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1.- INTRODUCTION 

1.1. DOXORUBICIN 

Doxorubicin (DOX) (Figure I-1) is widely used in clinical practice for the 
treatment of solid tumours and haematological malignancies. However, its clinical 
activity is limited, by its toxicity. Acute myelosuppression and chronic 
cardiomyopathy are dose-limiting adverse effects (1). DOX efficacy and toxicity 
show wide interindividual variability and knowing the pharmacokinetic-
pharmacodynamic profile (PK/PD) has been suggested as an interesting approach 
in order to optimize the treatment with this drug. In fact, pharmacokinetic (PK) 
variability for DOX has been widely reported (2,3). Nevertheless, there are few data 
regarding the relationship between systemic exposure and clinical response, which 
is one of the most important prerequisites for conducting therapeutic drug 
monitoring (TDM) (4-7). In addition, quantifying the concentration of its main 
metabolite, doxorubicinol (DOXol) (Figure I-1), has been suggested due to its 
possible contribution to treatment efficacy and toxicity (7-11). 

Doxorubicin Doxorubicinol 

Figure I-1. Chemical structures of doxorubicin and doxorubicinol. 

The spatial configuration of DOX facilitates its intercalation into the DNA. 
This intercalation induces modifications in DNA structure and allows the stabilization 
of the DNA-topoisomerase II. It leads to the DNA fragmentation, blockage of the 
synthesis of new genetic material as well as inhibition of its repair. Other 
mechanisms of action implied are the oxygen free radicals formation, alquilante 
effect and peroxidation of cellular lipids (12-14). The clinical use of DOX is limited 
by its important toxicity and side effects dose-dependent, the myelosuppression 
and cardiotoxicity being the most severe and relevant (1). 
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 In the common range of dose administered, this antineoplastic shows a 
lineal kinetic. According to its complex distribution, the evolution of DOX plasma 
concentrations has been described in previous published articles with a two-
compartment (15-20) or three-compartment model (2,3,18,21-28), thus 
compatible with a wide distribution into peripheral tissues (table I-1). 
 

Table I-1. Pharmacokinetic parameters of DOX in adult population. 

Structure model 
CL 

(L/h) 
Q2 

(L/h) 
Q3 

(L/h) 
V1 
(L) 

V2 
(L) 

V3 
(L) 

t1/2α 
(min) 

t1/2β  
(h) 

t1/2ɣ 
(h) 

Two compartments 48-62 60-112 NA 12-26 421-1130 NA 10-66 13-30 NA 

Three compartments 54-62 56-86 22-36 18-22 1830-2360 72-106 5-12 1-3 19-30 

CL: clearance; Qn: intercompartmental clearance for the n-th compartment; Vn: volume of distribution for the n-th compartment; t1/2n: 

half-life of distribution/elimination of the phase n-th; NA: not apply. 

 

 This antineoplastic drug is mainly metabolized in the liver by a NADPH-
dependent aldoketo-reductase present in all the cell types and particularly in the 
erythrocytes, cells of the liver and kidney. Its main metabolite is DOXol, which 
activity is around 10 % of the DOX one (2). It has been reported that this 
metabolite could be implied in the DOX toxicity (7,9,29). The clearance of DOX 
(CLDOX) has been previously reported around 60 L/h (2,5,15,16,18,23) being 
altered in elder patients, children (24,25), pregnant women (30), higher doses than 
50 mg/m2 (31), as well as obese patients (31,32), concomitant administration of P-
glycoprotein inhibitors (2,33) or the cancer diagnostic (16,32). Around 50 % and 
23 % of the dose are excreted in the bile as DOX and DOXol, respectively, and 10-
20 % of  DOX appear in faeces in 24 h. 
 
 Table I-2 shows the main population PK studies published until December 
2015, with the parameters estimates values, the study characteristics (patients, 
diagnostic, treatment, etc.) and the covariates relationships found. 
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 Clinical response of DOX presents a wide IIV. Thereby an adequate PK/PD 
profile characterization in a specific population can be an interesting tool to prevent 
the toxicity and optimize efficacy. Even with the great experience with this 
antineoplastic, there are only a few articles interested in quantifying DOX and/or 
DOXol plasma concentrations in order to study its probable relationship with the 
efficacy and toxicity of this drug (5-11,18,33-35). 
 

1.2. POPULATION PHARMACOKINETIC 
 

 The population PK is a methodology with a different point of view from the 
previous ones (Naïve Pooled Data Analysis, Standard Two Stage, etc.). It takes into 
account the characterization of the kinetic profile of the drug in the whole 
population instead of estimating the individual parameters. This methodology can 
be defined as the study of the inter- and intra-individual variabilities of the drug 
concentrations, when it has been administered at standard dose protocols in a 
group of patients with defined physiological and clinical characteristics.  
 
 Non linear mixed-effects modelling is the methodology most commonly used 
in population PK that presents two components:  
 

• Structural model: defined by the fixed-effect parameters that relate the 
dependent variable (in PK it used to be the drug concentrations) with the 
independent ones (time and dose). 

• Stochastic model: defined by the random effects parameters that evaluate 
the variability of the fixed-effects ones. 

 
 Different estimation methods of the parameters have been proposed. 
Classical ones are based on the minimization of the likelihood function value as for 
example the first order estimation method (FO), the first order conditional 
estimation with interaction (FOCEI) and the LAPLACIAN one (36). Furthermore, 
some algorithms based on two steps, expectation-maximization (EM) have been 
proposed: Iterative Two Stage (ITS), Monte Carlo Importance Sampling (IMP), 
Importance Sampling Assisted by Mode A Posteriori (IMPMAP), Stochastic 
Approximation Estimation Maximization (SAEM) all this ones being implemented in 
the software NONMEM v.7.3. (ICON Development Solutions, Hanover, EEUU) (37). 
 
 The model selection criteria is an important step in the model building 
process. The following criteria have to be taken into account together: 
 

• Statistical criteria: minimization successful, likelihood ratio test (LRT), 
Akaike information criteria (AIC) and Bayesian information criteria (BIC). 

• Estimation precision: relative standard error (RSE). 
• Shrinkage: η − 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒  and    ε − 𝑠ℎ𝑟𝑖𝑛𝑘𝑎𝑔𝑒. 
• Outliers: weighted residual values (WRES). 
• Graphical evaluation: goodness of fit plots (38-41). 
• Plausibility and relevance of the results.  
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 Simulation is a process consisting in generating data from a model. It can be 
develop in different stages of the population PK model building. This tool can be 
used, for example, to design a population PK study, for development and model 
evaluation (internally or externally), to select and evaluate dosing regimen 
schedules, etc.  
 
 The study of the covariates influence on the PK parameters is as well an 
important step in the model building process and it can explain a part of the 
variability in a more reliable way. The inclusion of covariates in the model has some 
advantages: to help the mechanistic interpretation of the model, to favour the 
hypothesis generation process, to decrease and explain the IIV, to identify 
subpopulations, to improve the predictive ability of the model, etc. Several 
covariates model building processes have been proposed in the literature among 
which we can highlight: Generalized Additive Modelling (GAM), Step-wise Covariate 
Modelling (SCM), Least Absolute Shrinkage and Selection Operator (LASSO), Full 
Fixed Effects Model Estimation (FFME) and Full Random Effects Model Estimation 
(FRME) (41-46). 
 
 The model evaluation is an essential step in the population PK model 
building. There are no clear recommendations to carry out this process, even there 
are building approach suggestions proposed by the regulatory agencies (38,47). 
Some of the most important parameters used to evaluate a model are: Median 
Prediction Error, Median Absolute Prediction Error, Root Mean Squared Prediction 
Error, WRES and conditional WRES (CWRES), prediction discrepancies (pd) and 
Normalised Predictions Distribution Errors (NPDE) (48-56). 
 
 The evaluation of the model can be internal or external accordingly to the 
dataset used in the process. When the same dataset is used to development and 
evaluates a model, the evaluation is defined as an internal one. On the other hand, 
when a different set of data is used for this process, it is called external evaluation. 
In addition to the model selection criteria, previously reported, the main 
methodologies for the internal evaluation are the following ones: data splitting, 
bootstrapping, cross validation, Monte Carlo simulations (visual predictive check, 
numerical predictive check, posterior predictive check) (40,41,51,56-67). 
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2.- OBJECTIVES 
 

 

• Develop an analytical method of ultra high liquid chromatography (UHPLC) 
to quantify doxorubicin and doxorubicinol plasma concentrations and to 
allow its implementation in the clinical practice.  

 
• Build a population pharmacokinetic model of doxorubicin and doxorubicinol 

in patients diagnosed of non-Hodgkin´s lymphoma.  
 

• Evaluate the predictive and descriptive abilities of the population 
pharmacokinetic model developed according to internal evaluation 
techniques based on Monte Carlo simulations (Visual Predictive Check and 
Normalized Prediction Distribution Error) and bootstrap. 

 
• Carry out a pharmacokinetic/pharmacodynamic analysis to study the link 

between the PK parameters of the drug and/or its main metabolite and the 
haematological toxicity parameters.  
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3.- MATERIAL AND METHODS 
 

3.1. ANALYTICAL METHOD 
 

 Calibrators of DOX and DOXol were prepared in human plasma with 
concentration ranges of 8-3000 ng/mL and 3-150 ng/mL, respectively. All stock 
solutions and calibrators were frozen at -80°C until analysis. 
 
 As a precipitating agent, 20 % zinc sulphate in methanol/water (50:50 v/v) 
spiked with daunorubicin (DAU) (150 ng/mL) was selected. Samples preparation 
consisted in adding 100 µL of the precipitating agent to 100 µL of the calibrator or 
patient sample. This mixture was vortexed for 30 seconds and then centrifuged at 
14000 rpm for five minutes; 10 µL of the supernatant were subsequently injected. 
 
 DAU, at a concentration of 150 ng/mL, was spiked into the precipitating 
agent solution as a quality control to detect analysis errors. Thus, the sample was 
reanalysed when the DAU peak height deviation was higher than 20 %. 
 
 Chromatographic separation was performed on a Kinetex® C18 UHPLC 
column (50 mm x 2.10 mm, particle size 1.7 µm, Phenomenex®). The mobile phase 
was composed of water (containing 0.4 % triethylamine and 0.4 % orthophosphoric 
acid)/acetonitrile (77:23, v/v). The mobile phase was filtered through a 0.2 µm 
filter. The flow rate was set to 0.500 mL/min, the column was maintained at 50 °C 
and wavelengths detection occurred at 470 nm (excitation) and 548 nm (emission). 
 
 Validation was accomplished following the FDA and EMA guidelines for 
bioanalytical methods (68,69). This method was validated for the requirements of 
linearity, sensitivity, selectivity, accuracy, intra-day and inter-day precision and 
stability. In addition, the carry-over and the lower limit of quantification were 
studied. The results were analysed with SPSS software v.21.0. (IBM Corporation, 
USA). 
 

3.2. PATIENTS AND TREATMENT 
 
 The study has been carried out between June 2009 and June 2015 in 
patients diagnosed with non-Hodgkin´s lymphoma (NHL) treated with RCHOP 
(rituximab, cyclophosphamide, doxorubicin, vincristine and prednisone) every 21 
days during 6 cycles. Prophylaxis of neutropenia with granulocyte-colony 
stimulating factor (GCSF) was performed as routine clinical practice. DOX was 
administered by continuous infusion of 30-60 min duration at 50 mg/m2. 
 
 Information on the physical condition, the disease, the treatment and the 
patient was registered. Some of the covariates collected were: AGE, SEX, weight 
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(WGT), height (HGT), lean boy weight (LBW), body mass index (BMI), body surface 
area (BSA), albumin (ALB), bilirubin (BLR), aspartate aminotransferase (AST), 
alanine aminotransferase  (ALT), creatinine (CREA), clearance of creatinine 
(estimated with the Cockcroft-Gault formula) (CLCREA), haemoglobin (HB), leukocyte 
count (LEU), neutrophil count (NEU), lymphocyte count (LIN), platelets count (PLA) 
and basal heart ejection fraction.  
 
 In order to estimate the best time points to characterize the PK of 
doxorubicin and doxorubicinol in the clinical routine, an analysis of the first partial 
derivate with respect to time was conducted with the software WinNonlin v.5.3. In 
addition, previous articles were taken into account for the choice of the sampling 
schedule (2,3,15,22,23). Accordingly to these considerations, the sampling times 
selected were: 0, 30, 90 and 180 min after the end of DOX infusion. Plasma was 
separated by centrifugation at 2500 rpm during 10 min from the blood and frozen 
at -80º C. Plasma samples were sent to the laboratory in less than five months for 
the DOX and DOXol quantification.  
 
 The study has been developed following the Helsinki Declaration (Seúl, 
October 2008). All patients were informed about the potential risks and benefits of 
their inclusion in the study. An informed consent was obtained for each participant. 
The table MM-1 shows the main characteristics of patients included in the study, as 
well as the characteristics of the DOX treatment administered.  
 
Table MM-1. Characteristics of patients and treatment with doxorubicin. 

Covariates (n=45) Units Mean (SD) Range Normal 
range  

Missing 
data 

Age  years 66 (15) 26 - 84 - - 

Weight  kg 71 (12) 43 - 110 - - 

Height  cm 164 (11) 143 - 192 - - 

Body Surface Area  m2 1.8 (0.2) 1.3 - 2.3 - - 

Body Mass Index kg/m2 26.5 (3.9) 19.9 - 37.6 - - 

Lean Body Weight  kg 47.9 (10.0) 28.7 - 69.5 - - 

Treatment Characteristics       

Dose/Body Surface Area mg/m2 51 (7) 25 - 71 - - 

Dose  mg 89 (14) 53 - 130 - - 

Infusion duration  h 0.5 (0.2) 0.2 - 1.3 - - 

Infusion rate  mg/h 210 (119) 68 - 666 - - 

Biochemistry parameters       

Creatinine clearance  mL/min 91 (40) 40 - 201 90 - 140 2 

Bilirubin  mg/dL 0.44 (0.19) 0.10 - 0.70 0.1 - 1.2 4 

ALT  IU/L 23 (18) 7 - 88 1 - 37 3 

AST  IU/L 25 (13) 12 - 64 1 - 41 3 

Haematological parameters      

Haemoglobin  g/dl 11.6 (1.6) 8.5 - 15.2 13 - 18 2 

Leukocytes  x 109/L 6.3 (2.7) 2.5 - 15.5 4.5 - 10.8 2 

Neutrophils  x 109/L 4.1 (2.4) 1.0 - 14.1 1.4 - 6.5 3 

Lymphocytes  x 109/L 1.4 (0.8) 0.3 - 4.0 1.2 - 3.5 2 

Platelets  x 109/L 280 (118) 52 - 648 7.2 - 11.1 2 
SD: standard deviation; AST: aspartate aminotransferase; ALT: alanine aminotransferase. 
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3.3. POPULATION PHARMACOKINETIC ANALYSIS  
 

 The population PK analysis was developed following a non linear mixed-
effects modelling methodology with NONMEM v.7.3. (ICON Development Solutions, 
Hanover, EEUU) and the FOCEI approximation. The evaluation, graphical 
representations and statistical analysis of the results were developed with the 
following softwares: PsN v.3.5.3. (70) available from http://psn.sourceforge.net/, R 
v.3.1.0, Xpose v.4.5.0. available from http://xpose.sourceforge.net, Pirana v.2.9.2. 
and RStudio® v.0.98.976. (RStudio Inc., Boston, EEUU). 
 
 The model selection criteria use throughout the whole model building 
process were as followed: 
 

• Minimization successful. 
• Decrease of the objective function value (OFV) higher than 3,84 (p<0,05) 

for one degree of freedom. 
• RSE < 25 % for fixed effects parameters. 
• RSE < 50 % for random effects parameters. 
• η-shrinkage y 𝜀-shrinkage < 50 %. 
• Adequate GOF (PRED, IPRED, WRES, etc.). 
• Plausibility and relevance of the results. 
• Principle of parsimony. 

 
 Firstly, a model to describe DOX PK was built. When this model was 
completely established the DOXol data were added, and a joint model was 
developed. The population PK models of Wilde et al. (15) and Kontny et al. (23) 
were selected as best published models describing the evolution of DOX plasma 
concentrations, with two- and three-compartment model, respectively. The sparse 
data can lead to fix the values of some parameters, such as the volumes of 
distribution or the parameters related to the most extensive peripheral 
compartment. Both of these strategies were studied in two- and three-
compartment models, by fixing the parameters values to previously published ones 
(15,23). 
 
 Random effects parameters relationships were studied as additive, 
exponential, proportional or mixed model. The shrinkage for the IIV and residual 
variability was estimated and reported as a percentage.  
 
 The influence on CLDOX was evaluated for the following covariates: AGE, SEX, 
WGT, HGT, BMI, BSA, LBW, ALB, CREA, CLCREA, BLR, AST, ALT, ECOG, international 
prognostic index (IPI), etc. Any possible relationship was studied graphically 
representing the IIV of CLDOX vs. covariate. The selection criteria to keep the 
covariate in the model building process were to obtain a r>0.2 (Pearson product-
moment correlation coefficient) or a p-value<0.05 (Kruskal-Wallis test) for the 
continuous and categorical ones, respectively. A GAM and SCM (forward inclusion: 
p<0.05; backward elimination: p<0.01) were carried out on CLDOX, taking into 
account the results of this preliminary covariates selection. Individuals with 
samples associated to any value of |CWRES| higher than 4 were not taken into 
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account in the dataset (criterion more restrictive criteria than previously reported 
by Byon et al.) (41). 
 
 Following the development of an adequate model describing the DOX plasma 
concentrations in our population, the DOXol observations were add to the model 
following a one- or two-compartment model. All the previous steps reported for the 
DOX model building process were applied in the development of the final model, 
which included DOXol, the main active metabolite.  
 
 The final model was internally evaluated with the model selection criteria 
previously described (GOF, RSE, shrinkage, etc.). In addition, bootstraps, VPC and 
NPDE were computed for 1000 replicates in all these metrics. In addition, the 
number of replicates for the bootstrap was increased until no statistically significant 
differences (p<0.05) in the estimation population PK parameters were obtained 
(Student's t-test). 
 

3.4. PK/PD ANALYSIS  
 

 The LEU, NEU and PLA were registered previously to all cycles of DOX 
treatment. These values were classified according to the Common Terminology 
Criteria for Adverse Events v3.0, CTCAE. Haematological toxicity was divided into 
two categories: toxicity (grade 3-4) and non toxicity (normal count, grade 1-2). 
The area under the curves of DOX and DOXol (AUCDOX and AUCDOXol) were 
estimated as the relationship between the dose administered and the CL of each 
entity (taking into account the DOXol conversion rate). DOX and DOXol exposure, 
the total AUC (AUCtotal = AUCDOX + AUCDOXol) and the maximum concentration of the 
parent drug (Cmax,DOX) and the one of its main metabolite (Cmax,DOXol), were 
compared between the two groups (toxicity and non toxicity) with a Mann-Whitney 
test (p>0,05) and according to the different haematological information available 
(LEU, NEU, PLA). Treatment with GCSF between the two cycles studied was taken 
into account.  
 
 A correlation analysis between LEU, NEU or PLA and the PK parameters 
selected (AUCDOX, AUCDOXol, AUCtotal, Cmax,DOX and Cmax,DOXol) was carried out 
(p<0.05). Patients treated with GCSF between two cycles included in our study 
were removed from the analysis.  
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4.- RESULTS 
 

4.1. ANALYTICAL METHOD 
 
 Linearity for the drug (8-3000 ng/mL) and the main metabolite 
concentrations (3-150 ng/mL) was observed (r > 0.99) and the maximum intra-day 
and inter-day precision coefficients of variation were less than 14 % for both. The 
lower limits of quantification (LLOQ) were 8 ng/mL (CV=10,9 %) for DOX and 3 
ng/mL (CV=8,5 %) for DOXol, respectively. The data were weighted with the 1/x2 
factor as a consequence of the wide range of concentrations. The recovery 
percentages, expressed as mean ± SD were 100.30 ± 8.10 % for DOX and 99.49 ± 
6.42 % for DOXol. The carry-over was lower than 20 % of the LLOQ. Short term, 
post-preparative and freeze-thaw stabilities were shown for 6 h, 12 h and 3 cycles, 
respectively. Therefore, an UHPLC–fluorescence method for the quantification of 
DOX and its main metabolite, DOXol, was successfully developed and validated for 
criteria of linearity, selectivity, sensitivity, accuracy, precision and stability 
according to the specifications of the FDA and EMA guidelines for bioanalytical 
methods validation (68,69). This analytical method has been published in the 
Journal of Chromatography B (71). 
 

4.2. PATIENTS AND TREATMENT 
 

 The study enrolled a total of 45 patients diagnosed with NHL and treated 
with DOX by intravenous infusion of 30-60 min duration every 21 days, until the 
administration of six complete cycles of treatment. The main diagnostic was diffuse 
large B-cell lymphoma (80 %). A total of 125 observations of DOX plasma 
concentrations and 120 of DOXol were analysed in a population PK model. 
Sampling times were performed at 0, 30, 90, and 180 min after the end of DOX 
infusion. In addition, three samples at 24 hours after drug administration were 
analysed.  
 

4.3. POPULATION PHARMACOKINETIC ANALYSIS  
 

 The final population PK model of DOX and DOXol included three 
compartments for the parent drug and two for the metabolite, with first order 
distribution and elimination (figure R-1). 
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Figure R-1. Scheme of the structural model for doxorubicin (blue) and doxorubicinol (red).  

 
Vn: volume of distribution of the compartment n-th; kij: constant rate between the compartment i-th and the j-th; k0: is the drug 

incorporation rate; k10 y k40 are the elimination constants for the drug and metabolite, respectively. 

 
 The structural model of DOX and DOXol was described by the following 
equations:  
 
𝑑𝐴(1)
𝑑𝑡

= 𝑘! +   𝑘!" · 𝐴 2 − 𝑘!" · 𝐴 1 + 𝑘!" · 𝐴 3 − 𝑘!" · 𝐴 1 − 𝑘!" · 𝐴 1 − 𝑘!" · 𝐴 1  Equation 1 

 
𝑑𝐴(2)
𝑑𝑡

=   𝑘!" · 𝐴 1 −   𝑘!" · 𝐴 2    Equation 2 

 
𝑑𝐴(3)
𝑑𝑡

=   𝑘!" · 𝐴 1 − 𝑘!" · 𝐴 3  Equation 3 

 
𝑑𝐴(4)
𝑑𝑡

= 𝑘!" · 𝐴 1 +   𝑘!" · 𝐴 5 − 𝑘!" · 𝐴 4 − 𝑘!" · 𝐴 4  Equation 4 

 
𝑑𝐴(5)
𝑑𝑡

=   𝑘!" · 𝐴 4 − 𝑘!" · 𝐴 5  Equation 5 

 
where A(n) is the quantity of drug or metabolite in the n-th compartment; kij are the constant rate 
between the compartment i-th and the j-th; K0: is the drug incorporation rate; k10 y k40 are the 
elimination constants for the drug and metabolite, respectively.  
 

 The best variability models to describe the DOX and DOXol plasma 
concentrations were exponential for the interindividual variability (IIV) and the 
proportional for residual variability (in both entities). No correlation between IIV 
was found.  
 
 None of tested covariates have shown a statistically significant influence on 
CLDOX. Then, the final model was the structural one presented in the figure R-1. 
One patient (ID=47) considered as outlier (WRES>4) was removed from the 
dataset . The adequate ability of the model proposed to describe the observed data 
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has been shown with the GOF for DOX (figure R-2) and DOXol (figure R-3). The 
evolution of the observed plasma concentrations, both for DOX and DOXol, was 
successful described by the individual and population predictions in the individual 
GOF.  

 
Figura R-2. Goodness of fit plot for doxorubicin with the final pharmacokinetic model.  

 
DV: observed concentration of doxorubicin; PRED: population prediction; IPRED: individual prediction; CWRES: conditional weighted 

residuals; TAD: time after dose;  ⎯: lineal regresion; ⎯: local regresion. 
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Figura R-3. Goodness of fit plot for doxorubicinol with the final pharmacokinetic model.  

 
DV: observed concentration of doxorubicinol; PRED: population prediction; IPRED: individual prediction; CWRES: conditional weighted 

residuals; TAD: time after dose;  ⎯: lineal regresion; ⎯: local regresion. 
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 The results of the population PK of the final model, including DOX and 
DOXol, as well as the estimations obtained with the bootstrap methodology 
(n=1000) are shown in the table   R-1. There were no statistically significant 
differences between the estimated parameters for a bootstrapping of a 1000 or 
2500 replicates. 
 
Table R-1. Pharmacokinetic parameters of the final model and results of the bootstrap. 

  Final model (n=44)   Bootstrap (n=1000)  

Parameter Mean RSE (%) Shrinkage (%)   Mean CV (%) CI 95 % 

OFV 1844.0  - -   1819.9 1.1 1691.3 - 1969.5 

CLDOX 62.4 11.5 -   63.4 1.7 50.3 - 79.1 

V1 17.7 - -   17.7 - 17.7 - 17.7 

Q2 50.7 18.4 -   52.4 3.4 31.4 - 72.4 

V2 1830 - -   1830 - 1830 - 1830 

Q3 28.4 13.5 -   29.9 5.4 21.9 - 44.8 

V3 71 - -   71.0 - 71.0 - 71.0 
V4 79.8 - -   79.8 - 79.8 - 79.8 

CLDOXol 26.8 42.9 -   37.0 38.1 14.0 - 88.2 

FDOXol 0.22 14.7 -   0.232 5.3 0.165 - 0.333 

V5 653 - -   653 - 653 - 653 

Q5 424 18.0 -   468.6 10.5 309.0 - 694.3 

ηCL,DOX 22.9 32.7 40   22.3 2.6 7.3 - 36.2 

ηQ2 64.1 - -   64.1 - 64.1 - 64.1 

ηQ3 28.2 - -   28.2 - 28.2 - 28.2 

ηCL,DOXol 47.2 - -   47.2 - 47.2 - 47.2 
ηF,DOXol 41.7 19.6 22   39.4 5.5 16.7 - 58.2 

ηQ5 58.9 39.4 35   82.6 40.2 15.7 - 162.8 

εDOX 37.1 8.3 15   37.1 0.0 30.5 - 43.5 

εDOXol 32.1 10.4 21   28.8 14.9 14.0 - 39.6 
RSE: relative standard error; OFV: objective function value; CLDOX: clearance of doxorubicin (DOX); Vn: volume of distribution of the n-th 
compartment; Qn: intercompartmental clearance of the compartment n-th; CLDOXol: clearance of doxorubicinol (DOXol); FDOXol: conversion 
rate to DOXol; CV: coeficient of variation; CI: confidence interval; ηP: interindividual variability of the P parameter: exponential error in all 
the cases; εDOX y εDOXol: residual variability of DOX y DOXol, respectively, proportional error model; The values of random effects 
parameters have been expressed as %; Bootstrap of 1000 replicates, where 484 had a successful minimization and a complete covariance 
step, these ones were taken into account to calculate the mean and 95 % CI of each parameter; In bold letters: fixed parameters.  

 

 The VPC generated from 1000 replicates performed with the final population 
PK model developed showed an adequate descriptive ability for DOX and DOXol 
observed plasma concentrations (figure R-4). 
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Figure R-4. Visual predictive check with final model for doxorubicin (left) and doxorubicinol (right). 
 

◦: concentrations of doxorubicin (DOX); ◼: 95 % confidence intervals for the percentiles 10 and 90 of the simulated data. ◼: 95 % 
confidence intervals for the percentiles 50 of the simulated data. ---: percentiles 10 and 90 for the DOX observations; ⎯: percentil 50 DOX 

observation; TAD: time after dose.  

 

 The statistical analysis of the NPDE showed, both for DOX and DOXol, that 
the mean and the variance were not significantly different from 0 and 1, 
respectively. Furthermore, their distribution was not different from a normal one,  
 

4.4. PK/PD ANALYSIS  
 
 There were no patients classified in the toxicity group taking into account 
the platelets count. Then, this parameter was deleted of the PK/PD analysis. Six 
patients among the 44 included in the study did not have LEU or NEU values 
registration. Thus, they were removed from the dataset for the PK/PD analysis 
(n=38) Accordingly to leukopenia and neutropenia criteria, two and four patients 
were classified in toxicity group, respectively. Including the patients treated with 
GCSF in the toxicity group, the number of patients increased to 4 and 6, 
respectively.  
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 Table R-2 shows the mean values of the different PK parameters categorized 
by the haematological toxicity group and differentiating when the patients treated 
with GCSF were included in the toxicity group or removed from the dataset.  
 
 Table R-3 shows the results of the correlation analysis between the 
previously mentioned PK parameters and the LEU or NEU reported just before the 
next DOX administration to the studied one.  
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5.- DISCUSSION 

In oncology, TDM remains a challenge and several difficulties are involved 
applying this approach in clinical routine. The availability of a suitable analytical 
method is one important and relevant limitation (72,73). Chromatographic 
techniques are time-consuming and require highly trained staff. Therefore the 
clinical implementation of these techniques is not always practical. Nevertheless, 
antineoplastic agents are usually measured with these techniques owing to their 
good specificity and the lack of alternatives. 

More precise and accurate quantification methods for DOX and DOXol have 
been published. However, these analytical methods needed complex sample 
treatment or more sensitive detectors (MS/MS) than the ones proposed in our 
study. Thus, the UHPLC method developed required an easy sample pre-treatment 
and it allowed a clear chromatographic separation and a quantification of the drug 
and its main metabolite with short run times. Furthermore, the low cost of this 
technique as well as the LLOQ value were appropriate for TDM purpose (74-82). Its 
interest and relevance have been reinforced by its publication in the Journal of 
Chromatography B (71). 

DOX PK has been widely studied (2,3,5,15-20,22-26,31,83). Firstly, two- or 
three-compartment models were evaluated in the DOX PK model building. Our 
data, obtained in the clinical routine, were sparse and suggested to use the easiest 
structural model possible. Nevertheless, a wrong decision in the structural model 
could conduct to wrong AUC estimations and mistakes in the dosage adjustment of 
this drug. Finally, a three-compartment model with volumes of distribution values 
fixed to the ones published by Kontny et al. (23), as well as a first order 
distribution and elimination showed the best fit for DOX plasma concentration 
observed. 

Different strategies have been studied for DOX dosage optimization and 
other antineoplastic (33,84-88) concluding that in specific cases “it is totally 
erroneous to continue to use BSA alone for dose calculation” (85). According to 
this, the different measures of body size (weight, height, BMI, BSA, LBW) in 
addition to clinical variables (ECOG, IPI, etc.) and biochemistry covariates (BLR, 
AST, ALT, etc.) were evaluated to explain the CLDOX variability. In general, 
previously published DOX population PK models have included few and different 
covariates: SEX (31,32), AGE (24), pregnancy (30), obesity (31,32), higher doses 
than 50 mg/m2 (31) as well as concomitant administration of P-glycoprotein 
inhibitors (2,33) or cancer diagnostic (16,32). The covariates analyses tested 
(graphical, correlations, GAM and SCM) did not show any significant influence on 
the CLDOX. 

Thus, a five-compartment model, three for DOX and two for DOXol, with 
fixed values for the volumes of distribution was developed. The volumes of DOX 
were fixed, previously mentioned, to those established by Kontny et al. (23). DOXol 
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volumes of distribution were fixed to values resulting from a sensibility analysis 
carried out with our own data. The stochastic model, both for DOX and DOXol, was 
exponential error model for the IIV and proportional error relationship for the 
residual variability. Moreover, it was necessary to fix the IIV of the 
intercompartimental clearances of the parent drug (Q2 and Q3) and the clearance of 
the metabolite (CLDOXol). Table R-1 shows the population PK parameters of the final 
model developed. All fixed effects parameters were estimated with a RSE lower 
than 25 % except for the CLDOXol (42.9 %). The difficulty in estimating this 
parameter was due to the few data available. The RSE obtained for all random 
effects parameters and all shrinkage values were lower than 40 %, both results 
lower than the 50 % recommended.  

The use of previous kinetic knowledge of the drug coupled with the observed 
data is another adequate strategy to develop a population PK model with sparse 
date to avoid over-parameterization. NONMEM software implements this analysis in 
the subroutine $PRIOR with the options NWPRI and TNPRI. This subroutine allows 
to introduce a penalty function for the estimation of the OFV, based on the prior 
distribution of the parameters previously established. This penalty function follows 
a normal distribution for fixed effects parameters in both option, NWPRI and TNPRI. 
For the random effects parameters, this function follows a normal distribution and 
an inverse Wishart for NWPRI and TRPRI, respectively. This methodology is useful 
to stabilize the parameters estimations when the available data are very sparse 
(89). However, it is very sensible to the prior information and it requires a detailed 
knowledge of the fixed and random effects parameters distributions in a similar 
population than the studied one. In addition, this methodology implies to assume 
the prior parameterization and structural model as the best one. This can affect the 
identifiability of the parameters (90) and can not allow evaluating different 
structural models than the previous described in the prior model. According to 
these reasons, we didn't investigate a prior approach, in order to have the 
opportunity to evaluate various reduced models. This way, we could remove or fix 
parameters and ensure the non over-parameterization of our model as well as the 
identifiably of the parameters. Moreover, we were able to evaluate various 
structural models, different from the one selected for the prior model.   

The values estimated for DOX and DOXol PK parameters were similar to 
those previously reported in the literature (table I-2). In addition, the model was 
successfully internally evaluated by bootstraping, VPC and NPDE (n=1000 
replicates). These results showed the adequate descriptive and predictive ability of 
the model developed for DOX and DOXol and support it as a useful and valid tool 
for TDM in the clinical suitability.  
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Figure D-1. Evolution of doxorubicin (top) and doxorubicinol (bottom) plasma concentrations observed 
with the population and individual predictions obtained with the final population pharmacokinetic model 

DV: dependent variable (concentration); △PRED: population prediction; ︎☐ IPRED: individual prediction; DOX: doxorubicin; DOXol: 
doxorubicinol; o: observation of DOX; o: observation of DOXol; TAD: time after dose; ---: locally weighted polynomial regression (trend 

line) of DOX observations; ---: trend line of DOXol observations; ---: trend line of PRED; ---: trend line of IPRED. 

Over 50 % of the patients treated with DOX recommended dosages suffers a 
dose-dependent neutropenia at the nadir, around two weeks after the drug 
administration or even after 4 weeks after. This pathological situation is frequently 
recovered before the following administration (1,18). In the non-recovery cases, an 
administration of GCSF or a delay for the following DOX administration is needed. 
The ability to predict this situation could be helpful for the early identification of the 
patients who would need an additional treatment by GCSF or a dosage adjustment 
in the next cycle administrated. Several relationships between DOX and/or DOXol 
plasma concentrations, at specific time points or at the steady state, and the bone 
marrow depletion at the nadir (LEU, NEU, PLA, survival factor, etc.) according to 
the classical exponential and sigmoidal maximum effect models have been 
established (18,33,91,92). 

Unfortunately, from the PK/PD analysis carried out, no statistically 
significant relationship (p>0.05) between the PK parameters reflecting the drug or 
metabolite exposure (AUCDOX, AUCDOX, Cmax,DOX, Cmax,DOXol y AUCtotal) and the bone 
marrow depletion (LEU, NEU) have been established, according to lineal and 
exponential models. However, a trend between AUCtotal and neutropenia, 
considering as a categorical (toxicity – non toxicity) (p=0.065) or continuous 
covariate (p=0.089), was observed (figure D-2).  
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Neutropenia ABC total (DOX + DOXol), mg·h/L 

Figure D-2. Pharmacokinetic/pharmacodynamic analysis categorical (left) and continuous (right). 

Neutropenia: 0 = neutropenia grade 1-2 and absence of toxicity, 1 is neutropenia grade 3-4;  ⎯: trend line; ⎯: lineal regression; ---: 
value of neutropenia grade 3-4; ◦: values of neutrophils count with neutropenia grade 3-4. 

In consequence, an UHPLC method to quantify DOX and DOXol plasma 
concentrations has been successfully developed and validated. Its clinical suitability 
has allowed establishing the PK profiles of both entities in patients diagnosed with 
NHL. The concentrations quantified with this method coupled to other information 
has allowed the development of a population PK model for the parent drug and its 
main metabolite with a successful internal evaluation. The sparse data of our 
analysed population did not permit us to establish significant PK/PD relationships, 
taking into account the haematological toxicity. Nevertheless, the model proposed 
can be useful for DOX dosage adjustments in TDM purpose, according to Bayesian 
algorithms. Finally, additional studies are required to confirm previously reported 
results.  
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6.- CONCLUSIONS 

• An analytical method of ultra high liquid chromatography (UHPLC) coupled
to fluorescence detector quantifying doxorubicin and its main active
metabolite, doxorubicinol, in human plasma has been successfully developed
and validated. Its simplicity, speed, low cost and volumes required, as well
as its appropriate lower limit of quantification provide this method as an
adequate tool for therapeutic drug monitoring in clinical routine of both
active entities pharmacologically.

• A population pharmacokinetic model of doxorubicin and doxorubicinol in
patients diagnosed of non-Hodgkin´s lymphoma has been developed. The
structural model includes three compartments for the parent drug and two
additional ones for the metabolite with first order distribution and
elimination.

• None of the covariates evaluated (weight, height, body surface area, lean
body weight, creatinine clearance, bilirubin, sex and aspartate
aminotransferase) showed a statistically significant influence on the parent
drug clearance.

• The pharmacokinetic parameters estimated with the final pharmacokinetic
model proposed were similar to those previously published in different
populations.

• The internal evaluation techniques based on Monte Carlo simulations (Visual
Predictive Check and Normalized Prediction Distribution Error) and
bootstrapping were successful. Thus, the model developed could be used for
doxorubicin dosage adjustment in this population using Bayesian algorithms.

• No statistically significant relationship between drug exposure (area under
the curve and maximum concentration of doxorubicin and doxorubicinol and
total area under the curve for both entities) and haematological toxicity
parameters (neutrophils and leukocytes count, neutropenia and leukopenia
grade) has been shown.
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