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Abstract 

Instance based reasoning systems and in general case based reasoning systems are normally used in 

problems for which it is difficult to define rules. Although case-based reasoning methods have proved 

their ability to solve different types of problems, there is still a demand for methods that facilitate their 

automation during their creation and the retrieval and reuse stages of their reasoning circle. This paper 

presents one method based on Kernels, which can be used to automate some of the reasoning steps of 

instance-based reasoning systems. Kernels were originally derived in the context of Support Vector 

Machines, which identify the smallest number of data points necessary to solve a particular problem 

(e.g. regression or classification). Unsupervised Kernel methods have been used successfully to identify 

the optimal instances to instantiate an instance-base. The efficiency of the Kernel model is shown on an 

oceanographic problem. 

 

1.- Introduction 

Although case based reasoning (CBR) systems have been successfully used in several domains such as: 

diagnosis, prediction, control and planning [1,2], there are no standard techniques to automate their 
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construction. Arguably feature identification, case representation, similarity metric selection, case discovery 

and general adaptation rule learning are the most difficult aspects to automate in these type of systems [3]. 

This paper presents a method that can be used to tackle this problem, which can substantially facilitate the 

automatic construction of such systems. Automating, in this context, means that this method can be easily used 

to construct retrieval and adaptation mechanism for instance based easoning (IBR) systems.    

 

Kernel models were first developed as part of the method of Support Vector Machines [4]. Support Vector 

Machines attempt to identify the minimum number of data points (the support vectors) which are necessary to 

solve a particular problem to the required accuracy. Kernels have been successfully used in unsupervised 

structure investigation [5,6]. In this paper, we will investigate the use of Kernel methods to identify cases, 

which will be used in a case based reasoning system. 

 

Kernel methods can be used in case based reasoning systems when cases can be represented in the form of 

numerical feature vectors. This is normally the case in most of instance based reasoning systems (IBR) [7,8]. 

The features that characterise Kernel models can be used to identify prototypical cases, to identify cases that 

are similar to a given one and to reuse cases. Large case-bases may have negative consequences for the 

performance of the CBR systems. This has been shown in several projects such as INRECA [9] and STEB 

[8]. The ability of the Kernel methods presented in this paper to select prototypical cases and to identify those 

cases that are already represented by these prototypes can be used to successfully prune the case-base 

without losing valuable information.  
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This paper is structured as follows: first CBR systems are reviewed; then Kernel Principal Component 

Analysis is presented, a refinement involving sparsification of the vectors/cases is derived, and this method's 

abilities is demonstrated on synthetic data sets. Finally we show how this approach has been used in a real-

world system to forecast thermal time series in real time.  

 

2.- Case/Instance -based Reasoning Systems  

A case-based reasoning system is a model of human reasoning [10]. The idea behind CBR is that people rely 

on concrete previous experiences when solving new problems. This fact can be tested on any day to day 

problem by simple observation or even by psychological experimentation [11]. Since the CBR model was first 

proposed, it has proved successful in a wide range of application areas [1,2,13,14].  

 

A case-based reasoning system solves new problems by adapting solutions that were used to solve old 

problems [15]. The case base holds a number of problems with their corresponding solutions. Once a new 

problem arises, the solution to it is obtained by retrieving similar cases from the case base and studying the 

similarity between them. A CBR system is a dynamic system in which new problems are added to the case 

base, redundant ones are eliminated and others are created by combining existing ones.  

 

CBR systems record past problem solving experiences and, by means of indexing algorithms, retrieve 

previously stored cases, along with their solutions, and match them and adapt them to a given situation, to 

generate a solution. The intention of the CBR system is to abstract a solution from the knowledge stored in the 

case-base in the form of cases. All of these actions are self-contained and can be represented by a cyclical 
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sequence of processes in which human intervention may be needed. A case-base reasoning system can be 

used by itself or as part of another intelligent or conventional system. CBR systems are especially appropriate 

when the rules that define a knowledge domain are difficult to obtain or the number and the complexity of the 

rules affecting the problem are too large for the normal knowledge acquisition problem.  

 

A typical CBR system is composed of four sequential steps which are recalled every time that a problem 

needs to be solved [1,13,16]:  

1. Retrieve the most relevant case(s),  

2. Reuse the case(s) to attempt to solve the problem, 

3. Revise the proposed solution if necessary,  

4. Retain the new solution as a part of a new case. 

 

Each of the steps of the CBR life cycle requires a model or method in order to perform its mission. The 

algorithms selected for the retrieval of cases should be able to search the case base and to select from it the 

most similar problems, together with their solutions, to the new problem. Cases should therefore represent, 

accurately, problems and their solutions. Once one or more cases are identified in the case base as being very 

similar to the new problem, they are selected for the solution of this particular problem. These cases are 

reused using a predefined method in order to generate a proposed solution (i.e. normally using an adaptation 

technique). This solution is revised (if possible) and finally the new case (the problem together with the 

obtained solution) is stored. Cases can also be deleted if they prove to be inaccurate; they can be merged 

together to create more generalised ones and they can be modified.  



 5 

 

CBR systems are able to utilise the specific knowledge of previously experienced problem situations rather 

than making associations along generalised relationships between problem descriptors and conclusions or 

relying on general knowledge of a problem domain such as rule-based reasoning systems. CBR is an 

incremental learning approach because every time that a problem is solved a new experience can be retained 

and made immediately available for future retrievals.  

 

The nature of the problem and the expertise of the CBR designers determine how the CBR should be built. 

Although there are will known standard metrics for each of the steps of the CBR cycle [1,3,13,16] there are 

only a few techniques that can facilitate the automation of the construction of CBR systems [3]. This paper 

presents a method to do both this and to automate the process of case retrieval and adaptation in problems of 

a numeric nature.  

 

According to Aamodt and Plaza [16] there are five different types of CBR systems, and although they share 

similar features, each of them is more appropriate for a particular type of problem: exemplar based reasoning, 

instance based reasoning, memory-based reasoning, analogy-based reasoning and typical case-based 

reasoning.  

 

Those CBR systems that focus on the learning of concept definitions are normally referred to as being 

exemplar-based. In the literature there are different views of concept definition [17]. A concept is defined 

extensionally as the set of its examples. PROTOS [18] is an example of this type of CBR systems. In this 
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case, solving a problem requires finding the right class for an unclassified exemplar. The class solution of the 

most similar retrieved case is the problem case solution. Instance-based reasoning (IBR) can be considered as 

exemplar-based reasoning is useful in highly syntactic problem [16]. This type of CBR system focuses on 

problems in which there are a large number of instances which are needed to represent the whole range of the 

domain and where there is a lack of general background knowledge. The case representation can be made 

with feature vectors and the phases of the CBR cycle are normally automated as much as possible, eliminating 

human intervention This paper focuses on the automation of IBR systems with Kernel methods which are 

appropriate because of their numerical characteristics.  

 

3.- Kernel Methods  

The use of Radial Kernels has been derived from the work of Vapnik [4], Burges [19] etc. in the field of 

Support Vectors Machines. Support Vector Machines for regression for example, perform a nonlinear 

mapping of the data set into some high dimensional feature space in which we may then perform linear 

operations. Since the original mapping was nonlinear, any linear operation in this feature space corresponds to 

a nonlinear operation in data space. 

 

We first review recent work on Kernel Principal Component Analysis (KPCA) which has been the most 

frequently reported linear operation involving unsupervised learning in feature space [5,6,20]. Then it is shown 

why the basic KPCA method is not appropriate for the selection of instances for an IBR system. We 

therefore use a sparsification of the KPCA method which is appropriate for this type of problems. 

 



 7 

3.1.- Kernel PCA 

This section shows that sample Principal Component Analysis (PCA) may be performed on the samples of a 

data set in a particular way which will be useful in the performance of PCA in the nonlinear feature space. 

 

PCA finds the eigenvectors and corresponding eigenvalues of the covariance matrix of a data set. Let 

},...,{ 1 Mxx=χ be iid (independent, identically distributed) samples drawn from a data source. If each xi is n-

dimensional, ∃ at most n eigenvalues/eigenvectors. Let C be the covariance matrix of the data set; then C is n 

× n. Then the eigenvectors, ei, are n dimensional vectors which are found by solving 

 

 ee λ=C  (1) 

 

where λ is the eigenvalue corresponding to e. We will assume the eigenvalues and eigenvectors are arranged 

in non-decreasing order of eigenvalues and each eigenvector is of length 1. We will use the sample covariance 

matrix as though it was the true covariance matrix and so  

 

 ∑
=

≈
M

j

T
jjM

C
1

1
xx  (2) 

 

Now each eigenvector lies in the span of χ ; i.e. the set },...,{ 1 Mxx=χ  forms a basis set (normally 

overcomplete since M > n) for the eigenvectors. So each e i can be expressed as  
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If we wish to find the principal components of a new data point x we project it onto the eigenvectors 

previously found: the first principal component is (x.e1), the second is (x.e 2), etc. These are the coordinates of 

x in the eigenvector basis. There are only n eigenvectors (at most) and so there can only be n coordinates in 

the new system: we have merely rotated the data set. 

 

Now consider projecting one of the data points from χ  on the eigenvector e1; then 
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Now let K be the matrix of dot products. Then jiijK xx= . 

 

Multiplying both  sides of (1) by xk we get  

 

 kk C .xeex 11 λ=  (5) 

 

and using the expansion for e1, and the definition of the sample covariance matrix, C,  gives 
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 (6) 

 

Now it may be shown [5] that all interesting solutions of this equation are also solutions of  

 111 aKa λM=  (7) 

 

whose solution is that α 1 is the principal eigenvector of K. 

 

Now so far we have only found a rather different way of performing Principal Component Analysis. But now 

we preprocess the data using F→Φ χ: . So F is now the space spanned by )(),...,( 1 Mxx ΦΦ . The above 

arguments all hold and the eigenvectors of the dot product matrix ))()(( jiijK x.x ΦΦ=  are the equivalent 

vectors in the feature space. But now the Kernel Trick : provided we can calculate K we don't need the 

individual terms )( ixΦ .  

 

As an example of how to create the Kernel matrix, we may use Gaussian kernels so that 

 

 ))2()(exp())()(( 22 σjijiijK xxx.x −−=ΦΦ=  (8) 

 

This kernel has been shown [5] to satisfy the conditions of Mercer's theorem and so can be used as a kernel 

for some function )(.Φ . One issue that we must address in feature space is that the eigenvectors should be of 

unit length. Let vi be an eigenvector of C. Then vi is a vector in the space F spanned by )(),...,( 1 Mxx ΦΦ  and 
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so can be expressed in terms of this basis. This is an at most M-dimensional subspace of a possibly infinite 

dimensional space which gives computational tractibility to the kernel algorithms. Then  
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for eigenvectors vi corresponding to non-zero eigenvalues. Therefore 
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Now ia  are (by definition of the eigenvectors of K) of unit magnitude. Therefore since we require the 

eigenvectors to be normalised in feature space, F, i.e. 1=i
T
i vv , we must normalise the eigenvectors of K, ia , 

by dividing each by the square root of their corresponding eigenvalues. 

 

Now we can simply perform a principal component projection of any new point x by finding its projection 

onto the principal components of the feature space, F. Thus 
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Figure 1 shows the clustering ability of Kernel PCA with a Gaussian Kernel. The data set comprises 3 sets 

each of  30 points each of which is drawn from a Gaussian distribution. The centres of the three Gaussians are 

such that there is a clear separation between the clouds of points. The figure shows the contours of equal 

projection onto the first 8 KPCA directions. Note that linear PCA would only be able to extract 2 principal 

components; however because the kernel operation has moved us into a high dimensional space in a nonlinear 

manner, there may be up to 90 non-zero eigenvalues. The three clusters can be clearly identified by projecting 

the data points onto the first two eigenvectors. Subsequent Kernel Principal Components split the clusters into 

sections. 

 

However Figure 2 shows the components of the eigenvectors in feature space. We see why the first two 

projections were so successful at identifying the three clusters but we note that there is a drawback to the 

method if we were to use this method to identify cases: each eigenvector is constructed with support from 

projections of very many points. What we really wish is to identify individual points in terms of  their 

importance. This issue has previously been addressed in [6] using a number of heuristics. In this paper we use 

a novel sparsification of the Kernel PCA method. 
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Figure 1:  The 3 clusters data set  is  shown as individual points.  The co n tours  

are contours of equal projection on the respective Principal Comp o nents .  

The first  two principal components are sufficient  to differentiate between the 

three clusters;  the others sl ice the clusters internally and have much less 

variance associated with them.  

 

 

 

Figure 2: The first  eight eigenvectors found (each vector is represented in a horizontal l ine) by 

Kernel PCA. Each eigenvector has elements from every data point.   
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3.2.- Sparse Kernel Principal Component Analysis 

It has been suggested [20] that we may reformulate the Kernel PCA problem as follows: let the set of 

permissible weight vectors be 
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Then the first principal component is 

 
∑

=∈
Φ=

M

i
iM 1

2

V
1 )(

1
maxarg xv.v

v  (12)
 

 

for centred data. This is the basic KPCA definition which we have used above. Now we may ask whether 

other sets of permissible vectors may also be found to be useful. Consider  
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This is equivalent to a sparsity regulariser used in supervised learning and leads to a type of kernel feature 

analysis 
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We may think that subsequent "principal vectors" can be found by removing this vector from further 

consideration and ensuring that the subsequent solutions are all orthogonal to the previously found solutions. 

However as we shall see there are problems in this simple solution. [20] point out that this system may be 

generalised by considering the lp norm to create permissible spaces 

 

 }{ 1 with ,)(:
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3.3.-  Solutions and Problems  

Smola et al. [20] have shown that the solutions of 
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are to be found at the corners of the hypercube determined by the basis vectors, ( )ixΦ . Therefore all we 

require to do is find the element kx defined by  
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which again requires us only to evaluate the kernel matrix. 
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So the solution to finding the "First Principal Component" using this method is exceedingly simple. However, 

subsequent PCs cause us more concern. Consider first the "naive" solution which is simply to remove the 

winner of the first competition from consideration and then repeat the experiment with the remainder of the 

data points. However these data points may not reveal interesting structure: typically indeed the same structure 

in input space (e.g. a cluster) may be found more than once. In the data set to be considered in this paper, this 

indeed happens. Indeed the first 10 Kernel Principal Components are in fact all from the same cluster of data 

and are highly redundant. 

 

An alternative is to enforce orthogonality using a Gram Schmidt orthogonalisation in feature space. Let 

( )ixv 11 Φ=  for some i. Then  
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where we have used 1Φ to denote the nonlinear function mapping the data into feature space and Φ2 to 

denote the mapping after the orthogonalisation has been performed i.e. the mapping is now to that part of the 

feature space orthogonal to the first Principal Component. Using the same convention with the K matrices 

gives 
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which can be searched for the optimal values. The method can clearly be applied recursively and so 
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xxxx −=+  for any time instant i+1.  

 

One difficulty with this method is that we can be (and typically will be) moving out of the space determined by 

the norm. Smola et al. [20] suggest renormalising this point to move it back into Vp. This can be easily done 

in feature space and both the orthogonalisation and renormalising can be combined into 
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which is a somewhat cumbersome expression and must be proved to be a valid kernel. In this paper we do 

not perform this step having found it to be unnecessary. We will demonstrate that finding the maximal 

projection corner from the remainder after orthogonalisation is a very good method for selecting instances 

from an IBR system. 



 17 

 

4.- IBR for oceanographic real-time forecasting  

A forecasting system capable of predicting the temperature of the water ahead of an ongoing vessel in real 

time has been developed using a IBR system [8,21]. An IBR system was selected for its capacity of handling 

huge amounts of data, of adapting to the changes in the environment and to provide real time forecast. The 

cyclic IBR process shown has been inspired by the ideas described by Aamondt and Plaza [16].  

Figure 3: IBR system architecture. 

 

In Figure 3, shadowed words (together with the dotted arrows) represent the four steps of a typical IBR life 

cycle, the arrows together with the word in Italic represent data coming in or out of the instance-base 
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(situated in the center of the diagram) and the text boxes represent the result obtained by each of the four 

stages of the IBR life-cycle. Solid lines show data flow and dotted lines show the order in which the processes 

that take part in the life cycle are executed.  

 

Data are recorded in real time by sensors in the vessels and satellite pictures are received weekly. A 

Knowledge Acquisition module is in charge of collecting, handling and indexing the data  in the instance-

base. Once the real-time system is activated on an ongoing vessel, a new instance is generated every 2 km 

using the temperatures recorded by the vessel during the last 40km. This new instance is used to retrieve m 

cases from a collection of previous cases using a number of K-nearest neighbour metrics. The m-retrieved 

instances are adapted by a neural network during the reuse phase to obtain an initial (proposed) forecast. 

Though the revision process, the proposed solution is adjusted to generate the final forecast using the 

confidence limits from the knowledge base. Learning (retaining) is achieved by storing the proposed forecast 

and knowledge (ANN weights and centers) acquired by the ANN after the training and case adaptation. A 

complete description of this system can be obtained in [8,21]. 

 

This IBR system has been successfully tested and it is presently operative in several oceanographic vessels 

[21]. Improving this system has been our challenge and this section will outline the modifications that has been 

done to it with the intention of demonstrating that the Kernel methods can provide successful results and 

automate the retrieval of instances. The following tables shows the changes that have been done in the IBR 

system for real time oceanographic forecasting.  
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STEP Operating IBR system Modifications and improvements 

Retrieval of instances K-nearest neighbour algorithms Kernel methods 

Reuse of instances Radial Basis Function Network Unsupervised Kernel methods 

Learning of instances Radial Basis Function Network 

Pruning Metrics 

Kernel methods 

 

Table 1: Changes in the IBR system for real time oceanographic forecasting 

 

Table 1 outlines the changes made to the original system. The first column of the table indicates in which steps 

of the IBR life cycle the changes have been made, the second column indicates the method originally used 

(and now eliminated) and column three indicates which methods have been included in the system. The 

changes indicated in table 1 have been introduced with the intention of developing a robust model, based on a 

technology easy to implement and that can automate the process of defining the retrieval, reuse and learning 

steps of the IBR system. We now present the structure of a case and indicated how the kernel methods have 

been used in the three mentioned IBR Steps. 

 

4.1. - The Instance  

Each stored instance contains information relating to a specific situation and consists of an input profile (i.e. a 

vector of temperature values) together with the various fields shown in Table 2.  
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Instance Field Explanation 

Identification unique identification: a positive integer in the range 0 to 64000 

Input Profile, I A 40 km temperature input vector of values Ij, (where j = 1, 2, … 40)  

Representing the structure of the water between the present position of the vessel and 

its position 40 km back. 

Output Value, F A temperature value representing the water temperature 5 km ahead of the present 

location 

Time Time when recorded (although redundant, this information helps to ensure fast retrieval) 

Date Date when the data were recorded (included for the same reasons as for the previous 

field). 

Location Geographical co-ordinates of the location where the value I40  (of the input profile) was 

recorded. 

Orientation Approximate direction of the data track, represented by an integer x, (1 ≤ x ≤12). 

Retrieval Time Time when the instance was last retrieved. 

Retrieval Date Date when the instance was last retrieved. 

Retrieval Location Geographical co-ordinates of the location at which the instance was last retrieved. 

Average Error Average error over all forecasts for which the instance has been used during the adaptation 

step.  

 

Table 2.  Instance structure. 

 

A 40 km data profile has been found to give sufficient resolution to characterise the problem instance. The 

parametric features of the different water masses that comprise the various oceans vary substantially, not only 

geographically, but also seasonally. Because of these variations it is therefore inappropriate to attempt to 

maintain an instance base representing patterns of ocean characteristics on a global scale; such patterns, to a 

large extent, are dependent on the particular water mass in which the vessel may currently be located. 
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Furthermore, there is no necessity to refer to instances representative of all the possible orientations that a 

vessel can take in a given water mass. Vessels normally proceed in a given predefined direction. So, only 

instances corresponding to the current orientation of the vessel are normally required at any one time. 

 

4.2 Creating the Instance-base with Sparse Kernel Principal Component Analysis 

We use the Sparse KPCA method described in Section 3.3 to create a small number of cases which best 

typify the data set. For pedagogical purposes, we illustrate the method on a small sample of cases: we choose 

150 cases of the oceanographic temperature data described above. The data set is illustrated in Figure 4.  
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Figure 4: The data set comprises 50 points from each of three water masses. The left diagram 

shows the first  element from each instance; the right plots the first  element from each instance 

against the value the instance is attempting to predict.  The water masses are clearly visible from 

the  da t a . 

 

 

The left diagram shows the first element from each instance; the right plots the first element from each instance 

against the value the instance is attempting to predict. The water masses are clearly visible from the data and 

the strong structure of the data set leads us to believe that there should be much fewer than 150 significant 

instances. 

 

We have experimented with a number of Sparse KPCA components and illustrate one example the reduced 

set shown in Figure 5: we show the rows of the K matrix associated with the first 15 PCA vectors. These 

most important vectors (instances) were 122, 92, 83, 66, 73, 60, 106, 32, 78, 98, 53, 70, 36, 63 and 54: 

two from the group 101 – 150, eleven from 51-100 and two from 1-50. We can see from the rows of the K 

matrix (Figure 5) that the data set is well covered by these 15 points. It is unsurprising that there are most 

points from the central group as it contains most structure. We now have a method for identifying the most 

important vectors (prototypical instances) in the data set but there still remains the question of how accurate 

predictions will be if they only are based on a small set of data samples. 
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Figure 5: The 15 rows of the K matrix associated with the first “Kernel Principal Components” when using deflationary 

method 

 

4.3.- Retrieving Instances from the Instance Base 

Any new data point x may be associated with a particular instance by creating its Kernel projection onto the 

previously found important vectors (prototypical instances) and finding the maximally valued projection. Given 

the relatively small number of important vectors, this is a very fast operation. For example with Gaussian 

kernels, we need only evaluate )/)(exp()( 2 σjjK xxxx, −−=  for all xj in the set of stored cases. 

 

It is simple to implement a vigilance parameter so that if the projection on the best instance is too small, the 

point is added to the instance base. 

 

4.4.- Forecasting with the Instance-base Reasoning System 

Several experiments have been carried out to illustrate the effectiveness of the IBR system, which incorporates 

the Kernel models. Experiments have been carried out using data from the Atlantic Meridian Transept (AMT) 

Cruise 4 [21]. We show in Figure 6 the errors on our original data set of 150 instances of taking the forecast 

temperature of the retrieved instance and subtracting the actual temperature of the case. In this experiment we 
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used 20 instances and so a substantial reduction in instances was achieved. The mean absolute error, when 

forecasting the temperature of the water 5 Km ahead of an ongoing vessel, along 10000 km (form the UK to 

the Falkland Island) was 0.0205 ºC which compares very favourably with the inicial Instance based reasoning 

system and other previous methods [8,21]. 

 

We can also see that the first and second data sets (of 50 samples each) are much more difficult to forecast 

than the third. The difficulty of the first water mass was not obvious from a visual inspection of the data but 

becomes obvious when one considers the points found to be important in constructing the instance base. 

 

 

Figure 6: The error on the 150 points. We see that the last group of 50 data 

points is the easiest to predict. The first group is surprisingly difficult.  

 

5.- Conclusion 
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We have demonstrated a new technique for identification of the important instances, which could be used to 

construct instance based reasoning systems. The basis of the method is a sparsification of the new method of 

Kernel principal component analysis. The sparsification leads to an extremely simple algorithm in feature space 

which has been shown to give extremely accurate results on an exemplar forecasting task: our results of 

0.0205 ºC error are among the best we have ever achieved on this data set and we have done so with a very 

much reduced instance base [8,21]. Of interest too is the fact that the method allows investigation of the 

nonlinear projection matrix K that readily reveals when a new body of water is reached. This is very important 

in the identification of fronts in these large bodies of water particularly since such fronts have an extremely 

adverse effect on underwater communications. 

 

The retrieval of the best matching instance is a very simple operation and presents no major computational 

obstacles. The whole system may be used with any number-based set of data; an area of ongoing research is 

the derivation of metrics which are appropriate for non-numeric data. One of the major advantages of the 

supervised Kernel method, support vector machines, is the automatic detection of relevancy and the pruning 

of data which is not essential to determine e.g. a classification or regression plane. We have presented one 

method here for sparsification of the instance base and are currently investigating other techniques based on 

Kernels that could have similar consequences. Such methods are both advantageous in the creation of and 

retrieval from instance bases but are also important in their own right in the unsupervised investigation of data 

sets using Kernel methods.  
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