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A B S T R A C T

In this study we present a novel version of the Scale Invariant Map (SIM) called Beta-SIM, developed to
facilitate the clustering and visualization of the internal structure of complex datasets effectively and efficiently.
It is based on the application of a family of learning rules derived from the Probability Density Function (PDF)
of the residual based on the beta distribution, when applied to the Scale Invariant Map. The Beta-SIM behavior
is thoroughly analyzed and successfully demonstrated over 2 artificial and 16 real datasets, comparing its
results, in terms of three performance quality measures with other well-known topology preserving models such
as Self Organizing Maps (SOM), Scale Invariant Map (SIM), Maximum Likelihood Hebbian Learning-SIM
(MLHL-SIM), Visualization Induced SOM (ViSOM), and Growing Neural Gas (GNG). Promising results were
found for Beta-SIM, particularly when dealing with highly complex datasets.

1. Introduction

Among the great variety of tools for multidimensional data visua-
lization, several of the most widely used are those belonging to the
family of the topology preserving maps (Chen et al., 2013; Fuertes
et al., 2010; Kohonen, 1998; Mohebi and Bagirov, 2016; Wu et al.,
2011). Probably the best known among these algorithms is the Self-
Organizing Map (SOM) (Chen et al., 2013; Kohonen, 1998, 2013;
Haimoudi et al., 2016). It is based on a type of unsupervised learning
called competitive learning; an adaptive process in which the units in a
neural network gradually become sensitive to different input categories
or sets of samples in a specific domain of the input space. The main
feature of the SOM algorithm is its topology preservation. When not
only the winning unit, but also its neighbors on the lattice are allowed
to learn, neighboring units gradually specialize to represent similar
inputs, and the representations become ordered on the map lattice.

Several extensions of SOM can be found in the literature such as the
Generative Topographic Mapping (GTM) (Bishop et al., 1998;
Ghassany and Bennani, 2015), which was developed by Bishop et al.
as a probabilistic version of the SOM, in order to overcome some of its
limitations, particularly the lack of an objective function. An important
application of the GTM is to allow a simpler visualization of high-
dimensional data.

Another extension of SOM is the Topographic Product of Experts
(ToPoE), and the Harmonic Topographic Map (HaToM) (Fyfe, 2005;
Jeong et al., 2015), where the topology preserving map is created from
a product of experts.

The use of ensembles with SOM (Akhand and Murase, 2012; Cho,
2000; Dietterich, 2000; Wang and Gupta, 2015) has also been studied
to increase the stability and performance of a specific algorithm. One of
the most recent developments of ensembles, in the field of topology
preserving maps, is the Weighted Voting Superposition (WeVoS)
(Baruque and Corchado, 2014). The principal idea is to obtain the
final units of the map by a weighted voting among the units in the same
position in different maps, according to a quality measure.

The Visualization Induced SOM (ViSOM) (Corchado and Baruque,
2012; Huang and Yin, 2009), is a SOM extension proposed for the
direct preservation of the local distance information on the map, along
with the topology. The ViSOM constrains the lateral contraction forces
between units and hence regularizes the inter-unit distances, so that
distances between units in the data space are in proportion to those in
the input space. The ViSOM not only takes into account the distance
between a unit’s weights from one iteration to the next, but also the
distance between that unit and the Best Matching Unit within the
whole map (BMU). This allows the ViSOM to preserve topology by
maintaining distance between neighbors of the winner unit.

Two other interesting topology preserving models are the Scale
Invariant Map (SIM) (Baruque and Corchado, 2014, 2009) and the
Maximum Likelihood Scale Invariant Map (MLHL-SIM) (Baruque and
Corchado, 2011; Corchado and Fyfe, 2002). Both are designed to
perform their best with radial datasets, due to the fact that both create
a mapping where each neuron captures a “pie slice” of the data
according to the angular distribution of the input data (see Fig. 1).
However, when SOM is trained, it approximates a Voronoi tessellation
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of the input space (Kohonen, 1998). The Scale Invariant Map is an
implementation of the negative feedback network (Fyfe, 2005) to form
a topology preserving mapping. The main difference between this
mapping and the SOM (Kohonen, 1998, 2013) is that this mapping is
scale invariant.

Finally, another widely used clustering and classification algorithm
is the Growing Neural Gas (GNG) algorithm, proposed by Fritzke
(1995), Zapater et al. 2015). It is based on the Neural Gas (NG)
algorithm previously proposed by Martinetz et al. (1993) for finding
optimal data representations based on feature vectors, which is in turn
a modification of the widely known SOM. The main characteristic of the
NG algorithm is that instead of expanding through the data input space
as a fixed grid of units (as done by the SOM algorithm), the NG
algorithm allows the neighboring relationships of its units to change,
expanding more like a gas over the data space.

The GNG method is different from the previous algorithms in that it
is an incremental algorithm, so there is no need to determine a priori
the number of nodes. Network shape and size are determined during
the training, while the SOM and NG are often trained on a fixed
network size throughout.

The GNG (Zapater et al., 2015) is a combination of Fritzke’s
Growing Cell Structures (GCS) (Fritzke, 1994) and Martinetz’s
Competitive Hebbian learning (CHL) (Martinetz, 1993). The network
topology of the GNG is generated incrementally by the CHL algorithm,
which successively inserts topological connections or edges. The main
principle of the CHL is that for each input x, it connects the two closest
centers (measured by Euclidean distance) with an edge.

This research study presents a novel and efficient technique for data
clustering called Beta-Scale Invariant Map (Beta-SIM). It is based on a
modification of a topology preserving map that can be used for scale
invariant classification (Baruque and Corchado, 2014; Corchado and
Baruque, 2012; Baruque et al., 2011; Corchado and Colin, 2002). The
main objectives of this study are:

• To study and derive a family of learning rules from Beta distribution
and apply them to the Scale Invariant Map (SIM) (Baruque and
Corchado, 2014, 2009) to improve the clustering and visualization of
internal structure of high dimensional datasets, specifically with
radial structure.

• To thoroughly study the advantages and disadvantages of the novel
Beta-SIM algorithm over 2 artificial and 16 real datasets, testing its
capabilities.

• To test the capacity of the novel proposed algorithm (Beta-SIM) to

adapt to sparse clusters or to neglect outliers through the right
combination of α and β values, depending on task to be carried out.

This paper is organized as follows: Section 2 presents in detail the
SIM algorithm which leads on to the MLHL and MLHL-SIM algo-
rithms that are explained in Sections 3 and 4. Section 5 introduces the
Beta Hebbian Learning used to derive the learning rules for the new
algorithm, Beta-SIM, which is described in detail in Section 6. Section
7 presents 3 quality measures, previously proposed in the literature,
used to evaluate different properties of topology-preserving mapping
algorithms in general. Section 8 analyzes the capabilities of the Beta-
SIM algorithm by applying it to perform a detailed study over 2
artificial datasets and 16 real benchmark datasets with diverse
characteristics. Finally, Section 9 contains the final conclusions and
outlines future lines of research.

2. Scale Invariant Map

The main target of the family of topology preserving maps
(Kohonen, 1998) is to produce low dimensional representations of
high dimensional datasets, maintaining the topological features of the
input space.

SIM (Baruque and Corchado, 2014, 2009) is an algorithm similar to
SOM (Kohonen, 1998), but the training methodology is based on
negative feedback networks (Fyfe, 2005, 1997). SIM uses a neighbor-
hood function and competitive learning in the same way as the SOM.
The SIM model is defined by Eqs. (1)–(3):

∑Feedforward y W x: = ,i
j

N

ij j
=1 (1)

Feedback e x W y y: = − ( =1),c c c (2)

Weights update W h η x W i N: ∆ = ( − ), ∀ ∈ ,i ci c c (3)

where x is an N-dimensional input vector, and y an M-dimensional
output vector, with Wij being the weight linking input j to output i; e is
the residual or error, η the learning rate, Wc refers to the weights of the
winning neuron and hci represents the neighborhood function, which is
a Gaussian function in this case.

The input data xj is feedforward through weights Wij to create
output data yi, where a linear summation is performed to obtain the
activation of the output neurons (1). Based on the activation from the
feedforward algorithm, a winner neuron is selected using the minimum
Euclidean distance (the neuron whose output vector is closest to the
input vector wins) or using the maximum activation (the output neuron
with the highest activation wins). After selection of an output winner,
denoted as c, it is deemed to be firing (yc=1) and all other outputs are
suppressed (yi=0, ∀i‡c).

The winner’s activation is then used as feedback (2) using the
winner’s weights subtracted from the input data, and simple Hebbian
learning to update the weights of all nodes in the neighborhood of the
winner (3).

3. An exponential family of learning rules

Maximum Likelihood Hebbian Learning (MLHL) (Corchado et al.,
2004) is a family of rules created from exponential distributions, which
can be derived to express the Probability Density Function (PDF) of the
residual after feedback as (4):

p e
Z

exp e( ) = 1 (− ),p
(4)

It can then be denoted as a general cost function associated with
this network as (5):

J E log p e E e K= (− ( ( ))) = ( + ),p (5)

Fig. 1. Scale Invariant Map mapping, where each neuron captures a “pie slice” of the
data according to the angular distribution of the input data.
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where K is a constant independent of W and the expectation is taken
over the input dataset. Therefore, performing gradient descent on J we
have (6):

W J
W

J
e

e
W

E y p e sign e∆ ∝− ∂
∂

=−∂
∂

∂
∂

≈ { ( ( )) },
W t W t

p T
W t

( −1) ( −1)

−1
( −)

(6)

where T denotes the transpose of a vector and the power of the norm of
e is taken on an element-wise basis as it is derived from a scalar form of
a vector.

Computing the mean of a function of a dataset (or even the sample
averages) can be tedious, and it is important to cater for the situation in
which new samples are continuously added to the dataset. If the
conditions of stochastic approximation (Mendel, 1994) are satisfied,
the mean can be approximated with a difference equation. The function
to be approximated is clearly sufficiently smooth and the learning rate
can be designed to approximately satisfy ηk≥0, η∑k k=∞, η∑k k

2 <∞ and
so we have the rule (7):

W η y sign e e∆ = ∙ ∙ ( )∙ ,ij i j j
p−1

(7)

It is expected that for leptokurtic residuals (more kurtotic than a
Gaussian distribution), values of p < 2 would be appropriate, while for
platykurtic residuals (less kurtotic than a Gaussian), values of p > 2
would be appropriate.

4. Maximum Likelihood Scale Invariant Map (MLHL-SIM)

The Maximum Likelihood Scale Invariant Map (MLHL-SIM)
Corchado and Fyfe, 2002 is an extension of the SIM based on the
application of the Maximum Likelihood Hebbian Learning (MLHL)
(Corchado et al., 2004).

The main difference with regards to the SIM is how the MLHL is
used to update the weights of all nodes in the neighborhood of the
winner, once the winner has been updated. This can be expressed as
(8):

w h η sign e W e W i N∆ = ∙ ∙ ( − )∙ − , ∀ ∈ ,i ci c c
p

c
−1 (8)

By giving different values to p, the learning rule is optimal for
different probability density functions of the residuals. hci is the
neighborhood function as in the case of the SOM and Nc is the number
of output neurons. Finally, η represents the learning rate.

During the training of the SIM or the MLHL-SIM, the weights of the
winning node are fed back as inhibition to the input vector, and then in
the case of the MLHL-SIM, MLH learning is used to update the weights
of all nodes in the neighborhood of the winner as explained above.

5. Beta Hebbian learning

5.1. Beta distribution

Beta distribution is a family of continuous probability distributions
defined in the interval [0,1] with two positive shape parameters,
denoted by α and β. Beta distribution is defined by (9):

f x α β x x
B α β

( ; , )= (1− )
( , )

α β−1 −1

(9)

where f(x;α,β) is the PDF, x is the input value to the distribution, α and
β are the parameters that determine the shape of the PDF curve, and
B(α,β) is the beta function, which is a normalization constant to ensure
that the total probability integrates to 1. The Beta function is calculated
using the gamma function (10) and defined by (11).

n nΓ( ) = ( −1)!, (10)

B α β α β
α β

( , ) = Γ( )Γ( )
Γ( + ) (11)

Beta distribution is very malleable based on the parameters α and β
(see Fig. 2). The relation between parameters α and β determines the
shape of the PDF, with the capability of generating distributions with
positive (α > β) and negative (α < β) skewness, platykurtic (α=β smalls
values < 3), mesokurtic (α=β≈3) and leptokurtic (α=β large values > 3)
distributions, and combinations of these.

5.2. A new family of learning rules: Beta Hebbian Learning

In this research we thoroughly investigate a family of learning rules
derived from the PDF of the residual based on the Beta distribution,
called Beta Hebbian Learning (BHL), and how they can be applied to
the SIM.

If the residual, e, is taken from the Beta distribution, B(α,β), with
the following probability density function (12):

e e x Wy x Wy(1− ) = ( − ) (1− − ) ,α β α β−1 −1 −1 −1 (12)

then, to maximize the likelihood of the data with respect to the weights
(W), the gradient descent is performed by means of Eq. (13):

p
W

e e α e e β

e e α e α β

∂
∂

( (1− ) (−( −1)(1− ) + ( −1)))

= ( (1− ) (1− + ( + −2))),

j
α

j
β

j j

j
α

j
β

j

−2 −2

−2 −2
(13)

For instance, in the case in which α=β=2, we get (14):

p
W

y e e y e∂
∂

= (−(1− ) + ) = (2 −1),
(14)

Therefore, the BHL architecture is defined as follows:

∑Feedforward y W x: = , ∀ ,i
j

N

ij j i
=1 (15)

∑Feedback e x W y: = − ,j j
i

M

ij i
=1 (16)

Weight change W η e e α e α β y: ∆ = ( (1− ) (1− + ( + −2)))ij j
α

j
β

j i
−2 −2

(17)

where x is an N-dimensional input vector, and y an M-dimensional
output vector, with Wij being the weight linking input j to output i; e is
the residual or error, and η the learning rate.

6. Beta-SIM

6.1. Beta SIM learning rule

In this paper we present and analyze, for the first time, a novel

Fig. 2. Probability Density Function (PDF) of the Beta distribution for different values of
α and β.
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version of the SIM called Beta-Scale Invariant Map (Beta-SIM), based
on the application of a family of learning rules derived from the PDF of
the residuals of a Beta distribution when they are applied to the SIM.

The main difference with the SIM is that Beta Hebbian Learning is
used to update the weights of all nodes in the neighborhood of the
winner, once the winner has been updated. The Beta-SIM model is
defined by (18)–(20):

∑Feedforward y W x: = , ∀ ,i
j

N

ij j i
=1 (18)

Feedback e x W y y: = − ( =1),j j c c c (19)

Then, if we apply the BHL method to the SIM to update the weights,
we get the following rule for the Beta-SIM (20):

Weight change W η h sign x W

x W x W

α x W α β

: ∆ = ∙ ∙ ( − )

∙ − (1− − )

(1− + − ( + −2))

i ci c

c
α

c
β

c

−2 −2

(20)

Then, by maximizing the likelihood of the residual with respect to
the actual distribution, we are matching the learning rule to the pdf of
the residual(e).

The stability of the learning rule was also analyzed in this study, and
based on such analysis it can be concluded that the Beta-SIM algorithm
is only stable when the absolute value of the residuals is lower than 1
(see Fig. 3). When values of the residuals are beyond this limit, the
value of the weights update tends towards infinity. To avoid the
possibility that the residuals have values higher than 1, the datasets
should be normalized in order to satisfy this limitation and preserve the
internal topology between dataset dimensions.

6.2. Influence of the choice of α and β parameters on the Beta-SIM
learning rule

In the following, we thoroughly study how the choice of α and β
parameters influences the weights update (20) for the different cases:
Case 1: α=β, Case 2: α>β and Case 3: α<β.

6.2.1. Case 1: α=β
When α=β, the PDF of the beta distribution behavior tends to

correspond to a family of exponential distributions (see Fig. 4).
Therefore it is expected (Corchado et al., 2004) that for leptokurtic
residuals, the choice of high values of α and β (i.e. α=β=10) would be
more appropriate, while for platykurtic residuals, low values of α and β
(i.e. α=β=2) would be more appropriate.

Fig. 5 presents the weights updates versus the residual providing

relevant information about the behavior of the learning rule based on
the choice of α and β. We have analyzed the 3 different possible
scenarios related to Case 1: α=β.

Case 1.a): α=β=high values (i.e. α=β=10)
Case 1.b): α=β=medium values (i.e. α=β=5)
Case 1.c): α=β=low values (i.e. α=β=2)

In the three cases, it can be seen how the behavior of the weights
update (ΔW) versus the value of the residual (e=x−Wc) is associated to
two zones: zone a where 0 < e < 0.5 and zone b where 0.5 < e < 1.
Such behavior in both areas is symmetric (see Fig. 5).

In Case 1.a when α=β= high values (i.e. α=β=10), in zone a,
as the value of the residual increases, the ΔW value (solid blue line in
Fig. 5) increases until the peak of the function is reached and then it
reduces to zero very fast.

This is in line with what it is expected in theory; if a winning neuron
is near to the input data (i.e. the error is low) the ΔW is also low. As the
error increases, the ΔW increases up to the peak of zone a. Finally,
when the error approaches 0.5, the ΔW tends to zero and the neuron is
not attracted at all to the input.

As highlighted before, the behavior of ΔW versus e in zone b isFig. 3. Stability of the Beta-SIM Learning rule (it becomes unstable for values of |e| > 1).

Fig. 4. Beta-Distribution of residuals for values of α=β:2,2; 5,5; 10,10.

Fig. 5. Beta-SIM learning rule of the residuals for values of α=β. (For interpretation of
the references to color in this figure, the reader is referred to the web version of this
article.)
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symmetric to zone a (see Fig. 5).
In both zones the highest values for ΔW are related to the peaks of

the function, which are based on the choice of α and β.
In Case 1.b) when α=β=medium values (i.e. α=β=5), (Fig. 5,

green dotted line) the behavior resembles the “bell curve" shape. The
width of the function is greater and the height is lower than the case of
high values of α=β (case 1.a- solid blue line).

In Case 1.c) α=β=low values (i.e. α=β=2), (Fig. 5, red dashed
line) it can be deduced that in zone a, low values of e create larger
changes in the weights update. As the residual increases, the value ΔW
decreases (see Fig. 5, red dashed line) along zone a. Zone b has, as in
the previous two cases, a symmetric behavior than zone a.

6.2.2. Case 2: α > β
When α‡β, an asymmetric distribution is obtained, with positive

skewness if α > β, and negative skewness if α < β. The PDF of the Beta
distribution when α> β is shown in Fig. 6 for several values of both
parameters. For values of α > > > β, leptokurtic and positive skewness
residuals are larger (Corchado et al., 2004). Fig. 7 shows the repre-
sentation of the weights update versus the residual (learning rule (20))
for different values of α > β.

Again two zones associated to the magnitude of the residual can be
identified. Zone a, where the W increases as the residual increases

until reaching the first peak of the function and then decreases quickly
to zero (see Fig. 7). From this point, the behavior of the learning in
zone b (high values of e) is very interesting as it may be utilized for the
identification of sparse clusters or outliers, and based on Fig. 7, their
influence can be taken into account, or be discarded, depending on the
values of α and β. Such effect may be useful depending on the nature of
the dataset to be analyzed and on the purpose of the study.

During the training process, the samples from the dataset are
selected randomly, so the probability to select a sample of a sparse
cluster is lower than the probability to select a sample from a non-
sparse cluster (with a high number of samples). This means that
normally, the network is trained more often over samples of non-sparse
clusters, so the network tends to adapt to these non-sparse clusters. At
this point, if we use Beta-SIM with parameters α> β (Case 2), when a
sample of a sparse cluster is selected for training, the distance of this
sample to the winning neuron (residual e=) normally will be large. This
case is related to zone b of the learning rule (see Fig. 7). Therefore, the
winner node, and its neighbors, are updated attracting the network grid
strongly to the sparse cluster. Then, at the end of the training process,
at least some nodes of the network grid will be close to the sparse
clusters.

As a conclusion, the Beta-SIM network (specifically when α> β
(Case 2)) can be seen as a new tool in the data mining community, in
the sense that sparse clusters, that are part of high dimensional
datasets, can be taken into account and emphasized during clustering
tasks instead of being neglected as in many other topology preserving
maps.

6.2.3. Case 3: α < β
If α < β the effect on the beta distribution (Fig. 8) and Beta-SIM

learning rule (Fig. 9) is the opposite to Case 2: α > β. This means that
the higher values of the error (zone b) have now low impact on the
weights update, and if a winning output vector is far from the input
vector (high e=x−Wc), this neuron will be less “attracted” to the input
than if it was nearer to the input. This is also a useful research finding
as it can be seen as a tool to force the learning process to take into
account data associated to low residuals, meaning outliers and sparse
datasets would have less influence on the weights.

Therefore, the Beta-SIM model can be seen as a novel tool for the
data mining community, as it can help to model sparse data in highly
complex datasets, or limit the influence of outliers and noise by
selecting appropriate α and β parameters to create the optimal learning
rule.

Fig. 6. Beta-Distribution for values of α > β (6,5; 8,4; 10,3).

Fig. 7. Beta-SIM learning rule for values of α > β. Fig. 8. Beta-Distribution for values of α < β (5,6; 4,8; 3,10).
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7. Quality measures for topology preserving maps

Several quality measures have been proposed in literature to study
the reliability of the results displayed by topology preserving models to
represent the given dataset (Baruque and Corchado, 2014; Pölzlbauer,
2004). There are no global or unified measures, but rather a set of
complementary measures that each assess a specific characteristic of
the performance of the model in different visual representation areas.
The three measures used in this study are briefly presented in the
following paragraphs.

7.1. Classification error (CE)

Using its inherent pattern matching characteristics, the topology
preserving maps can generally be used for classification tasks.
Intuitively, the instances that activate the same neuron of the network
are very likely to belong to the same category. When a new sample is
presented to the network, the sample can be classified in the same class
as the majority of samples activating the same neuron. A consistent
behavior when classifying samples indicates a correctly trained map.
So, although this is not the main function of this kind of network, the
measure of how many samples are wrongly classified has been used, to
an extent, to assess the quality of the final map in numerous previous
studies (Baruque and Corchado, 2014; Pölzlbauer, 2004).

7.2. Topographic error (TE)

TE is the simplest of the topology preservation measures. For all
data samples, the respective best and second-best matching units
(BMUs) -1st BMU and 2nd BMU- are determined. If these are not
adjacent on the map lattice, this is considered an error. The total error
is then normalized to a range from 0 to 1, where 0 means perfect
topology preservation.

7.3. Mean Quantization Error (MQE)

MQE is related to all forms of vector quantization and clustering
algorithms. Thus, this measure completely disregards map topology
and alignment. MQE is computed by determining the average distance
of the dataset entries to the cluster centroids by which they are
represented. In the case of the SOM, the cluster centroids are the
characteristics vectors.

8. Experimental datasets

In order to test the novel method presented in this research, 2
artificial and 16 real datasets were used.

The 2 artificial datasets were used to compare the behavior of the
Beta-SIM algorithm with the theoretical analysis described in the
previous Section “6.2 Influence of the choice of α and β parameters
on the Beta-SIM learning Rule” and the 16 real datasets, composed of
clusters of different sparsity, were used to test the Beta-SIM algorithm
on clustering tasks.

Following, 2 real datasets were used to analyze the behavior of the
Beta-SIM algorithm to contrast the conclusions obtained in the
experiments over the artificial dataset. Once this analysis was per-
formed, the Beta-SIM algorithm was tested over 14 real benchmark
datasets by means of a statistical test using three quality measures to
compare the novel algorithm results against 5 other well-known
topology preserving algorithms (SOM, SIM, MLHL-SIM, ViSOM and
GNG).

The objective of the experiments was to show that the novel Beta-
SIM network, based on the appropriate choice of α and β parameters,
outperforms other topology preserving models, when they are applied
to different datasets composed of clusters with different levels of
sparsity (imbalanced datasets).

In all experiments, parameters were chosen in an experimental
process of trial and error. As parameter selection is a task that is very
dependent on the dataset to be used, several initial experiments were
conducted with a range of combinations of these parameters.

8.1. Artificial datasets

Two artificial datasets were created to measure the adaptation of
the network grid to datasets with different sparsity zones.

The objective of these experiments is to analyze the behavior of the
Beta-SIM algorithm to contrast the theoretical analysis developed in
the previous Section “6.2 Influence of the choice of α and β parameters
on the Beta-SIM learning Rule”.

8.1.1. Artificial dataset 1
In this experiment, a 2-D dataset with radial layout was generated.

The dataset consists of a uniform distribution in the shape of an ellipse,
where some of the samples were removed to get areas with different
levels of sparsity over the X axis (see Fig. 10).

To generate this sparsity over the X axis, a small ellipse was created
inside the dataset with an offset in respect to the center of the dataset,
with all samples inside this ellipse removed from the main dataset (see
Fig. 10-red dots).

The objective of this experiment is to measure the adaptation of the
different topology preserving networks (SOM, SIM, MLHL-SIM, Beta-
SIM) to the dataset, as it presents areas with different levels of sparsity.

As previously mentioned (Section 7), the following quality mea-
sures are applied to measure the adaptation of the network grids to the
dataset: MQE and TE. In these experiments the network grid consisted
of 20 neurons.

Table 1 shows the parameters used for the four networks (SOM,
SIM, MLHL-SIM and Beta-SIM) trained over this 2-D dataset, includ-
ing the values calculated for their QME and TE.

Fig. 10 shows the converged weights on the artificial dataset, for
each network. The Beta-SIM (Fig. 10d), after choosing adequate values
for the α and β parameters, obtained weights that enclosed the data
properly, performing better than the SOM (Fig. 10a) in terms of
preserving the topology on the areas with more data (left side of the
dataset), and was able to adapt the weights in the sparser area to be
more representative of its properties than the SIM (Fig. 10b right side
of the data). This research finding is also confirmed by results
presented in Table 1, where Beta-SIM achieves the lowest MQE in
comparison with the other three topology preserving models, and also

Fig. 9. Beta-SIM learning rule for values of α < β.
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the second lowest value for the TE. The SOM performed better on the
TE measure as the number of winning neurons on the left side of the
ellipse (with high-density) is greater than in the Beta-SIM. However, in
the case of the SOM, the convergence of the weights fails for areas with
sparse data (right side of the Fig. 10a).

8.1.2. Artificial dataset 2
This artificial 2-dimensional dataset was created to test the Beta-

SIM algorithm, in order to confirm the assertions outlined in Section 6.
The dataset was generated using uniform distributions, which were
centered at four different points in the 2-D space. Clusters were created
with different densities in the range [−1,1]:

1. Cluster 1: 10,000 samples; center [−0.8, 0], radius 0.2.
2. Cluster 2: 50 samples; center [0,0], radius 0.2.
3. Cluster 3: 10 samples; center [0.4, 0.7], radius 0.1.
4. Cluster 4: 5 samples; center [0.8, −0.5], radius 0.1.

Different combinations of values of α and β were tested in order to
analyze the effect on the training, and the results were compared with
the SOM, SIM and MLHL-SIM algorithms in order to validate them.
Experiments performed with this dataset were organized into 3 cases:

where α=β, where α > β and where α < β.

8.1.3. Case 1: α=β
With low values of α;β (i.e. α=β=4, see Fig. 11), which theoretically

are more appropriate for platykurtic residuals than for leptokurtic
residuals (Corchado et al., 2004), the behavior of the network out-
performed the models where higher values of α=β were used. Fig. 11h
shows the best result of the network for values of α=β, which is also
compared with the best results of SOM (Fig. 11a), SIM (Fig. 11b) and
MLHL-SIM (Fig. 11c–g).

In all cases, the final adaption of the network grid to the dataset is
very similar, focusing on the clusters with higher density of samples
(non-sparse clusters: cluster 1 (C1) and 2 (C2)), failing to cover and
adapt to the other sparse clusters (C3 and C4).

8.1.4. Case 2: α > β
In this case, residuals with high values should theoretically have

more influence on the weights updating (see Fig. 7), therefore the
adaptation of the network grid should cover all the clusters, even the
sparse ones (C3 and C4). In other words, the final positions of some
units (neurons of the network grid) will be in closer proximity with the
samples of the sparse clusters.

Generally, the learning process is highly conditioned upon samples
from clusters of high density (C1 and C2). In general, the final network
grid adapts to these high density clusters. By using values of α > β, the
Beta-SIM algorithm reinforces the learning for the residuals of a sparse
cluster sample, as in this dataset where clusters with few samples (low
density) are far from clusters with high density of samples. In this case,
the final network grid should adapt better over these sparse clusters
(C3 and C4).

Fig. 12 shows that when α > β, the Beta-SIM algorithm is able to
assign a small number of units to cover these sparse clusters (C3 and
C4), ensuring an effective clustering task even when “imbalanced”
datasets, like this dataset, are involved.

Fig. 10. SOM (a), SIM (b), MLHL-SIM (c) and Beta-SIM (d) final network grid (with 20 neurons) for artificial dataset 1.

Table 1
SOM, SIM, MLHL-SIM and Beta SIM parameters and its MQE and TE.

SOM SIM MLHL-SIM Beta-SIM

Size [1,20] [1,20] [1,20] [1,20]
Iterations 10,000 10,000 10,000 10,000
Learning rate 0.1 0.1 0.02 0.1
Neighborhood 10 20 20 15
p – – 0.8 –

α;β – – – α=3;β=8
MQE 0.1250 0.0995 0.1102 0.0972
TE 0.0123 0.0649 0.0526 0.0355
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8.1.5. Case 3: α < β
In this case, by selecting appropriate values of the parameters α < β

it is possible to make that neurons of the network only react to clusters
with higher density of samples (C1, see Fig. 13).

When α < β, (see Fig. 9), low residuals create larger weight updates,
making the network grid adapt only to high density clusters (C1, see
Fig. 13). Therefore, by selecting values where α < β, it is possible to
minimize or eliminate the effect of sparse datasets and/or data outliers
on the learning process.

Based on the achieved results, it can be concluded that the
combination of parameters α and β allows the selection of how the
network grid fits over the dataset. These results seem to confirm that

the network takes into account the sparser clusters when α > β, and on
the contrary, is capable of neglecting, for instance, the existence of
outliers (high values of e) associated to noise in the data, by using
values of α < β.

8.2. Real datasets

In this Section (“8.2 Real dataset”), 2 real datasets were used to
analyze the behavior of the Beta-SIM algorithm to contrast the
conclusions obtained in the experiments over the artificial datasets.
Later, in Section “8.3 Validation over 14 real benchmark datasets”, the
Beta-SIM algorithm is compared to other algorithms using statistical

Fig. 11. Beta-SIM (h) results for values α=β, and its comparison with SOM (a), SIM (b) and MLHL-SIM (c–g) algorithms: 20 neurons, 50,000 iterations; η=0.02; neighborhood
function= Gaussian; MLHL-SIM: p=10, 5, 2, 1, 0.8; Beta-SIM α=β=4.
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tests over 14 real benchmark datasets. This makes a total of 16 real
datasets used to test the behavior of Beta-SIM algorithm.

8.2.1. E. Coli dataset
The first real dataset used in these experiments is the well known E.

Coli dataset from UCI repository (Lichman, 2013). The objective of this
dataset is to predict the localization site of proteins by utilizing
measurements of the cells’ characteristics (cytoplasm, inner mem-
brane, perisplasm, outer membrane, outer membrane lipoprotein,
inner membrane lipoprotein inner membrane, cleavable signal se-
quence).

SOM, SIM, MLHL-SIM and Beta-SIM algorithms were applied over
this dataset. The application of Topology-preserving models to these
kind of tasks has previously proved interesting (Baruque and Corchado,
2014).

The dataset consists of 336 instances with 7 attributes, divided in 8
classes with sizes: 143(C1), 77(C2), 2(C3), 2(C4), 35(C5), 20(C6),
5(C7), 52(C8), which create an imbalanced dataset.

In all experiments a normalization of the dataset [−1,1] was
performed and a 10-fold-cross validation was used.

Table 2 shows the parameters used for the algorithms throughout
all the experiments. Parameters have been chosen in an experimental

Fig. 12. Beta-SIM results for values α > β; α=5, β=2, η=0.5, iterations=50,000, neighborhood function= Gaussian; neurons grid=[1,20].

Fig. 13. Beta-SIM results for values α < β; α=2, β=8, η=0.01, iterations=50,000, neighborhood function= Gaussian; neurons grid=[1,20].
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process of trial and error. The best performing set of parameters was
selected to later conduct all the experiments detailed in the compar-
ison.

Table 2 also shows the results for the CE, TE, and MQE obtained for
this dataset. It can be seen that Beta-SIM obtains the best CE and
MQE. However, the best TE is obtained by SOM as expected.

In Fig. 14, the final adaptation of the network grids to the dataset is
shown for the 4 algorithms (SOM, SIM, MLHL-SIM, Beta-SIM). The
Beta-SIM network generates a clear network grid over the dataset, as it
is more spread out over the dataset, especially the group at the top of
the image (Fig. 14d), which seems to be a sparse cluster.

In the case of Beta-SIM, SIM, and MLHL-SIM the topology of the
network grid is affected by groups placed at the top of the figure
(Fig. 14b–c) and several neurons are dragged by this group. This effect
is clearly reflected in the larger TE compared to the SOM network. For
the SOM (Fig. 14a), the model does not spread the network grid over

the group placed at the top, and hence the effect on the topology of the
network is lower than in the case of the other algorithms, leading to a
lower TE.

If we now modify the values of α and β, Beta-SIM is able to neglect
the sparse clusters (top groups of Fig. 15), as they have high residual
values (e) and the network considers them as outliers (see final network
grid adaptation over the dataset in Fig. 15).

Fig. 16 shows the final map for SOM, SIM, MLHL-SIM, and Beta-SIM
algorithms, where only the BMUs are displayed. Each BMU is labelled
based on the training inputs to which it is reacting. This means that if
neuron 10 is activated by 20 training inputs, and 19 of them belongs to
class 1, this neuron will be labelled as class 1 (blue circle in Fig. 16).

Table 2
SOM, SIM, MLHL-SIM and Beta-SIM parameters and their associated measures: CE,
MQE and TE for E. Coli dataset.

SOM SIM MLHL-SIM Beta-SIM

Size [10,10] [10,10] [10,10] [10,10]
Iterations 5,000 10,000 5,000 5,000
Learning rate 0.1 0.01 0.1 0.1
Neighborhood 10 5 10 15
p – – 0.9 –

α;β – – – α=3;β=2
CE 11,9% 11,3% 11% 9,82%
MQE 0,32 0,26 0,21 0,20
TE 0,11 0,33 0,63 0,54

a) SOM network grid

b) SIM network grid

c) MLHL-SIM network grid

d) Beta-SIM network grid

Fig. 14. SOM, SIM, MLHL-SIM and Beta-SIM final network grids adaptation over the E. Coli dataset.

Fig. 15. Beta-SIM final network grid adaptation over the E. Coli dataset, with α=2 and
β=4.
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Based on the maps from Fig. 16, only the Beta-SIM network
(Fig. 16d) is able to assign at least one neuron to each class. Also, in
the Beta-SIM map, the number of neurons assigned to each class is
proportional to the size of the classes, so classes C1 and C2 have the
highest number of BMUs, followed by classes C8, C5, and C6
respectively, and the lower number of BMUs are associated to sparse
classes (C3, C4 and C7).

However, the SOM network (Fig. 16a) has the best organization,
where neurons are not disordered and the classes are not mixed. In the
case of Beta-SIM, several neurons appear disordered, for instance C8
(blue left-pointing triangle in Fig. 16) appears at the top-center and
also at the bottom-right side.

Finally, if we present the final Beta-SIM map when α=2 and β=4
(see Fig. 17), we get as expected the opposite results to Beta-SIM when
α=3 and β=2. So now the organization of the map is much clearer, but
it is not able to assign BMUs to all classes.

8.2.2. High precision machine dataset
Our second real dataset was obtained from a dynamic high-

precision machinery used for the manufacturing of metal dental pieces
(Redondo et al., 2015; Vera et al., 2013). This real industrial use case is
described by an initial dataset of 190 samples obtained by a dental
scanner in the manufacturing of dental pieces with different tool types

a) SOM network grid b) SIM network grid

Classes and symbols

c) MLHL-SIM network grid d) Beta-SIM network grid

Fig. 16. SOM, SIM, MLHL-SIM and Beta-SIM final maps. (For interpretation of the references to color in this figure, the reader is referred to the web version of this article.)

Classes and symbols

Fig. 17. Beta-SIM final map when α=2 and β=4.

H. Quintián, E. Corchado Engineering Applications of Artificial Intelligence 59 (2017) 218–235

228



(flat, toric, spherical and drill) and is characterized by eleven input
variables (number of pieces, type of dental piece, tool, radius, revolu-
tions, feed rate X, Y and Z, thickness, initial temperature, and initial
diameter of the tool).

The objective was to test the adaptation of the networks to this real
dataset and compare the quality of the Beta-SIM against other algo-
rithms. The MQE and TE were used to measure the quality of the final
network grid in 4 algorithms: SOM, SIM, MLHL-SIM and Beta-SIM.

Table 3 shows the parameters used for the algorithms throughout
all the experiments and the final MQE and TE for each algorithm.

Table 3
SOM, SIM, MLHL-SIM and Beta-SIM parameters and their MQE and TE for the high
precision machine dataset.

SOM SIM MLHL-SIM Beta-SIM

Size [15,15] [15,15] [15,15] [15,15]
Iterations 50,000 100,000 50,000 50,000
Learning rate 0.01 0.01 0.1 0.1
Neighborhood 10 5 10 5
p – – 0.5 –

α;β – – – α=2;β=3
MQE 0,55 0,57 0,49 0,38
TE 0,10 0,36 0,26 0,24

a) SOM network grid
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Fig. 18. SOM and Beta-SIM final network grids adaptation over the dataset.

Table 4
Benchmark datasets.

Name of the dataset Samples Features Classes Source

Dataset 1 Liver Disorders 345 6 2 UCI repository
Dataset 2 Fertility 100 10 2 UCI repository
Dataset 3 Bank Marketing 45211 16 2 UCI repository
Dataset 4 Iris 150 4 3 UCI repository
Dataset 5 Wine 178 13 3 UCI repository
Dataset 6 Contraceptive 1473 9 3 UCI repository
Dataset 7 Car 1728 6 4 UCI repository
Dataset 8 Dermatology 358 33 6 UCI repository
Dataset 9 Image Segmentation 2310 19 7 UCI repository
Dataset 10 Landsat Satellite 6435 36 7 UCI repository
Dataset 11 Yeast 1484 8 10 UCI repository
Dataset 12 Pen-Based Recog. of Handwritten Digits 10992 16 10 UCI repository
Dataset 13 Optical Recognition of Handwritten Digits 5620 64 10 UCI repository
Dataset 14 Letter Recognition 20000 16 29 UCI repository

Table 5
p-values for CE (Beta-SIM against all algorithms).

Dataset SOM ViSOM SIM MLHL-SIM GNG

1 0.6580 1.0000 1.0000 0.9999 0.989
2 1.0000 0.9837 0.9837 1.0000 1.0000
3 1.0000 1.0000 0.9989 1.0000 0.9982
4 0.9999 0.9999 0.9999 0.9973 0.9999
5 1.0000 1.0000 1.0000 0.6053 0.9996
6 1.0000 0.2786 0.9676 0.8666 1.0000
7 0.4614 0.0481* 0.5622 0.4231 0.9602
8 0.9612 0.7831 0.9971 0.2273 0.0139*

9 0.0007* 0.0000* 0.0000* 0.0002* 0.0000*

10 0.0033* 0.0059* 0.0118* 0.1622 0.0048*

11 0.1867 0.4699 0.9950 0.9683 0.7909
12 0.0013* 0.0002* 0.0489* 0.1306 0.3019
13 0.0000* 0.0000* 0.0003* 0.0004* 0.0044*

14 0.0000* 0.0000* 0.0000* 0.0000* 1.0000

◊Beta-SIM is significantly worse (significance level of 0.05) than the other model.
* Beta-SIM is significantly better (significance level of 0.05) than the other model.

Table 6
p-values for MQE (Beta-SIM against all algorithms).

Dataset SOM ViSOM SIM MLHL-SIM GNG

1 0.0031* 0.0003* 0.9847 1.0000 0.9925
2 0.3168 0.5267 0.5422 0.7727 0.0068◊

3 0.0231* 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊

4 0.0087* 0.6621 1.0000 0.9987 0.2649
5 0.9627 0.7475 0.5616 0.3808 0.0673
6 0.0000* 0.0565* 0.2433 0.8285 0.1819
7 0.0000* 0.0059◊ 0.9994 0.0004◊ 0.0000◊

8 0.0001* 0.0000* 0.0051* 0.0007* 0.0000*

9 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

10 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

11 0.0000* 0.1097 0.8189 0.9515 0.3771
12 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

13 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

14 0.0000* 0.0000* 0.0000* 0.0000* 0.0000*

* Beta-SIM is significantly better (significance level of 0.05) than the other model.
◊ Beta-SIM is significantly worse (significance level of 0.05) than the other model.
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Parameters were chosen in an experimental process of trial and error.
The best performing set of parameters was selected to later conduct all
the experiments detailed in the comparison.

As expected, based on the results of previous experiments over
different datasets, the SOM is the one which obtains the best TE, and
the Beta-SIM obtains the best MQE. By modifying the parameters α
and β it is possible to reduce the TE to values similar to SOM, but the
MQE becomes worse.

In Fig. 18, the final adaptation of the network grids to this real
dataset is shown for SOM and Beta-SIM. The Beta-SIM network
generates a clearer network grid over the dataset, as it is more spread
out over the dataspace.

8.3. Validation over 14 real benchmark datasets

In this subsection, the Beta-SIM algorithm is validated over 14
diverse real benchmark datasets with diverse number of samples and
features by means of a statistical test (ANOVA + post-hoc analysis).
The Beta-SIM algorithm is also compared with other well known
topology preserving algorithms such as: SOM, ViSOM, SIM, MLHL-
SIM, and GNG in order to validate its capabilities, comparing the
methods in terms of CE, MQE and TE.

8.3.1. Benchmark datasets description
A total of 14 diverse benchmark datasets from the UCI Machine

Repository were used to validate the Beta-SIM algorithm. In Table 4, a
summary of these datasets is presented in terms of samples, features,
and number of classes.

8.3.2. Results and statistical analysis
In all experiments over all datasets, a normalization of the dataset

was performed, and a 10-fold-cross validation was used. Parameters
were chosen in an experimental process of trial and error.

Table A1 (Appendix A) shows the average CE, MQE and TE ± their
standard deviation (STD) for each algorithm with each dataset.

Table A2 (Appendix A) presents the parameters selected for each
algorithm over the different experiments (for each dataset). In all cases,
the number of neurons were the same for all algorithms in each
experiment.

Tables 5–7 presents the p-values obtained after applying an
ANOVA+post HOC statistical analysis for CE, MQE and TE, respec-
tively (Beta-SIM against each algorithm).

After the statistical analysis presented in Tables 5–7, it can be

concluded that in general terms, the novel Beta-SIM algorithm obtains
better results when the number of classes of the datasets increases, that
is to say, for complex high dimensional datasets. When the number of
classes is larger than 7, in general, Beta-SIM obtains a significant
improvement in relation to the CE and MQE measures, with the
improvement being of greater magnitude in the MQE measures.
However, as can be expected, the TE measure is worse than the other
algorithms (except GNG). This is due to the better adaptation to the
datasets forcing a deformation of the final neural grid. Nevertheless,
when the number of classes is lower than 7, Beta-SIM results are
statistically similar to the ones obtained by the other state-of-the-art
algorithms.

The results of the experiments performed over these benchmark
datasets help to draw broader conclusions about the behavior of the
novel proposed method, showing how it improves the other models
based on such three well-known quality measures (CE, MQE and TE).

Table A3 (Appendix A) summarizes the results of Tables 5–7 in
terms of percentage (%) of improvement:

1. Positive values are the “%” of improvement of Beta-SIM in compar-
ison with a specific algorithm, in relation to the three well-known
quality measures.

2. Negative values are the “%” of deterioration of Beta-SIM in
comparison with a specific algorithm, in relation to the three well-
known quality measures.

Finally, based on the parameters selection for the Beta-SIM
algorithm (Table A1 Appendix), it can be observed that when the
number of classes is large (more than 7 classes) the best combination of
α and β parameters is obtained for α > β, and otherwise when the
number of classes is small (less than 7 classes), the best combination is
obtained when α=β, or even α < β when the number of classes are very
small (i.e. 2 or 3 classes). Therefore, it is worthy to apply Beta-SIM
when analyzing complex high dimensional datasets.

9. Conclusions and future work

A novel algorithm called Beta-SIM has been presented and thor-
oughly analyzed in this study. Beta-SIM aims to obtain the best
topology preserving map possible, in order to be used as a reliable
tool in data visualization. Due to the inherent capabilities of the SIM,
their combination with the BHL algorithm improves adaptation and
visualization of datasets with a radial structure, as has been success-
fully shown in the tests. The main improvement of the algorithm is the
capacity to adapt to sparse clusters or to neglect outliers depending on
the combination of values of α and β and the task to be carried out.

Beta-SIM is therefore a powerful new tool for the data mining and
big data communities and should take its place along with existing
topology preserving maps.

Future work includes the application of the BHL rule to other
topology preserving models, such as Self Organizing Maps (SOM),
Visualization Inducted SOM (ViSOM) (Corchado and Baruque, 2012),
and its combination with the use of ensembles to boost model
performance (Baruque and Corchado, 2014; Haixiang et al., 2016).
Also, Beta-SIM could be applied to analyze challenging datasets in
order to solve problems in the field of the electric vehicles, energy
efficiency, cybersecurity, big data, etc.
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Table 7
p-values for TE (Beta-SIM against all algorithms).

Dataset SOM ViSOM SIM MLHL-SIM GNG

1 0.0000◊ 0.0000◊ 0.9999 0.6811 0.0000*

2 0.7557 1.0000 1.0000 0.7557 0.0000*

3 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0000*

4 0.6460 0.0001◊ 0.9989 0.9721 0.0000*

5 0.0000◊ 0.0000◊ 0.0000◊ 0.0008◊ 0.0000*

6 0.0000◊ 0.0000◊ 0.7769 0.1592 0.0000*

7 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0000*

8 0.0010◊ 0.0001◊ 0.7565 1.0000 0.0050◊

9 0.0000◊ 0.0000◊ 0.9999 1.0000 0.0000*

10 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.9796
11 0.0000◊ 0.0000◊ 0.4494 1.0000 0.0000*

12 0.0000◊ 0.0000◊ 0.1581 0.0517 0.0000*

13 0.0000◊ 0.0000◊ 0.0009◊ 0.0001◊ 0.0000*

14 0.0000◊ 0.0000◊ 0.0000◊ 0.0000◊ 0.0000*

* Beta-SIM is significantly better (significance level of 0.05) than the other model.
◊ Beta-SIM is significantly worse (significance level of 0.05) than the other model.

H. Quintián, E. Corchado Engineering Applications of Artificial Intelligence 59 (2017) 218–235

230



Appendix A

See Tables A1–A3.

Table A1
Average testing CE/MQE/TE ± STD over the 14 benchmark datasets.

Dataset Quality Measure SOM ViSOM SIM MLHL-SIM GNG Beta-SIM

1 CE 0.412 ± 0.0866 0.472 ± 0.1004 0.474 ± 0.0904 0.461 ± 0.0858 0.446 ± 0.0690 0.469 ± 0.0725
MQE 0.314 ± 0.0352 0.326 ± 0.0320 0.272 ± 0.0282 0.265 ± 0.0225 0.256 ± 0.0223 0.263 ± 0.0308
TE 0.090 ± 0.0456 0.064 ± 0.0467 0.313 ± 0.0735 0.348 ± 0.0646 0.713 ± 0.0724 0.308 ± 0.0595

2 CE 0.210 ± 0.1595 0.180 ± 0.1033 0.180 ± 0.1229 0.210 ± 0.1287 0.220 ± 0.1476 0.210 ± 0.1229
MQE 1.226 ± 0.0824 1.035 ± 0.1118 1.037 ± 0.1110 1.055 ± 0.1264 0.937 ± 0.0968 1.121 ± 0.1381
TE 0.030 ± 0.0483 0.090 ± 0.1287 0.090 ± 0.0568 0.030 ± 0.0675 0.440 ± 0.1430 0.090 ± 0.1101

3 CE 0.117 ± 0.0039 0.117 ± 0.0046 0.116 ± 0.0046 0.117 ± 0.0040 0.116 ± 0.0047 0.117 ± 0.0048
MQE 1.223 ± 0.0103 1.005 ± 0.0094 1.057 ± 0.0170 1.037 ± 0.016 0.993 ± 0.0131 1.178 ± 0.0701
TE 0.023 ± 0.0123 0.026 ± 0.0065 0.053 ± 0.0148 0.055 ± 0.0297 0.309 ± 0.0425 0.136 ± 0.0466

4 CE 0.047 ± 0.0632 0.047 ± 0.0549 0.060 ± 0.0734 0.067 ± 0.0544 0.047 ± 0.0549 0.046 ± 0.0820
MQE 0.222 ± 0.0388 0.157 ± 0.0209 0.177 ± 0.0310 0.181 ± 0.0331 0.149 ± 0.0143 0.166 ± 0.0250
TE 0.200 ± 0.0770 0.120 ± 0.0322 0.260 ± 0.1313 0.320 ± 0.1209 0.587 ± 0.1565 0.280 ± 0.1363

5 CE 0.045 ± 0.0353 0.045 ± 0.0365 0.045 ± 0.0450 0.079 ± 0.0614 0.051 ± 0.0513 0.044 ± 0.0511
MQE 0.795 ± 0.0836 0.720 ± 0.0743 0.710 ± 0.0822 0.700 ± 0.0807 0.669 ± 0.0422 0.767 ± 0.0909
TE 0.090 ± 0.0390 0.062 ± 0.0720 0.190 ± 0.0865 0.225 ± 0.0950 0.668 ± 0.1129 0.400 ± 0.1124

6 CE 0.538 ± 0.0448 0.541 ± 0.0571 0.546 ± 0.0416 0.538 ± 0.0536 0.560 ± 0.0432 0.550 ± 0.0417
MQE 0.870 ± 0.0342 0.699 ± 0.0338 0.742 ± 0.0378 0.717 ± 0.0342 0.493 ± 0.0242 0.654 ± 0.0360
TE 0.040 ± 0.0255 0.028 ± 0.0088 0.081 ± 0.0286 0.073 ± 0.0505 0.529 ± 0.0469 0.125 ± 0.0364

7 CE 0.210 ± 0.0499 0.231 ± 0.0413 0.207 ± 0.0287 0.211 ± 0.0413 0.192 ± 0.0491 0.177 ± 0.0268
MQE 1.206 ± 0.0243 1.045 ± 0.0305 1.083 ± 0.0257 1.036 ± 0.0252 0.851 ± 0.0097 1.086 ± 0.0286
TE 0.046 ± 0.0142 0.063 ± 0.0177 0.136 ± 0.0266 0.120 ± 0.0243 0.667 ± 0.0217 0.443 ± 0.0393

8 CE 0.031 ± 0.0406 0.081 ± 0.0403 0.061 ± 0.0677 0.104 ± 0.0722 0.131 ± 0.0514 0.050 ± 0.0318
MQE 1.818 ± 0.0638 1.834 ± 0.0683 1.783 ± 0.0585 1.800 ± 0.0677 2.261 ± 0.0606 1.679 ± 0.0452
TE 0.053 ± 0.0243 0.031 ± 0.0337 0.132 ± 0.0708 0.162 ± 0.0721 0.070 ± 0.0509 0.167 ± 0.0818

9 CE 0.143 ± 0.0262 0.195 ± 0.0237 0.165 ± 0.0249 0.147 ± 0.0246 0.151 ± 0.0187 0.098 ± 0.0162
MQE 0.553 ± 0.0197 0.532 ± 0.0298 0.487 ± 0.0227 0.464 ± 0.0265 0.511 ± 0.0183 0.381 ± 0.0206
TE 0.071 ± 0.0195 0.040 ± 0.0246 0.162 ± 0.0350 0.161 ± 0.0364 0.345 ± 0.0362 0.158 ± 0.0404

10 CE 0.158 ± 0.0106 0.157 ± 0.0100 0.155 ± 0.0216 0.148 ± 0.0204 0.157 ± 0.0081 0.132 ± 0.0125
MQE 0.644 ± 0.0084 0.655 ± 0.0103 0.597 ± 0.0197 0.592 ± 0.0083 0.681 ± 0.0114 0.489 ± 0.0075
TE 0.120 ± 0.0184 0.063 ± 0.0132 0.197 ± 0.0460 0.243 ± 0.0606 0.380 ± 0.0252 0.392 ± 0.0600

11 CE 0.500 ± 0.0359 0.489 ± 0.0472 0.462 ± 0.0538 0.468 ± 0.0394 0.478 ± 0.0427 0.451 ± 0.0530
MQE 0.321 ± 0.0274 0.292 ± 0.0170 0.279 ± 0.0207 0.276 ± 0.0190 0.286 ± 0.0203 0.267 ± 0.0217
TE 0.059 ± 0.0174 0.051 ± 0.0193 0.297 ± 0.0383 0.333 ± 0.0598 0.520 ± 0.0527 0.330 ± 0.0340

12 CE 0.106 ± 0.0123 0.109 ± 0.0147 0.098 ± 0.0150 0.096 ± 0.0101 0.093 ± 0.0135 0.081 ± 0.0114
MQE 0.883 ± 0.0102 0.897 ± 0.0115 0.753 ± 0.0129 0.741 ± 0.0138 0.901 ± 0.0123 0.668 ± 0.0152
TE 0.055 ± 0.0090 0.042 ± 0.0037 0.088 ± 0.0136 0.082 ± 0.0135 0.290 ± 0.0268 0.105 ± 0.0176

13 CE 0.105 ± 0.0098 0.120 ± 0.0146 0.092 ± 0.0103 0.091 ± 0.0115 0.087 ± 0.0178 0.064 ± 0.0128
MQE 2.703 ± 0.0228 2.811 ± 0.0173 2.450 ± 0.0203 2.454 ± 0.0213 2.701 ± 0.0229 2.247 ± 0.0289
TE 0.038 ± 0.0092 0.037 ± 0.0082 0.063 ± 0.0123 0.058 ± 0.0121 0.293 ± 0.0273 0.091 ± 0.0095

14 CE 0.545 ± 0.0169 0.516 ± 0.0141 0.503 ± 0.0101 0.497 ± 0.0139 0.363 ± 0.0175 0.362 ± 0.0122
MQE 0.605 ± 0.0044 0.568 ± 0.0045 0.527 ± 0.0028 0.521 ± 0.0044 0.448 ± 0.0031 0.432 ± 0.0043
TE 0.074 ± 0.0109 0.075 ± 0.0109 0.193 ± 0.0129 0.204 ± 0.0196 0.483 ± 0.0154 0.247 ± 0.0191
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Table A2
Algorithms parameters for each Benchmark dataset.

Dataset Parameters SOM ViSOM SIM MLHL-SIM GNG Beta-SIM

1 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 30,000 20,000 30,000 30,000 30,000 30,000
Learning rate 0.1 0.05 0.05 0.05 – 0.05
Neighborhood 12 10 10 10 – 6
p – – – 0.5 – –

α;β – – – – – α=3;β=4
λViSOM – 0,25 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 200; 0.5; 0.9; 5; 0.01; 0.001 –

2 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 5,000 5,000 5,000 5,000 10,000 5,000
Learning rate 0.1 0.05 0.1 0.1 – 0.1
Neighborhood 12 10 10 10 – 6
p – – – 0.9 – –

α;β – – – – – α=3;β=3.5
λViSOM – 0,25 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 200; 0.5; 0.9; 5; 0.01; 0.001 –

3 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 30,000 30,000 30,000 30,000 30,000 50,000
Learning rate 0.05 0.05 0.05 0.05 – 0.05
Neighborhood 12 10 10 10 – 6
p – – – 0.5 – –

α;β – – – – – α=3;β=3.5
λViSOM – 0,25 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.01; 0.001 –

4 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 5,000 5,000 5,000 5,000 5,000 5,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 10 5 10 – 12
p – – – 0.9 – –

α;β – – – – – α=3;β=3
λViSOM – 0,1 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.1; 0.001 –

5 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 5,000 5,000 5,000 5,000 5,000 5,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 12 10 12 10 – 12
p – – – 0.9 – –

α;β – – – – – α=4;β=4
λViSOM – 0.1 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 50; 0.5; 0.9; 5; 0.1; 0.0001 –

6 Size [10,15] [10,15] [10,15] [10,15] – [15,10]
Iterations 10,000 10,000 10,000 10,000 10,000 50,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 12 10 12 10 – 5
p – – – 1.2 – –

α;β – – – – – α=4;β=4
λViSOM – 0.2 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 50; 0.5; 0.9; 5; 0.1; 0.0001 –

7 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 10,000 5,000 10,000 10,000 10,000 10,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 10 10 12 10 – 6
p – – 0.9 – –

α;β – – – – α=5;β=3
λViSOM – 0.2 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.01; 0.0001 –

8 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 5,000 5,000 5,000 5,000 5,000 5,000
Learning rate 0.1 0.1 0.05 0.05 – 0.1
Neighborhood 10 10 10 10 – 6
p – – – 0.9 – –

α;β – – – – – α=4;β=3
λViSOM – 0.3 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 50; 0.5; 0.9; 5; 0.01; 0.0001 –

9 Size [15,20] [15,20] [15,20] [15,20] – [15,20]
Iterations 10,000 5,000 10,000 10,000 10,000 10,000
Learning rate 0.1 0.1 0.05 0.1 – 0.1
Neighborhood 10 10 10 10 – 6
p – – 0.9 – –

α;β – – – – α=4;β=3
λViSOM – 0.25 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.01; 0.0001 –

10 Size [15,20] [15,20] [15,20] [15,20] – [15,20]
Iterations 30,000 30,000 30,000 30,000 30,000 30,000

(continued on next page)
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Table A2 (continued)

Dataset Parameters SOM ViSOM SIM MLHL-SIM GNG Beta-SIM

Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 10 10 10 10 – 6
p – – – 1.1 – –

α;β – – – – – α=4;β=3
λViSOM – 0.25 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.01; 0.0001 –

11 Size [10,15] [10,15] [10,15] [10,15] – [10,15]
Iterations 10,000 10,000 10,000 10,000 10,000 10,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 12 10 10 10 – 6
p – – – 0.5 – –

α;β – – – – – α=4;β=3
λViSOM – 0.1 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 50; 0.5; 0.9; 5; 0.01; 0.0001 –

12 Size [15,20] [15,20] [15,20] [15,20] – [15,20]
Iterations 50,000 50,000 50,000 50,000 50,000 50,000
Learning rate 0. 1 0.1 0.1 0.1 – 0.1
Neighborhood 12 10 8 8 – 6
p – – – 0.9 – –

α;β – – – – – α=4;β=3
λViSOM – 0.1 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.001; 0.0001 –

13 Size [10,20] [10,20] [10,20] [10,20] – [10,20]
Iterations 40,000 40,000 40,000 40,000 40,000 40,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 12 10 12 12 – 6
p – – – 0.9 – –

α;β – – – – – α=4;β=3
λViSOM – – – – 100; 0.5; 0.9; 5; 0.001; 0.0001 –

λGNG; αGNG;βGNG; amax; Wl; Wn
14 Size [20,25] [20,25] [20,25] [20,25] – [20,25]

Iterations 80,000 80,000 80,000 80,000 80,000 80,000
Learning rate 0.1 0.1 0.1 0.1 – 0.1
Neighborhood 12 10 12 12 – 6
p – – – 0.5 – –

α;β – – – – – α=4;β=3
λViSOM – 0.1 – – – –

λGNG; αGNG;βGNG; amax; Wl; Wn – – – – 100; 0.5; 0.9; 5; 0.005; 0.0001 –
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