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Abstract. This study presents a novel hybrid classifier method to obtain the 
best parameters of a PID controller for desired specifications. The study 
presents a hybrid system based on the organization of existing rules and 
classifier models that select the optimal expressions to improve specifications. 
The model achieved chooses the best controller parameters among different 
closed loop tuning methods. The classifiers are based on ANN and SVM. The 
proposal was tested on the temperature control of a laboratory stove. 
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1   Introduction 

This study describes a hybrid classifier to obtain the controller parameters based on 
PID (Proportional-Integral-Derivative) closed-loop tuning. Although the PID controller 
is one of the most traditional types of controller, researchers are still working to 
improve its behaviour and performance [1-11]. There have been several studies with 
the same objective, but they have always been oriented to a specific system [5, 9, 11]. 

Nevertheless, there are many controllers operating well below the optimal state 
[14], overcoat controllers that are not self-tuning. It has therefore become critical to 
achieve new ways to solve this problem. Many studies related to the PID controller try 
to either establish optimal parameters according to the plant, or achieve self-tuning 
controller topologies [11, 12, 13].  

The proposed topology described in this research has two phases. The first phase 
obtains characteristics of the plant response, while the second is applied to achieve the 
controller parameters by means of a hybrid classifier. The proposal makes it possible to 
achieve an intelligent topology with satisfactory results. The proposed topology only 
contemplates techniques with hard and previously tested implantation in the industry. 



One of the aims of the implementation of the hybrid classifier is to contemplate the 
largest number of possibilities. 

This study is organized as follows: section 2 provides a brief description of the 
general model; section 3 describes the tuning controller topology and briefly reviews 
the PID controller tuning in a closed-loop. Section 4 describes the hybrid classifier, 
section 5 presents empirical verification, and finally, section 6 provides conclusions 
and suggests future works. 

2   Steps to obtain the best plant controller parameters 

The procedure to obtain the best plant controller parameters to improve a given 
specification is illustrated in figure 1. 

 

Fig. 1. Flowchart to obtain controller parameters. 

As shown in figure 1, the first step in obtaining the best combination of the plant 
controller parameters involves a test signal generator. The test signal is then applied 
to the system. The next step is to measure the response characteristics. The best 
combination of the plant controller parameters is obtained by using the characteristics 
as input to the hybrid classifier, which supplies the controller with its parameters. In 
general terms, the hybrid classifier can be represented by the illustration in figure 2, 
where models based on rules [14-19] and machine learning techniques, such as 
Artificial Neural Networks (ANN) [24, 25] and Support Vector Machine [21, 22], are 
applied. After comparing the results, the best ones are chosen. 

 

Fig. 2. Model final structure. 

3   Tuning controller topology based on hybrid classifier 

The topology proposed in this study is shown in figure 3. The following 
subsections describe the different aspects of the proposed topology. 



 

Fig. 3. Tuning controller topology. 

3.1   PID controller format 

There are several topologies for PID controllers, but in this study the standard 
format represented in equation 1 is used [14, 15]. 
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where ‘u’ is the control variable and ‘e’ is the control error given by ‘e = SP – y’ 
(the difference between the set point ‘SP’ and conditioned output ‘y’ ). The other 
terms are the tuning controller parameters: proportional gain ‘K’ , integral gain ‘Ti’  
and derivate gain ‘Td’ . 

3.2   PID Controller Tuning in Closed-Loop 

General procedure to calculate parameters. Two steps are necessary to obtain the 
controller tuning parameters in a closed loop: 

• It is first necessary to set the system response to a permanent state of 
oscillation. Certain characteristics of the response must then be measured. 

• According to the information gathered from the plant response, appropriate 
expressions must be applied to obtain correct controller parameters for the 
desired specifications. 

Obtaining response characteristics in a closed-loop. Different methods can be used 
to obtain the controller parameter conditions. The present study uses the relay-
feedback method proposed by Aström and Hägglud [14]. The results are very similar 
to those obtained by the traditional method proposed by Ziegler-Nichols [16]; 
however, the former offers some very important advantages, such as: 

• The system operation is not nearly as unstable. 
• The tuning process can be carried out at any time for any working point. 



The implementation scheme of relay feedback is shown in figure 3 (switches ‘1’ to 
another position). A relay with hysteresis centred on a zero value with an amplitude d 
and a hysteresis window of width h is recommended for the general method. 

The system oscillation has a period (Tc) with approximately the same as the 
Ziegler-Nichols method. The critical gain (Kc) of the process is obtained with equation 
2, where a is the peak-to-peak value of the oscillation. 
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Obtaining controller parameters with formulas. After obtaining the Tc and Kc  
from the previous step, the controller parameters can be calculated. Many expressions 
have been developed by different authors [14, 16-19] with the aim, among others, of: 

• Improving a particular specification of the system controlled response. 
• Making the system robust to a particular criteria (Load Disturbance or Set 

Point Criteria) 
There are several studies [14-19] that have developed different expressions. Even 

control equipment manufacturers have developed their own expressions according to 
their products line. 

In this study, four methods (table 1) were taken into account: Ziegler-Nichols, 
Ziegler-Nichols some overshoot, Ziegler-Nichols without overshoot, and Tyreus-
Luyben [16-19]. All of them are for Load Disturbance rejection criteria. 

Table 1.  Expressions of Controller parameters. 

 Kp Ti Td Appl. Range 

Z-N 0.6 x Kc 0.5 x Tc 0.125 x Tc 2<k·Kc<20 
Z-N Some Ov. 0.33 x Kc Tc / 2 Tc / 3 2<k·Kc<20 
Z-N Whitout Ov 0.2 x Kc Tc Tc / 3 2<k·Kc<20 
Tyreus-Luyben 0.45 x Kc 2.2 x Tc Tc / 6.3 2<k·Kc<20 

4   Hybrid Classifier proposal 

The proposed hybrid classifier is a fusion of rules and intelligent classification 
techniques. It can be divided into two different blocks: 

• Knowledge of existing rules (1st block). The aim of this block is to organize 
different rules for application ranges, authors expressions, criterions, and so 
forth. 

• Intelligent classifiers (2nd block). This part of the model selects the most 
appropriate expressions to obtain the controller tuning parameters. 

In general terms, this novel hybrid intelligent classifier selects the best tuning 
parameters, according to the system and the desired specifications of operation. 

The next two subsections describe the hybrid model. The first shows the flowchart 
used to select the intelligent classifier. The second provides details of the classifiers. 



4.1   Flowchart of knowledge of existing rules 

After applying different methodologies of PID controller tuning in closed-loop, it 
is possible to obtain a flow-chart, as shown in figure 4. Many PID tuning rules in 
closed loop were taken into consideration to create this diagram, with the aim of 
achieving a generalized knowledge of the field. The following paragraphs explain the 
diagram in greater detail. 

 

Fig. 4. Flowchart of knowledge of existing rules. 

The flowchart is based on the premise that the plant engineer can set the system 
operation in sustained oscillation. As explained in section 3 there are several 
techniques to perform PID controller tuning in closed loop. The Relay-Feedback 
method is the most robust, making it possible to achieve better results. It is then 
necessary to determine if the system can achieve the sustained oscillation. If it is not 
possible, then this method cannot be applied to tuning in closed loop. Otherwise, with 
the system in this state it is necessary to calculate Tc and Kc parameters. 

With Tc and Kc values it is possible to obtain the K.Kc indicator, where K is the 
gain of the process. This indicator, among other functions, defines the best expressions 
to achieve the desired system response. 

The model must be able to know if the value of K.Kc is infinite or not. It is then 
possible to follow the flowchart in two ways: 

• When K.Kc is not infinite, the operators must decide if they want to use all the 
expressions anyway. If this is not the case, the closed loop tuning is not 
applicable for the contemplated expressions; otherwise, it is possible to use the 
Classifier 1. 

• When K.Kc is infinite, the operator must find out if the system is unstable. If it 
is unstable, closed loop tuning is not applicable. This means that the system 
has an integrator in its transfer function. It is then possible to use the Classifier 
2. 



4.2   Classifiers to complete the model 

As shown in figure 4, with an organization of set rules, there are two blocks 
corresponding to the intelligent classifiers (1 and 2). Three techniques were applied to 
create these blocks: decision tree, artificial neural networks (ANN) and support vector 
machines (SVM). The following paragraphs describe the formulation of the model. 

Model input. As seen in the flowchart of figure 4 and its description, K,Kc is a very 
important indicator. It defines, for instance, the application range of expressions. In 
all classifiers that were created, K.Kc was the input defining the system type, the 
system dynamics and, consequently, its controllability. 

Dataset for model creation. As in other studies, it is necessary to select 
representative systems with the objective of generalizing the model as much as 
possible. Consequently, this study is based on [20]. This research includes a list of 
very representative systems, where all real systems behave in a similar fashion. 

There is a problem with the initial dataset, which is that the K.Kc values of the 
initial systems have very close values; however the last systems have widely 
separated values. For this reason, many systems were created to solve the problem. To 
this end, a delay time is added to the 1th and 2nd order systems with Pade 
approximation [14]. Thus, a difference in the K.Kc values between consecutive 
systems is achieved, less than that of the unit. Finally 1704 systems were obtained to 
implement the classifiers. The systems obtained are balanced by controller parameter 
expressions. 

Systems specifications for each expression. Each system is tested with the four 
expressions contemplated in table 1. Four specifications are then tested for system 
response to step input: response time (Tr), settling time (Ts), overshoot (Ov) and peak 
time (Tp). As a result, it is possible to obtain the expression that gives the best 
specification value. The present study used the following tuning methods: Z&N 
(Ziegler-Nichols), Z&N wOv (Ziegler-Nichols Whitout Overshoot), Z&N sOv 
(Ziegler-Nichols some Overshoot), T&L (Tyreus-Luyven). 

Classification techniques analyzed to complete the model. Three techniques were 
taken into account to complete the model: 

• Decision tree using the J48 learning algorithm: One of the classification 
methods contemplated in this research is the decision tree [23-25]. The 
decision tree approach is one of the most common approaches in automatic 
learning and decision making. The true purpose of decision trees is to classify 
the data into different groups, according to the dependent variable [23]. The 
decision trees were obtained by using the J48 algorithm [23, 26, 27]. The J48 
algorithm was chosen because of its superior performance in most 
circumstances [27]. 

• Multilayer Perceptron (MLP): A multilayer perceptron is a feed forward 
artificial neural network [28]. It is one of the most typical ANNs due to its 



robustness and relatively simple structure. However the ANN architecture 
must be well selected to obtain good results. 

• Support Vector Machine (SVM): is a concept used in statistics and computer 
science for a set of related supervised learning methods that analyze data and 
recognize patterns. It is used for classification and regression analysis [21, 22] 
and trains a classifier by finding an optimal separating hyperplane which 
maximizes the margin between classes of data in a kernel-induced feature space 
[21, 22]. 

Classification results. For each specification (response time, settling time, overshoot 
and peak time) a classifier was created. Each set of expressions was categorized as 
follows: 

• Class A: Z-N. 
• Class B: Z-N Some Ov. 
• Class C: Z-N Whitout Ov 
• Class D: Tyreus-Luyben 

Five different parameters were used to measure performance: Sensitivity (SE), 
Specificity (SPC), Positive Prediction Value (PPV), Negative Prediction Value (NPV) 
and Accuracy (ACC) (see equations from 3 to 7 respectively). 
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where TP is the number of True Positive, TN is the number of True Negative, FN is 
the number of False Negative and FP is the number of False Positive. 

In all cases k-fold cross-validation was used to split the dataset into a reasonable 
value that obtains good results. The k value is 10 for all models. For the decision tree 
classification the algorithm chosen was J48, which has the following configuration 
parameter values: 0.25 for the confidence threshold for pruning, and 2 for the 
minimum number of instances per leaf. In the case of MLP, tests were performed with 
2 and 3 hidden layers, with the second value providing the best results. The number of 
neurons in hidden layers is within the range of 10-15. The activation functions tested in 
the hidden layer were: log sigmoid and tangent sigmoid. The tangent function achieved 
the best results. The activation function of the output layer is the log sigmoid. The 



Winner Take All (WTA) technique was used to obtain the class provided by the MLP 
output. For SVM the selected kernel was the Gaussian radial basis function. For this 
technique, 15 different values were assigned for parameter γ (in a range from 2-12 to 23) and 
17 different values for parameter C (from 2-5 to 212). A total of 255 (15x17) different 
combinations of parameters were taken into account. 

Table 2.  Percentage of correct classification for two Classifier Models 

Model data Training data 
Response Time (Tr) Overshoot (Ov) 

J48 MLP SVM J48 MLP SVM 
Classifier 1 1704 81 93 95 83 92 94 
Classifier 2 1704 78 94 96 86 95 93 

Model data Training data 
Settling Time (Ts) Peak Time (Tp) 

J48 MLP SVM J48 MLP SVM 
Classifier 1 1704 87 94 91 79 91 93 
Classifier 2 1704 83 94 93 80 93 95 

Table 3.  Confusion Matrix for classification rate of Ov of Classifier 2 using MLP. 

  Method chosen by model 
Desired 
Method 

A B C D 

A 399 9 15 3 
B 9 401 6 10 
C 10 18 383 15 
D 17 12 19 378 
     

TP 399 401 383 378 
TN 1242 1239 1238 1250 
FP 36 39 40 28 
FN 27 25 43 48 
     

SE 0,937 0,941 0,899 0,887 
SPC 0,972 0,969 0,969 0,978 
PPV 0,917 0,911 0,905 0,931 
NPV 0,979 0,980 0,966 0,963 
ACC 0,963 0,962 0,951 0,955 

 
Table 2 shows the percentage of correct classification using the previously 

mentioned techniques for the two classifiers. In each case, the selected classifier is the 
one that achieves the best percentage of correct classification (table 2 values in bold). 

For all the cases considered in table 2, the best configuration for each technique 
used was selected. The confusion matrix was created in each case. An example of 
confusion matrix is shown in table 3 where Overshoot (Ov) is tested for Multi Layer 
Perceptron case. 



5   Empirical verification with a physical plant 

An empirical verification of the Hybrid Classifier presented in this study was 
performed at a laboratory plant (figure 5) in which the temperature is controlled by 
adjusting the power provided to the heater element inside. 

5.1   The physical description 

The temperature variable depends on the following parameters: T1(t) is the 
temperature measured outside the stove; V is the air volume in the stove; SP(t) is the 
set point for the desired temperature; T2(t) is the measured temperature in the 
recipient; u(t) is the signal control to operate the heating element; Kv and Kt are 
constants related to the features of the heating element properties and the temperature 
sensor respectively. 

5.2   Implementation of the control 

The test was performed in the Labview® environment. For operations at the plant, a 
National Instruments data acquisition card (model USB-6008 12-bit 10 KS /s 
Multifunction I/O) was chosen. The diagram of the process is implemented in 
Labview® editor with the control Scheme shown in figure 6. Different gain blocks 
were added to adapt signals to all operation range. 

  

Fig. 5. Photograph and scheme of the real plant 

It was necessary to add a filter block with an edge frequency of 1.5 rad/sec (9.5Hz) 
in order to reduce noise from the analog input. Using a switch it is possible to select 
either a PID control or Relay-Feedback configuration. Figure 7 shows the internal 
implementation of a PID block. PID controller gains (Ti, Td, and Kp) are 
programmed manually. 

 

Fig. 6. Control scheme implemented in Simulink 



 

Fig. 7. PID block internal scheme 

5.3   Practical behavior of Hybrid Classifier application onto the plant 

Some tests were performed on the physical system previously described in section 
5.1, with the aim of checking the behavior of the novel Hybrid classifier model. 

If the hybrid classifier is applied to the physical system with a set point of 35 ºC 
and the temperature outside is 20 ºC, the expressions chosen are Tyreus-Luyben. The 
system response with a step input for the working point of the design is shown in 
figure 8. Figure 9 shows the response with a step input for a traditional Ziegler-Nichols 
method in closed loop. As seen in these figures, the hybrid classifier model takes the 
best expressions contemplated in this study to achieve the best overshoot. Perturbations 
are introduced in both cases, first with the fan and then with the heating element “A”, 
both of which are included in the stove. Comparing figures 8 and 9, it is apparent that 
the first method (from the hybrid classifier) is more robust. 

6   Conclusions 

A Hybrid Classifier was presented in this study, and tested with a practical 
application where a PID controller was used. The best advantage offered by the 
method is that it ensures the most appropriate selection of the contemplated 
expressions in order to obtain the PID controller parameters. 

It should be noted that the novel model is easy to expand to other system types, 
such as: level control, pressure control, humidity control, and so forth. At that point, it 
is only necessary to contemplate the new systems in order to create the Hybrid 
Classifiers. The rest of the model is completely valid. 

With the aim of obtaining the best results, more than one technique was taken into 
account. The final classifier, among the typical rules of PID controller, includes two 
techniques in the final stage (ANN and SVM), according to where they achieve the 
best results. 

Several future research lines will be considered, two of which are of particular 
importance. Firstly it is necessary to consider the responses of the physical plant in 
creating the hybrid classifier. The other important future research line is to perform 
tests with real industrial plants and include them in the adaptive mechanism model in 
order to create a more versatile the tool. 



 

Fig. 8. System response with method from Hybrid Classifier 

 

Fig. 9. System response with traditional Ziegler-Nichols method in closed-loop 
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