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Abstract. The aim of this section is to provide a current view of different
approaches which try to develop new models, architectures or real applications
for physical agents.

1. Introduction

Nowadays, many of the developments in the research field are obtained through
simulation, but once they are fully tested in simulation, there may exist problems
to take them to the real world. It is due, in part, to the peculiarities belonging to
the real world environment, that may not be simulated. So, when talking about
agents, it may not be the same to work with a simulated robot, than to work with
a real robot.

Moreover, only through working in a real physical environment may be carried
out one of the main purposes of any research, the transference of technology.

In the rest of this section, some comments about agents working in real
physical environments are written, along with some experiences in test examples
or even transference of technology carried out by AgentCities.es nodes.

1.1. What are physical agents?

Physical agents can be defined as agents situated in a physical real world. Some
examples of this kind of agents are, for instance, robots as the aibot ones in the
Robocup competition.

From a very abstract perspective, the basic architecture of a physical agent
should consist of three components: a set of sensors, a set of effectors, and a
cognitive capability which can compute actions on the physical environment from
sensor perceptions probably in a bounded time. More specifically, there must be a
module that estimates the current state of the environment (perception), a module
of cognition which is in charge of computing the set of actions allowing the agent
to reach its goals, and a module of action which acts on the environment. This
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basic architecture proposed for a physical agent is shown in Figure 1. However,
it is necessary for all of these modules to have a bounded worst case execution
time, in order to determine whether the system reacts according to its temporal
restrictions.
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Figure 1. General structure for a Physical Intelligent Agent

The main problem in this architecture is with the cognition module. This
module uses AI techniques as problem-solving methods to compute more intelligent
actions. In this case, it is difficult to extract the time required by this module
because it can either be unbounded or if bounded, its variability is very high.
When using AI methods, it is necessary to provide techniques that allow their
response times to be bounded. These techniques are based on RTAIS techniques
[19].

With regards to the concept of agent, an agent may have a set of features
associated to it. These features add specific differences not available in more classic
software systems. When researchers talk about concepts like autonomy, sociability,
reactivity, proactivity, etc. they want to provide an agent with its own identity.
Some of the most important features of agency are the following capacities: to
work autonomously, to adapt to the environment, to reason, to learn, to predict
the future effect of the performed actions and to predict the future behavior of
the environment. It is obvious that, if a specific software achieves any or all of
these features, it is due to an extra effort in its development process. Therefore,
even minimal fulfillment significantly complicates the implementation and func-
tionality of an agent. If the agent must operate in a physical environment, the
agent construction complexity is increased enormously. Evidently, different envi-
ronments require different software structures. Therefore, in an agent context, it
is necessary to define an appropriate structure in order to use agent features in
physical environments.
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1.2. Main Problems

The term physical applied in the agent or multi-agent area is still in a premature
state of development which is why we don’t have clear and consolidated definitions.
Nevertheless, we can perform a characterization of some requirements of this kind
of systems. The requirements that should be met are:

Access to continuous data. A physical agent must access to a physical real
environment where the information is produced in a continuous way, not in a
discrete one.

Time representation in the communication process. To be able to reason over
the temporal instant at which an event is produced in a physical environment, it is
necessary to integrate the time concept inside the information transmitted among
the different entities that make up a distributed system. The agent communication
language FIPA ACL was not developed with these features in mind.

Global time management. In a physical distributed system it is absolutely
necessary to have a common global time for all the elements that make up the
system. There are several strategies that manage and synchronize the clocks of
each computer. Different levels of precision are obtained with each of them. The
Network Time Protocol (NTP) [31] for Internet, or Cristian’s algorithm for intranet
[14] are some of the most important algorithms. Platform Agents must provide this
global time service, so that the agents can be synchronized. Platform agents should
also be adapted to have a global time for the agents of diverse platforms that want
to interact.

Real-time Communication. In physical distributed systems, it is necessary be
able to assure the communication. This supposes communication protocols with a
low and restricted latency1, as well as fault detection. One example is the CAN
protocol [40]. The applications where it is feasible to use the MAS paradigm does
not need such strict restrictions for communication. However, there is no doubt
about the need for efficient protocols to assure a maximal delivery message time
to the developed applications.

Hard resource management. The execution of tasks in this kind of systems
is assured, by exercising a strict control on the available resources. There is a
planning algorithm that assures the task execution and the coherent use of re-
sources. The agent platforms must implement hard resource management. This is
very important, for instance, when facilitating agent mobility among platforms.

Fault tolerant execution. This kind of systems are considered to be pre-
dictable. However, it is also indispensable for them to develop fault tolerant sys-
tems. This is fundamental since the systems that are controlled are usually critical
and a system fall would be catastrophic. A relevant work in this area is [13]. The
fault tolerance in MAS must be twofold. First, the execution of the agents must
be assured after an internal failure, as well as after a failure in the communication

1Latency: interval between the sending of a message and its reception
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process. Platform agents must be capable of assuring certain requirements in or-
der to offer communication mechanisms and strategies that permit agent execution
recovery.

1.3. Related Work

Over the last years, a number of researchers have used agent technology in attempts
to resolve the above presented problems, whereas only a few testbeds and real
applications have been developed and reported.

Some members of the Agentcities.es have developed applications of this kind,
as will be explained in the next sections. These applications may be classified into
two big groups:

• Application of generic architectures to specific problems, as the classical sub-
sumption architecture [7] which is the most widely known robot architecture,
the ARCHON platform created for industrial multi-agent systems [23], or the
applications of ARTIS agent architecture to mail robots [37, 11], or the ap-
plication of CIRCA agent architecture to Unmanned Aerial Vehicles (UAVs)
under development by the military and deep space probes being developed
by NASA [12].

• Ad-hoc developments to solve problems regarding robotics, industrial pro-
cesses or any physical environment related. In these cases, the developed
solutions bear in mind the concrete problems and their extrapolation is very
difficult to other problems or domains. With respect to robotics we can find
a lot of works or proposals developed to control a robot, and more specifi-
cally a mobile robot. It is difficult to select a little set of works. Maybe we
can highlight the work of Mackenzie [30] where an agent-based method for
designing controllers is presented, or the work of Van Breemen [41] which
describes a method for modeling complex control problems. On the other
hand, in industrial applications, it can be emphasized the control of a line
of production developed by the industrial consortium of the DaimlerChrysler
[8] where it was provided a flexible and robust system for the control of a pro-
duction line in the factory. The electricity transport management developed
by the Spanish company Iberdrola [24] where there was realized a process for
monitoring and controlling the generation, transport and distribution of the
electrical energy. Other interesting works can be the control of the air supply
in painting cabins of the General Motors [16] or the air traffic control by [27].
At Spanish level we can emphasize the control of a container Terminal [33]
where a global management of a terminal is realized including the control
of physical devices as the cranes or transtainers. In next sections this latter
work will be explained in a more detailed way.
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2. Deliberating while the physical world changes

One of the main problems that needs to be overcame when applying generic agent
architectures to physical environments is the efficient integration of high-level,
multi-agent planning processes within this kind of architectures. These complex
deliberative processes, which allow the agent to adapt and learn, are unbounded
and it is difficult to integrate them in physical and restricted systems. Typically,
in the multi-agent area these processes are carried out by so-called deliberative
agents, which decide what to do and how to do it according to their mental atti-
tudes. In a deliberative agent, it is relatively simple to identify decision processes
and how to perform them. However, its main drawback lies in finding a mechanism
that permits its efficient and bounded execution. Therefore, it would be interesting
to integrate complex deliberative processes for decision-making in physical systems
in a simple and efficient way.

Intelligent agents may use a lot of reasoning mechanisms. One of them is
based on planning techniques [1]. Planning-based agents decide the course of an
action before it is realized. Thus, a plan represents the structure of such action. A
planning-based agent will execute plans allowing it to reach its goals. To do this,
the agent goes from an initial state to try to get to a final state or set of states.
The mechanism used to reach the goals is to apply a set of operators over the
objects composing the agent’s environment.

2.1. A bounded deliberative technique

In this section, the objective of integration of new bounded deliberative techniques
into an agent architecture is pursued. More specifically, this technique is applied to
the ARTIS agent architecture [6]. This kind of agent will be able to incorporate a
new planning proposal known as CBP-BDI (Case Base Planning - Beliefs Desires
Intentions) in order to carry out deliberative planning tasks at the moments where
the timing restrictions will not be considered critical.

This proposal has been applied to the specific problem of a mail robot whose
work is to collect and to deliver mail to people working at a company department.
The robot working is developed in a restricted and well-known test environment.
Moreover, the example has been tested in order to proof the proposal. This case
study consists in solving the automatization of the internal mail management of
a department that is physically distributed in a single floor of a building plant.
At the department, there is a mail robot in charge of attending sending requests,
carried out by a user from a department office through a PDA to send a letter or
packet to other office of such department. In this way, the robot will be in charge
of picking up and delivering the external mail received by the department or the
mail that is going to be sent to the outside.

The robot is going to be controlled by an ARTIS agent. Each ARTIS agent
has a reflex server able to plan tasks at real-time and a second level deliberative
server in charge of non-critical timing restrictions. The deliberative server will plan
the execution of CBR-BDI (Case Base Reasoning - Beliefs Desires Intentions)
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techniques [28], and it will be in charge of generating optimal plans to pick up
and deliver mail at slack time (the spare time once critical time restrictions are
satisfied).

A CBR-BDI agent uses as reasoning mechanism the case-based reasoning
allowing it to learn from an initial knowledge; to autonomously interact with the
environment, the users and the rest of the system’s agents; and to have a great
capability of adapting to the environment’s needs. So, case-based reasoning is a
suitable technique to implement a planner for the mail robot problem. The CBP-
BDI agent generates plans, where a plan is a sequence of pick up and delivery
points. In the same way, the CBP-BDI agent will be available to replan in situations
where the robot is unable to fulfil the assigned plans, such as finding obstacles,
closed doors, low battery level, or receiving new requests of picking up or sending
mail while the robot is executing a plan.

The study case has been implemented in order to evaluate the proposal. To
do this, different experiments have been carried out investigating, basically, the
performance of the system and the planning/replanning behaviour. The results
have shown the benefits obtained with the integration of the CBP-BDI deliberative
behaviour into the ARTIS agent while maintaining the fulfilment of the critical
time restrictions. A detailed version of this proposal can be found in [9].

2.1.1. ARTIS Agent: A Hard, Real-Time, Intelligent Agent. This point provides
a short description of the ARTIS Agent (AA) architecture, for hard real-time
environments (a more detailed description can be found in [6] [37]). The AA ar-
chitecture could be labelled as a vertical-layered, hybrid architecture with added
extensions to work in a hard real-time environment [6].

One of the main features of the AA architecture is its hard real-time beha-
vior. It guarantees the execution of the entire system’s specification by means
of an off-line analysis of the specification. This analysis is based on well-known
predictability analysis techniques in the RTS community, and it is defined in [18].

The off-line analysis only ensures the schedulability of real-time tasks. How-
ever, it does not force the task sequence execution. The AA decides the next task
to be executed at run-time, allowing it to adapt itself to environment changes, and
to take advantage of the tasks using less time than their wcet.

The AA reasoning process can be divided into two stages. The first one
is a mandatory time-bounded phase. It obtains an initial result of satisfactory
quality. After that, if there is available time left (also called slack time in the
RTS literature), the AA may use this time for the second reasoning stage. This
is an optional stage and it does not guarantee a response. It usually produces a
higher quality result through intelligent, utility-based, problem-solving methods.
This split reasoning process is described in detail in [6].

ARTIS Agent Architecture The architecture of an AA can be viewed from
two different perspectives: the user model (high-level model) [10] and the system
model (low-level model) [39]. The user model offers the developer’s view of the
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architecture, while the system model is the execution framework used to construct
the final version of the agent.

From the user model point of view, the AA architecture is an extension of
the blackboard model which is adapted to work in hard real-time environments.
It is formed from the following elements:

• A set of sensors and effectors to be able to interact with the environment.
Due to the environment features, the perception and action processes are
time-bounded.

• A set of beliefs comprising a world model (with all the domain knowledge
which is relevant to the agent) and the internal state, that is the mental states
of the agent. This set is stored in a frame-based blackboard [4].

• A set of behaviors that models the answer of the AA to different situations. It
can be said that an state (internal along with an environment representation)
defines a situation (represented by the current beliefs and goals) which actives
a behavior or allows it to go on being active. This behavior determines the
agent current set of goals and restrictions, along with the knowledge needed
to control the situation.

Each one of these behaviors are formed by a set of in-agents. The main
reason to split the whole problem-solving method is to provide an abstraction
which organizes the problem-solving knowledge in a modular and gradual
way. (see figure 2).

Figure 2. Modular division of an AA into in-agents

Each in-agent periodically performs an specific task. An in-agent is also
an agent according to the Russell’s agent definition [35]. Each in-agent has
to solve a particular subproblem, but all the in-agents of a particular AA
cooperate to control the entire problem, and an in-agent may use information
provided by other in-agents.
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In-agents can be classified into critics and acritics. The first ones are
in charge of solving essential problems of the AA, so its execution is assured
at least for calculating a low-quality answer. The last ones are in charge of
solving non-essential problems of the AA to improve its performance quality.
A critic in-agent is characterized by a period and a deadline. The available
time for the in-agent to obtain a valid response is bounded. It must guarantee
a basic response to the current environment situation. From a functional point
of view, an in-agent consists of two layers: the reflex layer and the real-time
deliberative layer. The reflex layer assures a minimal quality response (an off-
line schedulability analysis of the AA, considering all the in-agents in the AA,
guarantees that this reflex layer will be fully executed). On the other hand,
the real-time deliberative layer tries to improve this response (this level will be
executed in slack time). The reflex layer of all the in-agents make up the AA
mandatory phase. On the other hand, the real-time deliberative layers form
the optional phase. An acritic in-agent only has the real-time deliberative
layer.

• A control module that is responsible for the real-time execution of the in-
agents that belong to the AA. The temporal requirements of the two in-agent
layers (reflex and deliberative) are different. Thus, the control module must
employ different execution criteria for each one.

– Reflex server (RS) This module is in charge of controlling the execution
of reactive components, that is, the components with critical temporal
restrictions. Due to these restrictions, it is part of a Real-Time Operat-
ing System (RTOS)2 [39]. It includes the First Level Scheduler (FLS)
that must schedule the execution of all the reactive components, in order
to guarantee their temporal restrictions. This scheduler is implemented
according to a common RTS scheduling policy, a Fixed-Priority, Pre-
emptive Scheduling Policy [3].
Once the execution of the critical parts is assured, there are slack time
intervals between the execution of these critical parts. These slack times
(calculated using an algorithm based on the Dynamic Slack Stealing
algorithm [15]) can be employed by the second submodule of the control
module in order to do different functions, the goal of which is to refine
the reactive response and to improve its quality.
This module carries out the following functions to accomplish its pur-
pose:

∗ To schedule the execution of all in-agents with critical temporal
restrictions. This process must guarantee the fulfillment of these
restrictions.

∗ To cede the agent control to the DS during the system idle time.
∗ To inform the deliberative server of the execution state of the in-

agent reflex part and the time it has available to use. This slack

2The current version of the AA architecture uses RT-Linux as its RTOS
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time is calculated just before informing the DS to take into account
the tasks using less time than their wcet.

– Deliberative server (DS) This module is in charge of controlling the
execution of the deliberative components. Therefore, this server is the
intelligent element of the control module, but with soft real-time restric-
tions.

 

Figure 3. ARTIS Agent architecture

The system model provides a software architecture for the AA that supports
all the high level features expressed in the user model. The main features of this
model are [18]:

• Off-line schedulability analysis.
• Task Model that guarantees the critical temporal restrictions of the environ-

ment.
• Slack extraction method to on-line calculate the available time for executing

the real-time deliberative layer.
• Set of extensions to the Real-Time Operating System incorporating features

for managing real-time capabilities.

2.1.2. Integration of a CBP-based planner in ARTIS. This section shows how
has been integrated a new bounded CBP-based planner techniques inside of the
ARTIS agent architecture. This planner allows a more efficient execution time
management, according to the agent’s goals. It has to be taken into account that
this planner activates tasks to fulfil agent’s goals that will be deal by the real-time
task schedulers in order to be executed guaranteeing the real-time constraints.
CBR-based planner (or CBP) has been included as a sporadic in-agent that will
be activated when a new plan needs to be generated for a new goal. Moreover the
in-agent will be also activated when replanning because the environment evolution
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makes it impossible to finish the current plan. The in-agent’s initial part reads the
planning or replanning event that activated it. According to this event, it checks if
the existing current plan is still feasible. If such plan is not yet applicable, it builds
a new plan or modifies the existing one. In an optional way, it tries to improve the
new plan. Lastly, the action part of this in-agent begins the plan.

The CBR-based planner provides planning based on previous experiences.
CBR systems use memories (past experiences) to solve new problems. The main
concept when working with CBR systems is the concept of case. A case is a past
experience that can be represented as a 3-tuple < P,S(P ), R >. In this way a
case is composed of a problem description (initial state), the solution applied
to solve the problem (in CBP the solution is a plan or a set of plans, in other
words, the sequences of actions executed in order to achieve the objectives) and
the result obtained after applying the solution (the final state an the evaluation
of the plan executed). The planner needs to maintain a case memory that will
be used to solve new problems. When a new problem is presented the planner
executes a CBR cycle to solve it. The CBR cycle is composed of four sequential
stages: Retrieve, where those cases with the most similar problem description to the
current problem are recovered from the cases memory; Reuse, in which the plans
(solutions) corresponding to the similar cases retrieved in the previous stage are
reused to construct a new plan; Revise, where the proposed plan is evaluated; and
Retain, where the planner learns from the new experience. One of the key points in
the CBR-based planning is the notation used to represent the solution (the plans).
A solution can be seen as a sequence of intermediate states transited to go from
an initial state to the final state. States are usually represented as propositional
logic sets. The set of actions can be represented as a set of operators together
with an order relationship. Furthermore Carbonell (Carbonell 1986) indicates that
additional information is needed on the decisions taken during the plan execution.

A deliberative CBP-BDI agent is specialized in generating plans and incorpo-
rates a case-based planning (CBP) reasoning mechanism. The purpose of a CBR
agents is to solve new problems by adapting solutions that have been used to solve
similar problems in the past [?], and the CBP agents are a variation of the CBR
agents, based on the plans generated from each case. An innovative technique that
allows replanning in execution time has been incorporated in order to construct
an efficient planner. Next, the CBP planner is presented. Let E = {e0, ..., en} the
set of the possible tasks that have to be completed.

aj : E
ei

→
→

E
aj(ei)=ej

(1)

An Agent plan is the name given to a sequence of actions (1) that, from a
current state e0, defines the path of states through which the agent passes in order
to offer the better path according to the initial problem description. Below, in (2),
the dynamic relationship between the behaviour of the agent and the changes in
the environment is modelled. The behaviour of agent A can be represented by its
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action function aA(t) ∀t , defined as a correspondence between one moment in
time t and the action selected by the agent,

Agent A = {aA(t)}t∈T⊆N (2)

From the definition of the action function aA(t) a new relationship that col-
lects the idea of an agent’s action plan (3) can be defined,

pA(tn) =
∫ tn

t0
aA(t)dt (3)

The variation of the agent plan pA(t) will be provoked essentially by: the
changes that occur in the environment and that force the initial plan to be mod-
ified, and the knowledge from the success and failure of the plans that were used
in the past, and which are favoured or punished via learning. O indicates the ob-
jectives of the agent and O’ are the results achieved by the plan. R represents the
total resources and R’ are the resources consumed by the agent. The efficiency of
the plan (4) is the relationship between the objectives attained and the resources
consumed

Eff = #(O
′ ⋂

O)

#R
′ (4)

Where # means cardinal of a set. The objective is to introduce an architec-
ture for a planning agent that behaves – and selects its actions – by considering the
possibility that the changes in the environment block the plans in progress. This
agent is called MRPI (most re-plan-able Intention agent) because it continually
searches for the plan that can most easily be re-planned in the event of interrup-
tion. Given an initial point e0, the term planning problem is used to describe the
search for a way of reaching a final point ei = e∗ ∈ E that meets a series of require-
ments. Given a problem E and a plan p(t) the functions Ob and Rc accumulated
are constructed from the objectives and costs of the plan (5). For all time points
ti two variables are associated:

Ob(ti) =
∫ ti

a
O(t)dt Rc(ti) =

∫ ti

a
R(t)dt (5)

This allows us to construct a space representing the environment for planning
problems as a vectorial hyper dimensional space where each axis represents the
accumulative variable associated with each objective and resource. In the planning
space, defined in this way, conform to the following properties:

1. Property 1: The representations of the plans within the planning space are
always monotonously growing functions. Given that Ob(t) and Rc(t) are
functions defined as positive, function p(t) expressed at these coordinates
is constant or growing.
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2. Property 2: In the planning space, the straight lines represent plans of con-
stant efficiency. If the representations of the plans are straight lines, the slope
of the function is constant, and coincides with the definition of the efficiency

of the plan. d
dt

p(t) = cte ⇔ lim
∆→0

∆O(t)
∆R(t) = cte

In an n-dimensional space, the extension of the straight concept line is called
a geodesic curve. In this sense, the notion of geodesic plans can be introduced, de-
fined as those that maintain efficiency at a constant throughout their development.
This way, only the plans of constant efficiency (geodesic plans) are considered, due
to the fact that they are the ones of minimum risk. In an environment that changes
unpredictably, to consider any plan that is different from the geodesic plan means
to accept a certain risk. The agent must search for the plan that determines a solu-
tion with a series of restrictions F(O;R)=0. In the plans base the plans sought are
those that are initially compatible with the problem faced by the agent, with the
requirements imposed on the solution according to the desires, and in the current
state [?]. If all the possible plans {p1, ..., pn} are represented within the planning
space, a subset of states that the agent has already attained in the past will be
obtained in order to resolve similar problems. With the mesh of points obtained
(generally irregular) within the planning space and using interpolation techniques,
we can obtain the working hyperplan h(x) (that encapsulates the information on
the set of restrictions from restored experiences, by definition leading to a hyper-
plan since it verifies h(xj) = pjj = 1, . . . , n and the planning space is the dimension
n). From this, geodesic plans can be calculated and and the variation calculation is
applied. Suppose, for simplicity’s sake, a planning space of dimension 3 with coor-
dinates { O,R1,R2 } . Between point e0 and objective points fsf = {e1, ..., em}
and over the interpolation surface h(x), the Euler Theorem [29] [25] guarantees
that the expression of the geodesic plans will be obtained by resolving the system
of equations in (6), where Ri is the function accumulated R, O is the function of
accumulated O and L is the distance function on the hyperplan h(x), L =

∫

h
dl..

In order to obtain all the geodesic plans that, on the surface h(x) and be-
ginning at e0, allows us to reach any of the points e∗ ∈ (fsf), a condition of the
surrounding must be imposed: the initial point will be e0 = (O0, R0). Once an
efficient plan is developed, the plan around it (along its trajectory) are used to
create a denser distribution of geodesic plans. The tool that allows us to deter-
mine this is called the minimum Jacobi field associated with the solution set [26].
g0 : [0, 1] → S be a geodesic over a surface S. Let h : [0, 1]x[−ε, ε] → S be a
variation of g0 so that for each t ∈ (−ε, ε), the set {ht(s)}t ∈ (−ε, ε): ht(s) for all
t ∈ (−ε, ε) are geodesic in S and they begin at g0(0), in other words, they conform
to ht(0) = g0(0) for allt ∈ (−ε, ε). In these conditions, taking the variations to a
differential limit (7).
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{

∂L
∂R1

− d
dO

∂L

∂R
′

1

= 0
∂L
∂R2

− d
dO

∂L

∂R
′

2

= 0
. (6)

lim
t→0

{ht(s) = g0(s + t)} = lim
t→0

{h(s, t)} =

∂g0

∂t

∣

∣

(s,0) = dg0

ds
≡ Jg0

(s)

(7)

The term Jg0(s) is given to the Jacobi Field of the geodesic g0 for the set
{gn(x)}n ∈ N , and in the same way that the definition has been constructed,
it is possible to give a measurement for the distribution of the other geodesics of
{gn(x)}n ∈ N around g0 throughout the trajectory. Given a set of geodesics, some
of them are always g* that, in their environment, have a greater distribution than
other geodesics in a neighbouring environment. This is equivalent to saying that
it presents a variation in the distribution of geodesics lower than the others and
therefore the Jacobi Field associated with { gn(x) } naN reaches its lowest value
at Jg∗. Let’s return to the MRPI agent problem that, following the recuperation
and variation calculation phase, contains a set of geodesic plans { p1,...,pn } . If
the p* is selected with a minimum Jacobi Field value, it can be guaranteed that in
the event of interruption it will have around it a greater number of geodesic plans
in order to continue. This suggests that given a problem with certain restrictions
F(O;R)=0, the geodesic plan p* with minimum associated Jacobi field associated
with the set {gn(x)}n ∈ N is called the most re-plan-able solution. The behaviour
model G for the MRPI agent is (8).

G(e0, p1, · · · , pn) = p∗ ⇔ ∃n ∈ N/Jgn
≡ Jg∗ =

Min
n∈N

Jgn

(8)

If the plan p* is not interrupted, the agent will reach a desired state ej =
e∗ ∈ fsf, j ∈ {1, . . . ,m} . In the learning phase, a weighting wf(p) is stored.
With the updating of weighting wf(p*), the planning cycle of the CBP motor is
completed. In Figure 4, it is possible to see what happens if p* is interrupted. Let’s
suppose that the agent has initiated a plan p* but at a moment t > t0, the plan is
interrupted due to a change in the environment. The geodesic planning meets the
conditions of the Bellman Principle of Optimality [5], in other words, each one of
the plan’s parts is partially geodesic between the selected points. This guarantees
that if g0 is geodesic for interrupted e0 in t1, because e0 changes to e1, and g1 is
geodesic to e1 that is begun in the state where g0 has been interrupted, it follows
that: g = g0+ g1 is geodesic to e= e0 (t1 - t0)+e1 (t2 – t1)

The dynamic process follows the CBP cycle recurrently: each time a plan
finds itself interrupted, it generates from the state reached so far, the surround-
ings of the plans from the case base and adjusts them to the new problem. With
this it calculates the geodesic plans and selects the one which meets the minimum
conditions of the associated Jacobi field. A minimum global Jacobi field J(t) also
meets Bellman’s conditions of optimality [5], in other words, a minimum global
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Jacobi field, must select minimum Jacobi fields “in pieces” (9).

Jmin(t) = {Jmin(t1 − t0), Jmin(t2 −
t1), · · · , Jmin(tn − tn−1)}

(9)

 

  

 

Figure 4. Model for behaviour G(t)

If on the one hand, successive Jacobi fields generate one Jacobi field, and on
the other hand, minimum Jacobi fields generate a minimum Jacobi field, the MRPI
agent that follows a strategy of replanning G(t) as indicated to survive a dynamic
environment, generates a global plan p*(t) that, faced with all possible global plans
{pn(t)}n ∈ N , presents a minimum value in its Jacobi field Jg ∗ (t) = Jp ∗ (t). An
agent has been formally defined that in a dynamic environment seeks plans that
lend it greater capacity for replanning.

3. Applications

In this section will be presented examples of current or past experiences of the
Spanish research groups. Specifically, three real applications are shown. The next
section presents two examples made by the Universitat de Girona. The last ex-
ample is an industrial application and it has been developed by the Universidad
Politécnica de Valencia.

3.1. The Grill robot. A multi-agent control architecture

One of the current challenges of robotics is to make completely autonomous robots
capable of modifying their performance in complex and changing environments.
So, distributed control systems should be used to develop the robot control ar-
chitecture, in order to provide mechanisms to distribute, coordinate, adapt and
extend the control system of the robots. On the other hand, robots require high-
level cognitive capacities, and multi-agent architectures provide the appropriate
way to define them. Merging both research lines, distributed control and multi-
agent systems, a multi-agent architecture to control a single robot, an ActivMedia
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Figure 5. MAS Architecture.

Pioneer 2DX mobile robot has been developed by the EXIT Research Group at
the Universitat de Girona [20].

In order to implement the multi-agent control architecture, an ad-hoc multi-
agent platform has been built to deal with real-time issues. This platform follows
the FIPA (the Foundation for Intelligent Physical Agents) standards [17], but
avoid some bottleneck on communication, a key issue in robotics when a real time
response is expected.

In Fig. 5,the agents of the MAS architecture is shown, as well as some plat-
form specific agents and the information flow among them. Agents can be grouped
in perception, behavioral, actuator and deliberative agents. Solid lines among
agents means that there are no restriction in message passing while dotted lines
indicate that only one agent at a time can send the message (after coordination).
White solid lines denote conflicting agents.

Perception agents obtain information about the environment and about the
internal conditions of the robot, as they collect data from the sensors and transform
it to provide the suitable information to other agents. There are as many perception
agents as there are sensors or group of them in the robot. Particularly for the robot
perception agents are the following:

• The encoder agent in charge of obtaining the position and heading of the
robot with reference to a fixed frame.
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• The sonar agent which collects all the sonar readings and creates a local map
of obstacles.

• The battery sensor agent which monitors the battery charging in order to
prevent that it could be permanently damaged.

Behavioral agents carry out specific actions, such as avoiding obstacles. There are
as many agents as necessary to describe the behavior of the robot. Based on the
information received from perception agents, they react to changes in the environ-
ment and in the robot itself. Particularly, behavioral agents are the following:

• The goto agent in charge of driving the robot to the target position, based
on the information provided by the encoder agent.

• The avoid agent that must go around obstacles found in the path of the robot.
• The battery charger agent that asks for replanning when the battery is going

under a threshold in order to guide the robot to the recharging area.
• The gothrough agent is in charge of going through narrow places like doors,

based on the information received from the sonar and the localization agents.

Deliberative agents implement high-level complex tasks as for example, planning.
These agents are the following:

• The localization agent that must localize the robot in the global map.
• The path planning agent that calculates the trajectory to the goal, free of

non-moving obstacles.
• The task planning agent that plans the sequence of tasks to perform in order

to reach the goal.
• The interface agent which interacts with the user.

Actuator agents are in charge of controlling the linear and angular speed of the
robot interacting directly with motors. There is an actuator agent per each possible
actuator. Particularly only one agent is needed because of the limitations of the
Pioneer 2DX operating system. This agent is:

• The robot agent which communicates, each 100 ms, with the robot micro-
controller and gets the actual position and sonar readings and sends the
desired linear and angular speeds to the onboard controllers. The role of the
actuator agent has been reduced to a merely interface between the robot and
the whole architecture, due to the robot constraints mentioned above.

Platform Agents: They implement the basic services that have to be in the plat-
form in order to guarantee the correct functioning of the community of agents.
Particularly, there is only one agent that provides several basic services. This
agent is:

• The directory facilitator agent (DFA): that knows which agents are active
in the community, their location in the net, the services they provide and
the resources they need. It also informs the agents when a new one joins the
community, the resources it use and the services it provides.

As can be seen in Fig. 5, there are several agents trying to use the same
resource at a given time, so some coordination is necessary. For exemple, conflicts
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can arise among the avoid, the goto and the gothrough agents when trying to send
conflicting actions to the robot agent and between the battery charger and the
task planning agents when demanding a trajectory to the path planning agent.

One solution to this problem is to define a central coordinator agent which,
having knowledge of the agents in conflict imposes one decision. However, we
believe that such centralized coordination mechanism can be a bottleneck when
dealing with architectures with a lot of agents. Conversely, we think that conflicts
are local and a distributed coordination approach can be more appropriated. Par-
ticularly, a peer-to-peer coordination mechanism among the agents involved in one
conflict is proposed. Coordination process is carried out locally based on utilities
values computed by the agents in conflict.

All the agents in the architecture have their own utility function, known only
by themselves, but all normalized between [0,1] (they are comparable). Agents that
can have conflicting decisions, exchange their utility value. In case of conflict, the
agent who has a higher value of utility wins the decision. This agent is getting the
control regarding to the conflicting activity. For example, suppose that the goto
agent has a utility value of 0.5, the gothrough agent of 0.3 and the avoid agent of
0.7; being 0.7 the higher value, the avoid agent takes the control of the situation,
and it is the only one that sends messages to the robot agent (see [21, 22]).

In order to reduce communication among agents, the last agent who has had
the control, broadcasts it utility value. If there is no response, meaning that it has
the higher value, the agent uses the resource. On the other hand, if there is an
agent with a higher utility value, then it informs all the agents with its utility value,
indicating that the agent is going to use the resource. In this way, communication
process is reduced and centralization of coordination is avoided.

3.2. The ICTINEUAUV submarine robot

From 1990, the Association for Unmanned Vehicle System International (AUVSI)
has promoted the design and development skills of Autonomous Underwater Vehi-
cles (AUV) by means of an annual competition. Inspired by this competition, the
Defence Science and Technology Lab (DSTL), the Heriot Watt University and the
National Oceanographic Centre of Southampton organized the first Student Au-
tonomous Underwater Challenge Europe (SAUC-E) [36]. In January 2006, a team
of students collaborating with the Underwater Robotics Lab of the University of
Girona decided to form the VICOROB-UdG Team [38] to face the challenge by
designing its own submarine robot, ICTINEUAUV .

3.2.1. Design. The SAUC-E [36] mission takes place in a small volume in which a
high maneuverability is required. In this situation a hover-type vehicle propelled
and steered by thrusters is the most desirable configuration. A classical open frame
design, together with a modular design of the components conveniently housed in
pressure vessels, has been considered [34] the simplest and most reliable approach
for the physical design of the ICTINEUAUV robot. The robot is propelled by
four thrusters that made it a fully actuated vehicle in four degrees of freedom:
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Figure 6. ICTINEUAUV software architecture.

surge, sway, heave and yaw, while being passively stable in roll and pitch as its
meta-center is above the center of gravity. The robot chassis is made of Delrin
material. Three pressure vessels are used for holding the electronics. One of them
houses the computers, another the thruster controllers and the batteries, and the
last encapsulates the Motion Reference Unit (MRU).

The robot uses two PCs, one for control and one for image and sonar process-
ing. It is also equipped with a complete sensor suite composed of a forward-looking
color camera, a downward looking b&w camera, an imaging sonar, an echo sounder,
a transducer for acoustic device detection and an Argonaut Doppler Velocity Log
which also includes a compass/tilt sensor.

The software architecture of the robot can be seen in figure 6, there are three
main modules: robot interface module, perception module and control module.
Following the principles of hybrid control architectures, the control module is or-
ganized in three layers: vehicle level, task level and mission level. The vehicle level
controls the speed of the robot, the task level is a conventional behavioral layer
[2] including a library of behaviors that can run alone or in parallel. During the
execution of a mission, more than one behavior can be enabled simultaneously;
hence, a coordinator module is used to fuse all the responses corresponding to the
enabled behaviors into a single response to be sent to the velocity controller (vehi-
cle level). Finally, the upper layer (mission level) is responsible for the sequencing
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Figure 7. Left: The mission for the final run. Right: Plot of
ICTINEUAUV ’s trajectory

of the mission tasks, selecting for each mission phase the set of behaviors that
must be enabled as well as their parameters.

3.2.2. The SAUC-E Competition. The SAUC-E competition takes place in a water
tank environment of 20 meters by 10 meters and a depth of 6 meters. The mission
consists of (see the left side of figure 7 for a graphical representation):

1. Moving from a launch/release point and submerging.
2. Passing through a 3x4 meter validation gate.
3. Locating a cross situated on the bottom of the pool and dropping a marker

over it.
4. Locating a mid-water target (an orange buoy) and contacting it with the

AUV.
5. Surfacing at designated recovery zone marked by an acoustic device.

The mission starts facing the validation gate. We can see in the right side
of figure 7 the trajectory made by ICTINEUAUV during the final run of the
competition. This plot has been obtained by the localization data logged in the
vehicle during the mission. As can be seen, the result is similar to what we can
expect from the mission planning. First, the vehicle went through the validation
gate (until it detected the far end of the water tank) with only minor perturbations
in the heading. Next, the vehicle started the searching procedure for the bottom
target. At the first sight of the target, ICTINEUAUV released one marker at 56 cm
from the center. Unfortunately, while the vehicle was trying to make a second shot,
it got stuck near a wall because of the peculiarities of the competition environment.
The zone boundary between the black walls and the white bottom of the tank
caused the vision algorithm to get confused. After the timeout expired, the vehicle
proceeded with the mission going to the next waypoint. When ICTINEUAUV

found the buoy, it was too close. This made it harder to aim the target. As a result,
the vehicle missed the target by a few millimeters. Finally, the vehicle moved to
the recovery zone to end the mission. ICTINEUAUV probed its capability to
undertake a preprogrammed mission. It did two tasks and almost completed the
other two, being the only entry of the competition able to link all the tasks. This
performance gave the final victory to the VICOROB-UdG team.
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3.3. An industrial application: A Port Container Terminal

A multi-agent system for solving the automatic allocation problem in a container
terminal is presented in this section. This proposal has been developed by the
Universidad Politécnica de Valencia. This section only present a brief explanation
of the proposal. A more detailed explanation can be found at [33] and [32]. The
operations carried out in this terminal are included in the most complex tasks of
the transport industry. This is due to:

• The great diversity of entities acting in the container import and export
processes.

• Interaction with a dynamic environment.
• The distributed nature of the problem which is formed by a set of independent

systems, but whose individual decisions directly affect the performance of the
others.

The traditional centralised and sequential applications for Container Termi-
nal Management are being found to be insufficiently flexible to respond to changing
management styles and highly dynamic variations in loading/unloading require-
ments. With the traditional centralised approaches to management and control,
the entire terminal is generally controlled by central software, which limits the
expandability and reconfiguration capabilities of the systems. Using hierarchical
organization forces the grouping of resources into permanent, tightly coupled sub-
groups, where information is processed sequentially by a centralised software su-
pervisor. This may result in much of the system being shut down by a single
point of failure, as well as plan fragility and increased response overheads. The
multi-agent system model seems to be an adequate framework to overcome such
problems and for dealing with the design and development of an application which
is flexible, adaptable to the environment, versatile and robust enough for the effi-
cient management of a container terminal. It is very important for the turn-around
time of a cargo ship which is in port container terminals to be as short as possible.
An average cargo liner spends 60% of its time in port and has a cost on the order of
U.S. $1000 for each hour it spends in port. The whole container allocation process
must be directed towards minimise the containership stowage time. This is the
main objective of the optimisation of the global performance allocation process.

3.3.1. Problem Description. The traditional solutions to Container terminal man-
agement are addressed by means of a modular decomposition of the problem into
several sub-problems each one represents a specialized aspect of it. The set of
operations to be conducted in the terminal is very extensive, but the existing
approaches share some common systems:

• Marine Side Interface. This system focuses on loading/unloading containers
to/from ships. Normally two or three gantry cranes (GC) are used to move
containers for each ship.

• Transfer System. It transfers containers from/to the apron to/from the con-
tainer storage yard. The method used in the terminal is to employ yard trucks
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Figure 8. General view of a port container terminal

(YT) to make the transports. Transtainers are used to pick up or to put down
a container on the storage area of the yard (Figure 8).

• Container Storage System. Its purpose is to allocate and to control the con-
tainers in the yard (figure 9).

• Land Side Interface. It focuses on handling the interactions with the land
transportation modes.
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Figure 9. Transtainer view

3.3.2. System Architecture. Figure 10 shows the system architecture, the agents
are mainly characterised by their independence from the rest of the system el-
ements. They are able to coordinate and to communicate some decisions to the
rest of the system. The communication between agents is done by means of asyn-
chronous messages, which are based upon the FIPA-ACL standard. The proposed
distributed approach enhances flexibility, efficiency and robustness. Five agent
classes can be found in this system:

• The Ship agents: they control the ships load and unload sequence scheduling
process
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Figure 10. System Architecture

• The Stevedore agents: they manage the loading and unloading of all the ships
docking in the port.

• The Service agents: they distribute the containers in the port terminal.
• The Transtainer agents: they optimise the use of these machines.
• The Gate agents: they interact with the land transport (I/O of containers by

land).

3.3.3. Agent Description. This section presents the above commented agents which
forms the multi-agent approach:

The Ship Agent: In response to the arrival of a ship the system will create a
new Ship agent instance for this ship and its load profile. Its goals are: to mini-
mize the gantry crane idle time, to maximize its utilization, to minimize the ships
load/unload time, and to minimize the derived costs from the stowage process.
This work is closely related to the Stevedore agents involved, which the Ship agent
will have to co-ordinate with. The different Ship agents active at any given moment
must co-ordinate with each other as a whole to minimise the possible blockages
between the assigned cranes. The goal of this minimisation is to maximise the
active time of all the cranes and to reduce the load/unload time of each ship.

The Stevedor Agent: When a gantry crane is active loading or unloading
containers from a specific ship, the Stevedore agent will try to obtain the most
appropiate scheduling to manage the container stowage in the ships load/unload
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sequences. To develop these goals, the agent is co-ordinated with the rest of the
active Ship agents and the suitable Service agents.

The Service Agent: The Terminal has been divided into services. Each service
has assigned some specific stacking ranges. The main goal of a service agent is to
determine the appropriate allocation for the arriving containers in the Terminal
from a specific service (allocation problem) and the suitable configuration of the
portion of the yard the agent controls. The agent has to coordinate with the other
service agents in order to resolve any conflicts. The goal of the service agents is to
maximise the stacking density in its yard portion The service agent launches this
process automatically, when the agent considers it to be necessary (pro-activity).

The Transtainer Agent: Each transtainer is modelled as an autonomous agent
whose goal is to efficiently perform the stacking operations of the containers in the
yard. The transtainer agent has to minimize its empty movements. Each one of
these agents is waiting for stacking requests from the different service agents, who
facilitate the transtainer agent with:

• The containers to be moved from the stack and where they are located: this
is done for vessel or external truck loading.

• The containers to be moved to the stack and where they must be placed: this
is done for vessel or external truck unloading.

The Gate Agent: it controls the containers input and output by land. The
agent has to manage the terminal gate assigned, informing the corresponding ser-
vice agent when necessary. It will have to inform the corresponding service agent
of the new containers’ arrival (to store them) and of the trucks’ arrival (to retire
containers from the yard).

This section has presented a multi-agent system architecture for the auto-
matic allocation problem in a port container terminal . Apart from the benefits
obtained from a multi-agent approach, the independence which is obtained in all of
the presented subsystems must be pointed out. This architecture provides a main-
tenance of the necessary co-operation in order to minimise the time the ships are
in the container terminal. A first version of the system is currently implemented,
which models the container terminal function of a real port. This prototype has
been integrated integrated with a yard simulator developed at the same time.
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