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Abstract: This paper introduces a robust mathematical formalism for the
definition of deliberative agents implemented using a case-based reasoning
system. The concept behind deliberative agents is introduced and the case-based
reasoning model is described using this analytical formalism. Variational
calculus is used during the reasoning process to identify the problem solution.
The agent may use variational calculus to generate plans and modify them at
execution time, so they can react to environmental changes in real time.
Reflecting the continuous development in the tourism industry as it adapts to
new technology, the paper includes the formalisation of an agent developed to
assist potential tourists in the organisation of their holidays and to enable them
to modify their schedules on the move using wireless communication systems.
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1. Introduction

Technological evolution in today’s world is fast and constant. Successful
systems should have the capacity to adapt to it and should be provided with
mechanisms that allow them to decide what to do according to their objectives.
Such systems are known as autonomous or intelligent agents [21]. This paper
shows how a deliberative agent with a BDI (Belief, Desire and Intention)
architecture can use a case-based reasoning (CBR) system to generate its plans.
A robust analytical notation is introduced to facilitate the definition and
integration of BDI agents with CBR systems. The paper also shows how
variational calculus can be used to automate the planning and replanning process
of such agents at execution time.

Agents should be autonomous, reactive, pro-active, sociable and have learning
capacity. They must be able to respond to events that take place in their
environment, take the initiative according to their goals, interact with other
agents (even human) and use past experiences to achieve current goals. There are
different types of agents and they can be classified in different ways [21]. One
type, the so-called deliberative agent with BDI - Belief, Desire and Intention -
architecture, uses the three attitudes in order to make decisions on what to do and
how to achieve it [10, 11, 21]: their beliefs represent their information state -
what the agents know about themselves and their environment; their desires are
their motivation state - what they are trying to achieve; and the intentions
represent the agents’ deliberative state. Intentions are sequences (ordered sets) of
beliefs (also identified as plans). These mental attitudes determine the agent’s
behaviour and are critical if a proper performance is to be produced when
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information about a problem is scarce [3, 12]. BDI architecture has the advantage
that it is intuitive - it is relatively easy to recognise the process of decision-
making and how to perform it. Moreover, it is easy to understand the notions of
belief, desires and intentions. On the other hand, its main drawback lies in
determining a mechanism, which will allow its effective implementation. The
formalisation and implementation of BDI agents constitutes the research of many
scientists [5, 11, 18]. Some of these researchers criticise the necessity of studying
multi-modal logic for the formalisation and construction of such agents, because
they haven’t been completely axiomatised and they aren’t computationally
efficient. Rao and Georgeff [17] assert that the problem lies in the great
difference between the powerful logic of BDI systems and that required by
practical systems. Another problem is that these types of agents don’t have
learning capability - a necessary element for them since they have to be
constantly adding, modifying or eliminating beliefs, desires and intentions.

This paper presents a robust analytical formalism for the definition of
computationally efficient agents, which solves the first of the previously
mentioned problems. This paper also shows how a BDI agent implemented using
a case-based reasoning (CBR) system can substantially solve the problems
related to the learning capability of the agents. Implementing agents in the form
of CBR systems facilitates their learning and adaptation. If the proper
correspondence between the three mental attitudes of the BDI agents and the
information that a case-based reasoning system manipulates can be established,
an agent will be created not only with beliefs, desires and intentions but also with
learning capacity.

Although the relationship between agents and CBR systems have been
investigated by other researchers [15, 20, 16], we propose a robust mathematical
formalism that will facilitate the efficient implementation of an agent in the form
of a CBR system. Variational calculus is introduced to automate the reasoning
cycle of the BDI agents; it is used during the reuse stage of the CBR cycle to
guarantee efficient planning and re-planning at execution time. Although
different types of planning mechanisms can be found in the literature [4,13],
none of them allow re-planning at execution time, even though agents inhabit
changing environments in which re-planning at execution time is necessary if
goals are to be achieved successfully in real-time. Some of the approaches
developed use planning techniques to select the appropriate solution to a given
problem but without mechanisms to deal with changes in the environment. For
instance, in [13,14] a kind of plan schema is introduced that needs to be
reprogrammed over time, when the planning domain changes. In [4] an
architecture is proposed that tries to be more flexible by using planning strategies
to create the plans. If new information from the environment must be introduced
into the system, it is only necessary to change the planning domain instead of
reprogramming the plan schema by hand. This architecture allows plans to be
built that contain steps with no detailed information. Now, in order to establish
that the abstract proposed plan is adequate, it is necessary to put it into practice
in a real domain. This operation requires a high amount of computational time
and resources which may be a disadvantage in, for example, web-related
problems. The flexibility of this approach increases the time spent in applying
the abstract solution to the real problem, which is a handicap for real time
systems.
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In this paper, a solution is proposed that deals adequately with environmental
real-time problem changes without applying a reprogramming strategy and
without the disadvantages shown in [4] because the technique used can solve a
planning problem at execution time. This is achieved by using variational
calculus during the retrieval stage of the CBR life cycle.

To begin with, the paper will review the concepts of CBR systems and
deliberative agents using an analytical notation. Then it will be shown how a
CBR system is used to operate the mental attitudes of a deliberative BDI agent.
This section also shows the relationship between BDI agents and CBR systems.
Then variational calculus will be introduced, and it will be shown how it can be
used to define agents with the afore-mentioned characteristics. Finally, together
with the conclusions it is shown how it is possible to define an agent for the e-
tourism domain using the methodology presented.

2. Case-based Reasoning Systems

Case-based reasoning is used to solve new problems by adapting solutions that
were used to solve similar previous problems [6]. The operation of a CBR
system involves the adaptation of old solutions to match new experiences, using
past cases to explain new situations, using previous experience to formulate new
solutions, or reasoning from precedents to interpret a similar situation.

Figure 1: CBR Cycle of Life.

Figure 1 shows the reasoning cycle of a typical CBR system that includes four
steps that are cyclically carried out in a sequenced way: retrieve, reuse, revise,
and retain [1, 19]. During the retrieval phase, those cases that are most similar to
the problem case are recovered from the case-base. The recovered cases are
adapted to generate a possible solution during the reuse stage. The solution is
then reviewed and, if appropriate, a new case is created and stored during the
retention stage, within the memory. Therefore CBR systems update (with every
retention step) their case-bases and consequently evolve with their environment.
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Each of the reasoning steps of a CBR system can be automated, which implies
that the whole reasoning process could be automated to a certain extent [6, 9].
This assumption has led us to the hypothesis that agents implemented using CBR
systems could be able to reason autonomously and therefore to adapt themselves
to environmental changes. Agents may then use the reasoning cycle of CBR
systems to generate their plans.

Based on the automation capabilities of CBR systems we have established a
relationship between cases, the CBR life cycle, and the mental attitudes of the
BDI agents. Based on this idea, a model is presented that facilitates the
implementation of the BDI agents using the reasoning cycle of a CBR system.

3. Implementing Deliberative Agents using CBR Systems

This section identifies the relationships that can be established between BDI
agents and CBR systems, and shows how an agent can reason with the help of a
case-based reasoning system. The formalisation presented in this paper takes
elements of other systems and adapts them to the model presented here. Our
proposal attempts to define a direct mapping between the agents and the
reasoning model, paying special attention to two characteristics: (i) the mapping
between the agents and the reasoning model should allow a direct
implementation of the agent and (ii) the final agents should be capable of
learning and adapting to environmental changes. An analytical notation has been
introduced to facilitate an efficient integration between the BDI agent and CBR
system and that allows the use of variational calculus for planning and
replanning in execution time. The notation used in the referenced works [14, 16,
20] do not have the required degree of expressivity and complexity to introduce
differential calculus tools.

3.1 BDI Agents

The notation and the relationship between the components that characterise a
BDI agent are first introduced:
Let Θ be the set that describes the agent environment. If Τ(Θ) is the set of
attributes {τ1, τ2,…,τn } in which the world’s beliefs are expressed, then we
define a belief on Θ, that is denoted “e”, as an m-tuple of some attributes of
Τ(Θ) denoted by e = (τ1, τ2,…,τm) with m≤ n
We call set of beliefs on Θ and denote ζ(Θ) to the set:
ζ(Θ) = { e=(τ1, τ2,…,τj ) /  where j =(1,2,…, m ≤ n )}

Example: It is supposed that the world Τ(Θ) includes all the attributes that are
needed to characterise beliefs associated to a tourist schedule in the city of
Salamanca (European City of Culture, 2002).
Τ(Θ)={τ1=monument name, τ2= visiting time, τ3= cost,..., τn }
In this world, a belief, for example, monument, is represented by a m-tuple of
attributes of Τ(Θ) that characterise the monument.
Monument =( τ1=index, τ2= visiting time, τ3= cost, τ4= evaluation)

A particular belief, for example, the old cathedral (OC), can be represented by:



5

Old cathedral=(index=oc, visiting time∈ (10:00 h., 18:00 h.), cost=3 €,
evaluation =2)

Where OC (Old Cathedral) is the indexing abbreviation used to store the
belief, visiting time indicates that Old Cathedral may be visited from 10:00.to
18:00 h., the cost to enter the monuments is 3 Euro and evaluation, equal to 2,
is a subjective index of the quality of the place, defined by an experienced
tourist guide, based on the perceptions of visitors. Evaluation is a real number
between 0 and 3.

We introduce the operator "Λ of accessibility" between m beliefs (e1,e2,e3,…,em),
where we denote: Λ(e1, e2, e3,…,em) = (e1 ∧ e2 ∧ … ∧ em) that indicates that exists
compatibility among the set of beliefs (e1, e2, e3,…, em). If any of the belief (e1,
e2, e3,…, em) is not accessible,or if there exists a contradiction,it will be denoted
by:Λ(e1,e2, e3,…,em) = Ø.

Example: It is 12:00h. p.m. and the agent believes M1, M2 and D(A,A) -
which are described in Table 1 - where M1 and M2 are monuments that may be
visited and D(A,A) represents the travel from one monument to the other. Both
monuments M1 and M2 are in the area A, and going from one to the other by
taxi costs 12 Euros. With these believes and given that it is 12:00 o'clock, it is
impossible to visit M1 and M2, and therefore the path (M1 ∧ D(A,A) ∧ M2)
can not be constructed and Λ (M1,D(A,A), M2 )= Ø.

Table 1. Values of beliefs M1, M2, M3 and D(A,A).
Attribute Value Attribute Value Attribute Value Attribute value
Entity M1 Entity M2 Entity M3 Entity D(A,A)
Class monument Class monument Class monument Class travel by taxi
Visiting Time 10-13 hrs. Visiting Time 10-13 hrs. Visiting Time 10-14 hrs. Time 1 hr.
Visiting Cost 6 € Visiting Cost 6 € Visiting Cost 6 € Cost 12 €
Time for a visit 1 hr. Time for a visit 1 hr. Time for a visit 1 hr.
Zone or  place A Zone or  place A Zone or  place A

If M2 is substituted by M3 (see Table 1) then (M1 ∧ D(A,A) ∧ M3) is possible,
and Λ (M1,D(A,A),M3)≠ Ø, which means that the agent has identified that we
can visit the monument M1 and M3, taking into consideration that the time to
go from the first to the second monument is given by D(A,A).

Moreover, an intention i on Θ is defined as an s-tuple of compatible beliefs,
i = (e1, e2,…,es)  with s∈  IN and Λ( ei, ej )≠ 0
Then, we call set of intentions on Θ and denote Ι(Θ)
Ι(Θ)= { (e1, e2, …, ek) where k∈ IN }

Now a set of parameters will be associated to the space Ι(Θ) that characterises
the elements of that set. The set of necessary and sufficient variables to describe
the system may be obtained experimentally. We call canonical variables of a set
Ι(Θ) any set of linearly independent parameters ℵ =(A1, A2,..., Av) that
characterise the elements i ∈ Ι(Θ).

Example: If the agent identifies a visiting route through the number of
monuments to visit (N) and a maximum associated cost (C), then we express it
as ℵ =(A1,A2)=(N, C). In this coordenates system the following intention:
 i1= M1 ∧  D(A,A) ∧  M2 ∧  D(A,A) ∧  R1 ∧  D(A,B) ∧  M3 ∧  D(B,B) ∧ R2
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 is represented in Table 2.

It also has the values for P (number of monuments visited) and C (total cost of
the tour) indicated. Again M1, M2, M3 are monuments, R1 and R2 are
restaurants and D(A,A), D(A,B) and D(B,B) represent the journeys between
the visited places.

Table 2. Values of the believes that constitute intention i1 and values for (P,C) associated.

Schedule(hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22 attributes
intention M1 D(A,A) M2 D(A,A) R1 D(A,B) M3 D(B,B) R2 N 3
Costs(€) 6 0 6 0 12 0 0 0 12 C(€) 36
Time (hr) 1 1 1 1 2 2 2 1 1
Evaluation 1 -- 2 -- 1 -- 2 -- 2

In the same way, a desire d on Θ is defined as a mapping between
        d : I(Θ)→  Ω ( ℵ )
           i =(e1 ∧ … ∧ er,)      F(A1, A2,...., Av)
where Ω ( ℵ ) is the set of mappings on ℵ .

A desire d may be achieved constructing an intention i using some of the
available beliefs, whose output could be evaluated in terms of the desired goals.
We denote D(Θ) the set of desires on Θ:
D(Θ)={d: I(Θ)  Ω ( ℵ ) / with I(Θ) set of intentions and Ω ( ℵ ) set of mappings
on ℵ }

Example: The desire function “I want to visit at least three monuments and
spend less than 50€”, may be expressed as:





≤
≥

==
50
3

),(),( 21 C
N
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



∈
∈

)100,0(
)10,0(

C
N

Now, after presenting our definition of the agent’s beliefs, desires and intentions,
section 3.2 defines the proposed analytical formalism for the CBR system.

3.2 Analytical formalism for Case-based Reasoning systems

The necessary notation to characterise a CBR system is introduced as follows.
Let us consider a problem P, for which it is desired to obtain the solution S(P).
The goal of a case-based reasoning system is to associate a solution S(P) to a
new problem P, by reusing the solution S(P´) of a memorised problem P´.
P is denoted as P=(Si,{ θj }, Sf ) with  Si=initial state, Sf=final state and
j=(1,…,m). S(P) is defined as S(P)= { S1, θl, S2, θ2,..., θn, Sn+1 }={Sk, θh}
where k=(1,..,n+1) and h=(1,..,n ≤ m) , S1=Si   and  Sn+1= Sf,

The state Sk and the operator θj are defined as:

Sk = 
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where{ } prrO ,...,1= and{ } qssR ,...,1= are coordinates in which a state Sk is expressed
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The coordinates type {Or }r=1,…,p are introduced to express the objectives
achieved. The coordinates type {Rs }s=1,…,q are introduced to express the
resources used.

Through these definitions, the parameter effectiveness, ℑ , between two states S
and S’ can be defined, as a vector ℑ  (S, S’) = ( ℑ x, ℑ y) which takes the form

max
)()'(

r

rr
x O

SOSO −
=ℑ                   

max
)'()(

s

ss
y R

SRSR −
=ℑ

The definition implies that ( 0≤ℑ x≤1 ) and ( 0≤ℑ y≤1 ). In particular, if S=Si  and
S’=Sf , it is denoted ℑ  (Si, Sf)= ℑ  [S(P)] and we call it “effectiveness of a
solution”. In order to evaluate the rate of objectives achieved and resources used,
between S and S’, it is necessary to normalise every component of {Or}r=(1,…,p),
{Rs}s=(1,…,q) .

Then the expressions that have been defined to sum different objectives are:

If {Or (S)}= ( O1, O2,..., OP ) and {Or (S’)}= ( O’1, O’2,..., O’P )
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As {Rs (S)}= ( R1, R2,..., Rq ) and {Rs (S’)}= ( R’1, R’2,..., R’q ) it is defined
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A new parameter is also introduced - efficiency - that measures how many
resources are needed to achieve an objective. Given a target problem P, and a
solution S(P), we define ς [S(P)]= ℑ x / ℑ y , as the efficiency of the solution

S(P). The definition implies that ς (S,S’) ),0( ∞∈ .
The meaning of this new parameter is explained later. In this domain, a case C is
a 3-tuple {P, S(P), ℑ [S(P)]} where P is a problem description, S(P) the solution
of P and ℑ [S(P)] the effectiveness parameter of the solution, and a CBR´s case
base CB, denoted as: CB={Ck / k=(1,...,q) and q∈ IR} that is a finite set of cases
memorised by the system.

3.3 Integration of the CBR system within the BDI Agent

The relationship between CBR systems and BDI agents can be established,
associating the beliefs, desires and intentions with cases. Using this relationship
we can implement agents (conceptual level) using CBR systems (implementation
level). So once the beliefs, desires and intentions of an agent are identified, they
can be mapped onto a CBR system. First, a mapping is introduced that associates
an index to a given case Ck.
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idx:CB  I(CB)
       C   idx(C)= idx{P, S(P), ℑ [S(P)]}= { idx (Si), idx (Sf) }=
    = { [Si =(O1,a1), (O2,a2),...,(Op, ap), (R1,b1), (R2,b2),...., (Rq, bq)],
       [Sf=(O’1,c1),(O’2,c2),..,(O’p, cp),(R’1,d1),(R’2,d2),..,(R’q,dq)] }

with Oj, Rk∈ Τ(CB) ,ai, bj, ck, dl ∈ IR and p, q ∈ IN

where the set I(CB) is the set of indices of a case base CB that is represented by
frames composed of conjunction of attributes of T(CB) and values of the
domain.

The abstraction realized through the indexing process allows the introduction of
an order relation R in the CB that can be used to compare cases. Indices are
organized in the form of a Subsumption Hierarchy.

(CB, R)={ [Ck / k=(1,..,q) and q ∈ IN ], R}={(C1 , .., Cq )/ idx(C1) ⊆ .. ⊆  idx(Cq)}

Let us say that two cases C and C’∈ CB fulfill the relation
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•  Definition: Let us say that S(P’) is a possible CBR solution of the target P,
∀ C’= ( P’ , S(P’), ℑ [S(P’)] ) / idx(C’) ⊇ P

Example: Given three cases, C1, C2, C3, and their indices, where the initial
states are null, and just there are values for the final state.
idx(C1)={(O’1,a1), (R’1,b1), (R’2, b2)}= {(O’1,1.7), (R’1,95), (R’2, 21.6)}
idx(C2)={(O’1,a1), (R’1,b1), (R’2, b2)}= {(O’1,1.1), (R’1,80), (R’2, 19.2)}
idx(C3)={(O’1,a1), (R’1,b1), (R’2, b2)}= {( O’1,0.9), (R’1,100), (R’2, 22)}

If the problem to solve may be represented by P=( Si, Sf ) where its solution
satisfy,



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1

R
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


≤ 25' 2R

the relationship idx(C3)⊆  P⊆  (idx(C1), idx(C2) ) may be established. So the
definitions presented above let us know that idx(C3) is not a possible CBR
solution of the target P, while idx(C1), idx(C2) are possible CBR solution for
the problem P.

Given a canonical coordinate system ℵ =(A1, A2,…,Av) on I(Θ), the set may be
reordered, differentiating between:
{Fm}= {Aj with j≤ v / Aj  growing} and {Gn}= {Ak  with k≤ v / Ak  decreasing} so,
  ℵ = {Fm} ∪ {Gn} and m+n=v

Then, giving an i∈  I(Θ), a functional dependency relationship may be obtained
in terms of the attributes  i= i [e1(τ1, τ2,…,τj), e2(τ1, τ2,…,τk),…,es(τ1, τ2,…,τq )] =
= i(τ1, τ2,…,τn ) and in terms of its canonical or state variables:
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 i= i (A1, A2,…,Av)= i (F1, F2,…,Fm, G1, G2,…,Gn ) which determines a functional
relationship of the type Aj = Aj(τ1, τ2,…,τn).

Example: If we consider now two possible routes i1 and i2, together with their values,
presented in Table 4.

i1= M1 ∧ D(A,A) ∧ M2 ∧ D(A,A) ∧ R1 ∧ D(A,B) ∧ M3 ∧ D(B,B) ∧ R2
i2= M2 ∧ D(A,A) ∧ R1 ∧ D(A,B) ∧ M3 ∧ Tx(B,A) ∧ M1 ∧ Tx(A,B) ∧ R2

Table 3. Values for the intentions i1 and i2

Schedule(hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22
intention M1 D(A,A) M2 D(A,A) R1 D(A,B) M3 D(B,B) R2
Costs(€) 6 0 6 0 12 0 0 0 12
Time (hr) 1 1 1 1 2 2 2 1 1
Evaluation 1 -- 2 -- 1 -- 2 -- 2

Schedule(hr) 10-11 11-12 12-13 13-15 15-17 17-19 19-20 20-21 21-22
intention M2 D(A,A) R1 D(A,B) M3 Tx(B,A) M1 Tx(A,B) R2
Costs(€) 6 0 12 0 0 3 12 3 12
Time (hr) 1 1 2 2 2 1 1 1 1
Evaluation 2 -- 1 -- 2 -- 1 -- 2

If our coordenates system is represented by ℵ =( A1, A2, A3, A4) =( N, T, C, E )
where N=Places visited, T=Time spent in the visit, C=Cost of the visit,
E=Evaluation (visit satisfaction) then the previously presented intentions can
be expressed as,

i1--> N=3, T=12 (h), C=36(€), E=1.6 i2 --> N =3, T=12 (h), C=48(€), E=2

Now the fundamental relationship between the BDI agents and the CBR systems
can be introduced.  We define “state ς of an intentional process” and we denote
as ς ={e1 ∧ e2 ∧ … ∧ es-1 ∧ es } to describe any of the situations intermediate to
the solution i={e1 ∧ e2 ∧ … ∧ er, with r ≤ s} that admits a representation over ℵ .
Moreover, the solution S(P) for a given problem P=(SI,{θj},SF) can be seen as a
sequence of states Sk=({Or}r=1, …,p , {Rs}s=1,…,q ) interrelated by operators {θh}.

Given a BDI agent over Θ with a canonical system, ℵ =( A1, A2,..., Av) in the set
I(Θ) that may be reordered as ℵ  =(F1, F2,…,Fm, G1, G2,…,Gn ), we establish the
relationship between the set of parameters:

{Fm} ←→ {Or} {Gn} ←→ {Rs}

The identification criteria may be established among
- the intentional states, ςi∈  I(Θ), and the CBR states, Sk∈ T(BC).
- and a relationship may be established among the agents desires I(Θ) and the

effectiveness operator ℑ [S(P)] of the CBR system.
Then the mathematical formalisation proposed can be used as a common
language between agents and CBR system and solves the integration problem.
The relationship presented here shows how deliberative agents with a BDI
architecture may use the reasoning cycle of a CBR system to generate solutions
S(P).

Example: We continue with the previous example, if the values P,T,C,E are
represented by a structure
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If a problem P is presented to the agent in the following terms:




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≥

=
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hT
N

PS
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5 0 €

E
C
≥ 

≤ 
then idx(C1), idx(C2) are two possible CBR solutions because given the
previously presented definition,  P⊆  idx(C1), idx(C2). The desire function
    d : I(Θ)→   Ω ( ℵ )
        i =(e1 ∧ … ∧ er,)     F=F(i)= { P≥ 3, E≥1.5, T≤ 12, C≤ 50 }

may be expressed in terms of ℑ  (S(P) ) = ( ℑ x, ℑ y). For this example the values
can be claculated using the expressions of section 3.2.
ℑ x(S(P))= 0.412, where S(P) must achieve at least 41.2% of its objectives.
ℑ y(S(P))= 0.790, where S(P) should not require more that 79% of the
resources, while the values of the efficiency parameters of cases idx(C1) and
idx(C2) are:

ℑ x (C1)= 0.432, and ℑ y (C1)=0.738
ℑ x (C2) = 0.516, and ℑ y (C2)= 0.775
that holds:
ℑ x (C1) > ℑ x(S(P)) ℑ x (C2) > ℑ x(S(P))
ℑ y (C1)< ℑ y(S(P)) ℑ y (C2)< ℑ y(S(P))
as shown in section 3.3.

The relationship, presented here, shows how deliberative agents with a BDI
architecture may use the reasoning cycle of a CBR system to generate solutions
S(P). When the agent needs to solve a problem, it uses its beliefs, desires and
intentions to obtain a solution. Previous desires, beliefs and intentions are stored
taking the form of cases and are retrieved depending on the current desire. Cases
are then adapted to generate a proposed solution, which is the agent action plan.

4 Modelling dynamic CBR-BDI agents

The proposed analytical notation allows the definition of “CBR-BDI” agents.
Such agents have the ability to plan their actions, to learn and to evolve with the
environment, since they use the reasoning process provided by the CBR system.
CBR systems may be implemented and automated in different ways [4, 6]
depending on the problem which must be solved. This section shows how
variational calculus is used in the framework of the CBR system to automate the
retrieval stage, which gives the agents more autonomy [8, 10].
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φ1( α ,β )

φ2 ( α ,β )
φ3 ( α ,β )

4.1 Formalization of the integration of the CBR-BDI agents

The operations that are carried out during the reasoning process of the CBR
system are now defined, using the previously introduced notation.

4.1.1 Retrieval and Adaptation

During the retrieval phase, a problem P´ stored in the case base CB and that is
similar to the target problem P is identified. Given the problems P and P’, it is
said that P’ is "similar" to P and it is denoted P’≈P, if the case:
•  C’= (P’, S(P’), ℑ [S(P’)] )∈ CB, is a possible CBR solution, and
•  idx(C’) ⊇ {idx(Ck) k=(1,...., n) }
Now we use the parameter efficiency ς [S(P)], that indicates the amount of
resources that should be spent to achieve each objective.
The cases for which the efficiency is maximum are selected and denoted by
ς [S(P)]max, which is a subset of the previously selected solutions:
P⊆  idx(C1), idx(C2), idx(C3),…, idx(Cr), with r ≤ m.

Now we need to identify which is the best case from this subset. Before to show
how such case may be identified, a non-linearity effect in the relationship
between the cases with their attributes is introduced in the following examples.

Example: The visit to a museum M2, with E=1, may cost C=2€, while a
museum M1 with E=2, may be visited for free, C=0€ (for example, if there is a
public program of cultural promotion).

To incorporate such non-linearity to the problem, all the non linear processes
are codified in the function V=V(A1,A2,...Av) ≠0. The function V on
ℵ =(A1,A2,...Av) introduces constraints between such variables that can be
graphically associated with "curvature" in the phase space, such as the one
represented in Figure 2.

                P ς [S(P)]max
           Pmax

              ϕ1

          P min                                         ϕ2                Cmax
               C(€)

 

Fig. 2. Effects of non-linearity

In terms of our tourist agent, considering only ℵ =(A1, A2 ) =(N, C) and given
a target problem to solve defined by a Pmin and a Cmax, Figure 2 may represent
three potential solutions ϕ1, ϕ2, ϕ3, assuming non-linearity effects.
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If we represent the cases stored in a space of coordinates ℵ = (A1, A2,…,Av),
the stored cases define a hyper-surface (if we extrapolate the lattice of cases to a
continuous surface) and each case can be represented by a curve on that surface.
The advantage of modelling the cases as a hyper-surface is that we can apply on
the cases a variational calculus based strategy.

Table 4. Believes: Instance characterisation.
Class Monument Class Spectacle
Entity New Cathedral Entity Local music band
Visiting time 10-13 h Visiting time 21-23 h
Time for a visit 1 h Time for a visit 2 h
Visiting Cost 6 € Visiting Cost 3 €
Zone A Zone B
Eval. Mo1 1,13 Eval. Sp1 2,20

Mo2 2,85 Sp2 2,34
Mo3 2,76 Sp3 2,49
Mo4 1,12 Sp4 1,46

RF 0,3 RF 0,5

(a) (b)

Class Journey Class Restaurant
Entity Bus / D(B,A) Entity Tapas Bar
Time 24 h., at 10min intervals Lunch time

Dinner time
13-16 h /
22-23:30 h

Time for a visit 15 min Time for a visit 1 h
Visiting Cost 1 € Visiting Cost 12 €
Zone A Zone A
Eval. Jo1 2,12 Eval. Re1 2,56

Jo2 1,01 Re2 2,23
Jo3 1,89 Re3 1,41
Jo4 2,35 Re4 2,29

RF 0,9 RF 0,9

(c) (d)

For example, Table (4.a) refers to the New Cathedral of the City of Salamanca,
which may be visited from 10:00 to 13:00. The average time for a visit is one
hour and the cost is 6 Euro. It is situated in the Zone A (the city of Salamanca
has been divided into 5 different areas: A to E). The profiles of the visitor to
Salamanca have been divided in: Mo1 (cultural tourist), Mo2 (art expert), Mo3
(family visit) and Mo4 (generic tourist) with respect to the monuments. The
classifications may vary with respect to other entities. Each beliefs maintains
information related to the evaluation provided by the tourists after the visit. The
evaluation (between 0 and 3) is averaged taking into consideration the group to
which the tourist belongs. The risk factor, RF, provides information about the
probability of finding a similar item to a given one, in case it may not be visited
if it is a monument or if it is fully booked in the case of a restaurant for example.
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Table 5: Intentions evaluation
Intention Tourist C(€) T(h) No.Places Eval: Mo1-Mo4 Eval: Sp1-Sp4
I1 T1 18 12 5 Mo1: 1,12 .. Sp1: 2,25
I1 T2 18 13 5 Mo3: 2,30 .. Sp3: 2,50
I2 T3 21 11 4 Mo2: 2.38 .. Sp2: 2,50
---- ---- ---- ---- -- ----
In .. .. .. .. ..

Table 5 shows a table maintained by the agent that associates to each route or
intention its total cost, the time required by the tourist to carry it out, the
characterisations of the tourist, its evaluation with respect to such
characterisations and the average evaluation. For example, the route/intention,
I1, was carried out by the tourist T1, the total cost was 18 Euro, the time spent on
it was 12 hours, the tourist was doing cultural tourism (Mo1), he enjoys
traditional music (Sp1) and he has evaluated his interest in the monuments
visited in this route as Mo1=1,12, and of the spectacles attended as Sp=6,25. The
agent may then use this information to retrieve past intentions taking into
consideration the preferences of the tourist.

Then, for simplification purposes, we may represent the routes in function of the
coordinates (A1,A2,A3,.. ,An), where for example:
•  A1=Cost (€)=C= it is a monotonically increasing variable (it accumulates

the costs taken step by step)
•  A2=No. Places =P=number of visited items. It is an accumulative variable
•  A3=Time (hr)=T= monotonically increasing variable as above.
•  A4=Evaluation =E=mean of the quality. A priori we cannot establish a

defined tendency.

Figure 3: Graphical characterisation of a case.

In dynamic environments with uncertainty it is difficult to guarantee that a given
algorithm retrieves the best cases from the case base, and the evaluation, in real
time, of all the possible options may have unacceptable computational costs. In
our proposal the agent first has to interrogate the tourist and obtain information
about his desires: time and money to spend in the visit and preferences with
respect to art, food, accommodation, etc. Figure 3 presents a graphical
characterisation of a simplified historical case. The agent then applies variational
calculus to such retrieved cases to obtain the solution closest to the optimum
solution [10]. Let see now this process’ works  in detail.
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Step 1: The solution has to be found in the retrieved cases that satisfy the
selection criteria imposed by the tourist. Such a subset defines a topology and
therefore to obtain an optimum solution implies defining a metric on the subset.
For example, if we supposes that the visit to the monuments, the transport, etc. is
free after 12:00, the cost-time relationship may be represented by Figure 4.

Figure 4: Cost-time (C-T) relationship

The framework of this problem implies that the items are not crossed increasing
the cost progressively.. Then the agent solution needs to be based in the retrieved
routes, which have been carried out by tourists with similar preferences and
profiles that the tourist interested in carrying out a tour.

Step 2: On the hyper-surface generated by the retrieved solutions -on the space
defined by the variables (A1, A2,..., An)– variational calculus is applied [8].
Now it will be shown how variational calculus can be used to automate the reuse
process. Let us consider a case base (CB, R)={[Ck / k=1,.,q  and q ∈ IR],R} and
the set of attributes of the case base Τ(CB)= (α1, α 2,,..., α m,), α j є Τ. Using the
relationships between BDI agents and CBR systems established, it is denoted
Τ(BC)=(A1, A2,...Av ), coordinates system of I(Θ), which allows us to define a
function V on the space I(Θ), that stores the information of all the cases Ck є CB.

V : T(CB)       →     T(CB)
(A1, A2,...Av) →   V (A1, A2,...Av)

If we consider two states ( Si , Sf ) initial and final, on I(Θ), the function V
shows all the intentions i є I(Θ), that joins both states ( Si ,Sf ) and that has
related a case Ck є CB.  On the phase space, the function V=V(A1,A2,...Av) is
translated onto a surface Π0[A1,A2,...Av]=0, where the notion of Euclidean
distance is defined.

Let Si , Sf  be two states (two points on I(Θ), then D (Si , Sf ) takes the form

D (Si , Sf ) = 22
22

2
11 )-(+..+)-(+)-( fmimfifi AAAAAA

where Si =( Ai1, A i2,    , A iv), Sf  = (Af1, A f2 ,   , A fv )

In the m=3 case, and with A1=X, A2=Y, A3 =Z, the theory of variational calculus
says that a coordinate system ( λ, µ ) exists which allows an expression of the
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functional F=F(λ, µ), that associates to each curve between Si and Sf on
Π0[x,y,z]=0 with its length, thus we can obtain a solution of

0
   ́

FF =





∂
∂−

∂
∂

µλµ d
d ;  that we call µ = µ 0 (λ) and that takes the form  χ0 =

χ0[x,y,z] on the original coordinates (X, Y, Z). This function is named the
geodesical curve.

Step 3: Solutions of differential equations in variational problems exist only in
exceptional cases. In the actual problem, the routes are non-differentiable broken
lines. In these cases, the variational problem is just a theoretical boundary for
function optimisation problems with a finite number of variables. A
differentiable continuous functional V[y(x)] can be expressed as a function of a
Taylor series or a Fourier series, taking the following form:
V[y(x)] = V[a0+a1x1+a2x2+...] So we can deal with the problem in a similar way
and study which is the optimum of a function depending of a finite number of
variables. This mechanism is known as method of finite differences, and
develops an equivalent equation to Euler’s system for broken functions, as
represented in Figure 5.

Figure 5: Adaptation of a continuous function by a discrete one

Therefore, variational calculus with mobile frontiers is used [8]. Variational
calculus with mobiles frontiers calculates the optimum solution taking into
consideration that one extreme is moving over a function:
f=f(A1, A2,...,An), as represented in Figure 6.
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Figure 6: Graphical representation of three intentions/routes in a three
dimensional space.

A generalisation of Euler´s equation exists valid for any number of parameters.
In this case, the solution is obtained solving a n-dimensional Euler´s system of
differential equations. In the most general case, the mapping V=V(A1, A2,..., Am)
generates curves that cannot be differentiated because V only takes values at
discrete points corresponding to defined and stored cases.

Let us now define a mapping σ, as σ= χ0 – ψ, where χ0  is the solution obtained
by Euler´s equation [8] and ψ є {φ(Si,Sf)} is a path between Si, and Sf, stored in
the case-base as a case C є CB. Then we will call "the closest to the optimal
curve ψ0" the mapping of {φ(Si,Sf)} given by the minimisation of

I = ∫
ef

ei
 {σ [X,Y,Z] } dx dy dz

where ψ0 = { Si = S0
(0) 

 , S1
(0), S2

(0), S3
(0), S4

(0),...., Sm
(0), ......, Ss

(0) = Sf }, and Sk are
the states obtained to achieve the solution.
So far it has been shown how variational calculus can be used to select the
closest to the optimum curve. Variational calculus may then be used to select and
retrieve the most appropriate case during the retrieval stage. The retrieved case is
characterised as being the one that, in each of its stages, maintains the efficiency
most constant.

During the adaptation phase, the system executes a transformational reasoning
mechanism [1], that can be represented by the adaptation function A,

A :  (CB) x Σ (P)  C
( C    ,    P )       A [S(P’), P]= { P, A[S(P’)], ℑ (A[S(P’)])}

with P∈ Σ (P) is called set of problems, and C=(P’,S(P’), ℑ ([S(P’)])

In [2] a retrieval mechanism that identifies a case easy to adapt is suggested.
Therefore the retrieval mechanism should be subordinate to the adaptation one.
In our proposal we assign higher relevance to the retrieval strategy. If P=(Si, Sf)
and during the retrieval stage it is obtained C'={P’,S(P’), ℑ [S(P’)]} ) ∈ (CB), the
adaptation function constructs a solution for P maintaining the sequence of
operators that S(P’). If at any point the sequence may not be applied, a new
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retrieval cycle is initiated from the state in which the sequence was interrupted.
Therefore the adaptation function can be seen as a serie of operators: 
A= αm •α m-1• ......•α 2•α 1, where each operator is a part of a retrieved case.

Fig. 7. Formal Model Detailed Schema

Figure 7 shows how variational calculus is applied during the retrieval stage to select the
closest to the optimum case from the case-base. In this figure we show graphically the
working and information flow during the reasoning process of the agent, introduced in
this section.
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Example: Given a problem P=( SI, SF ), and the retrieved case P’=( S’I, S’F )
with S(P’)= (S1=S’I, θ’l, S’2, θ’2,..., θ’n, S’n+1=S’F).
The first state of the adapted solution A[S(P’)] = { SI=S1, θ’l, S’’2,..., θ’j, S’’j+1}
for the problem P is the initial state of P, and uses the operators θ’j of S(P’)
until the state S’’j+1, from which it can not progress. This is an incomplete
solution for the problem P, which is denoted by P1=(Si,S’’j+1). So  α1[S(P’)]=
{SI, θ’l,..., θ’j, S’’j+1 } = S(P1).

This process is repeated again  for the problem P’’=[S’’j+1 , SF ], whose initial
stage is S’’j+1. So P’’=[ S’’j+1 , SF ], and then a new case has to be found that
allows the plan to progress and to reach the state S where S’’j+1≤ S ≤SF . If we
denote P2=[ S’’j+1, S], the operator  α2[S(P’’)] = S(P2) may be identified.

This process is again repeated until a final state SF is found, and then,
A[S(P’)]= (αm • ...•α 2•α 1)[S(P’)]= (αm • .....•α 2) [S(P’’)]= ...=(αm) [S(Pm)]=
S(P)

4.1.2 Revision and Memorisation

In this phase the case solution generated in the previous phase is evaluated and
reviewed. A problem P occurs for which we want to obtain a solution S(P) with
ℑ [S(P)]. If, during the retrieval step, a case C’=(P’, S(P’), ℑ [S(P’)]) is recovered
and the adaptation step ensures a solution S(P)=A[S(P’)], the review must
guarantee that:
ℑ { A[S(P’)]} ⊇  ℑ  [S(P)]

The problem target and the characteristics of the adapted solution can be
memorized as a new case to be reused in the future and is denoted by
C= { P, A[S(P’)], ℑ (A[S(P’)]) } = ( P, S(P), ℑ [S(P)] )

4.2 Planning with variational calculus

This section shows how the variational calculus, introduced in the previous
section, allows the agents to plan and replan at execution-time because this
formalism is used to select the most adequate case during the reuse phase of the
reasoning process to solve a given problem. Assuming that potentially significant
changes can be determined after executing a primitive action, it is possible to
control the dynamism of the new events of the domain and thus achieve an
appropriate reconsideration of the problem [8].
Variational calculus may also deal with dynamic problems such as this one.
When the plan proposed by the agent is stopped for any reason (i.e. the tourist
may decided to spend more time visiting a monument, have a longer lunch, etc.),
variational calculus calculates a new plan. In this case the new initial state is the
point at which the initial proposed route has stopped, as shown in Figure 8.
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Figure 8: Replanning at execution time.

If it is accepted that the environment changes, it is also necessary to define a
reasoning mechanism capable of dealing with such changes by modifying the
initial desires and intentions.

   Fig. 9. 3D representation of a dynamic environment.

Nevertheless the reasoning process may be maintained since the general
description problem remain constant. If at t0, the function V(X, Y, Z) takes the
form denoted by V0(X,Y,Z), at t1, V is denoted by V1 (X, Y, Z), with the
associated surface Π1 (X, Y, Z) = 0 on the phase space, upon which it is possible
to obtain the optimal curve between two new points, Si and Sf where Si = S1

(0)
,

and S1
(0)

 is the second state of  ψ0 = { Si = S0
(0) 

 , S1
(0),....., Ss

(0) = Sf } and Sf  is the
final state or solution state of the global problem.
Solving the Euler´s equations, χ1 = χ1(X, Y, Z) is obtained, which may be used to
calculate an expression for ψ1, denoted as ψ1 = { Si = S1

(0)
, S1

(1)
, S2

(1)
, S3

(1)
,

S4
(1)

,...., Sm
(1)

,  ......, Ss
(1)= Sf } and the same can be done for any tj  (see Figure 9).

χ0(α,β)

χ0(α,β)

χ0(α,β)
χ0(α,β)

Paso 1:  t = t0 Paso 2:  t = t1

Paso 3:  t = t2 Paso 4:  t = tf

step1: t=t0 step2: t=t1

step3: t=t2 step4: t=t3
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From the previous equations, and based on variational calculus tools, an
expression can be determined to identify the final solution of the CBR-BDI
agent. This expression, which represents the agent plan, can be obtained in
execution-time and takes the following form:


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6 Tourist guide usal: A “CBR-BDI” system to solve problems
in the e-tourism domain

The tourism industry is an information intensive economic sector. This activity,
as many others, requires the use of a great amount of data, ranging from product
data to technical publications, from tourism regulations to best practice guides. A
multiagent based system has been developed for guiding tourists around the city
of Salamanca. The agent based system can be accessed via Internet or wireless
devices such as mobile phones, PDAs, etc. The system is composed of a CBR-
BDI agent that advises tourists and that communicate with other agents that
maintain uptodate information about Salamanca, its monuments, restaurants,
spectacles, etc. This paper shows how the CBR-BDI agent identifies adequate
routes for tourists based on previous experiences. The agent is therefore capable
of determining plans using stored cases or experiences and of learning from
them. Taking into consideration the characteristics of the present problem, the
CBR system embedded in the agent needs to:
•  generate plans or tourist routes
•  handle large amounts of contextual information, in real time and using

temporal reasoning
•  re-plan in execution time
•  incorporate new knowledge (in the form of new beliefs, or new experiences

making cases) and to learn from its experiences after successes or failures in
its advice.

Figure 10 describes the interaction process between the user and the tourist guide
agent. The tourist may use a mobile device to contact the agent, and then
introduces his/her login and password, and indicates to the agent his/her
preferences (monuments to visit, visits duration, time for dinner, amount of
money to spend, etc.).The agent then generates a plan for the user according to
his/her preferences and sends it back to him/her.
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Fig. 10. Schema of relations in TOURISTGUIDE-USAL

When the agent is contacted by the tourist, it receives information about his
desires and preferences. In this section we are going to see how the agent reasons
and provides the solution to the tourist using a particular case.

The tourist desires to spend a day visiting Salamanca (12 hours visit), he is an art
expert, and wants to visit the Museum of Contemporary Art (about which he has heard
of) and eat in fast food restaurants. He does not want to spend more that 60 Euro, and he
wants to visits monuments, restaurants, etc. that have been evaluated positively with a
value upper of 1,3 (evaluation range 0-3).

Table 6: Retrieved cases.
(Where M1...M8 correspond to Monuments, D(X,Z) correspond

to distances and R1…R6 correspond to restaurants).

     i1=M1 ∧ D(A,A) ∧ M2 ∧ D(A,A) ∧ R1 ∧ D(A,B) ∧ M3 ∧ D(B,B) ∧ R2
Schedule(hr) 10-11 11-12 12-13 13-14 14-16 16-18 18-20 20-21 21-22 attributes
Intention 1 M1 D(A,A) M2 D(A,A) R1 D(A,B) M3 D(B,B) R2
Costs(€) 6 0 6 0 12 0 0 0 12 C(€) 36
Time (hr) 1 1 1 1 2 2 2 1 1 T(hr) 12
Evaluation 1 -- 2 -- 1 -- 2 -- 2 E 1.6

     i2=M2 ∧ D(A,B) ∧ M3 ∧ D(B,B) ∧ M7 ∧ D(B,A) ∧ R3 ∧ D(A,A) ∧ R1
Schedule(hr) 10-11 11-12 12-14 14-15 15-16 16-18 18-20 20-21 21-22 attributes
Intention 2 M2 D(A,B) M3 D(B,B) M7 D(B,A) R3 D(A,A) R1
Costs(€) 6 0 6 0 0 0 12 0 12 C(€) 36
Time (hr) 1 1 2 1 1 2 2 1 1 T(hr) 12
Evaluation 2 -- 2 -- 1 -- 2 -- 1 E 1.6

     i3=M8 ∧ D(A,A) ∧ M1 ∧ D(A,A) ∧ R5 ∧ D(A,A) ∧ M4 ∧ D(A,B) ∧ R2
Schedule(hr) 10-11 11-12 12-13 13-14 14-16 16-17 17-19 19-21 21-22 attributes
Intention 3 M8 D(A,A) M1 D(A,A) R5 D(A,A) M4 D(A,B) R2
Costs(€) 3 0 6 0 18 0 6 0 12 C(€) 45
Time (hr) 1 1 1 1 2 1 2 2 1 T(hr) 12
Evaluation 1 -- 1 -- 2 -- 8 -- 2 E 1.6

login/passwordUser CBR-BDI
Agent

User
preferences Believes

Desires
Intentions (Plans)
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     i4=M1 ∧ D(A,A) ∧ M2 ∧ D(A,B) ∧ R4 ∧ D(B,B) ∧ M7 ∧ D(B,B) ∧ R2
Schedule(hr) 10-11 11-12 12-13 13-15 15-17 17-18 18-20 20-21 21-22 attributes
Intention 4 M1 D(A,A) M2 D(A,B) R4 D(B,B) M7 D(B,B) R2
Costs(€) 6 0 6 0 16 0 3 0 12 C(€) 43
Time (hr) 1 1 1 2 2 1 2 1 1 T(hr) 12
Evaluation 1 -- 2 -- 1 -- 1 -- 2 E 1.4

     i5=M3 ∧ D(B,B) ∧ R2 ∧ D(B,B) ∧ M7 ∧ D(B,A) ∧ M1 ∧ D(A,A) ∧ R3
Schedule(hr) 10-12 12-13 13-14 14-15 15-16 16-18 18-19 19-20 20-22 attributes
Intention 5 M3 D(B,B) R2 D(B,B) M7 D(B,A) M1 D(A,A) R3
Costs(€) 6 0 12 0 0 0 6 0 12 C(€) 36
Time (hr) 2 1 1 1 1 2 1 1 2 T(hr) 12
Evaluation 2 -- 2 -- 1 -- 1 -- 2 E 1.6

     i6=M2 ∧ D(A,B) ∧ M7 ∧ D(B,B) ∧ R2 ∧ D(B,B) ∧ M3 ∧ D(B,B) ∧ R6
Schedule(hr) 10-11 11-13 13-14 14-15 15-17 17-18 18-20 20-21 21-22 attributes
Intention 6 M2 D(A,B) M7 D(B,B) R2 D(B,B) M3 D(B,B) R6
Costs(€) 6 0 0 0 12 0 6 0 18 C(€) 42
Time (hr) 1 2 1 1 2 1 2 1 1 T(hr) 12
Evaluation 2 -- 1 -- 2 -- 2 -- 2 E 1.8

The agent retrieves from the case base the cases that satisfy these requirements.
If for example, the cases retrieved by the agent are the ones showed in Table 6
and graphically represented in Figure 11, the retrieved instances define the space
shown in Figure 12, to which variational calculus with mobile frontiers may be
applied (reuse stage) to calculate the optimum solution.

0 2 4
0

5

10

15

20

25

30

35

40

45

Figure 11: Retrieved instances.



23

Figure 12: Surface or space to which variational calculus with mobile
frontiers may be applied.

Given the optimum solution, the agent calculates which of the retrieved routes is
the nearest to the optimum. This will be the proposed route. Figure 13 shows the
optimum solution and the selected one.
In this case ,
 i6=M2 ∧ D(A,B) ∧ M7 ∧ D(B,B) ∧ R2 ∧ D(B,B) ∧ M3 ∧ D(B,B) ∧ R6.

Figure 13: Optimum and closest to the optimum route.

Let see what may happen when the tourist demands a change in the route after
having lunch (R2), for any reason. The agent needs to take into consideration the
initial constraints together with new ones: there is a new initial state and
previously visited monuments should not be visited again.  New intentions are
retrieved and variational calculus is again applied. Table 7 presents the part of
the plan that has already been carried out and Table 8 shows the retrieved
intentions that will be use  for replaning and generating an alternative solution.

Table 7: Part of the plan already carried out.

i6=M2 ∧ D(A,B) ∧ M7 ∧ D(B,B) ∧ R2 ∧ ….
Schedule(hr) 10-11 11-13 13-14 14-15 15-17 attributes Partial values
intention M2 D(A,B) M7 D(B,B) R2
Costs(€) 6 0 0 0 12 C(€) 18
Time (hr) 1 2 1 1 2 T(hr) 7
Evaluation 2 -- 1 -- 1 E 1.6
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Table 8: Retrieved intentions together with their values.

        D(B,A) ∧ M1 ∧ D(A,A) ∧ R7
Schedule(hr) 17-19 19-20 20-21 21-22 attributes Partial

values
attributes Total

values
intention D(B,A) M1 D(A,A) R7
Costs(€) 0 6 0 20 C(€) 26 C(€) 44
Time (hr) 2 1 1 1 T(hr) 5 T(hr) 12
Evaluation -- 1 -- 2 E 1.5 E 1.6

        D(B,B) ∧ M5 ∧ D(B,B) ∧ R4
Schedule(hr) 17-18 18-19 19-20 20-22 attributes Partial

values
attributes Total

values
intention D(B,B) M5 D(B,B) R4
Costs(€) 0 6 0 16 C(€) 22 C(€) 40
Time (hr) 1 1 1 2 T(hr) 5 T(hr) 12
Evaluation -- 1 -- 2 E 1.5 E 1.6

        D(B,A) ∧ M8 ∧ D(A,A) ∧ R1
Schedule(hr) 17-19 19-20 20-21 21-22 attributes Partial

values
attributes Total

values
intention D(B,B) M8 D(A,A) R1
Costs(€) 0 3 0 12 C(€) 15 C(€) 33
Time (hr) 2 1 1 1 T(hr) 5 T(hr) 12
Evaluation -- 1 -- 1 E 1 E 1.6

Again, the new routes may be represented, see Figure 14, and variational
calculus may be applied to obtain the optimum route. The route closest to the
optimum is then selected, in this case: D(B,A) ∧ M8 ∧ D(A,A) ∧ R1. Joining both
parts of the route can be obtained:
i=M2 ∧ D(A,B) ∧ M7 ∧ D(B,B) ∧ R2 ∧ D(B,A) ∧ M8 ∧ D(A,A) ∧ R1, as shown in
Figure 14.

Figure 14. Routes retrieved for replanning.

The tourist evaluates the route after the visit to Salamanca and this information is
stored by the agent in its case base.

7. Results and conclusions

The system, here presented, has been tested from the 1st of June to the 15th of
September 2002. The case base was initially filled with information collected
from the 1st of February to the 25th of May 2002. Local tourist guides provided
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the agent with a number of standard routes and distributed among his clients
Mobile phones, from which they could contact the agent and inform it about the
progress of their plans: routes, times, evaluations, etc. During this period the
agent stored in its memory 540 instances. Which covered a wide range of all the
possible options that offers the City of Salamanca. The system was tested during
115 days and the results obtained were very encourages. Three hotels of the City
offered the option to their 4216 guests to use the help of the agent or a
professional tourist guide, 7% of them decided to use to agent based system and
28% of them used the help of a tourist guide. The rest of the tourists visited the
city by themselves. In this initial experiment the agent intentions were related to
a one-day route (a maximum of 12). Therefore the agent provided plans for one
day.

On the arrival to the hotel the tourist were asked to evaluate their visit and the
route. Table 9 shows the responses given by the tourist after their visit. The
tourist that used the help of the software agent provided the answer directly to
the agent.

Table 9: Tourists evaluation.

Tourists that Number of
tourists

% Evaluation - degree of satisfaction

4216 (total) 8-10 6-8 4-6 0-4 No
answer

Used the help of
the agent

295 7% 165

(55,9%)

14

(4,7%)

7

(2,4%)

2

(0,7%)

107

(36,3%)

Used the help of
a tourist guide

1180 28% 740
(62,7%)

231
(19,6%)

105
(8,9%)

12
(1%)

92
(7,8%)

Did not use any
of the previous

2741 65% 458
(16,7%)

230
(8,3%)

32
(1,2%)

5
(0,2%)

2160
(78,8%)

Table 9 shows the degree of satisfaction of the tourists. As it can be seen, the
degree of satisfaction of the tourist that used the help of a professional tourist
guide is higher that in the other two cases. Nevertheless the percentage of the
tourist which degree of satisfaction was very high (between 8 and 10) is very
similar in the case of the tourist that use the help of the agent and in the case of
the tourist that use the tourist guide.  38% of the tourist that used the agent based
system let us know that the system did not work successfully due to technical
reasons (possibly the server was down, there was a luck of coverage, the tourist
did not use the wireless system adequately, etc.) If we take this into
consideration, we can say that most of the tourist (92%) that used the help of the
agent and did not have technical problems had a high or very high degree of
satisfaction (6-10). This degree of satisfaction is higher that the one of the tourist
(82,3%) that used the help of a tourist guides.

The CBR-BDI architecture solves one of the problems of the BDI (deliberative)
architectures, which is the lack of learning capability. The reasoning cycle of the
CBR systems helps the agents to solve problems, facilitate its adaptation to
changes in the environment and to identify new possible solutions. New cases
are continuously introduced and older ones are eliminated. The CBR component
of the architecture provides a straight and efficient way for the manipulation of
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the agents knowledge and past experiences. The proposal presented in this paper
reduces the gap that exists between the formalization and the implementation of
BDI agents. What we propose in this article is to define the beliefs, desires and
intentions clearly (they don’t need to be symbolic or completely logic), and to
use them in the life cycle of the CBR system, to obtain a direct implementation
of a BDI agent.

A mathematical formalism has been introduced to facilitate the
representation of BDI deliberative agents and of CBR systems. This
analytical formalism also allows the integration of both models and
provides a robust framework for the definition and the automatization of
the reasoning cycle of the agents, here presented.

Agents need to respond in real time to the user requests and to adapt their
solutions in real time, since they inhabit dynamic environments.
Variational calculus has been introduced in this paper to facilitate the
agents to define their plans and to replan as execution-time in order to
provide the best possible service. Variational calculus can be used to obtain
the most adequate plan to achieve a goal in environment with uncertainty.

This paper has also shown how the proposed architecture may be used to design
an agent for an e-tourism problem. The work presented in this paper is just the
first step toward the development of an ambitious framework for developing
communities of agents capable of solving problems in an autonomous and
intelligent manner. Although the architecture and formalisation described have
been applied to the e-tourism domain, we believe it could be also used in any
other domain in which agents with learning and adaptation capabilities are
required.
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