
Improving the Interoperability in Multi-agent Systems

Corchado J. M. and Cuesta P.

Artificial Intelli gent Research Group
Department of Languages and Computing Systems

University of Vigo, Campus As Lagoas 32004, Ourense, Spain
Email { corchado, pcuesta} @uvigo.es

Tlf.: +34 988387010 Fax.: +34 988387001

Abstract. During the design and development of multi -agent systems, all
aspects related to interoperabilit y among each of the individual agents, that
form part of the distributed system, require special attention. This paper shows
how communication agents facilit ate the interoperabilit y between the
components of multi -agent systems. These agents are in charge of the
communication between other agents. They increment the flexibilit y of
distributed systems and facilit ate the incorporation of new agents into such
systems. A multi -agent advisory system is an example of an architecture of this
type and it is presented in this paper.

1 Introduction

This paper presents a multi -agent system architecture that facilit ate the
communication and co-operation of heterogeneous components. Multi -agent systems
represent a new way of analysing, designing and implementing complex software
systems. These systems are composed of several interacting agents. Models of
interactions are co-operation, co-ordination and negotiation. The flexibilit y and high-
level nature of these interactions provide the power of this paradigm.

An agent is a computer system, situated in some environment, which is capable of
flexible autonomous action in order to meet its design objectives [1]. An autonomous
agent is a system situated within, and a part of, an environment that senses that
environment and acts on it over time in pursuit of its own agenda and so as to effect
what it senses in the future [2].

 The term agent is used to denote a computer systems that enjoys the following
properties [1, 3]:

• Autonomy; agents operate without the direct intervention of humans (or other
agents) and have control over their own actions and internal state. In a stronger
sense, they are systems capable of learning from experience.

• Social abilit y; agents interact with other agents in order to complete their own
problem solving and to help others with their activities.

• Reactivity; agents perceive their environment and respond to changes that
occur in it. Agents receive sensory inputs from the environment and they can
perform actions in order to change the environment in some way.

• Pro-activeness; agents are able to exhibit opportunistic, goal-directed
behaviour, and take the initiative where appropriate.

The presence of these four properties in a software entity provides the power of the
agent paradigm and distinguishes agent systems from others software paradigms.

In addition to having these properties, agents could be modelled using concepts that
are more usually applied to humans. Shoham describes agents as entities with mental
states such as believes, capabiliti es, choice and commitments. These states determine
the actions that the agents perform and which can be affected by the information that
they receive [4].

Since multi -agent systems could be composed of agents implemented in different
programming languages and which could be running in different execution
environment, it is necessary to define mechanisms that guaranty the adequate
communication among the agents of the system in order to achieved the required
functionality.

This paper shows how facilit ators (communication agents) can be used in multi -
agent systems to guaranty the interoperabilit y between their components. Facilit ators
contain information about the rest of the agents of the system, including their location,
low level communication protocol, and the KQML performative [5] subset used by the
system.

Facilit ators have been used for the implementation of a multi -agent Advisory
System (MAAS). The aim of this system is to advise the students of the computing
science degree of the University of Vigo about the optional subjects that they should
enrolled.

Following, the paper describes the multi -agent system created in the framework of
this investigation and discusses the role of the agent in charged of the communication
among other agents.

2 Multi-agent Advisory System

The multi -agent system includes an advisory agent which uses a case-based reasoning
(CBR) system [6] to help students to select the most suitable subjects by taking into
consideration their background and previous experiences. Identifying and selecting the
subjects that may be more interesting or more useful for a student is a complex task.
The Spanish educational system allows students enrolled in a university degree to
select a number of “optional” subjects. The “optional” subjects must complement the
compulsory subjects and give the students the opportunity to specialise in a particular

area. Although there are students that know what they want to study in order to
achieve their academic goals, many of them have problems to select the most suitable
subjects. All students must enrol within all the compulsory subjects during the first
year; the following years they can enrol in subjects which they want and in the order
that they desire.

The architecture of the Multi -agent advisory system has been influenced by the
architecture of the Project Monitoring Intelli gent Agent (PMIA) system [7]. The aim
of the PMIA was to develop an architecture that facilit ates the design, implementation
and communication of heterogeneous autonomous dedicated agents. The intention of
the authors of the PMIA system was to study the learning abiliti es of autonomous
agents that incorporated either symbolic or connectionist problem solving
mechanisms.

The PMIA system [8] was composed of several advisory agents, which are capable
of allocating the most appropriate academic member of the staff to supervise an
undergraduate or postgraduate project. The advisory agents employ case based
reasoning and artificial neural networks (ANN) mechanisms. These agents identify an
appropriate supervisor for a student and also support project management by
scheduling students/lecturers meeting. This structure allowed the study and
comparison of artificial neural networks and case based reasoning systems and
showed how they could be used to increase the autonomy of Agents. This system
design was influenced by the agent architecture proposed by the Knowledge Sharing
Effort, used KQML and was implemented using HTML, Perl and Visual C++. The
simplicity, effectiveness and flexibilit y of this model have encouraged us to use this
architecture to build our application.

The Multi -agent advisory system (MAAS) includes personal agents (or assistants)
associated to students and lecturers, an advising agent which uses a case-based
reasoning system [6] to provide advice to students, an information agent and a
network of facilit ators or contact agents that facilit ate the interaction between agents
and with the users. This system design is also influenced by the agent architecture
proposed by the Knowledge Sharing Effort [5], using the Knowledge, Query and
Manipulation Language (KQML) for agent communication.

2.1 Components of the MAAS system

MAAS is composed of the following elements: Teacher agent generators, Teacher
agents (or assistants), Student agent generators, Student agents (or assistants),
Facilit ators, an Advisory agent, and an Information agent. Figure 1 presents a diagram
of the Multi -agent Advisory System.

Facilitators:
The agents that form part of this system use facilit ators to enable the communication
among them. This system follows the standards of the Agent Communication
Language (ACL) in order to exchange information, about their needs and capabiliti es,

with their local facilit ator. These facilit ators are in charge of searching for the most
adequate path to send the information to other facilit ators, these facilit ators pass this
information to the agents within their domain, and that are capable of satisfying the
request. Each agent includes a router capable of sending and receiving messages using
KQML, identifying a set of performatives (words) and satisfying a protocol. These
routers are independent processes, so the communication of agents is asynchronous.

Fig. 1: Architecture of the MAAS.

Teacher Agents:
Each lecturer is associated to a Teacher Agent (or assistant). The Teacher Agent
knows which subjects are taken by the lecturer associated to it. The agent obtains this
information by interrogating the lecturer. This information is stored in the virtual
knowledge base of the agent (VKB). The lecturer can modify this information at any
time sending the agent new information about the subjects that he/she is responsible
for. They have been implemented using Java and are platform independent. Lecturers
interact with their agents via Java applets and agents contact the lecturer by the email
system.

Student Agents:
Given that there are Teacher Agents, equally, there are Student Agents (or assistants)
associated with students. Student Agents work in a similar way as Teacher Agents,
such that each Student Agent is dedicated to a particular student. The Student Agent
learns about the background, areas of interest, and academic activities of the student.
This information is stored in the virtual knowledge base of the agent (VKB), together
with the advises provided by the Advisory Agent or the Teacher Agent. They have

Database

Advisory

Agents

Information

Agent
Student

Agent

Generator

Teacher

Agent

Generator

Facilitators

Student

Agents

Teacher

Agents

Facilitators

Facilitators

Facilitators

been implemented using Java and are platform independent. Students interact with
their agents via Web pages and agents contact them back by the email system. When a
lecturer or student requires a personal agent; it is created and associated to him/her.

Teacher and Student agent generators:
Lecturers and students may contact the Teacher or the Student agent generators using
a web browser and request it to create a new personal agent; after which the Teacher
or the Student agent generators generate a new teacher agent or a new student agent
and send it to the teacher's or student’s computer system. The Teacher and Student
Agent Generators are only actuators that automate the process of setting up the
Teacher and Student assistants.

Information Agent:
The task assigned to the information agent is to obtain information about the lecturers,
students and to subjects and store it in a central database. This agent receives
information related to their background, personal interest, courses that they have
attended, etc. This information is stored and retrieved from the database when the
Advisory agents need it. The information agent can only access the database; this
constraint makes it easier to maintain a consistent database.

Advisory Agent:
This agent uses a case-based reasoning system [9] to help the students to select the
most suitable optional subjects. This agent refreshes its case-base after the exam
period, when new students arrive or when a student needs to update his/her
information. When a student makes a request for advice, the contact agents selects the
appropriate advisory agent and it sends back to the student the advice. The advisory
agents can access the information of the central database via the information agent.

2.2 Case-based Reasoning System

A Case-based reasoning system is composed of 4 different stages: retrieval, reuse,
review and retain. The case based reasoning system obtains data from a case-base that
contains information about the student’s background and academic records. A CBR
system is a cyclical problem solving reasoning mechanism in which the four steps
mentioned above are run sequentially [9, 10].

In this case, during the retrieval stages the background and academic record of the
student asking for advice are compared with the cases stored in the case base. K-
nearest neighbour algorithms are used to select the most similar cases. The cases,
which are most similar to the new case, are selected. The Euclidean distance between
the retrieved cases and the problem case is used to refine the initial selection of cases
and a number of subjects are initially recommended, during the reuse step. This initial
advice is reviewed before it is sent back to the student. During the review stage the
background of the student and his/her personal aptitudes are compared with features
of the recommended subjects such as: degree of complexity, orientation (practical,
theoretical or both), requirement of knowledge of foreign languages, need for
programming skill s, knowledge of different hardware (PC, Workstation, Mackintosh),

etc. The outcome of the review process is the set of subjects that are recommended to
the student.

Learning is achieved when the student is evaluated after attending the recommended
subjects. The marks obtained in the subjects show the students performance and
ultimately the effectiveness of the advising mechanism. The outcome is used to
eliminate or modify cases and to prune the case base. If the CBR does not have cases
that match the characteristics of a particular student; the advisory agent communicates
it to a predefined lecturer who studies the case and advises the student.

2.3 Sequence of Operation

Lecturers and students can contact their correspondent teacher or student agent
generator and apply for a personal agent. The communication between lecturers and
students with the teacher or student agent generator is carried out via Java applets.
Lecturers who are teaching one or more subjects introduce information about the
subjects that they are teaching via their associated assistant. This information is stored
in a centralised database and recovered by the advisory agents when required. The
students introduce also information related to their background, areas of interest and
academic achievements. They introduce this information to the database via their
student assistants. Both Lecturers and Students communicate with their assistant
agents via Java Applets.

When a student is interested in advice, it is communicated to his/her personal
student assistant. The student assistant sends a request for advice to the corresponding
advisory agent and this agent sends back the advice. The facilit ators (contact agents)
associated to each student agent establish the communication between the agents. If
the Advisory agent is not capable of providing a reasonable answer, because there are
either contradictory or not suff icient cases in its case-base, the advising agents
communicates with a predefined lecturer (each group of students has assigned a tutor
lecturer), and the lecturer will study the individual case and send the advice to the
student. Student and lecturers can also contact each other to arrange meeting between
them using the mechanisms provided by the multi -agent system.

2.4 Agents Communication

Several communication paths can be stabili sed between agents:

• Student ⇔ Student assistant
The students contact, via Java applets, their Student Agents when they require
advice. Then the agents reply with the advice.

• Student assistant ⇔ Facilitator ⇔ Advisory Agent
The Student Agent sends a message to the Advisory Agent asking for advice
via the facilit ator, and the Advisory Agent replies with the advice, also via the
facilit ator.

• Teacher assistant ⇔ Lecturer
The Teacher Agent informs the lecturer that the Advisory Agent can not
provide advise, then the lecturer studies the particular case and provides the
advice to his/her corresponding personal agent. The lecturers communicate
with their agents using Java applets.

• Student assistant ⇔ Facilitator ⇔ Teacher assistant
The Teacher Agent sends the advice (provided by the lecturer) to the Student
Agent.

The language used, in the MAAS system, for the communication between agents is
the KQML [5, 11]. This language is based in a transport model of point-to-point
message passing.

3 Communication between agents using facilitators

There are many different types of multi -agent system architecture [7]. Each of the
Architectures described in the literature models the MAS from a different point of
view depending on the background of the researchers working in the project, the
problem to solve and the type of tools used to develop the system. In our case the
MAS has been built following three steps:

y Defining the tasks to perform by the system.
y Grouping together and conceptualising as Agents the elements and tasks

with strong relationships.
y Defining a communication mechanism between agents.

To guaranty a successful communication model it was intended to create a simple
mechanism that facilit ates the elimination and incorporation of agents to the system.
Facilit ators were used to control the information flow in the multi -agent advisory
system because they can facilit ate the communication between agents even if they are
heterogeneous. Facilit ators maintain information about the other agents that form part
of the system. This information is basically the address in which to locate them, what
type of agents are, what information can receive and send (and how) and the state of
the agent (active, inactive or waiting for response).

In the present system agents have been implemented in Java, C and C++ and all of
them are installed on a PC, except the information agent, which functions within a
UNIX workstation and interacts with an ORACLE database. The use of facilit ators
has allowed the interoperabilit y of components implemented in different computing
languages and installed in different computer architectures. Java applets allows the
communication between the components of the systems and the users. Since
facilit ators and agents use a predefined subset of KQML performatives it is also easy
to incorporate new components in the system. If such new component are
implemented using a different software or hardware architecture than the architecture
of the existing agents, the design of a new facilit ator, which is capable of

communicating with the already existing facilit ators and with the new components,
shall be required. Then if new components need to be incorporated into the system it
can easily be done.

Student and Lecturer assistants are associated to two facilit ators to guaranty a reliable
service because these components are spread in several networks with heave
information traff ic.

4 Conclusion

This architecture facilit ates the construction of distributed systems and makes it
possible to create successful multi -agent systems in a relatively simple manner. The
systems built following this model are also flexible in the sense that they can
automatically increase or decrease the number of agents that compose the system. This
model of interaction also facilit ates the communication and co-operation between
heterogeneous components of multi -agent systems. As shown in this paper, facilit ators
offer the possibilit y of integrating components with different characteristics
(implementation languages and execution environments).

References

1. Jennings N. R., Sycara K., Wooldridge M. (1998). A Roadmap of Agent Research
and Development. Autonomous Agents and Multi -Agent, Systems Volume 1, Issue
1, 1998. pp. 7-38

2. Franklin, S., Graesser A. (1996). Is it an Agent, or just a Program?: A Taxonomy
for Autonomous Agents. Proceedings of the Third International Workshop on
Agent Theories, Architectures, and Languages. Springer-Verlag, 1996.

3. Wooldrige M., Jennings N.R. (1995). Intelli gent Agents: Theory and Practice. The
Knowledge Engineering Review, vol. 10(2) pp. 115-152, 1995.

4. Shoham Y. (1993). Agent-oriented Programming. Artificial Intelli gence, 60 (1):
51-52, 1993.

5. Finin T., Weber J., Wiederhold G., Genesereth M., Fritzson R., McGuire J.,
Shapiro S., Beck C., (1993) “Specification of the KQML Agent-Communication
Language.” , 1993.

6. Aamodt A. and Plaza E. (1994). Case-Based Reasoning: foundational Issues,
Methodological Variations, and System Approaches. AICOM. Vol. 7. No 1.
March 1994.

7. Corchado J.M., Lees B., Fyfe C. (1997). “Proyect Monitoring Intelli gent Agent
System: Communication and Coordination” , Technical Report, University of
Paisley, September 1997.

8. Corchado J. M., Lees B., Rees N. (1997) “A Multi -agent System “Test Bed” For
Evaluating Autonomous Agents” , Proceedings of the First International
Conference on Autonomous Agents, Marina del Rey, Cali fornia, February 5-8.
1997

9. Kolodner J., (1993). Case-Based Reasoning. Morgan Kaufmann, 1993.
10. C. K. Riesbeck, R. C. Schank, “ Inside Case-Based Reasoning” , Lawrence Erlbaum

Ass. Hill sdale, 1989.
11. KQML, Knowledge, Query and Manipulation Language,

http://www.cs.umbc.edu/kqml/

