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This study presents a multiagent architecture aimed at detecting SQL injection attacks,
which are one of the most prevalent threats for modern databases. The proposed architec-
ture is based on a hierarchical and distributed strategy where the functionalities are struc-
tured on layers. SQL-injection attacks, one of the most dangerous attacks to online
databases, are the focus of this research. The agents in each one of the layers are specialized
in specific tasks, such as data gathering, data classification, and visualization. This study
presents two key agents under a hybrid architecture: a classifier agent that incorporates
a Case-Based Reasoning engine employing advanced algorithms in the reasoning cycle
stages, and a visualizer agent that integrates several techniques to facilitate the visual anal-
ysis of suspicious queries. The former incorporates a new classification model based on a
mixture of a neural network and a Support Vector Machine in order to classify SQL queries
in a reliable way. The latter combines clustering and neural projection techniques to sup-
port the visual analysis and identification of target attacks. The proposed approach was
tested in a real-traffic case study and its experimental results, which validate the perfor-
mance of the proposed approach, are presented in this paper.

� 2011 Elsevier Inc. All rights reserved.
1. Introduction

Currently, one of the most dangerous and common threats to databases and Web applications is the SQL injection attack.
It typically involves malicious modifications of the user SQL input either by adding additional clauses or by changing the
structure of an existing clause [46]. SQL injection enables attackers to access, modify, or delete critical information in a data-
base without proper authorization [45]. In spite of being a well-known type of attack, the SQL injection remains at the top of
the published list of security threats [35]. The solutions proposed so far [6,47,48,5,60,32,64] seem insufficient to prevent and
block this type of attack because these solutions lack the learning and adaptation capabilities for dealing with 0-day
(previously unseen) attacks as well as new or future variations of attacks. Furthermore, the vast majority of these solutions
are based on centralized mechanisms, with little capacity to work in distributed and dynamic environments.

Taking previous research one step further, this study presents idMAS-SQL (Intrusion Detection based on MAS to Detect
and Block SQL injection), a hybrid solution based on a distributed architecture (multiagent system – MAS) [65] capable of
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detecting and blocking SQL injection attacks. The philosophy of multi-agent systems makes it possible to deal with SQL injec-
tion attacks from the perspective of the elements of communication, ubiquity and autonomous computation, and from the
standpoint of a global distributed system. Every component in idMAS-SQL interacts and cooperates to achieve a global com-
mon goal: the detection and prevention of ongoing intrusions in a database. idMAS-SQL presents a hierarchical organization
structured by layers of agents, which distributes roles and tasks for the detection and prevention of SQL injection attacks. The
agents at each level are assigned specific tasks which they can execute regardless of their physical location, due to their own
capabilities.

idMAS-SQL has evolved from the SC-MAS architecture [2] which follows the strategy of an Intrusion Detection System
(IDS) by means of a distributed approach based on the idCBR agent capabilities. idCBR agents are a particular type of
CBR-BDI agent [3,16] whose internal structure and capacities are based on mental aptitude [33]. These agents are character-
ized by the integration of a CBR (Case-Based Reasoning) mechanism [3] in a deliberative BDI Agent. This mechanism provides
the agents with a greater level of adaptation and learning capability given that CBR systems use past experiences to solve
new problems [16]. This is very effective for blocking SQL injection attacks as the mechanism uses a strategy based on anom-
aly detection [55], modeling the normal/legal SQL queries.

The main innovations of idMAS-SQL are the incorporation of a new classification strategy which is based on data mining
in idCBR agents, and of an agent with special capabilities for the visualization and subsequent analysis of data. idCBR agents
are specially designed to incorporate a mixture of classification through an artificial neural network (ANN) and a Support
Vector Machine (SVM). Through the use of this mixture, it is possible to take advantage of both strategies in order to classify
SQL queries in a more reliable way. The use of idCBR agents with advanced capabilities for analyzing and predicting SQL at-
tacks is one of the main features of the architecture. Furthermore, the incorporation of a visualizer agent provides human
experts with a very useful tool for analyzing those cases which are classified as suspicious by the idCBR agent and which
require validation by an expert. The visualizer agent is a type of agent equipped with advanced capabilities for data visual-
ization through unsupervised projection models. Specifically, it combines a clustering technique for the selection of similar
requests with a neural model for the reduction of dimensionality, which permits visualization in 2D or 3D.

The remainder of the paper is structured as follows: Section 2 presents the problem that has prompted most of this re-
search work. Section 3 introduces the topic of visualization techniques for information security and the projection models
applied in this study. Section 4 presents the proposed MAS architecture in detail. Section 5 explains the internal structure
of the two most important agents in this architecture. Finally, Sections 6 and 7 present the experimental results and conclu-
sions after having tested the proposed approach.

2. SQL injection attacks

An SQL injection attack takes place when a hacker changes the semantic or syntactic logic of an SQL text string by insert-
ing SQL keywords or special symbols within the original SQL command, executed at the database layer of an application [35].
Different attack techniques exist which include the use of SQL tautologies, Logic errors/Illegal Queries, Union Queries and
Piggy-back Queries. Other more advanced techniques use injections based on interference and alternative codification [35].
(1) SELECT ⁄ FROM tblUsers WHERE id = 1 or 1 = 1 AND user LIKE ‘‘%root%"
(2) SELECTIF (user =‘root’, BENCHMARK(1000000,MD5(‘x’)),NULL) FROM logindeclare@q varchar(8000);

select@q = 0x73656c65637420404076657273696f6e; exec(@q). Generating results: ‘select @@version’
The first query bases its strategy on adding an expression that is always true to the where-clause of a select statement
(tautologies). The second query masks the injection by using a type of codification such as ASCII (American Standard Code
for Information Interchange) or a codification in Hexadecimal format.

The cause of SQL injection attacks is relatively simple: an inadequate input validation on the user interface. As a result of
this attack, a hacker can be responsible for unauthorized data handling, retrieval of confidential information, and in the worst
possible case, taking over control of the application server [35].

Different strategies have been presented as a solution to the problem of SQL injection attacks [35], with special attention
given to strategies based on IDSs [6,47,48,5,60,32,64]. One approach based on anomaly detection was proposed by Bocker-
mann et al. [6], applying a clustering strategy to group similar queries and isolate queries which are considered malicious.
The main disadvantage of this approach is its high computational overhead which would affect a real-time detection. Kemal-
is and Tzouramanis propose the SQL-IDS (SQL injection detection system) [47] which uses security specifications to capture
the syntactic structure of SQL queries generated by the applications. The main limitation of this approach is the computa-
tional cost when comparing the new query with the predefined structure at runtime.

In [48] two types of SQL injection attacks are raised: tautology attacks and those based on the UNION operator. Through
the syntactic analysis of SQL query strings, the data of HTTP requests are extracted to be used later in the training phase and
to determine the threshold to be used in the evaluation phase. Bertino et al. [5] propose an anomaly detection mechanism
applied using data mining techniques. The main problem of this approach is finding an adequate threshold to maintain a low
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rate of both false positives and false negatives. Another anomaly-based approach is proposed by Robertson et al. [60]. This
approach uses generalization techniques to convert suspicious requests within abnormal signatures. These signatures are
later used to group malicious requests which present similar characteristics. Another technique used is characterization,
which involves deducing the type of attack associated with a malicious request. A low computational overhead is generated;
however, it is susceptible to generating false positives. The ID3 algorithm, presented by García et al. [32], proposes the detec-
tion of attacks targeted at web applications. The ID3 algorithm is used to detect and filter malicious SQL strings. This ap-
proach presents a significant percentage of incorrect classifications. Valeur et al. [64] propose the use of anomaly
detection through the generation of a series of models beginning with a set of recovered queries. At execution time, they
monitor the applications in order to identify requests which are not associated with the aforementioned models.
3. Visualization for information security

As they are considered a viable approach to information seeking, visualization techniques have been applied to massive
datasets for many years [1]. Visual inspection of network traffic patterns is presented as an alternative for managing a crucial
aspect of network monitoring [4] because its chief aim is to provide security personnel with a synthetic representation of the
network situation. In performing this task, visualization tools can:

� Assist security personnel in detecting anomalies and potential threats through an intuitive display of the progression of
network traffic.
� Deal easily with highly heterogeneous and noisy data such as the data required for network monitoring and Intrusion

Detection (ID) [18].
� Provide network managers with automated support and motivate their effectiveness by taking advantage of the ability of

the human eye to extrapolate normal traffic patterns and detect anomalies. As stated in [8], ‘‘a picture is worth a thousand
packets’’ or ‘‘a picture is worth a thousand log entries’’ [54].
� Help network managers diagnose performance issues or understand communication patterns between nodes.
� Serve as tools that are complementary to other security mechanisms.

The monitoring task that detects intrusive or anomalous events can be achieved by visualizing data at different levels of
abstraction: network nodes, intrusion alerts, packet-level data, communication content, log files, and so on. In other words,
different data from various security tools can be visualized.

Visualization tools rely on the human ability to recognize different features and to detect anomalies through graphical
devices [1]. Human vision can rapidly locate, discover, identify, and compare objects; all essential tasks in the network
monitoring process, considering the overwhelming amount of information and raw traffic data that must be processed
[8].

The underlying operational assumption of this approach is mainly grounded in the ability to render high-dimensional
traffic data in a consistent yet low-dimensional representation. Therefore, security visualization tools have to map high-
dimensional feature data into a low-dimensional space for presentation. One of the main assumptions of the visualization
task in the present study is that neural projection models will prove themselves to be satisfactory for the purpose of SQL
query visualization through dimensionality reduction, as they previously have been for some other attacks [12,38].

To date, most researches on ID have approached it from a classification standpoint, such as [26,50,59,63]. They perform a
2-class classification of network traffic: normal/anomalous in anomaly-based ID, and intrusive/non-intrusive in misuse-
based ID. From a different standpoint, this study proposes visualization techniques for the detection of attacks. It is worth
emphasizing that this proposal entails the visualization of SQL queries for detecting attacks (that is, visualization for ID)
and not the visualization of IDS alerts or logs (that is, visualization of ID) as others have done [44].

The visualization-based approach to ID relies on the following ideas [9]:

� Anomalous situations can be identified by their ‘‘visual signature’’. Visual fingerprints are frequently visible despite the
visual noise of background traffic.
� Some stealthy attacks are resistant to detection by classification-based IDSs, but are readily visible using appropriate

visualizations.
� Visualization techniques require little resources and are remarkably resistant to overload caused by high volumes of net-

work traffic.
� The completeness of visualization-based IDSs is supposedly higher than that of classification-based IDSs when facing
0-day attacks.

Unlike other security tools, IDSs need to be monitored to make the most of their benefits [19]. The huge number of alerts
that are usually generated by IDSs (including many false positives and negatives) is a hindrance to permanent (24 h.) mon-
itoring, mainly due to economical costs. Visualization-based IDSs can ease this task by providing an easily understandable
snapshot of the network status, thus reducing the time needed for ID.

Visualization techniques take advantage of the outstanding capabilities of the human visual system to detect
patterns and anomalies in visual representations of abstract data [52]. Another advantage of visualization is that it
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transforms the task of analyzing network data from a perceptually serial process (by reading textual data) to a percep-
tually parallel process (by presenting more concepts) [25]. Because of this, the visualization approach to ID implies sev-
eral advantages:

� Attack visualization can provide fresh insight into the analysed data, allowing the deduction of new hypotheses usually
lost in complex analysis [18]. Consequently, 0-day attacks can be easily detected.
� ‘‘Visualisation tools need to be designed so that anomalies can be easily flagged for later analysis by more experienced analysts’’

[34]. Visualisation for ID can help in training security personnel with no previous experience in security tasks, as well as
reducing the time spent by more experienced personnel.
� For effective analysis, network data must be correlated with several variables. This requires dealing with highly hetero-
geneous, complex, and noisy data. The visualization approach simplifies this problem by presenting the traffic situation in
an intuitive way, as visual images can give perceptual clues to the administrators [18].
� Attack visualization can be much faster than other anomaly detection approaches [18]. As it also reduces the time and

effort of reviewing security logs, it implies a great reduction of the time (and hence resources) required for ID.

Although many ID tools have begun to incorporate advanced graphical user interfaces, most of them fail to provide an
intuitive and comprehensive visualization of network traffic. To identify intrusions, one has to look for ‘‘interesting’’ struc-
tures and for ‘‘abnormal’’ or unusual data. Although this process cannot be precisely detailed in a general and objective way,
‘‘one usually can recognize unusual data when one sees them’’ [53].

One of the main drawbacks of the visualization approach to ID is that even if equipped with the ‘‘perfect’’ visualization
technique, security personnel will make mistakes in detecting intrusions. This is a consequence of relying on human abilities,
which are affected by a range of factors such as time pressure, fatigue, boredom, and so on.

In this study, some statistical and unsupervised neural projection models were applied for visualization-based ID of SQL
injection attacks. These models are described in the following subsections.

3.1. Principal Component Analysis

Principal Component Analysis (PCA) [41,58] describes the variation in multivariate data in terms of a set of uncorrelated
variables, in decreasing order of importance, each of which is a linear combination of the original variables. Using PCA it is
possible to find a smaller group of underlying variables that describe the data, with the result that the first few components
of such a group might explain most of the variation in the original data. It should be noted that even if we are able to char-
acterize the data with a few variables, it does not mean that an interpretation will ensue. This statistical technique may be
performed by using connectionist models [56,61,29].

3.2. Exploratory Projection Pursuit

Exploratory Projection Pursuit (EPP) [27] is a statistical technique for solving the complex problem of identifying struc-
ture in high-dimensional data. It involves low-dimensional data projections in which structure is identified by eye and re-
quires an index of ‘‘interestingness’’ by which each projection is measured. Subsequently, the data is transformed by
optimizing this index in order to examine the projections of greatest interest in greater detail. From a statistical point of
view, the most interesting directions are those which are as non-Gaussian as possible. Typical random data set projections
are usually Gaussian [23], so identification of the most interesting features in the data calls for further investigation of these
‘‘interesting’’ directions. As in the case of PCA, this statistical technique may be implemented by using connectionist models
[43,42,13,30].

While PCA is focused on the identification of the largest variance directions, EPP looks for higher order statistics, such as
skewness or kurtosis.

3.3. Curvilinear Component Analysis

Curvilinear Component Analysis (CCA) [22] is a nonlinear dimensionality reduction method. It was developed as an
improvement on the Self-Organizing Map (SOM) [49]. It tries to circumvent the limitations inherent in some previous linear
models such as PCA. Its output is not a fixed lattice but a continuous space able to take the shape of the submanifold in the
dataset (input space).

The CCA is based on a self-organized neural network performing two tasks: a vector quantization of the submanifold,
and a nonlinear projection of these quantising vectors toward an output space, providing a revealing view of the way in
which the submanifold unfolds. Quantization and nonlinear mapping are separately performed by two layers of
connections.

In the vector quantization step, the input vectors are forced to become prototypes of the distribution by using competitive
learning and the regularization method proposed in [21]. Thus, this step, which is intended to reveal the submanifold of the
input data, regularly quantizes the space covered by the data, regardless of the density. Euclidean distances between these
input vectors are considered, as the output layer has to build a nonlinear mapping of the input vectors.
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Since a perfect matching is not possible at all scales when the manifold is ‘‘unfolding’’, a weighting function is introduced,
yielding the quadratic cost function:
E ¼ 1
2

X
i

X
j–i

Xij � Yij
� �2F Yij; ky

� �
ð1Þ
As regards its goal, the projection part of CCA is similar to other nonlinear mapping methods in that it minimizes a cost func-
tion based on interpoint distances in both input and output spaces. Instead of moving one of the output vectors (yi) according
to the sum of the influences of every other yj, CCA proposes pinning down one of the output vectors (yi) ‘‘temporarily’’, and
moving all other yj around, disregarding any interaction between them. Accordingly, the proposed ‘‘learning’’ rule can be ex-
pressed as:
Dyj ¼ aðtÞFðYij; kyÞðXij � YijÞ
yj � yi

Yij
8j – i ð2Þ
The main advantages of CCA, in comparison to other methods such as stochastic gradient descent or steepest gradient des-
cent, are:

� The proposed rule (Dy) is much lighter than a stochastic gradient from a computational standpoint.
� The average of the output vector updates is proportional to the opposite of the gradient of the cost function (E). On the

other hand, it can temporarily produce increases in E, which eventually allows the algorithm to escape from local minima
of E. The research in [22] showed that the CCA method implies a lower final cost in comparison with gradient methods.

CCA is able to perform dimensionality reduction and represent the intrinsic structure of given input data without any pre-
vious knowledge of distribution of the analysed dataset. Compared with other previous projection algorithms, the CCA meth-
od is more general, reliable, and faster at capturing input data structure.

3.4. Cooperative Maximum Likelihood Hebbian Learning

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) is based on the EPP neural model called Maximum Likeli-
hood Hebbian Learning (MLHL) [13,31]. The main difference between these two models is that CMLHL includes lateral con-
nections [10,11] derived from the Rectified Gaussian Distribution (RGD) [62]. The RGD is a modification of the standard
Gaussian Distribution in which the variables are constrained to be non-negative. More precisely, CMLHL includes lateral con-
nections based on the mode of the cooperative distribution that is closely spaced along a nonlinear continuous manifold. By
including these lateral connections, the resulting network can find the independent factors of a dataset in a way that cap-
tures some type of global ordering in the dataset.

Considering an N-dimensional input vector x, an N-dimensional output vector y and with Wij being the weight (linking
input jth to output ith), CMLHL can be expressed as:

Feed-forward step:
yi ¼
XN

j¼1

Wijxj; 8i ð3Þ
Lateral activation passing:
yiðt þ 1Þ ¼ yiðtÞ þ sðb� AyÞ½ �þ ð4Þ
where A (described below) is a matrix used to modify the response to the data, and b is the bias parameter

Feedback step:
ej ¼ xj �
XM

i¼1

Wijyi; 8j ð5Þ
Weight change:
DWij ¼ g � yi � signðejÞjejjp ð6Þ
where g is the learning rate, s is the ‘‘strength’’ of the lateral connections, and p a parameter related to the energy function
[10,13,31].

A is a symmetric matrix used to modify the response to the data whose effect is based on the relation between the dis-
tances among the output neurons. It is based on the cooperative distribution, but to speed learning up, it can be simplified to:
Aði; jÞ ¼ dij � cosð2pði� jÞ=MÞ ð7Þ
where dij is the Kronecker delta.
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The application of CMLHL, initially in the field of artificial vision [10,11], and subsequently to other interesting topics
[14,37,39,40], has proven that this model can successfully perform data visualization.

3.5. Multidimensional Scaling

Multidimensional Scaling (MDS) [17] is a dimensionality reduction technique used for representing data. It involves find-
ing a graphic representation in low dimensionality which is as close as possible to the original data. Two types of MDS exist:
working with original values, or using ranges to represent the order of values in place of distances. If original magnitudes are
used, it is called metric MDS, otherwise, it is denominated non-metric MDS. Starting with a matrix of distances, the values
are sorted, representing a connection that indicates which elements are closest. What MDS tries to create is a new set of vari-
ables which maintain the same order of the initial variables based on a new matrix of distances.
4. idMAS-SQL: a multi-agent architecture to Detect and Block SQL injection

Given some of the above mentioned capabilities, a multi-agent solution fits the challenge of detecting and blocking SQL-
injection attacks. In keeping with this idea, the present study proposes the use of a multi-agent architecture, (see Fig. 1) to
focus on SQL injection attacks. It is based on an innovative approach since there is no known architecture with these char-
acteristics for detecting SQL injection attacks.

The distributed resolution of problems balances the workload, facilitates recovery from error conditions, and also avoids
centralized traffic. The analysis, classification and decision making capabilities, among others, are distributed throughout
several layers in the proposed idMAS-SQL architecture, as depicted in Fig. 1. The agents that make up the architecture are
assigned specific roles to perform their tasks. Moreover, the distribution greatly simplifies the capacity to recover from errors
or failures because if an agent fails, it is immediately replaced without affecting the other agents at the same level or in other
levels. Additionally, the proposed architecture is based on a hierarchical model that reduces the complexity of tasks such as
monitoring and capturing user requests, classifying user requests, evaluating the final solution, etc. Distributing the func-
tionality at each level, while maintaining each level independently, allows new changes to be easily adapted. Each level
of the architecture houses a collection of agents with well-defined roles that allow their tasks and responsibilities to be
clearly specified. The architecture has been divided into three levels so that the specific tasks are assigned according to
the degree of complexity. Fig. 1 depicts the idMAS-SQL architecture with each level and the respective agents.

idMAS-SQL is presented as an evolution of the SC-MAS architecture [2] that proposed a novel strategy to identify and
block SQL injection attacks through a distributed approach based on the capacities of idCBR agents, which are a particular
type of CBR-BDI agents [15]. As well as the CBR-BDI agents, an agent with visualization capabilities is incorporated to assist
the expert in decision making regarding queries that are classified as suspicious. To do so, a visualization mechanism is pro-
posed which combines clustering techniques and neural models, based on unsupervised learning, to reduce dimensionality.
Fig. 1. idMAS-SQL architecture showing the different layers and their respective agents.
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The different types of agents located at the different levels of the idMAS-SQL architecture can be described as:

� Sniffer. This type of agent is located in the monitoring layer and is responsible for capturing datagrams, ordering TCP
fragments to extract the request’s SQL string and executing a syntactic analysis of the request’s SQL string. There can
be more than one Sniffer agent depending on the amount of workload.
� Control-L1. This is one of the agents that execute control and communication functions in the lower layers of the archi-

tecture. It is located in the monitoring layer, and all communication from this layer is administered by the agent. Its func-
tions include: receiving data from the Sniffer agent and assigning the Analyzer agent to the task of searching for patterns
of attacks; reporting to the administration layer the detection of any intrusion during the process of comparing attack
signatures; and supervising the workload of the layer in order to request, from the administration layer, the creation
or elimination of Sniffer or Analyzer agent requests.
� Analyzer. This type of agent is located in the classification layer. Its function includes matching patterns of known

attacks; a database with previously built patterns allows this task. There can be more than one Analyzer agent depending
on the amount of workload.
� idCBR. This type of agent is also located in the classification layer and is a core component of the architecture as it carries

out a classification of SQL strings through detection anomalies. It integrates a case based reasoning (CBR) mechanism. In
the reuse phase of the CBR cycle it applies a mixture of neural networks to generate a classification (legal, illegal or sus-
picious). There can be more than one idCBR agent depending on the amount of workload.
� Control-L2. This is the second type of agent for carrying out control and communication functions. All of the incoming

and outgoing communication of the classification layer is administered by the Control-L2 agent. Its functions include:
receiving processed data from the Monitoring layer and assigning a specific classifier agent to execute the task of classi-
fication; reporting the detection of intrusions to the administration layer once the classification process is completed; and
supervising the workload of the layer to request, from the administration layer, the creation or elimination of requests
from the idCBR agents.
� Visualizer. This agent is the main novelty of the architecture proposed in this research. Also located in the Administration

layer, this agent facilitates the interaction between security personnel and the architecture. It applies different projection
models for visualizing SQL-related data. Consequently, SQL injection attacks can be visually identified. In addition to this
function, the visualizer agent dictates the rules and actions for when an intrusion is detected, given that its principal task
is to block (not execute) queries identified as anomalous. It also facilitates the implementation of adjustments in the
architectural setup. Finally, it is equipped with the ability to run on mobile devices to facilitate the task of monitoring.
� Manager. This agent is responsible for the evaluation and coordination of the overall architectural operation. It admin-

isters the directory of the architecture’s operative agents through communication with the idCBR agents at each layer.

The following section provides a detailed description of the two types of key agents in Intrusion Detection.
5. Agents for detecting SQL injection attacks

The idCBR and visualizer agents, presented in this study, interact with other agents within the idMAS-SQL architecture.
These other agents carry out tasks related to message capturing, syntactic analysis, and administration. The idCBR and visu-
alizer agents execute complementary tasks to determine the reliability of SQL queries.

The idCBR agent is a type of BDI agent that incorporates a CBR engine. This paradigm is based on the idea that similar
problems have similar solutions. Thus, a new problem is resolved by consulting the case memory to find a similar case which
has been resolved in the past.

The visualizer agent is an agent that is equipped with the capability of visualization, which helps the security expert to
resolve any user requests that are classified as suspicious by the idCBR agent. This agent incorporates projection models used
as tools to identify and remove correlations between problem variables, which enable us to carry out dimensionality reduc-
tion, and visualization or exploratory data analysis. In this study, some statistical and unsupervised neural projection mod-
els, specifically PCA [58], CCA [22], CMLHL [10], and MDS [17] were applied.

Below, the mechanisms incorporated in the internal structures of the idCBR and visualizer agents are presented in detail.
5.1. idCBR agent

This subsection presents the idCBR agent, with special emphasis on its internal structure and the classification mecha-
nism of SQL attacks. This mechanism combines the advantages of CBR-BDI systems, such as learning and adaptation, with
the predictive capabilities of a combination integrated by ANNs and SVMs. The use of this combination of techniques is based
on the possibility of using two classifiers together to detect suspicious queries in the most reliable way possible.

When working with CBR systems, the key concept is that of ‘‘case’’. A case is defined as a previous experience and is com-
posed of three elements: a description that depicts the initial problem; a solution that describes the sequence of actions per-
formed in order to solve the problem; and the final state, which describes the state that has been achieved once the solution
is applied.
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In terms of CBR, the case is composed of elements of the SQL query described as follows: (a) Problem Description, which
describes the initial information available for generating a plan. The problem description consists of: case identification, user
session and SQL query elements. (b) Solution, which describes the action carried out in order to solve the problem descrip-
tion, in this case, prediction models. (c) Final State, which describes the state achieved after the solution has been applied.
The fields defining a case are listed in Table 1. Additionally, the information related to the prediction models used is also
stored in the Models Memory.

Fig. 2 depicts the different stages applied in the reasoning cycle. To summarize, the retrieval stage involves a selection of
queries sorted by type and by the memory’s classification models. In the reuse phase, an MLP and an SVM [57] are applied
simultaneously to carry out the prediction of the new query. During learning, the memory information regarding the cases
and models is updated.

The different stages of the CBR reasoning cycle associated with the system are described as follows.

� Retrieve: it is divided into two phases, case retrieval and model retrieval. Case retrieval is performed by using the
Query_Category attribute which retrieves queries from the case memory (Cr) which were used for a similar query in accor-
dance with attributes of the new case cn. Subsequently, the models for the MLP mlpr and svmr associated with the recov-
ered cases are retrieved. The recovery of these memory models improves the system’s performance so that the time
necessary for the creation of models will be considerably reduced, mainly in the case of the ANN training.
� Reuse: it begins with the information of the retrieved cases Cr and the recovered models mlpr and svmr. The combination

of both techniques is fundamental in reducing the rate of false negatives. The inputs of the MLP are: Query_SQL, Affected_
table, Affected_field, Command_type, Word_GroupBy, Word_Having, Word_OrderBy, Numer_And, Numer_Or, Number_literals,
Number_LOL, and Length_SQL_String. The number of neurons in the hidden layer is 2n + 1, where n is the number of neu-
rons in the input layer. Finally, there is one neuron in the output layer. The sigmoid activation function has been selected
for the different layers. Taking into account the activation function fj, the calculation of output values is given by the fol-
lowing expression:
yp
j ¼ fj

XN

i¼1

wjiðtÞxp
i ðtÞ þ hj

 !
ð8Þ
The outputs correspond to xr. As the neurons exiting from the hidden layer of the neural network contain sigmoid neurons
with values between [0,1], the incoming variables are redefined so that their range falls between [0.2,0.8]. This transforma-
tion is necessary because the network does not deal with values that fall outside of this range. The outgoing values are sim-
ilarly limited to the range of [0.2,0.8] with the value 0.2 corresponding to a non-attack and the value 0.8 corresponding to an
attack. The network training is carried out through the error Backpropagation Algorithm [51].

At the same time that the estimation through the use of neuronal networks is performed, an estimation is also carried out
by the SVM application: a supervised learning technique applied to the classification and regression of elements. The algo-
rithm represents an extension of nonlinear models [10]. SVM also separates the element classes which are not linearly sep-
arable. In order to do so, the space of initial coordinates is mapped in a high dimensionality space through the use of
functions. Given that the dimensionality of the new space can be very high, it is not feasible to calculate hyperplanes that
allow the production of linear separability. To do so, a series of non-linear functions called kernels is used.
Table 1
Structure of the problem definition and solution for SQL query classification.

Problem description fields Solution fields

IdCase Integer Idcase Integer
Session Session Classification_Query Integer
User String
IP_Address String
Query_SQL Query_SQL
Affected_table Integer
Affected_field Integer
Command_type Integer
Word_GroupBy Boolean
Word_Having Boolean
Word_OrderBy Integer
Number_And Integer
Number_Or Integer
Number_literals Integer
Number_LOL Integer
Length_SQL_String Integer
Start_Time_Execution Time
End_Time_Execution Time
Query_Category Integer



Fig. 2. CBR cycle and classification mechanism of the idCBR agent.
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Let us consider a set of patterns T = {(x1,y1), (x2,y2), . . . , (xm,ym)} where xi is a vector of the dimension n. The aim is to con-
vert the elements xi in a space of high dimensionality through the application of a function, in such a way that the set of
original patterns is converted into the following set U(T) = {(U(x1),y1), (U(x2),y2), . . . , (U(xm),ym)} that, depending on the se-
lected function U(x), could be linearly separable. To carry out the classification, this equation sign is studied [13]:
classðxkÞ ¼ sign
Xm

i¼1

kiyiUðxiÞUðxkÞ þ b

 !
ð9Þ
where ki is a Lagrange multiplier, yi output value for the xi, b constant.
The selected kernel function in this problem was polynomial. The values used for the estimation are dominated by deci-

sion values and are related to the distance from the points to the hyperplane.
Once the output values for the ANN and the SVM are obtained, the mixture is performed by a weighted average in func-

tion of the error rate of each one of the techniques. Before calculating the average, the values are normalized to the interval
[0,1]. As SVM provides positive and negative values and those of greater magnitude, the calculation could affect the final
value in greater measure if it is not redimensioned.

� Revise: for those cases detected as suspicious, with output values determined experimentally in the interval
[0.35,0.6], a review by a human expert is performed. To facilitate the interaction of the human expert, a sophisticated
mechanism based on visualization techniques was incorporated in the administration layer. This mechanism allows
the security expert to manage suspicious cases with greater precision. In cases with queries clearly classified as
attacks, these are rejected, and the queries clearly classified as legitimate are allowed to run on the database. The sus-
picious queries are rejected and subsequently validated in the revise phase for a subsequent execution.

� Retain: the learning phase updates the information of the new classified case and reconstructs the classifiers offline to
leave the system available for new classifications. The ANN classifier is reconstructed only when an erroneous classi-
fication is produced. In the case of a reference to inspection of suspicious queries, information and classifiers are
updated when the expert updates the information.

5.2. Visualizer agent

This section presents an agent especially designed to resolve user requests that have been classified as suspicious. Its
main function is to complement the classification of SQL attacks through visualization facilities. As a result, this agent
improves the classification performance of the idMAS-SQL agent.



24 C.I. Pinzón et al. / Information Sciences 231 (2013) 15–31
This agent visualizes all the previously classified queries, highlighting those most similar to the new suspicious query. The
selection of similar cases is carried out through the use of a neuronal Growing Cell Structures (GCS) [28] network, that
distributes the previously stored cases in meshes and selects the mesh in which the new case is found. To visualize the cases
(those in the selected mesh), the dimensionality of data is reduced by means of a projection model. The information is rep-
resented and the associated queries are recovered with the retrieved mesh, as shown in Fig. 5. For the purpose of facilitating
the revise phase, CART [7] is applied to extract the relevant field in the probes that have been removed. The information
about the fields can help us to understand the reasons that queries are classified as legal or illegal.

6. Experimental results

A comprehensive set of experiments was designed and carried out to check the proposed approach. As a result, a sample
web application with access to a MySQL 5.0 database was developed. After creating the database, legal queries were sent
from the designed user interfaces. These requests were filtered to avoid redundancy and only legal SQL queries were gath-
ered to generate the dataset. In the case of malicious queries, the dispatch of the queries was automated using the agent
SQLMAP0.5 [20]. This tool is able to fingerprint an extensive DBMS back-end, retrieve remote DBMS databases, usernames,
tables, and columns, enumerate entire DBMS, read system files, and much more, taking advantage of web application pro-
gramming security flaws that lead to SQL injection vulnerabilities. Although the SQLMap 0.5 tool generates a wide variety of
malicious queries by using different strategies of attack, these queries were also filtered to remove any similar SQL string
previously stored.

For the classification process and application of the projection models, the SQL strings were syntactically analyzed, stor-
ing the fields in the dataset as listed in Table 2.

To analyze the successful rates, different classifiers were applied: Bayesian Network, Naive Bayes, AdaBoostM1, Bagging,
DecisionStump, J48, JRIP, LMT, Logistic, LogitBoost, MultiBoosting AdaBoost, OneR, SMO, and Stacking. The software used for
the experiments includes the libraries provided by WEKA [36] and the R script language. This software was used to compare
the different classifiers, whose names come from those listed in the libraries. These different classifiers were applied to 705
previously classified queries (437 legal, 268 attacks). The consecutive process for carrying out the output test was the fol-
lowing: select one of the cases, extract it from the set, construct the model starting from the remaining cases and classify
the extracted case. This process is repeated for each one of the cases and techniques in order to analyze each query without
it being used to build the model. The final result of the classification can be seen in Table 3.

As shown in Table 3, the highest-performance is obtained by the idCBR, which has a success rate of 99.01. Fig. 3 shows the
ROC curves for the methods presented in Table 3. As shown in Fig. 3, the idCBR method presents the highest area under the
curve (AUC), and can be consequently considered to be the method that provides the best results.

To analyze the reuse phase in depth, a mixture was carried out between all of the pairs of methods displayed in Table 3.
The results are shown in Table 4, which is divided into two halves by the principal diagonal. The upper part of the principal
diagonal contains the percentage of decisions for the combination of methods of the column file. In these values, estimations
of the dubious cases are included. The part corresponding to the lower diagonal contains the percentage of cases that can be
considered as suspicious among those classified. In the combination, it is clear that there is no method that exceeds the num-
ber of decisions of the proposed procedure: 99.01. The number of cases detected as suspicious, with an output between the
values of 0.35 and 0.6, was limited to 6.

To evaluate the significance of the different techniques presented in Table 4, a cross validation was established following
the Dietterich’s 5 � 2-Cross-Validation Paired t-Test algorithm [24]. The value 5 in the algorithm name represents the num-
ber of replications of the training process, and value 2 is the number of sets into which the global set is divided. Thus, for each
technique, the global dataset S was divided into two groups S1 and S2 as follows: S = S1 [ S2 and S1 \ S2 = /. The learning and
estimation stages were then carried out. This process was repeated 5 times for each technique, and included the following
steps: the classifier was trained using S2 and was then used to classify S2 and S1. In a second step, the classifier was trained
using S1 and was then used to classify S2 and S1. The results obtained are shown in Table 5, where the columns represent the
Table 2
Dataset fields obtained from the syntactic analysis of SQL queries.

Field Description Type (Values)

Affected_table Number of tables affected by the query Int (n tables)
Affected_field Number of fields affected by the query Int (n fields)
Command_type Type of declared command in the query Int (0–3)
Word_GroupBy Number of repetitions of Group By clause Int (n clause)
Word_Having Number of repetitions of Having clause Int (n clause)
Word_OrderBy Number of repetitions of Order By clause Int (n clause)
Number_And Number of repetitions of the And Operator Int (n ops)
Number_Or Number of repetitions of the Or Operator Int (n ops)
Number_literals Number of Literal in the SQL string Int (n literals)
Number_LOL Number of declared Expressions Literal-Operator-Literal in the SQL String Int (n exprs)
Length_SQL_String Length of the SQL String Int (n chars)



Table 3
Percentage of hits for the different classifiers.

Method Success rate Method Success rate Method Success rate

BayesNet 90.50 Naive Bayes 94.47 AdaBoostM1 94.33
Bagging 97.02 DecisionStump 84.82 J48 97.73
JRIP 98.16 LMT 98.30 Logistic 97.59
LogitBoost 96.45 MultiBoostAB 94.47 OneR 88.23
SMO 97.16 Stacking 61.99 idCBR 99.01

Fig. 3. ROC curves for the different classifiers shown in Table 3.

Table 4
Mixture of experts with combinations of the different classifiers. The upper values of the principal diagonal correspond to the percentage of elements
successfully classified taking suspicious cases into account; the lower values to the percentage of cases detected as suspicious.

Bayes
Net

Naive
Bayes

AdaBoost
M1

AdaBoost
M1

Decision
Stump

J48 JRip LMT Logistic Logit
Boost

Multi
BoostAB

OneR SMO Stacking

BayesNet 93.48 94.47 95.89 87.66 98.01 98.16 97.16 96.60 96.03 93.90 88.23 97.16 89.79
NaiveBayes 3.40 95.18 96.03 93.62 98.01 98.30 97.30 96.74 96.03 95.46 88.23 97.16 94.04
AdaBoostM1 5.82 3.97 96.17 94.04 98.01 98.16 97.59 96.45 96.03 94.04 88.23 97.16 95.18
Bagging 2.55 2.13 0.85 96.45 98.01 98.16 97.59 97.87 97.02 96.45 88.23 97.16 97.30
DecisionStump 9.36 10.50 11.49 12.91 98.01 98.16 97.45 97.59 94.89 93.33 88.23 97.16 84.82
J48 2.84 2.55 2.41 0.71 13.76 98.16 97.87 98.30 98.01 98.01 98.01 98.30 97.73
JRip 3.55 3.26 2.55 1.13 14.18 1.13 97.87 98.30 98.16 97.87 90.92 98.16 98.16
LMT 4.68 4.40 3.12 2.55 15.46 1.56 1.42 97.45 97.87 97.02 95.32 97.16 98.30
Logistic 5.53 3.12 2.41 1.70 14.04 0.71 1.56 1.70 97.73 96.17 88.23 97.16 96.74
LogitBoost 6.24 2.41 2.41 1.56 12.48 0.71 0.99 2.13 2.55 96.17 88.23 97.16 96.74
MultiBoostAB 5.11 4.96 0.57 2.41 11.06 3.40 3.97 4.96 3.55 2.98 88.23 97.16 94.04
OneR 8.51 8.23 6.10 8.23 18.44 10.35 11.06 11.63 9.50 4.40 10.07 96.74 88.23
SMO 2.13 1.99 0.85 0.43 13.48 1.70 2.41 2.41 0.14 0.28 2.70 10.64 97.16
Stacking 9.22 3.40 9.22 3.40 52.06 0.43 0.00 0.85 3.40 10.92 5.11 0.00 0.00
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success rate obtained for S1, S2 (Ri-A trained with S1) and S1, S2 (Ri-B trained with S2) for each i repetition. The rows of Table 5
show the different classifiers previously listed in Table 3.

Once the results presented in Table 5 were obtained, a study on the significance of the different classification techniques
was performed by applying the Mann–Whitney U-Test. It was a non-parametric test in which it is not necessary to make
assumptions on the data distribution, as in the t-Test. The test determines two values: H0 and H1. H0 shows whether the data
in both groups presents the same distribution, whereas H1 determines if there is difference in the distribution of the error
distance data. The upper diagonal of Table 6 shows the level of significance for the statistical test, so that if the value



Table 5
Number of errors obtained using the training and cross validation 5 � 2.

R1-A R1-B R2-A R2-B R3-A R3-B R4-A R4-B R5-A R5-B Average

S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2 S1 S2

BayesNet 319 317 313 316 322 303 317 325 317 312 317 321 318 316 318 318 314 315 312 303 316.25
NaiveBayes 333 333 334 332 336 328 329 334 333 333 334 332 333 334 334 331 330 333 334 332 332.62
AdaBoostM1 331 331 335 325 342 332 329 321 331 328 339 339 330 335 341 331 333 331 341 342 332.80
Bagging 345 345 346 344 349 341 340 342 344 345 346 342 340 339 348 344 345 343 347 345 343.93
DecisionStump 294 304 304 294 309 289 310 304 304 294 294 304 297 301 301 297 296 302 302 296 299.90
J48 345 342 351 341 349 343 340 339 347 340 345 342 348 342 349 339 347 340 348 344 344.01
JRip 348 344 338 335 349 336 336 341 346 344 346 344 342 340 346 340 343 342 344 344 342.27
LMT 352 347 353 336 352 341 345 344 345 343 353 343 349 341 353 343 351 341 350 345 346.35
Logistic 343 343 347 338 347 336 339 347 342 343 344 340 342 344 346 340 345 344 344 345 342.82
LogitBoost 344 343 338 331 343 340 338 340 336 336 342 338 340 336 343 342 342 339 342 343 339.60
MultiBoostAB 335 335 338 335 309 289 325 312 312 310 335 335 310 304 334 336 337 336 323 324 323.03
OneR 301 321 321 301 315 291 312 310 312 302 310 312 312 310 310 312 311 311 311 311 309.58
SMO 342 344 339 340 341 342 339 342 339 342 343 340 340 341 344 341 342 339 342 341 341.15
Stacking 208 229 229 208 217 220 220 217 219 218 218 219 226 211 211 226 218 219 219 218 218.36
idCBR 348 348 342 352 352 343 350 347 347 346 346 350 347 350 339 351 349 346 346 349 347.28

Table 6
Mann–Whitney and Paired t-Test test for the significance of the differences. The upper diagonal contains the Mann–Whitney U-Test and the lower diagonal
contains the t-Test.

Bayes
Net

Naive
Bayes

AdaBoost
M1

Bagging Decision
Stump

J48 JRip LMT Logistic Logit
Boost

Multi
BoostAB

OneR SMO Stacking idCBR

BayesNet 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.054 0.001 0.000 0.000 0.000
NaiveBayes 0.000 0.913 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.796 0.000 0.000 0.000 0.000
AdaBoostM1 0.000 0.555 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.087 0.000 0.000 0.000 0.000
Bagging 0.000 0.000 0.000 0.000 0.935 0.200 0.153 0.300 0.000 0.000 0.000 0.001 0.000 0.001
DecisionStump 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
J48 0.000 0.000 0.000 0.946 0.000 0.315 0.095 0.463 0.003 0.000 0.000 0.017 0.000 0.009
JRip 0.000 0.000 0.000 0.038 0.000 0.098 0.022 0.703 0.026 0.000 0.000 0.101 0.000 0.000
LMT 0.000 0.000 0.000 0.017 0.000 0.005 0.000 0.039 0.000 0.000 0.000 0.000 0.000 0.506
Logistic 0.000 0.000 0.000 0.114 0.000 0.191 0.480 0.001 0.003 0.000 0.000 0.015 0.000 0.000
LogitBoost 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.001 0.000 0.000 0.324 0.000 0.000
MultiBoostAB 0.019 0.012 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.003 0.000 0.000 0.000
OneR 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
SMO 0.000 0.000 0.000 0.000 0.000 0.004 0.141 0.000 0.018 0.041 0.000 0.000 0.000 0.000
Stacking 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
idCBR 0.000 0.000 0.000 0.004 0.000 0.021 0.000 0.509 0.001 0.000 0.000 0.000 0.000 0.000
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obtained is lower than the level of significance (commonly 0.05), we can conclude that the methods are different. In the
upper diagonal of Table 6 it is possible to observe those methods in which differences were detected (in bold), and those
in which no differences were detected (in red). Clearly, the error distribution for the idCBR approach differs from the error
distribution for the rest of the methods, from which we can conclude that there does exist a difference with all but one (LMT)
of the methods considered.

The analysis of the cross validation is completed using the Dietterich’s 5 � 2-Cross-Validation Paired t-Test [24]. The
results obtained are shown in the lower diagonal of Table 6. It is possible to observe that the results are very similar
to those previously shown in the upper diagonal (Mann–Whitney U-Test). In this case, the only technique that provides
results similar to idCBR (i.e., the difference is not significant) is LMT (the value obtained is higher than the level of signif-
icance: a).

The information presented in Table 5 is graphically represented with a boxplot in Fig. 4. It is possible to observe that the
variability of the data is low for the idCBR technique, while the other techniques (e.g., LMT) present a high variability. Addi-
tionally, idCBR presents a higher success rate (although this fact cannot be determined statistically) due to the variability of
the LMT algorithm. The best success rate is that of the idCBR method, as seen in Fig. 4. The global average, without distin-
guishing between the test and the validation, is 692.5 (98.23%) for the LMT method and 694.6 (98.54%) for the proposed
idCBR method. The number of successful classifications of the idCBR method increases as the memory of cases grows, while
the success rate for the LMT remains constant, as shown in Table 3.

The same analysis was repeated using only the data in Table 5 representing classification errors in the test sets. In this
case H0, although close, was not rejected when comparing LMT to idCBR because the value obtained was 0.08. This fact
indicates that the idCBR has a better generalization capacity than the LMT technique. Similarly, if the only errors selected



Fig. 4. Boxplots containing the information about the success rate for each technique considering the information shown in Table 5.

Table 7
Comparison of the execution time for the different techniques.

Total execution time (s) Average execution time (ms)

BayesNet 3.24 0.04595745
NaiveBayes 3.48 0.0493617
AdaBoostM1 2.78 0.03943262
Bagging 2.69 0.03815603
DecisionStump 2.64 0.03744681
J48 2.63 0.03730496
JRip 2.63 0.03730496
LMT 3.68 0.05219858
Logistic 3.1 0.04397163
LogitBoost 3.15 0.04468085
MultiBoostAB 3.2 0.04539007
OneR 3.13 0.04439716
SMO 3.58 0.05078014
Stacking 2.9 0.04113475
idCBR 5.35 0.07588652
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were those related to the test, then the result obtained from applying the paired t-Test was 0.13, which will not allow us to
determine the difference between both methods, although it is the closest to being rejected.

To compare the execution times, we proceeded to perform a classification for 70,500 requests for each technique shown
in Table 3. The results obtained are shown in Table 7. This table shows the total execution time (in seconds) for the 70,500
requests and the average execution time in milliseconds.

In order to validate the revise phase, we proceeded to recover one of the suspicious queries and to carry out a visualiza-
tion of the results. The query recovered is shown below:
select id_cliente, count (⁄) from client_order, client where id_client = id and id = ‘test’ AND ‘1’ = ‘2’ and date between
‘2008-05-05 00:00:00’ and ‘2008-05-05 23:23:23’ group by id having city = ‘Madrid’ order by id

This query presents suspicious information because it contains a literal ‘1’ = ‘2’ that could be considered an attack. As this
content does not make sense in a legal query, it could be interpreted as an attack. The output value obtained by the idCBR
agent was 0.541, therefore it will be classified as an attack, as originally proposed.

To carry out the revision, the two previously mentioned different techniques of dimensionality reduction were compared.
Fig. 5 shows the visualizations provided by the different techniques, which represent the selected query together with the



Fig. 5. Representation of queries during the revise phase, provided by different dimensionality techniques.
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most similar queries. The stored queries are depicted in different colours: the sample query (detailed above) is shown in
blue, legal queries in green, attacks in red, and non-recovered queries in grey.1

As can be seen, the dimensionality reduction that provides the best results is that of CMLHL, since the retrieved similar
cases are closer. Furthermore, it is easier for the naked eye to detect clusters with this procedure than with the others ap-
plied. Based on the results in Fig. 5(e), as provided by CMLHL, the query highlighted in blue can be seen closest to the queries
in red, from which it is possible to conclude that the query is probably an attack.

Once it is confirmed that the recovered queries results are significant with regards to their proximity in the projection to
the suspicious query, the queries are displayed so that the revision can be carried out. In this case, 39 similar queries were
recovered. Two examples of the recovered queries are:
1 For interpretation of color in Fig. 5, the reader is referred to the web version of this article.



se
00

n= 39  

node), split, n, loss, yval, (yprob) 

      * denotes terminal node 

1) root 39 11 C0 (0.71794872 0.28205128)   

  2) Number_literals< 4.5 30  2 C0 (0.93333333 0.06666667) * 

  3) Number_literals>=4.5 9  0 C1 (0.00000000 1.00000000) * 

Fig. 6. Rules of the Decision Tree generated by CART.
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lect id_cliente, count (⁄) from client_order, client where id_client = id and id = ‘test’ and date between ‘2008-05-05
:00:00’ and ‘2008-05-05 23:23:23’ group by id having city = ‘Madrid’ order by id

se

(M

da
t id_cliente, count (⁄) from client_order, client where id_client = id and id = ‘test’ AND ORD
lec

ID((SELECT 4 FROM information_schema.TableS LIMIT 0,1),2,1)) > 1 AND ‘1’ = ‘1’ and

te between ‘2008-05-05 00:00:00’ and ‘2008-05-05 23:23:23’ group by id having city = ‘Madrid’ order by id
The first corresponds to a legal query while the second corresponds to an attack. In order to facilitate the revise phase,
knowledge extraction is carried out to identify the variables that determine the relevant attributes that establish their clas-
sification. To this end, CART was applied, as it allows the selection of important attributes according to the rules shown in
Fig. 6. Each one of the rows corresponds to a tree branch that contains the number of assigned nodes, the condition, the num-
ber of nodes correctly classified, the misclassified nodes, and the class they belong to. The probability of each one of the clas-
ses being assigned to the nodes (legal C0, illegal C1) is indicated within parentheses (Fig. 6).

As can be seen, the field Number_literals is what determines if the queries are attacks within the recovered results in the
revise phase. Therefore, if the presence of literals in the query is detected as an amount that could be reviewed as an attack,
the dubious query displayed in Fig. 5 could be classified as an attack.

7. Conclusions and future work

The combination of different AI and data-mining paradigms allows the development of a hybrid IDS with characteristics
such as the capacity for learning and reasoning, and flexibility and robustness, which make the detection of SQL injection
attacks possible. The proposed idMAS-SQL architecture is capable of detecting these abnormal situations with lower error
rates than other existing techniques. The idCBR agent is selected because of a mixture which allows the efficient detection
of different types of queries, as shown in Table 2, and because it improves the results proposed by the mixture of other ex-
perts, as shown in Table 3. The idCBR agent incorporates both a neural network, which makes an estimation of the most
atypical cases compared with those existing in the database, and the SVM, which behaves effectively for similar queries;
hence the efficiency of both techniques.

The idCBR agent also provides a decision mechanism, based on CART, which facilitates the review of suspicious queries
through the selection of similar queries and their visualization through projection models in the visualizer agent. Visualiza-
tion facilitates the expert’s decision making through a graphical representation of similar queries. Different existing tech-
niques for performing dimensionality reduction have been analyzed, and the conclusions demonstrate that CMLHL
displays clearer projections which allow a simpler interpretation of results. Furthermore, the technique of knowledge extrac-
tion enables the recovery of relevant information which permits the grouping of queries, as shown in the example in Section
6.

The proposed architecture in general and the idCBR and visualizer agents in particular, could easily be applied to the
detection of other application-layer intrusions. Thus, further research will focus on the adaptation of idMAS-SQL to cover
any potential vulnerabilities. To do so, the key features of the packets involved in the target intrusions must be selected,
and relevant data must be gathered by the Sniffer agent. There is no need to redefine the techniques of idCBR and visualizer
agents, as the generalization capability of the comprised neural models allows its application to new problems.

Future work will be also based on the comparison to other neural and ensemble models for the visualization of anomalous
cases.
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