
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright


Author's personal copy

The THOMAS architecture in Home Care scenarios: A case study

Javier Bajo a,*, Juan A. Fraile a, Belén Pérez-Lancho b, Juan M. Corchado b

a Universidad Pontificia de Salamanca, Compañía 5, 37002 Salamanca, Spain
b Departamento Informática y Automática Universidad de Salamanca, Plaza de la Merced s/n, 37008 Salamanca, Spain

a r t i c l e i n f o

Keywords:
Dependent environments
Multi-agent systems
Home Care
Virtual organizations

a b s t r a c t

Today, the need for architectures and computational models for large scale open multi-agent systems is
considered a key issue for the success of agent technology in real world scenarios. The main goal of this
paper is to describe a case study in Home Care scenarios applying an abstract architecture and a compu-
tational model for large scale open multi-agent systems based on a service-oriented approach. The archi-
tecture used is THOMAS, which specifically addresses the design of Home Care systems. This paper
presents services examples for the management of a dependent home environment, and demonstrates
the new features of the proposal.

� 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Home Care is one of the objectives of pervasive computing, and
dependent people require new solutions that can take advantage of
technological advances which provide novel and fundamental ser-
vices (Angulo & Tellez, 2004). The vision of pervasive computing is
to improve the quality, access, equity and continuity of health care
(Angulo & Tellez, 2004). In this sense, intelligent environments can
improve health care services and can have a high social impact,
especially in Home Care services for chronically dependent pa-
tients (Augusto & McCullagh, 2007). Because Home Care requires
effective communication as well as distributed problem solving
(Augusto & McCullagh, 2007), multi-agent systems can facilitate
the development of pervasive Home Care environments. Moreover,
agent-oriented methodologies provide mechanisms for modelling
distributed, inter-operable and secure systems by taking social
and organizational considerations into account. Agents are auton-
omous software entities (Camarinha-Matos & Afsarmanesh,
2004) able to interact with their surroundings. They are highly
capable of adapting to changes, and can allow for integration with
multiple devices, sensors and humans.

The continuous growth of the dependent people sector has dra-
matically increased the need for new Home Care solutions
(Anastasopoulos, Niebuhr, Bartelt, Koch, & Rausch, 2005; Corchado
& Laza, 2003). Furthermore, commitments to meet the needs of
this sector suggest that the current systems are in need of modern-
ization. Multi-agent systems (Want, Pering, Borriello, & Farkas,
2002) and intelligent device-based architectures have been re-
cently explored as supervisor systems in health care scenarios

(Angulo & Tellez, 2004) for elderly people and for Alzheimer pa-
tients (Corchado & Laza, 2003). These systems are capable of
providing constant care in the daily life of dependent patients
(Carrascosa, Bajo, Julian, Corchado, & Botti, 2008), predicting
potentially dangerous situations, and facilitating a cognitive and
physical support for the dependent patient (Augusto & McCullagh,
2007). Taking these solutions into account, it is possible to assume
that multi-agent systems can further facilitate the design and
development of pervasive environments (Corchado, Bajo, de Paz,
& Tapia, 2008) and improve the services currently available by
incorporating new functionalities. Multi-agent systems add a high
level of abstraction with respect to the traditional distributed com-
puting solutions. They also facilitate the analysis and design of the
problem in terms of artificial intelligence systems. This allows a
greater flexibility for incorporating human behaviours into the
agent’s structure. Multi-agent system technology makes it possible
to cover a broad area of problems. Typical problems are systems in
which there are several entities (Requesters) which may require
one or more elements or services from other different entities (Bid-
ders). In the area of Home Care, for example, Requesters would be
patients and Bidders would be companies which provide services,
such as identification, localization, home automation services, or
warnings and alerts. Obviously, the development of these types
of systems is complex and, therefore, it is necessary to analyze
the intrinsic characteristics of these typical application environ-
ments in detail.

The aim of this research project is to present a case study apply-
ing the THOMAS (MeTHods, Techniques and Tools for Open Multi-
Agent Systems) multi-agent architecture. THOMAS has been used
to develop a case study for supervising and monitoring dependent
patients at home. This multi-agent system offers a series of func-
tionalities including an automatic reasoning and planning mecha-
nism for scheduling the medical staff working day, an alert system,

0957-4174/$ - see front matter � 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.eswa.2009.11.017

* Corresponding author. Tel.: +34 639771985; fax: +34 923277101.
E-mail addresses: jbajope@upsa.es (J. Bajo), jafraileni@upsa.es (J.A. Fraile),

lancho@usal.es (B. Pérez-Lancho), corchado@usal.es (J.M. Corchado).

Expert Systems with Applications 37 (2010) 3986–3999

Contents lists available at ScienceDirect

Expert Systems with Applications

journal homepage: www.elsevier .com/locate /eswa



Author's personal copy

a location and tracking system, and an identification system. The
medical staff has been provided with PDAs and mobile phones,
as well as with Java Card tags, and the home environments have
been equipped with presence detection sensors, access control
mechanisms, door opening devices and video cameras. The mul-
ti-agent system monitors the daily routine of the patient and de-
tects dangerous situations. If any anomalous situation is
detected, the alert system is used to obtain medical assistance.

The remainder of this paper is structured as follows: Section 2
provides an analysis of related studies; Section 3 presents the pro-
posed architecture model as well as a description of the services of-
fered by each one of the modules that make up the reference
model; Section 4 shows an example of an implementation, high-
lighting the new possibilities provided by this type of architecture,
and presents a specific approach for Home Care management; fi-
nally, some conclusions of this study are shown in Section 5.

2. Related works

Dependence is a permanent situation in which a person needs
important assistance from others in order to perform basic daily
life activities such as essential mobility, object and people recogni-
tion, and domestic tasks (Costa-Font & Patxot, 2005). There is an
ever growing need to supply constant care and support to the dis-
abled and elderly, and the drive to find more effective ways of pro-
viding such care has become a major challenge for the scientific
community (Nealon & Moreno, 2003). The importance of develop-
ing new and more reliable ways of providing care and support for
the elderly is underscored by this situation, and the creation of se-
cure, unobtrusive and adaptable environments for monitoring and
optimizing health care will become vital. Some authors (Nealon &
Moreno, 2003) consider that tomorrow’s health care institutions
will be equipped with intelligent systems capable of interacting
with humans. The intelligent systems aim to support patients in
all aspects of daily life (Cesta, Bahadori, Cortellesa, Grisetti, &
Giuliani, 2003), predicting potential hazardous situations and
delivering physical and cognitive support (Bahadori et al., 2003).

Home Care systems aim to improve quality of life, offering more
efficient and easy ways to use services and communication tools to
interact with other people, systems and environments. Among the
general population, those most likely to benefit from the develop-
ment of these systems are the elderly and dependent persons (i.e.,
those suffering from degenerative diseases, dementia or loss of
cognitive ability (Costa-Font & Patxot, 2005)), whose daily lives,
with particular regard to health care, will be most enhanced
(Corchado et al., 2008; Van Woerden, 2006).

Agents and multi-agent systems in dependency environments
are becoming a reality, especially in health care. Most agent-based
applications are related to the use of this technology in the monitor-
ing of patients, treatment supervision and data mining. Lanzola,
Gatti, Falasconi, and Stefanelli (1999) present a methodology that
facilitates the development of inter-operable intelligent software
agents for medical applications, and propose a generic computa-
tional model for implementing them. The model may be specialized
in order to support all the different information and knowledge-re-
lated requirements of a hospital information system. Meunier
(1999) proposes the use of virtual machines to support mobile soft-
ware agents by using a functional programming paradigm. This vir-
tual machine provides the application developer with a rich and
robust platform upon which to develop distributed mobile agent
applications, specifically when targeting distributed medical infor-
mation and distributed image processing. While an interesting pro-
posal, it is not viable due to the security reasons that affect mobile
agents, and there is no defined alternative for locating patients or
generating planning strategies. There are also agent-based systems

that help patients get the best possible treatment, and that remind
the patient about follow-up tests (Miksch, Cheng, & Hayes-Roth,
1997). They assist the patient in managing continuing ambulatory
conditions (chronic problems). They also provide health-related
information by allowing the patient to interact with the on-line
health care information network. Decker & Li propose (Decker &
Li, 1998) a system to increase hospital efficiency by using global
planning and scheduling techniques. They propose a multi-agent
solution that uses the generalized partial global planning approach
which preserves the existing human organization and authority
structures, while providing better system-level performance (in-
creased hospital unit throughput and decreased impatient length
of stay time). To do this, they use resource constraint scheduling
to extend the proposed planning method with a coordination
mechanism that handles mutually exclusive resource relationships.
Other applications focus on home scenarios to provide assistance to
elderly and dependent persons. RoboCare presents a multi-agent
approach that covers several research areas, such as intelligent
agents, visualization tools, robotics, and data analysis techniques
to support people with their daily life activities (Pecora & Cesta,
2007). TeleCARE is another application that makes use of mobile
agents and a generic platform in order to provide remote services
and automate an entire home scenario for elderly people (Camarin-
ha-Matos & Afsarmanesh, 2004). Although these applications ex-
pand the possibilities and stimulate research efforts to enhance
the assistance and health care provided to elderly and dependent
persons, none of them integrate intelligent agents, distributed
and dynamic applications and services approach into their model.

In multi-agent systems (MAS) one of the most important goals is
to build systems capable of autonomous and flexible decision-mak-
ing. Moreover, these systems must cooperate with others within a
”society”. Due to the technological advances of recent years, the
term ”society”, in which the multi-agent system participates, needs
to meet several requirements such as: distribution, constant evolu-
tion, flexibility to allow members to enter or exit the society, appro-
priate management of the organizational structure that defines the
society, multi-device agent execution including devices with lim-
ited resources, and so on. All of these requirements define a set of
features that can be addressed through an open system paradigm
and virtual organizations. Despite the large number of agent plat-
forms in existence, the majority are lacking in the management of
virtual organizations for dynamic, open and large-scale environ-
ments. For example, the most well-known agent platforms (like
JADE) (Argente et al., 2007) offer basic functionalities to agents,
such as AMS and DF services; but designers must implement nearly
all of the organizational features by themselves, namely organiza-
tion representation, control mechanisms, organization descrip-
tions, AMS and DF extensions, communication layer, monitoring,
organization modelling support and organizational API.

The state-of-the-art in this field shows research interest in the
integration of mobile agents and services, where agents are com-
plex entities that can handle the problem of service discovery
and composition in dynamic and changing open environments.
Agents are not organized into plain societies, but into structured
organizations that enclose the real world with the society repre-
sentation and ease the development of open and heterogeneous
systems. Current agent platforms must integrate these concepts
to allow designers to employ higher abstractions when modelling
and implementing these complex systems. All of these concerns
can be found in the THOMAS architecture.

3. THOMAS architecture model

THOMAS architecture basically consists of a set of modular ser-
vices. Though THOMAS feeds initially on the FIPA architecture, it

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3987



Author's personal copy

expands its capabilities to deal with organizations and to boost its
services abilities. In this way, a new module in charge of managing
organizations is introduced into the architecture, along with a
redefinition of the FIPA Directory Facilitator that is able to deal
with services in a more elaborate way, following Service Oriented
Architectures guidelines. As previously stated, services are very
important in this architecture. In fact, agents have access to the
THOMAS infrastructure through a range of services included in dif-
ferent modules or components. The main components of THOMAS
are shown in Fig. 1.

� Service Facilitator (SF): this component offers simple and com-
plex services to the active agents and organizations. Basically,
it is both a yellow pages service, and a green pages service
descriptor.

� Organization Management System (OMS): mainly responsible
for the management of the organizations and their entities, thus
allowing for the creation and management of any organization.

� Platform Kernel (PK): maintains basic management services for
an agent platform.

The following sections describe the different components of the
THOMAS architecture in greater detail.

3.1. Service Facilitator

The Service Facilitator (SF) is a mechanism and support by
which organizations and agents can offer and find services. The
SF provides a place in which the autonomous entities can register
service descriptions as directory entries.

The SF acts as a gateway to access the THOMAS platform. It
manages this access transparently, by means of security tech-
niques and access rights management. The SF can find services
by searching for a given service profile or searching for the goals
that can be fulfilled when executing the service. This is done by
using the matchmaking (Sycara, Widoffand, Klusch, & Lu, 1982)
and service composition mechanisms (Corchado & Laza, 2003)
which are provided by the SF. The SF also acts as a yellow pages

manager and in this way it can find which entities provide a given
service.

A service represents an interaction of two entities, which is
modelled as communication among independent processes. Ser-
vices can be described as offering capabilities, each of which en-
ables the fulfilment of a given goal. The service may have some
preconditions, which need to be true for the service execution.
Moreover, both service client and provider exchange one or more
input and output messages during the service execution, which af-
fects their environment. There could also be additional parameters
in a service description, which are independent of the service func-
tionality (non-functional parameters), such as quality of service,
deadlines and security protocols. Finally, the service results can
be enhanced using automatic service composition mechanisms
(Klusch, Fries, & Sycara, 2006; Brogi, Corfini, & Popescu, 2005)
(for example, partial matchmaking). To do this the SF stores the
description of the internal processes that are executed when the
service is running.

In our case, multi-agent technology provides us with FIPA com-
munication protocols which are well established mechanisms for
standardizing the interactions. Thus, every service has an associ-
ated protocol. In cases where the service requires the execution
of a chain of protocols, the service is marked as ‘‘complex”. Given
that THOMAS works with semantic services, another important
piece of data is the ontology used in the service. Thus, when the
service description is accessed, any entity will have all of the infor-
mation necessary in order to interact with the service and make an
application that can use this service. Such a description can also be
employed for pre-compiled services, in which the process model
of the service is composed of the sequence of the elementary ser-
vices to be executed, instead of the internal processes of this
service.

Normally, a service can be supplied by more than one provider
in the system. Therefore, a service has an associated list of provid-
ers. All providers can offer exact copies of the service, given that
they share a common implementation of the service. Or they
may share only the interface and each provider may implement
the service in a different way. This is easily achieved in THOMAS

Fig. 1. THOMAS architecture.

3988 J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999



Author's personal copy

because the general service profile is separate from the service
process.

A service is defined as a tuple (sID, goal, prof, proc, ground, ont):

� sID is a unique service identifier;
� goal is the final purpose of the service and provides the first

abstraction level for service composition;
� prof is the service profile which describes the service in terms of

its IOPEs (Inputs, Outputs, Preconditions and Effects) and non-
functional attributes, in a readable way for those agents search-
ing for information (or matchmaking agents which act as
searching service agents). This type of representation includes
a description of what the service fulfils, the constraints to its
applicability and quality of service, and the requirements that
clients have to satisfy in order to use the service.

� proc describes how a client has to use the service; it specifies the
semantic content for using the service, the situations in which it
is obtained, and, whenever required, the step-by-step processes
to get these results. In other words, it specifies how to call a ser-
vice and what should happen when the service is executed.

� ground specifies in detail how an agent can access the service.
Grounding specifies a communication protocol, the message for-
mats, the contact port and other specific details of the service. It
is specified using the OWL-S standard extended with FIPA
protocols.

� ont is the ontology that gives meaning to all of the elements of
the service. OWL-DL is the chosen language.

This proposal is based on OWL-S specification for semantic web
services, extended when it is necessary to empower its functionality.
Goals, preconditions and effects (or post-conditions) are logical
formulas.

The tuple defined above for service specification is implemented
in two parts: the abstract service, general for all providers; and the
concrete service, with the implementation details. As such, services
are stored within the system and split into two parts: the service
profile (which represents the abstract service specification) and a
set of service process specifications (which detail the specific ser-
vice). Thus, in THOMAS services are implemented as the following
tuple, in which its elements are OWL-S extended specifications:

<ServiceID, Providers, ServGoal, ServProfile>
Providers::= <ProvIDList, ServImpID, ServProcess,
ServGround>
ProvIDList::= ProviderID

where

� Providers are a set of tuples composed of a Providers identi-
fier list (ProvIDList), the service process model specification
(ServProcess), and its particular instantiation (ServGround).

� ProvIDList stores a list of service provider identifiers.

The SF supplies a set of standard services (meta-services) to
manage the services provided by organizations or individual
agents (see Table 1). These meta-services also have to be used by
the remaining THOMAS components (OMS and PK) to advertise
their own services. SF meta-services can be classified in three
types:

� Registration: allowing the addition, modification and removal of
services from the SF directory.

� Affordability: for managing the association between providers
and their services.

� Discovery: for searching and composing services as an answer to
user requirements.

Their functionality is so complex that they can be delegated to a
specialized component.

3.2. Organization Management System

The Organization Management System (OMS) is in charge of
organization life-cycle management, including specification and
administration of both its structural components (roles, units and
norms) and its execution components (participant agents and roles
they play, and active organizational units). Organizations are struc-
tured by means of organizational units, which represent groups of
entities (agents or other units), which coordinate in order to pur-
sue a common goal. These organizational units have an internal
topology (i.e., hierarchical, team, plain), which imposes restrictions
on agent relationships and control (e.g., supervision or information
relationships).

In THOMAS, a ‘‘virtual” unit has been defined in order to repre-
sent the ‘‘world” system in which agents participate by default. The
OMS creates organizations within this ‘‘virtual” unit by registering
organizational units which can in turn be composed of more units.
Moreover, roles are defined in each unit. They represent all of the
functionality needed to achieve the unit goal. They might also have
associated norms for controlling role actions (i.e., which of the ser-
vices agents playing that role are allowed to request, offer or serve;
permissions for accessing resources). As a result, agents can
dynamically adopt roles within units. As such, the OMS controls
this role adoption process and determines which entities play each
role through time.

The OMS component makes use of the following information:

� UnitList: stores existing units, together with their objectives,
topology and parent unit.

� RoleList: stores the list of roles defined in each unit and their
attributes (accessibility, visibility, position and inheritance).
Accessibility indicates whether a role can be adopted by an
agent on demand; visibility indicates whether agents can obtain

Table 1
SF meta-services.

Type Meta-service Description

Registration RegisterProfile Creates a new service description (profile)
RegisterProcess Creates a particular implementation (process) for a service
ModifyProfile Modifies an existing service profile
ModifyProcess Modifies an existing service process
DeregisterProfile Removes a service description

Affordability AddProvider Adds a new provider to an existing service process
RemoveProvider Removes a provider from a service process

Discovery SearchService Searches a service (or a composition of services) that satisfies the user requirements
GetProfile Gets the description (profile) of a specific a service
GetProcess Gets the implementation (process) of a specific a service

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3989



Author's personal copy

information from this role on demand; position indicates
whether it is a supervisor, subordinate or member of the unit;
and inheritance indicates its parent role.

� NormList: stores norms defined in the system.
� EntityPlayList: describes <entity, unit, role> association, i.e.,

which roles have been adopted by an entity (agent) within each
unit.

The OMS offers all of the services needed for a suitable organi-
zation performance. These services are classified as: structural ser-
vices, which modify the structural and normative organization
specification; and dynamical services, which allow agents to enter
or leave the organization dynamically, and to adopt roles. The com-
plete list of OMS services is detailed in Table 2. These services are
briefly described as follows.

3.2.1. Structural services
The OMS provides a group of services for registering or deregis-

tering structural components, specific roles, norms and units. It
also offers services for reporting on these components.

As previously explained, a role represents a position within the
unit in which it is defined. It is related to some interaction norms,
imposed by the unit structure and its specific position within the
unit, as well as to some behaviour norms, which specify its func-
tionality (services that it needs and offers), restrict its actions (pro-
hibition, obligations and permissions) and establish the
consequences of these norms (sanctions and rewards).

Therefore, a norm indicates the obligations, permissions and
prohibitions of roles related to service registry, request and fulfil-
ment; service composition or quality of service results. In this
way, a norm defines restrictions that cannot be expressed by
means of service preconditions or post-conditions.

Finally, a unit represents groups of agents and establishes the
topological structure of the system. It is also a recursive concept,
so units can be defined within other units. It enables the represen-
tation of organizational structures like hierarchy, matrix, coalition,
etc. (Argente et al., 2007). Furthermore, it indicates what the struc-
tural positions of the system are (i.e. member, supervisor, subordi-
nate), as well as the relationships among these positions imposed
by the structure.

The OMS establishes a hierarchy of roles, so any agent that plays
a specific role is enabled to request or offer services related to

superior hierarchical roles, provided that organizational norms
do not explicitly forbid it.

Through the publication of the structural services, the OMS al-
lows the modification of some aspects related to the organization
structure, norm and functionality at execution time. For example,
a specific agent of the organization can be allowed to add new
norms, roles or units during system execution. These types of ser-
vices should be restricted to the internal roles of the system, which
have a level of permission high enough to perform these kinds of
operations (i.e. supervisor role). Moreover, these services might
not be published in the SF in some specific applications in which
the system structure must not be dynamically modified.

Optionally, more complex services for updating organization
components can be offered by means of the composition of the ser-
vices above. For example, a complex service which offers the inclu-
sion of a new role indicating its name attributes and related norms;
or a complex service for unit creation which allows the creation of
an empty unit with its associated norms and roles. Moreover, ser-
vices for modifying component features might also be offered. For
example, a service for changing the visibility value of a specific
role.

Another type of structural service is information services, which
provide specific information on all of the components of the orga-
nization. They might be restricted to some internal roles of the sys-
tem. Furthermore, if the OMS is the only component which uses
those services, then they are not directly published in the SF.

3.2.2. Dynamic services
The OMS offers a set of basic services for dynamic role adoption

and the entry/exit of unit members, which are not directly accessi-
ble to agents, but are combined through compound services.

The OMS also offers a set of compound services that can be used
by agents for adopting roles, leaving them, and applying sanctions.

As previously explained, the OMS is responsible for managing
the life-cycle of the organizations. Thus, it includes meta-services
for defining structural components of organizations, i.e. roles, units
and norms. These structural components could be dynamically
modified over the lifetime of the organization. Moreover, the
OMS includes services for creating new organizations (i.e. creating
new units), admitting new members within those organizations
(i.e. acquiring roles) and resigning members (i.e. expulsing or leav-
ing roles). The management of the agent life-cycle is done by the
PK component, which is explained in the following section.

Table 2
OMS meta-services.

Type Subtype Meta-service Description

Structural Registration RegisterRole Creates a new role within a unit
RegisterNorm RegisterNorm includes a new norm within a unit
RegisterUnit Creates a new unit within a specific organization
DeregisterRole Removes a specific role description from a unit
DeregisterNorm Removes a specific norm description
DeregisterUnit Removes a unit from an organization

Information InformAgentRole Indicates roles adopted by an agent
InformMembers Indicates entities that are members of a specific unit
QuantityMembers Provides the number of current members of a specific unit
InformUnit Provides unit description
InformUnitRoles Indicates which roles are the ones defined within a specific unit
InformRoleProfiles Indicates all profiles associated to a specific role
InformRoleNorms Provides all norms addressed to a specific role

Dynamic Basic RegisterAgentRole Creates a new <entity, unit, role>
DeregisterAgentRole relationship

Removes a specific <entity, unit, role> relation
Compound AcquireRole Requests the adoption of a specific role within a unit

LeaveRole Requests to leave a role
Expulse Forces an agent to leave a specific role

3990 J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999



Author's personal copy

3.3. Platform Kernel

The Platform Kernel (PK) is in charge of providing the usual ser-
vices required in a multi-agent platform. Therefore, it is responsi-
ble for managing the life-cycle of the agents included in the
different organizations, and it also makes it possible to have a com-
munication channel (incorporating several message transport
mechanisms) to facilitate interaction among entities. The PK also
provides safe connectivity and the mechanisms necessary for
allowing multi-device interconnectivity.

A previous security mechanism is implemented for some of the
services described below, which permits the management of who
can invoke each service and over whom. For example, the supervi-
sor of an organization may have the option of creating new agents
within its organization. For this, the agent Register Service should
be invoked at the platform kernel level.

The services offered must be FIPA legacy, with some modifica-
tions. The PK services needed in a THOMAS infrastructure are clas-

sified into four types as shown in Table 3: (i) Registration: services
for adding, modifying and removing native agents from the plat-
form. (ii) Discovery: services for getting information about the na-
tive agents active in the platform. (iii) Management: services for
controlling the activation state of native agents in the platform.
(iv) Communication: services for communicating with agents in
the platform and outside.

The THOMAS proposal does not pursue the development of a
new multi-agent platform kernel. The services required are a sub-

Table 3
PK services.

Type Meta-
service

Description

Registration Register Registers a new agent in the platform
Deregister Eliminates an agent registration
Update
register

Modifies the information appearing in an
agent register (except the agent name)

Discovery Agent
Search

Requests information from a registered
agent in the platform

Get
description

Obtains the platform description

Management Suspend Suspends the execution of a specific agent
Activation Activates the execution of an agent that is

currently suspended

Communication Send Sends a message to any agent in the platform
or outside

Fig. 2. Home Care structure (units and roles).

Table 4
Initial content of UnitList for structural specification of the system.

UnitName ParentUnit Goal Type

Virtual (world) – – Flat
HomeCare Virtual HomeCare Congregation
HCServiceUnit HomeCare HomeCareService Flat
LocationUnit HomeCare HomeCareLocation Flat
AlertUnit HomeCare HomeCareAlert Flat

Table 5
Initial content of RoleList.

RoleName inUnit Accesibility Position Inheritance

Patient HomeCare Public Member –
Doctor HomeCare Public Member –
Provider HomeCare Public Member –
Family HomeCare Private Member –
HCServicePatient HCServideUnit Public Member Patient
HCServiceProvider HCServideUnit Public Member Provider
HCServiceDoctor HCServideUnit Public Member Doctor
LocationPatient LocationUnit Public Member Patient
LocationProvider LocationUnit Public Member Provider
LocationDoctor LocationUnit Public Member Doctor
AlertPatient AlertUnit Public Member Patient
AlertProvider AlertUnit Public Member Provider
AlertDoctor AlertUnit Public Member Doctor

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3991



Author's personal copy

set of the services typically offered by diverse, well-known agent
platforms. Therefore, PK functionalities can be provided by any
agent platform which offers the minimum services mentioned
above. Moreover, the chosen agent platform must offer an appro-

priate communication mechanism which at the very least offers
FIPA compatibility.

In summary, this section has described the main components of
the THOMAS architecture focusing on their functionalities and

Table 6
Service profiles for the HomeCare system.

Profiles of HCServiceUnit
Service: OpenCloseDoor

UnitID: HCServiceUnit
Inputs:
iddoor: string
operation: string

ProfileID: OpenCloseDoorPF
ClientRole: HCServicePatient
Outputs: [door ok]
iddoor: string
state: string

Description: Open or close a door
ProviderRole: HCServiceProvider
Outputs: [not ok door]
error

Service: OnOffLight
UnitID: HCServiceUnit
Inputs:
idlight: string
operation: string

ProfileID: OnOffLightPF
ClientRole: HCServicePatient
Outputs: [light ok]
idlight: string
state: string

Description: On or off a light
ProviderRole: HCServiceProvider
Outputs: [not ok light]
error

Service: LockUnlockAccess
UnitID: HCServiceUnit
Inputs:
idaccess: string
operation: string

ProfileID: LockUnlockAccessPF
ClientRole: HCServicePatient
Outputs: [access ok]
idaccess: string
state: string

Description: Lock or unlock an access
ProviderRole: HCServiceProvider
Outputs: [not ok access]
error

Service: OnOffHeating
UnitID:HCServiceUnit
Inputs:
idheating: string
operation: string
temperature: string

ProfileID: OnOffHeatingPF
ClientRole: HCServicePatient
Outputs: [heating ok]
idheating: string
state: string
temperature: string

Description: On or off the heating
ProviderRole:HCServiceProvider
Outputs: [not ok heating]
error

Service: OnOffAirCond
UnitID: HCServiceUnit
Inputs:
idair: string
operation: string
temperature: string

ProfileID: OnOffAirCondPF
ClientRole: HCServicePatient
Outputs: [aircond ok]
idair: string
state: string
temperature: string

Description: On or off the air conditioning
ProviderRole: HCServiceProvider
Outputs: [not ok aircond]
error

Service: UpDownBlind
UnitID:HCServiceUnit
Inputs:
idblind: string
operation: string

ProfileID: UpDownBlind PF
ClientRole: HCServicePatient
Outputs: [blind ok]
idblind: string
state: string

Description: Up or down a blind
ProviderRole: HCServiceProvider
Outputs: [not ok blind]
error

Profiles of LocationUnit
Service: SearchPatient

UnitID: LocationUnit
Inputs:
idhome: string
idpatient: string

ProfileID: SearchPatientPF
ClientRole: LocationProvider, LocationDoctor, Family
Outputs: [patient ok]
name: string
location: string

Description: Search for a patient in their home
ProviderRole: LocationProvider
Outputs: [not in home]
error

Service: IdentifyPatient
UnitID: LocationUnit
Inputs:
idpatient: string

ProfileID: SearchPatientPF
ClientRole: LocationProvider
Outputs: [patient ok]
location: string
date: time

Description: Identify a patient
ProviderRole: LocationProvider
Outputs: [not ok patient]
error

Profiles of AlertUnit
Service: SendSms

UnitID: AlertUnit
Inputs:
sms: string
phone: string

ProfileID: SendSmsPF
ClientRole: AlertProvider, AlertDoctor, Family, AlertPatient
Outputs: [phone ok]
idsms: string
state: string

Description: Send a SMS
ProviderRole: AlertProvider
Outputs: [not ok phone]
error

Service: SendMms
UnitID: AlertUnit
Inputs:
mms: data mms
phone: string

ProfileID: SendMmsPF
ClientRole: AlertProvider, AlertDoctor, Family,AlertPatient
Outputs: [phone ok]
idmms: string
state: string

Description: Send a MMS.
ProviderRole: AlertProvider
Outputs: [not ok phone]
error

Service: ProcessSms
UnitID: AlertUnit
Inputs:
sms: string
phone: string

ProfileID: ProcessSmsPF
ClientRole: AlertProvider, AlertDoctor, Family, AlertPatient
Outputs: [sms ok]
sms: string
phone: string

Description: Process a SMS
ProviderRole: AlertProvider
Outputs: [not ok sms]
error

Service: SendMail
UnitID: AlertUnit
Inputs:
email: string
subject: string
body: string
adj: data

ProfileID: SendMailPF
ClientRole: AlertProvider, AlertDoctor, Family, AlertPatient
Outputs: [email ok]
idsms: string
state: string

Description: Send a mail
ProviderRole: AlertProvider
Outputs: [not ok email]
error

3992 J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999



Author's personal copy

describing the services which form the interface with each one of
these components. The following section presents a detailed exam-
ple employing the services described above.

4. Applying THOMAS to Home Care

Home Care facilitates the interconnection between dependent
people and their environment and medical staff (doctors, nurses
and personal assistant), delimiting services that each one can re-
quest or offer. The system controls which services must be pro-
vided by each agent. The internal functionality of these services
is the responsibility of provider agents. However, the system im-
poses some restrictions regarding service profiles, service request
orders and service results.

A description of the structure elements of the Home Care organi-
zation is detailed below. Then, in Section 4.2, a dynamical usage of the
organization is explained, providing different execution scenarios.

4.1. Cases-study organization structure

This case study is modelled as an organization (HomeCare)
within which there are three organizational units (HCServiceUnit,
LocationUnit and AlertUnit) each of which represents a group of
agents. The units are dedicated to Home Care services, location ser-
vices and alert services, respectively.

Four kinds of roles can interact in the Home Care case study: pa-
tient, doctor, family and provider. The Patient role requests system
services. The Patient role can request home automation services
through the alert service. This role also communicates with the

medical service or family, and other services in the home. The Doc-
tor role consists of three specialized sub-roles according to the type
of communication with each unit (HCServiceDoctor, LocationDoc-
tor and AlertDoctor). The Provider role is in charge of performing
services. A provider agent offers home automation, location or alert
search services. The Provider role also consists of three specialized
sub-roles: HCServiceProvider, LocationProvider and AlertProvider.
Finally, the Family role provides advanced consulting services. It
represents the family where relatives can check the patient status.
As it is a private role, agents are not able to access this Family role.
Fig. 2 shows the Home Care structure, with its units, roles and
interrelationships

The OMS component stores the list of defined units (UnitList,
Table 4) and the list of roles (RoleList, Table 5) internally.

The HomeCare organization offers three services: Automation,
Location and Alert service. These services are specialized for each
unit. A brief description of the profiles of each of these services is
shown in Table 6.

All of these services have been registered in the SF component
of the THOMAS platform. In this example, we have assumed that
the Home Care system does not initially have an agent registered
as a service provider, any agent acting as a patient, or any agent
acting as a doctor. Therefore, this system has initially only been
structured as a regulated space in which agents might enter to pro-
vide or request any of those specific services registered in the SF
component. Consequently, in the initial state of the system, there
is no provider attached to the HomeCare services.

In the following section, different scenarios are considered in
which patient and/or provider and/or doctor agents enter and par-
ticipate in the system.

HC1

RoleList

Agent, RoleID, UnitID

HC1, Member, Virtual

UnitList

OMS

EntityPlayList

1. AcquireRole(Member, Virtual)

2.OK

Fig. 3. Example of agent registration.

1. SearchService(HomeCareServiceProfile)
3. GetProfile(OpenCloseDoor)

EntityPlayList

RoleList

UnitList

OMS

HC1

SF

ServiceList

PatientList

2. (<OpenCloseDoor, 0.85>)
4. <OpenCloseDoorGoal, OpenCloseDoorPF>

5. AcquireRole(Patient, HomeCare)

6. OK

Fig. 4. Example of patient registration.

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3993



Author's personal copy

4.2. System dynamics

In this section, the use of THOMAS meta-services in the Home-
Care case study is presented in detail. System dynamics are shown
through the specification of different scenarios: (i) an agent joins
the THOMAS platform; (ii) a Patient is registered; (iii) the Patient
is registered as a PatientLocation; (iv) a new service implementa-
tion is defined; (v) new service patients are included; (vi) a doctor
is registered; (vii) services are requested; (viii) malicious agents
are expulsed; (ix) a Provider is deregistered; and (x) a new unit
is created.

4.2.1. Agent registration
This scenario details the sequence of services that an agent

should request in order to join the THOMAS platform. In Fig. 3,
HC1 is an agent that represents a home automation provider. Its
functionality allows it to offer services belonging to its company.
Agents join THOMAS platform by placing a request with the OMS
for membership of the virtual organization, using AcquireRole ser-
vice (Fig. 3, message 1).

The OMS checks all restrictions (existence of unit and role iden-
tifiers, role compatibility, etc.) and registers HC1 agent as a new
member of the THOMAS platform. The OMS makes use of Register-
AgentRole service to add this agent-role adoption to EntityPlayList.

4.2.2. Patient registration
In this scenario, the process for registering a new Patient is de-

tailed (Fig. 4). Once HC1 has been registered as a member of the
THOMAS platform, it asks SF which defined services have a profile

similar to its own ‘‘Home Care service”. This request is carried out
using the SF SearchService (Fig. 4, message 1), in which HomeCare-
ServiceProfile corresponds to the profile of the patient search ser-
vice implemented by HC1.

The SF returns service identifiers that satisfy these search
requirements together with a ranking value for each service (mes-
sage 2). Ranking value indicates the degree of suitability between a
service and a specified service purpose. Then HC1 executes GetPro-
file (message 3) in order to obtain detailed information about the
OpenCloseDoor service. Service outputs are ‘‘service goal” and ‘‘pro-
file” (message 4). The OpenCloseDoor profile specifies that service
providers have to play a Patient role within HCService. Thus, HC1
requests the AcquireRole service from the OMS in order to acquire
this patient role (message 5). AcquireRole service is carried out

SF

ServiceList

ProviderList

HC1 HC2

3. GetProcess(SearchPatient, HC2)
5. AddPatient(SearchPatientImp, HC2)

4. <SearchPatientImp, SearchPatientProcess, 
SearchPatientGrunding, HC1>
6. OK

2. <SearchPatientImp>

1. RegisterProcess(SearchPatient, 
SearchPatientProcess, SearchPatientGrounding, HC1)

Fig. 6. Example of service implementation and patient registration.

1. SearchService(PatientServiceProfile)
3. GetProfile(SearchPatient)

EntityPlayList

RoleList

UnitList

OMS

HC1

SF

ServiceList

PatientList

2. (<SearchPatient, 0.85>, <IdentifyPatient, 0.45>)
4. <SearchPatientGoal, SearchPatientPF>

5. AcquireRole(LocationPatient, LocationUnit)

6. OK

Fig. 5. Example of LocationPatient registration.

searchPatientProcess 
?idhome 

process:hasInput = 
?idpatient 

?name 
process:hasOutput = 

?location 
locationDoctor 

process:hasDoctor = 
process:TheDoctor 

locationDoctor 
ch1.thomas process:performedBy =

process:TheServer 
service:describes = searchPatientService

Fig. 7. Example of SearchPatient process.

3994 J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999



Author's personal copy

successfully (message 6), because HCService is accessible from Vir-
tual organization, thus HC1 is registered as a Patient.

4.2.3. LocationPatient registration
Once the ‘‘patient registering” process has been detailed, the

registration of a location patient is illustrated (Fig. 5). HC1 is able
to provide a search patient in the Home Care domain. Therefore,
it asks SF whether an available service description with a closer
profile exists, requesting SearchService from SF as before (Fig. 5,
message 1).

In this case, SF returns both SearchPatient and IdentifyPatient
since these two services are visible within HomeCare unit. As indi-
cated in the service result, IdentifyPatient service is more appropri-
ate for HC1 functionality. Therefore, HC1 requests information
about this service from SF, using GetProfile (message 3). The Identi-
fyPatient profile returned (message 4) specifies that service provid-
ers must place LocationPatients within LocationUnit. Then HC1
places a request with OMS to adopt LocationPatient role (message
5). AcquireRole service is carried out successfully (message 6), so
HC1 agent is registered as a LocationProvider.

1. SearchService(“Search information about patients”)
3. GetProfile(SearchPatient)
7. GetProcess(SearchPatient)
9. SearchService(“Search information about patients”)
11. GetProfile(IdentifyPatient)

EntityPlayList

RoleList

UnitList

OMS

D1

SF

ServiceList

ProviderList

2. (<SearchPatient, 0.85>)
4. <SearchPatientGoal, SearchPatientPF>
8. <>
10. (<IdentifyPatient, 0.45>)
12. <IdentifyPatientGoal, IdentifyPatientPF>

5. AcquireRole(Doctor, HomeCare)
13. AcquireRole(LocationDoctor, LocationUnit)

6. OK
14. OK

Fig. 9. Example of doctor registration.

Fig. 8. Example of SearchPatient grounding.

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3995



Author's personal copy

4.2.4. Registering a new service implementation
In this example, the sequence of actions that allows an agent to

register its own implementation of a service is explained in detail
(Fig. 6). In this case, HC1 has already adopted LocationPatient role
and is interested in providing its own implementation of SearchPa-
tient service. Therefore it registers itself as service provider in SF,
employing RegisterProcess service (Fig. 6, message 1), in which
SearchPatientProcess and SearchPatientGrounding correspond to ser-
vice process and grounding, respectively. Fig. 7 contains the spec-
ification of SearchPatient service process. Fig. 8 shows SearchPatient
grounding. This type of grounding specifies how a service can be
requested by means of sending ACL messages.

4.2.5. Adding new service patient
This section demonstrates how another LocationPatient (HC2) is

added to a service patient list (Fig. 6). In this example, HC2 has al-
ready adopted the LocationPatient role and HC1 has been registered
as a provider of the SearchPatient service. HC2 initially asks what
the registered implementations of SearchPatient service are
(Fig. 6, message 3). SF provides a list that contains service imple-
mentations details (message 4). HC2 decides to employ the same
service process as HC1, so it uses AddPatient service in order to re-
quest its inclusion as a provider of SearchPatient service (Fig. 6,
message 5).

4.2.6. Doctor registration
The following scenario shows the set of service calls for regis-

tering new agents as service doctors within the HomeCare
(Fig. 9). A new doctor agent D1, which has already been registered
in the THOMAS platform, requests SearchService from SF to find
services of interest (message 1). As a result, D1 obtains SearchPa-
tientl service identifier and ranking value (message 2). Then, D1
employs GetProfile (message 3), which specifies that service doctor
must play Doctor Role within HomeCare (message 4). Therefore, D1
must acquire Doctor Role to demand this service (messages 5 and
6).

Once D1 plays this Doctor Role, it employs GetProcess service in
order to find out who the service providers are and how this ser-
vice can be requested (message 7). However, there are no providers
for the general SearchPatient service (message 8).

Within the HomeCare unit, D1 requests SearchService again
(message 9). In this case, SF returns IdentifyPatient services because
both services are accessible from HomeCare organization.

D1 demands the profile of IdentifyPatient service (using GetPro-
file, message 11), since this service is more appropriate for its
needs. Taking the IdentifyPatient profile into account (message
12), D1 requests the adoption of LocationDoctor role within Loca-
tionUnit (message13).

4.2.7. Service request
This scenario shows how doctor agents make demands for ser-

vices (Fig. 10). Once D1 adopts the Doctor Role for SearchPatient
service, it is allowed to demand services from providers. Assuming
that D1 wants to make an information search about patients, it
should use GetProcess service to obtain the implementations of
available services and also its provider identifiers (message 1).

An implementation of SearchPatient has been previously regis-
tered by HC1 and HC2. After comparing providers of SearchPatient
service returned in message 2, D1 chooses to make a service re-
quest from HC1 agent (message 3). Both ACL contents for request-
ing and reporting messages are detailed in Table 7.

4.2.8. Agent expulsion
In this scenario, the expulsion of a malicious agent is carried out

(Fig. 11). Provider agent detects that different doctor agents (D1

1. GetProcess(SearchPatient)

D1

SF

ServiceList

ProviderList

2. (<SearchPatientImp, SearchPatientProcess, 
SearchPatientGrounding, (HC1, HC2)>)

3. SearchPatient(3, 3)

4. <Juan García, (324, 25, 102)>

HC1

Fig. 10. Example of service request.

Table 7
Service profiles for the HomeCare system.

request
(

:sender d1.thomas
:receiver hc1.thomas
:content
(

. . .

<idhome
rdf:datatype=”string”>3</idhome>
<idpatient
rdf:datatype=”string”>3</idpatient>
. . .

)
:in-reply-to
:language
:ontology
:protocol SearchPatient

Inform
(

:sender hc1.thomas
:receiver d1.thomas
:content
(

. . .

<>

<>

. . .

)
:in-reply-to
:language
:ontology
:protocol SearchPatient

)

3996 J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999



Author's personal copy

and D2) have registered with the same identifier number. It con-
sults its database and determines that D2 has been employing an
identifier number that does not belong to it. D2 is punished for
its fraudulent behaviour and is expelled from HomeCare. Provider
requests the expulsion of D2 from OMS employing Expulse service
(message 1).

4.2.9. Provider deregistration
Below, the process of a service provider deregistering is de-

scribed (Fig. 12). HC1 loses connection with its internal database.

As a result, it is temporarily unable to provide services. Therefore
HC1 deregisters itself as provider of IdentifyPatient using Remove-
Provider (Fig. 12, messages 1 and 2).

HC1 is deleted from the service provider list. Nevertheless, as it
continues playing the Provider role, HC1 will be able to register it-
self as service provider if it recovers its functionality.

4.2.10. Unit creation
This last scenario illustrates the creation of new units within

HomeCare (Fig. 13). Agent L1 represents a luxury Home Care

EntityPlayList

RoleList

UnitList

OMS

PROVIDER

1. Expulse (D2, HomeCare, Doctor)

2 . OK

Fig. 11. Example of agent expulsion.

1. RemoveProvider(IdentifyPatient, HC1)

HC1

SF

ServiceLista

ProviderList

4. OK

Fig. 12. Example of agent deregistration

5. RegisterProfile(SearchLuxury, “Search for information 
about luxury services”, SearchLuxuryPF)
6. RegisterProfile(LuxuryService, “Make a luxury service”, 
LuxuryServicePF)

EntityPlayList
RoleList

UnitList

OMS

L1

SF

ServiceList
ProviderList

1. RegisterUnit (LuxuryUnit, Provider, HomeCare)
3. RegisterRole (LuxuryProvider, LuxuryUnit, Public, External, Member)
4. RegisterRole (LuxuryPatient, LuxuryUnit, Public, External, Member)

2. OK

Fig. 13. Example of new unit creation.

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3997



Author's personal copy

company which specializes in luxury services. It is interested in
providing information and very luxurious services. This L1 has
already adopted the Provider role within HomeCare unit. However,
since the services offered within LocationUnit and AlertUnit are spe-
cialized in location and alert domains, L1 decides to create a new
unit (LuxuryUnit) within HomeCare (Fig. 13, message 1). This new
unit will be focused on luxury Home Care. Once the OMS informs
L1 about the successful creation of the new unit, L1 defines lux-
ury-specific roles and services (messages 3 to 6). Finally, luxury
agents would be able to adopt the LuxuryProvider role and start
offering services to patient agents.

After all these scenarios, several agents have joined the THO-
MAS platform and offer or request services within this system. Ta-
ble 8 shows the evolution of the ServiceList content, in which all of
the new elements and relationships included as a result of the exe-
cution of these scenarios are emphasized. Similarly, OMS internal
tables have also been updated (Table 9).

5. Results and conclusions

An important issue in the development of real open multi-
agent systems is to provide developers with methods, tools and
appropriate architectures which support all of the requirements
of these kinds of systems. This paper has studied this problem
by proposing a case study on abstract architecture for the devel-
opment of virtual organizations. Moreover, the proposal aims to
instigate the total integration of two promising technologies,
multi-agent systems and service-oriented computing, as the
foundation of such virtual organizations. In THOMAS architecture,
agents can transparently offer and invoke services from other
agents, virtual organizations or entities; additionally, external
entities can interact with agents through the use of the services
offered.

A case study example was employed as an illustration of the
usage of THOMAS components and services. Dynamic applications
are also developed with the same architecture. In this way, exam-
ples of THOMAS service calls have been shown through several
scenarios, along with the evolution of different dynamic virtual
organizations. The participative approach presented in this work
is also applicable to other knowledge production tasks as software
development, especially in analysis and design phases. Neverthe-
less, further validation is needed to assess the usefulness of the
architecture in different scenarios. We are also conducting tests
on the impact of the number of agents in the overall effectiveness
of the model. However, interaction processes are not completely
independent from one another. Therefore, the participation of
agents in the system can be dynamic, so that an agent can change
its membership to some other system if the knowledge produced
by the agent affects interaction processes carried out in that
system.

Acknowledgements

This work was supported by the Spanish Ministry of Science
and Technology project TIN2006-14630-C03-03 and the JCyL
SA071A08 Project.

References

Anastasopoulos, M., Niebuhr, D., Bartelt, C., Koch, J., & Rausch, A. (2005). Towards a
reference middleware architecture for ambient intelligence systems. In ACM
conference on object-oriented programming, systems, languages, and applications.

Angulo, C., & Tellez, R. (2004). Distributed intelligence for smart home appliances. In
Tendencias de la minería de datos en España (pp. 1–12). Barcelona: Red Española
de Minería de Datos.

Argente, E., Palanca, J., Aranda, G., Julian, V., Botti, V., García-Fornes, A., et al. (2007)
(pp. 236–245). Lecture notes in artificial intelligence (Vol. 4696). Berlin: Springer.

Augusto, J. C., & McCullagh, P. (2007). Ambient intelligence: Concepts and
applications. International Journal on Computer Science and Information
Systems, 4(1), 1–28.

Bahadori, S., Cesta, A., Grisetti, G., Iocchi, L., Leone, R., Nardi, D., et al. (2003).
RoboCare: Pervasive intelligence for the domestic care of the elderly. Artificial
Intelligence, 1(1), 16–21.

Brogi, A., Corfini, S., & Popescu, R. (2005). Composition-oriented service discovery. In
Lecture notes in computer sciences (pp. 15–30). Berlin: Springer.

Camarinha-Matos, L., & Afsarmanesh, H. (2004). TeleCARE: Collaborative virtual
elderly care support communities. The Journal on Information Technology in
Healthcare, 2(2), 73–86.

Carrascosa, C., Bajo, J., Julian, V., Corchado, J. M., & Botti, V. (2008). Hybrid multi-
agent architecture as a real-time problem-solving model. Expert Systems With
Applications, 34(1), 2–17.

Cesta, A., Bahadori, S., Cortellesa, G., Grisetti, G., & Giuliani, M. (2003). The RoboCare
project, cognitive systems for the care of the elderly. In Proceedings of
international conference on aging, disability and independence (ICADI’03).
Washington, DC, USA.

Costa-Font, J., & Patxot, C. (2005). The design of the long-term care system in Spain:
Policy and financial constraints. Social Policy and Society, 4(1), 11–20.

Corchado, J. M., & Laza, R. (2003). Constructing deliberative agents with case-based
reasoning technology. International Journal of Intelligent Systems, 18,
1227–1241.

Table 8
Final content of SF ServiceList after execution of all scenarios.

ServiceFacilitator

ServiceID Profile Providers

OpenCloseDoor OpenCloseDoorPF
SearchPatient SearchPatientPF SearchPatient(HC1, HC2)
IdentifyPatient IdentifyPatientPF
SearchLuxury SearchLuxuryPF

Table 9
Final content of OMS internal lists after execution of all scenarios.

UnitList

UnitName ParentUnit Goal Type

Virtual(world) – – Flat
HomeCare Virtual HomeCare Congregation
HCServiceUnit HomeCare HomeCareService Flat
LocationUnit HomeCare HomeCareLocation Flat
AlertUnit HomeCare HomeCareAlert Flat
LuxuryUnit HomeCare HomeCareLuxury Flat

RoleList

RoleName inUnit Accessibility Position Inheritance

Patient HomeCare Public Member –
Doctor HomeCare Public Member –
Provider HomeCare Public Member –
Family HomeCare Private Member –
HCServicePatient HCServideUnit Public Member Patient
HCServiceProvider HCServideUnit Public Member Provider
HCServiceDoctor HCServideUnit Public Member Doctor
LocationPatient LocationUnit Public Member Patient
LocationProvider LocationUnit Public Member Provider
LocationDoctor LocationUnit Public Member Doctor
AlertPatient AlertUnit Public Member Patient
AlertProvider AlertUnit Public Member Provider
AlertDoctor AlertUnit Public Member Doctor
LuxuryPatient LuxuryUnit Public Member Patient
LuxuryProvider LuxuryUnit Public Member Provider
LuxuryDoctor LuxuryUnit Public Member Doctor

EntityPlayList

Entity Unit Role

Doctor HomeCare Doctor
HC1 LocationUnit LocationPatient
HC2 LocationUnit LocationPatient
D1 LocationUnit LocationDoctor
D2 HomeCare Doctor
L1 LuxuryUnit LuxuryPatient

3998 J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999



Author's personal copy

Corchado, J. M., Bajo, J., de Paz, Y., & Tapia, D. (2008). Intelligent environment for
monitoring alzheimer patients, agent technology for health care. Decision
Support Systems, 34(2), 382–396.

Decker, K., & Li, J. (1998). Coordinated hospital patient scheduling. In Proceedings of
the 3rd international conference on multi-agent systems (ICMAS’98)
(pp. 104–111). IEEE Computer Society.

Klusch, M., Fries, B., & Sycara, K. (2006). Automated semantic web service discovery
with owls-mx. In Proceedings of 5th international conference on autonomous
agents and multi-agent systems (pp. 915–922). Hakodate, Japan.

Lanzola, G., Gatti, L., Falasconi, S., & Stefanelli, M. (1999). A framework for building
cooperative software agents in medical applications. Artificial Intelligence in
Medicine, 16(3), 223–249.

Meunier, J. A. (1999). A virtual machine for a functional mobile agent architecture
supporting distributed medical information. In Proceedings of the 12th IEEE
symposium on computer-based medical systems (pp. 177). Washington, DC: IEEE
Computer Society.

Miksch, S., Cheng, K., & Hayes-Roth, B. (1997). An intelligent assistant for patient
health care. In Proceedings of the 1st international conference on autonomous
agents, California, USA (pp. 458–465). New York: ACM.

Nealon, J. L., & Moreno, A. (2003). Applications of software agent technology in the
health care domain. In A. Moreno & J. L. Nealon (Eds.). Whitestein series in
Software Agent Technologies (Vol. 212). Basel, Germany: Birkhäuser Verlag AG.

Pecora, F., & Cesta, A. (2007). Dcop for smart homes: A case study. Computational
Intelligence, 23(4), 395–419.

Sycara, K., Widoffand, S., Klusch, M., & Lu, J. (1982). Larks: Dynamic matchmaking
among heterogeneous software agents in cyberspace. Journal on Autonomous
Agents and Multi-Agent Systems, 5, 173–203.

Van Woerden, K. (2006). Mainstream developments in ICT: Why are they important
for assistive technology? Technology and Disability, 18(1), 15–18.

Want, R., Pering, T., Borriello, G., & Farkas, K. (2002). Disappearing hardware.
Pervasive Computing, 1(1).

J. Bajo et al. / Expert Systems with Applications 37 (2010) 3986–3999 3999


