
Computing and Information Systems 8 (2001), p.1-8 © 2001

 1

Handling requirements with XML like system specifications
Antonio Domínguez and Juan Corchado

This paper shows how XML metalanguage
capabilities and related tools could be used first to
model data structures and operations of domain
specific languages, and second to facilitate the
transformation process from system specifications to
software systems.

This approach allows to identify the subsystems of a
software system using different domain specific
languages. Such languages and the language
transformer rules are the result of a domain analysis
process adequately customized for this propose.

INTRODUCTION

A system specification is the result of the first step of
the software engineering cycle. In it, software
engineers must take into account business processes,
and the relations the new system should have with its
environment. Four decades of software engineering
have shown that it is very difficult to verify the
correctness of system specifications, and to prove they
meet all user requirements. By now, most of the times
it is only possible to verify the specification
correctness when the final system is in operation, and
behaves as users expected for a long period of time.

Software reuse techniques tend to ensure correctness
of software systems building them from reusable
blocks of software proved correct and stable [19]. This
kind of software systems made of reusable
components, are built in a dual software engineering
process [22], the first part of the process focuses in
obtaining reusable components, and the second one in
the usual system engineering process. A dual software
engineering approach can improve traditional software
engineering [15], but there are some pitfalls, and there
exist domains 1 where this technique fails. It happens
mainly because it is mandatory to reuse each
component several times to obtain the return of the
initial investment in building reusable components [4].

This paper shows a method for the obtention of
Domain-Specific Specification Languages (DSSL) as
a result of the first activity (i.e. Domain Analysis) of
the software engineering with reuse dual process [15],
instead of software components [9]. These languages
can be combined to build a system specification,
which can be transformed [7] in a final running
system. These languages are generated, combined, and

1 A domain is a set of several related systems [23,24]

handled using as base metalanguage the eXtensible
Markup Language (XML) [10].

XML2 has been selected because it provides a special
kind of objects, named XML documents, made up of
several units called entities. It provides mechanisms to
impose constraints in the layout and structure of these
XML documents. Furthermost XML processors can be
used to read, and provide access to XML documents
structure and content, and can work as front ends for
other software systems, which are able to adapt its
behavior according to the XML document contents.

Next section shows a short review of the main
differences between generic specification languages,
and domain specific specification languages, and how
to join different domain specific specification
languages to specify a single system. Following it is
introduced a method to adapt the domain analysis
process to obtain domain specific languages. The
fourth section discusses the use XML related
capabilities and tools to support system specification,
and system specifications transformation. An example
is also included to show how XML based
specifications can be transformed into code using a
very simple transformer from XML spec to UNIX
shell script code. The paper ends with a short review
of related work and some conclusions.

DOMAIN CHARACTERIZATION AND
IDENTIFICATION.

The software community has shown great interest in
understandable and useful specification languages,
both for software engineers and users. The main
disadvantage of generic specification languages is that
they have an important learning curve, and are not
user friendly [16]. One way to obtain simpler and
more user friendly specification languages is to restrict
its generality to a well known domain [1].

Domain restricted languages, also known as Domain
Specific Languages (DSL), could only be collateral or
a byproduct of the domain analysis phase. They are
most of the times used to facilitate the process of
documenting the domain components and the domain
structure. But they can be used to abstract and hide
key concepts about the domain, so the process of
specifying new systems can be done uppon them [25].

2 A very large amount of information about XML, XML
related languages, and tools can be found in “the XML
cover pages”, URL:http://www.oasis -open.org/cover/

 2

Nevertheless implementing a DSL is a difficult and
expensive process due to its dependence with the
compiler or translator used to translate them [6]. To
solve this difficulties several approaches have risen
based in the extension of a common base
metalanguage [18,14] to obtain the DSL. Other
important drawback against DSLs is that there is not a
known and formalized process to obtain them from a
domain [13]. Current approaches rely on the processes
of analysis, design, implementation of the language,
and building the compiler, but not on the techniques
that can be used during the process [28, 6].

The intention of the approach presented in this paper
is first to characterize such process and second to do it
using XML as a common base metalanguage. In this
case each domain is seen as a business area of the
organization characteristic value chain 3. At this point
it is important to note that there are two different kind
of value chain activities. There are activities related to
horizontal domains, and activities which related
domain is vertical.

Horizontal domain activities are the support activities
of the organization: human resources, accounting, etc.
DSL for this kind of domains could be used to model
systems for a wide range of business. Vertical domain
activities are the business primary activities (business
core activities), like sales, inbounds logistics, or

3 Value chain, as defined in the Porter’s value chain model [21]

customers service. DSL obtained for this kind of
domains have a more restricted application field, as
they can only be re-used in similar businesses
(banking, bookstores, universities...).

 Similarly the subsystems of a software system can be
characterized in two different ways, as support or
horizontal subsystems, and as primary or vertical ones.
Fig. 1 shows a hypothetic system characterized in this
way. Horizontal subsystems are the ones commonly
found in any software system, for example the systems
interface or the persistent data storage. Vertical
subsystems are responsible of the system main
functionality. For example in a compiler: the parsing
subsystem, the lexical analysis subsystem, the
semantic analysis subsystem, etc.

Having characterized a system in this way, the process
of system specification can be separated for each
subsystem. A requirement analysis process should be
run, so all system requirements have to be included in
the system specification. The two kind of
requirements that will emerge in the system
specification are the following:

• Vertical subsystem requirements: The
requirements related with each one of the vertical
subsystems.

• Horizontal subsystem requirements: Requirements
related with, persistent data storage, interface
requirements and interconnection protocol.

Using small DSL to specify subsystems will avoid
main problems in the requirement specification
process, such us ambiguity, complexity of generic

Figure 2: Process for obtaining a domain specific
language for a given domain. Each one of the value chain
activities is a domain. A domain analysis process will
result in the corresponding domain specific language.

Figure 1: System decomposition in subsystems.
Horizontal subsystems are those responsible for system
main functionalities. Horizontal or support subsystem
are typically, system interface, system data base, and
system in the subsystem glue implementation.

 3

specification languages, incompleteness, etc. They are
useful both to specify horizontal subsystems: system
interface, subsystem interconnection protocol, and
system persistent data, and also to specify vertical
subsystems. Although horizontal DSLs are widely
available, there is a necessity for vertical domain
oriented DSL. For that it is necessary to adapt the
traditional process of domain analysis. Next section
discuses how it could be done.

DOMAIN ANALYSIS ADAPTATION TO
DOMAIN-SPECIFIC SPECIFICATION
LANGUAGES

The starting point of the domain engineering life
cycle, is the identification of the domain where to run
the Domain Analysis (DA) process. The business
value chain concept is used to identify the objective
domain. Therefore the target domain should be, or
should represent, one of the activities of the business
value chain.

The process of domain analysis starts with the
identification of the domain using the business value
chain model. Then an independent process of domain
analysis should be carried out of each of the value
chain activities, in order to obtain the corresponding

domain model, the DSSL, and the transformation rules
needed to translate DSSL specifications to a compiler
understandable high level programming language (see
figure 2).

 Support activities, being common to the most of
business structures, will result in DSSLs with a wider
range of application, that is, it can potentially be used
to specify a higher number of systems. In the other
hand vertical activities (vertical domains) will result in
DSSL with more restricted reusability potential.

The process of domain analysis to obtain each domain
DSSL could run independently for each domain.
There must be at least one DSSL to specify each
subsystem in order of being able to specify a new
system using a set of DSSLs.

The approach shown here is grounded, for building the
domain specific language and the transformer, onto
XML metalanguage capabilities and associated tools.
This enables the possibility of mixing several DSLs in
a single system specifications, because the result will
allways be a valid XML document. Such document
simplifies the process of language definition, enables
the use of XML tools, and provides a simple
mechanism to easily add up several subsystem
specifications to build a full system (see fig. 3).

Each DSL should allow the writing of
specifications to both, data entities and operations

Figure 3: Process of obtention of a system
requirements specification. Different domain specific
languages are used for specifying each subsystem

Figure 4: Process of automatic system generation.
Given a system specification, written with appropriate
DSSL for each subsystem, a XML parser, and a XML
transformer based in XML, and in the DOM, can
transform the specification in a final software system.

 4

inside the domain. Data structures of the domain
constitute also a horizontal subdomain, and each data
structure is seen as an Abstract Data Type (ADT) [3].
The building of the data structures DSL can be done
using a generic data specification language (DSL
(data)). New domain ADT are built upon the native or
derived ADT of the generic data structures DSL(data).
The subset of the language that enables the
specification of operations is described building a
XML Document Type Definition (DTD) [17].

USING XML BASED DSSLS TO SPECIFY AND
TRANSFORM SOFTWARE SYSTEMS

A XML DTD and a related grammar can be used to
check specifications correctness. This is done using a
standard XML parser. The process of parsing the
system specification generates the Document Object
Model(DOM), that is the XML document hierarchic
structure. The transformer also plays the role of front
end to check the grammar of the DSL, and to
transform the specification in a final system, using the
Extended Styleshet Language (XSL) capabilities and
related tools(see fig. 4).

Parsing and transforming DSL specifications, can be
done upon current resources like XML parsers, XSL
[12], and XML APIs. Solutions that enable the use of
XML as basis for specify horizontal subsystems, are in
a continue emerging process. For example:

– To specify interfaces between systems and users
there are proposals like the Extensible User
Interface Language (XUL)4 , or the User

4 http://www.mozilla.org/docs/xul/xulnotes

Interface Markup Language (UIML) [27].

– XML-Data can be used to specify persistent data
structures.

– The Bean Markup Language(BML) [11], or the
Koala Bean Markup Language (KBML)5 can be
used for subsystem intercommunication
protocols.

 The aim of the proposal presented in this paper is to
extend this kind of languages, to the vertical value
chain activities. There are several examples of vertical
domain specific languages currently on development,
thought they do not present a formalized domain
analysis process. Some of them are the following:

– The real State Transaction Markup Language
(RETML) [8].

– The Bank Internet Payment System (BIPS)6 .

– The Business Rules Markup Language
(BRML)7 .

 FROM A XML SPECIFICATION TO CODE:
AN UNIX SHELL SCRIPT EXAMPLE

In order to shown the XML capabilit ies to build a
system specification, and obtain code from it, this
section describes a very simplified scenario. The aim
of the example system is to maintain information
stored on UNIX like operating systems /etc/inet/hosts
system file. For that, shell scripts automatically
generated from XML specs will do the work.

The hosts file is a local archive file used in UNIX
SVR4 operating systems to associate names of hosts
with their corresponding IP addresses. This file has an

5 http://www-sop.inria.fr/koala/kbml

6 http://www.fsct.org/projects/bips

7 http://www.research.ibm.com/rules

<spec>
 <add_host name="mainserver" ip="193.146.11.13">
 </add_host>
 <add_host name="pepe" ip="193.146.11.12">
 <nick>lucas</nick>
 <nick>jose</nick>
 </add_host>
</spec>

Figure 5: System specification example.
Representing that two new hosts will be added to the
hosts database. The second one with two nicknames

<XST__XMLscript="1.1">
 <_data file="adh1.xml" />
 cp /etc/ghosts /tmp/ghosts
 <_foreach element="\spec\add_host">
 # \spec\linea := .name " " .ip #
 <_foreach element="nick">
 #\spec\linea := \spec\linea " " ._content #
 </_foreach>
 echo "# \spec\linea # " >> /etc/ghosts
 </_foreach>
cp /tmp/ghosts /etc/hostsrm /tmp/ghosts
</XST>

Figure 6: Transformercode rules. It can obtain
values form SML tag attributes (name, ip) to
generate the final code.

cp /etc/hosts /tmp/ghosts
echo "mainserver 193.146.11.13 " >>
/etc/ghosts
echo "pepe 193.146.11.12 lucas jose "
>> /etc/ghosts
cp /tmp/ghosts /etc/hosts
rm /tmp/ghosts

Figure 7:Resulting code generated directly from the
specification

 5

<?xml
version="1.0"?>
<!DOCTYPE uiml PUBLIC "-//UIT//DTD UIML 2.0 Draft//EN"
"UIML2_0d.dtd">
 <uiml> <interface name="hostsfile">
<structure>
 <part class="Frame" name="frame">
 <part class="Panel" name="addhostForm">
 <part class="Label" name="title"/>
 <part class="Label" name="hosts"/>
 <part class="TextField" name="hostsField"/>
 <part class="Label" name="ipaddress"/>
 <part class="TextField" name="ipaddressField"/>
 <part class="Label" name="nick"/>
 <part class="TextField" name="nickField"/>
 <part class="Panel" name="buttonPanel">
 <part class="Button" name="addButton"/>
 <part class="Button" name="cancelButton"/>
 </part>
 </part>
 </part>
 </structure>
 <style>
<property part-name="title"
 name="text">Add Host Name</property>
 <property part-name="hosts" name="text">Host name:</property>
 <property part-name="hostsField" name="columns">25</property>
 <property part-name="ipaddress" name="text">Address:</property>
 <property part-name="ipaddressField" name="columns">25</property>
 <property part-name="nick" name="text">Nick:</property>
 <property part-name="nickField" name="columns">25</property>
 <property part-name="addButton" name="label">AddHost</property>
 <property part-name="cancelButton" name="label">Cancel</property>
 <property part-name="title" name="font">Serif-bold-16</property>
 <property part-name="addhostForm" name="layout">

java.awt.GridBagLayout</property>
 <property part-class="Label" name="anchor">WEST</property>
 <property part-class="TextField" name="anchor">WEST</property>
 <property part-class="Label" name="fill">HORIZONTAL</property>
 <property part-class="TextField" name="fill">HORIZONTAL</property>
 <property part-class="Label" name="gridwidth">1</property>
 <property part-class="TextField" name="gridwidth">1</property>
 <property part-name="title" name="anchor">NORTH</property>
 <property part-name="title" name="fill">NONE</property>
 <property part-name="title" name="gridwidth">REMAINDER</property>
 <property part-name="hostsField" name="gridwidth">REMAINDER</property>
 <property
part-name="ipaddressField" name="gridwidth">REMAINDER</property>
 <property part-name="nickField" name="gridwidth">REMAINDER</property>
 <property part-name="buttonPanel" name="anchor">SOUTH</property>
 <property part-name="buttonPanel" name="fill">HORIZONTAL</property>
 <property part-name="buttonPanel" name="insets">5,0,0,0</property>
 <property part-name="buttonPanel" name="gridwidth">4</property>
 </style>
 </interface>
 </uiml>

Figure 8: Interface UIML code. The first part of the specification defines the interface structure, and the second
one the interface style properties

entry for each host IP address. Each of this entries is a
line with the following format:

 IP-address host-name optional-nick-names

In this example XML specifications are used to add or
remove hosts lines. That is, the entries we want to add
or remove from the hosts database are specified using
a XML specification language. Then it is

 6

automatically generated a shell script that does the job.

The domain language used to specify the hosts
database changes consists in tree XML tags.

 The <add_host name= ip=> tag specifies
that a host entry has to be added. Hosts IP
address and name are specified using the tag
attributes ip and name respectively.

The <nick> tag can be used inside a
<add_host> hierarchy to specify several
optional hosts nick names.

The <remove_host name= ip=> tag is
used to specify a hosts entry that has to be
removed from the hosts database.

An example of a spec built using this tags is shown in
fig 5. XMLScript is used to transform the specification
to shell script code . XMLScript8 is a scripting
language designed specifically for XML
transformation tasks.

The process of transforming the specifications into
code is done using the XMLScript Xtrac transformer.
Fig 6 shows the transformer rules that guide the
transformation process from specification to shell
script. Finally fig 7 shows the resulting shell script
code.

 Having seen the process of specification and
generation of system operations. Now it is time to
focus in how to specify the interface subsystem. For
that propose the User Interface Markup Language
(UIML) is used [27]. The whole specification of the
interface is shown in fig. 8, and its final look in fig.
[9].

 Finally both interface and operations have to be
linked in order to collaborate and behave as a cohesive
system. For that it is necessary to use new XML-tags
to encapsulate interface and process specification to
conform a whole system (fig 10):

The <system_spec> tag encapsulates the whole system
specification, formed from several subsystem
specifications.

The <interface_subsystem> tag encapsulates the
interface subsystem specification.

 The <interconnection_mechanism> tag encapsulates
the specification of the intercommunication
subsystem.

From the system specification the parser will obtain
the following three results:

8 XMLScript is a language developed by Decision Soft, writen in
XML.

– A UIML specification that will be transformed
with the UIML parser into Java code.

– A IMEC specification that can be void if the
glue code is inserted into the subsystems

– A process specification, to be transformed using
XMLScript into Unix shell script code.

The domain model of the example is shown in fig 11.
The notation used is based in the Unified Modeling
Language (UML) use-cases [26]. The model shows
the main interactions between the user and the system.
Associations between use-cases and actors will result
in the DSL specification tags.

 The interconnection mechanism handles two types of
communication actions (see fig 12):

– Asynchronous events. All subsystems can tiger
or receive events, and events can have
parameters.

– Synchronous remote calls. All subsystems can
call remote methods and receive calls in his
published methods.

 CONCLUSION AND RELATED WORK

Since XML is an emerging technology, continuous
changes, new approaches, and tools are being pushed
into the research community and the market. It is
expected that upcoming related XML standards and
tools like XQL, SML-Link, etc, will play a important
role in the approach presented here, and will also
made it became easier.

There are several important research efforts directed to
obtain a way to describe software systems in a high
abstraction level, as close to the user conceptual view
as possible.

Figure 9: Interface generated with UIML
transformer to Java code.

 7

Application generators operate similarly as a compiler
translating specifications into application programs.
Although they can produce the whole system, usually
they are used to create only a part of the system. Their
main disadvantages are that they can only be used in
few situations, and are difficult to build, because they
require the previous design of specification languages,
user interfaces, and generic units of software for the
application domain [6].

The Eli language implementation system enables the
implementation of domain specific languages from a
high abstraction level. The tool generates an
executable language processor for the domain
language. The language processor translates DSL code
into source code. Input specifications had to be
parameterized with preprocessor switches and macros
to select or deselect certain language features and
supply user data [20]. Other approaches tend to use a
general propose language to embed domain specific
languages. Haskel has been used to build DSLs in
several domains such as parser generation, VLSI
design, graphical user interfaces, etc. [13].

InfoWiz is a common base language used to build
domain specific languages, named jargons. They all
share the same syntax, inherited from InfoWiz, and
reflect the semantics of a specific domain. The base
language is able to represent complex hierarchical
information structures that can be composed across
several domains, to introduce new domain specific
terms, and to encode arbitrary data and operations in
the domain. Nevertheless InfoWiz does not provides
mechanisms to extend the language syntax. It is
possible to compose specifications written with

different jargons, first because all have the same
syntax, and second because the semantics of the
application is not built inside the interpreter, but is
provided using added modules. So each jargon has to
provide the interpreter with an additional module able
translate it [18].

Other approaches tend to build a dedicate translator
for each domain specific language. As for example a
domain abstract machine defined from the operations
identified in the domain. The abstract machine is
implemented as a set of highly parameterized software
library [25]. Mawl is a domain specific language for
programming form based web services using cgi
programs. A Mawl specification can be compiled to a
CGI executable or to a HTTP server. The Mawl
translator can generate C++ and Standard ML. Main
drawback of Mawl is that it loses user page browse
history [2]. Apostle is a parallel event simulation
language. Apostle specifications are translated to C++
code [5] .

Building software systems with a transformational
approach, from a system specification in which each
subsystem is independently specify using a DSL,
could improve the software engineering process,
facilitating the process of writing complete
specifications, verifiable, and easily tested.

<system_spec>
<spec>
 <add_host name="mainserver"
ip="193.146.11.13">
 </add_host>
 <add_host name="pepe" ip="193.146.11.12">
 <nick>lucas</nick>
 <nick>jose</nick>
 </add_host> </spec>
<interface_subsystem>
<uiml_interface name="hostsfile">
 <form title="Add host Name">
 <textfield tag="Hostname" length=25 />
 <textfield tag="IpAdress" length=15 />
 <textfield tag="Nicknames" length=50 />
 <button tag="AddHost" />
 <button tag="Cancel" />
 </form>
 </uiml_interface>
</interface_subsystem>
</system_spec>

Figure 10. Wholesystem specification, it comprises
three parts, process spec, interfacespecification and
interconnection mechanism specification.

Figure 11: Domain model

Figure 12: Interconnection mechanism

 8

DSSL are more easy obtained than reusable
components, and can be used in a more flexible way.
First because the initial software engineering dual
cycle, domain engineering, is reduced to just the
domain analysis phase, avoiding domain design and
domain implementation, to reduce use of resources.
Second because each DSSL can be used to obtain
system specifications in the same domain where it was
obtained, or in any other, because of the relation that
exists between DSSLs and the subsystems
requirements that can be described with them.

REFERENCES

[1] Valeri N. Agafonov. Reuse of general specio/cation
notions and specio/cation languages. In Proceedings of
the Eighth Workshop on Institutionalizing Software
Reuse, 1997.

[2] David L. Atkins, Thomas Ball, Glenn Bruns, and
Kenneth Cox. Mawl: A Domain -Specific language for
form-based services. IEEE Transactions on Software
Engineering, 25(3):234-246, May 1999.

[3] D. Batory, V. Singhal, and M. Sirkin. Implementing a
domain model for data structures. International Journal
of Software Engineering & Knowledge Engineering,
2(3):375-402, 1992.

[4] Ted J. Biggerstaff. The library scaling problem and the
limits of concrete component reuse. In Third
International Conference on Reuse, 1994.

[5] David Bruce. What makes a good domain specific
language? In Proceedings of First ACM SIGPLAN
Workshop on Domain-Specific Languages DSL'97,
pages 17-35, 1997.

[6] Craig Cleaveland. Building application generators. IEEE
Software, (7):25-33, July 1988.

[7] Craig Cleaveland. Domain Analysis and Software
Systems Modelling, chapter Building Application
Generators, pages 9-33. IEEE Computer Society Press,
1991.

[8] Larry Colson. Nar mls/client data standards white paper.
Technical Report RETS-V-1.0, Moore Data
Management Services, 1999.

[9] K. Czarnecki. Leveraging reuse through Domain-
Specific architectures. In Proceedings of the Eighth
Workshop on Institutionalising Software Reuse, 1997.

[10] Bob DuCharme. XML: The Annotated Specification.
Prentice Hall, 1999.

[11] David A. Epstein. Bean Markup Language: Using
XML to dynamically construct, configure, and augment
java. In XTech '99. XML Application Developers
Conference and XIO Expo, 1999.

[12] Ken G. Holman. Introduction to XSLT(XSL
Transformations). Crane Softwrights Ltd., 1999.

[13] Paul Hudack. Building Domain-Specific embedded
languages. ACM Computing Surveys, 28(4), December
1996.

[14] Samuel Kamin. Moving functional languages into real
world. In Joint Brazilian/US Workshop on Formal
Foundations of Software Systems, 1997.

[15] E.-A. Karlsson, editor. Software Reuse: A Holistic
Approach. John Wiley & Sons, 1995.

[16] Charles W. Krueger. Software reuse. ACM Computing
Surveys, 24(2):132-183, June 1992.

[17] Simon S. Laurent and Robert Biggar. Inside XML
DTDs: Scientific and Technical. McGraw Hill, 1999.

[18] Lloyd Nakatani and Mark Jones. Jargons and
infocentrism. In Proceedings of First ACM SIGPLAN
Workshop on Domain-Specific Languages DSL'97,
pages 59-74, 1997.

[19] James Neighbors. Software Construction Using
Components. PhD thesis, University of California at
Irvine, 1981.

[20] Peter Pfahler and Uwe Kastens. Language design and
implementation by selection. In Proceedings of First
ACM SIGPLAN Workshop on Domain-Specific
Languages DSL'97, pages 97-108, 1997.

[21] Michael E. Porter. Competitive Advantage: Creating
and Sustaining Superior Performance. Free Press, 1998.

[22] M. Simos. The domain-oriented software life cycle:
Towards an extended process model for reusability. In
Proceedings of the Workshop on Software Reuse,
Boulder, CO, October 1987.

[23] Yellamraju V. Srinivas. What is a domain? Technical
Report ASE-RTP-102, University of California, Irvine,
Department of Information and Computer Science,
October 1988.

[24] Yellamraju V. Srinivas. Domain Analysis and
Software Systems Modelling, chapter Algebraic
specification for Domains, pages 90-119. IEEE
Computer Society Press, 1991.

[25] Scott A. Thibault, Renaud Marlet, and Charles Consel.
Domain-Sspecific Languages: From design to
implementation. Application to video device drivers
generation. IEEE Transactions on Software
Engineering, 25(3):363-377, March 1999.

[26] UML. UML semantics. Technical Report ad/97-08-04,
Rational Software Corporation, 1997.

[27] Universal Interface Technologies, Inc. UIML Java
Rendering Engine Manual, 2000.

[28] Arie van Deursen and Paul Klint. Little languages,
little maintenance? In Proceedings of First ACM
SIGPLAN Workshop on Domain-Specific Languages
DSL'97, pages 109- 127, 1997.

Antonion Domiguez is at the University of Vigo,
Spain, J. M. Corchado is at the University of
Salamanca, Spain.

 9

