
 

L. Correia, L.P. Reis, and J. Cascalho (Eds.): EPIA 2013, LNAI 8154, pp. 13–20, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Multi-agent System for Controlling a Cloud Computing 
Environment 

Fernando de la Prieta1, María Navarro1, Jose A. García1,  
Roberto González2, and Sara Rodríguez1 

1 University of Salamanca, Computer Science and Automatic Control Department  
Plaza de la Merced s/n, 37007, Salamanca, Spain  

{fer,mar90ali94,rgonzalezramos,srg,jalberto}@usal.es  
2 Centro de Innovación Tecnológica CENIT, Salamanca, Spain  

jgarccor@insags.com 

Abstract. Nowadays, a number of computing paradigms have been proposed, 
of which the latest one is known as Cloud computing. Cloud computing is  
revolutionizing the services provided through the Internet, and is continually 
adapting itself in order to maintain the quality of its services. In this paper is 
proposes a cloud platform for storing information and files by following the 
cloud paradigm. Moreover, a cloud-based application has been developed to va-
lidate the services provided by the platform. 

Keywords: Cloud Computing, muti-agent system, agent-based cloud compu-
ting, cloud storage, utility computing. 

1 Introduction 

The term “Cloud Computing” defined the infrastructure as a “Cloud” from which 
businesses and users are able to access applications from anywhere in the world on 
demand. Thus, the computing world is rapidly transforming towards developing  
software for millions to consume as a service, rather than to run on their individual 
computers. As a result, the number of both closed and open source platforms has been 
rapidly increasing [2]. Although at first glance this may appear to be simply a tech-
nological paradigm, reality shows that the rapid progression of Cloud Computing is 
primarily motivated by economic interests that surround its purely computational or 
technological characteristics [1].Since user requirements for cloud services are varied, 
service providers have to ensure that they can be flexible in their service delivery 
while keeping the users isolated from the underlying infrastructure.  

Nowadays, the latest paradigm to emerge is that of Cloud computing which prom-
ises reliable services delivered through next-generation data centers that are built on 
virtualized compute and storage technologies. Cloud computing platforms has proper-
ties of clusters or grids environments, with its own special attributes and capabilities 
such strong support for virtualization, dynamically composable services with Web 
Service interfaces, value added services by building on Cloud compute, application 



14 F. de la Prieta et al. 

 

services and storage. On this last point, it is important to note that information storage 
is not performed in the same way today as it was in the past. During the incipient 
stages of computer sciences, information was stored and accessed locally in comput-
ers. The storage process was performed in different ways: in data files, or through  
the use of database management systems that simplified the storage, retrieval and 
organization of information, and were able to create a relationship among the data. 
Subsequently, data began to be stored remotely, requiring applications to access the 
data in order to distribute system functions; database system managers facilitated this 
task since they could access data remotely through a computer network. Nevertheless, 
this method had some drawbacks, notably that the users had to be aware of where the 
data were stored, and how they were organized. Consequently, there arose a need to 
create systems to facilitate information access and management without knowing the 
place or manner in which the information was stored, in order to best integrate infor-
mation provided by different systems. 

This paper presents a Cloud architecture developed in the +Cloud system [5] to 
manage information. +Cloud is a Cloud platform that makes it possible to easily de-
velop applications in a cloud. Information access is achieved through the use of REST 
services, which is completely transparent for the installed infrastructure applications 
that support the data storage. In order to describe the stored information and facilitate 
searches, APIs are used to describe information, making it possible to search and 
interact with different sources of information very simply without knowing the  
relational database structure and without losing the functionality that they provide. 
Finally, in order to validate the functionality of the services proposed by the +Cloud 
platform, the paper presents Warehouse 3.0, a cloud storage application.  

This paper is structured as follows: the next section provides an overview of the 
+Cloud platform; Section 3 presents the cloud-based application developed to validate 
the services provided by the platform: Warehouse 3.0; and finally some conclusions 
are shown.  

2 +Cloud Platform 

The platform is composed by a layered structure that coincides with the widely  
accepted layered view of cloud-computing [3]. This platform allows services to be 
offered at the PaaS (Platform as a Service) and SaaS (Software as a Service) levels. 

The SaaS (Software as a Service) layer is composed of the management applica-
tions for the environment (control of users, installed applications, etc.), and other 
more general third party applications that use the services from the PaaS (Platform  
as a Service) layer. At this level, each user has a personalized virtual desktop  
from which they have access to their applications in the Cloud environment and to a 
personally configured area as well. The next section presents the characteristics and 
modules of PaaS Layer in +Cloud and +Cloud in greater detail. Both the PaaS and 
SaaS layers are deployed using the internal layer of the platform, which provides a 
virtual hosting service with automatic scaling and functions for balancing workload. 
Therefore, this platform does not offer an IaaS (Infrastructure as a Service) layer.  



 Multi-agent System for Controlling a Cloud Computing Environment 15 

 

The virtual and physical resources are managed dynamically. To this end, a virtual 
organisation of intelligent agents, that is off the topic covered in this paper, and that 
monitor and manage the platform resources is used [4][5]. 

The PaaS Layer provides its services as APIs, offered in the form of REST web 
services. The most notable services among the APIs are the identification of users and 
applications, a simple non-relational database, and a file storage service that provides 
version control capabilities and emulates a folder-based structure. 

The services of the Platform layer are presented in the form of stateless web  
services. The data format used for communication is JSON, which is more easily 
readable than XML and includes enough expression capability for the present case. 
JSON is a widely accepted format, and a number of parsing libraries are available for 
different programming languages. These libraries make it possible to serialize and de-
serialize objects to and from JSON, thus facilitating/simplifying the usage of the 
JSON-based APIs. 

The FSS (File Storage Service) provides an interface to a file container by emulat-
ing a directory-based structure in which the files are stored with a set of metadata, 
thus facilitating retrieval, indexing, searching, etc. The simulation of a directory struc-
ture allows application developers to interact with the service as they would with a 
physical file system. A simple mechanism for file versioning is provided. If version 
control is enabled and an existing file path is overwritten with another file, the first 
file is not erased but a new version is generated. Similarly, an erased file can be re-
trieved using the “restore” function of the API. In addition to being organized hierar-
chically, files can be organized with taxonomies using text tags, which facilitates the 
semantic search for information and makes the service more efficient. The following 
information is stored for each file present in the system: (i) Its virtual path as a com-
plete name and a reference to the parent directory. (ii) Its length or size in bytes. (iii) 
An array of tags to organize the information semantically. (iv) A set of metadata. (v) 
Its md5 sum to confirm correct transfers and detect equality between versions. (vi) Its 
previous versions. 

Web services are implemented using the web application framework Tornado1 for 
Python. While Python provides excellent maintenance and fast-development capabili-
ties, it falls short for intensive I/O operations. In order to keep file uploads and 
downloads optimized, the APIs rely on the usage of the Nginx2 reverse proxy for the 
actual reads and writes to disk. The actual file content is saved in a distributed file 
system so that the service can scaled, and the workload is distributed among the fron-
tend servers by a load balancer. The structure of the service allows migrating from 
one distributed file system to another without affecting the client applications.  

File metadata and folder structure are both stored in a MongoDB3 database cluster, 
which provides adequate scalability and speed capabilities for this application. Web 
service nodes deploy Tornado and Nginx as well as the distributed file system clients  
 

                                                           
1 http://www.tornadoweb.org/ 
2 http://nginx.org/ 
3 http://www.mongodb.org/ 



16 F. de la Prieta et al. 

 

Table 1. Restfull web services exposed by FSS 

REST Web Call Description 

PutFile creates a new file (or a new version of an existing file) in response to a 
request containing the file and basic metadata (path, name and tags) in 
JSON, structured in a standard multipart request. 

Move changes the path of a file or a folder 

Delete deletes a file. Can include an option to avoid the future recovery of the file, 
erasing it permanently 

GetFolderContents returns a JSON array with a list of the immediate children nodes of a specif-
ic directory. 

GetMetadata returns the metadata set of a file or directory providing its identifier or full 
path. 

GetVersions returns the list of all the recoverable versions of a file. 

DownloadFile returns the content of a file (a specific older version can be specified). 

Copy creates a copy of a file or a recursive copy of a folder. 

CreateFolder creates a new folder given its path. 

DeleteVersion permanently deletes a specific version of a file. 

Find returns a list of the children nodes of a folder (recursively). 

GetConfiguration retrieves the value of a configuration parameter for the application. 

SetConfiguration sets the value of a configuration parameter (e.g. enabling or disabling ver-
sion control) 

GetSize retrieves the size of a file. If a folder path is passed, then the total size of the 
folder is returned. 

RestoreVersion sets an older version of a file as the newest. 

Undelete restores a file. 

 
(GlusterFS4/NFS), and the access to the MongoDB cluster that can be located either 
within or exterior to the nodes. 

The OSS (Object Storage Service) is a document-oriented and schemaless database 
service, which provides both ease of use and flexibility. In this context, a document is 
a set of keyword-value pairs where the values can also be documents (this is a nested 
model), or references to other documents (with very weak integrity enforcement). 
These documents are grouped by collections, in a manner similar to how tuples are 
grouped by tables in a relational database. Nevertheless, documents are not forced to 
share the same structure. A common usage pattern is to share a subset of attributes 
among the collection, as they represent entities of an application model. By not need-
ing to define the set of attributes for the object in each collection, the migration be-
tween different versions of the same application and the definition of the relationships 
among the data become much easier. Adding an extra field to a collection is as easy  
as sending a document with an extra key. A search on that key would only retrieve 
objects that contain it. The allowed types of data are limited to the basic types present 

                                                           
4 http://www.gluster.org/ 



 Multi-agent System for Controlling a Cloud Computing Environment 17 

 

in JSON documents: strings, numbers, other documents and arrays of any of the  
previous types. 

As with the FSS, the web service is implemented using Python and the Tornado 
framework. By not managing file downloads or uploads, there is no need to use the 
reverse proxy that manages them in every node; therefore Nginx is used only to bal-
ance the workload at the entry point for the service. 

Table 2. Restfull web services exposed by OSS 

REST Web Call Description 

Create creates a new object inside a collection according to the data provided. It 
returns the created object, adding the newly generated identifier. If the 
collection does not exist, it is created instantly. 

Retrieve retrieves all objects that match the given query. 

Update updates an object according to the data provided (the alphanumeric identi-
fier of the object must be provided). 

Delete deletes all objects that match the given query. 

 
The Identity Manager is in charge of offering authentication services to both cus-

tomers and applications. Among the functionalities that it includes are access control 
to the data stored in the Cloud through user and application authentication and valida-
tion. Its main features are: 

• Single sign-on web authentication mechanism for users. This service allows the 
applications to check the identity of the users without implementing the authentica-
tion themselves. 

• REST calls to authenticate application/users and assign/obtain their roles in the 
applications within the Cloud. 

3 Warehouse 

Every user has a root folder that contains all their data. The information stored by a 
user can be shared with other users through invitations for specific folders or using 
the user’s “Public” folder. It is also possible to create groups of users, which work in 
a similar way to e-mail groups, in order to allow massive invitations. The user inter-
face is updated asynchronously by using WebSockets. The changes made by a user 
over a shared resource are automatically displayed in the browsers of the other users. 
The application has syntactic and semantic search capabilities that are applied to dif-
ferent types of files (text, images or multimedia) due to the extraction and indexing of 
both the textual content and the metadata present in those files. Furthermore, the 
search results are presented next to a tag cloud that can be used to refine the searches 
even more. Finally, the application allows users to retrieve and manipulate different 
versions of their files. This function is powered by the mechanisms present in the 
underlying file storage API that has been previously described. 

 



18 F. de la Prieta et al. 

 

 

Fig. 1. Snapshot of the user interface  

The contents of the files and the file system structure are stored in the FSS. Addi-
tional information is necessary to establish relationships between the data and to 
maintain the folder-sharing logic. This extra information is stored in the OSS. Due to 
the scalability and high-performance of the APIs, the application can execute tasks 
that will mainten the referential integrity of its model and the high number of recur-
sive operations that are necessary to move and copy folders.When a user creates a 
folder, three properties are assigned to it automatically: (i) Host user: keeps permis-
sions over the folder. A number of operations are reserved for this user: move, delete, 
rename and cancel sharing; (ii) A list of invited users, initially empty; and finally, (iii) 
A list of users with access privileges to the file, initially containing only the host user. 

This tool makes intensive usage of both the file and object storage services and it 
serves the purpose of being the first real-application test for the developed APIs. 
Warehouse is the first non-native application that has been developed for the +Cloud 
platform. Using last-generation standards such as HTML5 and WebSockets5, the tool 
allows storing and sharing information using the cloud environment. The user inter-
face is shown at Fig. 1. The available mechanisms for file uploading include 
HTML5’s drag&drop technique. The sharing algorithms are capable of multi-level 
folder sharing: a children folder of one shared folder can be shared with another list of 
users. This second group of users will only be allowed to navigate the most-nested 
folder. The actions related to folder sharing include: 

• Invite: adds a user to the list of invited users. 
• Accept or decline invitation: If the invitation is accepted, the user is added to the 

list of access-allowed users. Otherwise, the target user is removed from the list of 
invited users. 

• Leave folder: the user that leaves the folder is removed from the list of access-
allowed users. If the host user leaves the folder, the folder will be moved to  

                                                           
5 http://www.websocket.org/ 



 Multi-agent System for Controlling a Cloud Computing Environment 19 

 

another user’s space and that user will be the new host. If there is more than one 
user remaining, the current host must choose which user will be the new host. 

• Turn private: this operation can only be executed by the host user, and  deleting all 
invitations and resetting the access list. 

• Move: if the host moves the file, the other users will see a change in the reference 
to the shared folder. If the operation is done by another user, then only the refer-
ence of that user is modified (no move operation is performed). 

• Delete: only the host can execute this operation. The shared folder can be moved to 
the space of another user, or be completely removed. 

 
The next figure depicts the layered architecture of the application Warehouse 3.0. 

There are three layers, interface, control and model: (i) the interface layer is devel-
oped using HTML5 and jQuery, (ii) the control layer is developed using WebSocket 
for automatically updating runtime information among all users Warehouse using  
the system, and finally, (iii) the persistence layer that implemented a DAO pattern 
specially developed to manage the persistence of information OSS (Object Storage 
System) and files FSS (File Storage System) in the Cloud Computing environment. 

 

 

Fig. 2. Layered Architecture Warehouse 3.0 

4 Conclusions 

Cloud computing is a new and promising paradigm delivering computing services. As 
Clouds are designed to provide services to external users, providers need to be com-
pensated for sharing their resources and capabilities. In this paper, we have proposed 



20 F. de la Prieta et al. 

 

architecture, +Cloud, that has made it possible to store information in applications 
without having previously established a data model. The storage and retrieval of in-
formation is done transparently for the applications, and the location of the data and 
the storage methods are completely transparent to the user. JSON can define informa-
tion that is stored in the architecture, making it possible to perform queries that are 
more complete than those allowed by other cloud systems. This characteristic makes 
it possible to change the infrastructure layer of the cloud system, facilitating the sca-
lability and inclusion of new storage systems without affecting the applications. In 
conclusion, we have presented various Cloud efforts in practice from the service-
oriented perspective to reveal its emerging potential for the creation of third-party 
services to enable the successful adoption of Cloud computing, such as object and file 
storage infrastructure. 

Acknowledgements. This research has been supported by the project SOCIEDADES 
HUMANO-AGENTE: INMERSION, ADAPTACION Y SIMULACION. TIN2012-
36586-C03-03.(Ministerio de Ciencia e Innovación. Proyectos de Investigación Fun-
damental No Orientada). Spain. 

References 

1. Buyya, R., Yeo, C.S., Venugopal, S.: Market-oriented cloud computing: Vision, hype, and  
reality for delivering it services as computing utilities. In: 10th IEEE International Conference 
on High Performance Computing and Communications, HPCC 2008, pp. 5–13. IEEE  
(September 2008) 

2. Peng, J., Zhang, X., Lei, Z., Zhang, B., Zhang, W., Li, Q.: Comparison of several cloud 
computing platforms. In: 2nd International Symposium on Information Science and Engi-
neering, ISISE 2009, pp. 23–27. IEEE Computer Society (2009) 

3. Mell, P., Grance, T.: The Nist Definition of Cloud Computing. In: NIST Special Publica-
tion 00-145, pp. 1–3. NIST (2011) 

4. Heras, S., De la Prieta, F., Julian, V., Rodríguez, S., Botti, V., Bajo, J., Corchado, J.M.: 
Agreement technologies and their use in cloud computing environments. Progress in Ar-
tificial Intelligence 1(4), 277–290 (2012) 

5. De la Prieta, F., Rodríguez, S., Bajo, J., Corchado, J.M.: A multiagent system for resource 
distribution into a Cloud Computing environment. In: Demazeau, Y., Ishida, T., Corchado, 
J.M., Bajo, J. (eds.) PAAMS 2013. LNCS, vol. 7879, pp. 37–48. Springer, Heidelberg 
(2013) 


	Multi-agent System for Controlling a Cloud Computing Environment
	1 Introduction
	2 +Cloud Platform
	3 Warehouse
	4 Conclusions
	References




