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Abstract
Instance based reasoning systems and in generd case based reasoning systems are normaly used in
problems for which it is difficult to define rules. Although case-based reasoning methods have proved
ther ability to solve different types of problems, there is dill a cemand for methods thet facilitate their
automation during their creation and the retrieval and reuse stages of their reasoning circle. This paper
presents one method based on Kernels, which can be used to automate some of the reasoning steps of
indance-basaed reasoning systems. Kernels were origindly derived in the context of Support Vector
Machines, which identify the smallest number of data points necessary to solve a particular problem
(e.g. regression or classfication). Unsupervised Kernel methods have been used successfully to identify
the optima ingtances to ingantiate an indance-base. The efficiency of the Kernd mode is shown on an

oceanographic problem.

1.- Introduction
Although case based reasoning (CBR) systems have been successfully used in severd domains such as

diagnogs, prediction, control and planning [1,2], there are no standard techniques to automate their



congtruction. Arguably feature identification, case representation, smilarity metric sdection, case discovery
and generd adaptation rule learning are the most difficult aspects to automate in these type of systems [3].
This paper presents a method that can be used to tackle this problem, which can substantidly facilitate the
automatic congtruction of such systems. Automating, in this context, means that this method can be easily used

to congtruct retrieva and adaptation mechanism for instance based easoning (IBR) systems.

Kernd models were first developed as part of the method of Support Vector Machines [4]. Support Vector
Machines attempt to identify the minimum number of data points (the support vectors) which are necessary to
solve a particular problem to the required accuracy. Kernels have been successfully used in unsupervised
Sructure investigation [5,6]. In this paper, we will investigate the use of Kernd methods to identify cases,

which will be used in a case based reasoning system.

Kernd methods can be used in case based reasoning systems when cases can be represented in the form of
numerica feature vectors. This is normdly the case in most of instance based reasoning systems (IBR) [7,8].
The features that characterise Kernel models can be used to identify prototypical cases, to identify cases that
are Smilar to a given one and to reuse cases. Large case-bases may have negative consequences for the
performance of the CBR systems. This has been shown in severa projects such as INRECA [9] and STEB
[8]. The ahility of the Kernel methods presented in this paper to select prototypica cases and to identify those
cases that are aready represented by these prototypes can be used to successfully prune the case-base

without losing vauable informetion.



This paper is sructured as follows. firs CBR systems are reviewed; then Kerned Principd Component
Andysis is presented, a refinement involving sparsification of the vectors/cases is derived, and this method's
abilities is demongrated on synthetic data sets. Finaly we show how this goproach has been used in a redl-

world system to forecast thermd time seriesin red time.

2.- Case/lnstance-based Reasoning Systems

A case-based reasoning system is amode of human reasoning [10]. The idea behind CBR isthat peoplerdy
on concrete previous experiences when solving new problems. This fact can be tested on any day to day
problem by smple observation or even by psychological experimentation [11]. Since the CBR modd was firgt

proposed, it has proved successful in awide range of application areas[1,2,13,14].

A case-based reasoning system solves new problems by adapting solutions that were used to solve old
problems [15]. The case base holds a number of problems with their corresponding solutions. Once a new
problem arises, the solution to it is obtained by retrieving smilar cases from the case base and studying the
amilarity between them. A CBR system is a dynamic system in which new problems are added to the case

base, redundant ones are eiminated and others are crested by combining existing ones.

CBR sysems record past problem solving experiences and, by means of indexing agorithms, retrieve
previoudy stored cases, dong with their solutions, and match them and adapt them to a given Stuation, to
generate a solution. The intention of the CBR system is to abstract a solution from the knowledge stored in the

case-base in the form of cases. All of these actions are self-contained and can be represented by a cyclica



sequence of processes in which human intervention may be needed. A case base reasoning system can be
used by itsdf or as part of another intelligent or conventiona system. CBR systems are especidly appropriate
when the rules that define a knowledge domain are difficult to obtain or the number and the complexity of the

rules affecting the problem are too large for the norma knowledge acquisition problem.

A typicd CBR system is composed of four sequentia steps which are recaled every time that a prablem
needs to be solved [1,13,16]:

1. Retrievethe most relevant cas(s),

2. Reusethe case(s) to attempt to solve the problem,

3. Revisethe proposed solution if necessary,

4. Retain the new solution as a part of anew case.

Each of the steps of the CBR life cycle requires a mode or method in order to perform its misson. The
algorithms selected for the retrieva of cases should be able to search the case base and to select from it the
most Smilar problems, together with their solutions, to the new problem. Cases should therefore represent,
accurately, problems and their solutions. Once one or more cases are identified in the case base as being very
smilar to the new problem, they are sdected for the solution of this particular problem. These cases are
reused wsing a predefined method in order to generate a proposed solution (i.e. normaly using an adaptation
technique). This solution is revised (if possble) and findly the new case (the problem together with the
obtained solution) is stored. Cases can dso be ddeted if they prove to be inaccurate; they can be merged

together to create more generalised ones and they can be modfied.



CBR sygstems are able to utilise the specific knowledge of previoudy experienced problem stuations rather
than making associations dong generalised relationships between problem descriptors and conclusons or
relying on generd knowledge of a problem domain such as rule-based reasoning systems. CBR is an
incrementa learning approach because every time that a problem is solved a new experience can be retained

and made immediately available for future retrievals.

The nature of the problem and the expertise of the CBR designers determine how the CBR should be built.
Although there are will known standard metrics for each of the steps of the CBR cycle[1,3,13,16] there are
only a few techniques that can facilitate the automation of the congtruction of CBR systems [3]. This paper
presents a method to do both this and to automate the process of case retrieval and adaptation in problensof

anumeric nature.

According to Aamodt and Plaza [16] there are five different types of CBR systems, and athough they share
amilar features, each of them is more gppropriate for a particular type of problem: exemplar based reasoning,
ingance based reasoning, memory-based reasoning, analogy-based reasoning and typical case-based

reasoning.

Those CBR systems that focus on the learning of concept definitions are normdly referred to as being
exemplar-based. In the literature there are different views of concept definition [17]. A concept is dEfined

extensondly as the set of its examples. PROTOS [18] is an example of this type of CBR systems. In this



case, solving a problem requires finding the right class for an unclassified exemplar. The class solution of the
most Smilar retrieved case is the problem case solution. Instance-based reasoning (IBR) can be considered as
exemplar-basad reasoning is useful in highly syntectic problem [16]. This type of CBR system focuses on
problems in which there are alarge number of instances which are needed to represent the whole range of the
domain and where there is a lack of general background knowledge. The case representation can be made
with feature vectors and the phases of the CBR cycle are normdly automated as much as possible, diminating
human intervention This paper focuses on the automation of IBR systems with Kernd methods which are

appropriate because of their numerical characteristics.

3.- Kernel Methods

The use of Radia Kernels has been derived from the work of Vapnik [4], Burges [19] etc. in the fidd of
Support Vectors Machines. Support Vector Machines for regresson for example, perform a nonlinear
mapping of the data set into some high dimensond feature space in which we may then perform linear
operations. Since the origina mapping was nonlinear, any linear operation in this feature space corresponds to

anonlinear operation in data space.

We fird review recent work on Kernd Principad Component Analyss (KPCA) which has been the most
frequently reported linear operation involving unsupervised learning in feature space [5,6,20]. Then it is shown
why the basc KPCA method is not gppropriate for the sdection of ingtances for an IBR sysem. We

therefore use a spargfication of the KPCA method which is appropriate for this type of problems.



3.1- Kernd PCA
This section shows that sample Principd Component Andysis (PCA) may be performed on the sanples of a

data set in a particular way which will be useful in the performance of PCA in the nonlinear feature space.

PCA finds the egenvectors and corresponding eigenvaues of the covariance matrix of a data set. Let
¢ ={X,,...,x,, } beiid (independent, identically distributed) samples drawn from a data source. If each x; isn
dimensond, $ a most n eigenvalues/eigenvectors. Let C be the covariance matrix of the data set; then Cisn

" n. Then the eigenvectors, g, are n dimensiond vectors which are found by solving
Ce=le (@)
where | is the eigenvaue corresponding to e. We will assume the eigenvaues and eigenvectors are arranged

in nondecreasing order of eigenvalues and each eigenvector is of length 1. We will use the sample covariance

matrix as though it was the true covariance matrix and o

C»ﬁg XX )

j=

Now each egenvector lies in the span of ¢ ; i.e. the st ¢ ={x,,....x,,} forms a bass st (normaly

overcomplete snceM > n) for the eigenvectors. So each e; can be expressed as



e=ga'x ©)
j

If we wish to find the principd components of a new data point x we project it onto the eigenvectors
previoudy found: the firgt principad component is (x.e;), the second is (x.ey), etc. These are the coordinates of
X in the eigenvector bass. There are only n eigenvectors (at most) and so there can only be n coordinatesin

the new system: we have merely rotated the data st.

Now consider projecting one of the data pointsfrom ¢ on the eigenvector e;; then

— 2 .1, — 2
X8 = Xed @3X; Tag.a XX, 4

Now let K be the matrix of dot products. Then K; = xx;.
Multiplying both sdes of (1) by xx we get
x,Ce, =1 €., )

and using the expangon for e;, and the definition of the sample covariance matrix, C, gives



_K2a1 =| 1Kal (6)

Now it may be shown [5] that al interesting solutions of this equation are dso solutions of

Ka, =Ml ,a, (7

whose solution isthat a ; isthe principa eigenvector of K.

Now so far we have only found a rather dfferent way of performing Principad Component Anaysis. But now

we preprocess the datausing F :c ® F . So F isnow the space spanned by F (x,),....F (x,,) . The above

arguments al hold and the eigenvectors of the dot product matrix K, =(F(x,).F(x,)) are the equivaent

vectors in the feature space. But now the Kernd Trick: provided we can cdculate K we don't need the

individud terms F (x,) .

As an example of how to create the Kernd matrix, we may use Gaussian kernels so that

Ky = (F (% )F (x))) =exp(- (x, - X,)?/(25 %)) ®

This kernel has been shown [5] to satisfy the conditions of Mercer's theorem and so can be used as a kernd

for somefunction F (.) . Oneissue that we must address in feature space is that the eigenvectors should be of

unit length. Let v; be an eigenvector of C. Then v; isavector in the space F spanned by F (x,),...F (x,,) ad



S0 can be expressed in terms of this basis Thisis an a most M-dimensond subspace of a possibly infinite

dimensiona space which gives computationd tractibility to the kerne dgorithms Then

vizga}F(xj) 9)

j=1

for elgenvectors v; corresponding to non-zero eigenvaues. Therefore
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Now a' are (by definition of the egenvectors of K) of unit magnitude. Therefore since we require the
eigenvectors to be normalised in feature space, F, i.e. v/ v, =1, we must normalise the éigenvectorsof K, a ',

by dividing each by the square root of their corresponding eigenva ues.

Now we can amply perform a principal component projection of any new point x by finding its projection

onto the principa components of the feature space, F. Thus

vi.F(x)=éM_a‘jF(xj).F(x)=ga‘jK(x1,x) (10)

j= =1
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Hgure 1 shows the clugtering ability of Kernedl PCA with a Gaussian Kernd. The data set comprises 3 sets
each of 30 points each of which is drawn from a Gaussian digtribution. The centres of the three Gaussans are
such that there is a clear separation between the clouds of points. The figure shows the contours of equd
projection onto the first 8 KPCA directions. Note that linear PCA would only be able to extract 2 principa
components, however because the kernd operation has moved us into a high dmensiordl space in anonlinear
manner, there may be up to 90 non zero eigenvaues. The three clusters can be clearly identified by projecting
the data points onto the first two eigenvectors. Subsequent Kened Principal Components split the clustersinto

sections.

However Figure 2 shows the components of the elgenvectors in feature space. We see why the firgt two
projections were so successful at identifying the three clusters but we note that there is a drawback to the
method if we were to use this method to identify cases: each eigenvector is constructed with support from
projections of very many points. Wha we redly wish is to identify individua points in terms of thelr
importance. This issue has previoudy been addressed in [6] using a number of heuristics. In this paper we use

anovd sparsfication of the Kernd PCA method.

11



DFigure Ho. 1
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Figure 1: The 3 clusters data set is shown as individual points. The contours
are contours of equal projection on the respective Principal Components.
The first two principal components are sufficient to differentiate between the
three clusters; the others slice the clusters internally and have much less

variance associated with them.

E Hinton diagram
File Edit “Windows Help

Figure 2: The first eight eigenvectors found (each vector is represented in a horizontal line) by

Kernel PCA. Each eigenvector has elements from every data point.
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3.2.- SparseKerne Principal Component Analysis
It has been suggested [20] that we may reformulate the Kernel PCA problem asfollows: let the set of

permissible weight vectors be
Y 2 9
V:{WZW:aaiF(Xi),With [w :aaiajK(xi,xj)EJ} (12)
i=1 i

Then thefirgt principal component is

M
v, = argmaxié_ IVF (x,)°
v M i=1 (12)

for centred data. This is the basic KPCA definition which we have used above. Now we may ask whether

other sets of permissible vectors may dso be found to be useful. Consider
V., ={W:W=§aiF(xi),withé|ai|£]} (13)

This is equivalent to a spardty regulariser used in supervised learning and leads to a type of kernd fegture

andyss

~ 1y .
v, = ag maxV a|v-Fx) (14)

vivip i=1
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We may think that subsequent "principd vectors' can be found by removing this vector from further
condderation and ensuring that the subsequent solutions are dl orthogond to the previoudy found solutions.
However as we shdl see there are problems in this Smple solution. [20] point out that this sysem may be

generalised by consdering thel, norm to creste permissible spaces
Vv, :{WZW:éM_aiF(Xi),Withé_|ai|£]} (15)

3.3.- Solutions and Problems

Smolaet al. [20] have shown that the solutions of

v, =ar rmxig_
' gvp M i=1

2

V.F(xi)

(16)

are to be found at the corners of the hypercube determined by the basis vectors, F(x.). Therefore dl we

require to do isfind the dement x, defined by

M

Xy = argfr‘axé |F (Xk)'F (Xi)|2 = argmaxé. |Kki|2 (17)

x¢l ¢ i=1 x¢l ¢ i=1

which again requires us only to evaduate the kernd matrix.
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So the solution to finding the "Firgt Principd Component” using this method is exceedingly smple. However,
subsequent PCs cause us more concern. Congder firgt the "naive" solution which is smply to remove the
winner of the firs competition from consideration and then repeat the experiment with the remainder of the
data points. However these data points may not reved interesting structure: typicaly indeed the same Structure
in input space (e.g. acluster) may be found more than once. In the data set to be consdered in this paper, this
indeed happens. Indeed the first 10 Kernd Principa Components arein fact dl from the same cluster of data

and are highly redundant.

An dternative is to enforce orthogondity usng a Gram Schmidt orthogondisation in feature pace. Let

v,=F,(x,) forsomei.Then

1

where we have used F ; to denote the nonlinear function mapping the data into festure space and F , to

denote the mapping after the orthogondisation has been performed i.e. the mapping is now to that part of the
feature space orthogona to the firgt Principal Component. Using the same convention with the K matrices

gives

15



e Oce )
FZ(XJ)'FZ(Xk) = §F1(Xi)' ﬁKl(Xj’Xi)ngl(Xk)_#Kl(xk’xi):
1 g% :
- Kl(X,- ,Xk)' 2K1(Xj !|):/i)||§1 Xk,Xi)+ Kltxj ,X|iv)|‘|(21(xk,xi)
1 1

Kl(xj’xi )Kl(xk’xi )

i.e. Kz(xj’xk): Kl(xj’xk)- K. (X, %)

which can be searched for the optimal values. The method can clearly be applied recursively and so

k)_ Ki(Xj’Xi )Ki (Xk'Xi)

Ki+l(XJ"Xk):Ki(XA X Ki(XilXi)

i

for any timeindant i+ 1.

One difficulty with this method is that we can be (and typicaly will be) moving out of the space determined by
the norm. Smola et al. [20] suggest renormdising this point to move it back into Vp. This can be easly done
in feature space and both the orthogonalisation and renormaising can be combined into

Ki (Xj'Xk)Ki(Xi’Xil)- Ki‘(xj’xi)Ki(Xk’Xi)’ .
K20 X ){KG (%, %) + Ki(Xj vxk)}{Ki (thi)' Ki (Xj ’Xi)}

Ki+l(lexk)=

which is a somewhat cumbersome expression and must be proved to be a vaid kernd. In this paper we do
not perform this step having found it to be unnecessary. We will demondrate that finding the maxima
projection corner from the remainder after orthogondisation is a very good method for selecting instances

from an IBR system.
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4.- 1BR for oceanographic real-time forecasting

A forecasting system capable of predicting the temperature of the water ahead of an ongoing vessd in red
time has been developed using aIBR system [8,21]. An IBR system was sdlected for its cgpacity of handling
huge amounts of data, of adapting to the changes in the environment and to provide real time forecast. The

cyclic IBR process shown has been inspired by the ideas described by Aamondt and Plaza [16].

Knowledge
Acquisition New I nstance
~ Retrieve M instanc
nstances X Instances
L ear ned A ) :
ANN Architecture .
& prop. forecast ANN weights Instance . Ret_Jse
& ¢ Base ANN weights ,t
7 centres, & centres :
Retain General :
: \‘ Knowledge) v
Final Confidenc% limits Proposed
Review

Figure 3: IBR system architecture.

In Figure 3, shadowed words (together with the dotted arrows) represent the four steps of a typica IBR life

cyce, the arrows together with the word in Italic represent data coming in or out of the nstance-base
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(dtuated in the center of the diagram) and the text boxes represent the result obtained by each of the four
dages of the IBR life-cycle. Solid lines show data flow and dotted lines show the order in which the processes

that take part in the life cycle are executed.

Data are recorded in red time by sensors in the vessals and satellite pictures are received weekly. A
Knowledge Acquisition module is in charge of collecting, handling and indexing the data in the instance-
base. Once the real-time system is activated on an ongoing vessd, a new instance is generated every 2 km
using the temperatures recorded by the vessdl during the last 40km. This new instance is used to retrieve m
cases from a collection of previous cases using a number of K-nearest neighbour metrics. The m-retrieved
instances are adapted by a neurd network during the reuse phase to obtain an initia (proposed) forecast.
Though the revison process, the proposed solution is adjusted to generate the final forecast usng the
confidence limits from the knowledge base. Learning (retaining) is achieved by storing the proposed forecast
and knowledge (ANN weights and centers) acquired by the ANN after the training and case adaptation. A

complete description of this system can be obtained in [8,21].

This IBR gystem has been successfully tested and it is presently operative in severd oceanographic vessas
[21]. Improving this system has been our chalenge and this section will outline the modifications that has been
done to it with the intention of demondrating that the Kernd methods can provide successful results and
automate the retrieva of instances. The following tables shows the changes that have been done in the IBR

system for red time oceanographic forecasting.
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Operating IBR system Modifications and improvements

Retrieval of instances K-nearest neighbour algorithms Kernel methods
Reuse of instances Radial Basis Function Network Unsupervised Kernel methods
Learning of instances Radial Basis Function Network Kernel methods

Pruning Metrics

Table 1: Changesin the IBR system for real time oceanographic forecasting

Table 1 outlines the changes made to the origina system. The firgt column of the table indicates in which steps
of the IBR life cycle the changes have been made, the second column indicates the method origindly used
(and now diminated) and column three indicates which methods have been included in the sysem. The
changes indicated in table 1 have been introduced with the intention of developing a robust model, based on a
technology easy to implement and that can automate the process of defining the retrievad, reuse and learning
steps of the IBR system. We now present the structure of a case and indicated how the kernel methods have

been used in the three mentioned IBR Steps.

4.1.- The Instance

Each stored ingtance contains information relating to a specific Stuation and conssts of an input profile (i.e a

vector of temperature vaues) together with the various fields shown in Table 2.
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Instance Field Explanation

Identification unique identification: a positive integer in the range 0 to 64000

Input Profile, | A 40 km temperature input vector of values lj, (where j=1, 2, ... 40)
Representing the structure of the water between the present position of the vessel and

its position 40 km back.

Output Value, F A temperature value representing the water temperature 5 km ahead of the present

location

Time Time when recorded (although redundant, this information helps to ensure fast retrieval)

Date Date when the data were recorded (included for the same reasons as for the previous
field).

Location Geographical co-ordinates of the location where the value 149 (of the input profile) was
recorded.

Orientation Approximate direction of the data track, represented by an integer x, (1 £ x £12).

Retrieval Time Time when the instance was last retrieved.

Retrieval Date Date when the instance was last retrieved.

Retrieval Location | Geographical co-ordinates of the location at which the instance was last retrieved.

Average Error Average error over all forecasts for which the instance has been used during the adaptation

step.

Table 2. Instance structure.

A 40 km data profile has been found to give sufficient resolution to characterise the problem instance. The
parametric features of the different water masses that comprise the various oceans vary substantidly, not only
geographicdly, but dso seasondly. Because of these variations it is therefore ingppropriate to attempt to
maintain an instance base representing patterns of ocean characteristics on a globd scale; such patterns, to a

large extent, are dependent on the particular water mass in which the vessd may currently be located.
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Furthermore, there is no necessity to refer to instances representative of dl the possible orientations that a
vesd can take in a given water mass. Vessds normaly proceed in a given predefined direction. So, only

instances corresponding to the current orientation of the vessel are rormaly required & any onetime.

4.2 Creating the | nstance-base with Sparse Kernd Principal Component Analysis
We use the Sparse KPCA method described in Section 3.3 to create a smal number of cases which best
typify the data set. For pedagogical purposes, we illugtrate the method on a smal sample of cases: we choose

150 cases of the oceanographic temperature data described above. The data set isillustrated in Figure 4.

E]Figure No. 2 A= Figure No. 3 = B
Fie Edt Windows Help

File Edit ‘windows Help
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Figure 4: The data set comprises 50 points from each of three water masses. The left diagram
shows the first element from each instance; the right plots the first element from each instance
against the value the instance is attempting to predict. The water masses are clearly visible from
the data.

The left diagram shows the first dement from each instance; the right plots the first lement from each instance
againg the vaue the ingtance is attempting to predict. The water masses are clearly visible from the data and
the strong structure of the data set leads us to believe that there should be much fewer than 150 sgnificant

instances.

We have experimented with a number of Sparse KPCA components and illustrate one example the reduced
st shown in Figure 5: we show the rows of the K matrix associated with the first 15 PCA vectors. These
most important vectors (instances) were 122, 92, 83, 66, 73, 60, 106, 32, 78, 98, 53, 70, 36, 63 and 54.
two from the group 101 — 150, deven from 51-100 and two from 1-50. We can see from the rows of the K
matrix (Figure 5) that the data set is well covered by these 15 points. It is unsurprising that there are most
points from the centrd group as it contains most structure. We now have a method for identifying the most
important vectors (prototypica ingances) in the data set but there gill remains the question of how accurate

predictions will beif they only are based on asmall st of data samples.
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Figure 5: The 15 rows of the K matrix associated with the first “Kernel Principal Components’ when using deflationary

method

4.3.- Retrieving I nstances from the Instance Base

Any new data point X may be associated with a particular instance by creating its Kernd projection onto the
previoudy found important vectors (prototypicad instances) and finding the maximaly vaued projection. Given
the relativdly smdl number of important vectors, this is a very fast operation. For example with Gaussan

kernels, we need only evauate K(x,X;) =exp(- (x - xj)zls ) for dl x in the set of stored cases.

It is smple to implement a vigilance parameter S0 that if the projection on the best ingtance is too small, the

point is added to the instance base.

4.4.- Forecasting with the I nstance-base Reasoning System

Severa experiments have been carried out to illugtrate the effectiveness of the IBR system, whichincorporates
the Kernd modds. Experiments have been carried out using data from the Atlantic Meridian Transept (AMT)
Cruise 4 [21]. We show in Figure 6 the errors on our origina data set of 150 instances of taking the forecast

temperature of the retrieved instance and subtracting the actua temperature of the case. In this experiment we
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used 20 instances and so a substantia reduction in instances was achieved. The mean absolute error, when
forecasting the temperature of the water 5 Km ahead of an ongoing vessdl, dong 10000 km (form the UK to
the Falkland Idand) was 0.0205 °C which compares very favourably with theinicid Instance based reasoning

system and other previous methods [8,21].

We can dso see that the first and second data sets (of 50 samples each) are much more difficult to forecast
than the third. The difficulty of the first water mass was not obvious from a visud inspection of the data but

becomes obvious when one considers the points found to be important in constructing the instance base.

Figure No. 2
File  Edit ‘Windows Help
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Figure 6: The error on the 150 points. We see that the last group of 50 data

pointsisthe easiest to predict. Thefirst group is surprisingly difficult.

5.- Conclusion
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We have demongrated a new technique for identification of the important instances, which could be used to
congtruct instance based reasoning systems. The basis of the method is a sparsification of the new method of
Kernd principa component andyss. The spargfication leads to an extremdy smple dgorithm in festure space
which has been shown to give extremey accurate results on an exemplar forecasting task: our results of
0.0205 °C eror are among the best we have ever achieved on this data set and we have done so with a very
much reduced instance base [8,21]. Of interest too is the fact that the method alows investigation of the
nonlinear projection matrix K that readily reveds when anew body of water is reached. Thisis very important
in the identification of fronts in these large bodies of water particularly snce such fronts have an extremely

adverse effect on underwater communications.

The retrievd of the best matching instance is a very smple operation and presents no mgjor computationd
obgtacles. The whole syssem may be used with any number-based set of data; an areaof ongoing research is
the derivation of metrics which are appropriate for non-numeric data. One of the mgor alvantages of the
supervised Kerne method, support vector machines, is the automatic detection of relevancy and the pruning
of data which is rot essentid to determine e.g. a classfication or regresson plane. We have presented one
method here for sparsification of the instance base and are currently investigating other techniques based on
Kernds that could have smilar consequences. Such methods are both advantageous in the creation of and
retrieval from ingtance bases but are dso important in their own right in the unsupervised investigation of data

sets usng Kernd methods.
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