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a b s t r a c t

The general solution for dynamic state estimation is to model the system as a hidden Markov

process and then employ a recursive estimator of the prediction–correction format (of which

the best known is the Bayesian filter) to statistically fuse the time-series observations via

models. The performance of the estimator greatly depends on the quality of the statisti-

cal mode assumed. In contrast, this paper presents a modeling-free solution, referred to as

the observation-only (O2) inference, which infers the state directly from the observations. A

Monte Carlo sampling approach is correspondingly proposed for unbiased nonlinear O2 in-

ference. With faster computational speed, the performance of the O2 inference has identified

a benchmark to assess the effectiveness of conventional recursive estimators where an esti-

mator is defined as effective only when it outperforms on average the O2 inference (if appli-

cable). It has been quantitatively demonstrated, from the perspective of information fusion,

that a prior “biased” information (which inevitably accompanies inaccurate modelling) can

be counterproductive for a filter, resulting in an ineffective estimator. Classic state space mod-

els have shown that a variety of Kalman filters and particle filters can easily be ineffective

(inferior to the O2 inference) in certain situations, although this has been omitted somewhat

in the literature.

© 2015 Elsevier Inc. All rights reserved.
1. Introduction

Dynamic state estimation has been a long-standing and vibrant area of research concerned with the sequential process of

estimating a/multiple state(s) evolving over time based on noisy observations. It is the core of many fundamental problems

including positioning, tracking, econometric forecasting, adaptive control, etc.

A “naïve” estimation solution is to infer the state directly from the noisy observations received in discrete time instants,

hereafter referred to as the observation-only (O2) inference, which will be addressed in this paper. This is a computationally fast

estimation method, providing accuracy that is completely dependent on the observation noise regardless of the state process

(for which there is, therefore, no need to model it).
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In contrast to the straightforward O2 inference, which provides only the point state-estimate, the prevailing solution that

has been most investigated is to model the system as a hidden Markov process and employ a recursive estimator to statistically

fuse the observations with models in real time. In this case, a two-step estimation paradigm must be adopted, including model

identification based on data and filter design based on the identified model [41]. The optimal recursive state estimator in the

Bayesian sense requires the complete posterior density of the state to be determined as a function of time. The posterior prob-

ability density function (PDF) can be analytically computed only for linear systems with additive Gaussian noises for which the

known Kalman filter [24,25] gives the optimal estimate (and some other special cases [9]). In the general case of nonlinear system

or/and non-Gaussian noises, it is impossible to compute the exact form of the posterior PDF; instead, one has to resort to some

form of approximation which can be parametric (e.g. Gaussian filters or Gaussian sum filters), non-parametric (e.g. Monte Carlo

methods) or a mixture of both. An astonishing surge of various recursive filters/smoothers has been witnessed since [24,25].

These recursive estimators, which have the Bayesian paradigm as the theoretically most elaborated base [26], perform well

as long as the models used are accurate, having few disturbances, and that the approximation (required in nonlinear systems)

is insignificant. Ideally, an optimality (e.g. Cramér–Rao lower bounds, CRLB [14,51,57]) can be reached if the physical world and

the assumed model coincide perfectly. However, in most practical problems, accurate knowledge of the state process model (and

noises) is often missing. The model of a real process may differ from the assumed model or the best available model for that

process, leaving a difference we refer to as modeling error.

It has been well acknowledged in literature since at least [13,21,22] that modeling errors (and significant disturbances) can

easily cause significant performance deteriorations or even failures of filters. Therefore, dealing with modeling errors has been a

fundamental problem. This, however, is not a problem for the O2 inference as it is free of state process modeling. For recursive es-

timation, a large variety of strategies have been proposed to enhance the filtering performance including model assessment [11],

adaptive filtering (e.g. [19,34]), robust filtering (e.g. effective characteristics [7], particularly including detection and treatment

of uncertain noise [45], outlier [38], abrupt motion [36], asynchronous observations [47,40] and colored noises [53]), “direct”

filtering [41], variable rate filtering [15] and finite impulse response filtering [29], just to name a few. Similar issues occur in

Bayesian smoothers and predictors [1,6,18,48] as well as other recursive estimators e.g. optimization-based estimator [27,42,46].

The situation will be much more complicated in the multi-target case of cluttered environments, see e.g. [3,30,31,55]. We do not

intend to detail these in this paper. However, we would like to point out that:

(1) While considerable efforts have been devoted to developing sophisticated recursive filters, the general effectiveness of

these filters has remained elusive. Simply stated, it is rare to be asked whether the use of a filter will pay off when mod-

eling errors (including outlier noise) occur or when too much approximation is triggered. This is primarily because a

clear definition of the effectiveness for general filters is still missing. Such a definition would require a clear, efficient and

engineer-friendly benchmark that is qualified to assess all filters in a consistent manner. The same holds for the work on

smoothers and other recursive estimators.

(2) It has been demonstrated that the Bayesian inference can behave very badly if the model under consideration is erroneous

e.g. [18]. More specifically simple deterministic methods outperform the Bayesian filter in a type of finite-state estimation

[44] even when the model is properly set up. In any case, the quantitative analysis of the failure of filters is missing.

This paper will thoroughly demonstrate that the O2 inference can outperform recursive filters in certain situations, thus

indicating that filters do not always pay off.

In this paper, two primary contributions have been made with regard to these fundamental issues.

(1) The O2 inference is established as a benchmark, a bottom line, to assess the effectiveness of recursive estimators, including

the Bayesian filter, where an estimator is defined as effective only when it can at minimum outperform the O2 inference

on average in accuracy. For a nonlinear observation function, a bias is noticed in the O2 inference and, consequently, a

Monte Carlo sampling-based debiasing approach is proposed.

(2) The effectiveness of the Bayesian filter of the prediction–correction format is quantitatively investigated from the infor-

mation fusion perspective, and examples are evaluated on classic filtering models via simulation. Both theoretical studies

and simulation results show that the O2 inference can easily outperform the filters in certain situations, more so than

expected. This deserves particular attention for the application of any filter.

The remainder of the paper is organized as follows. The basic idea of the Bayesian filter and the O2 inference is given in

Section 2. Section 3 investigates the effectiveness of the recursive filter from the general perspective of information fusion while

Section 4 presents simulation results based on three representative problem models to demonstrate the theoretical findings. We

conclude in Section 5.

2. O2 inference for state estimation

2.1. A brief review of Bayesian filters

The dynamic state estimation, also referred to as the filtering problem, is generally modeled in the state space where the

system being modeled is assumed to be a Markov process of hidden state. This can be formulated as a state space model (SSM)

that is comprised of a state process equation and an observation equation as follows

xt = ft(xt−1, ut) (1)
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yt = ht(xt , vt) (2)

where t indicates the time instant, xt denotes the state vector, yt denotes the observation (also called measurement) vector, and

ut and vt denote the noises affecting the state process equation ft and the observation equation ht respectively. In particular, (1)

is a difference equation for discrete time, while for continuous time it is a differential equation. However, in this paper we will

not distinguish them since the proposed O2 inference does not need this equation.

Within the framework of the Bayesian statistical inference, the Bayes posterior distribution p(xt |y1:t) will, given all the

historical observations y1:t = {y1, y2, . . . , yt}, solve the filtering problem, which basically consists of predicting and correcting

two steps. The predicting step combines the previous filtering (a posteriori) distribution p(xt−1|y1:t−1) with the state process

p(xt |xt−1, y1:t−1) (i.e. Chapman–Kolmogorov equation) as

p(xt |y1:t−1) =
∫

p(xt |xt−1, y1:t−1)p(xt−1|y1:t−1)dxt−1 (3)

This forms a predicted probability distribution (often called simply “the prior”). It should be noted that such predictions

assume that the transforms are predictable, which is not always the case. Given a new observation yt , the prior will be up-

dated/corrected by the Bayes’ rule as follows

p(xt |y1:t) = p(yt |xt)p(xt |y1:t−1)

p(yt |y1:t−1)
(4)

where p(yt |xt) is the likelihood. This gives the Bayesian posterior distribution (often called simply “the posterior”).

The Kalman filter [24] (also referred to as Kalman–Bucy filter [25] in the continuous-time case) gives the closed form solution

to the linear system with additive Gaussian noise, which is optimal in the sense of minimum mean squared error. For general

nonlinear systems, it is necessary to resort to either parametric or non-parametric approximations. In the former case, the pos-

terior PDF is represented by a family of functions that are fully characterized by parameters such as Gaussian filters (including

KF and its approximate extensions [20,23,39,54]) or Gaussian sum filters [2]; see also [50]. A few statistical parameters such as

the mean and variance are sufficient to represent a Gaussian distribution but not a general PDF, for which parameterization is

either impossible or will suffer from significant approximation errors. In this case, the posterior PDF must be approximated e.g.

via the most popular Monte Carlo approximation, which has different formulations including particle filters [16,27,43], point

mass filters [49] and particle flaw filters [10]; see also [42]. All these filters need to carefully assume the state process function ft

and the system noises ut and vt , which are very critical for the accuracy of the filter but are not at all easy to accurately identify,

especially for uncertain and abrupt systems e.g. [4,27,42].

The performance of all of these filters depends greatly on the coincidence between the physical world and the model assumed.

However, it is rare for them to coincide exactly. We will quantitatively show in Section 3 that a prior “biased” information which

inevitably accompanies inaccurate modelling can be counterproductive, thereby resulting in a posterior “worse” than the O2

inference. In contrast, the O2 inference that does not assume the state process will not experience the same predicament and

may in fact achieve better results; see the following subsection.

To note, the idea of releasing the prior information is reminiscent of the maximum likelihood estimator (MLE), another pop-

ular statistical inference approach whose primary difference from the Bayesian estimation is that no prior knowledge is used.

Here, MLE is available if the observation function (including ht and vt ) is fully known. However, the likelihood function can be

very complicated for nonlinear models and the maximization calculation difficult. More importantly, MLE does not guarantee

unbiasedness [12]; the bias can be significant in situations when the mean of the likelihood distribution is far from the peak.

2.2. O2 inference: concept and practice

Given the observation function ht , a straightforward way to estimate the state is to infer it directly from the noisy obser-

vation(s), namely the O2 inference, which is independent of any prior information. It can be conceptually written as follows

χ̂t = h−1
t (yt , vt) (5)

where h−1
t is the “generalized” inverse function of ht in the real coordinate system, χ̂t is the O2 inference of “the observed part

of” the state xt . In a fully observed system, χ̂t is a full-dimensional state estimate.

To enable the calculation of (5), a necessary and sufficient condition is that the observation function ht is reversible and the

random variable vt is specified. A more general situation would include an unknown observation function ht . It is a mandatory

requirement for understanding the observations in all kinds of estimators and therefore must be identified prior to estimation

if it is unknown. Here we do not include this issue so as not to distract from the main contribution of this paper. Moreover, this

paper has not included missing observation [40] or delay [47] issues.

First, observation noise vt can be complicated (e.g. colored/correlated [53]) and time-varying. More importantly, however, it

may be inestimable in practice, not to mention that it is a single white noise. In practice, we may overcome this difficulty by

simply omitting it, i.e. setting it to be zero. Eq. (5) is then reduced to

χ̂t = h−1
t (yt , 0) (6)
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In fact, the result given by (6) is equivalent to that of the KF for the linear observation function, when the observation error

variance goes to zero [17], and to that of the MLE for the linear observation function with additive noises of the symmetric

probability distribution. However, this will introduce biases (i.e. the expectation of the estimate is not equal to the true state) if

ht is nonlinear or if the noise has non-zero expectation, where the bias depends on the noise, the true state and the inversing

function. This has been recognized when converting polar/spherical observations to Cartesian coordinates for the use of Kalman

filters, see e.g. [5]. To a certain extent, the bias can be avoided algebraically for simple inversing function and noises (such as

Gaussian noises).

If the observation noise is known (e.g. through off-line training of the observation data), it is straightforward to calculate the

unbiased mean and (co)variance of the O2 inference for linear inversing function and simple white noise. For nonlinear inversing

and/or non-Gaussian noise, we propose a Monte Carlo (MC) sampling method for unbiased O2 inference. The idea is to sample a

group of samples from the noise distribution v(i)
t ∼ vt , i = 1, 2, . . . , I and use them to enable the inversing calculation of (5) as

χ̂ (i)
t = h−1

t

(
yt , v(i)

t

)
(7)

Then, we can easily calculate the mean and (co)variance of the O2 inference based on these transformed samples as follows

χ̂t = 1

I

I∑
i=1

χ̂ (i)
t (8)

Cov(χ̂t) = 1

I − 1

I∑
i=1

(
χ̂ (i)

t − χ̂t

)(
χ̂ (i)

t − χ̂t

)T
(9)

The MC method accommodates any type of noises and inversing function and can achieve any degree of accuracy given a

sufficient number of samples, which is superior to the algebraic debiasing approaches [5] that only apply to simple noises and

few particular inversing functions. To save computation, the samples can be created in a deterministic manner in case of simple

noises e.g. sigma point approaches [20,23].

Second, with regard to the observation function ht , a primary challenge for the O2 inference is the irreversibility of the func-

tion, for which inversing is not directly applicable. It can be viewed as an under-determined system which is equally challenging

for a filter. In practice, the design/use of an under-determined observation system should be avoided. A general solution that is

worktable, in practice, is to improve the observability of the system by adding more sensors to make the system properly de-

termined or even over determined. That is, for state xt , we resort to a set of synchronous observations (e.g. corresponding to n

sensors) such as⎧⎪⎨
⎪⎩

y1,t = h1,t(xt , v1,t)
y2,t = h2,t(xt , v2,t)

. . .

yn,t = hn,t(xt , vn,t)

(10)

where yi,t denotes the observation received by sensor i, and vi,t denotes the noise affecting the observation function hi,t . As

mentioned, the noise can be omitted if it is unknown, but shall be taken into account if known.

The O2 inference then works by solving (10) for χt (the observed part of xt ). There is generally one unique solution for the

properly determined system; however, in other cases, the equations can be over-determined. The over-determined system will

be divided into multiple sub-systems, exactly determined, each of which infers an estimate. Finally, all estimates are fused in

an optimal way, e.g. nonlinear (weighted) least square estimation. This will be addressed separately in another work. The over-

determined system is beneficial, as it will provide a more accurate estimate and handle clutter and miss-detection through

multi-sensor data fusion [31,32].

However, we point out here that ht is generally given in a few simple forms for real life sensor models. As a common irre-

versible case, the observation function is non-monotonic and its inversing calculation involves a sign problem. In cases when the

state is bounded in a positive or negative space, the sign problem can be avoided or easily solved; see Section 4.3. Otherwise it

needs to be separately determined. There are two ways to determine the sign of the state apart from using more sensors. The

first is to employ the state process function (if given) and the previous estimate. This can be taken as the default method. The

second way is to use an additional estimator/filter to estimate the sign (if the model is fully known), which is computationally

more intensive. Both will be shown in our simulation in Sections 4.1 and 4.2. In both cases, the O2 inference will not only utilize

the observation information, but also use the state process information, which can be referred to as O2+ inference. Finally, we

note that, arguably, there are still situations of very poor observability for which the O2 inference is inapplicable.

We should clarify that the O2 inference only estimates the dimensions of the states that have been observed. It is the same

with filters where the unobserved dimensions of the state are implicitly inferred from the observed dimensions based on their

physical relationship contained in the state process model. For example, with respect to time, the differentiation of position is

velocity while differentiation of velocity is acceleration. Given their relationship, the unobserved dimensions can be inferred

from the observed dimensions based on successive estimates in time series, for which smoothing/fitting may be necessary. This

will form a key content of our future study.

To note, the O2 inference is in fact involved in the core of the wireless triangulation, trilateration and multilateration position-

ing technology based on angle of arrival, signal strength and time difference of arrival respectively [8,37]. While the O inference
2
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has rarely been considered in the evaluation of Bayesian filters/smoothers, we will in fact show that the O2 inference can easily

outperform filters.

2.3. Effectiveness of a recursive filter

The essence of the Bayesian statistical inference is the information fusion of the prior (that contains the history information

transited via a state process model) and the observation, while the O2 inference is a computationally faster, data-driven solution

which disregards history observations. Comparably, both the strength and the weakness of the filter lie on the utilization of the

state process model which is helpful only when a better estimate, namely the posterior, is obtained. In this case, we define the

effectiveness of a filter as follows:

Definition 1. A filter is defined as effective for a particular estimation problem only when its estimates, at minimum, statistically

outperform the O2 inference (if applicable) in accuracy, under the same observation conditions.

According to this definition, a filter is effective only when the estimate a posteriori is statistically more accurate than the

estimate directly inferred from the observation. This does not conflict with the fact that distributions, rather than point estimates,

are propagated in the Bayes recursions. While the posterior CRLB [14,51,57] provides a lower bound on the mean-square error

(MSE) of any “unbiased” estimator of the random parameter, the O2 takes a more practical approach by setting a higher bound

on the mean error of any “effective” estimator. The following section will quantitatively assess the effectiveness of the recursive

filter under the representative Gaussian assumption.

3. Probability of filter benefit

For simplicity, both the prior xp and the O2 inference xo are assumed to be subject to Gaussian in the 1-dimensional state space,

either biased or unbiased with regard to the true state xT i.e. p(xo) = N (mo, δ2
o ), p(xp) = N (mp, δ2

p). Here, we omit the reasons

that cause the bias (to the prior or to the O2 inference) and are only concerned with how the bias that once occurred will affect

the filtering result in different situations. The Bayesian filter fuses p(xo) and p(xp) obtaining the posterior p(x f ) = N (m f , δ
2
f
).

We have the following proposition of the Kalman-rule fusion.

Proposition 1. The Kalman filter gives the optimal fusion of two Gaussian distributions according to the covariance in the sense of

minimizing the square estimate error, obtaining

m f = δ2
o mp + δ2

pmo

δ2
o + δ2

p

(11)

δ2
f = δ2

oδ
2
p

δ2
o + δ2

p

(12)

We refer to this as optimal fusion under Gaussian conditions.

It is very critical to note, as we will show in what follows, that x f ∼ p(x f ) might not be more preferable (namely closer to the

true state) as compared with xo ∼ p(xo), although the variance of the estimate is actually smaller as δ2
f

≤ min{δ2
o , δ2

p}. Instead,

it is when and only when |xT − xo | > |xT − x f |, that the filter estimate x f is more preferable than the O2 inference xo. Here, we

define

Definition 2. The probability of filter benefit (PoFB) is defined as PoFB = P(|xT − xo | > |xT − x f |) .

The calculation of the PoFB can be expanded as follows

PoFB = P((xT − xo)
2

> (xT − x f )
2
)

= P((2xT − x f − xo)(x f − xo) > 0)

= P((2xT − x f − xo) > 0, (x f − xo) > 0) + P((2xT − x f − xo) < 0, (x f − xo) < 0)

= P(xo < x f < 2xT − xo) + P(2xT − xo < x f < xo) (13)

Given the cumulative distribution function of the Gaussian distribution p(x f ) = N (m f , δ
2
f
)

� f (x) = 1

δ f

√
2π

∫ x

−∞
e−(t−m f)

2
/2δ2

f dt (14)

Eq. (13) can be rewritten in terms of expected values as

PoFB =
∫ xT

−∞

(
� f (2xT − x) − � f (x)

)
p(x)dx +

∫ ∞

xT

(
� f (x) − � f (2xT − x)

)
p(x)dx (15)

where p(x) = 1

δo
√

2π
e−(x−mo)

2
/2δ2

o .

As a quantitative interpretation of Definition 1 with regard to the PoFB, we have
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Fig. 1. Optimal fusion of two unbiased Gaussian distributions. (For interpretation of the references to color in the text, the reader is referred to the web version

of this article.)
Proposition 2. A filter is effective when and only when the PoFB > 0.5.

If a filter is defined as ineffective (PoFB ≤ 0.5), it means the prior is statistically useless or even counterproductive on average.

In the following subsections, we will evaluate the PoFB under different situations.

3.1. Optimal fusion of two unbiased Gaussian distributions

First, we consider the case that both the prior and the O2 inference are unbiased, i.e. mo = mp = xT for which we have the

following remark with regard to Proposition 1.

Remark 1. Optimal fusion of two unbiased Gaussian distributions gives an unbiased Gaussian distribution.

As shown in Fig. 1, for example, the optimal fusion of the Gaussian distribution (blue) p(xo) = N (0, 400) and the Gaussian

distribution (green) p(xp) = N (0, 100), results in the Gaussian distribution (red) p(x f ) = N (0, 80). More generally, for a range of

different variance ratio δ2
p/δ2

o , the PoFB is given by the red curve shown in Fig. 3. The results show that in this situation the PoFB

is always larger than 50%, indicating that the fusion will give a better estimate than the O2 inference on average i.e. the filter is

effective.

3.2. Optimal fusion of one biased and one unbiased Gaussian distribution

If there is only one distribution between the prior and the observation that is unbiased in a filter, it must be the observa-

tion. This is because the observation is independent of the prior but the prior is dependent on the observation. While a biased

observation will surely cause a biased prior for the next time-instant, the contrary does not hold.

For the situation in which the prior is biased but the O2 inference is unbiased, as shown in Fig. 2, we have the following

remark with regard to Proposition 1.

Remark 2. Optimal fusion of one unbiased Gaussian distribution with one biased Gaussian distribution gives a biased distribu-

tion with the mean lying between the means of the original two distributions.

We define the variance ratio (VR) r, the ratio of the variances of two distributions, and the bias ratio (BR) p, the ratio of the

bias of p(xp) over the standard deviation of p(xo), respectively as

r = δ2
p

δ2
o

(16)

p = mp − mo

δo
(17)

The PoFB in this case is highly related to VR r and BR p. Due to the symmetry of the Gaussian distribution, we only consider

the case of a positive BR p ≥ 0 and the result holds true for a negative BR. 100,000 random samples are generated separately from

distributions such as xo ∼ p(xo) and x f ∼ p(x f ) to calculate the PoFB for different VR r ∈ [0.01, 1000] and different BR p ∈ [0, 10].
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Fig. 2. Optimal fusion of one unbiased and one biased Gaussian distributions.
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In particular, p = 0 means that two distributions are unbiased as addressed in the preceding subsection. The results are given in

Fig. 3. We have the following observations.

First, the PoFB tends to converge to 0.5 when r goes to infinite. In particular, for p ≥ 2, the larger the VR r is, the larger the

PoFB is, approximately; for p ≤ 0.4, the larger the VR is, the smaller the PoFB is, approximately; for 0.4 < p < 2, the PoFB goes up

and then reduces down to 0.5 with the increasing of VR r. This is in line with the fact that a larger r corresponds to a relatively

larger δ2
p of p(xp) which will have a smaller effect on the fusion distribution p(x f ) in the KF. For a very large r, the effect can be

omitted, after which we have p(x f ) ≈ p(xo), and then PoFB = 0.5. This confirms that the O2 inference is nothing more than the

equivalent to the KF when the variance ratio (the observation error variance divided by the prior estimate error variance) goes

to zero.

Secondly, when BR p ≤ 0.6, PoFB > 0.5 . That is to say, the fusion has more than an approximately 50% possibility of obtaining

a more accurate estimate than the O estimate. In other words, when the bias of the biased distribution is not significant, the
2
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Fig. 4. Optimal fusion of two biased Gaussian distributions.
fusion will be acceptable and is still more likely to benefit. This is the case (when the prior estimate is only slightly biased)

whereby the filter is recommended.

Thirdly, when BR p ≥ 0.8 (and VR r ≥ 0.1 or a little larger), PoFB < 0.5 i.e. the fusion has less than an approximately 50%

possibility of obtaining a more accurate estimate. This indicates that when the bias of the prior is significant (whether because

of large modeling/approximation errors or disturbances/outliers), the fusion will be more likely to obtain a worse result than

simply inferring from the observation. This is the case whereby the O2 inference, rather than the filter, is recommended.

Fig. 3 shows that for r → 0, the prior p(xp) will dominate the fusion result, causing p(x f ) ≈ p(xp), then the PoFB will almost

fully depend on the BR p: the smaller p is, the larger the PoFB is. However, in general the prior that is affected by both the process

noise and the history observation noises cannot be so accurate as compared with the underlying observation (except when it has

been confirmed by the filter that a significant outlier observation occurs).

In general terms, the results indicate that if the prior is slightly biased or just unbiased, an accurate prior (of small variance)

will be beneficial; otherwise it will be counterproductive for an accurate estimation.

3.3. Optimal fusion of two biased Gaussian distributions

In a more general case, both the prior and the O2 inference can be biased, for which we have another remark.

Remark 3. Optimal fusion of two biased distributions gives an almost surely biased estimate in which the bias will be at least

smaller than the larger bias of the original two.

This can be illustrated as shown in Fig. 4 although only one specific case is given where mo < xT < mp. This is the case in

which the fusion p(x f ) has a comparably high possibility of obtaining a better estimate. Without loss of generality, we assume a

different true state mT which is chosen by adjusting a scaling parameter m that is defined as

m = xT − mo

δo
(18)

This parameter indicates the (direction and) level of the bias of p(xo).

For different cases scaled by parameters m = {−10, − 5,−2, − 1,−0.1, 0.1, 1, 2, 5, 10, 30}, the PoFB results are plotted

separately in Fig. 5 which compares the O2 inference xo ∼ p(xo) with the fusion x f ∼ p(x f ).

The results show again that all PoFBs will converge to 50% when r goes into infinite. Furthermore,

(1) When m ≤ 0 (i.e. xT ≤ mo ≤ my; the bias of the prior is larger than that of the observation), the PoFB will be smaller than

50% and the larger p is, the smaller the PoFB is.

(2) When m ≥ p (i.e. mo ≤ mp ≤ xT ; the bias of the prior is smaller than that of the observation), the PoFB will be larger than

50% and the larger p is, the larger the PoFB is.

(3) When 0 < m < p (i.e. mo < xT < mp), the PoFB is complicated and depends on r, m, p (see the sub-plots for m = 1, 2, 5).

Roughly, with the increase of r > 1, the PoFB will go up over 0.5 and then finally decrease to 0.5.

In summary, the filter is not very likely to outperform the O2 inference in this case except when the observation (inference in

the state space) is much worse than the prior.
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3.4. Suboptimal particle Bayes fusion

The particle filter (PF) represents the posterior PDF by a set of weighted particles {x
(n)
t , w

(n)
t }, n = 1, 2, . . . , N, i.e.

p(xt) ≈
N∑

n=1

w(n)
t δ
(
xt − x(n)

t

)
(19)

where δ(·) is the Dirac delta impulse, x
(n)
t are the possible values of the true state xt at time t , N is the number of particles, w

(n)
t

are weights assigned to the particles and all the weights whose sum is one.

The essence of the PF is to evaluate how well each particle conforms to the dynamic model and explains the observations,

using this assessment to generate a weighted particulate approximation to the filtering distribution, and hence form state esti-

mates. The weights of the particles are reweighted over time based on the sequential importance sampling principle

w(n)
t ∝ w(n)

t−1

p
(
yt |x(n)

t

)
p
(
x(n)

t |x(n)
t−1

)
π
(
x(n)

t

) (20)

where π(·) is a proposal distribution to generate particles.

After weight updating, resampling is commonly applied to reduce the weight variance so that all particles will have equal

or approximate weights [33], namely the sampling importance resampling (SIR) filter. Arguably, if the number of particles is
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sufficiently large, the PF is able to achieve the Bayesian optimal performance. The particle filter does not require the underlying

distribution to be Gaussian, but for simplicity, we still assume Gaussian distributions here.

Assume that the prior p(xp) is represented by a set of equally weighted particles {x
(n)
t , 1

N }, n = 1, 2 . . . , N (after resampling)

i.e. p(xp). The likelihood distribution based on p(xo) is then used to update the weights {w
(n)
t }, n = 1, 2 . . . , N, obtaining the Bayes

posterior distribution p(x f ). In order to calculate the PoFB based on the distribution represented by particles, 1,000,000 random

samples are generated separately from the O2 inference xo ∼ p(xo) and the posterior x f ∼ p(x f ) for different r ∈ [0.01, 1000]

and p ∈ [0, 10] as defined in (16) and (17). In particular, p = 0 means the prior p(xp) is unbiased. The results are shown in

Fig. 6, and are very similar to the optimal fusion as shown in Fig. 3. This makes sense as, theoretically, if the posterior is normally

distributed, the particle filter is equivalent to the Kalman filter given an adequate number of particles.

We have the following observations that are consistent to those of the preceding sections on the filter fusion:

(1) When the bias of the prior is not significant, the fusion will be acceptable and is more likely to benefit (as compared with

observation-inference). This is the case whereby the filter is effective;

(2) When the bias of the prior is significant, the fusion will be more likely to obtain worse results than the unbiased

observation-inference. This is the case whereby the filter is more likely to be ineffective.

We leave here the PoFB result and the discussion of two biased distributions for the particle Bayes fusion, which are very

similar to Fig. 5 and can be found in [32].

3.5. Discussions

The above study on the effectiveness of Bayesian filters has demonstrated that “prior-observation” fusion is not guaranteed

to provide a benefit. Instead, it is only when (1) both the observation and the prior are ideally unbiased, (2) the bias of the prior

is very small while the observation-inference is unbiased, or (3) the bias of the observation-inference is more significant than

the prior, that the filter is likely to get a more accurate estimate than the O2 inference, namely being effective; otherwise, the

filter can easily be ineffective. To note, in general the conditions of the system, namely r, p and m, vary with time giving way

to a situation in which at some stages a filter is effective (the prior obtained is good) while at other stages it is not (the prior is

relatively bad). In our simulations given in Section 4, we will evaluate the filters on their average performance over the entire

simulation period.

We have only considered the error on the mean of the distribution (bias) but not on the (co)variance, which is also critical to

the filter; sophisticated methods proposed for tuning the noise variance can be seen here [4,7,17,45,53]. If there is an error with

the assumption of the (co)variance, the performance of the filter will more likely degrade; in contrast, with the O2 inference it

does not matter much (except when debiasing is applied). Here we may extend the results given under Gaussian fusion/filtering

to a general albeit somewhat obvious conclusion:

Remark 4. Whether the filter is effective or not primarily depends on the quality of the prior (which in turn depends on the

quality of the state process model assumed), especially the bias of the prior; the extent of the effectiveness will depend on the

ratio of the variances of the prior and the observation.
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As addressed, the approximation, together with filter initialization errors, system disturbances/outliers and modeling errors,

can all lead to a prior error in the Bayesian recursive inference. Owning to the infinite impulse response nature of the recursive

filter [28,29], any error once generated in the filter, whether due to erroneous modeling, outlier data or too much approximation,

will have an effect on the subsequent estimates (priors and posteriors). That is to say, recursive estimators are potentially en-

dangered by accumulation of approximation errors. More importantly, with the rapid development of sensors, the observation

obtained can be very accurate (especially when multiple sensors are jointly used), corresponding to a large VR r as previously

addressed, which will further prevent the benefit of filtering. As such, a filter shall be carefully evaluated before being applied.

More precisely, we have several principles as follows before presenting our simulations.

(1) If the observation noise is significant (e.g. not zero-mean and of high variance), neither the O2 inference nor the filter can

be good; the O2 inference comparably suffers more from the observation noise.

(2) If the system can be correctly modeled and the filter can be well initialized, being affected with no or small distur-

bances/outliers, then the filter will work as well as expected.

(3) If the state process model cannot be well modeled or the filter has to make significant approximation for use, the filter

may lose to the O2 inference.

(4) If multiple/massive sensors are available, the O2 inference can benefit from multiple sensor data fusion where its

modeling-free advantage will be more prominent. The more sensors, the better accuracy and reliability [30,32]. However,

this may not hold for the filter.

(5) By ‘fitting/smoothing’ the results of the O2 inference across successive scans via the state process information (if available),

more accurate or further information about the state can be inferred.

4. Simulations

In this section, we will investigate the effectiveness of several known (extensions of) Kalman filters and particle filters based

on two popular one-dimensional state space models, one with Gaussian state process noise and the other non-Gaussian, and a

representative maneuvering target tracking case.

4.1. Filters using correct models vs. the O2 inference

In this simulation, all of the filters will use exactly the correct state process model and known system noises, and are initial-

ized properly with regard to the ground truth. No disturbance or outlier occurs in such a perfectly assumed model. This is the

most favorable situation for the filters to achieve the best possible performance. The state process equation and the observation

equation are given respectively as follows

xt = xt−1

2
+ 25xt−1

1 + x2
t−1

+ 8 cos (1.2(t − 1)) + ut (21)

yt = x2
t

20
+ vt (22)

where the process noise ut is Gaussian ut ∼ N (0, Q) and the observation noise is also Gaussian vt ∼ N (0, R). We firstly set

Q = 10, R = 1 which have been the default parameter settings in many publications since [16]. We set the initial state as

x0 ∼ N(0, 1).

Inversing (22), the (biased) O2 inference gives

x̂t = ±
√

20 × (yt − vt) (23)

Here, we explore three different ways to determine the sign of the estimate. The first uses the state process function (default

solution), the second uses the PF filtering result, and the third uses the true sign (although it is in fact unknown; here we assume

there is one method that could correctly estimate the sign of the true state). They correspond respectively to the following three

calculations, i.e. O2+ inferences

x̂t = sgn

(
x̂t−1

2
+ 25x̂t−1

1 + x̂2
t−1

+ 8 cos (1.2(t − 1))

)√
20 × yt (24a)

x̂t = sgn(x̂t,PF )
√

20 × yt (24b)

x̂t = sgn(xt)
√

20 × yt (24c)

The above calculations set the noise vt to be zero and the results are actually biased as stated. This is the last choice we can

have if the noise vt is unknown. If it is known, the unbiased estimation can be obtained by using the proposed MC debiasing
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Table 1

Performance of different estimators (100 MC runs × 100

time-steps).

RMSE

Mean Variance

UKF 7.254 0.001

SIR (PF) 3.951 0.294

GPF 4.520 0.253

APF 4.207 0.448

O2 inference 16.243 1.4 × 10−29

O2 inference with SIR for sign 4.063 0.602

O2 inference with correct sign 1.391 5.5 × 10−32

Unbiased O2I with correct sign 1.229 5.8 × 10−4
method. That is, to sample a set of samples from the noise distribution v(i)
t ∼ vt , i = 1, 2, . . . , I and use them as sample noises

separately in the inversing calculation, e.g. (24c), as

x̂(i)
t = sgn(xt) ×

√
20 ×

(
yt − v(i)

t

)
(24d)

Based on these samples, we can easily get the mean and variance of the O2+ inferences as given in (8) and (9) respectively.

Here, we set the number of noise samples I = 100.

For comparison, the UKF [23] (unscented KF; the unscented transform parameters are set as α = 1, β = 0, κ = 2, which, how-

ever, are by no means considered the best choice here), auxiliary PF (APF) [43], Gaussian PF (GPF) [28] as well as the basic SIR

PF that uses systematic resampling [33] have been implemented. All filters are initialized with a zero-mean random state with

variance 2.

The root mean square error (RMSE) is used and is defined as follows:

RMSE =
√

1

M

M∑
i=1

(xt,i − x̂t,i)
2

(25)

where M is the number of MC runs, xt,i and x̂t,i are the true state and estimate at time t of run i respectively.

To capture the average performance, 100 MC runs are executed with the same ground truth for each run. Each run consists of

100 time-steps. Firstly, when all PFs use 100 particles, the true state and estimates given by different estimators are plotted in

Fig. 7, and the mean and variance of RMSE (over 100 time-steps) are given in Table 1. Secondly, for a range of a different number

of particles from 20 to 500 used for the PFs, the mean RMSE and computing time of different estimators are given in Figs. 8 and

9. Finally, for a range of different observation noise variances R ∈ [0.0001, 10,000], the mean RMSE of different estimators of a

single run of 10,000 time-steps (where all PFs use 100 particles) are given in Fig. 10. These results show that:

(1) All the (biased and unbiased) O2 inference approaches are extremely faster computationally than the filters, except the

one using the SIR PF for estimating the sign of the state which is slowed down by the PF.

(2) Compared with others, the PFs (SIR, GPF and APF) do not make much difference with each other on this model. Specif-

ically, a small observation variance is not always good for the PF whether GPF, APF or SIR: when R is reduced from 1 to
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0.00001 or increased from 1 to 10, 000, the RMSE of the estimate increases. The best R for them is around 1. When the

observation noise variance is larger than 1, it is straightforward that the larger the noise is, the worse the filters are. But,

a very accurate observation (e.g. R < 1) corresponds to a sharp likelihood distribution, which can cause significant weight

degeneracy/impoverishment, also reducing the filtering quality. This is a particular problem of PFs [35] for which consid-

erable efforts have been devoted to designing a good proposal that coincides with the posterior distribution; see our next

simulation.

(3) With the number of particles used increasing, the PFs will obtain gradually better results (up to an approximately stable

level) but will also consume more time.

(4) The unbiased O2 inference with the correct sign performs the best of all the O2 inference approaches. But, the improvement

due to the debiasing strategy is insignificant, indicating that the bias is insignificant.

Straightforwardly, we have the following findings on the effectiveness of the filters, where the threshold is approximate:

(1) With regard to the default O2 inference, all the simulated filters are effective except the PFs for R < 0.0005.

(2) With regard to the O2 inference with the SIR filter for estimating the sign, all the filters are effective for different observa-

tion noise except for R ∈ [0.001, 1].

(3) With regard to the O2 inference with the correct sign (biased or unbiased), all the filters are ineffective except when the

observation noise is very large e.g. R > 10.

The results show that the (biased or unbiased) O2 inference with the correct sign for the estimate can easily outperform the

filters in terms of both small mean and variance of RMSE. It also shows that, for this model, the sign of the estimate affects the

O2 inference significantly as both (24a) and (24b) can erroneously estimate the sign of the state that switches between positive

and negative, as shown in Fig. 7 (in this regard, this model is very challenging). The wrong choice of the sign of the state will

significantly increase the RMSE. This is the reason the default O2 inference performs poorly. However, it is possible to find a

method to estimate the sign of the state and, therefore, efforts should be made to do so, which might be more valuable than

designing a filter for this model.

We need to reiterate that the sign problem does not exist (at least not so significantly) in many other problems, such as target

tracking where the state of interest is most commonly bounded in a limited region (e.g. in a known view field in the coordinate

system); see our third simulation. Simply, if we define the RMSE1 on the magnitude (absolute value) of the estimate only, namely

root mean square absolute error (RMSAE), as follows

RMSAE =
√

1

M

M∑
i=1

(|xt,i| −
∣∣x̂t,i

∣∣)2
(26)

then, the sign is no longer a problem. The default O2 inference will perform the same as the O2 inference with the correct sign,

which will outperform all filters as long as the observation is not too bad (the variance R < 10). In the sense of this matric, the

effectiveness of the filters used on this problem model is not optimistic at all.

4.2. Filters using biased process noises vs. the O2 inference

In this simulation, we use another state space model that has also been widely employed for filter evaluation since first

proposed in [52], with the state process equation and the observation equation respectively given as follows

xt = 1 + sin (ωπt) + φ1xt−1 + ut (27)

yt =
{
φ2x2

t + vt t ≤ 30
φ3xt − 2 + vt t > 30

(28)

where the scale parameters ω = 0.04, φ1 = 0.5, φ2 = 0.2 and φ3 = 0.5, the process noise ut is a Gamma Ga(3, 2) random variable

and the observation noise is Gaussian vt ∼ N (0, R). We first set R = 0.00001. These are the default parameter settings in many

publications including [52].

To carry out the O2 inference, inversing (28) after taking off the unknown noise item vt , we have

x̂t =

⎧⎨
⎩

sgn
√|yt/φ2| t ≤ 30

yt + 2

φ3

t > 30
(29)

where sgn stands for sgn(1 + sin (wπt) + φ1x̂t−1), namely the default O2 inference.

If the observation noise vt is available, the proposed MC debiasing strategy can be further applied for the nonlinear transfor-

mation when t ≤ 30. That is, for i = 1, 2, . . . , I we have

x(i)
t = sgn ×

√∣∣(yt − v(i)
t

)
/φ2

∣∣ t ≤ 30 (30)
1 This metric is inspired by prof. Petar Djurić at Stony Brook University in the first author´s email conversation with him.
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where v(i)
t ∼ N (0, R) and I = 100. For the linear transformation when t > 30, the O2 inference given by (29) is unbiased and its

variance can be analytically given, namely R/φ3.

A series of filters are employed for comparison, including EKF (extended KF), UKF, the SIR PF, the PF that use EKF and UKF

separately as the proposal. We use 200 particles for the PF and the initial state variance of 0.75 for the EKF/UKF. The unscented

transform parameter is set as α = 1, β = 0, κ = 2 (the same as used in [52]). The true state and the initial unbiased estimate of all

filters are all starting from x1 = 1. Since UKF/EKF cannot be used directly for this Gamma noise, we assume equivalent variance

0.75 as an alternative, i.e. they admit a modeling error of mean 1.5 of the process noise as Ga(3, 2) is of mean 1.5, and variance

0.75. This corresponds to the practical situation where the state process noise is unknown and is incorrectly assumed when a

filter is employed – the chances of this occurring are quite high in reality. While the PFs use the correct model and parameters,

they admit MC approximation errors.

To capture the average result, 100 MC runs are performed with random re-initialization for each run (different to the simu-

lation given in Section 4.1, leading to a large RMSE variance for the O2 inference). Each run consists of 60 time-steps. The true

state and estimates given by different estimators for one run are plotted in Fig. 11. In particular, if the state is known to be always

positive, then the sign for the O2 estimate can simply be set as positive and no sign estimation is needed. The O2 inference will

then compute much faster.

The RMSE of different estimators are plotted in Fig. 12. The mean and variance of RMSE over time and the computing time

of each estimator are given in Table 2. It shows that the O method (whether biased or unbiased) has outperformed all the
2
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Table 2

Performance of different filters and the O2 inference.

RMSE Computing time (s)

Mean Variance

EKF 0.353 0.181 0.008

UKF 0.277 0.113 0.035

SIR (PF) 0.554 0.090 1.845

EKPF 0.353 0.188 3.793

UKPF 0.240 0.089 9.512

O2 inference 0.005 1.085 × 10−5 7.23 × 10−5

Unbiased O2 inference 0.005 1.083 × 10−5 4.26 × 10−4
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Fig. 13. Average RMSE of different estimators of 60 steps × 100 MC runs for different observation noises.
filters by several orders of magnitude in terms of both RMSE and computing speed, which indicates these filters are significantly

ineffective for this model. The unbiased O2 inference outperforms the biased O2 inference slightly, indicating that the bias caused

by the inversing calculation is, again, insignificant. To the best of our knowledge, such a good performance exhibited by the O2

inference has never been reported before, although many filters have been proposed to apply to this simulation model.

Furthermore, for a range of different observation noise variances ranging from 0.00001 to 100 for R, the average RMSE is given

in Fig. 13. It can be seen that (here thresholds are approximate): when R < 0.04, all these filters are ineffective; when 0.04 < R ≤
1, PF is effective while the others are not; when 2 < R < 40, PF, UKF and EKF are effective while the EKPF and UKPF are not;

when 40 < R, all filters become effective.

Both filtering models given by ((21) and (22)) and ((27) and (28)) have been widely investigated to demonstrate the advan-

tage of one filter over others, but they have all failed to include the comparison with the O2 inference, despite the fact that

the straightforward O2 inference is computationally much faster than any filter. More seriously, the performance of these filters

will be further reduced in case of mismodeling (e.g. the state process function is not exactly known) and/or significant distur-

bances/outliers, leading to more negative effectiveness. We believe these two models are not unique. This is a critical fact that

shall not be omitted; instead, great precautions shall be taken before the use of a filter.

4.3. Maneuver target tracking

In this simulation, we apply the O2 inference for a maneuver target tracking based on the model used in [56]. However,

we will not reproduce the sophisticated algorithms (including both maneuver estimator and tracking filter) that have been

implemented therein. Instead, we will test the O2 inference on exactly the same observation condition and target trajectories.

The target-moving scenario is given as follows.

The state of the target is denoted as (at time t)

xt = [px,t , ṗx,t , py,t , ṗy,t ]T (31)
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Fig. 14. The maneuver target tracking scenario and the O2 inferences given by sensor data. (For interpretation of the references to color in the text, the reader is

referred to the web version of this article.)
where [px,t , py,t ]T is the position while [ṗx,t , ṗy,t ]T is the velocity in the x − y dimensions in Cartesian coordinates respec-

tively. The ground truth is a target moving with a constant speed of 250 m/s (from t = 1 s to t = 100s) with initial state x0 =
[0, 0, 20000, 250]T . The maneuver over time is as follows (as shown in Fig. 14):

From t = 100 s to t = 130 s, the target turns left with 2◦/s;

From t = 130 s to t = 200 s, the target moves in a straight line;

From t = 200 s to t = 245 s, the target turns right with 1◦/s;

From t = 245 s to t = 335 s, the target turns left with 1◦/s;

From t = 335 s to t = 380 s, the target turns right with 1◦/s;

From t = 380 s to t = 430 s, the target moves in a straight line.

One active sensor located at [Sx,1, Sy,1] = [−60,000, 20,000] and one passive sensor located at [Sx,2, Sy,2] = [−50,000, 40,000]

are used for observation. For the active sensor, the observation is a noisy range and bearing vector, given by

zt =
[

rt

θt

]
=

⎡
⎢⎢⎣
√

(px,t − Sx,1)
2 + (py,t − Sy,1)

2

arctan

(
px,t − Sx,1

py,t − Sy,1

)
⎤
⎥⎥⎦+
[

vr,t

vθ,t

]
(32)

where the observation noise is Gaussian and uncorrelated between rang and bearing, which can be written as vr,t ∼ N(·; 0, σ 2
r ),

vθ,t ∼ N(·; 0, σ 2
θ
) with σr = 20 m, σθ = 5 mrad.

For the passive sensor, the observation is bearing-only, as given by

βt = actan

(
px,t − Sx,2

py,t − Sy,2

)
+ vβ,t (33)

where the observation noise is Gaussian, v(β,t) ∼ N(·; 0, σ 2
β
), σβ = 1 mrad.

The observation of the active sensor is made every 5 s while the observation of the passive sensor is made every 1 s. First, we

use only the active sensor for O2 inference, which is a properly-determined observation system. Every 5 s, one estimate will be

obtained, as was achieved with [56]. If the observation noises are unknown, the O2 inference can be realized by inversing (32)

after removing vt , we have

[
p̂x,t

p̂y,t

]
= +/ −

⎡
⎢⎣tan(θt)

√
r2

t

1+θ2
t√

r2
t

1+θ2
t

⎤
⎥⎦+
[

Sx,1

Sy,1

]
(34)

where the inversing calculation of the arctan function involves a sign problem, denoted by “+/-” in (34) which can be easily

determined in this scenario: when the bearing observation is smaller than π/2, the sign is positive “+”otherwise it is negative“−”.

From (34), we have the O2 inference results given by the active sensor plotted in the blue dots in Fig. 14. If the observation

noises are known, the proposed MC debiasing strategy shall be applied by sampling a set of noise samples v(i)
r,t ∼ vr,t , v(i)

θ,t
∼
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vθ,t , i = 1, 2, . . . , I, generating correspondingly a set of estimates (i = 1, 2, . . . , I) as follows:

[
p̂(i)

x,t

p̂(i)
y,t

]
= +/ −

⎡
⎢⎢⎣

tan

(
θt −v(i)

θ,t

)√√√√ (rt −v(i)
r,t )

2

1+(θt −v(i)
θ,t)

2

√√√√ (rt −v(i)
r,t )

2

1+(θt −v(i)
θ,t)

2

⎤
⎥⎥⎦+
[

Sx,1

Sy,1

]
(35)

Based on these sample estimates, we can easily get the mean and variance of the unbiased O2 inferences as given in (8) and

(9) for the x and y positions respectively.

Second, since the passive sensor has a higher quality (smaller observation error σβ < σθ and faster scanning frequency) than

the bearing observation obtained by the active sensor, we use the range observation received by the active sensor (discarding its

bearing observation information) and part of the bearing observation received by the passive senor to carry out the O2 inference

(iteration in very 5 s), i.e. solving the following equations for [p̂x,t , p̂y,t ]T :

[
rt

βt

]
=

⎡
⎢⎢⎣
√

(p̂x,t − Sx,1)
2 + (p̂y,t − Sy,1)

2

arctan

(
p̂x,t − Sx,2

p̂y,t − Sy,2

)
⎤
⎥⎥⎦ (36)

The O2 inference results given by (36) are plotted by red dots in Fig. 14. The proposed MC debiasing solution can also be

applied here for unbiased O2 inference.

To note, one can also utilize only the bearing observation from two sensors for O2 inference. But since two sensors will have

very similar bearing observations around the circle curve part of the trajectory, as shown in Fig. 14, it will lead to very poor

observability (a bad triangulation). Therefore, this sensor combination has not been included in our implementation. Nor have

we considered the utilization of the full information from all sensors.

The position RMSE of four implementations of the O2 inference over 1000 Monte Carlo trials is given in Fig. 15. As shown, the

performance of the unbiased O2 inference is very close to that of the O2 inference without using the MC debiasing, or does not

even improve it. This is because the target is far from the sensors, the bias caused by the nonlinear transformation is very small,

and debiasing is not so necessary in this model. The mean RMSE and the variances of four different O2 inferences are given in

Table 3. It is necessary to note that the simple combination of the range observation of the active sensor, and in part the bearing

observation of the passive sensor in this model, obtains an acceptable accuracy (on average, position RMSE < 50 m) that is very

close to the filtering result given by the linear minimum mean square error estimator (LMMSE) in [56] with the assistance of the

centralized interacting multiple model (IMM) estimator. As addressed, if the motion model of this target changes so frequently

(namely abrupt motion) that it cannot be estimated by the sophisticated IMM properly, the performance of the LMMSE will

greatly degrade and can easily become worse than our O2 inference. Comparably, the O2 inference is free of this problem and

enjoys an extremely faster computational speed than the others. It therefore provides a benchmark performance for assessing

the joint effectiveness of the maneuver estimator and filter used on this problem.
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Table 3

Average performance of the O2 inference using different sensor data.

Position RMSE

Mean Variance

O2 inference (by using active sensor) 308.56 195.07

O2 inference (active range and passive bearing) 49.43 37.84

Unbiased O2 inference (by using active sensor) 308.29 195.32

Unbiased O2 inference (active range and passive bearing) 49.40 37.96
In this simulation, all procedures, including the observation generation and both implementations of the O2 inference (ex-

cluding debiasing) for 1000 MC runs, cost less than 1.4 s in total in the Matlab. It is several orders of magnitude faster than

the IMM-LMMSE tracker. In fact, given that the target moves smoothly most of the time, a ‘fitting/smoothing’ procedure can be

employed on the sensor data for gaining better O2 inference as well as providing velocity estimation. We will investigate this

possibility in our future work.

We would like to reiterate that one filter can be better than another or various others; it does not mean, however, that the best

solution for a particular estimation problem must be a filter, especially when little is known about the background. Therefore,

when we design a new recursive estimator or use an existing one, it is indeed necessary to compare the result to the O2 inference

to know whether the estimator is helpful, as it makes no sense to use an estimator that costs more computationally but estimates

worse. This is precisely the goal of this paper. We are not criticizing any particular estimator but are instead highlighting the

notion that greater attention should be paid to the models we use.

5. Conclusions

The observation-only (O2) inference is a straightforward, and probably the simplest, solution for dynamic state estimation. We

have elaborated this method systematically and proposed a Monte Carlo sampling solution for unbiased nonlinear implemen-

tation. While the posterior CRLB provides a lower bound on the mean-square error of any “unbiased” estimator of the random

parameter, the O2 takes a more practical approach by setting a higher bound on the mean error of any “effective” estimator

including the Bayesian filter, where an estimator is defined as ineffective for any particular problem if it does not outperform

the O2 inference (if applicable) on average in the estimate accuracy. In particular, the effectiveness of Kalman and particle filters,

behind which the core idea is information fusion of the observation with the prior, is quantitatively analyzed in detail. It is shown

that the Bayesian filter does not guarantee a benefit if the prior is biased, although it will more likely benefit if it is unbiased. Sim-

ulations on classic state space models have demonstrated our theoretical findings. These seemingly innocuous facts are crucial

and must be considered with great caution whenever a new filter is designed or an existing one is used.

Further work will include inferring further and more accurate state-information from the O2 inference by utilizing any avail-

able certain or uncertain state process information (e.g. via smoothing and fitting), and extending the O2 inference to accommo-

date complicated sensor models and cluttered environments.
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