
Knowl Inf Syst
DOI 10.1007/s10115-013-0635-9

REGULAR PAPER

Context-aware multiagent system: Planning home care
tasks

Juan A. Fraile · Yanira De Paz · Javier Bajo ·
Juan Francisco De Paz · Belén Pérez-Lancho

Received: 2 May 2012 / Revised: 21 September 2012 / Accepted: 16 March 2013
© Springer-Verlag London 2013

Abstract Context-aware systems are able to capture information from the context in which
they are executed, assign a meaning to the gathered information, and change their behavior
accordingly. As a result, the systems can offer services to users according to their individual
situation within the context. This article analyzes the important aspects of context-aware
computing such as capturing information for context attributes and determining the manner of
interacting with users in the environment. Used in conjunction with mobile devices, context-
aware systems are specifically used to improve the usability of applications and services.
This article proposes the home care context-aware computing (HoCCAC) multiagent system
that identifies and maintains a permanent fix on the location of patients in their home, and
manages the infrastructure of services within their environment securely and reliably by
processing and reasoning the data received. Based on the multiagent system, a prototype was
developed to monitor patients in their home. The HoCCAC multiagent system uses a critical
path method-based planning model that, in the present study, prepares the most optimal task-
planning schedule for the patients in their home, is capable of reacting automatically when

J. A. Fraile
Pontifical University of Salamanca, c/ Compañía 5, 37002 Salamanca, Spain
e-mail: jafraileni@upsa.es

Y. De Paz · J. F. De Paz (B) · B. Pérez-Lancho
Departamento de Informática y Automática, Facultad de Ciencias, University of Salamanca,
Plaza de la Merced s/n, CP. 37008 Salamanca, Spain
e-mail: fcofds@usal.es

Y. De Paz
e-mail: yanira@usal.es

B. Pérez-Lancho
e-mail: lancho@usal.es

J. Bajo
Departamento de Inteligencia Artificial, Facultad de Informática, Universidad Politécnica de Madrid,
Campus Montegancedo, Boadilla del Monte, 28660 Madrid, Spain
e-mail: jbajo@fi.upm.es

123



J. A. Fraile et al.

faced with dangerous or emergency situations, replanning any plans in progress and sending
alert messages to the system. The results obtained with this prototype are presented in this
article.

Keywords Context-aware computing · Home care · Multiagent system

1 Introduction

A search for software environments that better adapt to the demands of users and their envi-
ronment takes us to context-aware systems. These systems store and analyze all of the relevant
information that surrounds and forms part of the user environment. User preferences, tastes,
location, state of mind, activity, surroundings, ambient temperature, lighting conditions, etc.,
constitute the information that can be classified from the onset as contextual information.
Information contextual is any information that can be used to describe the situation of an
entity [14]. As a result, a context not only stores information about the user, but also contains
information about user preferences. However, these systems face the problem of managing
information about the environment to provide an appropriate response with regard to its cur-
rent state. These systems can be applied within different environments such as the case of
home care for patients.

Context-aware systems provide mechanisms to develop applications that understand their
context and are able to adapt to possible changes. A context-aware system uses its surround-
ings to modify its behavior to best satisfy the needs of its user. The information is usually
obtained through sensors. Because of the large number of small and portable devices currently
available, the most common form of displaying information to system users is to distribute it
through various heterogeneous systems and information networks. These systems are incor-
porated into the user’s daily life to the point of becoming so imperceptible that the users focus
on the tasks that they need to perform without worrying about the tools they must use to do
so. This integration is carried out in such a way that the inherent technology of these elements
or objects does not interfere with the activities for which they are used, thus providing the
most simple, useful, and comfortable use.

The previously described systems have wide-ranging applications. One of the environ-
ments in which they can be most useful is in home care. The high growth in the number of
dependent persons and the advanced state of technological development has forced the need
to generate new solutions for home care environments. Furthermore, recent commitments for
satisfying the needs of this segment of the population indicate the need to modernize existing
systems [1,11]. For this reason, home care environments require the use of context-aware
systems. There are advanced applications that can be installed in the homes of dependent
individuals in order to improve their quality of life. Home care requires the use of sensors,
intelligent devices, and equipment to build a distributed environment in which basic home
functions are automated. In this respect, multiagent systems can facilitate the development
of home care environments. Multiagent systems [4] have been studied recently as monitoring
system for the medical care [2] of persons who are ill or suffering from Alzheimer’s [13].
These systems provide continuous support in the daily life of these individuals [13], predict-
ing potentially dangerous situations, and managing the physical and cognitive support of the
person being cared for [5].

This article presents the multiagent architecture home care context-aware computing
(HoCCAC), which can supervise and monitor persons in specific contexts. The goal of HoC-
CAC is to facilitate the assistance of dependent users in their own home. The architecture

123



Planning home care tasks

provides a novel mechanism that integrates a task-planning model based on the critical path
method (CPM) [3] into intelligent agents. The CPM method connects a series of related
activities in the most optimal manner to reach a specific objective. By using the CPM task-
planning method, the agents respond proactively within their environment. HoCCAC also
uses information from the context-aware environment to predict user needs and provide
effective solutions. HoCCAC incorporates case-based reasoning—belief, desire, intentions
(CBR-BDI) agents [6] that can learn by building upon their initial knowledge base. The
CBR-BDI agents interact autonomously with the environment and the system users to adapt
to the needs of the environment. Incorporating the CPM task-planning method into the CBR-
BDI agents enables the HoCCAC intelligent system to improve its planning and learning
over time. HoCCAC has a model of context-aware data defined to optimize information
management. The simple integration and interaction of intelligent agents, planning methods,
sensors, devices, and a defined data model permits us to propose the HoCCAC architecture.
HoCCAC is a novel system compared to other studies related to context aware [9,21,32].
These studies concentrate on collecting location data for the user. Other studies, such as [25],
in addition to locating users within the context, attempt to improve the communication in a
hospital center between patients and medical personnel by capturing context attributes such
as time, the patient’s state, or the user’s role. However, the new services offered by HoCCAC
allow for a closer, more natural, and implicit interaction with the user.

The remainder of the article is organized as follows: Sect. 2 presents the problem of context-
aware computing and introduces the need for developing new systems that improve the living
conditions of patients in their homes. Section 3 describes the proposed system, the interaction
between agents and the HoCCAC system devices, the defined data model, the solutions
proposed by the interpreter agent, the CPM method task planning, and a detailed design of
the interpreter agent. Section 4 presents a case study in which the HoCCAC architecture was
applied at the home of a patient with chronic pulmonary obstructive disease (COPD), with
special emphasis on the HoCCAC context-aware capabilities. Finally, Sect. 5 presents the
results, Sect. 6 the conclusions obtained from the home care scenario prototype and suggests
future lines of work to improve the system and Sect. 7 a discussion.

2 Context-aware computing

Context-aware systems were first introduced by Want et al. [33] when they presented their
active badge location system, generally regarded as the first context-aware application. It is a
location system for individuals in an office environment, in which each person carries a badge
that uses a sensor network to send signals containing information about each person’s location
to a centralized services area. Midway through the 90s, several tourist guide location-aware
systems emerged [26,30], which provided information about the user’s location. Location
information is by far the most used attribute of context-aware systems. Recent years have
seen considerable growth in the use of other attributes of context-aware information. It is
difficult to describe the term context aware, and many researchers attempt to provide their
own description and the relationship of attributes that are included in it. The term itself first
appeared in printed form by Schilit and Theimer [29]. Some authors describe context aware
as the location or identification of persons or objects [16,18]. These descriptions of the term
context aware are often used in the initial stages of research in these systems. One of the
most precise definitions was provided by Dey and Abowd [14]. These authors refer to context
as any information that can be used to characterize the situation of an entity. An entity is a

123



J. A. Fraile et al.

person, place, or object that is considered relevant to the interaction between a user and an
application, including the user and the applications themselves.

There are various location-aware infrastructures that are capable of gathering positional
data [9,21,32]. These systems include satellite global positioning system (GPS), mobile
phone towers, proximity detectors, cameras, magnetic card readers, and barcode readers.
These sensors can provide information about position or proximity and differ only in their
precision. Some require a clear line of vision; other signals can penetrate walls, etc. The
previously mentioned systems only use one context attribute: information on the position of
the object or person. The use of different context attributes such as noise, light, and location
makes it possible to combine context objects at a higher level. These elements are needed to
construct systems that are more useful, adaptive, and easy to use. One example of this type
of context-aware infrastructure is the system presented by Muñoz et al. [25], which improves
communication by adding context awareness to the management of information within a
hospital environment. Each user (in this case, doctors, nurses, etc.) is given a mobile device
to write messages that are sent upon completion of a given set of circumstances. The context
attributes included in this system are location, time, roles, and the state of the user or entity
being analyzed.

Lim et al. [23] propose a project to create a context-aware home that utilizes multiagent
system to monitor and execute appropriate actions based on the current state of the house. The
multiagent system learns and adapts the movements and actions of the occupants and makes
predictions. They propose an architecture where there is an agent in each room that interacts
with the sensors and a superagent that makes decisions and deals with risk prediction. Finally,
the system is tested in a simulated environment. The system proposes agents that interact with
sensors, depending on the room where the sensors are located, and does not provide neither
external services to the user and relatives nor a planning method. Another authors as Uhm
et al. [31] focus on the semantics aspects of the context and propose a context model that
separates the upper and lower layer according to the characteristic of each class using the web
ontology language (OWL). This context model is used by a multiagent system (CAMAS) to
provide the solution of policy problem using the classification of rule and implementation of
a rule-based engine. The use of a semantic model and a rule-based engine limits the learning
and adaptation abilities of the system. The system does not provide a planning method. Kaluza
et al. [20] present a context-aware multiagent system for care of the elderly that combines
sensor technologies to detect falls and other health problems, and calls for help in the case of
an emergency or issues a warning in cases not needing urgent attention. The system focus on
detecting alarm situations and does not provide a planning recommender system. Moreover,
it does not provide external services to the user and relatives. As noted in the previous studies,
the attributes used by the majority of context-aware systems are the location or situation of
persons, objects, or entities. Few systems are able to use information taken from different
context attributes and relate different types of data to interact with users or patients. Moreover,
it is important to interact with the user and provide not only surveillance methods, but also
planning and recommender adaptable systems. The goal of the present study is to move one
step further and, in addition to using the different context attributes and behaviors in the
proposed system, store and process different types of data gathered by the system in order to
improve the quality of life of dependent persons in their home.

Using a context model as our basis, we propose the addition of the HoCCAC multiagent
architecture, which offers context-aware services to users in specific contexts, and includes a
set of independent services that gather and interpret context data. The fundamental character-
istic of the system is to improve patient care through the processing and reasoning of the data
provided by the context. The system can easily develop context-aware services and applica-

123



Planning home care tasks

tions in a variety of contexts. The system is independent, as it can be applied to various types
of hardware devices and operating systems, and is based on Java technology. Patients are
authenticated and located within the environment by a radio frequency identification (RFID)
chip with JavaCard technology that they carry. HoCCAC defines a light framework for the
execution of service-oriented applications. The functions of this system include management
of the installation, activation, deactivation, update, and elimination of services, as well as the
authentication, control, and monitoring of users at all times.

3 HoCCAC multiagent system

Multigent systems are distributed organizations where the components (agents) collaborate
to achieve a series of goals. Agent and multigent systems have become increasingly relevant
during the last decades and have gained relevance in different areas [7,8]. The agents are
autonomous entities that can be characterized through their capabilities: autonomy, proac-
tivity, reactivity, social skills, organization, mobility, etc. [12,28]. These capabilities make
the agents very appropriated to be applied in business intelligence and risk management sce-
narios. In these scenarios, the agents can play different roles and establish an organizational
model where the human behaviors and the management processes can be emulated. In this
sense, it is possible to obtain different agent types, specialized in concrete tasks and behav-
iors, that can collaborate together to increase the productivity of the business and provide an
effective risk management. The agents can act as an interface between the human users and
the systems, trying to provide advanced facilities and personalize the access to the system, but
also can act as autonomous entities that are proactive and can make decisions independently.

HoCCAC is a distributed system composed of intelligent agents that can reason out and
carry out optimal plans of action. The HoCCAC architecture is primarily focused on tracking,
control, and notification. HoCCAC is defined by the need to control distributed devices
and gather user information in context-aware environments in a manner that is both non-
intrusive and automatic [19]. Furthermore, HoCCAC performs the handling, storage, and
reasoning of context-aware information, as well as the security for managing the access and
administration of information. The HoCCAC system uses sensors to receive information
from its environment. It takes the context data from this information so that the intelligent
agents can processes the information received and respond accordingly. With the data they are
provided, the intelligent agents create or carry out plans of action, always opting to maximize
or improve the expected result. HoCCAC also combines the management of personal data
with a daily activity model defined by intelligent agents, using the data provided by the
sensors installed in the household network. The interpretation and processing of both the
knowledge base and the daily models, which is carried out by intelligent agents, provides an
added value to the system. As a result, HoCCAC anticipates the requests or possible incidents
that users may confront within their context and offers solutions based on past experiences
that can improve the expected results.

In order to obtain and process context data and provide the user with solutions, the HoC-
CAC system employs a multiagent architecture that is composed of various types of intelligent
agents, as shown in Fig. 1. These agents understand and respond to their environment. Addi-
tionally, HoCCAC provides the agents with mechanisms to access the system services via
mobile devices. The multiagent architecture is comprised of the following types of agents:

– Provider agents capture the data obtained by both internal and external heterogeneous
context sources so that the interpreter and database agents can process and reuse the

123



J. A. Fraile et al.

Identification 
Resources Agent

External provider Agent Internal provider Agent

Interface Agent

Data Flow

Control and signaling flow

Situ Ag

Ctrl Ag

Floo Ag Gas Ag Smok AgLight AgGPS AgWeather Ag

Interpreter Agent

Reasoner and Planner

Knowledge base

Context-Aware application

User

Database Agent

Fig. 1 Overview of the multigent system HoCCAC

data. The types of provider agents that can connect to the system are: (i) situation agents,
which maintain a constant fix on the location of a patient in the home, (ii) flood detector
agent, (iii) gas detector agent, (iv) smoke detector agent, (v) lighting detector agent, (vi)
thermostat agent, (vii) control agent, which establishes and controls the daily parameters
desired by the patient, (viii) weather agent, which registers the exterior temperature
in order to respond accordingly to the internal variables of the home, (ix) GPS agent,
which maintains the location of the patient outside the home. The system is dynamic
and capable of incorporating an information provider agent at any moment by adding the
corresponding sensor or gathering the necessary information from an external server or
provider.

– Database agent stores the context-related data. This agent is responsible for managing
the devices, the location of devices, and detailed information on the context in which it is
located. It also manages old information related to the users that no longer interact with
the environment and deactivated devices.

– The interpreter agent provides logical reasoning services to process the context infor-
mation. The interpreter agent is based on the concept of case-based reasoning [12] to
improve its autonomy and increase its ability to problem-solve. The sensory information
is merged and translated to obtain the context information and updates the state of the
patient. The interpreter agent uses the information available in the system, the signals
received from the interface agent, and the knowledge base and beliefs related to the
context in order to reason out the actions that it will execute. This creates a reasoning
process that determines the optimal course of action or plans for the user to reach his or
her objective. To this end, the interpreter agent uses the concept of CPM [3] to generate

123



Planning home care tasks

plans as solutions. The interpreter agent provides the ability to reach complex, high-
level objectives, and avoid errors that can lead to inefficiency. It also allows for greater
flexibility when faced with new objectives.

– Resource identification agent (LcA). This agent is in charge of maintaining a record of
the active provider agents in the system and of allowing or denying the inclusion of
new provider agents. The LcA agent informs the interface and interpreter agents of any
changes so that they can take into account any new context attributes that are provided,
such as the inclusion of a new provider agent.

– Interface agent interacts with the interpreter and the LcA agent without the need for
explicit user instructions. The interface agent reads the entries provided by the user
through the context-aware applications and sends any modifications in behavior to the
interpreter or LcA agent. The interface agent also notifies users with context-aware appli-
cations. The interface agent can, for example, receive many entries from context-aware
applications over an extended period of time prior to deciding on any single action to
take, or it can receive a single entry from a single context-aware application, which can
initiate a series of actions by the agent.

HoCCAC allows the integration of context-aware applications. The context-aware appli-
cations represent all of the programs that can be used to take advantage of the system func-
tionalities. HoCCAC makes it possible to easily use and share context-aware applications
in a variety of physical spaces. The context-aware applications integrated in the HoCCAC
architecture, also shown in Fig. 1, receive the information available in the system from the
interface agent. They also use different levels of context information and adapt their behavior
according to the active context. Context-aware applications are dynamic and adaptable to the
context, continually reacting to changes in the state of the context. Context-aware applications
can be executed locally or remotely, even from mobile devices with limited processing capa-
bility. One way to develop context-aware applications is to specify the actions that respond
to context information under specific rules and conditions.

Figure 2 provides a general description of the HoCCAC distributed system infrastructure.
The image shows how laptops and mobile devices connect to the system via Internet. Addi-
tionally, each of the devices is interconnected through wireless communication networks,
mobile networks, or RFID technology. The HoCCAC system facilitates the integration and
management of agents, devices, and control systems. Communication between platform
agents follows the FIPA ACL standard (Foundation for Intelligent Physical Agents Agent
Communication Language). The communication protocol between the agents and the ser-
vices is based on the SOAP [13] standard (simple object access protocol). Agents can invoke
two types of services: those that capture context information from the data obtained from
autonomous components and those that respond to the automatic control systems installed
within the context. All of this allows HoCCAC to be an easy system to implement within
complex environments, without depending on a specific platform.

The following Sect. 3.1 provides a general description of the functions of the HoCCAC
agents and their interaction with devices in their environment. Section 3.2 describes the system
data model. Section 3.3 presents solutions provided by the interpreter agent. Section 3.4
describes the graphical representation of the task plans using the CPM method incorporated
in the interpreter agent. Finally, Sect. 3.5 provides a detailed design of the interpreter agent.

3.1 Interaction between agents and devices in the system

The external provider agents obtain context information from external autonomous compo-
nents such as, for example, a meteorological information server that provides weather infor-

123



J. A. Fraile et al.

HOME NETWORK

HoCCAC

Gateway

User

WiFi / RFID / NFC

SOAP

FIPA ACL

SOAP

WiFi

Fig. 2 Overview of the HoCCAC context-aware infrastructure

mation for a particular area. A location server can also provide information about the location
of a person who is not at home. The internal provider agents gather information directly from
the sensors installed in the environment, such as RFID location sensors installed in the home
of a patient or light sensors. At the same time, all of the provider agents can interact with the
user. The provider agents are some of the most important components for achieving appro-
priate interaction with users. This type of agent interprets the information sent from the agent
platform and presents it to the users. The following example can be used to better understand
this interaction: a location service receives constant information from RFID devices. This
information is sent periodically to the agent platform. The information is interpreted and sent
to a user’s mobile device to find the position of the user within a specific area. The user’s
device does not require complex calculations to determine the position of the user since it
needs only to interpret the data sent by the platform and display them to the user in a simple
manner.

The functions of the interpreter agent are to process information provided by the database
agent and to process the context information. The interpreter agent uses both the information
it has processed and past experiences to develop plans of actions and initiate services that
interact with the user and his or her context. For example, when the provider agents detect
a new user in the context, they inform the other agents, then the interpreter agent processes
the stored information for that user and determines the temperature and lighting desired by
the user in the environment, based on past experiences and data.

The interpreter agent uses the context-aware applications to generate task plans and inter-
acts with the sensors and automatic system controls installed in the environment. The context-
aware applications use different levels of context information, as they are able to adapt their
behavior to the context within which they are executed. Upon consulting the data registered
in the information system by the LcA agent, these applications can locate the services from

123



Planning home care tasks

each of the providers it may be interested in. The context-aware applications can obtain
context data by asking the interface agent or waiting for an event from the interface agent.
The LcA allows users and agents to locate the different context applications. The primary
characteristics of the LcA include scalability, adaptability, and multiple processing capabil-
ities. The LcA controls large areas, located either in internal or external networks, where
the context providers interact. Following the addition or elimination of physical sensors, or
reconfigurations of the actual devices, the LcA searches for and adapts to changes in the
environment. A new mechanism is also displayed to allow the context providers to inform
the system of their functionality.

Figure 3 provides an example of monitoring a user in a context where the internal provider
situation agent sends signals to the interpreter agent to inform on the situation of the user.
The situation agent also receives signals from the interpreter agent to, for example, allow or
prohibit user access to controlled areas. The LcA agent, on the other hand, records all of the
services that the situation agent offers. The LcA agent continually updates the list of services
provided by the situation agent which it can then transfer to the active applications in the
context. Additionally, the database agent manages the context information according to the
data provided by the interpreter agent.

3.2 Description of the data model

The primary goal of the HoCCAC system is to improve the living conditions for a user in his
or her context. To this end, a set of devices and context-aware applications capture context
information about the user and the user’s routine. This information is gathered by the agents
defined in the system, and the database agent ensures that the information related to the
management of the context is stored in the system data model, as shown in Fig. 4.

LcA Agent

Database Agent

Interpreter Agent

Situ Ag

Context-Aware
application

Data Flow

Control and signaling flow

Interface Agent

Fig. 3 Example of interaction between agents and context-aware applications

123



J. A. Fraile et al.

-name
-passport
-address
-mail
-telephone
-onOff
-disabilities
-nationality

User

-name
-location
-type
-onOff
-date

Location

-longitude
-latitude

LocationGPSLocationHome

-name
-location
-surface
-floor

Room

-name
-type
-onOff
-location

Device

-temperature

Temperature

-levelFlood

Flood

-levelGas

Gas

-levelSmoke

Smoke

-levelLight

Light

{Incomplete, disjoint }

{complete, disjoint }

-date
-bDate
-eDate
-rule

Preferences

1

*

1 *

1

*
*
1

Fig. 4 Model of the HoCCAC system domain

As shown in Fig. 4, the domain model can store the preferences for various users on
devices. The rules of action are specified in text format according to the attributes, methods,
and operators specific to each device. The rules of interaction are interpreted using a parser,
similar to how a decision tree is interpreted by data mining software such as Weka. The
actions can be specified manually or generated automatically using a deliberative model.
Based on the preferences and context information stored in the HoCCAC information system,
the interpreter agent executes the available services to act on the context and the user. The
interpreter agent stores information in its knowledge base that indicates the situation and
current state of the user in the context in order to respond quickly to the user by using
the devices closest to the user. In the event that the user is located outside the context-
aware environment, the GPS agent will be responsible for recording the location of the
user periodically using GPS coordinates. Additionally, one of the bedrooms, the kitchen,
bathroom, and living room in the home will be equipped with smoke, gas, light, flood,
and temperature detectors. Each of the values picked up by the sensors is gathered by the
corresponding agent and sent to the interpreter agent, records stores the information.

The HoCCAC agents exchange information through ACL messages. For example, at
a predetermined time, the interpreter agent receives an ACL message with the extensible
markup language (XML) file that is shown in Fig. 5.

The information received by the interpreter agent in the XML file shown in Fig. 5 is
stored in the system database by the database agent for its subsequent use and processed by
the remaining system agents.

3.3 Solutions provided by the interpreter agent

The interpreter agent is integrated in the HoCCAC system. The goal of this agent is to
provide the user with efficient solutions in execution time within the context of the user and

123



Planning home care tasks

Fig. 5 XML file received by the interpreter agent

to improve his or her quality of life. The most important characteristics of the interpreter
agent is: (i) reasoning capabilities to analyze and reason out context data collected by the
system to develop task plans and provide proactive solutions, (ii) to adapt easily to the context
within which it functions, and (iii) to collect sensor data and messages from other agents to
improve plans of action. One example of the functionality of the interpreter agent applied
to the user’s preferred temperature conditions is when the system detects the presence of a
user in a specific context using the RFID chip sensors that identify the user. The system has
saved the user’s temperature preferences within the context. It has also saved the case base
for the user from other similar instances and also obtains the exterior ambient temperature.
With these entries, the interpreter generates dynamic CBR-based action plans to stabilize the
temperature in the environment while it detects the presence of the user. At the same time,
the interpreter agent is also responsible for planning tasks for the user and, consequently,
planning the activities that the user must carry out for the day. These action plans are based
on the CPM method. The interpreter agent sends the action plans to the interface agent who
then interacts with the temperature control device. The system thus maintains the temperature
desired by the user within a specific context. In order to achieve the results desired by the
user, the interpreter agent uses a CPM method to provide a CBR-based planning strategy.

CBR is a type of reasoning based on the use of past experiences to solve problems [6]. The
goal of CBR systems is to solve new problems by adapting solutions that have been previously
used to solve similar problems in the past. A case can be defined as a past experience and
is composed of three elements: a description of the initial problem, a solution that provides
a sequence of actions that must be carried out to solve the problem, and the final state that
describes the end state once the solution has been applied. A CBR system generates cases,
past experiences, to solve new problems. The way in which the cases are managed is known
as the CBR cycle.

An example of a CBR cycle is shown in Fig. 6. The cycle includes 4 sequential phases:
retrieve, reuse, revise, and retain. The retrieve phase begins when the description of a new
problem is received. Similar algorithms are used in order to recover the cases with a problem
description similar to the current problem. Once the majority of the similar cases have been
retrieved, the reuse phase begins. In this phase, the solutions to the retrieved cases are adapted
to obtain the best solution for the current case. The revise phase reviews the proposed solution.
Finally, the retain phase allows the system to learn from the experiences obtained in the three
previous phases and updates the data.

123



J. A. Fraile et al.

Fig. 6 Diagram including a
CBR-BDI agent reasoning cycle

Database

Retrieve

ReuseRetain

Revise

Similar Cases

New problem
description

Incorporate
Case

Confirmed
Solution

Suggested
solution

With regard to the CPM planning method, its primary goal is to determine the duration of
a project or task plan, the latter being a sequence of interrelated activities, each of which has
an estimated length of duration. The CPM method is widely applied in planning processes.
CPM can control the execution of activities and determine which are the critical activities
that must be carried out so that the global plan is not delayed [15,22]. CPM is applied
in various fields such as manufacturing processes [17], industrial environments [15], task
distribution tasks in grid computing [24], or information processing in distributed mode in
hospitals [22]. With the CPM method, the duration of all activities is known, that is, there
is no uncertainty. This simplifies the CPM method, making it easy to use. With the CPM
method, the length of the task plan is the same as the critical path. This is the largest path
for the set of project activities. The CPM method is applicable and useful in any situation in
which it is necessary to carry out a set of interrelated activities to reach a specific objective.
The true value of the technique in the CPM method increases when it is applied dynamically.
In the event of unanticipated events or circumstances, the critical path method provides the
ideal means to identify or analyze the need to reexamine or reschedule the project, reducing
the adverse effects of the unanticipated events to a minimum. Similarly, when an opportunity
arises to improve the project scheduling, the technique makes it possible to easily determine
which activities should be accelerated in order to achieve the expected improvement. These
scenarios are what make the CPM method the most adequate for the interpreter agent to
implement in the HoCCAC system. The application of the CPM method by the interpreter
agent allows the HoCCAC system to have the following information available: (i) which
tasks should be carried out first, (ii) when to use system resources, (iii) how to schedule the
use of devices, (iv) how to schedule the advancement of activities, (v) how many activities
there are and which ones are carried out at any given time, (vi) the state of the current task
plan in use with regard to the end date, (vii) which are the critical activities that, if delayed,
will delay the length of the task plan, and (viii) which are the non-critical activities and their
margin for delay; these are activities that can be delayed, without delaying the project, for a
period of time referred to as a float. The CPM method essentially consists of two cycles:

123



Planning home care tasks

– Scheduling and planning. In this cycle, the interpreter agent defines the task plan with all
its activities or main components. The relationship between the activities is then estab-
lished to decide which activity should begin first and which will follow. The relationship
among the activities is used to design a network connecting the different activities based
on their levels of priority. Subsequently, the estimated cost and time are defined for each
activity, and the feasibility of the task plan is evaluated. Finally, the longest path for
the project is identified, which will determine the length of the task plan, which in turn
identifies the critical path.

– Execution and control. In this cycle, the interpreter agent approves the task plan, instruc-
tions are defined, advances are controlled, and finally corrective measures are imple-
mented.

The following section describes the graphical representation of the task plans that the inter-
preter agent carries out with the CPM method.

3.4 Task planning with the CPM method

In order to develop the most optimal task plans, the interpreter agent receives a series of
information from the HoCCAC system and follows a set of standards for the CPM method.
A task plan is composed of a set of activities that must be carried out in a specific order
to achieve an objective. A graphical representation of a task plan using the CPM method is
referred to as a network. Each activity can include one or more tasks. The activities include
events that are instances of the activity and act as control points. The events describe the
moment that the activity begins or ends. The activities are represented by arrows whose
length is not indicative in any way of the duration of the activity. The events are represented
by circles. When building a network, it is necessary to keep in mind that each activity is
represented by one and only one arrow and each activity should be identified by two nodes,
as a single common node can have no more than two different activities.

Each arrow on the network represents an activity. Each activity is a task required by the
project. A node represents an event, which is defined as the moment when the activities that
arrive at that node finish. The points of the arrow initiate the sequence in which the events
must take place. An event should precede the start of the activities that stem from that node.
The node toward which all the activities lead is the event that corresponds to the conclusion
of the task plan. The network can represent a task plan from its start or, if the task plan
has already been initiated, it represents the plan for its completion. Thus, each node in the
network represents the event that maintains the activity in progress or the event that initiates
a new activity that can begin at any moment. Each arrow plays a dual role: represent an
activity and assist in representing the relationship between the different priority activities.
On occasion, an arrow may be necessary to define the priority relationships, even though
there is no real activity to represent. In this case, a fictitious activity is represented by a dotted
line, indicating the priority relationship. The fictitious or phantom activity does not consume
time and achieves two objectives: (i) to save a priority relationship and (ii) to individualize
each activity so that each one is identified by a unique pair of nodes. In order to create a
network task plan, it is necessary to answer three basic questions about each arrow or specific
activity:

– Which activities should be carried out immediately prior to executing a specific activity?
– Which activities should be carried out immediately after executing a specific activity?
– Which activities can be carried out while simultaneously executing a specific activity?

123



J. A. Fraile et al.

Fig. 7 a Concurrent and divergent activities, b connected activities, c representation of activities, and
d fictitious activities on a network

A common rule for building these types of network task plans is that no two nodes can be
directly connected by more than two arrows. The fictitious activities can also be used to apply
this rule when they have two or more concurrent activities. Additionally, the node numbering
allows for identifying the different activities using events with start “i” and finish “j.” It is also
possible to randomly number the nodes, as there is no reason that this cannot or should not
be done. Nevertheless, experience has demonstrated that a systematic numbering of nodes
simplify the arithmetic process. It is good practice to number the nodes in such a way that
the number of the initial node for any arrow is always less than the number indicated in the
node toward which the arrow is pointing. In other words, “i” should be less than “j.” Nor
should two different nodes be assigned the same number.

As for the activities, two activities are said to be simultaneous when than can be completely
or partially carried out within the same interval of time without slowing each other down.
Two activities are also said to be connected when the beginning of one of them is contingent
on another the completion of another activity or activities, as seen in Fig. 7b with activities B
and E. Additionally, concurrent activities are those ending in the same event, while divergent
activities are those that begin in the same event, as seen in Fig. 7a with activities A and B.
Another representative example can be seen in Fig. 7c whereby in order to carry out activity
N, it is first necessary to finish activities L and M; and to initiate activity O, it is only necessary
to finish activity L. Figure 7d also illustrates a network that includes fictitious activities, since
in order to carry out activities M and N, it is necessary for activity L to have finished, and to
carry out activity O, it is necessary to have completed activities M and N.

To date, the only existing restriction for correctly developing the network is to establish
a logical sequence of activities. To perform a sequence of activities, the interpreter agent
takes into account the information contained in the HoCCAC system and its reasoning. Once

123



Planning home care tasks

the network has carried out the activities, a corresponding duration should be assigned to
each one. This way, the interpreter agent can calculate the total duration of the project and
determine the early completion dates for each activity. To calculate these times, the interpreter
agent must take the following into account:

– When task plan begins.
– No activity is to be initiated without having previously completed all tasks whose exe-

cution is contingent on that activity.
– Each activity should be carried out as soon as possible.
– Once initiated, each activity is executed without interruption until its completion.

Just as it is possible to calculate early start dates or times for initiating and completing an
activity, the interpreter agent can also calculate late start dates or times for each activity
for the total duration of the project. Calculating these times is quite simple: the earliest an
activity can begin is the closest time or date that all of its preceding activities can finish. The
earliest an activity can finish is the earliest required start date added to the time required for
its completion.

The first calculation made by the interpreter agent is of the early start times for each
activity, as graphically represented in Fig. 8. The procedure is as follows:

1. Assign a start date and time E Si to the first event “i” of the first network activity.
2. Take the sum of the duration of each of the activities that precede event “j” and indicate

the total as E Sj . E Sj is also the earliest start time for event “j” and can be defined as:

E Sj = max
i

{
E Si + ti j

}
wi th i < j (1)

3. If two or more activities have the same final event, the maximum value obtained from
the calculations performed in step 2 should be considered.

4. Steps 2 and 3 are repeated until the earliest time for carrying out E Si is determined for
all activities.

5. The final sum of the earliest start times constitutes the time required to carry out the
project.

The second calculation made by the interpreter agent is for the late end times, as illustrated
in Fig. 8. The procedure is as follows:

Fig. 8 Representation of the nodes for an activity

123



J. A. Fraile et al.

1. The late end time for the last event “j” is equal to its earliest start date E S j . The total
duration of the project is used as the initial data, which is noted to the far right of the
final event as L Sj .

2. The duration of each of the activities that finish in event “j” is subtracted from L S j . The
subtracted values are the late end times L Si and can be defined as:

L Si = min
j

{
L Sj − ti j

}
wi th i < j (2)

3. When two or more activities have the same starting event, the minimum value obtained
from the calculations in step 2 should be considered. This minimum value is the late end
time L Si for the previous activities.

The interpreter agent also calculates the margin for delay TF (total float) for an event such as
the difference between the latest time and the earliest time to begin or end an activity. This
is defined as:

T Fi j = L Sj − E Si − ti j = L Si − E Si ∀i j (3)

The margin for delay of an event indicates the maximum delay allowed to complete the event
without delaying the completion of the task plan. The margin for delay of an activity indicates
the same with respect to a delay in the completion of that activity. The activities with a zero
margin for delay are critical since any delay will postpone completion of the task plan. If an
activity A is critical, it is designated as:

∗ Ai j
Cri tial Activi t y

→ ∗ti j
Cri ticaltime

(4)

The critical path for a task plan is a path crossing the network in such a way that all of its
activities have a zero margin for delay. It is the longest path in the network and corresponds
to the minimum time for finalizing the task plan. The total duration of the task plan (D) is
the sum of the critical times of the critical activities and is represented as:

D =
∑ ∗ti j (5)

Critical paths are also characterized by a series of properties. A task plan always has a critical
path, often more than one. All of the activities that have a zero margin for delay should be on
a critical path, while no activity with a margin for delay greater than zero can be on a critical
path. All of the events with a zero margin for delay should be on a critical path, while no
event with a margin for delay greater than zero can be on a critical path. A path on a network
in which the initial and final events have a zero margin for delay is not necessarily critical,
because it may be that one or more activities along that path can have a margin for delay
greater than zero.

All of the rules and procedures previously described are contained in the interpreter agent,
specifically in a module referred to as CPM context-aware plans, as explained in the next
point and as shown in Fig. 9.

3.5 Interpreter agent design

As previously described in Sect. 3.3, CBR is a paradigm based on the idea that similar
problems have similar solutions. The agents that are designed and implemented using CBR
systems have autonomous reasoning skills and adapt to changes in the environment. As such,
the interpreter agent fulfills two of its most important characteristics, as noted in the previous
section: (i) reasoning capabilities and (ii) ease in re-planning to adapt to the context. The

123



Planning home care tasks

Interpreter Agent

Context- Aware
Belief Base

CPM Context-
Aware Plans

Library

Running

Context-Aware
Goals

Reactive
System

Internal
Events

Select Plan

New Goals

Handle Events

ACL Messages

Dispatch
Goals / Events

Belief/Conditions Events

Query, Add, Remove Facts

CBR
Reasoning

Select Plan

Context-Aware
Data Messages

ACL Messages

Evaluate State

Fig. 9 overview of the interpreter agent architecture

other important characteristic is the ability to collect information from the environment using
sensors and other agents. For this reason, when designing and implementing an interpreter
agent, it is necessary to take into account the exchanges of information among the system
agents. FIPA1 specifications are currently considered the accepted standard for communi-
cation between agents. The interpreter agent is designed with the agent unified modeling
language (AUML2) methodology, which provides mechanisms to obtain a design detailed
enough to greatly facilitate the implementation phase.

On the other hand, the BDI [18] model is a solid base for modeling and applying the
internal behavior of the agents. With the BDI model, it is possible to view an agent as an entity
searching for an objective and behaving rationally. CBR systems and BDI agents can interact
if the cases are implemented as beliefs, intentions, and desires that lead to the resolution of
a problem. With the CBR-BDI agent, each state is equivalent to a belief. Furthermore, the
objective to reach can also be a belief. The intentions will be plans that contain a specified
set of actions that the agent must carry out in order to reach its objectives [6]. The agent can
move from one state to another upon executing the action or task. A desire will be one of
the final states reached in the past. To produce a proper transition between the design phase
and the implementation phase of the CBR-BDI paradigm, the agent must be supported in the
implementation phase.

The Java Agent Development Framework (JADE) platform [34] is a good option for
developing agent-based applications. JADE agents follow the BDI model, and the JADE

1 www.fipa.org.
2 www.auml.org.

123

www.fipa.org
www.auml.org


J. A. Fraile et al.

platform can be used to implement CBR-BDI agents. JADE also complies with the FIPA
standard for operating with intelligent multiagent systems. The JADE platform focuses on
applying the FIPA reference model, providing the required communication infrastructure and
a services (e.g., management agent) platform, as well as a set of tools for developing and
debugging CBR-BDI agents. JADE extension (Jadex) [27] is an implementation of a hybrid
agent architecture (reactive and deliberative) to represent the various states of the JADE
agents that are following the BDI model. Jadex is designed to be easily integrated within
JADE, with the addition of a packet. The primary goal is to facilitate the use of reasoning
and planning concepts during implementation.

Viewed externally, the interpreter agent is a black box that receives and sends messages.
This section will now attempt to provide greater detail regarding the functionality of the
interpreter via the use of a graphical representation. The interpreter agent, as previously
described, will be implemented as a Jadex agent. In order to implement the interpreter agent
as a Jadex agent, some variations are introduced into the Jadex architecture, as shown in
Fig. 9.

Figure 9 provides a summary of the interpreter agent architecture. The incoming messages,
as well as the internal events and new objectives, serve as a starting point for both the internal
reactions and deliberative and reasoning mechanisms of the interpreter agent. The primary
novelty in the design of the interpreter agent, as seen in Fig. 9, is that it integrates a CBR
reasoning engine and a reactive system that collects data from sensors and the control systems.
This provides a unique attribute in the design of the agent with regard to its conception and
reasoning capabilities. Based on the results of the CBR reasoning engine, the interpreter agent
develops task plans using the CPM context-aware plans, taking into account the standards
and procedures described in point 3.4. These plans can be executed immediately as events, or
they can be stored in the library of context-aware plans to generate new plans to be executed
at a future time. Executing the plans can modify the context-aware beliefs base, send message
to other agents, create new context-aware objectives, or produce future internal events.

The interpreter agent has a context-aware belief base, as shown in Fig. 9, in which it
stores the beliefs that constitute its knowledge base. These beliefs are related to the context-
aware environment and to the user. These beliefs include the location of the user, the exterior
temperature and that of the home and its rooms, or the lighting and smoke levels in the
different rooms of the home. The beliefs are structured through Java objects that represent
the beliefs, as seen in Fig. 4. These objects have a name and attributes that have simple or
multiple values. The knowledge base also incorporates the concept of databases oriented to
objects. Object constraint language3 (OCL) can retrieve subsets of context-aware beliefs.
Another special characteristic of the context-aware belief base are the conditions, which
represent an expression of a particular state, for example, or of one or various beliefs. Once
the condition is satisfied, an internal event is generated. This event can activate a plan or
allow the adoption of new objectives. With the interpreter agent, beliefs represent changes in
the state of the sensors installed in the context-aware environment. This makes it easy to add
new types of sensors that assist in the daily tasks of the user, and for the task plans to add
new states for a sensor at a future time. The interpreter agent also includes specific plans for
collecting data from the environment and the control systems. Furthermore, the task plans
use OCL to inquire on the beliefs that meet certain conditions. All of the task and action
plans specific to the interpreter agent contribute toward reaching the final objective.

The interpreter agent can define three types of objectives: reaching an objective, main-
taining an objective, and carrying out an objective. To reach an objective, it is necessary to

3 http://www.omg.org/technology/documents/formal/ocl.htm.

123

http://www.omg.org/technology/documents/formal/ocl.htm


Planning home care tasks

have previously defined the state to be reached, but not the specific way to reach it. In this
case, the interpreter agent has several alternatives for reaching the objective. To maintain an
objective, the interpreter agent must monitor the state and execute the plans to re-establish
the state when necessary. To carry out an objective, the interpreter agent specifies the actions
to be executed. The objectives of the interpreter agent can also be represented by objects
with various attributes. The plans for achieving the objective are explicitly stated through the
conditions (e.g., using the beliefs). The name and properties of the objective facilitate the
selection of a plan to initiate, and the parameters guide the tasks of the plans being executed.
When an objective is carried out, the plan to execute is directly defined. The reasoning ability
of the interpreter agent can be implemented in one of two ways. One is through the activation
and deactivation of conditions. In this case, the interpreter agent applies rules according to
the desired focus for activating or deactivating objectives that meet certain internal condi-
tions, such as those conditions defined according to the knowledge base and user preferences.
However, the objectives can also be activated and deactivated manually using task plans. The
interpreter agent maintains an objective (e.g., maintaining the desired temperature in a room),
carries out an objective (e.g., generating daily task plans for a specific user), and reaches an
objective when, for example, it activates the gas extractor prior to activating the smoke alarm.

The interpreter agent has a library of context-aware plans based on the CPM method.
With the library of plans, it can generate solutions based on action plans that have been
initiated in the past. These action plans can interact with the devices installed in the system to
facilitate the user’s daily tasks, thus making the user’s stay in the context-aware environment
more comfortable. One part of the implementation process of the interpreter agent divides its
functionality into separate plans composed of actions that are implemented in Java classes.
We can say, then, that object orientation techniques are also used when carrying out the plans.
Additionally, the functionality that is implemented in Java classes can be incorporated into
other similar or hereditary systems. The following section then proposes a low level AUML
design for the interpreter agent followed by the implementation using Jadex. The AUML
design provides a class diagram for the interpreter agent, as shown in Fig. 10. It involves
the most important agent within the HoCCAC architecture. This agent, as shown in Fig. 10,
has five capabilities and four services. The capabilities are: (i) P-Solution, (ii) C-Sensor, (iii)
S-Plans, (iv) St-Data y, and (v) E-Result. The services are: (i) Information Provide, (ii) Plan
Describe, (iii) Result Plan Provide, and (iv) Component Task Assignment.

The execution of the interpreter agent using the Jadex model is based on events. Anything
that occurs within the interpreter agent is represented as an event. The “message events”
indicate when an ACL message has been received. The “objective events” announce when
an objective has been reached, and the internal events inform, for example, of any changes in
beliefs, timeouts, or conditions that have been met. To create and initiate an interpreter agent,
the system needs to know which of the interpreter agent’s properties will be instantiated.
The state of the interpreter agent is determined by the beliefs, objectives, plans of execution,
and library of plans. All of these concepts (beliefs, objectives, plans, conditions, filters) are
defined in the agent definition file (ADF). The ADF applies a Java-based declaration of
objects to define the initial beliefs and objectives. The plans are stated by specifying the way
to create an instance in the Java class. The ADF file format is a file of properties with pairs
of name/value that map out references to object statements. Figure 11 shows an excerpt of
the definition for the interpreter agent. The next section describes the execution model that
the interpreter agent follows.

The model for executing the interpreter agent is based on the four behaviors of the JADE
framework, and on the context-aware data collector, a new behavior that is added to the
architecture for the interpreter agent. These behaviors, which are executed within the Jadex-

123



J. A. Fraile et al.

<<Agent>>
Interpreter

<<Role>>
S-Plans
St-Data
P-Solution
C-Sensor
E-Result

Organisation
HCCAC

<<Service>>
Provide Plan Result

Description: Provides and
evaluates information on the
execution of a plan.

Agent Communication Languaje
FIPA

<<Service>>
Plan Describe

Description: This service provides
a description of a plan for a
specific date.

Agent Communication Languaje
FIPA

<<Service>>
Information Provide

Description: This service offers
information on the plans and tasks
carried out by the Interpreter
Agent.

Agent Communication Languaje
FIPA

<<Capability>>
S-Plans

Input
Obj: Target
Com: Components
Date: Date and Hour

Description: Selects and evaluates
valid plans from previous cases to
use as a possible solution.

Output
P(s1)...P(sn): Plans Solution

<<Capability>>
E-Result

Input
Plan Data: Plans
Usr: User Data
Date: Date and Hour

Description: Confirms the
execution of a plan and assigns it
a value.

Output
Rs: Result

<<Capability>>
St-Data

Input
P(s1)...P(sn): Plans Solution
Date: Date and Hour

Description: Stores valid plans
used in the solution for the
objective or task.

Output
St: state

<<Capability>>
C-Sensor

Input
Zn: Zone
Com: Components
Date: Date and Hour

Description: Gathers information
from sensors and control devices
in the system and looks for
changes and modifications.

Output
Inf: string

<<Capability>>
P-Solution

Input
P(s1)...P(sn): Plans Solution
Com: Components
Mdf: String

Description: Provides a solution
reasoned out according to the
initial request.

Output
Sl: Solution

<<Service>>
Component Task Asigment

Description: This service assigns
tasks to system components such
as sensors or automated control
devices.

Agent Communication Languaje
FIPA

Fig. 10 Diagram of classes for the interpreter agent

#start option
name = InterpreterAgent
class = jadexBDIAgent
#define plans
Instant_plans = openS, closeS
plans = tskplan, tskadd, clean
#define plan mappings
openS = OpenSensorRoom()
closeS = CloseSensorRoom()
tskplan = TaskPlan()
tskadd = TaskAdd()
clean = CleanTaskPlan()
#define activation filters for passive plans
tskplan_filter = TaskPlan.getEventFilter()
tskadd_filter = TaskAdd.getEventFilter()
#define initial beliefs and beliefsets
beliefsets = tskactionsensors
tskaction = {(idsensor, action, type)}
#define goals
goals = hotup, colddown, levelSmoke
#define goal mappings
hotup = Goal.createMantainGoal(hotup, temperature==23, hot)
colddown = Goal.createMantainGoal(colddown, temperature==21, cold)
levelSmoke = Goal.createPerformGoal(levelSmoke, ratioSmoke==5, low)

Interpreter Agent

Fig. 11 Example of the definition of an interpreter agent

based interpreter agent, can be seen in Fig. 12 and are denominated as follows: the scheduler,
the dispatcher, the message receiver, the context-aware data collector, and the timing. These
behaviors are executed concurrently inside the structure of the agent. The proper functioning
and availability of the context-aware data collector is fundamental for carrying out the tasks
related to the interpreter agent’s remaining behaviors. The context-aware data collector is

123



Planning home care tasks

Interpreter Agent

Select Plan Instances

Plan List

Instantiated Plan List

Intention Stack

ACL Messages

Dispatcher

Timing

Message Receiver

Scheduler

Timetable

New Events

Ready List

Instantiate Plans

Select Plans

Handle Goals

Dispatch

Execute Plan Instances

Add Plan Instances

Add Events

Add Events

Remove Timeouts

Context-Aware Data
Collector

Sensors

Systems Control

Fig. 12 definition example of interpreter agent

in charge of collecting the sensor and control system data, and generates corresponding
notifications and events derived from the collected information. The behavior of the message
receiver and the timing process is very simple to add new events to the event list. The message
receiver listens to the ACL messages sent by other agents and generates corresponding “event
messages.” The timing eliminates the planned events once they have been initiated and adds
new events to the list for their initiation. The dispatcher is responsible for adopting the
objectives, queuing them for execution, and selecting the plans that manage the events needed
to fulfill the objective. The selected plans are executed step by step by the scheduler, which
also manages the supervision plan. These behaviors shut down on their own and restart
themselves to keep the agent from consuming resources unnecessarily. Implementing the
interpreter agent’s functionalities as separate behaviors provides a clean design and allows
for the flexible substitution of the behaviors with personalized implementations such as
alternative planning mechanisms and CBR-BDI implementations that can be carried out
using modified versions of the behaviors.

4 Applying HoCCAC to plan task the COPD patient in context-aware environment

For this case study, the HoCCAC system was used to develop a prototype for improving a
patient’s quality of life. The system collects information from the sensors, which capture data
and interact with the patient by means of task plans developed by the interpreter agent. The
primary information gathered by the installed sensors is the location-aware information for
the user in the environment, using Wi-Fi, RFID, and ZigBee technologies. The system also

123



J. A. Fraile et al.

Fig. 13 Home plane

gathers information regarding the temperature throughout the patient’s home and the lighting
conditions in the patient’s ambulatory area using ZigBee technologies, and a sensor to weigh
the pill container. For this prototype, HoCCAC is based on the information collected within
the environment to plan the tasks for a COPD patient at home and improve the current living
conditions. The COPD patient requires artificial oxygen, which is administrated by means
of a special machine shown in Fig. 14.

HoCCAC was employed to develop a prototype multigent system aimed at enhancing the
assistance and care for low dependence patients at their homes. The house is 65 m2 with a
single dependent occupant. As shown in Fig. 13, the home is installed with (i) Simon Vit@
81800-30 passive infrared motion detectors for roof and (ii) mechanisms for automatic door
opening. The detectors’ movements and mechanisms for opening doors interact with the Java
Card and RFID microchip [21] and with users to offer services in run time. Each dependent
user is identified by a (iii) Sokymat ID bracelet Band Unique Q5 equipped with an antenna and
a RFID chip-Java-Crypto-Card with 32 K Module and Crypto-CoProzessor (1,024 bit RSA)
compatible to the SUN JavaCard 2.1.1 [10]. The home also includes (iv) Simon Vit@81915-
38 light sensors that are used in an effort to manage lighting levels in the home by maintaining
the levels within a predetermined range of changeable values, (v) a Simon Vit@ 81221-38
TFT surface screen that displays and manages the primary system components, (vi) Simon
Vit@ 81860-39 flood detectors for detecting water presence, (vii) Simon Vit@ 81861-39 gas
detector designed to detect the presence of toxic gases and explosives, (viii) Simon Vit@
81915-38 optical smoke detector for early warning of fires in progress, and a telephone control
system. The sensors or actuators are placed in strategic locations throughout the home. All
of the devices are controlled by agents. This sensor network is responsible for generating

123



Planning home care tasks

Fig. 14 Machine to administrate
oxygen

alarms upon comparing the user’s current state with the parameters of the user’s daily routine,
which have been stored by the system. The system can generate alarms if it determines that
the parameters fall outside the normal range. For example, if the user, on a non-working day,
stands up prior to a certain hour, if the user spends more time than specified at the front door
of the home without entering, if the user remains motionless in the hallway for an extended
period of time, etc (Fig. 14).

In our case study, the COPD patient interacts with the system in such a way that the
sensors capture the context-aware information about temperature, medication, light, and
breathe. COPD is a pulmonary disease characterized by a reduction in the breathe capacity
and mainly caused by the tobacco. COPD patients are chronic patients, but a personalized
care plan can notably contribute to improve their quality of life. This plan must include
strict medication and a fixed schedule for oxygen administration, and depends on the context
conditions (temperature, humidity, etc.). The HoCCAC architecture provides context-aware
technologies to obtain information about temperature, humidity, light, medication. Moreover,
it provides a series of services that can be used by the patient. In this sense, HoCCAC:

• Facilitates mechanisms to access information via mobile devices (mainly for caregivers
and relatives).

• Provides the medical staff with a new tool to communicate with the patients.
• Facilitates a tool to create adaptive plans based on previous experiences.
• The information is captured using different sensors.

As shown in Fig. 15, the information provider agents are directly connected to the informa-
tion gathering devices. The application in this case is composed of seven modules to control:
(i) the location of the patient, (ii) the interior lighting, (iii) temperature, (iv) gas leaks, (v)
flood detection, (vi) smoke detection, and (vii) control screen. The resource identification
agent is responsible for identifying and accepting or rejecting the data submitted by the infor-
mation providers. Its task is to oversee the information provider agents that incorporate into
the system. All of the data are stored in the system and interpreted by the interpreter agent.

The interface agent provides the interpreter agent with a series of basic activities that the
COPD patient must perform at home. This activity list is defined by the medical personnel
monitoring the patient. Table 1 shows the basic list of activities for a COPD patient.

123



J. A. Fraile et al.

Fig. 15 Home care context-aware application

Table 1 List of activities for
COPD patient

Activity Name Time (min.) Task

A Oxygen cylinder 600 1
B Get up and do exercise 10 6

C Breakfast 10 10

D 8:00 am pill and spray 3 3

E Doctor visit 60 14

F Walk 30 4

G Mid morning snack 20 9

H Oxygen cylinder 300 2

I 2:00 pm pill and spray 3 3

J Lunch 40 10

K Afternoon snack 20 11

L Walk 30 5

M 8:00 pm pill and spray 3 3

N Dinner 30 12

Once the activity list has been defined with the appropriate instructions as provided by
medical personnel, the interpreter agent generates an order to create a task plan following

123



Planning home care tasks

Table 2 Activities and their
prerequisites

Activity Prerequisites Time (min.)

A – 600

B – 10

C – 10

D A 3

E A, B, C, D 60

F E 30

G F 20

H G 300

I G 3

J I 40

K J 20

L H, K 30

M L 3

N M 30

the CPM method. With the activity list, the prerequisites for each activity, and the time
requirement list, it is possible to determine the duration for executing the task plan and
developing the network for the task plan. Table 2 shows the activity list and prerequisites.

Figure 16 shows the network associated with the previous task plan, with each of the nodes
numbered, and the earliest and latest possible times.

According to the network in Fig. 16, the activities can be found between two nodes where
E Si = L Si are critical tasks and determine the critical path. As such, the activities that
compose the critical path in the network in Fig. 16 are A, C, E, F, G, H, L, M, and N.
The remaining activities are carried out in parallel to the previous ones. For this reason, it
is possible to delay the start of the non-critical activities or increase their margin for delay
without increasing the overall duration of the task plan. Once the interpreter agent has defined
the task plan and its duration, it sends this information to the rest of the HoCCAC system
agents to execute the plan. The provider agents along with the interface agent are responsible
for overseeing the completion of the task plan. If at any time the plan is interrupted, for
example, because the patient is choking and has to perform the activity specified for this
situation, the HoCCAC system is notified by the interface agent and the interpreter agent
immediately replans the task plan. Another special case can result from a visit to the doctor,
which takes place monthly. When there is no need to visit the doctor, the node representing
this activity on the network is not present. Depending on the type of interruption, the provider
agent may also generate a warning as, for example, in the event that an oxygen tank does not
function. Figure 17 shows the Gantt diagram with the solution associated with the task plan
shown in Fig. 16. It is also possible to deduce from Fig. 17 which activities are critical and
which are not. The critical activities are shown in red, while those with a margin for delay are
in blue. It is also possible to see which tasks have a temporal overlap. Thus, the activity of
putting on the oxygen cylinder overlaps with waking up, doing exercise, and having breakfast.
It is also possible to deduce that the visit to the doctor takes place after the previous activities,
as well as after taking the morning medication.

The case study was carried out during 3 months. During three weeks, we observed the
environment and the patient behavior. The third week was used to deploy the technological

123



J. A. Fraile et al.

Fig. 16 Network of task plan defined for COPD patient

Fig. 17 Gantt diagram associated with the task plan

infrastructure and tune up the architecture. In the second month, the system obtained context-
aware information about the environment and the medical staff. Finally, the system was

123



Planning home care tasks

Fig. 18 Performance graph associated with the task plan presented in the case study.

tested during 1 month in the real environment, providing daily plans to the patient. During
the sequence of operations carried out by the HoCCAC agents, it is necessary to consider
the transformation of the information produced in the system. First of all, low level data are
collected from the patient’s environment. These are subsequently stored in the information
system as high level data so that they are more quickly interpreted and easier to use. The
information provider agents work with the interpreter agent to carry out this task. Additionally,
the patient can use context-aware applications to interact with the context at all times and
establish the parameters that dictate how the HoCCAC system functions.

5 Results

HoCCAC was used to develop a prototype for the home of a dependent patient. It incorpo-
rates JavaCard technology to identify and control access, which provides an added value to
existing RFID technology. The integration of these technologies provides the system with
the capability to perceive stimuli from within the environment automatically and in execu-
tion time. This makes it possible to personalize the system’s functioning and adjust it to the
characteristics and needs of the context for any specific situation.

The CPM planning mechanism is appropriate and simple to implement in a dynamic and
changing environment in which information systems require the incorporation of mechanisms
that can obtain high levels of learning and adaptation. The proposed planning system differs
from other existing systems in that it optimizes the possibility of assigning new plans and
dynamic replanning in execution time. To obtain results and data from the evaluation of the
CPM method used in our case study, we created a performance graph (Fig. 18) which allows
us to observe the rate of development for the activities described in the case study. At the
same time, this graph enables us to know which activities are nearing completion. In the
graph shown in Fig. 18, the y-axis lists the percentage of completion for the task plan, while
the x-axis lists the number of hours used for the defined task plan. The plans evolved over the
time, and we can show an example of a plan obtained during the last week. Our case study
presented a task plan with a total duration of 18 h and 5 min. This duration was calculated by
adding together the times associated with the tasks that compose the critical path. This graph
indicates the final task plan, which is found on the 100 % efficiency path and the final time
coordinate for the plan of actions.

At this point, it is now possible to calculate the advances achieved in the project every
hour, as shown in Fig. 18. The advance in the task plan is the advance of the sum of the

123



J. A. Fraile et al.

Table 3 Advance report for task plan activities

Hour Activity % advance Hour Activity % advance

1 A 10 % 12 G T

1 B T 12 H 3 %

1 C T 12 I T

2 A 20 % 13 H 23 %

3 A 30 % 13 J T

4 A 40 % 14 H 43 %

5 A 50 % 15 H 63 %

6 A 60 % 15 K T

7 A 70 % 16 H 83 %

8 A 80 % 17 H T

9 A 90 % 17 L 5 %

10 A T 18 L T

11 D T 18 M T

11 E 95 % 18 N 98 %

12 E T 19 N T

12 F T

advances achieved for each of the activities in the plan. Table 3 shows the advance reports
for each of the activities in the defined case study. Immediately upon receiving information
on the actual advance of the task plan, the interpreter agent fills in the data in Table 3 in the
following manner:

• Document the hour that the information is received (Hour column)
• Document the activity carried out during that hour in the Activity column
• Finally, the % advance column lists the advances the activities have made during that

hour. The letter “T” appearing in the column means that the activity has concluded.

Given the data defined in Table 3, it would be possible at any time to confirm the advance
in the task plan by adding together the partial advances achieved by the activities. This sum
represents the actual advance of the task plan. It is important to note that 1-hour time intervals
were used for the present case study because it is a daily task plan. However, there can be
more specific and short task plans where the time intervals can be measured in minutes.
The diagonal line in the graph shown in Fig. 18 is completely straight because during the
execution of the activity plan for the case study, there was no delay or acceleration in any
activity. When the task plan has accelerations or delays, the resulting graph is not represented
with a straight line, but with various arcs as shown in Fig. 19. The graph in Fig. 19 shows
that there is an acceleration delay in progress with the tasks in zone (a) and there is also a
delay acceleration in progress with the tasks in zone (b) with regard to the correct execution
of the task plan.

HoCCAC functions like a global system for context-aware environments. HoCCAC not
only captures information from the environment and interacts with users and their requests,
but also, assisted by the information system, constantly evaluates the attributes for the user
context and provides proactive solutions. The solutions provided by HoCCAC are supported
by a vast knowledge base that the system stores and processes. At the same time, the system
provides the patient with proactive task plans that attempt to improve the patient’s quality of

123



Planning home care tasks

Fig. 19 Performance graph associated with the task plan experiencing accelerations (a) and delays (b) in the
activities

life. The user can perform daily tasks and receive support from the intelligent context with-
out the need for explicit interaction. As a result, the user is not required to learn to use the
system. This increases the level of user satisfaction with the HoCCAC system managing the
environment. Furthermore, the HoCCAC system evaluates the use of resources in the envi-
ronment, sending useful reports to the medical personnel. Information on the use of resources
is supplied by the HoCCAC provider agents, while the interpreter agent is responsible for
evaluating the supplied information. The interpreter agent uses this evaluation to determine
how the daily resources will be allocated to the activities requesting their use. The interpreter
agent also examines its own evaluations and can reassign activities to available resources to
shorten the duration of a task plan. This allows the HoCCAC system to progressively improve
the solutions offered over time.

Furthermore, the technology used is not conditioned by the services offered. The choice
of JavaCard and RFID to locate and identify objects and users is independent of the specific
implementation of the technology, that is, the services are valid for any type of sensors,
antennas, readers, and RFID tags. Thus, the system is valid for very different types of envi-
ronments whose devices need not have a fixed technology base. The incorporation of new
JavaCard and RFID sensors in the case study significantly improves a series of functions
such as controlling medication and diet, and detecting anomalies in the patient’s behavior, as
shown in Table 4. The percentages for each task have been calculated by means of the rule
of Laplace and they are shown in the Table 4:

Number of activi ties that arecompleted

Number of activi ties o f thattask
∗ 100 (6)

Table 4 Comparison of control variables in the case study before and after implementing the HoCCAC
architecture

Control medication (%) Control meals (%) Anomalies in patient behavior (%)

Before HOCCAC 92 88 46

After HOCCAC 100 100 15

123



J. A. Fraile et al.

For example, regarding the control of the taking of medications, we use a sensor to weight the
pill container and to inform to the system when the pills have been taken. If the weight does
not vary when a medication should have been taken, it is considered anomaly. The anomalies
are measured in terms of number of episodes of the abnormal patient behavior, since we are
working with completed and incomplete tasks.

Table 4 shows the percentage of success in controlling the three variables associated
with the case study. One can easily appreciate the efficiency of the HoCCAC system in
controlling the intake of medication and food for each patient with a 100 % efficiency rate.
The system avoids errors in the administration and control of medication and special diets
for the patients. Furthermore, the HoCCAC system can detect anomalous behavior in the
patients and create behavior patterns for high risk situations. The percentage of anomalous
situations has decreased substantially. The main reason is the use of a CBR system in the
interpreter agent that takes past experiences into account in order to organize the new task
plans for the system. In this regard, the HoCCAC system takes advantage of past experiences
and learns from them. This behavior provides a great adaptive ability, as shown in the results
in Table 4.

6 Conclusions

While there is yet much work to be done, the system prototype developed for this study
improves home security for dependent persons through the use of vigilance and alert devices.
The interpreter agent in the HoCCAC system is capable of reacting automatically when faced
with dangerous or emergency situations, replanning any plans in progress and sending alert
messages to the system. Thus, HoCCAC creates a context-aware environment that facili-
tates the development of distributed intelligent systems and provides services to dependent
individuals in their home. This makes it possible to automate certain tasks used to monitor
dependent persons and improve their quality of life. The use of multiagent systems, automatic
control and RFID systems, JavaCard, and mobile devices provides a high level of interac-
tion between the context, caregivers, and patients. Furthermore, the proper use of mobile
devices facilitates social interactions and transfer of knowledge. Our future work will focus
on obtaining a model to define the context, as well as improving the current prototype and its
testing with a big number of patients, as well as with patients suffering from other diseases
or deficiencies.

7 Discussion

This paper presented a prototype where the HoCCAC architecture was used to improve the
quality of life of a COPD patient but, in the future, the system needs to be tested with a big
number of patients to have a more objective evaluation. The system was developed to be
applied in a COPD scenario, but we believe that it can be easily adapted to be applied in most
of the home care scenarios, especially for elderlies. The setup and number of sensor to be
used are dependent on the characteristics of the scenario. It is necessary to take into account
that the planning system requires initial information to provide acceptable solutions, as it is
based on a CBR system. These are our next challenges.

Acknowledgments This work was supported in part by the MEC OVAMAH 2009-13839-C03-03 Project.

123



Planning home care tasks

References

1. Anastasopoulos M, Niebuhr D, Bartelt C, Koch J, Rausch A (2005) Towards a reference middleware
architecture for ambient intelligence systems. In: ACM conference on object-oriented programming,
systems, languages, and applications

2. Angulo C, Tellez R (2004) Distributed intelligence for smart home appliances. In: Tendencias de la
minería de datos en España. Barcelona: Red Española de Minería de Datos. pp 1–12

3. Aquilano NJ, Smith DE (1980) A formal set of algorithms for project scheduling with critical path
scheduling/material requirements planning. J Oper Manag 1(2):57–67

4. Ardissono L, Petrone G, Segnan M (2004) A conversational approach to the interaction with Web Services.
Comput. Intell. 20:693–709

5. Bahadori S, Cesta A, Grisetti G, Iocchi L, Leone R, Nardi D, Oddi A, Pecora F, Rasconi R (2003)
RoboCare: pervasive intelligence for the domestic care of the elderly. Artif Intell 1(1):16–21

6. Bajo J, De Paz JF, Tapia DI, Corchado JM (2007) Distributed prediction of carbon dioxide exchange
using CBR-BDI agents. Int J Comput Sci (INFOCOMP) Special Edition 16–25

7. Bajo J, De Paz Y, De Paz JF, Corchado JM (2009) Integrating case planning and RPTW neuronal networks
to construct an intelligent environment for health care. Expert Syst Appl 36(3):5844–5858

8. Borrajo ML, Corchado JM, Corchado E, Pellicer MA, Bajo J (2010) Multi-agent neural business control
system. Inf Sci 180(6):911–927

9. Burrell J, Gay G (2002) E-graffiti evaluating real-world use of a context-aware system. Interact Comput
Special Issue Univers Usab 14(4):301–312

10. Chen Z (2000) (Sun Microsystems). Java card technology for smart cards. Addison Wesley Longman.
ISBN 0201703297

11. Corchado JM, Pavón J, Corchado E, Castillo LF (2005) Development of CBR-BDI agents: a tourist guide
application. In: 7th European conference on case-based reasoning 2004. pp 547–559

12. Corchado JM, Laza R (2003) Constructing deliberative agents with case-based reasoning technology. Int
J Intell Syst 18(12):1227–1241

13. Corchado JM, Bajo J, de Paz Y, Tapia D (2008) Intelligent environment for monitoring alzheimer patients,
agent technology for health care. Decis Support Syst 34(2):382–396

14. Dey AK (1998) Context-aware computing: The CyberDesk project. In: Proceedings of the AAAI, spring
symposium on intelligent environments, Menlo Park, CA

15. Dundas GR, Krentler KA (1982) Critical path method for introducing an industrial product. Ind Mark
Manag 11(2):125–131

16. Gu T, Pung HK, Zhang DQ (2004) Towards an OSGi-based infrastructure for context-aware applications
in smart homes. IEEE Pervasive Comput 3(4):66–74

17. Gupta T (1991) Applying the critical path method to manufacturing routing. Comput Ind Eng 21(1–
4):519–523

18. Holvoet T, Valckenaers P (2006) Beliefs, desires and intentions through the environment. In: AAMAS’06,
proceedings, pp 1052–1054

19. Jameson A (2001) Modeling both the context and the user. Pers Ubiquitous Comput 5(1):29–33
20. Kaluža B, Luštrek M, Dovgan E, Gams M (2012) Context-aware MAS to support elderly people (demon-

stration). In: Proceedings of the 11th international conference on autonomous agents and multiagent
systems, vol 3, pp 1485–1486

21. Kerer C, Dustdar S, Jazayeri M, Gomes D, Szego A, Caja JAB (2004) Presence-aware infrastructure
using web services and RFID technologies. In: Proceedings of the 2nd European workshop on object
orientation and web services, Oslo, Norway

22. Kwak NK, Long DA, Schniederjans MJ (1985) A CPM analysis of microbiology computerization project
for hospital management information processing. Inf Process Manag 21(2):149–155

23. Lim CH, Anthony P, Fan LC (2009) Applying multi-agent system in a context aware. Borneo Sci 24:53–64
24. Lina M, Lin Z (2006) A cost-effective critical path approach for service priority selections in grid com-

puting economy. Decis Support Syst 42(3):1628–1640
25. Muñoz MA, Gonzalez VM, Rodriguez M, Favela J (2003) Supporting context-aware collaboration in

a hospital: an ethnographic informed design. In: Proceedings of workshop on artificial intelligence,
pp 330–334

26. Park D, Hwang S, Kim A, Chang B (2007) A context-aware smart tourist guide application for an
old palace. In: Proceedings of the 3rd international conference on convergence information technology,
pp 89–94

27. Pokahr A, Braubach L, Lamersdorf W (2005) Jadex: a BDI reasoning engine, chapter multi-agent pro-
gramming. In: Multi-agent programming: languages, platforms and applications, vol 15. Springer, pp
149–174

123



J. A. Fraile et al.

28. Pokahr A, Braubach L, Lamersdorf W (2003) Jadex: implementing a BDI-Infrastructure for JADE Agents.
In: EXP—in search of innovation (Special Issue on JADE) pp 76–85

29. Schilit B, Theimer M (1994) Disseminating active map information to mobile hosts. IEEE Netw 8(5):22–
32

30. Skov M, Hoegh R (2006) Supporting information access in a hospital ward by a context-aware mobile
electronic patient record. J Pers Ubiquitous Comput 10:205–214

31. Uhm Y, Hwang Z, Lee M, Kim Y, Kim G, Park S (2007) A context-aware multi-agent system for building
intelligent services by the classification of rule and ontology in a smart home. In: 32nd IEEE conference
on local computer, network, pp 203–204

32. Wang Y, Goddard S, Perez L (2007) A study on the cricket location support system communication
protocols. In: 2007 IEEE international conference on electro/information technology, pp 257–262

33. Want R, Hopper A, Falcao V, Gibbons J (1992) The active badge location system. ACM Trans Inf Syst
10(1):91–102

34. Zhao Z, Belloum A, de Laat C, Adriaans P, Hertzberger B (2007) Using Jade agent framework to prototype
an e-Science workflow bus. In: Seventh IEEE international symposium on cluster computing and the Grid,
pp 655–660

Author Biographies

Juan A. Fraile obtained a Ph.D. at the University of Salamanca
(Spain). He obtained the Information Technology degree at the Pon-
tifical University of Salamanca (Spain) in 1996 and Engineering in
Computer Sciences degree at the Pontifical University of Salamanca in
2000. He has been involved in the development of automated systems
in the DMR Consulting company and the Data Processing Centre (Pon-
tifical University of Salamanca). He has also been a co-author of papers
published in recognized workshops and symposiums.

Yanira De Paz received a Ph.D. in Mathematics from the University
of Salamanca (Spain) in 2008. At present, she is a Professor of the
International University of the Rioja and Consultant of the University
of Cataluña. She hold a scholarship provided by the Spanish Minister
of Education to complete a Ph.D. program at the University of Sala-
manca (Spain). She obtained a Mathematics degree in 2002 and a Sta-
tistic degree in 2003 at the University of Salamanca (Spain). She was
an Assistant Professor at the Faculty of Economy at the University of
Salamanca and European University of Madrid; and co-author of sev-
eral mathematical, statistical… books, and articles. She has also been
lecturer in the Faculty of Mathematics at the Complutense University
of Madrid.

123



Planning home care tasks

Javier Bajo received a Ph.D. in Computer Science and Artificial Intel-
ligence from the University of Salamanca in 2007. At present, he is
Associate Professor at the Pontifical University of Salamanca (Spain)
and researcher at the BISITE research group (http://bisite.usal.es) at the
University of Salamanca (Spain). He obtained an Information Technol-
ogy degree at the University of Valladolid (Spain) in 2001 and an Engi-
neering in Computer Sciences degree at the Pontifical University of
Salamanca in 2003. He has been a member of the organizing and scien-
tific committee of several international symposiums such as CAEPIA,
IDEAL, and HAIS and is co-author of more than 150 papers published
in recognized journals, workshops, and symposiums.

Juan Francisco De Paz received a Ph.D. in Computer Science from
the University of Salamanca (Spain) in 2010. He is Assistant Professor
at the University of Salamanca and researcher at the BISITE research
group (http://bisite.usal.es). He obtained a Technical Engineering in
Systems Computer Sciences degree in 2003, an Engineering in Com-
puter Sciences degree in 2005 at the University of Salamanca, and Sta-
tistic degree in 2007 in the same University. He has been co-author of
published papers in several journals, workshops, and symposiums.

Belén Pérez-Lancho received a Ph.D. in Sciences from the Univer-
sity of Salamanca (Spain) in 1995 and she completed her postdoctoral
formation at the Pierre and Marie Curie University of Paris (France)
in 1996–1997. She is Professor of Computer Science and Vice-dean of
Infrastructures and Innovation at the Faculty of Sciences (University of
Salamanca). She teaches undergraduate courses in Computer Sciences
and Physics and official graduate courses in Intelligent Systems. Her
main research interests are in the area of modelling, intelligent con-
trol, and computation. She is co-author of several papers published in
recognized journals, congress, and symposiums and has participated in
national and international research projects.

123

http://bisite.usal.es
http://bisite.usal.es

	Context-aware multiagent system: Planning home care tasks
	Abstract
	1 Introduction
	2 Context-aware computing
	3 HoCCAC multiagent system
	3.1 Interaction between agents and devices in the system
	3.2 Description of the data model
	3.3 Solutions provided by the interpreter agent
	3.4 Task planning with the CPM method
	3.5 Interpreter agent design

	4 Applying HoCCAC to plan task the COPD patient in context-aware environment
	5 Results
	6 Conclusions
	7 Discussion
	Acknowledgments
	References


