e1 + 4σ2φ1φ2~e2], and

~~∆W = 4[2φ1~e1 ⊗ ~e1 + σ2φ2(~e1 ⊗ ~e2 + ~e2 ⊗ ~e1) + σ2φ1~e2 ⊗ ~e2] ,

we obtain the on shell SUSY action:

SB[~φ] =
m2

2λ

∫
d2x

{
∂µ~φ∂

µ~φ− (4φ2
1 + 2σ2φ2

2 − 1)2 − 16σ4φ2
1φ

2
2

}
;SF [~ψ] =

m2

2λ

∫
d2x

{
i~̄ψγµ∂µ ~ψ

}

SBF [~φ, ~ψ] =
m2

2λ

∫
d2x

{
8ψ̄1φ1ψ1 + 4σ2(ψ̄1φ2ψ2 + ψ̄2φ2ψ1) + ψ̄2φ1ψ2

}

Observe that ∆W = 8[2 + σ2]φ1 and the super-potential is harmonic only for σ = ±i
√
2, where

one finds the celebrated Wess-Zumino model, see [11].
Besides the super-Poincarè symmetry the system is invariant under the discrete group G =

Z2 × Z2 generated by the internal reflections π1~Φ = −Φ1~e1 + Φ2~e2 and π2~Φ = Φ1~e1 − Φ2~e2. The
homogeneous super-solutions are the critical points of W ,

~Φ(1)
v± = ±1

2
~e1 ~Φ(2)

v± = ± 1

σ
√
2
~e2

and the vacuum manifold V is the union of two orbits of G. Thus, the moduli space of vacua
M = V

G
= (~Φ

(1)
v , ~Φ

(2)
v ) contains two points.

The plane super-waves transmute to the fundamental Bosons and Fermions in the quantum
world. Because

~~∆W
(
~φ(1)
v±

)
= ±[4~e1 ⊗ ~e1 + 2σ2~e2 ⊗ ~e2]

we identify ~Φ
(1)
v+ and ~Φ

(1)
v− respectively as minimum and maximum of W .

As dictated by super-symmetry, we see that there are two Boson/Fermion branches - degener-

ated in mass - on the ~Φ
(1)
v point in M:

ω1(k1 = 0) ω2(k2 = 0)

Bosons 4m 2σ2m

Fermions 4m 2σ2m

11
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Figure 1: Plots of W and U as functions of φ1 and φ2.

We could be tempted also to put the minus sign in the Fermi masses, but the Dirac sea
paradigm and the “particle ” “hole ” identity in the Majorana representation liberate us of such
a worry.

Simili modo,
~~∆W

(
~φ(2)
v±

)
= ±2

√
2σ[~e1 ⊗ ~e2 + ~e2 ⊗ ~e1]

tells us that both ~Φ
(2)
v+ and ~Φ

(2)
v− are saddle points of W . A π

4
rotation in R2 to 2~Φ = Φ+(~e1 +~e2) +

Φ−(~e1 − ~e2) allows us to identify the two Boson/Fermion branches on the ~Φ
(2)
v point in M:

ω+(k+ = 0) ω−(k− = 0)

Bosons 2
√
2σm 2

√
2σ2m

Fermions 2
√
2σm 2

√
2σ2m

What about the super-solitons that gives rise to extended BPS states in the quantum theory?
In this model, the bosonic ODE system (10) becomes

dφ1

dx
= ∓4φ2

1 + 2σ2φ2
2 − 1 ,

dφ2

dx
= ∓4σ2φ1φ2 (21)

The flows lines of ±gradW are the solutions of the ODE:

dφ1

dφ2

=
4φ2

1 + 2σ2φ2
2 − 1

4σ2φ1φ2

(22)

which admits the integrating factor |φ2|−
2

σφ−1
2 , if σ 6= 1 and σ 6= 0, thereby allowing us to find all

the flow-lines as the family of curves

φ2
1 +

σ

2(1− σ)
φ2
2 =

1

4
+

c

2σ
|φ2|

2

σ (23)

parametrized by the real integration constant c. There is a critical value

cS =
1

4

σ

1− σ
(2σ)

σ+1

σ

and the behaviour of a particular curve in the (23) family is described in the following items:

12



• For c ∈ (−∞, cS), formula (23) describes closed curves in the internal space R2 that connect

the vacua ~Φ
(1)
v+ and ~Φ

(1)
v− , see Figure 2. Thus, they provide a kink family in the topological

sector (1;1. Henceforth, we refer to these kinks as TK2(1;1)(c). A fixed value of c determines
four members in the kink variety related amongst one another by spatial parity and internal
reflections. The kink moduli space is defined as the quotient of the kink variety by the action
of the symmetry group:

MK =
VK

P×G
= (−∞, cS),

the real open half-line parametrized by c.

• In the range c ∈ (cS,∞), equation (23) describes open curves and no vacua are connected.
These gradW flow-lines are infinite energy solutions that do not belong to the configuration
space C, see Figure 2.

• At the other point of the boundary of MK, c = cS, we find the separatrices between bounded
and unbounded motion and the envelop of all kink orbits in the (1;1) topological sector, see
Figure 2.

We briefly discuss the σ = 1 case. The σ = 0 case is not interesting because the φ2 dependence
disappears in the potential: it is a “direct sum” of an N = 1 φ4 model and an N = 1 free model.
Integration of (22) when σ = 1 gives

φ2
1 − φ2

2

( c
2
+ log |φ2|

)
=

1

4
(24)

where the kink trajectories now appear in the c ∈ (−∞, cS] range, with cS = −1 + ln 2. The
description of the kink orbits is analogous to the description for σ 6= 1 above.

φ1

φ
2

φ1

φ
2

φ1

φ2

Figure 2: Flow-lines given by (23): for c ∈ (−∞, cS) (left), c = cS (middle), and c ∈ (cS ,∞) (right).

With the exception of the one-component topological kinks with φ1 = 0, there are no other
flow lines connecting the vacua ~Φ

(2)
v+ and ~Φ

(2)
v− , for generic σ

2. If σ2 < 2, the spectrum of the second
order fluctuation operator around the TK1(1;1) kinks shows some negative eigen-value and these
kinks are unstable -non-BPS-. For the critical values σ2 = 4

l(l+1)−4
, l = 3, 4, · · ·, there are Jacobi

fields in the spectrum announcing the existence of a whole continuous family of these non-BPS
solitons and, probably, the availability of a non-continuously differentiable second superpotential.

If σ2 = 2, there exists a “honest” superpotential, where the rôles of Φ1 and Φ2 are exchanged;
the “vertical” (1; 1) topological sector is plenty of BPS solitons.
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3 N = 2 Supersymmetric Gauge Theory

3.1 N=1 SUSY Yang-Mills theory

3.1.1 R4|4 super-space and N = 1 SUSY algebra

We now move to physical R1,3 Minkowski space-time with the following choices of metric tensor
and associated Clifford algebra:

gµν = diag(1,−1,−1,−1)

{γµ, γν} = 2gµν , γµ =

(
0 σµ

σ̄µ 0

)
; γ5 = γ0 γ1 γ2 γ3

σµ = (12, σ
1, σ2, σ3) , σ̄µ = (12,−σ1,−σ2,−σ3)

In this representation of the Clifford algebra the Dirac spinors are the direct sum of Weyl spinors
ψα ∈ (1

2
, 0), χ̄α̇ ∈ (0, 1

2
) that belong to the fundamental representations of SO(3, 1), the connected

piece to the identity of the Lorentz group:

ΨD(x
µ) =

(
ψα(x

µ)
χ̄α̇(xµ)

)
∈ (

1

2
, 0)⊕ (0,

1

2
)

Spinor indices are raised and lowered with the anti-symmetric ε-tensor: ψα = εαβψ
β, χ̄α̇ =

εα̇β̇χ̄β̇. Thus, ψη = ψαηα, χ̄ξ̄ = χ̄α̇ξ̄
α̇ are scalar products, whereas ψσµχ̄, ξ̄σ̄µη are vector

combinations.
Odd coordinates in the R4|4 super-space are Grassman Weyl spinors, θα , θ̄α̇, which satisfy:

θ2 ≡ θθ = θαθα = −2θ1θ2, , θα1
θα2

+ θα2
θα1

= θ̄α̇1 θ̄α̇2 + θ̄α̇2 θ̄α̇1 = 0

If ε and ε̄ are Grassman Weyl spinor parameters, the vector fields

Qα =
∂

∂θα
− iσµαα̇θ̄

α̇∂µ , Q̄α̇ = − ∂

∂θ̄α̇
+ iθασµαα̇∂µ

are spinor generators of the super-translation group: P (x, ε, ε̄) = ei[−x
µPµ + εQ+ ε̄Q̄]. Infinites-

imally,

θα → θα + iεα , θ̄α̇ → θ̄α̇ − iε̄α̇ , xµ → xµ + εασµαα̇θ̄
α̇ + θασ̄µαα̇ε̄

α̇

The super-charges satisfy the anti-commutation relations:

{Qα, Q̄α̇} = 2iσµαα̇∂µ ; {Qα, Qβ} = {Q̄α̇, Q̄β̇} = 0.

The covariant derivatives:

Dα =
∂

∂θα
+ iσµαα̇θ̄

α̇∂µ , D̄α̇ = − ∂

∂θ̄α̇
− iθασµαα̇∂µ

which satisfy,
{Dα, Qβ} = {Dα, Q̄β̇} = {D̄α̇, Qβ} = {D̄α̇, Q̄β̇} = 0

and
{Dα, D̄α̇} = −2iσµα,α̇∂µ ; {Dα, Dβ} = {D̄α̇, D̄β̇} = 0 ,

will also play an important rôle in the formulation of the theory.
We build N = 1 super-symmetric Yang-Mills theory ( without matter hyper-multiplets ) out

of two kinds of super-fields.
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3.1.2 The N = 1 super-symmetric action for chiral super-fields

The chiral (anti-chiral) super-fields,

Φ(xµ, θ, θ̄) : R
4|4 −→ adjC SU(N)

are maps from the N = 1 super-space to the adjoint representation of the SU(N) group which
are constrained by the D̄α̇Φ = 0 chiral ( DαΦ

† = 0 anti-chiral ) condition.
The chiral constraint is easily solved in terms of yµ = xµ + iθσµθ̄ and θ. Because D̄α̇y

µ =
D̄α̇θ = 0 one finds

Φ(y, θ) = φ(y) +
√
2θψ(y) + θ2F (y)

and a chiral field contains a complex scalar field, φ(≡ φa τ
a

2
), a Weyl spinor field, ψα ≡ ψaα

τa

2
,

and a complex auxiliary field, F (≡ F a τa

2
), all of them in the adjoint representation of the SU(N)

gauge group - τa are the generators of LieSU(N)-. The action of the super-charges on the chiral
superfields is:

Φ ⇒





δφ = i
√
2εψ

δψ = −
√
2σµε̄∂µφ+ i

√
2εF

δF = −
√
2ε̄σ̄µ∂µψ

Because δΦ = iεQ and δΦ† = iε̄ Q̄ are super-derivations, the infinitesimal action of P (aµ, ε, ε̄) on
the super-action functional

S0 =
1

4

∫
d4x d2θ d2θ̄ trΦ†Φ ,

is a total super-derivative and, thus, S0 is N = 1 SUSY invariant. The Berezin integral -
(
∫
d2θ d2θ̄ θ2θ̄2 = 4)- and the power “series” expansion of the chiral super-field:

Φ(y, θ) = φ(x) + iθσµθ̄∂µφ(x)−
1

4
θ2θ̄2�φ(x) +

√
2θψ(x)− i√

2
θ2∂µψ(x)σ

µθ̄ + θ2F (x) (25)

allow us to write S0 in terms of the super-field components:

S0 =

∫
d4x tr(∂µφ

†∂µφ− iψ̄σ̄µ∂µψ + F †F ) . (26)

S0 determines a free dynamics but one can switch on interactions compatibles with N = 1 super-
symmetry using a chiral super-potential:

S1 =

∫
d4x[

∫
d2θ W(Φ) +

∫
d2θ̄ W̄(Φ†)].

3.1.3 N = 1 supersymmetric action for vector super-fields

The vector super-fields are also maps from the super-space to the adjoint representation of SU(N)

V (xµ, θ, θ̄) : R
4|4 −→ adj SU(N)

which satisfy a reality condition: V = V †. In the Wess-Zumino gauge, the power expansion in the
odd variables reads:

V (x, θ, θ̄) = −θσµθ̄Aµ(x) + i(θ2θ̄λ̄(x)− θ̄2θλ(x)) +
1

2
θ2θ̄2D(x)
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The super-connection V includes the connection Aµ ≡ Aaµ
τa

2
on a SU(N) bundle over R

1,3, its

SUSY partner, the Weyl spinor λ ≡ λa τ
a

2
, and the real auxiliary field D. Chiral fields Λ give rise

to super gauge transformations on V , V ′ = V + Λ + Λ†, and the spinor field strength,

Wα =
1

8g
D̄2(e2gVDαe

−2gV ) ,

where g is the coupling constant, transform under super-gauge transformations as:

W ′
α = e−i2gΛWα e

i2gΛ .

Note that D̄α̇Wα = 0 and W is a chiral spinor field. In the appropriate coordinates the Grassman
power expansion of W reads,

Wα(y, θ) = (−iλα + θαD − iσµνθαFµν + θ2σµ∇µλ̄α)(y)

where the following tensors

σµν =
1

4
(σµσ̄ν − σν σ̄µ) ; Fµν = ∂µAν − ∂νAµ + g[Aµ, Aν ] ; ∇µλα = ∂µλα + g[Aµ, λα]

enter.
One sees easily that

S2 = −1

2

∫
d4x d2θ trW αWα =

∫
d4x tr(−1

4
FµνF

µν +
i

4
FµνF̃

µν − iλσµ∇µλ̄+
D2

2
)

is a N=1 SUSY and super-gauge invariant action. Moreover, re-scaling gV → V and defining the
complex gauge coupling τ = Θ

2π
+ i4π

g2
in terms of the instanton angle Θ, one writes S2 in the form:

S2 =
Imτ

16π

∫
d4x d2θ trW αWα

=
1

g2

∫
d4x tr(−1

4
FµνF

µν − iλσµ∇µλ̄+
D2

2
) +

Θ

32π2

∫
d4x FµνF̃

µν

The minimal coupling principle -which dictates the gauge interactions between charged fields
by changing derivatives by covariant derivatives- is generalized to the super-symmetric world by
replacing S0 by

S3 =
1

4g2

∫
d4x d2θ d2θ̄ tr Φ†e−2VΦ =

∫
d4x tr(|∇µφ|2 − iψ̄σ̄µ∇µψ + F †F )

−
∫
d4x tr(φ†[D, φ]−

√
2i(φ†{λ, ψ} − ψ̄[λ̄, φ])

and adding S3 to the S1 and S2 actions. Thus, the action of the so called N = 1 SUSY minimal
gauge theory is:

S3 + S2 + S1 =
1

4g2

∫
d4x d2θ d2θ̄ tr Φ†e−2VΦ+

Imτ

16π

∫
d4x d2θ tr W αWα

+

∫
d4x [

∫
d2θW(Φ) +

∫
d2θ̄W̄(Φ†)] (27)
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3.2 N=2 supersymmetric Yang-Mills theory

3.2.1 N = 2 supersymmetry and holomorphy

Four dimensional N = 2 supersymmetric theories are based on the extended super-space R4|(4,4)

where the odd dimensions are parametrized by two sets of Weyl spinor pairs: θIα, θ̄
α̇
I , I = 1, 2.

Sometimes we shall also use the notation: θ1α = θα , θ2α = θ̃α , θ̄α̇1 = θ̄α̇ , θ̄α̇2 =
¯̃
θ
α̇
, in order to

compare the N = 2 with the N = 1 theory.
There are accordingly, two pairs of N = 2 super-charges, vector fields that generate super-

translations in R4|(4,4),

QI
α =

∂

∂θαI
− iσµαα̇θ̄

α̇I∂µ , Q̄α̇I = − ∂

∂θ̄α̇I
+ iθαI σαα̇∂µ,

and close the super-algebra:
{QI

α, Q̄α̇J} = 2σµαα̇P̂µδ
I
J

{QI
α, Q

J
β} = 0, {Q̄Iα̇, Q̄Jβ̇} = 0 .

An N = 2 chiral super-field Ψ(x, θI , θ̄I is an N = 2 super-field which satisfies the constraints:
D̄α̇
IΨ(x, θI , θ̄I) = 0. Because D̄α̇

I ỹ
µ = 0, one obtains easily the general solution of the constraints

as a function of ỹµ = yµ + iθ̃σµ¯̃θ:

Ψ(ỹ, θ) = Φ(ỹ, θ) +
√
2θ̃αWα(ỹ, θ) + θ̃αθ̃αG(ỹ, θ)

Here, Φ(ỹ, θ) and G(ỹ, θ) are N = 1 chiral super-fields whereas Wα(ỹ, θ) is an N = 1 chiral
spinor super-field. We choose for Φ and Wα the N = 1 chiral super-fields of SUSY Yang-Mills
theory discussed in the previous subsection. Moreover, we impose the extra reality constraints
DIαDJ

αΨ = D̄α̇
I D̄Jα̇Ψ

† , which allow to solve for the auxiliary field G in terms of Φ and V :

G(ỹ, θ) = −1

2

∫
d2θ̄ [Φ(xµ + iθ̃σµ¯̃θ, θ, θ̄)]† exp[−2V (xµ + iθ̃σµ¯̃θ, θ, θ̄)]

Thus, all the basic field of minimal SUSY Yang-Mills are encompassed in the N = 2 chiral
super-field Ψ and shown - together with their spins- in the next array:

s = 1 s = 1/2 s = 0
Wα Aµ λα
Φ ψα φ

.

Note that the action

S = Im[
τ

16π

∫
d4x d2θ d2θ̃

1

2
trΨ2]

= Im
τ

16π

∫
d4x tr[

∫
d2θ W αWα +

∫
d2θ d2θ̄ Φ†e−2VΦ]

is invariant under the N = 2 super-translations. Therefore, the choice of equal coefficients for the
kinetic terms of the s = 1

2
fields, λ̄σ̄µ∇µλ & ψ̄σ̄µ∇µψ, and the prohibition of superpotentials

in the N = 1 minimal SUSY Yang-Mills action leads to the admission of extended N = 2
supersymmetry.
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Forgetting about renormalizability we can write the most general action, invariant underN = 2
super-translations, for a chiral N=2 super-field in the form:

S =
1

16π
Im

∫
d4x d2θ d2θ̃ F(Ψ)

=
1

16π
Im

∫
d4x [

∫
d2θFab(Φ)W

αaW b
α +

∫
d2θd2θ̄(Φ†e−2V )aFa(Φ)] (28)

The holomorphic functional F(Ψ) is called the prepotential and we have a N = 2 gauged super-
symmetric sigma model where FaΦ

a = ∂F
∂ΦaΦ

a is the Kahler potential and Fab =
∂2F
∂ΦaΦbW

αaW b
α is

the gauge kinetic function. Thus, gab = Im ∂2F
∂ΦaΦb can be interpreted as a metric -of special Kahler

type- in the adjSU(2) target space.
Obviously,

FYM(Ψ) =
1

2
tr τΨ2 (classically)

is the right prepotential in the weak g-coupling limit, the classical limit for the basic fields
above. Seiberg and Witten in an spectacular paper, [12], posed the following question: what is
F quantum
YM (Ψ)? How looks the prepotential for stronger values of g (low energies) where quantum ef-

fects on the basic fields are important? Holomorphy/N = 2 supersymmetry and electric-magnetic
duality guided to these authors to provide a most beautiful answer.

3.2.2 Classical vacuum moduli space: super-symmetric Higss mechanism

The search for super-solutions begins by integrating out the auxiliary fields:

Saux =
1

g2

∫
d4x tr(

D2

2
− φ†[D, φ] + F †F ) = −

∫
d4x

1

2g2
tr[φ†, φ]2 . (29)

The homogeneous super-solutions are super-fields without soul - no dependence on Grassman
variables- which are zeroes of the Higgs potential: U(φ) = 1

2
tr[φ†, φ]2. We shall restrict ourselves

to the gauge group G = SU(2) case. Then, it is obvious that

φ0 =
1

2
τ 3a , a ∈ C

is a continuous set of zeroes of U . The “classical vacuum orbit” V -the manifold of all the zeroes
of U - is:

V ≡ ad G(φ0)× C
∗ =

SU(2)

U(1)
(≃ S2)× C

∗ , if a ∈ C
∗ = C− {0}

V ≃ point , if a = 0.

The classical vacuum moduli space M is the quotient of V by the action of adG: M ≡ V
adG

= C.
We look now for the plane super-wave solutions becoming fundamental quanta in the quantum

perspective. The vacuum degeneracy induces a super-symmetric Higgs mechanism which is read
from the quadratic terms in the expansion of the action around a point in M for the basic fields
Aµ, λα, ψα, and φ. Small fluctuations of the scalar field of the form φ(x) = φ0 + η(x) give three
types of quadratic terms in the expansion of the Lagrangian:
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• From 1
g2
[Aµ, φ

†][Aµ, φ] ∼= 1
g2
[Aµ, φ

†
0][A

µ, φ0] + o(η), we see that the vector field plane wave

solutions are of two types: there is no quadratic term for A3
µ and the corresponding plane

waves propagate at the speed of light: m2
3 = 0. The plane waves of the linear combination

of vector fields W±
µ = A1

µ ± iA2
µ carry energy m2

W± = |a|2g2 - after re-scaling back Ψ → gΨ-
in the zero momentum limit.

• 1
2g2

tr[φ†, φ]2 ≃ 1
2
[φ†

0, η][η
†, φ0]+o(η

3), and the situation is identical for the scalar field. There

are two “massive” field combinations, η± = η1 ± iη2 with masses m2
η±

= |a|2g2, and one
“massless” scalar field η3: m2

η3 = 0.

• The mass terms for the fermions are more difficult to elucidate, but from

i
√
2

g2
tr
[
φ†{ψ, λ} − {ψ̄, λ̄}φ

] ∼= i
√
2|a|

2g2
[
e−iω(ψ1λ2 + λ1ψ2)− eiω(ψ̄1λ̄2 + λ̄1ψ̄2)

]

it is not difficult to see that the field combinations λ± = 1
2
(ψ2 ± e−iωλ1) and ψ± = 1

2
(ψ1 ±

e−iωλ2) have masses mλ± = mψ±
= |a|g, whereas λ3 and ψ3 are massless: mλ3 = mψ3 = 0.

The particle spectrum arising from this analysis is summarized in the following arrays, which
show the basic fields and the associated quanta in the physics folklore nomenclature.
A. Massless N = 2 super-multiplet:

s = 1 s = 1/2 s = 0
A3
µ (photon) λ3α (photino)

ψ3
α (Higgsino) η3 (complex Higgs boson)

B. Two massive (but short) N = 2 supermultiplets:

s = 1 s = 1/2 s = 0
W±
µ (massive vector bosons) λ±α (gauginos)

ψ±
α (goldstino) η± (complex Goldstone bosons)

It is amazing to realize that the would be massive Higgs particle in the usual (bosonic) mechanism
remains massles in the super-symmetric version of spontaneous gauge symmetry breaking. Also,
the Goldstone (massless ) bosons, hidden in the gauge fields grown massive, are themselves massive
in the super-symmetric theory.

The choice of a vacuum to quantize leads to a particle spectrum organized in N = 2 super-
multiplets and N = 2 super-symmetry is unbroken. The degeneracy in the particle spectrum with
respect to the gauge G = SU(2) group is lost after the vacuum’s choice and this symmetry is
spontaneously broken to H = U(1). There is an important CAVEAT: singularities arise at a = 0
and many more particles are massless.

3.2.3 Monopoles and dyons

The search for super-solitons is identical to the search performed in N = 1 supersymmetric (1+1)-
dimensional field theory, albeit analytically more involved. The energy for static purely bosonic
configurations can also be arranged a la Bogomolny:

EB =

∫
d3x [

1

2
tr ~B ~B +

1

2
tr ~Dφ† ~Dφ+

1

2
tr[φ, φ†]]

≥
∫
d3x

1

2
[tr ~B ~B + tr ~Dφ† ~Dφ] =

1

2

∫
d3x tr{( ~B − ~Dφ†)( ~B − ~Dφ)}+ a

2
(Qm +Q†

m)
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where

Qm =

∫

S2
∞

~b · d~S =
1

a

∫

S2
∞

tr(φ ~B) · d~S =
1

a

∫
d3x tr( ~B · ~Dφ)

is the field configuration magnetic charge.
If [φ, φ†] = 0 the Bogomolny bound is saturated by field configurations which solve the PDE

system:
~B = ~Dφ . (30)

There is a fairly complete knowledge of the moduli space of solutions of (30), see [14]-[15]. We
simply collect three important results:

1. Every finite energy solution of (30) belong to a topological sector characterized by the
winding number of the map from the boundary of space to the vacuum orbit, provided by
the behaviour of the Higss field at infinity: ~φ|∞ : S2 ≃ ∂R3 −→ V ≡ S2.

2. The finite energy solutions are solitons and for topological charge equal to 1 the BPS mag-
netic monopole is found:

φa1(~x)
τa

2
= a1f(r)

xa

r

τa

2
, φa2(~x)

τa

2
= a2f(r)

xa

r

τa

2
, Aai (~x) =

1

g
A(r)εaij

xj

r2
τa

2

f(r) =
cosh r

sinh r
− 1

r
; A(r) = 1− r

sinh r
.

φa1 and φa2 are respectively the real and imaginary part of φa, a = a1 + ia2 sets the Higgs
field vacuum value, and this solution shows a magnetic monopole centered at the origin. Its
orbit by the action of the translation group and the unbroken U(1) subgroup of the gauge
group is the moduli space of magnetic monopoles with topological charge equal to 1.

3. In general, for any finite energy solution of (30), the energy in the center of mass is:

EM =MM = |aQm| =
4π

g
|nma|

nm ∈ Z is the winding number of the S2
∞ → S2 map and, thus, the magnetic charge is

quantized.

In fact, it is possible invoke electric-magnetic duality to understand (30) as the α = 0 member of
the PDE family:

~B = cosα~Dφ ~E = sinα~Dφ. (31)

The solutions of (31) have also electric charge, although it is not quantized at this level. The dyon
mass is

ED =MD = |a|(|Qe|2 + |Qm|2)
1

2

and thus, it is given in terms of the magnetic and electric charges:

Qe =

∫

S2
∞

~e · d~S =
1

a

∫

S2
∞

tr(φ~E) · d~S
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3.2.4 The lattice of classical BPS charges

In the framework of N = 2 super-symmetry we notice that the Hamiltonian functions associated
to the vector fields QI are,

Q̃I = − i

g2

∫
d3x{~σσ2trψ†I(i ~E+ ~B)+

√
2εIJtr ψJ∇0φ

†+
√
2~σ tr ~∇φ†εIJψJ+iσ2 tr ψ

†I [φ†, φ]} (32)

where we denote by ψ = ψ1, λ = ψ2 the two spinor fields, explicitly showing that ψ and λ form a
SU(2)I-doublet. The super-Poisson algebra

{Q̃I
α,

¯̃Qα̇J} = 2σµαα̇P̃µδ
I
J , {Q̃I

α, Q̃
J
β} = εαβZ

IJ , { ¯̃QIα̇,
¯̃QJβ̇} = εα̇β̇Z

∗
IJ

admits a complex central charge: ZIJ = 2 εIJZ = 2 εIJa(Qe + iQm).
Define now

aα =
1√
2
[Q̃1

α + εαβ(Q̃
2
β)

†] , bα =
1√
2
[Q̃1

α − εαβ(Q̃
2
β)

†]

In the center of mass reference system P̃0 = M and the non-null anti-commutators among the
aα, a

†
α, bα, b

†
α, variables are:

{aα, a†β} = 2 (M + |Z|) δαβ , {bα, b†β} = 2(M − |Z|)δαβ

Therefore, the classical BPS states, satisfying the relation M = |Z|, are organized in short multi-
plets of the super-symmetry algebra.

The classical BPS multiplets are, thus, uniquely characterized by their electric and magnetic
charges. The magnetic charge is quantized because of topological reasons. The electric charge
should comply with the Dirac-Schwinger quantization condition, see e.g. [16], in a consistent quan-
tum theory with electric and magnetic charges. The electric charge is accordingly also quantized
and the effect of the U(1) anomaly produced by the F ∧ F - term on a magnetic charge is a net
shift of the electric charge by an amount proportional to the instanton angle and the magnetic
charge itself, [17]:

Qe = g(ne −
Θ

2π
nm) , ne ∈ Z .

Therefore, there is a lattice of dyonic classical BPS states with masses given by the beautiful
formula:

MD = g|a||ne + iτnm|
.

3.3 Low energy effective theory

3.3.1 Wilson effective action: quantum moduli space of vacua

N = 2 SUSY Yang-Mills theory is renormalizable and asymptotically free. This means that the
latter theory is the microscopic theory which controls the weak coupling/classical/high energy
behaviour. The challenge is to elucidate the nature of the low energy effective theory.

There are two types of effective actions in quantum field theory. One is the standard generating
functional Γ[φ] of one-particle irreducible Feynman diagrams. Momentum integration in loop-
diagrams are from zero up to a UV-cutoff which is taken to infinity at the end. Γ[φ] ≡ Γ[µ, φ] also
depends on the scale µ used to define the renormalized vertex functions. A quite different object
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is the Wilsonian effective action SW [µ, φ]. It is defined as Γ[µ, φ] except that all the loop-momenta
are integrated down to µ which serves as infrared cutoff.

Thus, if we choose µ2 ≤ g2|a|2 the Wilson effective action SW [µ, φ] depends only on the Abelian
fields which emerge from the super-symmetric Higgs mechanism as massless. Denoting these fields
as φ = φ3, ψ = ψ3, F = F 3, Aµ = A3

µ, λ = λ3, D = D3, fµν = ∂µAν − ∂νAµ, we collect them in
either (two ) N=1,

ϕ(y, θ) = φ(y) +
√
2θψ(y) + θ2F (y)

v(x, θ, θ̄) = −θσµθ̄Aµ + i(θ2θ̄λ̄− θ̄2θλ) +
1

2
θ2θ̄2D; w(y, θ) = (−iλ+ θD− iσµνθfµν + θ2σ̄µ∂µλ̄)(y)

or (one ) N=2, Abelian super-multiplets:

χ(ỹ, θ̃) = ϕ(ỹ, θ) +
√
2 θ̃αwα(ỹ, θ) + θ̃αθ̃αG(ỹ, θ); G(ỹ, θ) = −1

2

∫
d2θ̄[ϕ(ỹ, θ, θ̄)]† exp[−2v(ỹ, θ, θ̄)].

Moreover, the scale fixed as infrared cutoff is naturally provided by 〈φ〉 = a. There is a subtlety
here: the action of the SU(2) Weyl group sends a to -a which are thus the same point in M.
Therefore a good coordinate in M is 〈φ2〉 = a2. In any case, SW depends on which point of the
vacuum moduli space we choose to quantize.

The abelianization process leading to the Wilson effective action do not spoil N = 2 super-
symmetry. SW is of the general form:

SW =
1

16π
Im

∫
d4x d2θ d2θ̃ F(χ) =

1

16π
Im

∫
d4x[

∫
d2θF ′′(ϕ)wαwα +

∫
d2θd2θ̄(ϕ†F ′(ϕ)]

and the Seiberg-Witten problem is the determination of the prepotential F . One property will be
crucial in achieving this goal: F is holomorphic in the N = 2 chiral super-field χ and, defining the
parameters in terms of the expectation value 〈χ〉 in the vacuum of this field, is also holomorphic
in the parameters of the theory.

The mathematical/physical meaning of F is unveiled by expanding SW in component fields:

SIW [µ, ϕ, wα] =
Im

4π

∫
d4x[F ′′(φ)(−1

4
)fµν(f

µν − if̃µν)− iF ′′(φ)λ̄σµ∂µλ+ · · ·]

SIIW [µ, ϕ, wα] =
Im

4π

∫
d4x[F ′′(φ)∂µφ∂

µφ− iF ′′(φ)ψσµ∂µψ̄ + · · ·]

These formulas show that the effective action is nothing but the action for a (3+1)D gauged non-
linear N = 2 SUSY sigma model where the target manifold is the vacuum moduli space: M = C.
ImF ′′(φ) determines the kinetic terms and plays the role of a metric in configuration space. For
constant configurations, it defines the metric in the vacuum moduli space: ds2 = ImF ′′(a)dadā =
Imτ(a)dadā.

Thus, we can understand

τ(a) =
Θeff(a)

2π
+ i

4π

g2eff(a)
= F ′′(a)

as the running coupling constant at the µ2 ∝< |φ|2 >= |a|2 squared energy scale. In the classi-
cal/high energy regime we have the classical vacuum moduli space

M = C ds2 = Im τcl dadā = Im (
Θ

2π
+ i

4π

g2
) dadā

whereas,
Mquantum = C ds2 = Im F ′′(a)dadā

is the quantum moduli space when quantum fluctuations become important.
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3.3.2 Weak coupling regime

In a neighborhood of the infinity point in M, the a → ∞ limit, the fluctuation modes with
large momentum p dominate SW . Asymptotic freedom tells us that large momentum amounts
to weak coupling and we can rely on perturbation theory in this regime. The evaluation of the
perturbation theory contribution to the prepotential can be performed through the analysis of
the classical global symmetry of the theory: U(2) ≃ U(1)C ⊗ SU(2)I . The U(1)C sub-group is a
R-transformation with R-character equal to 2:
U(1)C : Φ −→ e2iαΦ(e−iαθ). θ, θ̃ form a doublet under SU(2)I -and so do ψ = ψ1, λ = ψ2- but the
U(1)I sub-group has R-character equal to 0: U(1)I : Φ −→ Φ(e−iαθ). In perturbation theory of the
microscopic Yang-Mills theory the fermionic triangle diagrams show that ∂µJ

µ
5 = − 1

4π
TrFµνF̃

µν

and the U(1)C symmetry is anomalous.
Integration of the fast quantum fluctuations lead to the effective Abelian theory that, accord-

ingly, should include a term of the form :δLeff = − α
4π2 fµν f̃

µν · · · . Thus,

LIW =
1

16π
Im[F ′′(ϕ)(−fµνfµν + ifµν f̃

µν)]− α

4π2
fµν f̃

µν + · · · (33)

where α is the parameter of the U(1)C transformation. Is this term encoded in the prepotential?
The action of a U(1)C transformation on LIW reads:

LIW (e2iαϕ) =
1

16π
Im[F ′′(e2iαϕ)(−fµνfµν + ifµν f̃

µν)] + · · · (34)

Comparing (33) and (34), we find:

F ′′(e2iαϕ) = F ′′(ϕ)− 4α

π
≡ F ′′′(ϕ) =

2i

πϕ
.

The integration of the last expression is elementary: in terms of the integration constant Λ2 we
obtain Fpert(ϕ) =

i
2π
ϕ2 ln ϕ2

Λ2 . Therefore, near the infinity point in M the prepotential including
one-loop effects is:

Fpert(χ) =
i

2π
χ2 ln

χ2

Λ2
.

From F(a) = i
2π
a2 ln a2

Λ2 one easily calculates the effective coupling constant τ(a) = i
π
(ln a2

Λ2 + 3).
Then,

4π2

g2(a)
= ln

|a|2
Λ2

+ 3 (35)

and the effective beta function - dg(a)
d ln |a| = β(g)- is: β(g) = − 1

4π2 g
3. Λ2 is nothing but the dynamically

generated by quantum effects renormalization-invariant scale: defining the renormalization point
as µ2 = e3|a|2 we have: Λ2 = µ2 exp{− 4π2

g2(µ)
}. |a|2 = ∞ is the weak coupling renormalization

scale, µ2 = Λ2 is the strong coupling scale: g(Λ2) = ∞.
There are anti-self-dual gauge connections in the Euclidean version of the theory. Solutions of

the self-duality equations FE
µν = −F̃E

µν give rise to instantons in the parent Minkowskian theory,
which interpolate between pure gauge configurations with different winding number at t = −∞
and t = ∞. Standard instanton physics assigns an Euclidean action of :

exp(− 8π2k

g2(a)
) = e−6k(

Λ

a
)4k (36)
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to a self-dual connection with Chern number k. In (36) we have used the (complexified) equation
(35) to write the instanton action in terms of Λ and a, and followed Seiberg, [18], in assigning an
R-charge of 2 to Λ.

Weyl-Dirac operators acting on sections of second Chern class k=1 spinor bundles have 8 zero
modes according to the Atiyah-Singer index theorem. Thus, Berezin integration in Euclidean
fermionic correlation functions in the instanton background provides a non-zero answer only for
4 λ- and 4 ψ-spinors. Such a correlator G changes to ei8αG under U(1)C transformation. This
argument survives analytic continuation to Minkowskian correlations and the U(1)C symmetry is
broken to a Z8 sub-group by tunneling via one instanton. Therefore, the prepotential taking into
account this effect must be of the form Finstanton = F1(

Λ
ϕ
)4ϕ2 -only the arbitrary constant F1

coefficient is left to fix-, because, then, Finstanton = F1(
Λ
ϕ
)4ϕ2e4iα = e4iαFinstanton(ϕ).

One can check that the Z8 sub-group is also a quantum symmetry of Fpert:

Fpert → e4iα(
i

2π
χ2 ln

χ2

Λ2
− 2α

π
χ2) .

Then,
2α

π

1

16
Im

∫
d4xd2θTrW αWα = − α

4π2

∫
d4xTrFµνF̃

µν = 8αk

and the transformation do not alter the quantum action if α = 2πn
8
, n ∈ Z. In the weak coupling

regime the super-potential collects the one-loop perturbative and instanton corrections:

F(χ) =
i

2π
χ2 ln

χ2

Λ2
+

∞∑

n=1

Fn(
Λ

χ
)4nχ2 . (37)

It is worthwhile to mention that N = 2 super-symmetry forbids any further corrections to the
perturbative β-function.

One might wonder about whether or not the description developed for large values of a -in
terms of the Φ,W and F is also appropriate in other regions of M, e.g. around the origin.
Because F(a) is holomorphic, ImF ′′(a) = Imτ(a) is harmonic: ∂∂̄ Imτ(a) = 0. Then, Imτ(a) > 0
∀a ∈ M ≡ C ∪ {∞} if and only if Im τ(a) = constant (as in the classical case). But τ(a) is non
constant, at least near a = ∞.

The way out is to allow for different local descriptions: the coordinates a, ā and F are appro-

priate only in a certain region of M. From Imτ(a) = 1
π
(ln |a|2

Λ2 + 3), we see that there seem to be
a priori three points in M where another system of coordinates â, ¯̂a could be necessary:

• Imτ(a) → 0 and the effective action become non-sense if a = ±e−3/2Λ. The strong coupling
limit provides two singular points.

• ∂∂̄ ln |a|2
Λ2 = δ(2)(a) and Imτ(a) fails to be harmonic at the origin.

3.3.3 Electric-magnetic duality

Duality will provide a different set of (dual) fields ΦD and W α
D that supply an appropriate de-

scription in other region of the vacuum moduli space. How to define the duality transformation ?
First, how to define a good metric in all M?

One can write the metric in the form

ds2 = Im daDda = − i

2
(daDdā− dadāD)
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where the new coordinate is: aD ≡ ∂F
∂a
. Before of implementing this idea on the super-fields,

it is convenient to pause and explain mathematically the situation. Let us introduce a complex
space X ∼= C2 with coordinates a, aD and endow X with the type (1, 1) symplectic form w =
i
2
(da ∧ dāD − daD ∧ dā) and also with the holomorphic two form ωh = da ∧ daD. We describe

a map f : M → X by functions a(u), aD(u) such that f ∗(ωh) = 0. This ensures that locally, if
we pick u = a, aD = ∂F

∂a
with some holomorphic function F . The metric in M is the one whose

Kahler form is f ∗(ω). We must, however, recall that a good physical parameter is provided by
the choice u = Tr〈φ2〉 in the high energy regime.

The parallel duality transformation on the N = 1 chiral super-field is easy to write:

ϕD ≡ F ′(ϕ) =
dF
dϕ

; F ′
D(ϕD) ≡ −ϕ .

One immediately realizes the invariance of the abelian effective theory

Im

∫
d4x d2θ d2θ̄ ϕ†F ′(ϕ) = Im

∫
d4x d2θ d2θ̄ (−F ′

D(ϕD))
†ϕD = Im

∫
d4x d2θ d2θ̄ ϕ†

DF ′
D(ϕD)

against this (“complex” ) canonical transformation:

FD(ϕD) = F(ϕ)− ϕϕD

The duality transformation on Wα is non-local. The Bianchi identity df = 0 for the abelian
gauge field fµν is tantamount in the super-symmetric framework to the constraint: Im(Dαw

α) = 0.
We can trade integration on the v super-field by integration on the w super-field in the quantum
action provided that the constraint is enforced by a Lagrange multiplier super-field vD:

∫
Dv exp[ i

16π
Im

∫
d4x d2θF ′′(ϕ)wαwα]

≃
∫

DwDvD exp[
i

16π
Im

∫
d4x d2θF ′′(ϕ)wαwα +

i

32π
Im

∫
d4x d2θ d2θ̄ vDDαw

α]

Observe that
∫
d2θ d2θ̄vDDαw

α = −
∫
d2θ d2θ̄DαvDw

α +

∫
d2θ D̄2(DαvDw

α)

=

∫
d2θ(D̄2DαvD)w

α = −4

∫
d2θwDαw

α

where we used D̄β̇w
α = 0 and where the dual wD is defined from vD as wDα ≡ −1

4
D̄2DαvD. Then

one can do the functional integral over wα- a Gaussian- and one obtains:
∫

DvD exp[
i

16π
Im

∫
d4x d2θ(− 1

F ′′ (ϕ)w
α
DwDα)]

This formula re-expresses the N = 1 super-symmetric abelian effective gauge theory in terms of
the dual field wαD with the effective coupling τ(a) = F ′′(a) replaced by − 1

τ(a)
. Moreover, because

F ′′
D = − dϕ

dϕD
= − 1

F ′′(ϕ)
, we can define τD(aD) ≡︸︷︷︸

def

F ′′(aD) = − 1
τ(a)

, and write the effective action

in terms of the dual fields in a completely symmetric way:

1

16π
Im

∫
d4x d2θ d2θ̃ FD(χD) =

1

16π
Im

∫
d4x[

∫
d2θF ′′

D(ϕD)w
α
DwDα +

∫
d2θd2θ̄(ϕ†

DF ′(ϕD)])

(38)
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From the Berezin integration of the constraint term

i

32π
Im

∫
dx4dθ2dθ̄2vDDαw

α =
1

8π

∫
dx4vµD∂

ν f̃µν =
1

8π

∫
dx4f̃µνD fµν

one realizes that vD couples to magnetic -rather than electric- charge -for a magnetic monopole
∂µf̃

0µ = 8πδ(3)(x)-. Therefore, vD is the connection associated to the U(1)D sub-group of the
SU(2)D dual Lie group to the SU(2) gauge group. The duality transformation is an electric-
magnetic transformation analogous to the duality symmetry -fµν → f̃µν- of the Maxwell equations
in the vacuum. To keep EM duality at work when sources are added to the Maxwell equations
requires also the transformations qe → −qm, qm → qe among electric and magnetic charges.
In our case τ(a) → τD(aD) does the job and there is a parallel weak coupling/strong coupling
transformation. It seems thus, highly plausible that the right effective action in the strong coupling
regions of the moduli space is (38). A warning: unlike electromagnetism, this statement means
that there is no symmetry of the abelian effective theories with respect to EM duality. We will
come back to this point later.

3.3.4 SL(2,Z) invariance: the lattice of quantum BPS charges

The exploration of such a possibility calls for the analysis of the full duality transformations group
of the Abelian effective action that, for this purpose, it is convenient to write it as:

SW =
1

16π
Im

∫
d4x d2θ

dϕD
dϕ

wαwα +
1

32πi

∫
d4x d2θ d2θ̄ (ϕ†ϕD − ϕ†

Dϕ) (39)

Besides the S-duality transformation
(
ϕD
ϕ

)
→
(

0 1
−1 0

)(
ϕD
ϕ

)

there is also a T-duality transformation,
(
ϕD
ϕ

)
→
(

1 b
0 1

)(
ϕD
ϕ

)
= T (b)

(
ϕD
ϕ

)
, b ∈ Z

which is a true symmetry of the effective action. The second term in (39) is T-invariant because
b is real and the first term gets shifted by

b

16π
Im

∫
d4 xd2θ wαwα = − b

16π

∫
d4x FµνF̃

µν = 0

because there are no instantons in an abelian theory. The generators of the full group of duality

transformations are: S =

(
0 1
−1 0

)
, T =

(
1 1
0 1

)
. A generic element of the SL(2,Z) duality

group, D(m,n, p, q), m,n, p, q ∈ Z, mp− qn = 1, acts in the form:

(
ϕ′
D

ϕ′

)
=

(
m n
p q

)(
ϕD
ϕ

)
.

Because of

D(n,m, p, q)[F ′′(ϕ)] =
d(mϕD + nϕ)

d(pϕD + qϕ)
=
mdϕD

dϕ
+ n

pdϕD

dϕ
+ q

,
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the duality action on τ(a) is a linear fractional transformation: τ ′ = mτ+n
pτ+q

.
The key observation of Seiberg and Witten is that the N = 2 SUSY algebra is anomalous and

the renormalized central charge is:

ZR(u) = a(u)ne + aD(u)nm =
(
nm ne

)( aD
a

)
(40)

(if the fields and the dual fields are re-scaled by g and gD ). ne and nm count the number of elec-
trically and magnetically charged states, whereas a(u) and aD(u) play the rôle of the renormalized
electric and magnetic charge. The rationale behind this crucial hypothesis is electric-magnetic du-
ality: for electrically charged BPS states it is clear that ZR = nea. The dual formula ZR = nmaD
for magnetically charged BPS states may be verified through an argument á la Bogomolny. Con-
sider the full high energy theory in its effective form (28) and examine the bosonic terms in the
Hamiltonian of a magnetic monopole:

E =
1

4π
Im

∫
d3x{τab(∇iφ

a)(∇iφ
b) +

1

2
τab B

a
iB

b
i } , τab =

∂2F
∂φa∂φb

The duality transformation φa → φDa =
∂F
∂φa

and the Bogomolny splitting implies:

E =
1

4π
Im

∫
d3x{(−1

τ
)ab(∇iφD)a(∇iφD)b +

1

2
τab B

a
i B

b
i }

=
1

4π
Im{

∫
d3x(−1

τ
)ab[(∇iφD)a ±

1√
2
τacB

c
i ][(∇iφD)b ±

1√
2
τbdB

d
i ]}

=
√
2

∫
∂i(B

a
i φDa)d

3x ≥ |
√
2

4π

∫

∂R3

d2Si B
a
i φDa| =

√
2|nmaD|

The lattice (40) of BPS dyonic states has built in duality symmetry and the quantum mass of
these states is: M2

D = 2|ZR(u)|2.
The problem is thus to determine a(u) and aD(u). In the weak g coupling limit, when u→ ∞,

a ≃
√
2u , aD ≃ i

π

√
2u (ln

2u

Λ2
+ 1) (41)

and u = ∞ is a branching point -a singularity- of both a and aD. Singularities are characterized by
their monodromies: take u around a counter-clockwise contour of very large radius in the complex
u-plane, u→ e2πiu. One has a→ −a and

aD → − i

π

√
2u (ln

2e2πiu

Λ2
+ 1) = −aD + 2a .

This can be written in terms of the monodromy matrix:

(
aD(u)
a(u)

)
→ M∞

(
aD(u)
a(u)

)
, M∞ = PT (−2) =

(
−1 2
0 −1

)
, P =

(
−1 0
0 −1

)

Multi-valued functions with prescribed singularities and monodromies around them are unique.
Thus, to find a(u) and aD(u) there is the need of identifying all the singularities and their mon-
odromies.
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3.3.5 Strong coupling singularities

We start by answering the following question: How many singularities are in the renormalized
electric and magnetic charges as functions of u?

To identify the branching points in the lattice of quantum charges when the theory is considered
in different points of M we proceed in three steps.

1. Recall that the prepotential (37) in the weak coupling regime is invariant under a Z8 sub-
group of U(1)C . Under this Z8-symmetry φ → eiπ

n
2 φ and φ2 → −φ2 if n odd. u = 〈trφ2〉

breaks this Z8 invariance further to Z4 and there is only a Z4-symmetry left on a given point
of the vacuum moduli space. Due to this global symmetry u→ −u singularities of M should
come in pairs: if u = u0 is a singularity also u = −u0 is. The only fixed points of u → −u
are u = ∞ and u = 0. We know that u = ∞ is a singular point of M. So if there are two
singularities the other must be the fixed point u = 0.

If there are only two singularities u = ∞ and u = 0 one concludes by contour deformation
that: M0 =M∞. Then,

(
a′D(0)
a′(0)

)
=

(
−1 2
0 −1

)(
aD(0)
a(0)

)
⇒ a′(0) = −a(0)

and a′2(0) = a2(0) is not affected by any monodromy. Hence, a2 would be a good coordinate
in all the quantum vacuum moduli space, which is not; the 1

2
〈φ2〉 = 0 point does not belong

to Mquantum and two singularities only cannot work.

2. The most important singularity occurs when aD is zero. Magnetic monopoles become mass-
less at the (ultra)-strong coupling regime u = Λ2 and therefore,

aD(u) ≃ c0(u− Λ2) , c0 = constant

in a neighborhood of this point. In the next sub-section we shall analyze the effective theory
in the monopole patch of M, but we advance that

a(u) ≃ a0 +
i

π
c0(u− Λ2) ln(u− Λ2) , a0 = constant (42)

which is enough to unveil the monodromy matrix around this singularity:

(
aD
a

)
→MΛ2

(
aD
a

)
, MΛ2 = ST (2)S−1 =

(
1 0
−2 1

)
.

The monodromy transformation can also be interpreted as changing the magnetic and elec-
tric quantum numbers as

(nm, ne) → (nm, ne)M .

The state of vanishing mass responsible for a singularity should be invariant under the
monodromy. This is so for the magnetic monopole:

(1, 0)

(
1 0
−2 1

)
= (1, 0)

is a left eigen-vector of MΛ2 with unit eigenvalue.
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3. To obtain the monodromy matrix at u = −Λ2 one observes that the counter-clockwise
contour around u = ∞ can be deformed into a contour encircling Λ2 and a contour encircling
−Λ2, both counter-clockwise. The factorization condition M∞ = MΛ2M−Λ2 follows, and,
hence

M−Λ2 = (TS)T (2)(TS)−1 =

(
−1 2
−2 3

)

Because (1,−1)M−Λ2 = (1,−1), this singularity corresponds to a dyon becoming massless

In summary, there are three patches in the quantum moduli space, centered around the three
singularities. The appropriate variables are respectively the fields of a N = 2 supersymmetric
effective abelian gauge theory with three different U(1) abelian groups: the maximal torus of the
gauge group, the maximal torus of the dual to the gauge group and, the maximal torus of one
diagonal subgroup of the direct product of both.

3.3.6 The Seiberg-Witten prepotential

The strategy for finding aD(u) and a(u) is to consider them as the two linearly independent
solutions of the Schrödinger equation

[− d2

dz2
+ V (z)]ψ(z) = 0 , V (z) = −1

4
[
1− λ21
(z + 1)2

+
1− λ22
(z − 1)2

− 1− λ21 − λ22 + λ23
(z + 1)(z − 1)

] , z =
u

Λ2

in the complex plane. V (z) is a meromorphic function of z with second order poles at −1, 1,∞
and residues −1

4
(1−λ21),−1

4
(1−λ22),−1

4
(1−λ23). Here, λ1, λ2, λ3, are constants -we assume without

loss of generality λi ≥ 0- to be fixed later according to the asymptotic behaviour of a(z), aD(z).
The transformation

ψ(z) = (z + 1)
1

2
(1−λ1)(z − 1)

1

2
(1−λ2)f(

z + 1

2
)

is very useful because f satisfies the hypergeometric ODE

z(1− z)f ′′(z) + [c− (a + b+ 1)z]f ′(z)− abf(z) = 0) (43)

with

a =
1

2
(1− λ1 − λ2 + λ3); b =

1

2
(1− λ1 − λ2 − λ3); c = 1− λ1 .

We choose the two independent solutions of the second-order ODE (43)

f1(z) = (−z)a1F2(a, a+1−c, a+1−b; 1
z
) , f2(z) = (1−z)c−a−b1F2(c−a, c−b, c+1−a−b; 1−z)

where 1F2(a, b, c; z) is the Gauss hypergeometric function. The reason for this election is that f1
and f2 has simple monodromy properties respectively around z = ∞ and z = 1. Hence, they are
good candidates to be identified with a(z) and aD(z).

To make the identification precise, we observe that when z → ∞ one has V (z) ≃ −1
4

1−λ2
3

z2
. The

two independent solutions behave asymptotically as z
1

2
(1±λ3), if λ3 6= 0, and

√
z,
√
z ln z, if λ3 = 0.

Comparison with (41) tells us that the latter case is realized if a(z) is going to be identified with

f1. Simili modo, if λ3 = 0, as z → 1 one has V (z) ≃ −1
4
(

1−λ22
(z−1)2

− 1−λ21−λ22
2(z−1)

), where the sub-leading
term is kept.
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From the logarithmic asymptotics of aD = c0Λ
2(z − 1), a = a0 +

i
π
c0Λ

2(z − 1) ln(z − 1) when

z → 1 one sees that λ2 = 1 and −λ21
8

= ic0
πa0

. The Z2 symmetry u → −u on the moduli space
implies that, as z → −1 the potential does not have a double pole either, so that λ1 = 1 also.
Therefore,

λ1 = λ2 = 1 , λ3 = 0 , V (z) = −1

4

1

(z + 1)(z − 1)

and a = b = −1
2
, c = 0. The two solutions

aD(u) = i
u− Λ2

2Λ2
F (

1

2
,
1

2
, 2;

Λ2 − u

u
) , a(u) =

√
2

Λ2
(u+ Λ2)

1

2 F (−1

2
,
1

2
, 1;

2Λ2

u+ Λ2
)

have the correct monodromies as well as the correct asymptotics. One can invert the equation
on the right to find u(a). To obtain aD(a) one plugs-in this result into aD(u). Integration with
respect to a yield F(a) and, hence, the low energy theory.

In the Seiberg and Witten work, the whole picture is related to an elliptic curve. A brief
summary is as follows: M∞,MΛ2 and M−Λ2 belong to the Γ(2) sub-group of SL(2,Z) matrices
with integer mod 2 entries. If H is the half-plane, the quotient H

Γ(2)
is the moduli space of elliptic

curves given by the algebraic equation:

y2 = (x− 1)(x+ 1)(x− z) . (44)

The modular forms of weight 1
2
and level 2 provide a six-to-one map α : H

Γ(2)
∼= Mq −→ P1

from this moduli space, isomorphic to the quantum vacuum moduli space Mq, to the projective
complex line :

α(τ(u)) =

(
Θ

[
0
1
2

]
(0, τ),Θ

[
1
2

0

]
(0, τ)

)
, z =

Θ

[
0
1
2

]
(0, τ)

Θ

[
1
2

0

]
(0, τ)

,

see [19]. Here, we refer by τ , not the coupling constant, but the modular parameter of the elliptic
curves (44) which have an structure of level 2. Thus, Mq is a 6-fold covering of P1.

τ = ∞ is a cusp - a fixed point under the action of T (1) =

(
1 1
0 1

)
∈ Γ(2)-:

α(τ + 1) =

(
Θ

[
0
0

]
(0, τ), ei

π
4Θ

[
1
2

0

]
(0, τ)

)
,

and having in mind that limImτ→∞Θ

[
0
1
2

]
(0, τ) = 1, limImτ→∞Θ

[
1
2

0

]
(0, τ) = 0, this point

corresponds to z = ∞- a cuspidal curve in the family (44)-.

N =

(
1 1
1 0

)
is other element in Γ(2) which amounts to:

α(−1

τ
± 1) =

(
(−iτ) 1

2Θ

[
0
0

]
(0, τ), e±i

π
4 (−iτ) 1

2Θ

[
0
1
2

]
(0, τ)

)
.

N(τ = ∞) = ±1 and, therefore, τ = ±1 - or z = ±1- are new cusp points, which also characterize
nodal curves in (44).

30



The physical meaning of this construction is related to the lattice of charges L(u) = ZaD(u)⊗
Za(u). The E(u) elliptic curve (44) is nothing but E(u) = C

L(u)
and singular curves appear at

the singularities of the lattice of BPS states. Moreover, if we denote by γD and γ the 1-cycles
which generates the first homology group H1(E(u),Z) of the elliptic curve, and pick the linear
combination

λ =
1√
2π

√
x− z√
x2 − 1

.dx =
1√
2π

(x− z)dx

y

of the two holomorphic differentials on the curve, we have

aD(u) =

∮

γD

λ =

√
2

π

∫ z

1

dx
√
x− z√

x2 − 1
, a(u) =

∮

γ

λ =

√
2

π

∫ 1

−1

dx
√
x− z√

x2 − 1
.

Derivation with respect to the coordinate in the moduli shows the effective coupling constant as
the modulus of the elliptic curve E(u):

daD
dz

=

∮

γD

dλ

dz
,

da

dz
=

∮

γ

dλ

dz
; τ(u) =

daD/dz

da/dz
=
daD
da

.

3.4 N=2 dual SUSY QED

3.4.1 The ultra-strong limit: low energy effective theory

We now closely focus on the peculiar scaling limit aD(Λ
2) = 0, usually called ultra-strong limit.

Magnetically charged states become thus massless and the magnetically charged massless N = 2
hyper-multiplet,

M(y, θ) = φm(y) +
√
2θψm(y) + θ2Fm(y) , M̃(y, θ) = φ̃m(y) +

√
2θψ̃m(y) + θ2F̃m(y),

must be “integrated in ” the low energy effective theory. The spin of the physical fields, two Weyl
spinors ψm , ψ̃m ,and , two complex scalars φm , φ̃m, is shown next:

Spin 0 1
2

0
ψm

φm φ̃m
ψ̃m

(45)

All of them are massless and magnetically charged; accordingly, the associated quanta are light
dual electrons, dual positrons, magnetic monopoles (dual s-electrons) and magnetic anti-monopoles
(dual s-positrons). It is important to note that φm and φ̃m form one doublet under SU(2)I whereas
ψm and ψ̃m are singlets.

There is also the N = 2 chiral super-field

χD(y, θ) = ϕD(y) +
√
2θ̃WD(y) + θ̃2GD(y).

which includes all the dual Abelian fields introduced in sub-Section §3.3.3. The spin of the physical
fields vDµ , λD , ψD , φD is shown next

Spin
vDµ 1

λD ψD
1
2

φD 0
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and the corresponding quanta are dual photons , dual photinos , dual Higgsinos, and dual complex
Higgs particles.

The N = 2 super-symmetric low energy action in this limit is built from three pieces:

SM =

∫
d4x

∫
d2θ

∫
d2θ̄
{
M̃e2VDM̃ † +M †e−2VDM

}

SW =
Im

16π

∫
d4x

∫
d2θd2θ̃τD(0)χDχD ; SY =

√
2

∫
d4x[

∫
d2θϕDMM̃ + h.c.]

SM describes the U(1)D gauge dynamics of the light magnetically charged fields, SW is the Seiberg-
Witten effective action exactly at the ultra-strong limit, and , SY is a Yukawa type action needed
to ensure N = 2 super-symmetry through the achievement of SU(2)I invariance in the total
effective action Seff = SW + SM + SY , see [20].

A better understanding of the low energy effective theory in the ultra-strong limit requires a
closer look to the theory in a neighborhood of the u = Λ2 point in the quantum moduli space of
vacua. One introduces the magnetic coupling gD as

τD(aD) =
4πi

g2D(aD)

because there is no instanton angle in QED and ΘD = 0. Moreover, from the β-function of
(QED)D,

µ
dgD
dµ

=
g3D
8π2

,

and because µ ∝ aD = c0(u− Λ2) ( in the monopole patch ) we obtain

aD
dτD
daD

= − i

π
⇒ τD = − i

π
ln aD .

Now the physical meaning of this limit is clear: limaD→0 iτD ≃ −∞ means that the ultra-strong
limit is the gD weak coupling limit (the g strong coupling limit, of course). Note also that from

τD = d(−a)
daD

we can deduce formula (42) in subsection §. 3.3.5:

a ≃ a0 +
i

π
aD ln aD = a0 +

ic0
π
(u− Λ2) ln[c0(u− Λ2)] .

The key observation is that SW at aD = 0 becomes a Ginzburg-Landau type effective action
with all the quantum fluctuations integrated out. Therefore, the effective theory at the ultra-
strong limit is a classical field theory and, rescuing the Planck constant, wave-particle duality tells
us that the field theoretical coupling gD is related to the magnetic charge of the dual light quanta
in the form: gd = ~ḡD. Thus, one must replace in SW τD(0) by

τ̄D(0) = ~
2τD(0) ,

which remains finite at the ultra-strong limit τD → ∞ only if ~ → 0, i.e., the g-strong coupling
limit is nothing but the classical limit for the magnetically charged quanta !!!.
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3.4.2 Extended states in the ultra-strong limit

In order to search for solitons in the ultra-strong limit we perform Berezin integration in the low
energy Ginzburg-Landau action to find:

SW =

∫
d4x{−1

4
fDµνf

µν
D − iλ̄Dσ̄

µ∂µλD +
D2

2
+ + ∂µφ

∗
D∂

µφD − iψ̄Dσ̄
µ∂µψD + F ∗

DFD}

SM =

∫
d4x{(∇µφm)

∗∇µφm +∇µφ̃m(∇µφ̃m)
∗ + F ∗

mFm + F̃ ∗
mF̃m +

+ ḡDD(φ∗
mφm − φ̃∗

mφ̃m)− i(ψ̄mσ̄
µ∇µψm +

¯̃
ψmσ̄

µ∇µψ̃m)}

SY =
√
2ḡD

∫
d4x[{FDφmφ̃m + 2ψD(ψ̃mφm + ψmφ̃m) + φD(φmF̃m + φ̃mFm) + h.c.}

− {φ∗
mψmλD − φmψ̄mλ̄D + φ̃m

¯̃
ψmλ̄D − φ̃∗ψmλD}].

The covariant derivatives on the spinor and scalar fields of the hypermultiplet are:

∇µφm = ∂µφm + iḡDA
D
µ φm, ∇µψm = ∂µψm + iḡDA

D
µ ψm

∇µφ̃m = ∂µφ̃m − iḡDA
D
µ φ̃m ∇µψ̃m = ∂µψ̃m − iḡDA

D
µ ψ̃m .

After performing integration on the auxiliary fields D and Fm, F̃m we obtain the bosonic part
of the effective action:

SBeff =

∫
d4x{−1

4
fDµνf

µν
D + ∂µφ

∗
D∂

µφD + (∇µS)
†(∇µS)− ḡ2D

2
(4|φD|2 + S†S)S†S} . (46)

We have introduced the SU(2)I spinor S:

S =

(
φm
φ̃∗
m

)
.

It is obvious that absolute minima of the energy in the effective theory must satisfy φD(x) =
aD = 0. Assuming this condition the energy density for time-independent axially symmetric
configurations can be written la Bogomolny:

EBeff(aD = 0) =

∫
d2x{|fD12 ∓ ḡDS

†S|2 + |(∇1 ± i∇2)S|2}+ |
∫
d2xfD12| (47)

Solutions of the first-order equations

fD12 = ±ḡDS†S , (∇1 ± i∇2)S = 0 (48)

are absolute minima of EBeff(aD = 0). Unfortunately, the sign combination in (48) is such that
there are no regular solutions besides the trivial S = 0, ADi = 0 solution: the system is frustrated.

Nevertheless, an identical analysis in the Poincaré disc, instead R
2, requires to add to the

Lagrangian density the piece: LR = −1
2
RS†S, where R is the constant negative curvature. After

some rather trivial re-scaling, a new system of first-order equations appear:

fD12 = ∓ 4

(1− x21 − x22)
(1− S†S) , (∇1 ± i∇2)S = 0 . (49)
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There are vorticial solutions to the new system of first-order equations (49) of the form:

φ̃(n)
m (z) = 0 , φ(n)

m (z) =
2(1− |z|2)
1− f ∗

nfn(z)
.
f ′
n(z)

|f ′
n(z)|

, fn(z) =

n∏

i=1

(z − ai)

(1− a∗i z)
.

which support a total electric flux of

|
∫
d2xfD12(x1, x2)| =

2π

ḡD
(n− 1)

concentrated around the points z = ai of the complex plane. These solitonic solutions are nothing
but “dual” instantons -dual self-dual configurations- with cylindrical symmetry.

The whole picture of the spectrum of N = 2 SU(2) super-symmetric Yang-mills theory is
summarized in the following boxes:

weakcoupling strong coupling

light quanta: electrically charged light quanta: magnetically charged
extended states: magnetically charged extended states : electrically charged

S1-invariant instantons cylindrically-invariant instantons

3.4.3 Soft breaking of N=2 supersymmetry: monopole condensation

Adding a mass term in the original non-abelian theory

Sµ = µ

∫
d4x[

∫
d2θtr Φ2 + h.c.] = −µ

∫
d4xtr(φ∗φ+ i(ψψ + ψ̄ψ̄))

N = 2 super-symmetry is “softly” broken to N = 1. This addition affects the low energy effective
theory through the trading of trΦ2 by an abelian chiral super-field U(y, θ) which is a functional
of ϕD in the monopole patch,

U(ϕD) = U(φD) +
√
2θψDU

′(φD) + θ2(U ′(φD)FD − 1

2
U ′′(φD)ψDψD) ,

supplying -after Berezin integration- a new term to the effective action:

Sµ = µ

∫
d4x{U ′(φD)FD − 1

2
U ′′(φD)ψDψD + h.c.}.

Taking into account only the contribution of the constant modes, the effective action at u = Λ2,
reduces to the effective potential:

Veff =
√
2ḡDϕDMM̃ + µU(ϕD) + h.c. .

The expectation values of M , M̃ and ϕD

〈M(x)〉 = 〈φm(x)〉 = m , 〈M̃(x)〉 = 〈φ̃m(x)〉 = m̃

〈ϕD(x)〉 = 〈φD(x)〉 = aD

are given by the minima of Veff :

dVeff
dϕD

=
dVeff
dM

=
dVeff

dM̃
= 0

√
2ḡDmm̃+ µU ′(aD) = 0 , aDm̃ = aDm = 0 . (50)
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There is also the constraint |m| = |m̃| coming from the integration of the D-terms. When µ = 0,
m = m̃ = 0, aD = 0 solve (50), and we come back to the quantum moduli space of the N = 2
theory. If µU ′(0) 6= 0 the vacuum manifold is different:

aD = 0 , mm̃ = |m|2ei(α+α̃) = −| µ

ḡD
√
2
U ′(0)|eiβ (51)

is the solution (50). Only the sum of the phases of m and m̃ is fixed, β + π
2
= α+ α̃, and there is

a circle of gauge-equivalent vacua parametrized by α− α̃.
(Massless) magnetic monopoles, dual s-electrons, condense: spontaneous symmetry breaking

of the dual Abelian group arises from identifying the vacuum manifold as the orbit of the U(1)D
action. Note that now the quantum moduli space of vacua is formed by the u = ±Λ2. In each
of these two points a U(1) group acts, giving rise to one circle orbit. Expanding around the
expectation values of the M and M̃ fields

M(y, θ) = m+ hm(y) +
√
2θψm(y) + θ2Fm(y)

M̃(y, θ) = m̃+ h̃m(y) +
√
2θψ̃m(y) + θ2F̃m(y)

scalar and vector mass terms arise in the Lagrangian density:

L = ḡ2D|m|2(|hm|2 + |h̃m|2 + ADµA
µ
D) .

The electric Higgs mechanism for the fermions, albeit in a more involved manner also happens.

3.4.4 Stable semi-local vortices

Variational calculus on the effective Bosonic action for the φd field tells us that topological defects
can arise as solutions of the classical field equations such that φm(x)φ̃m(x) 6= mm̃ in some region
of the plane if and only if U ′′(0) = 0. But this is indeed the case because when u → Λ2,
U(ϕD) = a0ϕD +Λ2, as one can check from the Seiberg-Witten solution for the prepotential near
u = Λ2 and u = ∞ .

The effective action being Abelian, we expect to find planar solitons if µ 6= 0; we look for
minima of the bosonic effective energy per unit of length of time-independent axi-symmetric
configurations:

EBeff(aD = 0) =

∫
d2x{1

4
fD12f

D
12 + (∇iφm)

∗∇iφm + (∇iφ̃m)
∗∇iφ̃m +

+ |
√
2ḡDφmφ̃m + C|2 + ḡ2D

2
(|φm|2 − |φ̃m|2)2} ,

where C = C1 + iC2 = µU ′(0) and i = 1, 2.
Following the method of Ref. [21] we restrict the search to the trial surface in the N = 2

I-space C2 defined by:

φ̃m = −eiβφ∗
m , tanβ =

C2

C1
.

This condition is compatible with the asymptotic behaviour

lim
r→∞

φm(x1, x2) = m , lim
r→∞

φ̃m(x1, x2) = m̃
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guaranteeing finiteness of the “string tension” EBeff(aD = 0). The topological conditions for the
existence of vortices are met, and, introducing the new variables

φm =
1

2
φ f 2 = 2

√
2
|C|
ḡD

we end, for a given β, with the Ginzburg/Landau/Higgs free energy:

EBeff(aD = 0, β) =

∫
d2x{1

2
fD12f

D
12 +

1

2
(∇iφ)

∗∇iφ+
ḡ2D
8
(|φ|2 − f 2)2}

From the Bogomolny splitting

EBeff(aD = 0, β) =
∫
d2x{[FD

12 ∓ ḡD
2
(f 2 − |φ|2)]2 + |(∇1 ± i∇2)φ|2}±

±
∫
d2x{ ḡD

2
(f 2 − |φ|2)FD

12 ± i
2
(∇1φ

∗∇2φ−∇2φ
∗∇1φ)} , (52)

it is seen that the absolute minima satisfy the first order equations:

(∇1 ± i∇2)φ = 0 , FD
12 = ± ḡD

2
(f 2 − |φ|2) (53)

The string tension is easy to compute for the self-dual vortex solutions:

EBeff(aD = 0) =
ḡD
2
f 2|
∫
d2xFD

12 | ; (54)

it is proportional to the electric flux. Due to the topology of the configuration space of the

problem, the “electric” flux of the vortex solutions is quantized in “quanta” of
2π

ḡD
flux. Therefore,

the self-dual solutions are electric flux lines of energy per length unit EBeff [SD] = πf 2n which arise
at the critical point between type I and type II dual superconductivity. The existence of electric
flux filaments warrants the confinement of the electric charges at this limit of the super-symmetric
system.

A subtle question remains: despite favorable topology it is not clear whether or not these
electric vortices are stable because the amplitude of internal space. To address this question we
define “natural ” fields:

φ± = φ̃m ± eiβφ̃m .

In the new field variables the energy per length unit reads:

EBeff(aD = 0) =
1

2

∫
d2x

[
fD12f

D
12 + |∇iφ+|2 +

1

2
|∇iφ−|2 + ḡ2D{

(|φ+|2 + |φ−|2 − f 2)2

4
+ |φ+|2}

]

(55)
Dropping the last term in (55) the vortices would be in neutral equilibrium with CP 1-lumps,
arising semi-local topological defects as a continuum interpolation between both kinds of solitons,
see [23]. The |φ+|2-term means that the evolution from the vortices towards the CP 1-lumps
requires energy; thus, the electric vortices are stable.
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4 N = 2 twisted SUSY Yang-Mills theory

4.1 N=2 gauge theory on four-manifolds: Wick rotation and twisting

We try now to define a N = 2 super-symmetric gauge theory on a four-dimensional Riemannian
manifold, i.e., we replace R1,3 by a manifold X which is locally R4

E, as the base space. We
would expect that the super-space R4|8 should also be replaced by a super-manifold S locally
homeomorph to R

4|8
E .

The problem is that the fields become sections in associated bundles to P (Spin(4), X), e.g.,
scalars, spinors, vectors, etcetera. Thus, X must be spin and this requirement breaks super-
symmetry. The only loophole to build a SUSY theory on a 4 manifold locally Euclidean is to
perform a process called TWIST. In this Section we shall discuss the seminal papers by Witten
Topological Quantum Field Theory, [26], and Monopoles and Four Manifolds, [27], where subtle
Donaldson invariants distinguishing between smooth structures in four manifolds are characterized
by means of certain expectation values in Topological Quantum Field Theories.

4.1.1 The twist: mixing of internal and external symmetries

We have seen in previous Sections that the group of symmetry of the N = 2 SUSY gauge theory
is:

H = SU(2)− ⊗ SU(2)+ ⊗ SU(2)R ⊗ U(1)C .

HereK = SU(2)−⊗SU(2)+ is the group of external “rotations”, whereas U(2)R = SU(2)R⊗U(1)C
is the internal symmetry group. The idea of the twist is to replace the group K by K̄ = S̄U(2)−⊗
SU(2)+, where S̄U(2)− is the diagonal sub-group of SU(2)−⊗SU(2)R. The description of how this
change affects to the super-charges, the super-algebra, the super-manifold and the fields follows.

1. Twisted super − charges The “quantum” numbers of the SUSY and twisted SUSY charges
with respect to the K and K̄ groups are shown in the next Box. The labels are the repre-
sentations of the SU(2) sub-groups and the U(1)C charge ( the super-script).

SUSYCharge TwistedSUSYCharge

QI
α (1

2
, 0, 1

2
)1 Qβ

α (1
2
⊗ 1

2
, 0)1

Q̄Iα̇ (0, 1
2
, 1
2
)−1 Q̄βα̇ (1

2
, 1
2
)−1

The explicit expression of the twisted in terms of the non-twisted SUSY charges can be
obtained by means of the analogy with one-half spin systems.

• Understanding the super-charges QI
α as the states of a system of two spin one-half

particles, we identify the following spin arrangements:

Q1
1 ≃ | ↑ ↓〉 , Q2

1 ≃ | ↓ ↓〉 , Q1
2 ≃ | ↑ ↑〉 , Q2

2 ≃ −| ↓ ↑〉

The interpretation is obvious: the I labels the spin of the first particle , up or down,
and the same job does the α for the spin of the second particle. We have chosen to
identify I = 1 and α = 2 with spin up and a eiπ phase is assigned to the Q2

2 state to fit
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with the fact that TrQ is an scalar. The decomposition of the tensor product of two 1
2

representations in terms of irreducible representations,

(
1

2
⊗ 1

2
, 0) = (0, 0)⊕ (1, 0)

leads us to introduce an scalar super-charge

Q =
1

2
(Q1

1 +Q2
2) ≃

1

2
(| ↑ ↓〉 − | ↓ ↑〉) ,

with (0, 0)1 quantum numbers. There are also three super-charges,

Q3 =
1

2
(Q1

1 −Q2
2) ≃ 1

2
(| ↑ ↓〉+ | ↓ ↑〉)

Q+ = Q1
2 ≃ | ↑ ↑〉 , Q− = Q2

1 ≃ | ↓ ↓〉 ,

which carry (1, 0) quantum numbers. Defining Q1 = Q+ +Q− , Q2 = i(Q+ −Q−) and
using the three complex structures ηaµν (‘t Hooft symbols) of the hyper-Khaler manifold
R4 the (1, 0)1 representation is organized as a self-dual anti-symmetric tensor:

Qµν =

3∑

a=1

ηaµνQ
a , Qµν =

1

2
εµνρσQ

ρσ

• From the vector of matrices σµ = (i12, σi), where σi, i = 1, 2, 3, are the Pauli matrices,
and through the identification,

Q̄βα̇ = (σµQµ)βα̇ ,

a vector super-charge Qµ with quantum numbers (1
2
, 1
2
)−1 is obtained in terms of the

twisted super-charges Q̄βα̇:

Q1 =
1

2
(Q̄12̇ + Q̄21̇) , Q2 =

i

2
(Q̄12̇ − Q̄21̇)

Q3 =
1

2
(Q̄11̇ − Q̄22̇) , Q4 = − i

2
(Q̄11̇ + Q̄22̇)

2. Twisted SUSY algebra

The SUSY algebra
{QI

α, Q̄Jβ̇} = δIJPαβ̇

becomes in terms of the twisted generators:

Q2 = Q2
µ = Q2

µν = 0 , {Q,Qµ} = Pµ

{Q,Qµν} = 0 , {Qµν , Qρ} = εµνρσP
σ + gµρPν − gνρPµ (56)

3. Twisted super−manifold

The twist prescription also requires the choice of (xµ, θ̄, θµ, θ̄µν) as local coordinates in the
R4|8 super-manifold. Again, the twisted Grassman variables are built by the same procedure
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from the non-twisted Grassman variables, having in mind the behaviour of both kind of odd
coordinates with respect to the groups K and K̄ shown in the next Box.

Grassmanvariable TwistedGrassmanvariable

θIα (1
2
, 0, 1

2
)1 θαβ̇ (1

2
, 1
2
)1

θ̄α̇I (0, 1
2
, 1
2
)−1 θ̄α̇

β̇
(0, 1

2
⊗ 1

2
)−1

Definitions of vector, θµ, scalar, θ̄, and self-dual, θ̄µν , Grassman variables immediately follow:

• From θαβ̇ = (σµθµ)
αβ̇ we find

θ1 =
1

2
(θ12̇ + θ21̇) , θ2 =

i

2
(θ12̇ − θ21̇)

θ3 =
1

2
(θ11̇ − θ22̇) , θ4 = − i

2
(θ11̇ + θ22̇)

as the components of θµ, which belong to the (1
2
, 1
2
)1 representation of SU(2)− ⊗

S̄U(2)+ ⊗ U(1)C .

• The scalar Grassman variable θ̄ = 1
2
(θ̄1̇

1̇
+ θ̄2̇

2̇
) carries the quantum numbers (0, 0)−1 with

respect to the same group.

• The three Grassman variables

θ̄1 = θ̄1̇2̇ + θ̄2̇1̇ , θ̄2 = i(θ̄1̇2̇ − θ̄2̇1̇) , θ̄3 =
1

2
(θ̄1̇1̇ − θ̄2̇2̇)

are assembled in the (0, 1)−1 self-dual combination θ̄µν =
∑3

a=1 η
a
µν θ̄

a .

Thus, it is easy to check that

Q =
∂

∂θ̄
, Qµ =

∂

∂θµ
− iθ̄∂µ , Qµν =

∂

∂θ̄µν
− i(εµνρσθ

ρ∂σ + θµ∂ν − θν∂µ)

satisfy the twisted SUSY algebra (56), and, therefore, the transformations of the super-

Poincare group P (xµ, εµ, ε̄, ε̄µν) = ei(−x
µPµ+εµQµ+ε̄Q+ε̄µνQµν) act infinitesimally on the R

4|8
E

as:
xµ → xµ − iεµθ̄ , θµ → θµ + εµ , θ̄ → θ̄ + ε̄ , θ̄µν → θ̄µν + ε̄µν .

4. Twisted fields

The twist works exactly in the same way for the spinor fields. Denoting by ψIα -I=1, the ψ
(Higgsino), I=2, the λ (gluino)- the spinor fields of the N = 2 chiral multiplet, we display
the quantum numbers of both the non-twisted and twisted version in the following Box.

Spinor field TwistedSpinor field

ψIα (1
2
, 0, 1

2
)−1 ψβα (1

2
⊗ 1

2
, 0)−1

ψ̄Iα̇ (0, 1
2
, 1
2
)1 ψ̄βα̇ (1

2
, 1
2
)1

Again the twist process leads to deal with vector, ψµ, scalar, η, and, self-dual tensor, χµν ,
fields:
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• From ψ̄βα̇ = (σµψµ)
β
α̇ we find

ψ1 =
1

2
(ψ12̇ + ψ21̇) , ψ2 =

i

2
(ψ12̇ − ψ21̇)

ψ3 =
1

2
(ψ11̇ − ψ22̇) , ψ4 = − i

2
(ψ11̇ + ψ22̇)

as the components of field ψµ, which belong to the (1
2
, 1
2
)1 representation of SU(2)− ⊗

S̄U(2)+ ⊗ U(1)C .

• The scalar field η = 1
2
(ψ11 +ψ22) carries the quantum numbers (0, 0)−1 with respect to

the same group.

• The three combinations

χ1 = ψ12 + ψ21 , χ2 = i(ψ12 − ψ21) , χ3 =
1

2
(ψ11 − ψ22)

are assembled in the (0, 1)−1 self-dual antisymmetric tensor field χµν =
∑3

a=1 η
a
µνχ

a .

The vector field Aµ trades the quantum numbers (1
2
, 1
2
, 0)0 by (1

2
, 1
2
)0 after twisting, keeping

its vector nature. The Higgs field φ and its adjoint φ†, respectively with quantum numbers
(0, 0, 0)−2 and (0, 0, 0)2 are twisted to two real scalar fields, λ and φ, labeled by (0, 0)−2 and
(0, 0)2 as irreducible representations of S̄U(2)−⊗U(1)C . Finally, a word about the auxiliary
fields that we shall not consider in the sequel. Before twisting, D and F belong to a vector
representation of SU(2)R: the quantum numbers of ~D = D~e1+ReF~e2+ImF~e3 are (0, 0, 1)

1.

After twisting ~D becomes a neutral self-dual tensor Gµν with (1, 0)0.

A last remark: all the twisted Grassman variables and fields belong to real representations of
the symmetry group. Therefore, super-symmetry on Riemannian four manifolds is possible for
real fields.

4.1.2 N = 2 super-symmetric Euclidean action: Q-cohomology

We have collected the following data: a compact oriented 4-manifold X endowed with a Rieman-
nian metric hµν and a principal fiber bundle P with a simple and compact structural group G. Aµ
belongs to the space of G-connections A in P . Gµν , χµν ∈ Ω2+(X,LieG) are self-dual two forms,
ψµ ∈ Ω1(X,LieG) is a one-form and η, λ, φ ∈ Ω0(X,LieG) are zero forms.

From these ingredients we build a N = 2 super-symmetric action as a Berezin integral in the
R

4|4
E super-space:

S =
1

4

∫
d4x d4θ

√
deth tr

{
Φ2 + Φ∗

µΦ
µ +

1

48
ΦµνΦ

µν +
1

12
Φ∗
µνρΦ

µνρ +
1

12

2∑

a=1

ΦaµνρσΦ
µνρσ
a

}
.

(57)
From the self-dual part of the curvature of the connection Aµ,

F+
µν =

1

2
(Fµν +

1

2
εµνρσF

ρσ) ,

and the covariant derivatives of the φ and ψµ fields,

Dµψν = ∇µψν − Γλµνψλ , Dµφ = ∇µφ ,
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where Γλµν are the Christoffel symbols of the metric h and ∇µ is the covariant derivative given by
the Aµ connection, we have defined the following N = 1 tensor super-fields:

Φ(x, θµ) = φ(x) + θµψ
µ(x) + θµθνF

µν
+ , Φµ = iDµφ(x)− iθσDµψ

σ + θµθνθρχ
νρ(x)

Φµν(x, θρ) = i(θµθν +
1

2
εµνρσθ

ρθσ)[λ, φ] , Φµνρ(x, θσ) = −iεµνργθγDδψ
δ + θµθνθρ η

Φ1
µνρσ(x, θγ) = εµνρσ(�φ− i

2
[ψγ , ψ

γ]) + θµθνθρθσ λ

Φ2
µνρσ(x, θγ) = εµνρσφ− i

4
θµθνθρθσ ([χγδ, χ

γδ] +
1

4
[η, η])

All the Φµ··· fields have U(1)C charge equal to two and the normalization is chosen in such a way
that Berezin integration in (57) gives the famous Witten topological action:

S =

∫
d4x

√
deth tr{1

2
F+
µνF

µν
+ + iχµνDµψν − iηDµψµ −

i

8
φ[χµν , χ

µν ]

− i

2
λ[ψµ, ψ

µ] +
1

2
λDµD

µφ− i

2
φ[η, η]− 1

8
[λ, φ]2} (58)

To test the invariance of the Euclidean action (58) under twisted super-symmetry we must
know how the Q-generator acts on the fields. This is easily read from the super-fields:

Aµ(x, θ̄) = Aµ(x) + θ̄ψµ(x) , ψµ(x, θ̄) = ψµ(x) + θ̄Dµφ(x) , φ(x, θ̄) = φ(x)

χµν(x, θ̄) = χµν(x) + θ̄F+
µν(x) , η(x, θ̄) = η(x) + iθ̄[λ(x), φ(x)] , λ(x, θ̄) = λ(x) ,

of U(1)C charges 0,1,2,-1,-1,-2. We see that:

QAµ(x, θ̄) = ψµ Qφ(x) = 0 Qχµν(x, θ̄) = F+
µν

Qψµ(x, θ̄) = Dµφ Qη(x, θ̄) = i[λ, φ] Qλ(x) = 0
.

From this, one immediately checks that

S =

∫
dx4

√
deth Q · V (x, θ̄) ,

where

V =
1

4
tr Fµνχ

µν(x, θ̄) +
1

2
tr ψµ(x, θ̄)D

µλ− 1

4
tr η(x, θ̄[φ, λ] .

Therefore, S is Q-exact and the Witten action is invariant under Q: Q · S = 0.
Moreover, the energy-momentum tensor, defined through the variation of the energy density

S =
∫
dx4L with respect to the metric tensor,

Tµν =
δL
δhµν

, DµT
µν = 0

besides of being divergenceless in the covariant sense, is also Q-exact. Tµν = QΛµν(x, θ̄), where

Λµν(x, θ̄) =
1

2
tr (Fµσχ

σ
ν (x, θ̄) + Fνσχ

σ
µ(x, θ̄)−

1

2
hµνFσρχ

σρ(x, θ̄) + ψµ(x, θ̄)Dνλ

+ ψν(x, θ̄)Dµλ− hµνψσ(x, θ̄)D
σλ+

1

4
hµνη(x, θ̄)[φ, λ]) .

As we shall show, this is a crucial point to establish the topological meaning of the Witten action
(58).
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4.2 Topological field theory

In this sub-Section we proceed to quantize the classical field theory described in the sub-Section
§4.1 . We choose functional integration as (Feynman) quantization procedure and the main result
is that expectation values of certain operators are C∞-topological invariants of four-manifolds.
Studies of moduli spaces of self-dual connections in G-bundles on compact Riemannian manifolds
by Atiyah, Hitchin, and Donaldson unveiled the lack of dipheomormisms between four-manifolds
which, nevertheless, are homeomorphic with respect to each other. This happened at the begin-
ning of the eighties in the past century and, slightly later, polynomial invariants were discovered
by Donaldson distinguishing between non-dipheomorphic but homeomorphic four-manifolds. The
idea comes from the analysis of the homology of the moduli space of self-dual connections. Fol-
lowing Witten, we shall describe next how the Donaldson invariants arise in the topological field
theory proposed above.

4.2.1 Functional integral representation of topological invariants

Let us suppose that there exists an integration measure (whatever that means )

DF ≃ DA Dφ Dλ Dη Dψ Dχ

in the space of all the (A, φ, λ, η, ψ, χ) fields. The Feynman principle guides us to define the
expectation value in the ground state of a polynomial function of the fields W as the functional
integral:

Z(W ) =

∫

A/G
DF exp(− 1

g2
S) ·W =< W > .

Note that the integration domain is the space of field orbits of the gauge group; we take quotient
by the action of the gauge group.

Super-symmetry at the quantum level requires:

exp(εQ)DF exp(− S

g2
) ≡ DF exp(− S

g2
) ⇒ Zε(W ) 6= f(ε) ,

i.e., super-symmetry is non-anomalous because both the classical action and the integration mea-
sure are invariant with respect to the super-symmetry generator. Moreover, the expectation value
of anti-commutators of Q - in the sequel, we consider Q as the vector field acting on the space of
fields through super-Poisson brackets- with any functional O of the fields is zero:

Zε(O) =

∫
DF exp(εQ) · {exp(− S

g2
) · O} =

∫
DF exp(− S

g2
)(O + ε{Q,O})

⇒ 0 =< {Q,O} >=
∫

DF exp(− S

e2
) · {Q,O} .

The partition function

Z =

∫

A/G
DF exp(− 1

g2
S) (59)

is only built from Q-closed states: Zε = exp(εQ)Z = Z. We show next that it is the simplest
topological invariant, by the simple idea of testing the dependence of Z on the Riemannian metric.
Because the variation of exp[− S

g2
] with respect to the metric is Q-exact, assuming that the integra-

tion measure is independent of hµν (there are no gravitational anomalies), and taking into account
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that < {Q,O} >= 0 we see that the partition function Z is a topological invariant (independent
of the metric):

δZ =

∫
DF exp[− S

g2
] · (−δS

g2
)

= − 1

g2

∫
DF exp[− S

g2
] · {Q,

∫
dx4

√
det h δhµνΛµν} = 0 .

A semi-classical computation of Z gives an exact answer for the topological invariant; one
easily shows that the partition function is also independent of the gauge coupling g:

δZ = δ(− 1

g2
)

∫
DF exp[− S

g2
] · S

= δ(− 1

g2
)

∫
DF exp[− S

g2
] · {Q, V } = 0 .

4.2.2 Instantons and the U(1)C anomaly

An infinite dimensional generalization of the steepest descent method for computing integrals
of functions of the form exp[ 1

g2
f(x)] where g2 is a very small parameter tells us that the main

contribution to the integral is localized around the classical minima of S. It is well known that
the moduli spaces of anti-self-dual connections,

Fµν = − ∗ Fµν ⇐⇒ F+
µν = 0 , (60)

called instantons in physicist’s folklore, form such varieties of absolute minima of Witten’s topo-
logical action S (58).

Calling E the bundle where the fields of the theory are sections, the formal dimension of the
moduli space MI of anti-self-dual connections in the associated G = SU(2) P -bundle over X is
given by the topological formula

d(MI) = 8p1(E)−
3

2
(χ(X) + σ(X)) = 8p1(E)− 3(1 + b2+) (61)

where

p1(E) = − 1

8π2

∫

X

tr (F ∧ F )

is the first Pontryagin number of E, F is the curvature of the Yang-Mills connection, and χ(X) =
b0 + b2 + b4 and σ(X) = b2+ − b2− are respectively the Euler characteristic and the signature of the
4-manifold X .

Formula (61) is derived from deformation theory: if A is a solution of (60) A + δA is also a
solution of the anti-self-duality equations if and only if:

Dµ δAν −Dν δAµ + εµνρσD
ρδAσ = 0 (62)

To count only deformations orthogonal to the orbits of the gauge group we choose the “back-
ground”gauge condition:

Dµ δA
µ = 0 . (63)

The dimension d(MI) = n of the space of solutions of (62)-(63) is formally the dimension of the
moduli space of anti-self-dual connections (the real dimension if there are no reducible connec-
tions).
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Looking at formula (58) for Witten’s action one immediately checks that (62) is the field
equation coming from variations with respect to χ

Dµ ψν −Dν ψµ + εµνρσD
ρψσ = 0 , (64)

while variations with respect to η give

Dµ ψ
µ = 0 . (65)

Therefore, the dimension of the space of fermionic zero modes in the instanton field is equal to the
dimension of the moduli space of anti-self-dual connections. If the gauge group is SU(2) there are
no η- and χ-zero modes of fluctuation around anti-self-dual instantons. An index theorem tells
us that, generically, n+ − n− = d(MI), where n+ is the number of linearly independent ψµ zero
modes ( recall that the U(1)C charge of ψ is +1) and n− is the number of linearly independent
η and χ zero modes ( recall that the U(1)C carge of η and χ is -1). Physicists read the index
theorem as the anomaly in the U(1)C symmetry induced by instantons at the semi-classical level:

d(MI) = ∆U(1)C = n+ − n− ,

i.e., the integration measure DF is not invariant under U(1)C but transform with a weight −d(M).

4.2.3 k-point correlation functions

Due to the existence of fermionic zero modes between the fluctuations around the instanton field
and the properties of Berezin integration measures the partition function - zero-point correlation
function- Z vanishes unless X , G and E are such that: d(MI) = 0. We address first this case,
assuming that the real dimension of the moduli space is really 0: there is a finite discrete set of
isolated instantons.

Assembling the Bose Φ = (A, φ, λ) and Fermi Ψ = (η, ψ, χ) fields of the theory under the labels
Φ and Ψ the expansion of the action around one of these instantons up to quadratic order reads:

S(2) =

∫

X

√
deth (Φ∆BΦ + iΨDFΨ)

Here ∆B is a second-order matrix differential operator that rules the Bosonic small fluctuations
around the instanton field. DF is a real skew-symmetric matrix first-order operator governing the
Fermionic small deformations of the instanton and supersymmetry establishes a link between the
spectra of these two operators:

iDFΨ = ωΨ ↔ ∆BΨ = ω2Ψ .

The eigenvalues of DF are purely imaginary and come in pairs. Therefore, the contribution of one
instanton to the partition function in the weak coupling limit is

PffafDF√
det∆B

= ±
∏

n

ωn√
ω2
n

because we only need to evaluate the integration of Bosonic and Fermionic Gaussians of width
given by the eigenvalues of ∆B and DF . There is no problem in the regularization of the infinite
product of ratios of eigenvalues but there is no way in solving the ambiguity in sign. The convention
is set in three steps:
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1. Choose a sign, e.g. +, for a given instanton AI1µ .

2. Consider a second instanton AI2µ connected to the first instanton via the family of connections

Atµ = tAI2µ + (1− t)AI1µ .

Assign to AI2µ a minus sign if the spectral flow of DF along the Atµ family crosses an odd
number of zeroes.

3. This process is independent of the path chosen in the space of connections A/G: this is
equivalent to say that there are no global anomalies and the “Pfaffian” line bundle on A/G
exists and is trivial. Because the moduli space of (irreducible) anti-self-dual connections
is a finite subset of the space of gauge connections - M ⊂ A/G- the above statement is
tantamount to the orientability of M.

Adding the contributions to the partition function we find in the weak coupling limit the formula:

Z ∝
∑

i

Pfaff(D
(i)
F )√

det∆
(i)
B

=
∑

i

(
±
∏

ni

ωni√
|ωni

|2

)
=
∑

i

(−1)Ni , Ni = 0, 1 , (66)

where the Ni give the signs as explained above and the discrete index i runs over the number of
instantons. The result is independent of hµν and g: the partition function Z is the first Donaldson
C∞-topological invariant for four-manifolds.

When d(M) > 0, the non-vanishing correlation functions are path integrals of the form:

Z(O) =

∫
DF O · exp{− S

g2
} , (67)

where O is any function of the fields such that the U(1)C charge of O is equal to d(M); O supplies
the right number of Grassman variables to compensate the fermionic zero modes in the Berezin
measure and obtain a non-zero result.

Is Z(O) a topological invariant? The variation of (67) under a change of the metric is:

δZ(O) =

∫
DF exp(− S

g2
) · (−δS

g2
O + δO)

=

∫
DF exp(− S

g2
) · (− 1

2g2
{Q,

∫ √
deth δhµνΛµν}O + δO) , (68)

where δO is the variation of O with respect to the metric hµν . If {Q,O} = 0

∫
DF exp(− S

g2
)(− 1

g2
{Q,

∫ √
deth δhµνΛµν}O) = − 1

g2
< {Q,

∫ √
deth δhµνΛµν}O >= 0

and the first term in (68) is zero. Therefore, the only remaining condition on O for topological
invariance of Z(O) is independence of the metric: δO = 0. Thus, we choose O such that:

1) {Q,O} = 0 2) O 6= {Q, ρ} 3) δO = 0 .

Note that Z(O) = 0 if O = {Q, ρ} for any ρ and this justifies the condition 2).
The only field complying with these conditions is the spin zero scalar field φ: φ belongs to the

kernel of Q, does not depend on the metric, and there is no ρ such that φ = {Q, ρ}. Therefore,
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O must be defined in terms of the G-invariant polynomials of φ; for G = SU(2) there is only one
independent G-invariant quadratic polynomial:

O = tr φ2 .

To emphasize that it is a local operator that depends on a point P it is usually written as:

W0(P ) =
1

2
tr φ2(P ) .

Because the U(1)C charge of W0(P ) is 4, when the bundle E and the 4 manifold X are such that
d(MI) = 4k, k ∈ Z, the k-point correlation function

Z(k) =

∫
DF exp(− S

g2
)

k∏

i=1

W0(Pi) =< W0(P1) · · ·W0(Pk) > (69)

is a C∞-topological invariant of the four manifold X , the simplest type of Donaldson polynomial
expressed as a vacuum expectation value of field operators in Witten’s topological quantum field
theory.

4.2.4 Donaldson polynomials

In particular, Z(k) is independent of the choice of the P1, P2, . . . , Pk points in X because it is
independent of the metric. To test explicitly the last proposition we compute

∂

∂xµ
W0 = tr φDµφ = i{Q, tr φψµ}

to find a Q-exact answer. Thus, we write

W0(P )−W0(P
′) =

∫ P

P ′

∂W0

∂xµ
dxµ = i{Q,

∫

P ′

W1} ,

where W1 = tr (φψµ)dx
µ = tr (φ ∧ ψ) is a one-form on X which gives the derivative of W0 as a

BRST commutator. Therefore,

〈(W0(P )−W0(P
′)〉 ·

∏

j

W0(Pj) >= 〈{Q, i
∫ P

P ′

W1 ·
∏

j

W0(Pj)〉 = 0

and the expectation value at P is equal to the expectation value at P ′.
This process can be iterated recursively

0 = i{Q,W0} dW0 = i{Q,W1} dW1 = i{Q,W2}
dW2 = i{Q,W3} dW3 = i{Q,W4} dW4 = 0

W2 = tr(
1

2
ψ ∧ ψ + iφ ∧ F ) , W3 = i tr (ψ ∧ F ) , W4 = −1

2
tr (F ∧ F ) .

Recall that φ, ψ and F are respectively zero, one, and two forms in X . Note also that the U(1)C
charge of every Wk is 4− k.
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Given a j-dimensional homology cycle γ on X the integral I(γ) =
∫
γ
Wj is BRST invariant:

{Q, I} =

∫

γ

{Q,Wj} = −i
∫

γ

dWj−1 = 0

Moreover, I depends only on the homology class of γ. If γ = ∂β is a boundary, Stoke’s theorem
shows that I(γ) is Q-exact:

I(γ) =

∫

γ

Wj =

∫

β

dWj = i

∫

β

{Q,Wj+1} = i{Q,
∫

β

Wj+1} .

The quantum field theory formulas for the Donaldson invariants are expectation values of
products of I(γ) integrals. Suppose that X , G, and E are such that d(M) ≥ 0. Let γ1, γ2, · · · , γr
be homology cycles onX of dimension j1, j2, · · · , jr chosen such that d(M) =

∑r
i=1(4−jr). Clearly,∏r

i=1Wji is an operator with U(1)C charge equal to d(M). The vacuum expectation value:

Z(γ1, . . . , γr) =

∫
DF exp(− S

g2
)

r∏

i=1

I(γi) = 〈
∫

γ1

Wj1

∫

γ2

Wj2 · · ·
∫

γr

Wjr〉 (70)

is the TQFT “Donaldson polynomial”. In the left-hand member of (70) the explicit dependence
in the homology of X is shown:

(γ1, γ2, · · · , γr) ∈ Hj1(X)×Hj2(X)× · · · ×Hjr(X) .

The Feynman integral in the right-hand side of (70) reduces to an integration over the Grassman
zero modes that span the cotangent bundle to M. Therefore, the Donaldson invariants map the
Hji(X) homology group ofX in the H4−ji(M) cohomology group of the moduli space of instantons
M.

4.3 Twist of the low-energy theory: the Seiberg-Witten equations

We now perform the twist of the low energy N = 2 SUSY QED described in the Section §.3.4. The
fields forming the N = 2 multiplet, although they are Abelian, present no novelties regarding the
process of twisting with respect to the twisting at high energy. We only need to define the twist of
the matter fields M and M̃ entering in the monopole patch that play such an importantant rôle
in the soft breaking of N = 2 SUSY giving rise to a confinement phase of the system. The mag-
netically charged matter fields shown in the diamond (45) are twisted through the transmutation

of the SU(2)C doublet of scalar fields φ1
m = φm and φ2

m = φ̃m in a right-handed Weyl spinor:

Scalar fields TwistedSpinor field

φIm , I = 1, 2 (0, 0, 1
2
)0 S+ =

(
0α

Mα

)
=




0
0
φ1
m

φ2
m


 (1

2
, 0)0

47



The SU(2)C-singlet Weyl spinors in the diamond do not change their Weyl spinor character under
twist:

Spinor fields TwistedSpinor fields

ψmα (1
2
, 0, 0)1

(
0α
µα

)
=




0
0
ψm1

ψm2


 (1

2
, 0)1

¯̃
ψmα̇ (0, 1

2
, 0)−1

(
0α̇ ν̄α̇

)
=
(
0 0 −ψ̃m1̇ −ψ̃m2̇

)
(0, 1

2
)−1

Thus, the twisted spinor fieldsMα and µα belong to the space of sections of a Spin-complex bundle
over a four-dimensional Riemannian manifold:

Mα, µα ∈ Γ(S+ ⊗ L) , ν̄α̇ ∈ Γ(S− ⊗ L) .

In order to define the Dirac operator acting on these spinorial sections we start from the
Euclidean Clifford algebra

γa = i

(
0 σa
σ̄a 0

)
,

σa = (~σ, i12)
σ̄a = (−~σ, i12, )

, {γa, γb} = 2δab , γ5 =

(
−12 0
0 12

)

where a, b = 1, 2, 3, 4 and ~σ ≡ (σ1, σ2, σ3) are the Pauli matrices. If the equations

δabe
µaeνb = hµν , hµνeaµebν = δab , µ, ν = 1, 2, 3, 4

determine the vier-bein eµa, the “square root”of the metric hµν in an oriented Riemannian four-
manifold X , the Clifford algebra on the curved space X is defined as follows:

γµ = eµaγa ⇒ {γµ, γν} = γµγν + γνγµ = 2hµν .

The Dirac operator /∂A = γµDµ acts on the space of sections of the SpinC bundle
Γ ((S+ ⊕ S−)⊗ L)) over X . The covariant derivative Dµ is defined in terms of the spin connection
ωµab and the U(1) connection Aµ.

Dµ = ∇µ + iAµ , ∇µ = ∂µ + ωµab[γa, γb] .

The twisted Seiberg-Witten effective action at low energy involves two contributions:

1. The action including the twisted matter fields together with their Yukawa couplings to the
Abelianized fields in the N = 2 supermultiplet:

Seff
M =

∫

X

√
deth[hµνDµS

†DνS +
1

4
RS†S − 1

16
S†ΣµνSS

†ΣµνS]

+

∫

X

√
deth{iφλS†S +

1

2
√
2
χµν(S†Σµνµ+ µ†ΣµνS)

− i

2
(ν† /∂Aµ− µ† /∂Aν) +

1

2
(S†γµψµν − ν†γµψµS) (71)

+
1

2
η(µ†S − S†µ) +

i

4
(φν†ν − λµ†µ)} (72)

Here hµν is the metric tensor in X , R is the corresponding scalar curvature and Σµν =
1
2
[γµ, γν ].
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2. The abelianization of the Donaldson action (58) reads

Seff =

∫
d4x

√
deth {1

2
f+
µνf

µν
+ + iχµνDµψν − iηDµψµ +

1

2
λDµD

µφ} (73)

where f+
µν is the self-dual Abelian gauge field tensor and the other fields are the Abelian

counterparts of the fields entering in the twisted Yang-Mills action (58).

Having in mind that

hµνDµS
†DνS =

1

2
DµS

†{γµ, γν}DνS = /∂AS† /∂AS +DµS
†ΣµνDνS .

we select in the effective action Seff + Seff
M two definite positive terms involving the spinorial field

(after twisting) S:

Seff
SW =

∫

X

√
deth

[
(f+
µν +

i

2
S†ΣµνS)(f

µν+ +
i

2
S†ΣµνS) + /∂AS† /∂AS + · · ·

]
(74)

We observe that the positive perfect square terms in Seff
SW are zero if the following coupled system

of non-linear PDE’s

(1) /∂AS = 0 , (2) f+
µν = − i

2
S†ΣµνS (75)

holds. Henceforth, the solutions of the PDE system (75), referred to as the non-linear Seiberg-
Witten equations, are the absolute minima of Seff

SW . These equations describe the obstruction
to self-duality of a U(1)-gauge field tensor on a four-manifold due to the anomalous magnetic
momentum induced by an harmonic right-handed spinor via the coupling f+

µνS
†ΣµνS. Contrarily

to the moduli space of instantons the moduli space of the Seiberg-Witten solutions is compact 2

and presents no singularities due to reducible connections. Therefore, diffeomorphism invariants
of four-manifolds are more accessible through the topological invariants of the moduli spaces of
Seiberg-Witten solutions than via the topological structures of moduli spaces of instantons, see
[27], [29].

The dimension of the moduli space of Seiberg-Witten solutions is envisaged from the lineariza-
tion of the (75) system of PDE equations. Up to first-order in the perturbations ASW

µ (x)+ taµ(x),
SSW(x) + sΨ(X) around a given SW solution (ASW

µ , SSW), we find the linearized Seiberg-Witten
equations

γµ (∇µ + iaµ(x))SSW(x) + γµ
(
∇µ + iASW

µ (x)
)
Ψ(x) = 0 (76)

∇µaν(x)−∇νaµ(x) +

√
|g|
2

εµνρδ (∇ρaδ(x)−∇δaρ(x)) =

=
i

4

(
Ψ†(x)[γµ, γν ]SSW(x) + S†

SW(x)[γµ, γν ]Ψ(x)
)

(77)

where |g| is the determinant of the tensor metric in X and ∇µ denotes the covariant derivative act-
ing on spinorial and/or tensorial sections. Setting, e.g., the background gauge

(
∇µ + iASW

µ

)
aµ = 0

2The reason is that there are no solutions of the PDE system (75) which shrink to zero size because there are
no L2 solutions in R4.
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to avoid pure gauge perturbations one may identify the dimension of the moduli space of Seiberg-
Witten solutions by an index theorem argument. The number of zero modes arising as normaliz-
able solutions (aµ,Ψ) of equation (76) is essentially captured by 3 the index of the Dirac operator

acting on sections of the SpinC bundle S+⊗L: c1(L)
2 − σ(X)

4
, i.e., it is determined in terms of the

first Chern class of the complex line bundle L and the signature of the four manifold X . Simili
modo the number of zero modes coming from the solutions of (77) is established from the index of
the Hodge operator d + d∗: −χ(X)/2− σ(X)/2 where now the Euler characteristic χ(X) enters.
All together the dimension of the moduli space of solutions of the Seiberg-Witten equations is
found to be:

d(MSW) = c1(L)
2 − 2χ(X) + 3σ(X)

4
. (78)

4.4 Kronheimer-Mrowka basic classes and Seiberg-Witten invariants

We now briefly describe the differential invariants of smooth four manifolds derived from the
topological structures arising in the moduli space of solutions of the Seiberg-Witten equations.
A good physics flavoured treatment of this topic is offered in Labastida Lectures, see [4]. In
Reference [5] a deep and extremely condensed explanation can be found about how the basic
classes of Kronheimer and Mrowka, [6], prompt zero dimensional moduli spaces of Seiberg-Witten
solutions, which in turn provide a very effective procedure of computation of the Seiberg-Witten
invariants. Following Reference [27] we asign to an homology two-cycle in the four manifold X ,
γ ∈ H2(X), Donaldson polynomials of the form, recall the formula (70),

ps,r(γ,X) =

∫
DF e−S/g

2

r∏

j=1

W0(Pj)

(∫

γ

W2

)s
= 〈

r∏

j=1

W0(Pj)

(∫

γ

W2

)s
〉 ,

which are non null only if the dimension of the moduli space of anti-self-dual instantons is such
that : d(M) = 4r + 2s, equivalent to b+2 = odd.

Suppose that the four manifold X is such that ps,r+2(γ,X) = 4ps,r(γ,X). Manifolds enjoying
this property are called of simple type. The primitive Donaldson polynomials arising in this
situation

qs(γ,X) =





ps,0(γ,X) if s = 1 + b+2 mod 2

ps,1(γ,X) if s = b+2 mod 2

are assembled in a generating function: q(γ,X) =
∑∞

s=0
1
s!
qs(γ,X). The Kronheimer-Mrowka

formula for this generating function is:

qs(γ,X) = exp[
γ · γ
2

]

N∑

I=1

aI exp[κI · γ] . (79)

In this expansion a1, a2, · · · , aN are non null rational numbers which define the Seiberg-Witten
invariants. κI ∈ H2(X,Z) are the Kronheimer-Mrowka basic classes. A 2D cohomology class, e.g.
κI , defines a line bundle over a 2D surface through the first Chern class, i.e. c1(L

2
I) = κI such

that KM classes are related to the square of the line bundle LI : c1(LI) = c1(L
2
I/2. The basic

classes are characterized by the property: c21(L
2
I) = κ2I = 2χ(X)+ 3σ(X), which is thus an integer

number κ2I = 5b+2 − b−2 .

3In fact the line bundle L is accounted for as a real bundle in such a way that we count twice the index of the
Dirac operator.
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Evaluation of the aI coefficients was achieved by Witten in Reference [27]. The pillars of his
calculation were settle down in the effective twisted Abelian N = 2 SUSY gauge theory governed
by the action Seff

M +Seff = Seff
SW, see (72), (73) and (74). Instead of looking at vacuum expectation

values of the microscopic N = 2 twisted SUSY non-Abelian gauge theory on X in the high
energy regime computations are performed in the infrared (strong coupling) domain where the
macroscopic Abelian effective theory emerges. Recall that the partition function Z is independent
of the coupling constant g. Thus, identical expectation values can be equivalently calculated
either at weak g-coupling, where the action (58) and the partition function (59) are the main
instruments, or, at strong g-coupling, where computations are based on the action (73) and the
partition function (72) in the monopole patch of the moduli space of vacua 4.The steepest descent
approximation applied to the Feynman path integral in this patch shows that it is localized near
the saddle points of Seff

SW, i.e., the solutions of the Seiberg-Witten equations (75), rather than
around anti-self-dual instantons. Because formula (78) tells us that

d(MSW) =
1

4

(
c21(L

2)− 2χ(X)− 3σ(X)
)

the Kronheimer-Mrowka basic classes are those for which the dimension of the moduli space of
solutions of the Seiberg-Witten equations is zero: d(MSW) = 0. Therefore, there is a finite number
of points ν in MSW and the Seiberg-Witten partition function collects the number of SW-solutions
weighted with their signs, a formula completely analogous to (66):

ZSW ∝ nL =
ν∑

i=1

εi =
ν∑

i=1

(−1)Ni , Ni = 0, 1 .

Again, Ni = 0, 1 counts the number of zeroes mod 2 crossed by the spectrum of Dt
F when the

fermionic fluctuation operator DF varies through a family of fields joining two solutions of the
Seiberg-Witten equations (recall the analysis just before (66)). The generating function of the
Donaldson polynomials of a four manifild X of simple type is then obtained by summing all the
contributions of this kind for the N basic classes:

q(γ,X) = 2(1+d(X))exp[
γ · γ
2

]

N∑

I=1

nLI
· exp[c1(L2

I) · γ] . (80)

The factor of 2 is due to the fact that, even though instanton moduli spaces are invariant with
respect to the center of SU(2) , the Donaldson invariants are defined without dividing by two. The
critical exponent d(X) = 1

4
(7χ(X) + 11σ(X)) is a c-renormalization factor which appear when

one compares the expectation values of Donaldson polynomials computed in the microscopic SU(2
non-Abelian theory with the outcome in the effective Abelian theory of massless monopoles, see
[27]-[28]. To set the values of the coefficients 7/4, 11/4 the argument runs as follows: there is
no perfect duality invariance when one consider the theory in any pont u of the vacuum moduli
space. On a curved 4-manifold gravitational anomalies in the Fermionic fields integration measure
of the form:

dµF = exp [b(u)χ(X) + c(u)σ(X)] dµFD , χ(X) =
1

24π2

∫

X

R ∧ R̃ , σ(X) =
1

24π2

∫

X

R ∧R

R = R α
µ ναdx

µ ∧ dxν , R̃ =

√
|g|
2

ε αβ
ρσ R γ

α βγdx
ρ ∧ dxσ (81)

4A completely equivalent treatment at strong g-coupling is possible near the u = −Λ2 singularity where massless
dyons replace massless monopoles as new particles in the spectrum.
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arise. Here R and R̃ are respectively the Ricci tensor and its dual of the Riemannian manifold
X . χ(X), the Euler number, and the signature, σ(X), are the only observables of dimension four
which are topological invariants and may arise in the topological, twisted, N = 2 Supersymmetric
Gauge Theory. Thus a factor exp [b(u)χ(X) + c(u)σ(X)] must be included in the twisted action.
Witten’s cunning strategy was to identify in the weak coupling limit b(u → ∞) as b = 7

4
log 2

and c(u → ∞) as c = 11
4
log 2 to fit with the Donaldson invariants of known four manifolds as

K3 surfaces and/or manifolds of simple type. Because topological invariance these values must
be constant all over the moduli space and the coefficient 2d(X) arise this way also in the strong
coupling u = ±Λ2 regimes. It is astonishing how an extremely subtle renormalization coefficient
due to the physics of gravitational, and perhaps modular, anomalies in N = 2 SUSY gauge theory
may be derived from purely mathematical information about the differential structures of some
specific four manifolds.

4.5 Hidden physics behind the low-energy twisted Seiberg-Witten ac-
tion

Understanding of its physical meaning suggests to scrutinize the two-component theory, see Ref-
erence [31], which is akin to the second-order dual QED governed by the twisted SW action on
the Euclidean R

4 space-time. The action is:

SSW
E =

∫
dx4

{
1

4

(
fµνfµν +

1

2
εµνρσfµνfρσ

)
+

1

2
DµS

†
+DµS+ +DµS

†
+ΣµνDνS+

}

+

∫
dx4

{
−iλ

2
S†
+ΣµνS+ · f+

µν +
λ2

8
S†
+ΣµνS+ · S†ΣµνS+

}
. (82)

It is convenient to write explicitly the quantities involving the two-component spinor S:

S†
+(x) = (0 0 φ∗

1(x) φ
∗
2(x)) , Dµ =

∂

∂xµ
+ igAµ(x) , S+(x) =




0
0

φ1(x)
φ2(x)




Σµν =
1

2
[γµ, γν] =

1

2

(
σµσ̄ν − σν σ̄µ 0

0 σ̄µσν − σ̄νσµ

)

where g = 4π
e

is the magnetic charge dual to the electric charge e and λ is a non-dimensional
coupling which sets the strength of the anomalous magnetic momentum of the spinorial particle.

Besides the conventional photon propagator due to the Maxwell term in the action (82) there
is a propagator of a spin one-half particle of the form:

P−1 =
(
pµ [δµν12 + σ̄µσν − σ̄νσµ] pν

)−1

. (83)

Note that

detP = pµpµ −
1

12
εµνρσpµpνpρpσ −

1

4

3∑

a=1

ηaµνpµpν · ηaρσpρpσ ,

where ηaµν are the three complex structures in R4 or ’t Hooft symbols, and the P -matrix is in-
vertible. There is also a (ineffective) toological term in the SW action: the Abelian second Chern
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class. More interesting; six types of electro-magnetic couplings give rise to trivalent or fourvalent
vertices:

(1)− i
g

2
Aµ

(
S†
+∂µS+ − ∂µS

†
+S+

)
, (2)

g2

2
AµAµS

†
+S+ (84)

(3)− ig
(
AµS

†
+Σµν∂νS+ − ∂µS

†
+ΣµνAνS+

)
, (4) − g2AµS

†
+ΣµνAνS+ (85)

(5)− i
λ

2
S†
+ΣµνS+ · f+

µν , (6)
λ2

8
S†
+ΣµνS+ · S†ΣµνS+ . (86)

These strange Feynman rules are akin to those emerging in Veltman Two component theory and
electron magnetic moment, see [31] The Veltman second-order QED Feynman rules come from
the Lagrangian obtained from the QED Lagrangian through multiplication of the electron spinor
field by the Dirac operator:

ψ −→ (−γµDµ +m)ψ

and afterwards projecting to two-component (e.g. only positron) spinors. The twisted Seiberg-
Witten action is a dual version of this gauge theory. There are more vertices than in Veltman
theory where only the vertices of type (1), (2), and (3) arise. The dual electron propagator becomes
also more complex in the Seiberg-Witten framework because the anomalous dual magnetic moment
enter. Nevertheless, the main virtue, the separation between electric and magnetic couplings, is
shared by the dual Seiberg-Witten twisted QED and Veltman second-order QED, whereas both
Lagrangians are non-hermitian.

If g = 1 = λ the twisted dual SW effective action can be written in the form

=

∫
dx4

[1
2

(
f+
µν +

i

2
S†
+ΣµνS+

)(
f+
µν +

i

2
S†
+ΣµνS+

)
+ (γµDµS+)

† γνDνS+

]
, (87)

plus “topological”terms.
Solutions of the first-order Seiberg-Witten PDE system (75) in R4

f+
µν(x) = − i

2
S†(x)ΣµνS(x) , γµDµS(x) = 0 (88)

are thus absolute minima of SW
E . We know that there are no L2-integrable solutions of of this

PDE system in Euclidean 4D space. Nevertheless, it is possible to obtain non-L2 solutions by
means of several dimensional reduction procedures that help to grasp the physical meaning of the
Seiberg-Witten equations.

4.6 Low dimensional Freund and Seiberg-Witten solutions

We devote this subsection to analyze dimensionally reduced solutions to the Seiberg-Witten equa-
tions [32]-[33] in order to elucidate the topological nature of the non perfect square terms in the
action (87) as well as the hidden physics in the twisted effective dual second-order QED arising
at the ultrastrong coupling.

4.6.1 Three-dimensional Freund solutions

We write the Freund equations, the Seiberg-Witten equations with a flip in the spinor term sign,
in components:

f+
12(x) = f+

34(x) = −1

2

(
|φ1(x)|2 − |φ2(x)|2

)
(89)
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f+
31(x) = f+

24(x) =
i

2

(
φ∗
1(x)φ2(x)− φ∗

2(x)φ1(x)
)

(90)

f+
23(x) = f+

14(x) = −1

2

(
φ∗
1(x)φ2(x) + φ∗

2(x)φ1(x)
)

(91)

This PDE system is nothing but the equation in the left of formula (88) with a plus sign in the
right-hand fellow and must be solved together with the two-component Dirac equation:

(
iD3 −D4 iD1 +D2

iD1 −D2 −iD3 −D4

)
·
(
φ1(x)
φ2(x)

)
=

(
0
0

)
. (92)

First, we address dimensional reduction to R3, i.e. spinors and gauge potentials are x4-independent
and choose A4 = 0. One can check that the Dirac monopole singular potential, in the axial gauge
A3(x1, x2, x3) = 0,

A1(x1, x2, x3) = − x2
2r(r − x3)

, A2(x1, x2, x3) =
x1

2r(r − x3)
(93)

together with the harmonic monopole spinors

φ1(x1, x2, x3) =
x1 − ix2

2r
√
r(r − x3)

, φ2(x1, x2, x3) =
1

2r
·
√
r − x3
r

(94)

satisfy the 3D Freund equations:

f+
12(x1, x2, x3) = −x3

r3
= −1

2

(
|φ1(x)|2 − |φ2(x)|2

)

f+
31(x1, x2, x3) = − x2

4r3
=
i

2

(
φ∗
1(x)φ2(x)− φ∗

2(x)φ1(x)
)

f+
23(x1, x2, x3) = − x1

4r3
= −1

2

(
φ∗
1(x)φ2(x) + φ∗

2(x)φ1(x)
)

.

A little more work is needed to show that the spinor (94) satisfies the Dirac equation (92), reduced
to three dimensions, in the monopole background. The physical meaning of this Freund solution
is clear. The gauge potential is singular at r = x3 positive half-axis where the famous Dirac string
is located. The harmonic spinors are even more singular at the Dirac string location because they
have branching points along that curve. Nevertheless, there are other quantities which are less
singular, e.g., the dual magnetic (electric) field only has a pole at the origin:

b1(x1, x2, x3) = f23(x1, x2, x3) = − x1
2r3

, b2(x1, x2, x3) = f31(x1, x2, x3) = − x2
2r3

b3(x1, x2, x3) = f12(x1, x2, x3) = − x3
2r3

.

The “electric”flux through an sphere of radius R centered at the origin is:

Φ =

∫

S2
R

(b1(x1, x2, x3)dx2 ∧ dx3 + b2(x1, x2, x3)dx3 ∧ dx1 + b3(x1, x2, x3)dx1 ∧ dx2) = 2π ,

i.e., the monopolar electric charge carried by the Freund solution is the minimal compatible with
the Dirac quantization condition.
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4.6.2 Planar Seiberg-Witten solutions

Finally, we consider the true Seiberg-Witten equations

f+
12(x) = f+

34(x) =
1

2

(
|φ1(x)|2 − |φ2(x)|2

)
(95)

f+
31(x) = f+

24(x) = − i

2

(
φ∗
1(x)φ2(x)− φ∗

2(x)φ1(x)
)

(96)

f+
23(x) = f+

14(x) =
1

2

(
φ∗
1(x)φ2(x) + φ∗

2(x)φ1(x)
)

(97)

together with the Dirac equation (92):

(D3 + iD4)φ1(x) + (D1 − iD2)φ2(x) = 0 (98)

(D1 + iD2)φ1(x)− (D3 − iD4)φ2(x) = 0 . (99)

Multiplying (98) by D1 + iD2, (99) by D3 + iD4, subtracting the second equation from the first,
and using (96)-(97) we find:

− 2|φ1|2(x)φ2(x) + ∂̄A12
∂A12

φ2(x) + ∂̄A34
∂A34

φ2(x) = 0 , (100)

where we have defined:

∂̄A12
∂A12

= (D1 + iD2)(D1 − iD2) , ∂̄A34
∂A34

= (D3 + iD4)(D3 − iD4) .

Multiplication of (100) by φ∗
2(x), and integration over all R4 leads to the identity

∫

R4

d4x
{
|φ1|2(x) · |φ2|2(x) + |∂A12

φ2(x)|2 + |∂A34
φ2(x)|2

}
= 0 , (101)

after a partial integration, to be satisfied by the Seiberg-Witten solutions.
There are two possibilities:

• - A. φ2 = 0. On configurations with “electric”spin 1/2, σ3

(
φ1

0

)
=

(
φ1

0

)
, we consider

the planar ansatz:

φ1(x) = φ1(x1, x2) , φ2 = A3 = A4 = 0 , A1(x) = A1(x1, x2) A2(x) = A2(x1, x2) .

The Seiberg-Witten equations (95-96-97-98-99) reduce to the first-order PDE system:

f12(x1, x2) =
1

2
|φ1(x1, x2)|2 , (D1 + iD2)φ1(x1, x2) = 0 . (102)

The solution of the covariant analyticity condition in (102) is:

Az̄ =
1

2
(A1 + iA2) = −i∂z̄ logφ1 =

1

2
(∂1 + i∂2) log φ1 ,

which, because f12 = −2i(∂zAz̄ − ∂z̄Az), converts the vortex equation (102-left) into the
Liouville equation:

2∂z̄∂z log φ1 + φ∗
1φ1 = 0 . (103)
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The general solution of (103) such that limx2
1
+x2

2
→∞ φ1(x1, x2) = 0,, guaranteeing finite energy

density in the x1-x2-plane, is:

φ
(k)
1 (z) =

2f ′(z)V 2(z)

|V (z)|2 + |f(z)V (z)|2 , z = x1 + ix2 (104)

where the following choice of the V and f functions as

V (z) =
k∏

j=1

(z − z(j)) , k ∈ N
∗ , f(z) = f0 +

k∑

j=1

ck
z − z(j)

gives rise to non-singular solutions supporting quantized electric flux:

ΦE =

∫ ∫
dx1dx2 f12(x1, x2) =

1

2

∫ ∫
dx1dx2 |φ(k)

1 (z)|2 = 2π

g
k

where the g-coupling constant has been re-surfaced.

Observe that k is positive and the flux is located around z(j), the zeroes of φ1(z). It spreads
out from these zeroes, however, with |cj|, the length scale of the solution, which is a free
parameter due to the breaking by the flux tube of the scale invariance of the theory. There
is also freedom in choosing argcj because the U(1)d symmetry and the moduli space of
solutions is C

2k; the moduli space parameters are the centers of the solitons z(j) and the
modulus and phase of cj determining the scale and phase of each individual soliton.

• -B. φ1 = 0, |∂A12
φ2| = |∂A34

φ2| = 0.

On configurations with “electric”spin −1/2, σ3

(
0
φ2

)
= −

(
0
φ2

)
, the appropriate planar

ansatz reads:

φ2(x) = φ2(x3, x4) , φ1 = A1 = A2 = 0 , A3(x) = A3(x3, x4) A4(x) = A4(x3, x4) .

The Seiberg-Witten equations (95-96-97-98-99) reduce to the first-order PDE system:

f34(x3, x4) = −1

2
|φ2(x3, x4)|2 , (D3 − iD4)φ2(x3, x4) = 0 . (105)

The solution of the covariant anti-analyticity condition in (105) is:

Aw =
1

2
(A3 − iA4) = i∂w logφ2 =

1

2
(∂3 − i∂4) logφ2 ,

which, because f34 = −2i(∂wAw̄ − ∂w̄Aw), converts the vortex equation (105-left) into the
Liouville equation:

2∂w̄∂w log φ2 − φ∗
2φ2 = 0 . (106)

The general solution of (103) such that limx2
3
+x2

4
→∞ φ2(x3, x4) = 0,, guaranteeing finite energy

density in the x3-x4-plane, is:

φ
(k)
2 (w̄) =

2f ′(w̄)V 2(w̄)

|V (w̄)|2 + |f(w̄)V (w̄)|2 , w̄ = x3 − ix4 (107)
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where the following choice of the V and f functions as

V (w̄) =
k∏

j=1

(w̄ − w̄(j)) , k ∈ N
∗ , f(w̄) = f0 +

k∑

j=1

ck
w̄ − w̄(j)

gives rise to non-singular solutions supporting quantized “magnetic”flux:

ΦM =

∫ ∫
dx3dx4 f34(x3, x4) =

1

2

∫ ∫
dx3dx4 |φ(k)

2 (w̄)|2 = −2π

g
k

The moduli space of these Type B planar solutions of the Seiberg-Witten equations present anal-
ogous features to those of the Type A moduli space described above.

There are also pairs of Type A-Type B planar solutions with the same characteristics- obeying
similar ansatzes-in the x2-x3-/ x4-x1-planes as well as in the x3-x1-/x2-x4-planes, to wit:

• -A.

(
ψ2

−ψ2

)
= 0. On configurations such that σ1

[
1√
2

(
ψ1

ψ1

)]
= 1√

2

(
ψ1

ψ1

)
, we consider

the planar ansatz:

ψ1(x) = ψ1(x2, x3) , ψ2 = A1 = A4 = 0 , A2(x) = A2(x2, x3) A3(x) = A2(x2, x3) .

Because φ1 = φ2 =
1√
2
ψ1 the Seiberg-Witten equations (95-96-97-98-99) reduce to the first-

order PDE system:

f23(x2, x3) =
1

2
|ψ1(x2, x3)|2 , (D2 + iD3)ψ1(x2, x3) = 0 , (108)

allowing for an identical moduli space of solutions as (102).

• -B.

(
ψ1

ψ1

)
= 0. On configurations such that σ1

[
1√
2

(
ψ2

−ψ2

)]
= − 1√

2

(
ψ2

−ψ2

)
, we

consider the planar ansatz:

ψ2(x) = ψ2(x1, x4) , ψ1 = A2 = A3 = 0 , A1(x) = A1(x1, x4) A4(x) = A2(x1, x4) .

Because φ1 = −φ2 = 1√
2
ψ2 the Seiberg-Witten equations (95-96-97-98-99) reduce to the

first-order PDE system:

f14(x1, x4) = −1

2
|ψ2(x1, x4)|2 , (D1 − iD4)ψ2(x1, x4) = 0 , (109)

giving rise to the same moduli space of solutions as (105).

• -A.

(
ψ2

−iψ2

)
= 0. On configurations such that σ2

[
1√
2

(
ψ1

iψ1

)]
= 1√

2

(
ψ1

iψ1

)
, we consider

the planar ansatz:

ψ1(x) = ψ1(x1, x3) , ψ2 = A2 = A4 = 0 , A1(x) = A2(x1, x3) A3(x) = A2(x1, x3) .

Because φ1 = −iφ2 = 1√
2
ψ1 the Seiberg-Witten equations (95-96-97-98-99) reduce to the

first-order PDE system:

f31(x2, x3) =
1

2
|ψ1(x1, x3)|2 , (D1 + iD3)ψ1(x1, x3) = 0 , (110)

allowing for an identical moduli space of solutions as (102).
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• -B.

(
ψ1

iψ1

)
= 0. On configurations such that σ2

[
1√
2

(
ψ2

−iψ2

)]
= − 1√

2

(
ψ2

−iψ2

)
, we

consider the planar ansatz:

ψ2(x) = ψ2(x2, x4) , ψ1 = A1 = A3 = 0 , A2(x) = A1(x2, x4) A4(x) = A2(x2, x4) .

Because φ1 = −iφ2 = 1√
2
ψ2 the Seiberg-Witten equations (95-96-97-98-99) reduce to the

first-order PDE system:

f24(x1, x4) = −1

2
|ψ2(x2, x4)|2 , (D2 − iD4)ψ2(x1, x4) = 0 , (111)

giving rise to the same moduli space of solutions as (105).

Finally, we mention that adding a mass term for the spinors that explicitly breaks the scale
invariance and spontaneously breaks the U(1)D-gauge symmetry the left equation in (102) is
perturbed to

f12(x1, x2) =
1

2

(
|φ1(x1, x2)|2 − 1

)
, (112)

and becomes the self-dual or BPS vortex equation, see [34]. Thus, the solutions are the celebrated
BPS or self-dual vortices and the real dimension of the moduli space, now C

k, diminishes to 2k
responding to the freedom of motion of the centers of the quantized “electric”flux tubes. Of course
there are analogous electric flux tubes in the x1-x3- and x2-x3-planes. In the planes containing
x4, however, the flux is “magnetic”but the interpretation of these tubular solutions is doubtful
because they should be properly recognized as “instantons”when x4 refers to “Euclidean”time.

5 A very brief epilogue

This essay has been elaborated by expanding the lecture notes of a short Course that I taught
in the Workshop on Geometry and Physics in Miraflores de la Sierra, Spain, September 2001, to
a mixed audience of Geometers and Theoretical Physicists. The main theme was the description
of the impact in Geometry of special concepts and techniques developed in non-perturbative
Quantum Field Theory. This subject achieved impressive success during the fourth quarter of
the last Century establishing deep links between Quantum Physics and Algebraic Topology and
Geometry, in contrast with Classical Physics more tied to Differential Topology and Geometry.
The presentation here is strongly inclined towards the side of Physics.
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