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Abstract

This paper present a class of investment problem, in
which many items could be chosen in a group decision envi-
ronment. Usually there is a decision table from the board of
directors after discussions. Most of the data come from their
experience or estimation. The information is redundant and
inaccurate. Swarm-based rough set approach is introduced
to make an attempt to solve the problem. Rough set the-
ory provides a mathematical tool that can be used for both
feature selection and information reduction. The swarm-
based reduction approaches are attractive to find multiple
reducts in the decision systems, which could be applied to
generate multiple investment planning and to improve the
decision. Empirical results illustrate that the approach can
be applied for the class of investment problems effectively.

1 Introduction

Investment problem is one of the most popular issues in
today’s economic life. Usually nobody knows accurately
which investment planning is absolutely right and wise be-
fore the last result is made a showdown. Rough set theory
[1, 2, 3, 4] provides a mathematical tool that can be used
for the inaccurate and redundant information. It helps us to
find out the minimal item sets called ‘reducts’ to make a de-
cision. A good investment planning is from the judgments
of multiple directors or experts. So the reduct of the infor-
mation system is usually not unique. There may be many
subsets of items, which preserve the equivalence class struc-
ture expressed in the information system. Although several
variants of reduct algorithms are reported in the literature,
at the moment, there is no accredited best heuristic reduct
algorithm. What’s more, conventional rough set-based in-
formation reduction usually tries to find a good reduct or to

select a set of features [5].
Particle swarm algorithm is inspired by social behav-

ior patterns of organisms that live and interact within large
groups. In particular, it incorporates swarming behaviors
observed in flocks of birds, schools of fish, or swarms
of bees, and even human social behavior, from which the
Swarm Intelligence (SI) paradigm has emerged [6]. The
swarm intelligent model helps to find optimal regions of
complex search spaces through interaction of individuals
in a population of particles [7, 8, 9, 10]. As an algo-
rithm, its main strength is its fast convergence. It has exhib-
ited good performance across a wide range of applications
[11, 12, 13, 14]. Swarm-based approaches are of great use
in the multiple reduction search, because different individ-
ual trends to be encoded to different reducts. The particle
swarm algorithm is particularly attractive for rough set re-
duction to discover multiple reducts or the best item combi-
nations as they proceed throughout the search space [15].

The main focus of this paper is to investigate swarm-
based rough set reduction algorithm and its application in
finding multiple reducts for the investment problem. The
rest of the paper is organized as follows. Some related terms
and theorems on rough set theory are explained briefly in
Section 3. Particle swarm approach for reduction is intro-
duced in Section 4. The algorithm performance demonstra-
tion are given in Section 5 and finally conclusions are given
in Section 6.

2 Problem Description

It would be related to the company’s survival to decide
how to operate limited investment funds. Usually it depends
on the Board of Directors to discuss the solutions. It is dif-
ficult to draw a unanimous conclusion. They are unwilling
to follow the majority rule simply, since the truth often lies
in the hands of a minority. There would also be great risk



Table 1. A group decision planning informa-
tion.

Planning estate stock fund bond profit
p1 1 1 1 1 10
p2 2 2 2 1 20
p3 1 1 1 1 10
p4 2 3 2 3 10
p5 2 2 2 1 20
p6 3 1 2 1 10
p7 1 2 3 2 30
p8 2 3 1 2 40
p9 3 1 2 1 20
p10 1 2 3 2 30
p11 3 1 2 1 20
p12 2 3 1 2 40
p13 4 3 4 2 20
p14 1 2 3 2 40
p15 4 3 4 2 30

if they “put all eggs in one basket”. They list all the invest-
ment items and evaluate the profits. Although the president
of the board can make a decision arbitrarily, he/she is re-
luctant to do so for their own benefits and collective bene-
fits reluctantly. They turn to score the potential investment
planning together with some employed experts or consul-
tants. For example, Table 1 shows some investment plan-
ning information. In p4, there would be 2 units of the real
estate investment, 3 units of stock, 2 units of funds, and buy
3 units of the national bonds, then 10 units of expected prof-
its. All the investment planning would not be judged simply
through the expected profits, which are not both accurate
and reliable. It is possible not to isolate completely each in-
vestment in real estate and investment in government bonds.
In the current economic crisis, U.S. Government sells the
national bonds for getting the funds to remedy the real es-
tate market. It is also possible that some of the considered
items make no contribution for the profits.

3 Rough Set Reduction

The basic concepts of rough set theory and its philosophy
are presented and illustrated with examples in [1, 2, 3, 4, 5,
16, 17, 18]. Here, we illustrate only the relevant basic ideas
of rough sets that are relevant to the present work.

In rough set theory, an information system is denoted
in 4-tuple by S = (U,A, V, f), where U is the uni-
verse of discourse, a non-empty finite set of N objects
{x1, x2, · · · , xN}. A is a non-empty finite set of attributes

such that a : U → Va for every a ∈ A (Va is the value set
of the attribute a).

V =
⋃

a∈A

Va

f : U × A → V is the total decision function (also called
the information function) such that f(x, a) ∈ Va for every
a ∈ A, x ∈ U . The information system can also be defined
as a decision table by T = (U,C,D, V, f). For the decision
table, C and D are two subsets of attributes. A = {C ∪D},
C ∩ D = ∅, where C is the set of input features and D is
the set of class indices. They are also called condition and
decision attributes, respectively.

Let a ∈ C∪D, P ⊆ C∪D. A binary relation IND(P ),
called an equivalence (indiscernibility) relation, is defined
as follows:

IND(P ) = {(x, y) ∈ U × U |∀a ∈ P, f(x, a) = f(y, a)}
(1)

The equivalence relation IND(P ) partitions the set U into
disjoint subsets. Let U/IND(P ) denote the family of all
equivalence classes of the relation IND(P ). For simplicity
of notation, U/P will be written instead of U/IND(P ).
Such a partition of the universe is denoted by U/P =
{P1, P2, · · · , Pi, · · · }, where Pi is an equivalence class of
P , which is denoted [xi]P . Equivalence classes U/C and
U/D will be called condition and decision classes, respec-
tively.
Positive Region: Given a decision table T =
(U,C, D, V, f). Let B ⊆ C. The B-positive region
of D is the set of all objects from the universe U which can
be classified with certainty to classes of U/D employing
features from B, i.e.,

POSB(D) =
⋃

X∈U/B∧∀x,y∈X⇒f(x,D)=f(y,D)

X. (2)

Dependency degree: Given a decision table T =
(U,C, D, V, f). For given U/C = {x1, x2, · · · , xn},
U/D = {Y1, Y2, · · · , Ym}, then dependency degree of D
with respect to C is defined as follow:

kC(D) =
1
|U |

m∑

i=1

|POSC(Yi)|. (3)

where |U | is the cardinality of U , POSC(Yi) denotes
the positive region of Yi with respect to C. Obviously,
0 ≤kC(D)≤ 1. If kC(D)=1, D depends totally on C. This
means that the partition generated by C is finer than the par-
tition generated by D. If kC(D)= 0, D is independent totally
of C. It means that C has no effect on decision result for D.
If 0 < kC(D) < 1, we say that D depends partially on C in
degree kC(D).
Significance of attributes: Given a decision table T =
(U,C, D, V, f). The significance of an attribute c (c ∈ C)



with respect to D is defined as follow:

sigD(c) = kC(D)− kC−{c}(D). (4)

Obviously, 0 ≤sigD(c)≤ 1. If C = {c}, then sigD(c) =
kC(D) − k∅(D) = kC(D), where k∅(D) = 0. The sig-
nificance of an attribute can be evaluated by measuring ef-
fect of removing the attribute from an information table
on decision defined by the Table, which generalizes the
idea of attribute reduction. The two concepts enable us
the evaluation of attributes not only by two-valued scale,
indispensable − dispensable, but by assigning to an at-
tribute a real number from the interval [0, 1] to express its
significance in the decision environment.
Reduct: Given a decision table T = (U,C, D, V, f). The
attribute a ∈ B ⊆ C is D − dispensable in B, if
POSB(D) = POS(B−{a})(D); otherwise the attribute
a is D − indispensable in B. If all attributes a ∈
B are D − indispensable in B, then B will be called
D − independent. A subset of attributes B ⊆ C is a
D − reduct of C, iff POSB(D) = POSC(D) and B is
D − independent. It means that a reduct is the minimal
subset of attributes that enables the same classification of
elements of the universe as the whole set of attributes.
Reduced Positive Universe and Reduced Positive Region:
Given a decision table T = (U,C,D, V, f). Let U/C =
{[u′1]C , [u

′
2]C , · · · , [u

′
m]C}, Reduced Positive Universe U

′

can be written as:

U
′
= {u′1, u

′
2, · · · , u

′
m}. (5)

and

POSC(D) = [u
′
i1 ]C ∪ [u

′
i2 ]C ∪ · · · ∪ [u

′
it
]C . (6)

Where ∀u′is
∈ U

′
and |[u′is

]C/D| = 1(s = 1, 2, · · · , t).
Reduced positive universe can be written as:

U
′
pos = {u′i1 , u

′
i2 , · · · , u

′
it
}. (7)

and ∀B ⊆ C, reduced positive region

POS
′
B(D) =

⋃

X∈U ′/B∧X⊆U ′pos∧|X/D|=1

X (8)

where |X/D| represents the cardinality of the set X/D.
∀B ⊆ C, POSB(D) = POSC(D) if POS

′
B = U

′
pos

[18]. It is to be noted that U
′

is the reduced universe, which
usually would reduce significantly the scale of datasets. It
provides a more efficient method to observe the change of
positive region when we search the reducts. We do not have
to calculate U/C, U/D, U/B, POSC(D), POSB(D)
and then compare POSB(D) with POSC(D) to determine
whether they are equal to each other or not. We only calcu-
late U/C, U

′
, U

′
pos, POS

′
B and then compare POS

′
B with

U
′
pos.

4 Planning Reduction and Selection

Given a decision table T = (U,C,D, V, f), the set of
condition attributes, C, consist of m attributes. We set up
a search space of m dimension for the rough set reduction.
Accordingly each particle’s position is represented as a bi-
nary bit string of length m. Each dimension of the particle’s
position maps one condition attribute. The domain for each
dimension is limited to 0 or 1. The value ‘1’ means the cor-
responding attribute is selected while ‘0’ not selected. Each
position can be “decoded” to a potential reduction solution,
a subset of C. The particle’s position is a series of priority
levels of the attributes. The sequence of the attribute will
not be changed during the iteration. But after updating the
velocity and position of the particles, the particle’s position
may appear real values such as 0.4, etc. It is meaningless
for the reduction. Therefore, we introduce a discrete parti-
cle swarm optimization for this combinatorial problem.

During the search procedure, each individual is evalu-
ated using the fitness. According to the definition of rough
set reduct, the reduction solution must ensure that the deci-
sion ability is the same as the primary decision table and
the number of attributes in the feasible solution is kept
as low as possible. In the proposed algorithm, we first
evaluate whether the potential reduction solution satisfies
POS

′
E = U

′
pos or not (E is the subset of attributes repre-

sented by the potential reduction solution). If it is a feasible
solution, we calculate the number of ‘1’ in it. The solution
with the lowest number of ‘1’ would be selected. For the
particle swarm, the lower number of ‘1’ in its position, the
better the fitness of the individual is.

As a summary, the particle swarm model consists of a
swarm of particles, which are initialized with a popula-
tion of random candidate solutions. They move iteratively
through the d-dimension problem space to search the new
solutions, where the fitness f can be measured by calculat-
ing the number of condition attributes in the potential re-
duction solution. Each particle has a position represented
by a position-vector ~pi (i is the index of the particle), and a
velocity represented by a velocity-vector ~vi. Each particle
remembers its own best position so far in a vector ~p#

i , and
its j-th dimensional value is p#

ij . The best position-vector
among the swarm so far is then stored in a vector ~p∗, and its
j-th dimensional value is p∗j . When the particle moves in a
state space restricted to zero and one on each dimension, the
change of probability with time steps is defined as follows:

P (pij(t) = 1) = f(pij(t−1), vij(t−1), p#
ij(t−1), p∗j (t−1)).

(9)
where the probability function is

Γ(vij(t)) =
1

1 + e−vij(t)
. (10)

At each time step, each particle updates its velocity and



moves to a new position according to Eqs.(11) and (12):

vij(t) = wvij(t− 1) + c1r1(p
#
ij(t− 1)− pij(t− 1))

+ c2r2(p∗j (t− 1)− pij(t− 1)).
(11)

pij(t) =

{
1 if ρ < Γ(vij(t));
0 otherwise.

(12)

Where c1 is a positive constant, called as coefficient of
the self-recognition component, c2 is a positive constant,
called as coefficient of the social component. r1 and r2 are
the random numbers in the interval [0,1]. The variable w is
called as the inertia factor, which value is typically setup to
vary linearly from 1 to near 0 during the iterated processing.
ρ is a random number within the closed interval [0, 1]. From
Eq.(11), a particle decides where to move next, considering
its current state, its own experience, which is the memory of
its best past position, and the experience of its most success-
ful particle in the swarm. The pseudo-code for the particle
swarm search method is illustrated in Algorithm 1. Since
usually the maximum investment is preferable within the
fund limits, the larger planning would be chosen.

Algorithm 1 A Rough Set Reduct Algorithm Based on Par-
ticle Swarm Optimization Algorithm

01.Calculate U
′
, U

′
pos using Eqs.(5) and (7).

02. Initialize the size of the particle swarm n,
02. and other parameters.
03. Initialize the positions and the velocities
03. for all the particles randomly.
04.While (the end criterion is not met) do
05. t = t + 1;
06. Calculate the fitness value of each particle,
06. if POS

′
E 6= U

′
pos, the fitness is punished

06. as the total number of the condition attributes,
06. else the fitness is the number of ‘1’ in the position.
07. ~p∗ = argminn

i=1(f(~p∗(t− 1)),
07. f(~p1(t)), f(~p2(t)), · · · , f(~pi(t)), · · · , f(~pn(t)));
08. For i= 1 to n
09. ~p#

i (t) = argminn
i=1(f(~p#

i (t− 1)), f(~pi(t));
10. For j = 1 to d
11. Update the j-th dimension value of ~pi and ~vi

11. according to Eqs.(11) and (12);
12. Next j
13. Next i
14.End While.

5. Algorithm Performance Demonstration

To analyze the effectiveness and performance of the con-
sidered algorithm, we tested the investment problem shown

Table 2. Parameter settings for the algorithm.

Parameter name Value
Swarm size (even)(int)(10 + 2 ∗ sqrt(D))
Self coefficient c1 0.5 + log(2)
Social coefficient c2 0.5 + log(2)
Inertia weight w 0.91
Clamping Coefficient ρ 0.5

Table 3. A decision table.

Planning c1 c2 c3 c4 d
p1 1 1 1 1 1
p2 2 2 2 1 2
p3 1 1 1 1 1
p4 2 3 2 3 1
p5 2 2 2 1 2
p6 3 1 2 1 1
p7 1 2 3 2 3
p8 2 3 1 2 4
p9 3 1 2 1 2
p10 1 2 3 2 3
p11 3 1 2 1 2
p12 2 3 1 2 4
p13 4 3 4 2 2
p14 1 2 3 2 4
p15 4 3 4 2 3

in Table 1. We first transform the gross information to a de-
cision table as shown in Table 3. We reduce and discretize
the expected profits of the planning, since only the relative
values are considered for our algorithm. In our experiments,
the maximum number of iterations was fixed as 10. Each
experiment were repeated 10 times using different random
seeds. Other parameter settings for the algorithm are de-
scribed in Table 2, where D is the dimension of the position
and each dimension maps one condition attribute.

The results (the number of reduced attributes) for 10
PSO runs were all 2. The optimal result is supposed to be 2.
The reduction result for 10 PSO runs are {1, 4} and {2, 3}.
Table 4 depicts the reducts for Table 3. So the planning p15

would be chosen.

6 Conclusions and Future Work

In this paper, we investigated multi-item investment
problem using rough set theory and particle swarm opti-
mization techniques. The considered approaches discov-



Table 4. A reduction of the data in Table 3.

Reduct Planning c1 c2 c3 c4 d
{1, 4}

p1 1 1 1
p2 2 1 2
p4 2 3 3
p6 3 1 1
p7 1 2 3
p8 2 2 4
p9 3 1 2
p13 4 2 2
p14 1 2 4
p15 4 2 3

{2, 3}
p1 1 1 1
p2 2 2 2
p4 3 2 1
p6 1 2 1
p7 2 3 3
p8 3 1 4
p9 1 2 2
p13 3 4 2
p14 2 3 4
p15 3 4 3

ered the good feature combinations in an efficient way to
observe the change of positive region as the particles ex-
plored the search space. The swarm-based search approach
offer great benefits for multiple reduction, because differ-
ent individuals encode different reducts. The proposed
approach also can obtain multiple candidate solutions for
the reduction. Empirical results illustrated that the swarm-
based search approach was effective to solve the investment
problem.

Our future work is targeted to make an attempt for more
instances and involve more heuristics approaches.
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