
J. Cabestany et al. (Eds.): IWANN 2009, Part I, LNCS 5517, pp. 221–228, 2009.
© Springer-Verlag Berlin Heidelberg 2009

Self Organized Dynamic Tree Neural Network

Juan F. De Paz, Sara Rodríguez, Javier Bajo, Juan M. Corchado,
and Vivian López

Departamento de Informática y Automática, Universidad de Salamanca
Plaza de la Merced s/n, 37008, Salamanca, España

{fcofds,srg,jbajope,corchado,vivian}@usal.es
Department of Computer Science and Automation, University of Salamanca Plaza de la

Merced s/n, 37008, Salamanca, Spain

Abstract. Cluster analysis is a technique used in a variety of fields. There are
currently various algorithms used for grouping elements that are based on
different methods including partitional, hierarchical, density studies, probabilistic,
etc. This article will present the SODTNN, which can perform clustering by
integrating hierarchical and density-based methods. The network incorporates the
behavior of self-organizing maps and does not specify the number of existing
clusters in order to create the various groups.

Keywords: Clustering, SOM, hierarchical clustering, PAM, Dendrogram.

1 Introduction

The assignment of a set of objects into clusters is a widely spread problem that has
been the object of investigation in various scientific branches including
bioinformatics [10], surveillance [15], [16], [17]. Although occasionally the number
of groups is known beforehand, clustering data requires an additional step for
identifying the existing groups. There are currently different methods for creating
clusters, most notably those based on partitioning, such as k-means [11], and PAM
[9] (Partition around medoids), which work by minimizing the error function. Other
widely accepted methods are the hierarchical methods which include dendrograms
[7], agnes [9], and Diana [9]. In addition to the hierarchical methods, there are others
that use density-based models, or probabilistic-based models such as EM [8]
(Expectation-maximization) and fanny [9].

This research presents the new Self Organized Dynamic tree neural network which
allows data to be grouped automatically, without having to specify the number of
existing clusters. The SODTNN uses algorithms to detect low density zones and
graph theory procedures in order to establish a connection between elements. This
would allow connections to be established dynamically, thus avoiding the need for the
network to expand and adjust the data surface. Additionally, the connections would
continue to adapt throughout the learning process, reducing the high density neuron
areas and separating them from the low density areas.

The SODTNN integrates techniques from hierarchical and density-based models
that allow the grouping and division of clusters according to the changes in the

222 J.F. De Paz et al.

densities that are detected. The hierarchical process is based on the Kruskal algorithm
that creates a minimum spanning tree containing data for the problem at hand. Based
on the information obtained from the minimum spanning tree, low density areas are
detected by using a distance matrix for each cluster. The low density areas will allow
the clusters to be separated iteratively. Furthermore, the minimum spanning tree
determines the network structure and connections so that learning can take place
according to the tree’s distribution.

This article is divided as follows: section 2 describes different clustering alternatives,
section 3 describes the SODTNN, and section 4 presents the results and conclusions.

2 Clustering Techniques

The problem of clustering is far reaching, and there have been various proposals for
its resolution: i) Partition based methods have the disadvantage of requiring the
number of clusters up front [8]. The k-means algorithm presents problems with
atypical points. The PAM method resolves this problem by assigning an existing
element as the centroid. ii) Hierarchical methods such as dendrograms [7] do not
require a number of clusters up front since they use a graphical representation to
determine the number. iii) Probability based methods such as EM define an algorithm
of probabilities that determines the probability that a point belongs to a cluster. iv)
Finally, there are the methods that use changes in density in order to separate clusters.
Included in these methods are the artificial neural networks (ANN) [18], [19], which
estimate the surface of the point distribution by using a mesh of neurons that can be
automatically adjusted to the surface. There are also other networks such as ART [5]
(Adaptive Resonance Theory) that can form clusters, although it does not function
based on meshes. Our research will concentrate on the mesh-based neural networks.

The self-organized Kohonen maps (SOM) [2], have variants of learning methods
that base their behaviour on methods similar to the Neural Gas (NG) [4]. They create
a mesh that is adjusted automatically to a specific area. The greatest disadvantage,
however, is that both the number of neurons that are distributed over the surface and
the degree of proximity are set beforehand. Growing Cell Structure (GCS) [3] do not
set the number of neurons or the degree of connectivity, but they do establish the
dimensionality of each mesh. This complicates the separation phase between groups
once it is distributed evenly across the surface. There are other ANN such as SOINN
[6] and ESOINN [1] (Enhanced self-organizing incremental neural network). Unlike
the SOINN, ESOINN consists of a single layer, so it is not necessary to determine the
manner in which the training of the first layer changes to the second.

3 SODTNN

This study proposes the SODTNN, which can detect the number of existing groups or
classes and, by using the Kruskal algorithm [12], create clusters based on the
connections taken from the minimum spanning tree. As opposed to the ESOINN or
GCS networks, the SODTNN does not distinguish between the original data and the
neurons—during the initial training phase, the latter correspond to the position for
each element. This makes it possible to eliminate the expansion phase for a NG to

 Self Organized Dynamic Tree Neural Network 223

Extract Next
Cluster

Construct Minimal
Tree

Select a Neuron

Update Positions

Divide Cluster

New Clusters

yes

Max Iterations

no

Move to the Parent

Select the Children

Update the Position of
the Children

r<neighbourd

yes

no

Move to the Original
Neuron

Select the
descendents in r level

Update the Position of
the Children

r<neighbourd

yes

Select the Greater
Distance in the tree A

Remove Link and
Generate A1 and A2

Prportion of A1
or A2 <
threshold

Restore the Link yes

Select the Next
Greater Distance

Calculate the Median
Distance for the Link

no

Median
Distance <
Threshold

yes

no

Calculate the New
and Old Density

Porportion
Between old
and New<
Threshold

no

Create Two
Separated Cluster

23
INIT

INIT INIT

SOM SOM

Average distance

DensityDivision algorithm
Update Algorithm:

Fig. 1. Algorithm for the SODTNN

adjust to the surface. As each neuron is updated, it can draw closer to neighboring
neurons, thus facilitating the detection of clusters and the separation from other
elements. The learning phase for the network is illustrated in Figure 1: the main loop
of the learning phase is shown in the center, block 2 is the algorithm that updates the
position of the neurons, and block 3 is in charge of locating the low density areas and
separating the clusters in order to create new groups.

The following sections describe the steps that are carried out during the learning
phase for the ANN. The nomenclature defines T as the set of neurons to be classified,
A as the minimum spanning tree that contains all of the nodes from T where matrix C
defines the connections between the nodes where element cij=1 if node i є T is
connected with element j є T., D the distance matrix for T.

3.1 Density: Block 3

One of the main problems when assigning individuals into groups is knowing which
divisions cause a significant rise in the density of the resulting clusters. ANN such as
SOINN or ESOINN study the length of the links in order to determine if the length is
different within the subgroup for each individual. This process requires the creation of
subclasses within each cluster, which is done by using a set of functions that
determines the threshold on which the creation of the subclasses is based. The
SODTNN searches for cut-off points in areas that produce a significant rise in
density. It does so by using the relationship between the total distance calculated from
the distance matrix, and the distance from the minimum spanning tree.

1. Distance from tree ∑ ∈∈==
ji

ijijijij
A DdCccwheredDCf

,

, ,1),(

2. Distance between neurons in the tree DddDf ij
ji

ij
T ∈=∑ ,)(

,

3. Calculate the final density),(/)(),(DCfDfDCf ATD =

224 J.F. De Paz et al.

3.2 Average Distance: Block 3

Selecting the links for finding low density areas can be done by considering the
distance of one neuron with respect to its parent in tree A, and the average distance
surrounding the neuron. The calculation of the latter distance is based on the distance
that exists for each link of the subtree, where the depth is equal to the surrounding
distance and centered on the neuron in question, and the number of neurons that exist
in the subtree. Figure 2 illustrates the subtree, highlighted in gray to indicate the
neuron that falls within 2 links.

Fig. 2. Subtree for neuron falling within 2 links

The algorithm is described as follows:

1. Given ai is the neuron for the tree for which the average distance needs to be

calculated, with i є T. where)(i
p af is the function that determines the parent

node for ai, that is defined by

si
p

i

p

aafa

AAf

=→
→

)(

: Where 1=sic and Ccsi ∈

2. Apply pf recursively and select the root node ar from

subtree)()(i

e

pp
r affa …=

3. Establish the group of nodes within the surrounding area of ia AAe
ai

⊆ as

follows)}()(, /{

2

j

er

pp
rj

e
a affarAaA

i
…
≤

=Ν∈∃∈=

4. Calculate the average distance for the node ai e
a

Aa
sjsj

e
a

m

i

e
iaj

i A

cd

DAf
#

),(

∑
∈

⋅

=

3.3 Division Algorithm: Block 3

The division algorithm is responsible for finding the connections between the low
density neurons in order to separate the cluster. It considers the distance between the
neurons and the resulting changes in density for the potential divisions. The process is
described as follows:

 Self Organized Dynamic Tree Neural Network 225

1. Determine the cut-off point for the elements α , and the cut-off points for

distance β

2. Initiate 1=i

3. Select the greatest distance i for 1/ =∈ jkjk cDd and remove the node from

the tree Aak ∈

4. Given 1A , 2A are the remaining trees alter eliminating ka

and the connection

with the parent node)(k
p af where }/{ 11 AaTsT s ∈∈= and

}/{ 22 AaTsT s ∈∈= with 21 TTT ∪= , φ=∩ 21 TT , 1C , 2C , 1D ,

2D for the corresponding link and distance matrixes.

5. If TT /## 1 or TT /## 2 is less than α go to step 13

6. Calculate the average distance from the node for the tree ka

following the

average distance algorithm),(DAfd e
a

mm
a ik

=

7. Determine if the distance from tree node ka and its parent is less than the

average distance β⋅≤ m
ask k

dd where Ts ∈ and)(k
p

s afa = go to step

13

8. the density for T , 1T and 2T following the density algorithm),(DCf D ,

),(11 DCf D ,),(22 DCf D

9. Calculate the new density threshold),(),()1(2211 DCfDCft DD +=+δ

and the previous),()(DCft D=δ

10. If the value))1(/)0(/(1)1(/)(ρδδδδ ⋅<+tt where ρ is constant, go to

12
11. Finish
12. Re-establish the connection ak with its parent node
13. If Ti #< calculate the value of 1+= ii and go to step 2

3.4 Update Algorithm: Block 2

The neurons from the network that define the clusters are periodically updated in a
way similar to the kohonen SOM. By updating automatically, the positions and
connections of the neurons can be readjusted in order complete the division of the
clusters. The network randomly selects an initial neuron and brings neighboring
neurons closer in. The neuron is updated according to the hierarchy of the tree. The
arrows in figure 2 indicate the direction and strength with which the neurons are
brought closer to the selected neuron. The magnitude of the vector and the direction
depend on the distance and neighborhood as indicated in the following algorithm:

226 J.F. De Paz et al.

1. Given Tk ∈ with Aak ∈ is the selected neuron, set the value of the

neighboring radius r

2. Begin 1=i , ks aa =

3. Calculate the parent node from the current node)(s
p

t afa = , obtain all the

sons from ta which are defined as
1

taA

4. For each instance
1

taj Aa ∈ update the coordinates for the neuron by following

the equation for self-organizing maps

))()((),()()()1(txtxtigttxtx jsjj −⋅⋅+=+ η

Where),(tig represents the neighboring function)(tη the learning rate [13].

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
⋅−

−++−
−=

N

ti

dMax

nxxx

N

i
Exptig

ji
ij

snjnsj

β
λ

,

22
11

}{

)()(
),(

…

4()
t

t Exp
N

η
β

⎡ ⎤
= −⎢ ⎥

⎣ ⎦
Where t is the iteration, N the number of elements from group A# , n is the

dimension of the coordinates, ijx coordinate j for the neuron Ti ∈ , with

Aai ∈ , λ and β the constants established for 1 and 5 respectively.

5. If ri < set ts aa = and increase i

6. Use the same procedure to update the descendents Aak ∈ until reading depth

r ,
1

kaA …
r
ak

A

4 Results and Conclusions

In order to conclude the tests, both real data and fictional self-generating data were
used. Additionally, graphic representations are in 2D in order to facilitate the
interpretation of the results. In order to confirm that the proposed SODTNN
functioned properly, the clustering process was compared with other statistical
techniques traditionally use for unsupervised clustering. In the first case, we selected
a test case generated with fictional data. Figure 3 illustrates the classification process
that was carried out for the given test. We can see the data and the sequence of the
divisions in different colors that were made with the SODTNN until the algorithm
finalize, where the last image shows the results obtained after implementing the
algorithm.

 Self Organized Dynamic Tree Neural Network 227

Fig. 3. Sequence of clusters generated by the ANN. Total number of points 774. Each colour
represents a different cluster that was found.

Fig. 4. Sequence of clusters generated by PAM, dendrograms, k-means, fanny, agnes, dian in
this order

Figure 4 illustrates the final classification obtained by the PAM, dendograms, k-
means, fanny, agnes and diana clustering methods. For each of these methods, it was
necessary to determine the number of clusters that we wanted to obtain, for which it
was necessary to provide more information than with the SODTNN. Additionally, it
is easy to see how only the PAM method is capable of obtaining results comparable to
our network, although the green group includes elements from other clusters. The rest
of the processes generate classifications that could be considered as erroneous given
the distribution of the data.

Secondly, we studied a real case from the UC Irvine Machine Learning Repository
[14] regarding data for wines. The data within the range [0-1] was normalized in order
to eliminate the scale factor and units. The classification process was then carried out.
The percentage of success was as follows: 91,01%, 90,45%, 93,26%, 94.94%,
33.71%, 71.35% for the SODTNN, PAM, dendrogram, k-means, agnes and diana
respectively. Fanny did not produce any results since it included data approaching 0.
As we can see, the network provided results similar to the PAM, dendograms and k-
means methods, while the others provided worse results. In order to analyze the
elements that the ANN and PAM classified incorrectly as compared to the
dendograms and k-means, we created a 3D representation and applied a
multidimensional scaling process to reduce the dimensionality. The results
demonstrated that the errors were atypical elements that were located outside of both
clusters that would have been eliminated with a filtering phase.

The results obtained with the SODTNN are promising. Nevertheless, we have
detected several deficiencies in the case of elements that are distributed along very
close parallel lines. Occasionally, the SODTNN is incapable of calculating the correct
cut-off point for dividing clusters, thus functioning as a hierarchical algorithm for
which the user must interpret the results. The results can be interpreted according to
the distances from the cut-off points and the changes in density. In order to resolve
this problem, we are working on defining criteria for a cut-off point based on the
calculation of the densities of the clusters.

228 J.F. De Paz et al.

Acknowledgements. This development has been supported by the projects
SA071A08 and SIAAD-TSI-020100-2008-307.

References

[1] Furao, S., Ogura, T., Hasegawa, O.: An enhanced self-organizing incremental neural
network for online unsupervised learning. Neural Networks 20, 893–903 (2007)

[2] Kohonen, T.: Self-organized formation of topologically correct feature maps. Biological
Cybernetics, 59–69 (1982)

[3] Fritzke, B.: A growing neural gas network learns topologies. In: Tesauro, G., Touretzky,
D.S., Leen, T.K. (eds.) Advances in Neural Information Processing Systems, vol. 7, pp.
625–632 (1995)

[4] Martinetz, T., Schulten, K.: A neural-gas network learns topologies. Artificial Neural
Networks 1, 397–402 (1991)

[5] Carpenter, G.A., Grossberg, S.: The ART of adaptive pattern recognition by a self-
organizing neural network. IEEE Trans. Computer, 77–88 (1987)

[6] Shen, F.: An algorithm for incremental unsupervised learning and topology
representation. Ph.D. thesis. Tokyo Institute of Technology (2006)

[7] Saitou, N., Nie, M.: The neighbor-joining method: A new method for reconstructing
phylogenetic trees. Mol. Biol. 4, 406–425 (1987)

[8] Xu, L.: Bayesian Ying–Yang machine, clustering and number of clusters. Pattern
Recognition Letters 18(11-13), 1167–1178 (1997)

[9] Kaufman, L., Rousseeuw, P.J.: Finding Groups in Data: An Introduction to Cluster
Analysis. Wiley, New York (1990)

[10] Corchado, J.M., De Paz, J.F., Rodríguez, S., Bajo, J.: Model of experts for decision
support in the diagnosis of leukemia patients. Artificial Intelligence in Medicine (in
Press)

[11] Hartigan, J.A., Wong, M.A.: A K-means clustering algorithm. Applied Statistics 28, 100–
108 (1979)

[12] Campos, R., Ricardo, M.: A fast algorithm for computing minimum routing cost spanning
trees 52(17), 3229–3247 (2008)

[13] Bajo, J., De Paz, J.F., De Paz, Y., Corchado, J.M.: Integrating case-based planning and
RPTW neural networks to construct an intelligent environment for health care. Expert
Systems with Applications 36(3) (2009)

[14] UC Irvine Machine Learning Repository, http://archive.ics.uci.edu/
[15] Patricio, M.A., Carbó, J., Pérez, O., García, J., Molina, J.M.: Multi-Agent Framework in

Visual Sensor Networks. EURASIP Journal on Advances in Signal Processing, special
issue on Visual Sensor Networks, 21 (2007)

[16] Carbó, J., Molina, J.M., Dávila, J.: Fuzzy Referral based Cooperation in Social Networks
of Agents. AI Communications 18(1), 1–13 (2005)

[17] García, J., Berlanga, A., Molina, J.M., Casar, J.R.: Methods for Operations Planning in
Airport Decision Support Systems. Applied Intelligence 22(3), 183–206 (2005)

[18] Pavón, J., Arroyo, M., Hassan, S., Sansores, C.: Agent-based modelling and simulation
for the analysis of social patterns. Pattern Recognition Letters 29, 1039–1048 (2008)

[19] Pavón, J., Gómez, J., Fernández, A., Valencia, J.: Development of intelligent multi-sensor
surveillance systems with agents. Robotics and Autonomous Systems 55(12), 892–903
(2007)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (Photoshop 4 Default CMYK)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

