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Abstract

Instance based reasoning systems and in general case based reasoning systems are normally used in problems for which it is difficult to define

rules. Instance based reasoning is the term which tends to be applied to systems where there are a great amount of data (often of a numerical

nature). The volume of data in such systems leads to difficulties with respect to case retrieval and matching. This paper presents a comparative

study of a group of methods based on Kernels, which attempt to identify only the most significant cases with which to instantiate a case base.

Kernels were originally derived in the context of Support Vector Machines which identify the smallest number of data points necessary to solve

a particular problem (e.g. regression or classification). We use unsupervised Kernel methods to identify the optimal cases to instantiate a case

base. The efficiencies of the Kernel models measured as Mean Absolute Percentage Error are compared on an oceanographic problem.

q 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Case based reasoning (CBR) systems have been

successfully used in several domains such as diagnosis,

prediction, control and planning [1]. However, a major

problem with these systems is the difficulty in case retrieval

and case matching when the number of cases increases;

large case bases are difficult to handle and require efficient

indexing mechanisms and optimised retrieval algorithms, as

explained later. Also there are no standard techniques to

automate their construction, since each problem may be

represented by a different data set and requires a customised

solution. This paper compares two groups of Kernel

methods that can be used to alleviate these problems.

Kernel models were first developed within the context of

Support Vector Machines [2]. Support Vector Machines

attempt to identify a small number of data points (the

support vectors) which are necessary to solve a particular

problem to the required accuracy. Kernels have been

successfully used in the unsupervised investigation of

structure in data sets [3,4]. We have previously investigated

the use of Artificial Neural Networks [5] and Kernel

Principal Component Analysis (KPCA) [6] to identify

cases, which will be used in a case based reasoning system.

In this paper, we compare a sparsified Kernel PCA and three

methods based on Kernel K-Means clustering on the same

data. Kernel methods map a data set into a Feature space

using a non-linear mapping. Then typically a linear

operation is performed in the Feature space; this is

equivalent to performing a non-linear operation on the

original data set. KPCA is one such operation and in this

paper we review methods of identifying the critical data

points which can be used to sparsify the method of KPCA.

Similarly, we investigate clustering in the Feature space and

extend the basic method in two distinct ways.

Kernel methods can be used in case based reasoning

systems when cases can be represented in the form of

numerical feature vectors, examples of which would be

temperature (8C), distance (m), time (hh,mm,ss), dates

(dd,mm,yy), etc. This is normally the case in most instance

based reasoning systems (IBR) [1,7]. The features that

characterise Kernel models can be used to identify

prototypical cases, to identify cases that are similar to a

given one and to reuse cases.

Large case/instance bases may have negative con-

sequences for the performance of the CBR/IBR systems.
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This has been shown in several projects such as INRECA

[8] and ORKA [7]. A large case-base requires a complex

and efficient indexing mechanism and techniques to

eliminate redundant or contradictory cases. When a CBR

system is used in a real time problem, such as the

oceanographic one presented in this paper, it may not be

possible to manage a large case base and the necessary

pre-processing algorithms with reasonable computational

power. As has been shown in the ORKA [7] project, new

and updated cases should be included and maintained in

the case base, and obsolete and redundant cases should

be eliminated or transformed to maintain a case base

with a stable size, in order to control the response time

of the system and maintain its efficiency. The transform-

ation of a number of cases into one representative case

may help to reduce the volume of information stored in

the case base without losing accuracy. The ability of the

Kernel methods presented in this paper to select

prototypical cases and to identify those cases that are

already represented by these prototypes can be used to

successfully prune the case-base without losing valuable

information.

An instance based reasoning system developed for

predicting oceanographic time series ahead of an ongoing

vessel, in real time, will be used to illustrate the efficiency of

the solution discussed here.

This paper is structured as follows: first CBR systems are

reviewed; then Kernel methods are presented, and their

abilities are demonstrated on synthetic data sets. Finally we

show how this approach has been used in a real-world

system to forecast oceanographic thermal time series in real

time.

2. Case-based reasoning systems

Although knowledge-based systems (KBS) represent one

of the commercial successes resulting from artificial

intelligence research, their developers have encountered

several problems [9]. Knowledge elicitation, a necessary

process in the development of rule-based systems, can be

problematic. The implementation of a KBS can also be

complex, and, once implemented, it may also be difficult to

maintain. With the aim of overcoming these problems,

Schank [10] proposed a revolutionary approach, case-based

reasoning, which is, in effect, a model of human reasoning.

The idea underlying CBR is that people frequently rely on

previous problem-solving experiences when solving new

problems. This assertion may be verified in many day-to-

day problem-solving situations by simple observation or by

psychological experimentation [11,12]. Since the ideas

underlying case-based reasoning were first proposed, CBR

systems have been found to be successful in a wide range of

application areas [8,13].

A case-based reasoning system solves new problems by

adapting solutions that were used to solve previous

problems [14,15]. The case base holds a number of cases,

each of which represents a problem together with its

corresponding solution. Once a new problem arises, a

possible solution to it is obtained by retrieving similar cases

from the case base and studying their recorded solutions. A

CBR system is dynamic in the sense that, in operation, cases

representing new problems together with their solutions are

added to the case base, redundant cases are eliminated and

others are created by combining existing cases.

CBR systems record past problem solving experiences

and, by means of indexing algorithms, retrieve previously

stored cases, along with their solutions, and match them and

adapt them to a given situation to generate a solution. The

intention of the CBR system is to abstract a solution from

the knowledge stored in the case base in the form of cases.

All of these actions are self-contained and can be

represented by a cyclical sequence of processes in which

human intervention may be needed. A case-base reasoning

system can be used by itself or as part of another intelligent

or conventional system. CBR systems are especially

appropriate when the rules that define a knowledge domain

are difficult to obtain or the number and the complexity of

the rules affecting the problem are too large for the normal

knowledge acquisition problem [1,7,13]. Dynamic systems

require dynamic solutions and in many cases learning and

adaptation mechanisms. When the solution to a problem is

known, an ‘expert’ system may be constructed, but when the

rules that define a problem change in time in an

unpredictable way, we require a system capable of

integrating our initial knowledge about the problem and of

learning with time. This may be achieved by CBR systems

or, as will be explained later, with Instance based systems,

which are a particular type of CBR system capable of

dealing with large amounts of data.

A typical CBR system is composed of four sequential

steps which are recalled every time that a problem needs to

be solved [1,9,13]: retrieve the most relevant case(s), reuse

the case(s) to attempt to solve the problem, revise the

proposed solution if necessary, and retain the new solution

as a part of a new case. Fig. 1 outlines the basic CBR cycle.

Each of the steps of the CBR life cycle requires a model or

method in order to perform its mission. The algorithms

selected for the retrieval of cases should be able to search

the case base and to select from it the most similar problems,

together with their solutions, to the new problem. Cases

should therefore represent, accurately, problems and their

solutions. Once one or more cases are identified in the case

base as being very similar to the new problem, they are

selected as potential candidates for the solution of this

particular problem. These cases are reused using a

predefined method in order to generate a proposed solution

(i.e. normally using an adaptation technique). This solution

is revised (if possible) and finally the new case (the problem

together with the obtained solution) is stored. Cases can also

be deleted if they prove to be inaccurate; they can be merged
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together to create more generalised cases and they can be

modified.

CBR systems are able to utilise the specific knowledge of

previously experienced problem situations rather than

making associations along generalised relationships

between problem descriptors and conclusions or relying

on general knowledge of a problem domain such as rule-

based reasoning systems. CBR is an incremental learning

approach because every time that a problem is solved a new

experience can be retained and made immediately available

for future retrievals.

The nature of the problem and the expertise of the CBR

designers determine how the CBR should be built. Although

different metrics and techniques may be used for each of the

steps of the CBR cycle, there are only a few of them that can

facilitate the automation of the IBR process [1,7,13]. This

paper presents a method to automate the process of

identifying the significant cases/instances with which to

prime the case/instance base in problems of a numeric

nature, which may be solved by instance-based reasoning

systems. Now we review the different types of CBR systems

and how the IBR/CBR systems have been combined and

enhanced with other artificial intelligence techniques.

2.1. Types of CBR systems

According to Aamodt and Plaza [1] there are five

different types of CBR systems, and although they share

similar features, each of them is more appropriate for a

particular type of problem: typical case-based reasoning,

memory-based reasoning, analogy-based reasoning, exem-

plar based reasoning and instance based reasoning,

Although case-based reasoning is used as a generic term

in this paper, the typical case-based reasoning methods have

some characteristics that distinguish them from the other

approaches listed here. First, a typical case is usually

assumed to have a certain degree of richness of information

contained in it, and a certain complexity with respect to its

internal organisation [1]. CBR systems are also able to

modify, or adapt, a retrieved solution when applied in a

different problem-solving context. Memory-based reason-

ing (MBR) systems deal with large collections of cases. In

MBR systems, reasoning is seen as the process of accessing

and searching in this memory [14,15]. The utilisation of

parallel processing techniques is a characteristic of these

methods, and distinguishes this approach from the others.

Although analogy-based reasoning is used, as a synonym to

case-based reasoning, it is also often used to characterise

methods that solve new problems based on past cases from a

different domain, while typical case-based methods focus on

indexing and matching strategies for single-domain cases

[16].

Exemplar-based reasoning systems are derived from a

classification of different views of concept definition into

‘the classical view’, ‘the probabilistic view’, and ‘the

exemplar view’ [17,18]. In the exemplar view, a concept is

defined extensionally, as the set of its exemplars. CBR

methods that address the learning of concept definitions (a

problem addressed by much of the research in machine

learning), are sometimes referred to as exemplar-based. In

this approach, solving a problem is a classification task, i.e.

finding the right class for the unclassified exemplar.

Instance-based reasoning is a specialisation of exemplar-

based reasoning into a highly syntactic CBR-approach.

This type of CBR system focuses on problems in which

there are a large number of instances which are needed to

represent the whole range of the domain and where there is

a lack of general background knowledge [1,7,8]. The case

representation can be made with feature vectors and the

phases of the CBR cycle are normally automated as much

as possible, eliminating human intervention. Basically, this

is a non-generalisation approach to the concept learning

Fig. 1. The classic CBR cycle.
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problem addressed by classical, inductive machine learning

methods [1]. The lack of general background knowledge

may be successfully substituted by a number of instances

representative of the whole problem spectrum, as shown in

Section 4.

2.2. Using CBR systems in combination with other methods

Instance-based reasoning systems, and in general case-

based reasoning systems, require algorithms or mechanism

to retrieve, reuse, revise and retain cases [19,20]. CBR/IBR

systems are then combined with statistical or artificial

intelligence techniques such as artificial neural networks,

bayesian networks, genetic algorithms, knowledge-based

systems, etc. In general, we can say that CBR systems have

to be combined with other reasoning mechanisms and that

the final problem solving mechanism may be considered to

be a hybrid artificial intelligence system. The term hybrid

refers to systems that consist of one or more integrated

subsystems, each of which can have a different represen-

tation language and inference technique. The subsystems

are assumed to be tied together semantically and influence

each other in some way. The goal of hybrid system research

includes the development of techniques to increase the

efficiency and reasoning power of intelligent systems. For

example, some of the work developed with the aim of

increasing efficiency makes use of specialised reasoners

strategically called by control or supervisor modules that

decide which reasoning method to use at different times

[21]. Hybrid systems are capable of addressing some

practical problems that have been addressed with traditional

artificial intelligence approaches. From a fundamental

perspective, hybrid systems may also give further insight

into cognitive mechanisms and models [21]. Many

researchers have investigated the integration of different

AI approaches [22] and in particular the integration of CBR/

IBR systems with other techniques [7,20]. The issues under

study range from fundamental questions about the nature of

cognition and theories of computation to practical problems

related to implementation techniques.

Although there are many successful applications based

on just CBR technology, from an analysis of this type of

system it appears that CBR systems can be successfully

improved, combined or augmented by other technologies

[23]. Although it may be desirable to have models in which

the components are as simple and homogeneous as possible,

in some cases a hybrid solution may be the best solution. A

hybrid IBR/CBR system may have a clearly identifiable

reasoning process. This added reasoning process could be

embedded in any of the stages that compose the CBR Life

Cycle. For example the most common approaches to

construct hybrid based CBR systems are:

† the CBR can work in parallel with a co-reasoner and a

control module activates one or the other, i.e. ROUTER

[24];

† a co-reasoner can be used as a pre-processor for the CBR

system as happens in the PANDA system [25]; and

finally

† a CBR can use the co-reasoner to augment one of its

own reasoning processes [18] as previously

mentioned.

The last approach is used by the majority of the

IBR/CBR hybrid systems. The authors in Refs. [7,9,18,23]

have investigated the areas where Artificial Intelligence

(AI) approaches used as co-reasoners by this type of hybrid

IBR/CBR based systems are applied: to define alternative

partial solutions, in the adaptation stage, in the evaluation

stage, for justification and as a fall back, to generate

alternative (partial) solutions, for specification and for

repair, etc. They have also identify techniques used to

augment the efficiency of IBR/CBR hybrids: rule based

reasoning systems, (numerical) constraint satisfaction,

qualitative reasoning, genetic algorithms, knowledge-

based systems, artificial neural networks, bayesian net-

works, etc.

Most of the initial work combines IBR/CBR systems

with rule-based reasoning systems, but the number of

applications in which other AI techniques are combined

with instance/case-based reasoning systems is increasing

continually and quickly as has been reported in Refs. [9,18,

21,26]. In Ref. [20] a review of the possible ways can be

found in which intelligent technologies can be integrated

within the CBR cycle.

IBR systems are flexible systems capable of using the

beneficial properties of other technologies to their advan-

tage; in particular, the interest here is in the advantages of

combining IBR systems and connectionist models such as

Kernel methods or artificial neural networks in general.

During the last decade an increasing number of scientists

had been researching into the hybridisation of IBR systems

and connectionist models [7,20]. Connectionist models are

not especially appropriate for stepwise expert reasoning and

their explanation abilities are extremely weak. Nevertheless

their learning and generalisation capabilities can be useful

in many problems. Therefore they can only be used as part

of IBR/CBR systems in those areas that do not involve

knowledge explanation and reasoning. In particular, they

can be used in areas involving knowledge generalisation.

Learning is a powerful feature of most ANNs, and learning

forms an intrinsic part of many stages of the CBR cycle, so

ANNs can be used to learn to retrieve the closest case to a

particular situation, or in other words to learn to identify the

closest matching case. For a connectionist model it is

reasonably easy in most situations to learn new cases and to

learn how to generalise (adapt) a case from a pool of cases.

CBR systems and connectionist models are complemen-

tary techniques, connectionist models deal easily (and

normally) with numeric data sets whereas CBR systems

deal normally with symbolic knowledge. Even when

symbolic knowledge can be transformed into numeric
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knowledge and numeric into symbolic, by doing this there is

always the risk of losing accuracy and resolution in the data

and hence obtaining misleading results. Therefore a

combination of IBR/CBR systems and connectionist models

may avoid transforming data and therefore gain precision.

As mentioned before, generalisation is a useful ability of

most connectionist models, but in many cases it is necessary

to hold information about special cases, and this is a natural

ability of CBR systems. A review of Neuro-symbolic

systems that combine CBR systems with connectionist

models may be found in Refs. [20,26].

Kernel methods have been grasped by the connectionist

community as a means of identifying the crucial data points

which are necessary to perform a particular regression or

classification task and it is these methods that we now

discuss.

3. Kernel methods

The use of radial Kernels has been derived from the work

of Vapnik [2], Burges [27] etc. in the field of Support Vector

Machines. A very good resource is www.Kernel-machines.

org which contains publications, tutorials and software on

this topic.

Support Vector Machines (SVMs) perform a non-linear

mapping of the data set into some high dimensional feature

space in which we may then perform linear operations.

Since the original mapping was non-linear, any linear

operation in this feature space corresponds to a non-linear

operation in data space. SVMs are supervised training

methods which were principally derived for regression and

classification problems: there is a parameter which deter-

mines the level of accuracy of the classification. They have

been shown to be very accurate on classification and

regression problems though the training times can be

excessive.

One of the attractive features of Support Vector

Machines is their innate ability to identify which data

points are important in determining the optimal regression

(or classification) plane and which data points may simply

be ignored in creating this optimal plane. This is an

attractive property for CBR-IBR systems. We use Kernel

methods in an unsupervised manner with the aim of

identifying those cases which should be used to prime a

case base. The methods are incremental and can be used to

update the Case Base as new data arrives.

We first review recent work on Kernel Principal

Component Analysis (KPCA) [4,28,29] which has been

the most frequently reported linear operation involving

unsupervised learning in feature space. We then show why

the basic KPCA method is not appropriate for the selection

of cases for a CBR–IBR system and create a sparsification

of the KPCA method which is appropriate for these types of

methods.

3.1. Kernel principal component analysis

In this section, we show that Principal Component

Analysis (PCA) may be performed on the samples of a data

set in a particular way which will be useful in the

performance of PCA in the non-linear feature space. The

method crucially uses the dot product of data points rather

than the covariance matrix of the data set. We then

introduce a non-linear mapping which maps the data from

data space to a feature space and show that this new method

of performing PCA is appropriate for the mapped data.

Indeed, we show that, provided the dot product can be

calculated (in the Feature space), we do not need to know

the non-linear mapping at all.

PCA finds the eigenvectors and corresponding eigen-

values of the covariance matrix of a data set. Let there be M

data points, and let x ¼ {x1;…; xM} be iid (independent,

identically distributed) samples drawn from a data source. If

each xi is n-dimensional, ’ at most n eigenvalues/eigen-

vectors. Let C be the covariance matrix of the data set; then

C is n £ n. Then the eigenvectors, ei, are n-dimensional

vectors which are found by solving

Ce ¼ le ð1Þ

where l is the eigenvalue corresponding to e. We assume

the eigenvalues and eigenvectors are arranged in non-

decreasing order of eigenvalues and each eigenvector is of

length 1. We use the sample covariance matrix as though it

was the true covariance matrix and so

C <
1

M

XM
j¼1

xjx
T
j ð2Þ

Now each eigenvector lies in the span of x; i.e. the set

x ¼ {x1;…; xM} forms a basis set (normally overcomplete

since M . n) for the eigenvectors. So each ei can be

expressed as

ei ¼
X

j

ai
jxj ð3Þ

If we wish to find the principal components of a new data

point x we project it onto the eigenvectors previously found:

the first principal component is (x·e1), the second is (x·e2),

etc. These are the coordinates of x in the eigenvector basis.

There are only n eigenvectors (at most) and so there can

only be n coordinates in the new system: we have merely

rotated the data set.

Now consider projecting one of the data points from x on

the eigenvector e1; then

xke1 ¼ xk·
X

j

a1
j xj ¼ a1·

X
j

xkxj ð4Þ

Now let K be the matrix of dot products. Then Kij ¼ xixj:
Multiplying both sides of Eq. (1) by xk we get

xkCe1 ¼ le1·xk ð5Þ

C. Fyfe, J. Corchado / Advanced Engineering Informatics 16 (2002) 165–178 169

www.Kernel-machines.org
www.Kernel-machines.org


and using the expansion for e1, and the definition of the

sample covariance matrix, C, gives

1

M
K2a1 ¼ l1Ka1 ð6Þ

Now it may be shown [29] that all interesting solutions of

this equation are also solutions of

Ka1 ¼ Ml1a1 ð7Þ

whose solution is that a1 is the principal eigenvector of K.

So far we have only found a rather different way of

performing Principal Component Analysis. But now we pre-

process the data using F : x! F: So F is now the space

spanned by Fðx1Þ;…;FðxMÞ: The above arguments all hold

and we may similarly find the eigenvectors of the dot

product matrix Kij ¼ ðFðxiÞ·FðxjÞÞ: At this stage we use the

Kernel Trick: provided we can calculate K we do not need

the individual terms FðxiÞ:

As an example of how to create the Kernel matrix, we

may use Gaussian Kernels so that

Kij ¼ ðFðxiÞ·FðxjÞÞ ¼ exp
2ðxi 2 xjÞ

2

ð2s2Þ

 !
ð8Þ

This Kernel has been shown [29] to satisfy the conditions of

Mercer’s theorem and so can be used as a Kernel for some

function Fð·Þ: One issue that we must address in feature

space is that the eigenvectors should be of unit length. Let vi

be an eigenvector of C. Then vi is a vector in the space F

spanned by Fðx1Þ;…;FðxMÞ and so can be expressed in

terms of this basis. This is an at most M-dimensional

subspace of a possibly infinite dimensional space which

gives computational tractibility to the Kernel algorithms.

Then

vi ¼
XM
j¼1

ai
jFðxjÞ ð9Þ

for eigenvectors vi corresponding to non-zero eigenvalues.

Therefore

vT
i vi ¼

XM
j;k¼1

ai
jFðxjÞ

TFðxkÞa
i
k ¼

XM
j;k¼1

ai
jKjka

i
k ¼ ai·ðKaiÞ

¼ lia
i·ai

Now a i are (by definition of the eigenvectors of K) of unit

magnitude. Therefore since we require the eigenvectors to

be normalised in feature space, F, i.e. vT
i vi ¼ 1; we must

normalise the eigenvectors of K, a i, by dividing each by the

square root of their corresponding eigenvalues.

Thus we can simply perform a principal component

projection of any new point x by finding its projection onto

the principal components of the feature space, F. Thus

vi·FðxÞ ¼
XM
j¼1

ai
jFðxjÞ·FðxÞ ¼

XM
j¼1

ai
jKðxj; xÞ ð10Þ

Fig. 2 shows the clustering ability of Kernel PCA with a

Gaussian Kernel. The data set comprises three sets each of

30 points each of which is drawn from a Gaussian

distribution. The centres of the three Gaussians are such

that there is a clear separation between the clouds of points.

The figure shows the contours of equal projection onto the

first eight KPCA directions. Note that linear PCA would

only be able to extract two principal components; however

because the Kernel operation has moved us into a high

dimensional space in a non-linear manner, there may be up

to 90 non-zero eigenvalues. The three clusters can be clearly

identified by projecting the data points onto the first two

Fig. 2. The three clusters data set is shown as individual points. The contours are contours of equal projection on the respective Principal Components. The first

two principal components are sufficient to differentiate between the three clusters; the others slice the clusters internally and have much less variance associated

with them.
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eigenvectors. Subsequent Kernel Principal Components

split the clusters into sections.

However Fig. 3 shows the components of the eigenvec-

tors in Feature space: each row corresponds to one

eigenvector in feature space and each column represents a

single point in feature space; black indicates that the

eigenvector has a negative value in terms of that component

while white indicates that it has a positive value; the

magnitude of the component is directly proportional to the

area of the square. We see why the first two projections were

so successful in identifying the three clusters but we note

that there is a drawback to the method if we were to use this

method to identify cases: each eigenvector is constructed

with support from projections of very many points. What we

really wish is to identify individual points in terms of their

importance. This issue has previously been addressed in

Ref. [4] using a number of heuristics. In this paper we use a

novel sparsification of the Kernel PCA method.

3.2. Sparse Kernel principal component analysis

One of the attractive properties of Support Vector

Machines is their ability to identify the critical data points

(the support vectors) which are most useful in classification

or regression. However, this property has been lost in

KPCA. We consider extensions of KPCA in an attempt to

regain this property.

It has recently been suggested [29] that we may

reformulate the Kernel PCA problem as follows: let the

set of permissible weight vectors be

V ¼

(
w : w ¼

XM
i¼1

aiFðxiÞ

with kwk2 ¼
X
i; j

aiajKðxi; xjÞ # 1

)
ð11Þ

Then the first principal component is

v1 ¼ arg max
v[V

1

M

XM
i¼1

lv·FðxiÞl
2

ð12Þ

for centred data. This is the basic KPCA definition which we

have used above. We may ask whether other sets of

permissible vectors may also be found to be useful.

Consider

VLP ¼ w : w ¼
XM
i¼1

aiFðxiÞ with
X

i

lail # 1

( )
ð13Þ

This is equivalent to a sparsity regulariser used in

supervised learning and leads to a type of Kernel feature

analysis

v1 ¼ arg max
v[VLP

1

M

XM
i¼1

lv·FðxiÞl
2

ð14Þ

Smola et al. [29] point out that this system may be

generalised by considering the lp norm to create permissible

spaces

Vp ¼ w : w ¼
XM
i¼1

aiFðxiÞ with
X

i

lail # 1

( )
ð15Þ

This has been termed Kernel Feature Analysis (KFA) in

Ref. [29] however we prefer to call this method Sparse

Kernel Principal Component Analysis to emphasise its links

with KPCA. In addition, we have also previously [4] used

the term KFA to describe Kernel Factor Analysis which has

a similar aim—the creation of a sparse representation of

data in feature space.

3.3. Solutions and problems

Smola et al. [29] show that the solution of

v1 ¼ arg max
v[Vp

1

M

XM
i¼1

lv·FðxiÞl
2

ð16Þ

are to be found at the corners of the hypercube determined

by the basis vectors, FðxiÞ: Therefore all we require to do is

find that element xk defined by

xk ¼ arg max
xt[x

XM
i¼1

FðxkÞ·FðxiÞj j
2¼ arg max

xt[x

XM
i¼1

lKkil
2

ð17Þ

which again requires us only to evaluate the Kernel matrix.

So the solution to finding the ‘first Principal Com-

ponent’ using this method is exceedingly simple. We may

think that subsequent ‘principal vectors’ can be found by

removing this vector from further consideration and

ensuring that the subsequent solutions are all orthogonal

to the previously found solutions. However as we shall see

there are problems in this simple solution. Consider first

the ‘naı̈ve’ solution which is simply to remove the winner

of the first competition from consideration and then repeat

the experiment with the remainder of the data points.

However these data points may not reveal further

interesting structure: typically indeed the same structure

in input space (e.g. a cluster) may be found more than

once. In the data set to be considered in this paper, this

indeed happens. Indeed the first 10 Kernel Principal

Fig. 3. The first eight eigenvectors found by Kernel PCA. Each eigenvector has elements from every data point.
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Components are in fact all from the same cluster of data

and are highly redundant.

An alternative is to enforce orthogonality using a Gram

Schmidt orthogonalisation in feature space. Let v1 ¼ F1ðxiÞ

for some i. Then

F2ðxjÞ ¼ F1ðxjÞ2
v1

lv1l
2
ðF1ðxjÞ·v1Þ

¼ F1ðxjÞ2
v1

lv1l
2

Kðxj; xiÞ

where we have used F1 to denote the non-linear function

mapping the data into feature space and F2 to denote the

mapping after the orthogonalisation has been performed, i.e.

this mapping is to that part of the feature space which is

orthogonal to the first Principal Component. Using the same

convention with the K matrices gives

F2ðxjÞ·F2ðxkÞ

¼

 
F1ðxjÞ2

v1

lv1l
2

K1ðxj; xiÞ

!
·

 
F1ðxkÞ2

v1

lv1l
2

K1ðxk; xiÞ

!

¼ K1ðxj; xkÞ2
2K1ðxj; xiÞK1ðxk; xiÞ

lv1l
2

þ
K1ðxj; xiÞK1ðxk; xiÞ

lv1l
2

i.e.

K2ðxj; xkÞ ¼ K1ðxj; xkÞ2
K1ðxj; xiÞK1ðxk; xiÞ

K1ðxi; xiÞ

which can be searched for the optimal values. The method

can clearly be applied recursively and so

Kiþ1ðxj; xkÞ ¼ Kiðxj; xkÞ2
Kiðxj; xiÞKiðxk; xiÞ

Kiðxi; xiÞ

for any time instant i þ 1:
One difficulty with this method is that we can be (and

typically will be) moving out of the space determined by the

norm. Smola et al. [29] suggest renormalising this point to

move it back into Vp. This can be easily done in feature

space and both the orthogonalisation and renormalising can

be combined into

Kiþ1ðxj; xkÞ

¼
Kiðxj; xkÞKiðxi; xiÞ2 Kiðxj; xiÞKiðxk; xiÞ

K3
i ðxi; xiÞ{Kiðxi; xiÞ þ Kiðxj; xkÞ}{Kiðxi; xiÞ2 Kiðxj; xiÞ}

which is somewhat a cumbersome expression and must be

proved to be a valid Kernel. In this paper we do not perform

this step having found it to be unnecessary.

3.4. Using Kernel clustering methods

In this section, we map the data into Feature space and

then cluster the data in feature space. We show how this

combined mapping and clustering may be accomplished yet

again with only the knowledge of the K matrix. We

then extend the method so that the clustering has

a topology-preserving nature (similar data points are

mapped to the same or neighbouring clusters and neigh-

bouring clusters contain only similar points). Finally we

show how a vigilance parameter may be used to determine

the number of clusters found. These last two methods are

Kernel equivalents of Kohonen’s Self-organising Map [30]

and the ART algorithm [31].

We follow the derivation of Ref. [29] to show how the k-

means algorithm may be implemented in Feature space. The

aim of the algorithm is to find k means, mm such that each

data point is close to one of the means. Now, as with KPCA,

each mean may be described as lying in the manifold

spanned by the function of the observations, FðxiÞ; i.e.

mm ¼
P

i gmiFðxiÞ: Now the k-means algorithm chooses the

means, mm, to minimise the Euclidean distance between the

data points and the closest mean. Thus we must calculate

kFðxÞ2 mmk
2
¼ FðxÞ2

X
i

gmiFðxiÞ

�����
�����

2

¼ Kðx; xÞ2 2
X

i

gmiKðx; xiÞ þ
X
i;j

gmigmjKðxi; xjÞ

i.e. the distance calculation can be accomplished in Feature

space by means of the K matrix alone.

Let Mim be the cluster assignment variable, i.e. Mim ¼ 1

if FðxiÞ is in the mth cluster and is zero otherwise. We may

initialise the means to the first training patterns and then

each new training point, Fðxtþ1Þ; with t þ 1 . k is assigned

to the closest mean and its cluster assignment variable

calculated using

Mtþ1;a ¼ 1 if kFðxtþ1Þ2 mak , kFðxtþ1Þ2 mmk

;m – a

and is 0 otherwise. We must then update the mean, ma to

take account of this new data point using mtþ1
a ¼

mt
a þ zðFðxtþ1Þ2 mt

aÞ where we have used the term mtþ1
a

to denote the updated mean which takes account of the new

data point and

z ¼
Mtþ1;aXtþ1

i¼1

Mi;a

Now this update rule may be rearranged to give update

equations

gtþ1
ai ¼

gt
aið1 2 zÞ i – t þ 1

z i ¼ t þ 1

(
;

an exceedingly simple update rule in Feature space.

We consider in this paper two simple amendments to this

simple rule motivated by the literature on Artificial Neural

Networks.
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First as a direct parallel to Kohonen’s Self-Organising

Map [30], we introduce neighbourhood relations in the

creation of the cluster assignment variables:

Mtþ1;m ¼ Lða;mÞ ¼ a exp
2ðra 2 rmÞ

2

s

 !

where a . b. The effect of this is to give neighbouring

means a bias towards winning competitions for neighbour-

ing data points. This algorithm is extremely fast [4]

compared with Kohonen’s: in Fig. 4, we show which

mean out of 20 possible means won the competition from a

regular grid of points in the unit square. To train the

algorithm, we have only two passes through a data set

consisting of 100 points drawn uniformly from the unit

square [0,1] £ [0,1]. The first pass acts as a priming

mechanism; the second refines the mapping found by the

first pass. We see that the centres have each captured

a portion of the input space and that similarly numbered

centres have captured contiguous areas.

The second change to the Kernel k-means algorithm we

consider is motivated by Grossberg and Carpenter’s [31]

ART Algorithm: the algorithm is intended to resolve the

‘stability–plasticity’ dilemma which examines how we can

continue to learn new things without our old memories

being wiped out. The Kernel ART algorithm begins with

only a single mean. New means are added when the

projection of a particular feature space point is not

sufficiently strong; we have a vigilance parameter, v, such

that when Fðxtþ1Þ·mm , v for all m, we create a new mean

exactly at the projection of the data point in Feature space.

Notice again that this comparison can be done in feature

space using the K matrix. If the largest projection is greater

than v, the usual Kernel k-means update rule is employed.

4. Instance-based reasoning for oceanographic real-time

forecasting

Several techniques have been used for oceanographic

forecasting over the last few years in the framework of the

ORKA project [5,32]. In particular a forecasting system

capable of predicting the temperature of the water ahead of

an ongoing vessel in real time has been developed using a

IBR system [32]. An IBR system was selected for its

capacity of handling huge amounts of data, of adapting to

the changes in the environment and to provide real time

forecast. The cyclic IBR process shown has been inspired by

the ideas described by Aamondt and Plaza [1].

In Fig. 5, shadowed words (together with the dotted

arrows) represent the four steps of a typical IBR life cycle,

the arrows together with the word in Italic represent data

coming in or out of the instance-base (situated at the centre

of the diagram) and the text boxes represent the result

obtained by each of the four stages of the IBR life-cycle.

Fig. 4. The KSOM was trained on data iid drawn from a uniform

distribution in [0,1] £ [0,1]. The figure shows the neuron which was

deemed closest in Feature space when data was drawn from the points

shown.

Fig. 5. IBR system architecture.
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Solid lines show data flow and dotted lines show the order in

which the processes that take part in the life cycle are

executed.

Data are recorded in real time by sensors in the vessels

and satellite pictures are received weekly. A Knowledge

Acquisition module is in charge of collecting, handling and

indexing the data in the instance-base. Once the real-time

system is activated on an ongoing vessel, a new instance is

generated every 2 km using the temperatures recorded by

the vessel during the last 40 km. This new instance is used to

retrieve m cases from a collection of previous cases using a

number of K-nearest neighbour metrics. The m-retrieved

instances are adapted by a neural network during the reuse

phase to obtain an initial (proposed) forecast. Though the

revision process, the proposed solution is adjusted to

generate the final forecast using the confidence limits

from the knowledge base. Learning (retaining) is achieved

by storing the proposed forecast and knowledge (ANN

weights and centres) acquired by the ANN after the training

and case adaptation. A complete description of this system

can be obtained in Refs. [5,7].

This IBR system has been successfully tested and it is

presently operative in several oceanographic vessels [32].

We discuss in this paper how the use of Kernel methods has

improved the existing system.

4.1. The instance

Each stored instance contains information relating to a

specific situation and consists of an input profile (i.e. a

vector of temperature values) together with the various

fields shown in Table 1.

A 40 km data profile has been found to give sufficient

resolution to characterise the problem instance. The

parametric features of the different water masses that

comprise the various oceans vary substantially, not only

geographically, but also seasonally. Because of these

variations it is therefore inappropriate to attempt to maintain

an instance base representing patterns of ocean character-

istics on a global scale; such patterns, to a large extent, are

dependent on the particular water mass in which the vessel

may currently be located. Furthermore, there is no necessity

to refer to instances representative of all the possible

orientations that a vessel can take in a given water mass.

Vessels normally proceed in a given predefined direction.

So only instances corresponding to the current orientation of

the vessel are normally required at any one time.

4.2. Creating the case base with sparse Kernel principal

component analysis

We use the Sparse KPCA method described in Section

3.3 to create a small number of cases which best typify the

data set. For pedagogical purposes, we illustrate the method

on a small sample of cases which have been shown to be

useful for accurate prediction over three water masses: we

have 150 cases of the oceanographic temperature data

described above. The data set is illustrated in Fig. 6. The

left-hand side diagram shows the first element from each

instance; the right-hand side diagram plots the first element

from each instance against the value the instance is

attempting to predict. The water masses are clearly visible

from the data and the strong structure of the data set leads us

to believe that there should be much fewer than 150

significant cases.

We have experimented with a number of Sparse KPCA

components and illustrate one example of the reduced set in

Fig. 7: we show the rows of the K matrix associated with the

first 15 Sparse Kernel PCA points. These most important

points were 122, 92, 83, 66, 73, 60, 106, 32, 78, 98, 53, 70,

36, 63 and 54: two from the group 101–150, eleven from

51–100 and two from 1–50. We can see from the rows of

the K matrix (Fig. 7) that the data set is well covered by

these 15 points. It is unsurprising that there are most points

from the central group as it contains most structure. We now

have a method for identifying the most important points in

the data set but there still remains the question of how

accurate predictions will be if they only are based on a small

set of data samples.

Table 1

Instance structure

Instance field Explanation

Identification Unique identification: a positive integer in the range 0–64 000

Input profile, I A 40 km temperature input vector of values Ij, (where j ¼ 1; 2;…40) representing the structure of the water between the present

position of the vessel and its position 40 km back

Output value, F A temperature value representing the water temperature 5 km ahead of the present location

Time Time when recorded (although redundant, this information helps to ensure fast retrieval)

Date Date when the data were recorded (included for the same reasons as for the previous field)

Location Geographical co-ordinates of the location where the value I40 (of the input profile) was recorded

Orientation Approximate direction of the data track, represented by an integer x, (1 # x # 12)

Retrieval time Time when the instance was last retrieved

Retrieval date Date when the instance was last retrieved

Retrieval location Geographical co-ordinates of the location at which the instance was last retrieved

Average error Average error over all forecasts for which the instance has been used during the adaptation step
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Fig. 6. The data set comprises 50 points from each of three water masses. The left-hand side diagram shows the first element from each instance; the right-hand

side diagram plots the first element from each instance against the value the instance is attempting to predict. The water masses are clearly visible from the data.

Fig. 7. The 15 rows of the K matrix associated with the first ‘Kernel Principal Components’ when using the deflationary method.

Fig. 9. The structure of the data set is clearly found by the KSOM method (50 means).

Fig. 8. Twenty centres found by the Kernel k-means algorithm.

Fig. 10. The KART model with varying vigilance parameter finds varying degrees of structure in the data.
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4.3. Determining cases using Kernel clustering methods

The Kernel k-means algorithm is employed on the same

data as the KPCA method. The results are shown in Fig. 8:

each row corresponds to the vector of one mean in Feature

space. The centres are clearly well spaced throughout the

feature space and one might state that each of the three

clusters seems to be well represented. Note however that

there is no local neighbourhood found so that data points

that are close together need not have any special projection

on these Kernel vectors.

On the other hand, Fig. 9 shows the k-means found

by the Kernel SOM method: local structure has been

clearly found. This mapping was found with a 50 means

mapping. As we reduce the number of means (as we

should if we wish to compare with KPCA), the data

structure becomes more compressed and the finer details

in the mapping are lost.

The Kernel ART model has the advantage over the other

clustering methods in that the number of means need not be

specified in advance: the method can create new means as

and when necessary. Thus in Fig. 10, we have varying

values of the vigilance parameter, v: we may progressively

see more structure developing as we demand more precision

in our mapping. In the first mapping we have five means,

four of which are being used to identify the three main

clusters in the data set. In the second mapping we have

rather more centres and some of the clusters are split into

subclusters. This process is continued in the final mapping

where we see rather a lot of detail in the mapping.

4.4. Retrieving cases from the case base

With the Sparse Kernel PCA, any new data point x may

be associated with a particular case by creating its Kernel

projection onto the previously found important points.

Given the relatively small number of important points, this

is a very fast operation. For the Gaussian Kernels

Kðx; xjÞ ¼ exp 2ðx 2 xjÞ
2=s

� 	
for all xj in the set of stored cases.

It is simple to implement a vigilance parameter so that if

the projection on the best case is too small, the point is

added to the case base. However, there is no theoretical

basis for the choice of the actual value of the vigilance

parameter; this is problem dependent and can only be

determined by repeated trials and investigation of the

corresponding errors.

Fig. 12. The error found by the Kernel K-means algorithm with 20 centres.

The Mean Absolute Error is 0.311.

Fig. 11. The error on the 150 points from the Sparse Kernel PCA method.

We see that the last group of 50 data points is the easiest to predict. The first

group is surprisingly difficult.

Fig. 13. The errors found by the KSOM method with 50 centres. Because

1/3 of the data points are being used as predictors, there are a great many

zero error points and the Mean Absolute Error is 0.212.

Fig. 14. The errors on the data set when the KSOM method was used with

20 centres. Some areas are very poorly predicted and the Mean Absolute

Error is 0.397.
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The projection methods are similar in that any new case

is projected onto the existing k-means structure and the

largest projection wins the competition.

4.5. Forecasting with the case base

To illustrate the effectiveness of the case base developed

using the Sparse KPCA method, we show in Fig. 11 the

errors on our original data set of 150 cases of taking the

forecast temperature of the retrieved case and subtracting

the actual temperature of the case. In this experiment we

used 20 cases and so a substantial reduction in cases was

achieved. The mean absolute error was 0.0205 which

compares very favourably with previous methods. We can

also see that the first and second data sets (of 50 samples

each) are much more difficult to forecast than the third.

The difficulty with the first data set was not obvious from a

visual inspection of the data but becomes obvious when one

considers the points found to be important in constructing

the case base [7].

The corresponding results on the same data set for

the clustering methods are shown in Figs. 12–15. In

Fig. 12, we show the errors when we use 20 means with

the Kernel k-means method. The Mean Absolute Error

is a little larger than when we use the Sparse Kernel

PCA method. In Fig. 13, we see the errors induced by

the KSOM method when we have 50 centres: the error

is low but the use of 50 centres is somewhat at odds

with our stated aim of finding a minimal but effective

group of prototypes. In Fig. 14, we show the errors

when we only use 20 centres with the KSOM method

and in Fig. 15 we show the rows of the K matrix when

we use a KART algorithm.

In all cases, the Kernel clustering methods are rather worse

than the Sparse Kernel Principal Component Analysis.

5. Discussion

The use of Kernel methods for finding those instances

which are appropriate for priming a case base has been

investigated. In all cases we were able to reduce the number

of cases necessary to achieve comparable results with our

previous prediction errors. However the Sparse Kernel PCA

method consistently out-performed the Kernel Clustering

methods. Current investigations are into improvements to

the Sparse Kernel PCA method: for example one improve-

ment which is suggested by the ART algorithm is to simply

find the greatest projection as before (corresponding to one

corner of the Feature space, FðxjÞ) and then put it and any

Fig. 15. The filters found by the Kernel Art Algorithm. The Mean Absolute Error in this case is 0.471.

Fig. 16. The rows of the K matrix found by the Simple Sparse KPCA network. Mean Absolute Error is 0.0271 with 17 corners. We see that most of the effort is

concentrated on the second section of the data set though the small depression at the start of the third is also well represented.

Fig. 17. The figure shows the errors on the data set using the Simple Sparse

KPCA method with a small vigilance parameter. The Mean Absolute

Percentage Error is 0.0107 but this is at the cost of having 55 points in the

case base. The central section is all zeros because each point is being chosen

as essential for the case base.
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similar vertices into the set of no longer usable corners. We

have a vigilance parameter, v, which the similarity measure

must exceed if the vertex is to be considered similar enough

to the winning vertex. The measure of similarity is simply

the dot product in feature space, i.e. the familiar K matrix.

This algorithm speeds up the Sparse KPCA and gives

comparable results (Figs. 16 and 17).

This method clearly shows a great deal of promise but the

interaction between the vigilance parameter and the width

of the Kernels is an area of future research.
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