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Context-awareness in wireless sensor networks (WSNs) relies mainly on the position of objects and humans. The provision of this
positional information becomes challenging in the harsh environmental conditions where WSNs are commonly deployed. With
an antagonistic philosophy of design, fingerprinting and ranging have emerged as the key technologies underpinning wireless
localization in harsh environments. Fingerprinting primarily focuses on accurate estimation at the expense of exhaustive calibration.
Ranging mainly pursues an easy-to-deploy solution at the expense of moderate performance. In this paper, we present a resilient
framework for sustained localization based on accurate fingerprinting in critical areas and light ranging in noncritical spaces.
Such framework is conceived from the Bayesian perspective that facilitates the specification of recursive algorithms for real-time
operation. In comparison to conventional implementations, we assessed the proposed framework in an indoor scenario with
measurements gathered by commercial devices. The presented techniques noticeably outperform current approaches, enabling
a flexible adaptation to the fluctuating conditions of harsh environments.

1. Introduction

The burgeoning demand for context-aware services and
smarter environments has been largely motivated by the
proliferation of the increasingly dense wireless sensor net-
works (WSNs) and intelligent embedded devices [1–5].These
services and environments accommodate applications in
diverse fields such as healthcare [6–8], emergency [9–11],
or industry [12–14]. In order to satisfy such a demand,
the positional information plays a crucial role and has
inevitably put indoor localization in the forefront of research
[15–21]. Current positioning techniques that rely on global
navigation satellite systems (GNSS) operate robustly in open
areas and sparse environments [16, 22]. However, there is
no alternative technique with analogous performance and
affordable complexity in indoor areas or harsh environments
[23, 24]. The proposed alternatives can be coarsely classified
into fingerprinting and ranging localization techniques [25–
35].

Fingerprinting techniques determine the location of a
mobile target from position-related information provided by

offline and onlinemeasurements [25–28]. In the offline phase,
different features from the transmitted signals in the wireless
network are stored at several positions to form a database
of location fingerprints. In the online phase, the position is
estimated by comparison of the new received values with
the database (i.e., with their fingerprint). Fingerprinting
techniques involve two major drawbacks: they require an
arduous offline phase of calibration and are very sensitive to
fast environmental changes [25].

Ranging techniques determine the location of a mobile
target from range-related information provided by time-
of-arrival (TOA) [29–31] or received signal-strength (RSS)
[32–34] measurements. In a first stage, the distance to a
set of anchors with known positions is estimated from the
signals transmitted to the target. In a second stage, the
position is estimated by a process known as trilateration (i.e.,
intersection of circles). Ranging techniques suffer from two
dominant limitations: their accuracy is far from fingerprint-
ing methods and falls down under multipath and non-line-
of-sight (NLOS) conditions [35].

Hindawi Publishing Corporation
International Journal of Distributed Sensor Networks
Volume 2015, Article ID 479765, 11 pages
http://dx.doi.org/10.1155/2015/479765

http://dx.doi.org/10.1155/2015/479765


2 International Journal of Distributed Sensor Networks

Strengths and weaknesses of fingerprinting and rang-
ing localization have inevitably focused the challenge in
developing unifying systems without substantially increasing
complexity and cost. Such solutions will enable fine local-
ization via fingerprinting in places where the accuracy is
critical or when the database can be frequently updated
and coarse localization via ranging in areas where there
is no database or when it has become obsolete. In [36],
fingerprint- and TOA-based methods are coupled to localize
UWBdevices from amaximum-likelihood (ML) perspective;
in [37], fingerprint- and RSS-based techniques are fused
by using RFID tags/readers and particle filtering; in [38],
fingerprint-based localization and channel-estimation track-
ing are combined to localize UWB devices via extended
Kalman filter (EKF); in [39], fingerprinting positioning and
pyroelectric infrared sensors are joined to overcome error
induced by RSS variation.

In this paper, we propose framework and algorithms for
unified fingerprinting/ranging in harsh environments based
on Bayesian filtering. Such framework integrates position-
related measurements from the first and range-related mea-
surements from the second. Moreover, it further considers
the dynamic nature of the wireless channel entailing more
accurate ranging localization. Specifically, themain contribu-
tions of the paper are as follows:

(i) We define a unifying framework for target localiza-
tion that accommodates fine estimates via finger-
printing and coarse estimates via ranging.

(ii) We provide realistic likelihood functions to model
fingerprints and path-loss exponents based on kernel
mixtures.

(iii) We derive algorithms to implement such framework
bymeans of the unscented transformation that allows
for efficient computation.

(iv) We assess the performance of the developed frame-
work and algorithms in a real scenario over conven-
tional light devices.

The rest of the paper is organized as follows: Section 2 out-
lines the multiagent architecture proposed in previous works
for information fusion; Section 3 presents the framework for
unified data fusion of fingerprinting/ranging measurements;
Section 4 offers efficient algorithms to enable real-time
operation under the proposed framework; Section 5 assesses
the provided algorithms under an experimental case study
with light devices; and Section 6 summarizes the conclusions
drawn from the research.

Notations. x
1:𝑘

denotes the sequence of random vectors
{x
1
, . . . , x

𝑘
}; [⋅]
𝑇 denotes the transpose of its argument;

I
𝑛
∈ R𝑛×𝑛 denotes the 𝑛 × 𝑛 identity matrix; 𝑓(x) denotes the

probability density function of a continuous random variable
x; and 𝜑(x;𝜇,Σ) denotes the probability density function of a
Gaussian random vector x ∼ N(𝜇,Σ).

2. Previous Work

This section provides a general overview of the multiagent
architecture based on virtual organizations that we presented
recently to accomplish the information fusion problem [40].
The virtual organization of agents manages the resources of
the Cloud system in which it is deployed. It was created
with the PANGEA platform that facilitates the development
of agents in light devices and the integration of different
hardware [41, 42]. The architecture is organized in 4 layers
as can be seen in Figure 1 and that is what we briefly describe
here for completeness [40].

Layer 0. It defines communication with sensor networks of
different nature and gets the raw (encapsulated) data from
them.

Layer 1. It processes the contextual information obtained
from layer 0 and provides a set of low-level services for this
purpose.

Layer 2. It incorporates agents specifically designed to interact
with layer 1 and brings others specialized in information
fusion.

Layer 3. It allows the management and customization of
services to end users and facilitates decision-making by the
user.

In the presented architecture, the fusion of different
information flows is accomplished in layer 2. However, the
low-level services that extract information from row data are
implemented in layer 1.The greater the information extracted
regarding a parameter in layer 1 the better the performance
of the fusion model in layer 2 [43, 44]. In our previous work,
we focused on layer 2, specifically on workflow and fusion
organizations [40]. In this paper, we focus on layer 1 and
layer 2, specifically on the processing of RSS data to extract
position-related information.

3. Localization Framework

In this section, we formulate the problem of localization in
harsh environments and provide a general framework for
its solution based on optimal recursive Bayesian filtering
[45, 46].

3.1. Problem Statement. In the following, we are going to
assume a two-dimensional scenario where we estimate the
position of a mobile target by fusing information provided by
RSS measurements. In order to do that, we first accomplish
an offline phase in which we collect RSS measurements at a
set of 𝑀 fingerprint points, {f

𝑚
}
𝑀

𝑚=1
, covering only a selected

area. In the online phase, we collect again RSSmeasurements,
{y
𝑘
}
𝑘∈N, at discrete time instants, 𝑡

𝑘∈N, inside or outside the
selected area (hereinafter, “fingerprinting area” or “ranging
area,” resp.). From these measurements, we estimate the state
vector, {x

𝑘
}
𝑘∈N. Next, we determine the entries to state and

measurement vectors.
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Figure 1: The architecture presented in previous works consists of a multiagent architecture based on virtual organizations that integrates
with an information fusion model [40].

The state vector contains the position and its first deriva-
tives so that {x

𝑘
}
𝑘∈N is a Markov chain (i.e., the current

state only depends on the previous one) [35, 45]. In this
paper, such a vector is augmented to include the path-loss
exponent with respect to every anchor used in the ranging
area (see Section 3.2). Therefore, the state vector is x

𝑘
=

[p
𝑘
, k
𝑘
, a
𝑘
,𝛽
𝑘
] ∈ R6+𝐿, where p

𝑘
∈ R2 is the target’s position,

k
𝑘

∈ R2 its velocity, a
𝑘

∈ R2 its acceleration, 𝛽
𝑘

∈ R𝐿 the
vector of path-loss exponents, and 𝐿 ∈ R the total number of
anchors used for ranging.

The measurement vector conveys any state-related infor-
mation received at time instant 𝑡

𝑘
(i.e., its dimension may be

different from the previous one). We have to use different
measurements vector depending on whether we are within

the fingerprinting or the ranging area. In the former case, the
state vector is y

𝑘
= y𝑓
𝑘

∈ R𝐿𝑘 , where y𝑓
𝑘

∈ R𝐿𝑘 are the RSS
measurements received at time 𝑡

𝑘
. In the latter case, the state

vector is y
𝑘

= [y𝑠
𝑘
, y𝛽
𝑘
] ∈ R2𝐿𝑘 , where y𝑠

𝑘
∈ R𝐿𝑘 are the RSS

measurements received at time 𝑡
𝑘
and y𝛽
𝑘
∈ R𝐿𝑘 the path-loss

exponents measured with respect to the visible anchors. In
both cases, 𝐿

𝑘
∈ R is the number of visible anchors at that

particular moment.
In addition to the information conveyed by the mea-

surements, the fact that the sequence of positions is highly
correlated in time can also be used as another source of infor-
mation. With the defined measurements and state vectors, it
can be assumed that, given the current state vector, x

𝑘
, the

measurement vector, y
𝑘
, is independent of all previous and
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Figure 2: HMM for states and measurements evolution. The relationship between x
𝑘
and x

𝑘−1
and the relationship between y

𝑘
and x

𝑘
are the

only two kinds of dependence.

future states and measurements [35, 45]. Therefore, we can
build the hidden Markov model (HMM) shown in Figure 2
that leads to two kinds of dependence between the random
variables: the relationship between the state vector in time 𝑡

𝑘

and the state vector in time 𝑡
𝑘−1

, that is, 𝑓(x
𝑘
| x
𝑘−1

), called
dynamic model; and the relationship between the measure-
ments and the state vector in each time, that is, 𝑓(y

𝑘
| x
𝑘
),

called measurements model [35, 45]. (Note that, in addition
to different measurements vectors, we have to use different
measurements models for fingerprinting and ranging areas
since the unknown dependencies between them prevent us
from utilizing a joint model.) Next subsection defines both
models for fingerprinting/ranging localization in harsh envi-
ronments. (The proposed framework accommodates other
position-related information given by diverse devices such as
GPS receivers or foot-mounted inertial measurement units
[47].)

3.2. Involved Models. In the following, we define realistic
models for the fusion of time-evolution and measuring
information.

3.2.1. Dynamic Model. The dynamic model is characterized
by the conditional density 𝑓(x

𝑘
| x
𝑘−1

).
Given the position, velocity, and acceleration at time 𝑡

𝑘−1
,

p
𝑘−1

, k
𝑘−1

, and a
𝑘−1

, we can approximate their values in time
𝑡
𝑘
, p
𝑘
, k
𝑘
, and a

𝑘
, by means of their Taylor series expansion as

[45]

[
[

[

p
𝑘

k
𝑘

a
𝑘

]
]

]

= (

I
2

Δ
𝑘
I
2

Δ
2

𝑘

2
I
2

0 I
2

Δ
𝑘
I
2

0 0 I
2

)
[
[

[

p
𝑘−1

k
𝑘−1

a
𝑘−1

]
]

]

+ n𝑑,1
𝑘

, (1)

where Δ
𝑘

= (𝑡
𝑘
− 𝑡
𝑘−1

) ∈ R is the sampling interval and
n𝑑,1
𝑘

∈ R6 is the error term. To model this error term as white
Gaussian noise (i.e., as a discrete Wiener process) is the most
common.

The characteristics of the wireless channel are highly
related in time [48–50].However, this fact is rarely considered
in the design of positioning filtering algorithms [51]. In this
paper, given the vector of path-loss exponents at time 𝑡

𝑘−1
,

𝛽
𝑘−1

, the vector of path-loss exponents at time 𝑡
𝑘
, 𝛽
𝑘
, is

modeled as

𝛽
𝑘
= 𝛽
𝑘−1

+ n𝑑,2
𝑘

, (2)

where the term n𝑑,2
𝑘

∈ R𝐿 is white Gaussian noise.
Therefore, the dynamic model, 𝑓(x

𝑘
| x
𝑘−1

), is given by

𝑓 (x
𝑘
| x
𝑘−1

) = 𝜑 (x
𝑘
; F
𝑘
x
𝑘−1

,Σ
𝑑

𝑘
) , (3)

where the transition matrix

F
𝑘
= (

(

I
2

Δ
𝑘
I
2

Δ
2

𝑘

2
I
2

0

0 I
2

Δ
𝑘
I
2

0
0 0 I

2
0

0 0 0 I
𝐿

)

)

(4)

and Σ𝑑
𝑘
∈ R(6+𝐿)×(6+𝐿) is the covariance matrix corresponding

to the noise vector [n𝑑,1
𝑘

,n𝑑,2
𝑘

].

3.2.2. Ranging Likelihood. Themeasurements model in rang-
ing areas is characterized by the likelihood 𝑓(y𝑠

𝑘
| x
𝑘
).

The RSS values are attenuated, among other factors, by
the distance between target and anchors. This attenuation is
proportional to the inverse of the distance raised to a path-
loss exponent [34, 35]. In logarithmic units, we have that, for
the 𝑙th anchor, with position p(𝑙) ∈ R2,

𝑦
𝑠

𝑘
= 𝛼 − 10𝛽

𝑘
log
10


p(𝑙) − p

𝑘


+ 𝑛
𝑠

𝑘
, (5)

where 𝛼 ∈ R is a constant that depends on several factors
such as fast and slow fading, gains in transmitter and receiver
antennas, and the transmitted power and 𝛽

𝑘
∈ R is the path-

loss exponent that characterizes the wireless channel [49].
Finally, 𝑛

𝑠

𝑘
is a Gaussian noise term caused by shadowing

[34, 35].The value of 𝛼 can be previously known, for example,
by averaging measured values at the reference distance (in
this case, 1meter away from the anchor) or by self-calibration
with measurements shared among anchors (with known
positions) [18]. The path-loss exponent, 𝛽

𝑘
, in turn, can be

dynamically obtained or trained in each scenario [27, 34].
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Then, the RSS measurements in ranging areas are gov-
erned by the likelihood,

𝑓 (𝑦
𝑠

𝑘
| p
𝑘
) = 𝜑 (𝑦

𝑠

𝑘
; 𝛼 − 10𝛽

𝑘
log
10


p(𝑙) − p

𝑘


, 𝜎
𝑠

𝑘
) , (6)

where 𝜎
𝑠

𝑘
∈ R is the standard deviation corresponding to 𝑛

𝑠

𝑘
.

Figure 3 represents the performance of the likelihood
function defined in (6). Figure 3(a) depicts the position of the
anchors with known positions (in orange) as well as the posi-
tion of the target (in red). Figure 3(b) shows the likelihood
values obtained in the area bymeans of (6) after receiving one
RSS measurement from every anchor. Figure 3(c) shows the
likelihood values in the fixed axis (indicated in Figure 3(b))
obtained by means of (6) for different numbers of RSS
measurements received from anchor AP1. From Figure 3 we
can point out that the greater the number of measurements
the narrower the likelihood in the direction joining target and
anchor.This result is in concordance with the known fact that
each rangemeasurement only provides information about the
position in the direction joining target and anchor [17].

In order to generalize the localization framework, we here
consider themost general case where path-loss exponents are
dynamically estimated, for which a variety of algorithms can
be found in the literature [34, 52–56]. Specifically, we adhere
to the technique proposed in [34] based on maximizing the
compatibility of the distances between the target and the
anchors given a set of received RSS values and subject to a set
of feasible solutions, Λ. (The set of constrains can come, e.g.,
from feasible distances between the target and the anchors
based on transmission power and antenna gains [34].) That
is,

�̂�
𝑘
= argmax
𝛽
𝑘

𝐶(y𝑠
𝑘
, 𝛼,𝛽
𝑘
, p
𝑘
, {p(𝑙)}

𝑙=1,...,𝐿𝑘

)

s.t. 𝛽
𝑘
∈ Λ,

(7)

where 𝐶(⋅) is the compatibility function as defined in [34].
Given the actual state, we can treat estimates of path-

loss exponents as independent additional measurements, y𝛽
𝑘
,

related with the state by the model

y𝛽
𝑘
= 𝛽
𝑘
+ n𝛽
𝑘
, (8)

where n𝛽
𝑘

∈ R𝐿 is white Gaussian noise. (Note that this
is a mild assumption since the main relationship between
RSS measurements and path-loss exponents is given by
the distance between target and anchor, and the remaining
possible dependencies are unknown).

Then, the measured path-loss exponents in ranging areas
are governed by the likelihood

𝑓 (y𝛽
𝑘
| 𝛽
𝑘
) = 𝜑 (y𝛽

𝑘
;𝛽
𝑘
,Σ
𝛽

𝑘
) , (9)

where Σ𝛽
𝑘

∈ R𝐿×𝐿 is the covariance matrix corresponding to
the noise vector n𝛽

𝑘
.

Therefore, the wholemeasurementsmodel,𝑓(y𝑠
𝑘
| x
𝑘
), for

ranging areas is given by (6) and (9).
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continuous function that facilitates the information fusion under the
Bayesian framework.
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3.2.3. Fingerprinting Likelihood. Themeasurements model in
fingerprinting areas is characterized by the likelihood 𝑓(y𝑓

𝑘
|

x
𝑘
).
During the offline phase, for the 𝑚th fingerprint, f

𝑚
,

we receive a set of 𝑆
(𝑙)

𝑚
RSS measurements, y(𝑙)

𝑚
, from each

one of the visible anchors. We assume that the random
variable associated with such a set of measurements follows
a Gaussian distribution with mean its sample mean, y(𝑙)

𝑚
,

and standard deviation 𝜎
(𝑙)

𝑚
/√𝑆
(𝑙)

𝑚 , where 𝜎
(𝑙)

𝑚
is the sample

standard deviation. During the online phase, given a set of
received RSS measurements—y𝑓

𝑘
∈ R𝐿𝑘—the likelihood

function of the fingerprint f
𝑚

is given by

𝑓 (y𝑓
𝑘
| f
𝑚
) =

𝐿𝑘

∏
𝑙=1

𝜑(𝑦
(𝑙)

𝑘
; y(𝑙)
𝑚
,

𝜎
(𝑙)

𝑚

√𝑆
(𝑙)

𝑚

), (10)

where 𝑦
(𝑙)

𝑘
is an RSS measurement received from the 𝑙th

anchor in 𝑡
𝑘
.

By considering a Gaussian kernel to represent the region
of the map corresponding to each fingerprint [26, 28], we can
approximate the measurements model by a mixture of the
individual likelihood at every point of the set {f

𝑚
}
𝑀

𝑚=1
as

𝑓 (y𝑓
𝑘
| p
𝑘
) ≈

𝑀

∑
𝑚=1

𝑓 (y𝑓
𝑘
| f
𝑚
) 𝜑 (p

𝑘
; f
𝑚
, ℎ
2I
2
)

≈

𝑀

∑
𝑚=1

𝜔
(𝑚)

𝑘
𝜑 (p
𝑘
; f
𝑚
, ℎ
2I
2
) ,

(11)

where f
𝑚

∈ R2 includes the coordinates of the𝑚th fingerprint
and ℎ ∈ R is a positive number called bandwidth [26, 35,
57]. (A practical choice for the bandwidth can be obtained
as one-half the resolution of the involved data, in this case,
the change in coordinates between two adjacent fingerprints
[35].)

Figure 4 represents the performance of the likelihood
function defined in (11). Figure 4(a) depicts the position of
the fingerprints stored in the offline phase (in grey) as well
as the position of the target during the online phase (in red).
Figure 4(b) shows the likelihood values obtained in the area
by means of (11) after receiving one RSS measurement in
the online phase. Figure 4(c) shows the likelihood values in
the fixed axis (indicated in Figure 4(b)) obtained by means
of (11) for different numbers of RSS measurements received
during the online phase. From Figure 4 we can conclude
that the greater the number of measurements the more likely
the position of the closest fingerprint to the actual position.
Moreover, the use of a kernel mixture provides a continuous
function that facilitates the information fusion under the
Bayesian framework.

The previous likelihood can be augmented to incorporate
the information conveyed by the fingerprints with respect
to the path-loss exponents. In such a case, the fingerprint
vector f

𝑚
∈ R2+𝐿 includes its positional coordinates as well

as the path-loss exponents with respect to each anchor used
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a continuous function that facilitates the information fusion under
the Bayesian framework.
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for ranging localization.Thepath-loss exponent stored for the
𝑙th anchor and the 𝑚th fingerprint is obtained as [34, 35]

𝛽
(𝑙)

𝑚
=

𝛼 − y(𝑙)
𝑚

10 log
10

p(𝑙) − p(𝑚)
, (12)

where y(𝑙)
𝑚

is the sample mean of the set of measurements
received in the offline phase from the 𝑙-anchor at the𝑚th fin-
gerprint and p(𝑙) and p(𝑚) are the coordinates corresponding
to such anchor and fingerprint, respectively.

Therefore, the measurements model, 𝑓(y𝑓
𝑘

| x
𝑘
), for

fingerprinting areas is given by

𝑓 (y𝑓
𝑘
| p
𝑘
,𝛽
𝑘
) ≈

𝑀

∑
𝑚=1

𝜔
(𝑚)

𝑘
𝜑 ([p
𝑘
,𝛽
𝑚
] ; f
𝑚
,H) , (13)

where f
𝑚

∈ R2 includes the coordinates and the path-loss
exponents for the 𝑚th fingerprint and H ∈ R(2+𝐿)×(2+𝐿) is a
diagonal bandwidth matrix with positive diagonal elements
{ℎ
2

𝑖
}
𝑖=1,...,2+𝐿

[26, 35, 57].

4. Efficient Algorithms

The graphical model depicted in Figure 2 allows for optimal
localization by means of the well-known Bayesian filtering
process [45, 46]. In the following, we propose an efficient
implementation for real-time localization systems in light
devices.

4.1. Real-Time Filtering for Localization. Bayesian filtering
acquires different expressions depending on the specific
distributions of the dynamic model and the likelihood. The
complexity constraints imposed by a real-time localization
system and the tractability benefits of Gaussian family favor
the selection of the latter for all the involved distributions
[46]. Moreover, the lack of linearity in the models defined in
Section 3 enforces the use of a suboptimal solution to the fil-
tering problem.Themost common is to linearize suchmodels
by Taylor series expansion (i.e., to use extended Kalman-
like filters) [58]. In this paper, we select the unscented
transformation since it better captures the higher order
moments caused by the nonlinear transformation and avoids
the computation of Jacobian and Hessian matrices [59, 60].
The complexity of both extended and unscented transforma-
tions is on the order of the cube of the dimension of the
state, which cannot compromise their real-time operation
[61]. Other approaches, such as particle filters or Gaussian
mixture filters, are discarded since they suffer from the curse
of dimensionality induced by the dimension of the state
vector [61, 62]. (The number of filtered path-loss exponents,
and consequently the dimension of the state, grows with the
number of anchors used for ranging.)

Algorithm 1 shows the pseudocode of the unscented-
based implementation for the proposed unified localization
framework. (In Algorithm 1, 𝑓(x

1
| x
0
) = 𝑓(x

1
).)

In Algorithm 1, we utilize conventional predict
(ut predict()) and update functions (ut update())

(1) Initialization:
(2) Set 𝜋 equal to the prior distribution of x

1
.

𝜇
𝜋
← E {x

1
}

Σ
𝜋
← E {x

1
x𝑇
1
} − 𝜇
𝜋
𝜇
𝑇

𝜋

(3) 𝜋 ← 𝜑(x
1
;𝜇
𝜋
,Σ
𝜋
)

(4) Recursive Bayesian inference:
(5) for 𝑘 = 1, 2, . . . do
(6) (i) Prediction:

𝜋 ← ut predict(𝑓 (x
𝑘
| x
𝑘−1

) , 𝜋)

(7) if 𝜇
𝜋
∈ “Fingerprinting area” then

(8) (ii) Fingerprinting update:
𝜋 ← fp update(𝑓 (y𝑓

𝑘
| x
𝑘
) , 𝜋)

(9) else
(10) (iii) Path-loss estimation:

{𝛽
𝜋
} ← pl estimate(y𝑠

𝑘
, {p(𝑙)}

𝐿

𝑙=1
)

(11) (iv) Ranging update:
𝜋 ← ut update(𝑓 (y𝑠

𝑘
| x
𝑘
) , 𝜋)

(12) end if
(13) return E{x

𝑘
| y
1:𝑘

} ← E{𝜋} = 𝜇
𝜋

(14) end for

Algorithm 1: Real-time filtering for unified localization.

based on the unscented transformation [60, 63]. In the
fingerprinting case, we update with a Gaussian mixture
and approximate the posterior mixture density to a single
Gaussian. This process is condensed within the function
fp update() that we described in the next section. In
the ranging case, we dynamically estimate the path-loss
exponents previously to the update.This process is addressed
in the function pl estimate() for which different alternatives
can be adopted [34, 51–56].

4.2. Fingerprinting Update. As we stated in previous section,
the real-time constraints favor the selection of the Gaussian
family in the filtering process. However, we defined a Gaus-
sian mixture for the likelihood in fingerprinting areas (see
Section 3.2). The update step in Bayesian filtering consists
of the product of the prediction and the likelihood (and a
subsequent normalization), which leads to an exponential
increase of the number of involved densities when using
a likelihood mixture [45, 46]. In Algorithm 2 we address
this issue by approximating the posterior mixture density to
a single Gaussian density. This approximation is based on
collapsing the𝑀-componentmixture arising after the update
into one Gaussian with the same mean and covariance as the
mixture.

Algorithm 2 shows the pseudocode of the fp update()
function, which takes as inputs the parameters that char-
acterize the prediction, 𝜑(x

𝑘
;𝜇,Σ), and the likelihood,

∑
𝑀

𝑚=1
𝜔
(𝑚)

𝜑(Px
𝑘
; f
𝑚
,H), where P is a matrix projecting the

components of x
𝑘
into the components stored in the finger-

prints (position and path-loss exponents).

5. Results and Discussion

The goal of this section is to quantify the performance of the
localization framework described in Section 3. The system is
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(1) function fp update({𝜔(𝑚),P, f
𝑚
,H}
𝑀

𝑚=1
,𝜇,Σ)

(2) Fingerprinting update:
(3) for 𝑚 = 1, 2, . . . ,𝑀 do

S(𝑚)
𝜋

← PΣP𝑇 +H
K(𝑚)
𝜋

← ΣP𝑇 (S(𝑚)
𝜋

)
−1

Σ
(𝑚)

𝜋
← (I − K(𝑚)

𝜋
P)Σ

𝜇
(𝑚)

𝜋
← 𝜇 + K(𝑚)

𝜋
(f
𝑚
− P𝜇)

𝜔
(𝑚)

𝜋
← 𝜔

(𝑚)
𝜑 (f
𝑚
;P𝜇, S(𝑚)

𝜋
)

(4) end for
(5) Normalization:

{𝜔
(𝑚)

𝜋
}
𝑀

𝑚=1
←

{𝜔
(𝑚)

𝜋
}
𝑀

𝑚=1

∑
𝑀

𝑚=1
𝜔
(𝑚)

𝜋

(6) Gaussian approximation:

𝜇
𝜋
←

𝑀

∑
𝑚=1

𝜔
(𝑚)

𝜋
𝜇
(𝑚)

𝜋

Σ
𝜋
←

𝑀

∑
𝑚=1

𝜔
(𝑚)

𝜋
(Σ
(𝑚)

𝜋
+ (𝜇
(𝑚)

𝜋
− 𝜇
𝜋
) (𝜇
(𝑚)

𝜋
− 𝜇
𝜋
)
𝑇

)

(7) return 𝜇← 𝜇
𝜋
;Σ← Σ

𝜋

(8) end function

Algorithm 2: Function to update state from fingerprints.

evaluated in the experimental case study of a human walking
with a Smartphone that collects RSS measurements from the
network. In the following, we describe the set-up for the
experiments and present the performance results.

5.1. Experimental Set-Up. We selectedWiFi as the underlying
technology to provide indoor localization. WiFi technology
is more accessible and less expensive than other alternative
technologies such as RFID or UWB and has a longer range
and larger bandwidth than ZigBee or Bluetooth. Moreover,
from signals transmitted in the WiFi network, we can
easily extract the RSS metric, while time- or angle-related
measurements imply additional complexities and costs [35].
The anchors were Cisco Aironet 1600 Series Access Points
(802.11a/g/n). The mobile target was a human with Smart-
phone LGNexus 4 (802.11b/g/n) that covered the path shown
in Figure 5(b).The total length of the path was approximately
120 meters, implying a total time of 2 minutes.

For fingerprinting localization, the database was created
by storing at least 10 RSS values from all the detectable access
points (up to 25) in the fingerprints marked in Figure 5(a). In
the online phase, we employed 48 RSS values per point.

For ranging localization, we employed 16 RSS mea-
surements per point from the 4 access points plotted in
Figure 5(a). All the RSS measurements were considerably
affected by NLOS and multipath propagation conditions.

To obtain the localization results we utilized dynamic and
measurements models described in Section 3. We also added
zero-mean Gaussian priors for velocity and acceleration. For
the dynamic model, we selected a diagonal noise covariance
matrix, Σ𝑑

𝑘
, with main diagonal values roughly 50% of the

maximum [35, 45]. For the measurements model, we utilized

Table 1: Position estimation error quartiles and RMSE obtained
with conventional and proposed algorithms.

Quartiles RMSE

Conventional
𝑘NN 0.00m-0.00m-0.00m 0.61m
ML 3.05m-3.87m-5.39m 5.11m

𝑘NN + ML 0.00m-0.38m-3.12m 3.17m

Proposed
FL 0.05m-0.06m-0.15m 0.57m
RL 2.17m-3.66m-5.05m 3.83m

FL + RL 0.06m-0.39m-2.91m 2.39m

fixed distribution parameters learned from previous works
[34, 35].

5.2. Experimental Results. Figure 5(b) and Table 1 show
the localization results in the mentioned path. For each
implemented technique we provide the quartiles of the error
in position estimates as well as the root mean square error
(RMSE). We call

(i) 𝑘NN: the position estimates in the fingerprinting
area with a conventional implementation based on 𝑘-
Nearest Neighbor classification [15],

(ii) ML: the position estimates in the ranging area with
a conventional implementation based on maximum
likelihood by using (6) [64],

(iii) 𝑘NN + ML: the position estimates in the complete
scenario with the conventional implementation based
on 𝑘-Nearest Neighbor classification for fingerprint-
ing and maximum likelihood for ranging [15, 64],

(iv) FL: the position estimates in the fingerprinting area
with the proposed algorithm,

(v) RL: the position estimates in the ranging area with
the proposed algorithm (as stated above, in order
to dynamically estimate the path-loss exponents, we
implemented the technique proposed in [34] based
on maximizing the compatibility of the distances
among anchors and target from a set of received
RSS values and a set of constraints. However, other
alternatives could have been implemented [52–56]),

(vi) FL + RL: the position estimates in the complete
scenario with the proposed unifying fingerprint-
ing/ranging algorithm.

From Figure 5(b) and Table 1 we can point out that (1)
the proposed framework facilitates the shift from accurate
fingerprinting to coarse ranging; (2) fingerprinting outper-
forms ranging in harsh environments while requiring greater
calibration effort; and (3) the proposed approach improves
the RMSE in ranging and fingerprinting and unified localiza-
tion approximately 6.6%, 25.0%, and 24.7% with respect to
conventional techniques, respectively. It is worth to mention
that the quartiles for 𝑘NN are all equal to 0.00 meters since
we have selected online positions that matched those stored
in the database.
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Figure 5: The proposed unified framework provides accurate localization via fingerprinting for critical areas and ready-to-use localization
via ranging for noncritical spaces.

6. Conclusions

This paper has presented a principled framework and
efficient algorithms for unified fingerprinting and ranging
localization based on Bayesian filtering. We have defined
realistic continuous likelihood functions that adapt to the
changing propagation conditions of the wireless channel. We
have implemented the proposed framework with efficient
algorithms via unscented transform and Gaussian mixture
collapse. Under severe NLOS and multipath conditions, the
presented techniques have obtained an error in position
estimation of 2.39 meters along a 120-meter-long path cov-
ering fingerprinting-only and ranging-only areas, remarkably
outperforming conventional implementations.
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