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Abstract. Up to now, several Artificial Intelligence (AI) techniques and 
paradigms have been successfully applied to the field of Intrusion Detection in 
Computer Networks. Most of them were proposed to work in isolation. On the 
contrary, the new approach of hybrid artificial intelligent systems, which is 
based on the combination of AI techniques and paradigms, is probing to 
successfully address complex problems. In keeping with this idea, we propose a 
hybrid use of three widely probed paradigms of computational intelligence, 
namely Multi-Agent Systems, Case Based Reasoning and Neural Networks for 
Intrusion Detection. Some neural models based on different statistics (such as 
the distance, the variance, the kurtosis or the skewness) have been tested to 
detect anomalies in packet-based network traffic. The projection method of 
Curvilinear Component Analysis has been applied for the first time in this study 
to perform packet-based intrusion detection. The proposed framework has been 
probed through anomalous situations related to the Simple Network 
Management Protocol and normal traffic. 
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1   Introduction 

Firewalls are the most widely used tools for securing networks, but Intrusion 
Detection Systems (IDS’s) are becoming more and more popular [1]. IDS’s monitor 
the activity of the network with the purpose of identifying intrusive events and can 
take actions to abort these risky events. 

A wide range of techniques have been used to build IDS’s. On the one hand, there 
have been some previous attempts to take advantage of agents and Multi-Agent 
Systems (MAS) [2] in the field of Intrusion Detection (ID) [3], [4], [5], including the 
mobile-agents approach [6], [7]. On the other hand, some different machine learning 
models – including Data Mining techniques and Artificial Neural Networks (ANN) – 
have been successfully applied for ID [8], [9], [10], [11]. 

Additionally, some other Artificial Intelligence techniques (such as Genetic 
Algorithms and Fuzzy Logic, Genetic Algorithms and K-Nearest Neighbor (K-NN) or 
K-NN and ANN among others) [12] [13] have been combined in order to face ID 
from a hybrid point of view. This paper employs a framework based on a dynamic 
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multiagent architecture employing deliberative agents capable of learning and 
evolving with the environment [14]. These agents may incorporate different 
identification or projection algorithms depending on their goals. In this case, a neural 
model based on the study of some statistical features (such as the variance, the 
interpoint distance or the skew and kurtosis indexes) will be embedded in such agents. 
One of the main novelties of this paper is the application of Curvilinear Component 
Analysis (CCA) for packet-based intrusion detection. 

The overall architecture of this paper is the following: Section 2 outlines the ID 
multiagent system, section 3 describes the neural models applied in this research, 
section 4 presents some experimental results and finally section 5 goes over some 
conclusions and future work. 

2   Agent-based IDS 

An ID framework, called Visualization Connectionist Agent-Based IDS (MOVICAB-
IDS) [14] and based on software agents [2] and neural models, is introduced. This 
MAS incorporates different types of agents; some of the agents have been designed as 
CBR-BDI agents [15], [16] including an ANN for ID tasks, while some others are 
reactive agents. CBR-BDI agents use Case Based Reasoning (CBR) systems [17] as a 
reasoning mechanism, which allows them to learn from initial knowledge, to interact 
autonomously with the environment, users and other agents within the system, and to 
have a large capacity for adaptation to the needs of its surroundings. 

MOVICAB-IDS includes deliberative agents using a CBR architecture. These 
CBR-BDI agents work at a high level with the concepts of Believes, Desires and 
Intentions (BDI) [18]. CBR-BDI agents have learning and adaptation capabilities, 
what facilitates their work in dynamic environments. 

The extended version of the Gaia methodology [19] was applied, and some roles 
and protocols where identified after the Architectural Design Stage [14]. The six 
agent classes identified in the Detailed Design Stage were: SNIFFER, PREPROCESSOR, 
ANALYZER, CONFIGURATIONMANAGER, COORDINATOR and VISUALIZER.  

2.1    Agent Classes 

The agent classes previously mentioned are described in the following paragraphs. 

Sniffer Agent 
This reactive agent is in charge of capturing traffic data. The continuous traffic flow is 
captured and split into segments in order to send it through the network for further 
process. As these agents are the most critical ones, there are cloned agents (one per 
network segment) ready to substitute the active ones when they fail. 



  

Preprocessor Agent 
After splitting traffic data, the generated segments are preprocessed to apply 
subsequent analysis. Once the data has been preprocessed, an analysis for this new 
piece of data is requested.  

Analyzer Agent 
This is a CBR-BDI agent embedding a neural model within the adaptation stage of its 
CBR system that helps to analyze the preprocessed traffic data. This agent is based on 
the application of different neural models allowing the projection of network data. In 
this paper, PCA [20], CCA [21], MLHL [22] and CHMLHL [23] (See Section 3) have 
been applied for comparison reasons. This agent generates a solution (getting an 
adequate projection of the preprocessed data) by retrieving a case and analyzing the 
new one using a neural network. Each case incorporates several features, such as 
segment length (in ms), total number of packets and neural model parameters among 
others. A further description of the CBR four steps for this agent can be found in [14]. 

ConfigurationManager Agent 
The processes of data capture, split, preprocess and analysis depends on the values of 
several parameters, as for example: packets to capture, segment length, features to 
extract... This information is managed by the CONFIGURATIONMANAGER reactive 
agent, which is in charge of providing this information to some other agents. 

Coordinator Agent 
There can be several instances (from 1 to m) of the ANALYZER class of agent. In order 
to improve the efficiency and perform a real-time processing, the preprocessed data 
must be dynamically and optimally assigned to ANALYZER agents. This assignment is 
performed by the COORDINATOR agent. 

Visualizer Agent 
At the very end of the process, this interface agent presents the analyzed data to the 
network administrator by means of a functional and mobile visualization interface. To 
improve the accessibility of the system, the administrator may visualize the results on 
a mobile device, enabling informed decisions to be taken anywhere and at any time.  

3   Neural Projection Models 

Projection models are used as tools to identify and remove correlations between 
problem variables, which enable us to carry out dimensionality reduction, 
visualization or exploratory data analysis. In this study, some neural projection 
models, namely PCA, MLHL, CMLHL and CCA have been applied for ID. 

Principal Component Analysis (PCA) [20] is a standard statistical technique for 
compressing data; it can be shown to give the best linear compression of the data in 
terms of least mean square error. There are several ANN which have been shown to 
perform PCA [24], [25], [26]. It describes the variation in a set of multivariate data in 



  

terms of a set of uncorrelated variables each of which is a linear combination of the 
original variables. Its goal is to derive new variables, in decreasing order of 
importance, which are linear combinations of the original variables and are 
uncorrelated with each other. 

Curvilinear Component Analysis (CCA) [21] is a nonlinear dimensionality 
reduction method. It was developed as an improvement on the Self Organizing Map 
(SOM) [27], trying to circumvent the limitations inherent in some linear models such 
as PCA. CCA is performed by a self-organised neural network calculating a vector 
quantization of the submanifold in the data set (input space) and a nonlinear 
projection of these quantising vectors toward an output space. 

As regards its goal, the projection part of CCA is similar to other nonlinear 
mapping methods, as it minimizes a cost function based on interpoint distances in 
both input and output spaces. Quantization and nonlinear mapping are separately 
performed: firstly, the input vectors are forced to become prototypes of the 
distribution using a vector quantization (VQ) method, and then, the output layer 
builds a nonlinear mapping of the input vectors. 

Cooperative Maximum Likelihood Hebbian Learning (CMLHL) [23] extends the 
MLHL model [22] that is a neural implementation of Exploratory Projection Pursuit 
(EPP). The statistical method of EPP [28] linearly project a data set onto a set of basis 
vectors which best reveal the interesting structure in data. MLHL identifies 
interestingness by maximising the probability of the residuals under specific 
probability density functions which are non-Gaussian. 

CMLHL extends the MLHL paradigm by adding lateral connections [23], which 
have been derived from the Rectified Gaussian Distribution [29]. The resultant model 
can find the independent factors of a data set but does so in a way that captures some 
type of global ordering in the data set. 

4   Experiments and Results 

In this work, the above described neural models have been applied to a real traffic 
data set [11] containing “normal” traffic and some anomalous situations. These 
anomalous situations are related to the Simple Network Management Protocol 
(SNMP), known by its vulnerabilities [30]. Apart from “normal” traffic, the data set 
includes: SNMP ports sweeps (scanning of network hosts at different ports - a random 
port number: 3750, and SNMP default port numbers: 161 and 162), and a transfer of 
information stored in the Management Information Base (MIB), that is, the SNMP 
database. 

This data set contains only five variables extracted from the packet headers: 
timestamp (the time when the packet was sent), protocol, source port (the port of the 
source host that sent the packet), destination port (the destination host port number to 
which the packet is sent) and size: (total packet size in Bytes). This data set was 
generated in a medium-sized network so the “normal” and anomalous traffic flows 
were known in advance. As SNMP is based on UDP, only 5866 UDP-based packets 
were included in the dataset. In this work, the performance of the previously 



  

described projection models (PCA, CCA, MLHL and CMLHL) has been analysed 
and compared through this dataset (See Figs. 1 and 2.). 

PCA was initially applied to the previously described dataset. The PCA projection 
is shown in Fig. 1.a. After analysing this projection, it is discovered that the normal 
traffic evolves in parallel straight lines. According to the parallelism to normal traffic, 
PCA is only able to identify the port sweeps (Groups 3, 4 and 5 in Fig. 1.b). On the 
contrary, it fails to detect the MIB information transfer (Groups 1 and 2 in Fig. 1.b) 
because the packets in this anomalous situation evolve in a direction parallel to the 
“normal” one.  

Fig. 1.b shows the MLHL projection of the dataset. Once again, the normal traffic 
evolves in parallel straight lines. There are some other groups (Groups 1, 2, 3, 4 and 5 
in Fig. 1.a) evolving in an anomalous way. In this case, all the anomalous situations 
contained in the dataset can be identified due to their non-parallel evolution to the 
normal direction. Additionally, in the case of the MIB transfer (Groups 1 and 2 in Fig. 
1.b), the high concentration of packets must be considered as an anomalous feature. 

 

  

Fig. 1.a PCA projection. Fig. 1.b MLHL projection. 

  

Fig. 1.c CMLHL projection. Fig. 1.d CCA (Euclidean dist.) projection. 
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It can be seen in Fig. 1.c how the CMLHL model is able to identify the two 
anomalous situations contained in the data set. As in the case of MLHL, the MIB 
information transfer (Groups 1 and 2 in Fig. 1.a) is identified due to its orthogonal 



  

direction with respect to the normal traffic and to the high density of packets. The 
sweeps (Groups 3, 4 and 5 in Fig. 1.a) are identified due to their non-parallel direction 
to the normal one. 

Several experiments were conducted to apply CCA to the analysed data set; tuning 
the different options and parameters, such as type of initialization, epochs and 
distance criterion. The best (from a projection point of view) CCA result, based on the 
Standardized Euclidean Distance, is depicted on Fig. 2. There’s a marked contrast 
between the behavioral pattern shown by the normal traffic in previous projections 
and the evolution of normal traffic in the CCA projection. In the latter, some of the 
packets belonging to normal traffic do not evolve in parallel straight lines. That is the 
case of groups 1 and 2 in Fig. 2. The anomalous traffic shows an abnormal evolution 
once again (Groups 3 and 4 in Fig. 2), so it is not as clear as in previous projections to 
distinguish the anomalous traffic from the “normal” one. 

 

Fig. 2 CCA projection (employing Standardized Euclidean distance). 
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For comparison purposes, a different CCA projection for the same dataset is shown 
on Fig. 1.d. This projection is based on simple Euclidean Distance. The anomalous 
situations can not be identified in this case as the evolution of the normal and 
anomalous traffic is similar. Different distance criteria such as Cityblock, Humming 
and some others were tested as well. None of them surpass the Standardized 
Euclidean Distance, whose projection is shown on Fig. 2. 

5    Conclusions and Future Work 

The use of embedded ANN in the deliberative agents of a dynamic MAS let us take 
advantage of some of the properties of ANN (such as generalization) and agents 
(reactivity, proactivity and sociability) making the ID task possible. It is worth 
mentioning that, as in other application fields, the tuning of the different neural 
models is of extreme importance. Although the neural model can get a useful 



  

projection, a wrong tuning of the model can lead to a useless outcome, as is the case 
of Fig 1.d. 

We can conclude as well that CMLHL outperforms MLHL, PCA and CCA. This 
probes the intrinsic robustness of CMLHL, which is able to properly respond to a 
complex data set that includes time as a variable. 

Further work will focus on the application of high-performance computing 
clusters. Increased system power will be used to enable the IDS to process and display 
the traffic data in real time. 
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