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Abstract. The detection of thermal insulation failures in buildings in operation responds to the challenge of improving building
energy efficiency. This multidisciplinary study presents a novel four-step soft computing knowledge identification model called
IKBIS to perform thermal insulation failure detection. It proposes the use of Exploratory Projection Pursuit methods to study the
relation between input and output variables and data dimensionality reduction. It also applies system identification theory and
neural networks for modeling the thermal dynamics of the building. Finally, the novel model is used to predict dynamic thermal
biases, and two real cases of study as part of its empirical validation.

1. Introduction

Predicting the thermal dynamics of a building is a
complex task. The dynamic thermal performance of a
building has mainly been used to estimate its power
requirements. As an example, the difficulties in ob-
taining a black-box model for a generic building are
documented {20,72]. Assessing thermal insulation is
a well-known problem that has not as yet been fully
resolved [31,80]. Several different techniques are pro-
posed in the literature. In [33], thermal insulation leaks
are found by measuring thermal resistance and infrared
(IR) thermography, while in [12,59] only IR thermog-
raphy is used to locate thermal insulation failures. As
the main drawback of using IR thermography is the
high cost of equipment, it is interesting to analyze al-
ternatives using different technologies.

Local regulations generally stipulate how thermal in-
sulation should be calculated in new buildings. In the

case of Spain, building and heating system regulations

are adapted to five winter climate zones and five sum-
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mer climate zones across the entire country. Building
materials, insulation thickness, materials, and so on,
are calculated according to each climate zone.

In this research, a novel four-step methodology is
presented, which aims to generate a model for esti-
mating the behaviour of indoor temperature in a build-
ing of a specific configuration. This methodology is
called IKBIS, which stands for Intelligent Knowledge-
Based Identification System. Firstly, the dynamic ther-
mal behaviour of a specific configuration is obatined.
Then, a post-processing step should be carried out
to obtain suitable datasets. In this methodology, the
dataset should be analysed using several statistical
methods, Exploratory Projection Pursuit (EPP) [24],
Principal Component Analysis (PCA) [27,38,56,76—
78}, Maximum Likehood HebianLearning [16,26] and
Cooperative Maximum-Likelihood Hebbian Learning
(CMLHL) [17]. This analysis extracts the main rela-
tionships between the variables. A model is then gen-
erated to estimate the indoor temperature at a specif-
ic configuration; this step is based on the application
of system identification theory [11,39,40]. Finally, the
thermal insulation failure is identified when the tem-
perature error, measured as the difference between the
indoor temperature and the model output temperature,
rises above a pre-set threshold.
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The remainder of this paper is organized as follows.
The following Sub-Section 1.1 details the problem
description. Section 2 introduces unsupervised con-
nectionist techniques for analysing the datasets in or-
der to extract their relevant internal structures. Sec-
tion 3 presents the knowledge-based approach for sys-
tem identification. Section 4 describes the multi-step
procedure. In Section 5, the experiments and results are
presented and commented on. Finally, the conclusions
are set out and comments are made on future lines of
research.

1.1. Spanish regulations and the problem description

In 2007, several regulations on buildings and con-
struction were approved in Spain dealing with en-
ergy efficiency [2], project development and specifi-
cations [3,5,6], the energy consumption limitation in
buildings [1,6], heating systems in buildings is the
RITE (Reglamento de las Instalaciones Térmicas en los
Edificios) [4], and certifying energy efficiency in new
buildings is detailed in [7].

As established in [7], the energy efficiency of a new
building that is being designed should be calculated
using the CALENER software package [8]. The en-
ergy efficiency in the case of buildings in operation
(during the lifetime of the building) is still an open is-
sue, and the assumption is that it will be based on heat
flux and conductivity measurement. Such a procedure
would have to comply with the aforementioned Spanish
Regulations by considering the different climate zones,
the different building materials, etc..

2. Soft computing for feature selection

Soft computing is [10,43,45,57] a set of various tech-
nologies which are used to solve inexact and complex
problems [82]. It investigates, simulates, and analyzes
complex issues and phenomena in an attempt to solve
real-world problems [73].

Feature Selection and extraction [30,46] involve fea-
ture construction, space dimensionality reduction, and
sparse representations among others. These are all com-
monly used pre-processing tools in soft computing that
undertake pattern recognition. Our approach to feature
selection is based on the dimensionality reduction issue.
Initially, we apply the following three projection meth-
ods: PCA [38,56], MLHL [16,26] and CMLHL [17].
They are applied again in a second step to analyse the
internal structure of a.data set that is representative of a

case of study. If after applying these models a clear in-

* ternal structure may be identified, it means that the da-

ta are sufficiently informative. Otherwise, further data
must be collected again. In a third step, these models
are used to perform space dimensionality reduction in
order to identify interesting dimensions or projections.

2.1. Data structure analysis using connectionist
techniques

Principal Component Analysis (PCA) [38,56] is a
statistical method which aims to find the orthogonal ba-
sis which maximizes the projection variance of the data
for a given basis dimensionality. It may be used as a di-
mension reduction technique which preserves as much
information as possible in the remaining dimensions.
If we consider only the largest eigenvalues correspond-
ing to the principal components, we can also find those
components that contain most information, which may
provide insight into the structure of the data.

Exploratory Projection Pursuit (EPP) [16,24]is are-
cent statistical method which centres on solving the dif-
ficult problem of how to identify structure in complex
high dimensional data. There is an index that measures
the “interestingness” of a given projection, and which
then represents the data in terms of projections that
maximise that index.

Maximum-Likelihood Hebbian Learning (ML-
HL) [16,26] is an implementation of EPP. The MLHL-
based method has been widely used in the field of pat-
tern recognition [16—-18,26] as an extension of PCA. It
identifies interestingness [16,24,26] by maximising the
probability of the residuals using specific probability
density functions that are non-Gaussian, which anal-
yse the fourth-order statistic or the kurtosis. Cooper-
ative Maximum-Likelihood Hebbian Learning model
(CMLHL) [17] is based on MLHL [16,26] but adds
lateral connections [17,18] which have been derived
from the Rectified Gaussian Distribution [66]. Let con-
sider an N-dimensional input vector (x), and an M-
dimensional output vector (y), with W;; being the
weight (linking input j to output i). CMLHL is comput-
ed by using four equations: where Eq. (1) corresponds
to the feed-forward step, Eq. (2) with the lateral activa-
tion passing, Eq. (3) represents the feedback step and
Eq. (4) is the rule for updating the weights. In these
equations, 7 is the “strength” of the lateral connections,
7 is the learning rate, b the bias parameter, p is a pa-’
rameter in order to choose a function to maximise the
likelihood of the residuals under particular models of
probability density functions and A is a symmetric ma-

.
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Fig. 1. The data source cycle: the data is gathered through the sensors from a process in operation — the set of valves and the tanks in the figure.
This data is then processed and a better controller is found. The controlier is then used. Whenever the behaviour of the system may be improved

the cycle is repeated.
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3. System identification

System identification is concerned with obtaining a
model that best suits a certain process behaviour (see
Fig. 1) [47]. Firstly, several are sampled from the
process. The data is then analysed to obtain a model that
estimates the desired process behaviour. The model is
then used to optimize the process output. Finally, the
process is modified to enhance its outcome. If more
adjustments are needed the cycle is repeated.

The system identification procedure includes the ex-
perimental design, data visualisation and analysis, and
the learning, testing, and validation of the model [47,
52,60,65,70,79].

When the data set is prepared, several tasks should be
carried out: eliminating missing data and outliers [14,
21,28,29] scaling and normalizing the data [67], etc.

Selection of the model structure, its training and val-
idation represents the core of the system identification.
According to [47], several measures have been pro-
posed in the literature to evaluate the goodness of a
model, i.e., the one-step ahead prediction error (FIT1),
the ten-step ahead prediction error (FIT10), or the sim-
ulation error, (FIT), the loss or the error function (V),
the generalization error value (the numeric value of the
normalized sum of squared errors, NSSE), or the final
prediction error (FPE) among others.

Choosing the most suitable model structure requires
a degree of expertise. Model structures range from
classical black-box models — such as FIR (finite im-
puse response), OE (output error), autoregressive mod-
els (ARMA, ARX, ARMAX, ARARX, ARARMAX,
etc.) and the BT (box-Jenkins) models- to fuzzy sys-
tems [81], neural networks [22] and support vector
regressions [25], including the N4SID (numerical al-
gorithm for subspace state space) [55], the MOESP
(multivariable output error state-space model) [71], the
Laguerre models [75], the nonlinear models from the
Volterra series [42], the NARMAX model [15], and
ANN models with a set of regressors NARX, NOE,
NARMAX, NFIR, NSSIF [54,58,64].

The Artificial Neural Networks (ANN) are well-
known universal approximators or predictors [19,37].
A Multilayer Perceptron (MLP) network [69] with two
layers is shown in Fig. 2. Several well-known model
structures are used when merging system identification
with ANN. If the ARX model is used as the regression
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Fig. 2. A MLP network with two layers, with two nodes per layer, and three inputs. W;; is the weight matrix between the hidden and output

layer, while W;; is the weight matrix between the inputs and the hidden layer. The network has two bias nodes with value 1.

vector 8, the model structure is called NNARX (neu-
ral network for ARX model). Likewise, NNFIR, NN-
ARMAX and NNOE structures, are also extensively
used [54].

4. IKBIS: An intelligent knowledge-based
identification method for detecting thermal
insulation failures in buildings

IKBIS is a hybrid approach based on a knowledge-
based tool applying system identification and Ex-
ploratory Pursuit methods. Its purpose is to detect ther-
mal insulation failures in buildings in operation, that is,
in a certain moment during the lifetime of the building.

IKBIS is presented in Fig. 3. Firstly, the thermal evo-
lution of the building should be obtained by means of
simulation. Then the data is processed, the relevant re-

“lationships shall be found inducind a feature selection
step. With the dimensional reduced data set the models
for the temperature evolution in each space are gener-
ated. Finally, mesaurements of the selected features
-are carried out, the models estimate the temperatures
in the spaces which are to be compared with the real
temperature. Insulation failures are proposed when the
bias are higher that expected. A description of each step
is in the following subsections.

4.1. Experiment design

The required output of this first step is the thermal
dynamics of the building, which should be recorded in
the building under operating conditions. For this rea-
son, the experiments should consider the specific build-

ing regulations, and the real metereological historical
data on the climate zone in which the building is based.

A network of sensors would be necessary to measure
and to gather data from a building in operation [13].
Nevertheles, it is not always feasible to install a sen-
sor network, but also it is anoreous and no advantages
are obtained with respect to IR thermography. Alter-
natively, simulation software allows to obtain realistic
data from modelled buildings [44]. Realistic simula-
tions should consider the different profiles, i.e. the oc-
cupancy and the lighting profiles, as close as possible
to the currently used in the building. Also, the mod-
el should use exactly the same building materials and
dimensions, the geometry, etc. Finally, the simulation
should accomplish with the country specific building
regulations, establishing the suitable climate zone, the
same building topology, the use of historical metereo-
logical data for the same season and period of the year,
etc.

The simulation sofware tool should accept all of this
parameters and manage them so the calculations would
be realistic. Also, the output data set should include
information about heat flux, sun radiation, the state
of the heating system and the indoor temperature for
all the spaces. In this method we propose the use of
HTB?2 [44] as it accomplishes with all the requirements.

From the point of view of IKBIS, the process is
represented by a data set in which each column contains
values of a certain variable [48].

4.2. Data pre-processing and analysing

The data set gathered in the previous step includes
information on a set of variables for each space in the

gy
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Fig. 3. The schema of the IKBIS to detect thermal insulation failures. The relevance of CMLHL is apparent in two ways as it allows the relevant
features to be selected i.e., to reduce the variables used to train and to analyse the internal structure of the data set.
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Fig. 4. The data pre-processing and analysis step flowchart. On the left, the main algorithm; each box in the main algorithm is unfolded on the

right.

building; consequently, data set dimensionality should set —elimination of missing data, etc. Then, dimension-
be reduced. IKBIS completely defines the data pre- ality reduction is performed in the data analysis step.
processing and analysing step as shown in Fig. 4; al- Finally, Data partitioning is considered in the case of a
though it is not completely automated yet. Firstly, Data data set with a reduced number of examples. For sake

Transformation is carried out to generate a valid data of brevity, the different techniques that can be used are
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Fig. 5. The CMLHL projection. As can be seen, there are four relevant features that allow the indoor temperature to be modelied: the occupancy,
the small power devices total power, the lighting electrical power and the heating system power.

not enumerated in this research.

IKBIS performs the data analysis using Exploratory
Pursuit methods, which are described as follows. First-
ly, the internal structure analysis is conducted, after
which a feature selection stage is performed.

4.2.1. Internal structure analysis

EPP models are applied to visualize the internal
structure of a data set (Fig. 5) helping to identify any
clear structure or patterns, which are the sign of a ro-
bust data gathering process. Otherwise, the experiment
to collect a representative data set should be performed
again.

4.2.2. Feature selection

Once a satisfactory internal data set structure is iden-
tified, the underlying features are selected (Fig. 5) by
using a EPP model to perform dimensionality reduc-
tion.

4.3. The system identification module

This IKBIS step establishes the best model struc-
ture, its parameters and delays. It was implemented in

Matlab and made use of several toolboxes: the System
Identification Toolbox [48], the Neural network-based
System Identification Toolbox [53}, and the Control
System Toolbox [50].

Thus, IKBIS performs as follows. Firstly, the user
establishes the required criteria. Then, the IKBIS esti-
mates the model structure and the learning method, al-
though the user can also choose both manually. Using
the above mentioned toolboxes, a total of 76 methods
are used, which include the following techniques:

— the frequency response analysis based on spectrum
analysis and the Fourier Fast Transform (FFT),

— correlation analysis, finite impulse response meth-
od (FIR),

— the estate space analysis, with 6 different models
and parameters, such as the N4SID algorithm by
Van Overschee and de Moor, CVA algorithm by
Larimore or the MOESP algorithm by Verhaegen,

— the black-box model analysis, with 31 different
models and parameters, such as the least squares
method, (QR factorization) ARX, or the recursive
normalized gradient algorithm RARMAX,

— the ANN models, with 31 different models and
training methods [23,32,34,36],
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. Table 1 .
Typical values of each variable in a C winter climate zone city in Spain

Variable (Units) Range of values  Transmittan

Air temperature of the house (°C), y1(t). 1710 24 — External cavity wall: 0.68
Exterior air temperature in February CC ), u1(t). 8to 10 — Double glazing: 2.91

Heater gain (W), ua(t). 0 to 4,250 — Floor/ceiling: 1.96

Small power and occupancy gain (W), uz(®). 0 to 1,200 — Party wall between buildings: 0.96
Lighting gain (W), ug(t). 0to 500 ~ Others party wall: 1.050
Ventilation gain (m®/min), us(t). 05175 — Internal partition: 2.57

— the residual analysis based on cross correlation
between the residual 1:’,:’ (7), between the residual
and the input ﬁw (1), and the non-linear residual
correlation R,z,.2 (7).

Then, the IKBIS generates a search of the structural
parameters of the model using the chosen criteria to
analyse all possible model structures. IKBIS proceeds
with the validation of the models and the most satis-
factory models are visualised and their criteria values
are shown. The user can choose from among them the
most appropriate system model for the input data set.

4.4. Detection of thermal insulation failures

Once the model has been obtained, then it is used as
a reference model to compare with the measurements
sampled in the building in normal operation conditions.
If building performance is similar to the reference mod-
el output then its thermal insulation is satisfactory; oth-
erwise, a failure in the thermal insulation will have been
detected. A soft computing model should be developed
to automatically detect the insulations failure detec-
tion. Developing this model requires real experiments
to validate the approach, and is now in research.

4.5. Discussion on knowledge-based identification
and KB maintenance

The IKBIS is a KBS that searches in the model space
trying to find the model that is best suited to a given
problem. As stated by [49,51,61}, data mining tech-
niques can improve the performance of KBS, while also
helping to manage the knowledge base.

The main problem in these approaches is the genera-
tion of comprehensive and exhaustive data sets to learn
the classifiers. The classifiers represents the knowledge
base, such that if a new problem needs to be solved,
the classifiers assist in reducing the search space. This
is the step where the advantages of the IKBIS become
fully apparent, as it will incoporate typical signal pro-

cessing measurements -mutual information, informa-
tion gain, largest Lyapunov exponent, etc.

Moreover, IKBIS may also generate information on
each of the models in the search process. This informa-
tion, can then be used for training classifiers that would
be incorporated in the knowledge base of a second re-
lease. Heuristics such as Case-Based Reasoning [9,41,
68,741, or Genetic Fuzzy rule Systems [35,62,63], ap-
pear to be valid for this purpose.

Finally, IKBIS has no graphic human machine in-
terface (HMI) but is based on a sequence of line com-
mands. This is due to the fact that IKBIS is at an ear-
ly stage of development, and it is better to continue
developing more reliable knowledge bases following
the above mentioned ideas than to design an HMI that
would probably have to be re-designed in the short term
as the knowledge base evolves. The right time to design
an HMI will be when the knowledge base is stabilized.

5. Cases of study and results

In this work, the method is applied in Spain. As
seen in Sub-Section 1.1, Spanish building regulations
establish several winter/summer zones, from E1 (more
severe climate zones) to A3 (gentler climate zone). The
typical values that each variable could take for a C win-
ter climate zone of maximum severity in Spain -i.e. the
cities of Bilbao, San Sebastian, and La Coruiia, among
others- are shown in Table 1 and are the following six
variables: air temperature of the house, exterior air
temperature, heater gain, small power and occupancy
gain, lighting gain and ventilation gain.

Two case studies have been analysed in this research
to illustrate the IKBIS procedures. Both correspond to
Spanish cities in different climatic zones as defined by
Spanish regulations. The first case of study is the city
of Santander (in the north coast of Spain). The second
case of study is the city of Avila, in central Spain, which
experiences some of the lowest temperatures on the
Meseta. Both cases were analysed in February over a
simulation period of ten days. Real metereological data
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Table 2
Case of study: the of Santander. The values of the quality indexes for the obtained models

Model

Indexes

Black-box ARX model with ng = 3,ng; = 1,npp = 3,np3 = 2, Npe = 2,p5 = L,ngy = 2,nge = 10,033 =

10,nq = 10,mp5 = 1,[37 322121010 10 I]. The model is estimated using the least squares method, QR
factorization, the degree of the model selection is carried out with the best Akaike information criterion (AIC) -the
structure that minimizes AIC-.

Black-box ARMAX model with ng = 3,131 = 1,42 = 3, Np3 = 2,pg = 2,75 = L, ne = 3,np1 = 2, npp =
10, ngg = 10, mpg = 10,mp5 = 1,[313 22132 10 10 10 1]. The model is estimated using the prediction error
method, the choice of the model order is Realized from the best AIC criterion of the ARX model.

ANN model for the heating process, NNARX regressor, the order of the polynomials of the initial fully connected
structure are ng = 3,mp; = 1, Mpp = 3,mpz = 2,npg = 2mps = L,ngy = 2,npg = 10,73 = 10,ng4 =

10,n5 = 1,[371322121010101]. The model was obtained using the regularized criterion. This model was
optimised by CMLHL analysis, residual analysis and the pruned network, using optimal brain surgeon (OBS). The
model structure has 10 hidden hyperbolic tangent units and 1 linear output unit. The network is estimated using the
Lenvenberg-Marquardt method, and the model order is decided on the basis of the best AIC criterion of the ARX model.

ANN model for the heating process, NNARMAX regressor, the order of polynomials of the initial fully connected
structure are ng = 3,mp; = L npy = 3,Mps = 2,0pg = 2,05 = 1, Te = 3,y = 2,nge = 10,ng3 =
10,ngq = 10,85 = 1,[31 322132101010 I]. The model was obtained using the regularized criterion and
was optimised by CMLHL analysis, residual analysis and the pruned network, using OBS. The model structure has 10
hidden hyperbolic tangent units and 1 linear output unit. The network is estimated using the Lenvenberg-Marquardt

FIT1:73.93%
FIT10: 26.6%
V:0.15
FPE:0.165
NSSE:0.11
FIT1:73.90%
FIT10: 19.5%
V:0.163
FPE:0.177
NSSE:0.112
FIT1:92.23%
V: 0.022
FPE:0.14
NSSE:0.01

FIT1:84.2%
V: 0.041
FPE:0.142
NSSE:0.043

method, and the model order is decided on the basis of the best AIC criterion of the ARX model.

was used and the materials were arranged according to
the Spanish regulations. Realistic profiles for occupan-
cy, lighting and the operation of small power devices
operation were employed. The HTB2 output dataset
includes 14,400 features -the indoor temperature, the
instantaneous heating power, the lightning power, and
SO on.

5.1. Results

5.1.1. Case of study: The city of Santander ‘

The IKBIS procedure (see Fig. 3) was applied to data
gathered in the city of Santander. The HTB2 output
data set was analysed in order to select the features
that best describe the relationships with indoor temper-
. ature. PCA, MLHL and CMLHL were applied to anal-
yse the data. The best results, which came from the
application of CMLHL, aré shown in Fig. 5. It can be
concluded that CMLHL identified two different clus-
ters ordered by small power and occupancy. Inside each
cluster there are further classifications by lighting and
heater power output and the dataset may be said to have
an interesting internal structure. The initial data set is
- then represented by ‘these four variables. Finally, the
system identification module is applied to find the most
appropriate model.

Table 2 shows the results obtained for different mod-
el structures. It may be seen that the NNARX is the
most appropriate model for monitoring the thermal dy-

namics of the building. As the heating process exhibits
nonlinear behaviour between output and inputs, the lin-
ear modelling techniques do not behave properly ex-
cept in the linear behaviour zones of the process. Con-
sequently, ANN-based models are the most appropriate
when using the IKBIS.

Figures 6 and 7 show the time responses of the in-
door temperature -y; (t)- and of the estimated indoor
temperature -y (£|m)- for the NNARX model. The for-
mer corresponds to the training data set, while the lat-
ter corresponds to the validation data set. The X-axis
shows the number of samples used in the estimation
and validation of the model and the Y-axis represents
the normalized indoor temperature of the house. The
training and the validation data sets include 388 and
336 samples, respectively, and have a sampling rate of
1 sample/minute.

It can be concluded from Table 2 that the pruned net-
work NNARX model is able to predict the behaviour of
indoor temperature in the building. This model may not
only be used to predict indoor temperature but can also
determine the normal operating conditions of thermal
insulation in buildings.

5.1.2. Case of study: The city of Avila

The same features chosen for the first case of study
and the same model structure are used for this second
case of study, so the validity of the method can be tested.
This means that the corresponding HTB2 simulation

R TR L SO PE P RIS A S R P




J. Sedano et al. / A soft computing method for detecting lifetime building thermal insulation failures 11

Sestaat Outpu (sofid fing) ve Extimaled Oulput (dotied fing)

4 ¥ L] 1 ¥ 1 %
3 -
2t
L3 A .
i
& £ £ i 2 i 3 1 Y
i} 50 1486 184 200 250 300 280
Fig. 6. Case of study: The city of Santander. Output response of NNARX model for the training data set. The actual output (solid line) is
graphically presented with one-step-ahead prediction (dotted line). The X-axis represents the time steps, the Y-axis represents the signal value. ‘
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Fig. 7. Case of study: The city of Santander. Output response of NNARX model for the validation data set. The actual output (solid line} is
graphically presented with one-step-ahead prediction (dotted line). The X-axis represents the time steps, the Y-axis represents the signal value.
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Fig. 8. Case of study: The city of Avila. Output response of NNARX model for the training data set. The actual output (solid fine) is graphically
presented with one-step-ahead prediction (dotted line). The X-axis represents the time steps, the Y-axis represents the signal value.
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Fig. 9. Case of study: The city of Avila. Output response of NNARX model for the validation data set. The actual output (solid line) is
graphically presented with one-step-ahead prediction (dotted line). The X-axis represents the time steps, the Y-axis represents the signal value.
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Case of study: the city of Avila. The values of the quality indexes for the NNARX model

Model

Indexes

ANN model for the heating process, NNARX regressor, the order of the polynomials of FIT1:93.42%
the initial fully connected structure are 7, = 3,np1 = 2, Npy = 3,Mp3 = 3,npg = V:0.0056
3,mb5 =2, nNg1 =5,nkz = 5,nk3 = 5,nps = 5,5 =2,[3233325555  FPE:0.102,
2]. The model was obtained using the regularized criterion. This model was optimised NSSE:0.0036
by CMLHL analysis, residual analysis and the pruned network, using OBS. The model

structure has 10 hidden hyperbolic tangent units and 1 linear output unit. The network is

estimated using the Lenvenberg-Marquardt method, and the model order is decided on the

basis of the best AIC criterion of the ARX model.

was carried out and the same features used in the first
case of study were chosen. Figures 8 and 9 show the
time responses of the indoor temperature -y (t)- and
of the estimated indoor temperature -§j; (¢/m)- for the
NNARX model. The former corresponds to the training
data set, while the latter corresponds to the validation
data set. The X-axis shows the number of samples used
in the estimation and validation of the model and the
Y-axis represents the normalized indoor temperature of
the house. The training and the validation data sets
include 2,000 and 1,126 samples, respectively, and have
a sampling rate of 1 sample/minute.

The performance of the pruned network NNARX
model is shown in Table 3. As in the previous case of
study, this model is able to simulate and predict the
behaviour of the indoor temperature of the house and
it can be used to predict the indoor temperature and to
determine the normal operating conditions of thermal
insulation in buildings.

6. Conclusions and future work

Effective thermal insulation is an essential compo-
nent of energy efficient heating systems in buildings.
The more effective the insulation in the buildings, the
lower the energy losses due to insulation failures. Thus,
the possibility of improving the detection of thermal
insulation failures represents a challenge in building
energy management.

IKBIS represents a novel method for detecting ther-
mal insulation failures, although its validation in a pre-
liminar phase. This procedure makes use of several dif-
ferent techniques, such as Exploratory Pursuit methods,
and neural networks modelling, among others.

Future work will cover finishing the validation of
the method, but also modeling the heat flux crossing
through the walls of the building —a regulatory test in
the evaluation of the energy efficiency in buildings in
Spain-, and the development of an automatic thermal
insulation failure detection system, which will improve
overall performance. Finally, this method would also
be applied in other countries. '
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