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Abstract. Improving the detection of thermal insulation in buildings –which includes 
the development of models for heating and ventilation processes and fabric gain - could 
significantly increase building energy efficiency and substantially contribute to 
reductions in energy consumption and in the carbon footprints of domestic heating 
systems. Thermal insulation standards are now contractual obligations in new buildings, 
although poor energy efficiency is often a defining characteristic of buildings built 
before the introduction of those standards. Lighting, occupancy, set point temperature 
profiles, air conditioning and ventilation services all increase the complexity of 
measuring insulation efficiency. The identification of thermal insulation failure can 
help to reduce energy consumption in heating systems. Conventional methods can be 
greatly improved through the application of hybridized machine learning techniques to 
detect thermal insulation failures when a building is in operation. A three-step 
procedure is proposed in this paper that begins by considering the local building and 
heating system regulations as well as the specific features of the climate zone. Firstly, 
the dynamic thermal performance of different variables is specifically modelled, for 
each building type and climate zone. Secondly, Cooperative Maximum-Likelihood 
Hebbian Learning is used to extract the relevant features. Finally, neural projections 
and identification techniques are applied, in order to detect fluctuations in room 
temperatures and, in consequence, thermal insulation failures. The reliability of the 
proposed method is validated in three winter zone C cities in Spain. Although a great 
deal of further research remains to be done in this field, the proposed system is 
expected to outperform conventional methods described in Spanish building codes that 
are used to calculate energetic profiles in domestic and residential buildings.  

1 Introduction 

Machine Intelligence represents a collection or a set of various technologies involving 
non-linear dynamics, computational intelligence, ideas drawn from physics, 
physicology and several other computational frameworks. It investigates, simulates, 
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and analyzes very complex issues and phenomena in order to solve real-world 
problems: one such problem is the detection of thermal insulation failure in buildings 
[1], [2], which requires a multidisciplinary approach [3]. 

On the one hand, local building regulations need to be analysed in order to profile 
the premises and the legal specifications for the physical parameters. In the case of a 
European country such as Spain, building and heating system regulations are adapted 
to five winter climate zones and five summer climate zones across the entire country. 
Building materials, insulation widths, materials, and so on, are calculated according to 
these <winter-zone, summer-zone> parameters. Further market-related factors should 
also be included: the geometric design and orientation of a building, aesthetic aspects 
and its internal layout, all of which have a significant impact on thermal dynamics. 
Taken together, they define what is known as the topology of the building. 
Nevertheless, predicting the thermal dynamics of a building is a complex task. The 
dynamic thermal performance of a building has mainly been used to estimate its 
power requirements. As an example, the difficulties of obtaining a black-box model 
for a generic building are documented in [4]. The influence of thermal efficiency is 
also analysed for a specific building component in [5], which examines the dynamic 
thermal performance of an aluminium roof and compares it with standard roofing 
materials.  

A three-step procedure for testing and validating the model is proposed: firstly, the 
dynamic thermal behaviour of a specific configuration is calculated using HTB2 
software [6]. The outcome of the HTB2 should then be post-processed to obtain a 
suitable dataset. Subsequently, the dataset is analysed using Cooperative Maximum-
Likelihood Hebbian Learning (CMLHL) [7] to extract the dataset structure and key 
relationships between the variables. A model is then produced, at the modelling stage, 
to estimate the room temperature at a specific configuration. Finally, thermal 
insulation failure is identified when the temperature error, measured as the difference 
between the room temperature and the model output temperature, rises above a pre-set 
threshold. 

This paper is organised as follows. Section 2 introduces the unsupervised 
connectionist techniques for analysing the datasets in order to extract their relevant 
internal structures. Section 3 deals with classical identification techniques used in the 
system modelling. Section 4 describes the problem details and the multi-step 
procedure. Finally, the conclusions are set out and comments are made on future lines 
of work.  

2 System Analyses Using Unsupervised Learning 

2.1. Data structure analysis using connectionist techniques  

CMLHL [7] is used in this research to analyse the internal structure of datasets that 
describe the heating process, so as to establish whether it is “sufficiently informative”. 
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In the worse case, the experiments have to be performed again in order to gather a 
sufficiently informative dataset. 

CMLHL is a Exploratory Projection Pursuit (EPP) method [8], [9], [10]. In 
general, EPP provides a linear projection of a dataset, but it projects the data onto a 
set of basic vectors which help reveal the most interesting data structures; 
interestingness is usually defined in terms of how far removed the distribution is from 
the Gaussian distribution [11].  

One connectionist implementation is Maximum-Likelihood Hebbian Learning 
(MLHL) [10], [12]. It identifies interestingness by maximising the probability of the 
residuals under specific probability density functions that are non-Gaussian. An 
extended version is the CMLHL [7], [13] model, which is based on MLHL [10], [12] 
but adds lateral connections [7], [13] that have been derived from the Rectified 
Gaussian Distribution [11].  

Considering an N-dimensional input vector ( x ), and an M-dimensional output 
vector ( y ), with ijW  being the weight (linking input j to output i), then CMLHL can 
be expressed [7] as:  
1. Feed-forward step: 
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4. Weight change: 
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Where: η  is the learning rate,τ is the "strength" of the lateral connections, b the 
bias parameter, p a parameter related to the energy function [10], [12] and A  a 
symmetric matrix used to modify the response to the data [11]. The effect of this 
matrix is based on the relation between the distances separating the output neurons. 

2.2. Feature selection and extraction  

Feature Selection and extraction [14], [15] entails feature construction, space 
dimensionality reduction, sparse representations and feature selection among others. 
They are all commonly used pre-processing tools in machine learning tasks, which 
include pattern recognition. Although researchers have grappled with such problems 
for many years, renewed interest has recently surfaced in feature extraction.  

Our approach to feature selection in this study is based on the dimensionality 
reduction issue. Initially, we use the projection method CMLHL [7], [13], 
characterized by its capability to impose a sparser representation of each weight 
vector than other methods such as PCA [16], [17] or MLHL [10], [12] and its ability 
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to preserve a degree of global ordering [13], due to the effect of the lateral 
connections.  

3 System Modelling Using Classical Identification Algorithms  

3.1. The ANN in the identification process  

The identification criterion consists in evaluating the best adapted group of candidate 
models that best describes the dataset gathered for the experiment; i.e., given a certain 
model )( *θM , its prediction error may be defined as in Eq. (5). The aim is to obtain a 
model that complies with the following premise [18]: a good model is one that makes 
good predictions, and which produces small errors when the observed data is applied. 

)|(ˆ)(),( ** θθε tytyt −=  (5) 

The use of Artificial Neural Networks (ANN) in the process of identification 
requires the selection of several parameters: the number of layers, the number of 
neurons per layer and the activation functions. The methods by which the parameters 
are set up are fully documented in the literature. It was found that ANN with two 
layers using sigmoidal or hyperbolic functions in the hidden layer are universal 
approximators or predictors [19], [20].  

The number of neurons per layer is also a relevant design parameter. It should be 
analyzed in order to avoid over fitting [21], [22]. Each algorithm will introduce some 
restrictions in the weight matrix. The most widely used training algorithms in system 
identification are the Lenvenberg-Marquardt method [23], recursive Gauss-Newton 
method [18], the batch and recursive versions of the back-propagation algorithm [24]. 

3.2. The process of identification  

When using ANN, the purpose of an identification process is to determine the weight 
matrix based on the observations tZ , so as to obtain the relationships between the 
nodes in the network. The weight matrix is usually referred as w, W or θ. 

The supervised learning algorithm is then applied to find the estimator θ, so as to 
obtain the identification criterion. Several well-known model structures are used when 
merging system identification with ANN. If the ARX model is used as the regression 
vector θ, the model structure is called NNARX, as can be seen in Eq. (6). NNARX 
stands for neural network ARX. Likewise, NNFIR, Eq. (7), NNARMAX, Eq. (8) and 
NNOE structures, Eq. (9), are also extensively used. The polynomial degree values -
na, nb, nc, nd, nf and nk- are given as parameters. 
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[ ]Tkbk nntuntut )1()()( +−−−= Kϕ . (7) 
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3.3. The system identification methodology 

The best model for estimating the thermodynamic conditions must be chosen. The 
identification procedure used to generate the final model entails setting the 
identification techniques [18], [25], [26], selecting the model structure, estimating the 
most appropriate polynomial degree, the identification  criterion, and the optimization 
techniques. 

The identification procedure also includes a validation stage, which ensures that 
the selected model meets the necessary conditions for estimation and prediction. In 
order to validate the model, three tests were performed: residual analysis ))(ˆ,( tt θε , by 
means of a correlation test between inputs, residuals and their combinations; final 
prediction error (FPE) estimate as explained by Akaike and finally a graphical 
comparison between desired outputs and the outcome of the models through 
simulation one (or k) steps before. 

4 The multi-step method for detecting thermal insulation 
failures in buildings  

A three-step method is proposed to detect thermal insulation failures in buildings –by 
modelling fabric gain, heating and ventilation process. Firstly, a model of a building’s 
dynamic thermal performance in normal operation is determined. Once the 
thermodynamic data have been gathered, then a model for normal operation may be 
obtained. The second stage includes the use of CMLHL to extract features from the 
thermodynamic data using relevant information from the process. The CMLHL output 
data set is used as input to obtain the most suitable model, which is found by means of 
system identification techniques. Finally, thermal insulation failures can be detected 
using this model whenever significant fluctuations in room temperature are identified. 

4.1. Thermal dynamics data gathering by means of simulation 

Two methods are used to collect thermodynamic data on a building: either through 
a network of sensors placed in spaces of scale-model or actual building to measure the 
desired variables; or by using specific thermodynamic simulation software [6]. This 
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second choice is more suitable than physical modelling due to its flexibility and 
scalable solutions, which save on resources.   

In order to simulate the thermal behaviour of a building, the following data and 
data sets should be gathered: building topology; climate zone; meteorological data for 
the climate zone and the simulated time period; building materials that comply with 
local regulations for the chosen climate zone; realistic profiles for heating, lighting, 
small power devices, occupancy and ventilation. 

Having defined and/or gathered these data sets, then the chosen simulation tool is 
applied to obtain the output data. This output includes data on the evolution of the 
indoor temperature and heating power for each space in the building according to the 
building operation. The typical values that each variable could take for a C winter 
climate zone of medium severity in Spain –i.e. the cities of Santander, Bilbao or 
Barcelona - are shown in Table 1.  

Table 1. Typical values of each variable in a C winter climate zone city in Spain. 

4.2. Extraction of the relevant internal structures 

As may be seen from Fig. 1, CMLHL is a powerful technique for identifying internal 
dataset structures. It is applied to a dataset, in order to select the features that best 
describe the relationships between the heating conditions, and in order to establish 
whether the dataset is sufficiently informative. The results of applying the method are 
shown in Fig. 1. 

Having analysed the overall global results, it is clear from Fig. 1 that CMLHL has 
identified two different clusters ordered by small power and occupancy. Inside each 
cluster there are further classifications by lighting and heater output and the dataset 
may be said to have an interesting internal structure. When the dataset is considered 
sufficiently informative, the third step in the process begins. This step performs an 
accurate and efficient optimization of the heating system model to detect thermal 
insulation failures in the building, through the application of several conventional 
modelling systems.  

 

Variable (Units) Range of values Transmittance level (W/m2K) 
Air temperature of the house (ºC), y1(t). 17 to 24 
Exterior air temperature (ºC ), u1(t). 8 to 10 
Heater gain (W), u2(t). 0 to 4,250 
Small power and occupancy gain (W), u3(t). 0 to 1,200 
Lighting gain (W), u4(t). 0 to 500 
Ventilation gain (m3/min), u5(t). 0.5 to 7.5 

-External cavity wall: 0.68 
-Double glazing: 2.91 
-Floor/ceiling: 1.96 
-Party wall between buildings: 0.96 
-Others party wall: 1.050  
-Internal partition: 2.57 
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Fig. 1. The CMLHL projection shows the internal structure of a dataset. 

4.3. System identification applied to model normal building operation 

Once the relevant variables and their transformations have been extracted from the 
thermal dynamics data, then a model to fit the normal building operation should be 
obtained in order to identify bias in the room temperature, which is in the end used for 
failure detection. The different model learning methods used were implemented in 
Matlab© [27]. The experiment followed the identification procedure detailed in 
Section 3.3: the model structures were analyzed in order to obtain the models that best 
suited the dataset. The Akaike Information Criterion (AIC) was used to obtain the 
best degree of the model and its delay for each model structure. A total of 70 
techniques were carried out to obtain the models. 
Several different indexes have been used to validate the obtained models. The indexes 
are well-known and widely used measures in system identification [18], [25], [26]: 

- The percentage representation of the estimated model: calculated as the 
normalized mean error for the one-step prediction (FIT1), for the ten-step 
prediction (FIT10) and with the ∞-step prediction (FIT). The FIT is widely 
used as a simulation technique in classical system identification. 

- The graphical representation of the FIT1 – )|(ˆ1 mty –, the FIT10 – )|(ˆ10 mty – 
and the FIT – )|(ˆ mty∞ –. 

- The loss function or error function (V): the numeric value of the mean 
square error that is computed using the estimation dataset. 

- The generalization error value (NSSE): the numeric value of the mean 
square error that is computed with the validation dataset.  

- The FPE calculated as the average generalization error value computed with 
the estimation dataset. 

The heating process exhibits nonlinear behaviour between output and inputs, with 
the result that linear modelling techniques do not behave in an orthodox way except in 
the linear behaviour zones of the process. Consequently, the heating process has been 
modelled using soft-computing techniques, specifically an ANN. 

Thus, an ANN was used to monitor the thermal dynamics of the building. The 
objective was to find the best suite of polynomial model orders [na nb1 nb2 nb3 nb4 nb5 
nc nd nf nk1 nk2 nk3 nk4 nk5]. Using the data set from the previous stage and the Optimal 

Ligthing 

Smallpower 

Heater Output 
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Brain Surgeon (OBS) [19], [20] network pruning strategy to remove superfluous 
weights, the best suite model was found from the residual analysis. Table 2 shows the 
characteristics and qualities of estimation and prediction of the chosen ANN, along 
with their indexes. 

The graphic representations of )|(ˆ1 mty  for indoor temperature of the house -y1(t)- 
is shown in Fig. 2 for the pruned model structure NNARX, Eq. (6). The x-axis shows 
the number of samples used in the estimation and validation of the model and the y-
axis represents the normalized output variable range: which is the normalized indoor 
temperature of the house. The estimation and validation data sets include 400 and 336 
samples, respectively, and have a sampling rate of 1 sample/minute.  

 

0 50 100 150 200 250 300 350 400
-6

-5

-4

-3

-2

-1

0

1

2

3

4
Measured True (solid line) and Estimate Output (dotten line)

0 50 100 150 200 250 300 350
-5

-4

-3

-2

-1

0

1

2

3

4
Measured True (solid line) and Estimate Output (dotten line)

 
Fig. 2. Output response of NNARX model: The actual output (solid line) is graphically 
presented with one-step-ahead prediction (dotted line). The real measure vs. the estimated data 
–left column - and the real measure vs. the validation data –right column- are shown. The 
orders of the initial fully connected structure are na=3, nb1=1, nb2=3, nb3=2, nb4=2, nb5=1, 
nk1=2, nk2=10, nk3=10, nk4=10, nk5=1, [3 1 3 2 2 1 2 10 10 10 1]. The order of the optimal final 
architecture of the NNARX model is obtained from the residual analysis, the CMLHL analysis 
of the structure and the pruned network. 

 
From Fig. 2, it can be concluded that the NNARX, network pruned model is 

capable of simulating and predicting the behaviour of the indoor temperature of the 
house –as a consequence of the heating process- and it is capable of modelling more 
than 92% of the actual measurements.  

Table 2. Quality indexes values for the proposed model.  

Model Indexes 
ANN model for the heating process, NNARX regressor, the order of the 
polynomials of the initial fully connected structure are na=3, nb1=1, 
nb2=3, nb3=2, nb4=2, nb5=1, nk1=2, nk2=10, nk3=10, nk4=10, nk5=1, [3 1 3 
2 2 1 2 10 10 10 1]. This model was optimised by CMLHL analysis, 
residual analysis and the pruned network, using OBS.  

FIT1:92.23% 
V: 0.022 
FPE:0.14 
NSSE:0.01 

 



Improving Energy Efficiency in Buildings using Machine Intelligence      9 

5 Conclusions and future work 

Effective thermal insulation is an essential component of energy efficient heating 
systems in buildings. The more effective the insulation in the buildings, the lower the 
energy losses due to insulation failures. Thus, the possibility of improving the 
detection of thermal insulation failures represents a fresh challenge for building 
energy management. The new methodology proposed in this study for detecting 
thermal insulation failures entails either a network of sensors in the building or 
specialized simulation software in cases where no such network is available. Finally, 
different techniques are applied to obtain a suitable model which will be responsible 
for detecting the failures as a fluctuation of predicted room temperature. Future work 
will examine fabric gain and ventilation processes in order to develop generic 
methods.  
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