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Abstract— Intrusion Detection Systems (IDS’s) ensure the 

security of computer networks by monitoring traffic and 
generating alerts, or taking actions, when suspicious activities are 
detected.  This paper proposes a network-based IDS supporting 
an intuitive visualization of the time evolution of network traffic. 
The system is designed to assist the network manager in detecting 
anomalies, and exploits Auto-Associative Back-Propagation 
(AABP) neural networks to turn raw data extracted from traffic 
sources into an intuitive 2-D representation. The neural 
component operates as a sort of smart compression operator and 
supports a compact representation of multi-dimensional data. The 
empirical verification of the mapping method involved the 
detection of anomalies in traffic ascribed to the Simple Network 
Management Protocol (SNMP), and confirmed the validity of the 
proposed approach.  

 

I. INTRODUCTION 

Intrusion Detection Systems (IDS’s) monitor the traffic in 
computer networks and generate alerts, or trigger defensive 
actions, when suspect activities are detected. As a consequence 
of the degenerating scenario of open traffic, IDS’s have 
become common elements in modern infrastructures to enforce 
network policies, yet some scientific issues remain open in 
IDS’s development and run-time operation. IDS technologies 
typically embed two approaches [1]: misuse intrusion detection 
(MID) and anomaly intrusion detection (AID).  

MID systems recognize known attack patterns, and typically 
rely on a knowledge base of rules to discriminate normal from 
malicious traffic. MID is today’s state of the art in network 
security but suffers from basic drawbacks: first, the set of rules 
is susceptible to inconsistencies; secondly, continuous updating 
is required to incorporate unseen attack patterns.  

AID systems model ‘normal’ traffic patterns and generate 
alerts when ‘abnormal’ events are detected. These techniques 
do not embed sets of rules and can support time-zero detection 
of novel attack strategies. On the other hand, the anomaly-
based approach requires consistent modeling of normal traffic. 
Accuracy in detection proves indeed the major limitation of 
AID systems, which can exhibit a relatively high rate of false 
positives [1].  The typical approach to circumvent that issue is 
to drive the IDS’s development empirically, and connectionist 
models can be profitably used for that purpose. Supervised 
methods [1-7] tackle intrusion detection as a binary 

classification problem (i.e., normal vs./ abnormal traffic) and 
attain quite accurate results. However, the need for data 
labeling in the set-up phase and the continuous evolution of 
attack types often lead to a very expensive training process.  

Unsupervised methods for anomaly detection [1, 8, 9] first 
extract features from traffic data and then apply unlabelled 
learning methods. In general, the ultimate goal is to identify the 
significant portions of the feature space that support the 
distribution of normal traffic, whereas outliers will mark 
abnormal traffic activities. However, unsupervised techniques 
have also been profitably applied to IDS’s supporting visual 
analysis of the network traffic [10]. Unsurprisingly, supervised 
methods outperform unsupervised approaches at identifying 
known patterns [1]; by contrast, the latter ones prove more 
robust when coping with unknown attacks in a dynamic 
scenario, and therefore have been chosen as the scientific 
baseline for the present research. 

In particular, Auto-Associative Back-Propagation (AABP) 
neural networks [11] support the design of IDS’s giving a 2-D 
visualization of the time evolution of the network traffic. The 
system assists a network manager in detecting anomalies and 
performs two tasks: 1) the analysis of the network traffic and 
2) a synthetic visualization of the traffic analysis on a 2-D 
display, which provides a convenient interface. The AABP 
neural network operates as ‘smart compression’ operator, and 
supports the crucial task of mapping raw data extracted from 
traffic sources into an intuitive visual representation.  

During training, the neural network is supplied with a set of 
n-dimensional vectors, which are associated with (unlabeled) 
network traffic and hold feature values extracted from the 
packets. The neural network learns to compress the data 
irrespectively of the actual nature (malicious or not) of the 
traffic situation. At run-time, the IDS feeds the neural 
component with the same vector representation, and derives an 
effective, two-dimensional, representation of data, in which 
abnormal and potentially malicious situations are quite evident. 

The experimental domain adopted to verify the method’s 
effectiveness involves traffic ascribed to the Simple Network 
Management Protocol (SNMP), which represents one of the 
top 5 most vulnerable services [12]. Empirical tests involved a 
dataset previously used in literature for unsupervised analysis 
[10], and proved the effectiveness of the proposed approach.      



II.  THE VISUAL INSPECTION OF TRAFFIC IN MODERN IDS’S 

The network-based IDS described in this paper is organized 
as follows (Fig. 1):  

 
• packets traveling through the network are intercepted by 

some network capture device;  
• monitored traffic is represented by a set of numerical 

features spanning a multidimensional vector space;  
• the actual neural component operates on these feature 

vectors and yields a two-dimensional representation of the 
network traffic;  

• the outcomes of the neural module are presented to the 
network manager in a traffic display device.  

 
The compression neural component processes an n-

dimensional vector that has been previously assembled by a 
“packet processing” module, which extracts numerical features 
associated with each network packet. Hence, the proposed IDS 
operates at the packet level and not at the connection level as 
other models do [13, 14]. Indeed, the design of the feature set 
is a crucial issue that has been thoroughly addressed in the 
literature [15]. It has been proved that timestamp, source and 
address port, and protocol uniquely identify a connection [16]. 
When dealing with Transmission Control Protocol (TCP) 
traffic, additional features may be required (e.g. to track 

connection state [17]); instead, User Datagram Protocol (UDP) 
traffic can be effectively characterized by a reduced feature set 
[10]. 

The neural component clearly is the actual core of the 
overall IDS. That module is designed to yield an effective, 
two-dimensional representation of network traffic, thus 
providing a powerful tool for further visual inspection. As a 
consequence, the effectiveness of the overall approach based 
on the two-dimensional representation of traffic strictly relates 
to the successful support to the network supervisor at detecting 
traffic anomalies. 

A connectionist approach appears consistent with the 
anomaly-detection problem setting mainly because it allows a 
system to empirically learn the input-output relationship 
between raw traffic and subsequent interpretation.  The crucial 
advantage is that the outlier-detection method does not require 
any a-priori analytical formulation of the underlying 
phenomenon.  

In principle, any unsupervised method applies to the 
involved representation process, and indeed Self-Organizing 
Maps [7, 8] and Vector Quantization-based methods [9] have 
had a considerable success in supporting IDS technology.  As 
compared with those models, Auto-Associative Back-
Propagation (AABP) neural networks represent an intriguing 
alternative for unsupervised learning, especially when 
considering its non-linear formulation [11].  

From a structural viewpoint, the approach proposed in this 
paper for Anomaly Intrusion Detection exploits the AABP 
capability to implement universal nonlinear approximation. 
The following section describes the AABP neural network and 
the design strategy for the neural-based AID module. 

    

III.      AUTO-ASSOCIATIVE BACK-PROPAGATION NETWORKS 
FOR DIMENSIONALITY REDUCTION 

A.  Back-Propagation Networks 
A neural network-based device can be viewed as a mapping 

box configured by a set of parameters (‘weights’), which 
should be adjusted so as to reproduce a given input-output 
relationship as accurately as possible. The crucial advantage of 
neural approaches is that the weight values can be learned 
empirically; hence the mapping tool does not need any a-priori 
analytical formulation of the observed phenomenon.   

MultiLayer Perceptrons (MLPs) [18] support the mapping 
by arranging several nonlinear units (‘neurons’) into a layered 
structure. Each neuron transforms its own weighted inputs by a 
sigmoidal function σ(r), whose nonlinearity is crucial because 
theory proves that such networks can support arbitrary 
mappings [19, 20]. A traditional MLP includes three layers 
(input, ‘hidden’, output), and associates an input vector, x∈ℜD, 
with an output vector, y∈ℜQ, computed as: 
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where Nh is the depth of the sigmoid series expansion, and the 
coefficients W={w, w′} are the weights for the 
interconnections between the two upper layers (Fig. 2).  

Those weights, W, are adjusted empirically so that the 
network best reproduces the desired (x, y) mapping over a 
given training set. The classical cost function measuring the 
mapping distortion is the mean square error, EW, between the 
desired response (‘target’), for a given input vector and the 
actual network output. Thus, the network-training process is 
formulated as an optimization problem expressed as 
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where t(s) is the desired output for the s-th training vector, x(s), 
and n is the number of training pairs (x(s), t(s)). The Back-
Propagation (BP) algorithm [18] is a powerful tool for training 
(2), and its effect on the practical impact of MLPs has been so 
vast that MLPs are often called ‘Back-Propagation’ networks.  
BP tackles the learning problem (2) by a stochastic gradient-
descent strategy over the weight space.   

B. Auto-Associative Back-Propagation Networks 
Auto-Associative BP networks constitute an unsupervised 

variant of the general model, in which the desired outputs 
coincide with the network inputs: t ≡ x (Fig. 2).  Forcing the 
network to replicate the training sample distribution mainly 
aims at a reduction in dimensionality, since the hidden layer is 
typically smaller that the input/output ones.  

At run-time, an AABP network is used to associate the 
coding values computed by the hidden neurons with each input 
vector; these ‘mapping outputs’ actually support the (lossy) 
transformation from the input space into a lower-dimensional 
representation. Theory proved [11] that a three-layer AABP 
network supports a mapping that is affine (if not equivalent) to 
Principal Component Analysis (PCA) [21, 22].  

Quite in view of this equivalence, it clearly appears that such 
a compression mapping might eventually suffer from the same 
drawbacks affecting PCA-like representations, the most 
prominent of which is a considerable sensitivity to the presence 

of outliers in the training set.  It is indeed known that the vector 
eigenvectors induced by linear mappings may suffer from poor 
consistency when the PCA-based training includes abnormal 
data points [23].  

That consideration, together with the ability of universal 
approximation theoretically ascribed to the Back-Propagation 
model [19], lead to a more sophisticated model of AABP 
networks, which anyway adhere to the basic principle of 
unsupervised training.  The output layer still remaps the input 
vector values, and a hidden compression layer still supports a 
dimensionality reduction. The basic difference is in the 
compression/reconstruction sections, as both include an 
additional layer of neurons, thereby leading to a five-layer 
Auto-Associative network (Fig. 3).  

The mapping supported by such an architecture was called 
NonLinear Principal Component Analysis (NLPCA) [11]. 

The run-time use of the resulting networks, after training 
completion, is totally equivalent to the use of three-layer 
AABP networks: the output values of the coding layer 
(‘mapping outputs’) provide the low-dimensional 
representation of each input vector.  

The increase in representation power (and complexity) 
conveyed by the NLPCA augmentation is remarkable. The 
lower half of the network, also called the ‘compression 
section’, actually embeds a complete three-layer BP network, 
and therefore benefits from the universal capabilities predicted 
by theory [18]. The critical issue, of course, is that no one 
could ever know in advance the Nh target values that should be 
imposed for a conventional training process. The trick involved 
with the NLPCA approach is that those target values can be 
implicitly imposed by forcing the network to reconstruct the 
original sample in the upper section. Thus the ‘reconstruction’ 
section is symmetrical with respect to the compression section, 
in order to yield equivalent, universal (inverse) mapping 
capabilities. 

Fig.2. A three-layer Auto-Associative Back-Propagation network 
supports a lossy compression of input data. 

Fig. 3. A NonLinear Auto-Associative Back-Propagation network 
includes five layers to reduce data dimensionality.  



The main advantage is that the ultimate compressed 
representation is no longer linked to any linear underlying 
model, but stems instead from an universal internal 
representation, that is learned empirically. On the other hand, 
the complexity of the augmented model is apparent, and the 
weight-tuning process might turn out to be quite difficult due 
to the much larger number of free parameters.  This possibly 
gives rise to presence of local minima, especially in the 
presence of limited training sets, and optimized learning 
algorithms are often applied to tame training complexity [24]. 

In summary, NLPCA techniques seem to fit those domains 
for which 1) a nonlinear representation is required to best 
encompass the observed empirical phenomenon, and at the 
same time, 2) a considerable number of empirical samples is 
available. 

 

IV. USING AABP NETWORKS FOR ANOMALY DETECTION  

A. Simple Network Management Protocol 
The present IDS is targeted to detect traffic anomalies within 

the Simple Network Management Protocol (SNMP), which is a 
part of the Transmission Control Protocol/Internet Protocol 
(TCP/IP) protocol suite. SNMP is an application layer protocol 
that supports the exchange of management information 
between network devices. This protocol enables network 
administrators to manage network performance and is used to 
control network elements such as routers, bridges and switches. 
This property makes SNMP data quite sensitive and liable to 
potential attacks. Indeed, an attack based on the SNMP 
protocol may severely compromise system security, as reported 
by CISCO [12].  

The method presented in this paper addresses two different 
types of attacks that rely on the SNMP protocol:  
• MIB information transfer: the Management Information 

Base (MIB) is a collection of information concerning a 
managed device, including sensitive data such as network 
and router information (e.g. IP, Mac address and VLan 
configuration). As specified by the Internet Activities 
Board (IAB), the SNMP protocol is used to access MIB 
objects; thus, protecting a network from malicious MIB 
information transfer is crucial.  

• SNMP port sweep: a port scan (or sweep) is an attempt to 
count the services running on a machine by probing each 
port for a response. In this paper, the SNMP port scanning 
is tackled.  

B. Feature extraction 
The eventual network-based IDS for the detection of SNMP 

anomalous traffic is structured as shown in Fig. 1. The “packet 
processing” component (see Sec. II) generates feature vectors 
by working out information contained in the packet header. In 
the present research, network packets are characterized by 
using the set of features that already proved to be effective for 
detection of anomalous SNMP traffic [10].  The set of four 
features that are extracted from packets contribute to build up 

the neural-network input vector, x ∈ℜ4; these features can be 
listed as follows:  

 
• Protocol ID: an integer number that identifies the protocol 

of the packet;  
• Source port: the port number of the device that sent the 

packet;  
• Destination port: the port number of the target host, i.e. 

the host to which the packet is sent; 
• Size: the packet size (in Bytes).  
 

As such, at the output of the “packet processing” module the 
network traffic is mapped in a four-dimensional feature space. 

According to the set-up discussed in Sec. III, the AID 
module exploits an AABP neural network to generate a two-
dimensional representation of the network traffic by starting 
from the four-dimensional space defined by the feature set. 
Thus, first an offline training phase uses empirical data to set 
the configuration of weight quantities for the neural network. 
Then, the eventual neural system is used to process the feature 
vectors generated at run-time and to feed the visual display.   

Fig. 4 gives an outline of the run-time operation of the 
neural-based IDS. 

V. EXPERIMENTAL RESULTS 

The proposed network-based IDS has been tested by using 
the data set utilized in [10]. The data set contained network 
packets captured from UDP (i.e. User Datagram Protocol) 
traffic, as SNMP uses UDP as the transport protocol for 
passing data between managers and agents. Hence, the data set 
included only packets that use UDP as transport layer and IP as 
network layer. A total of 5866 samples (i.e. network packets) 

The IDS run-time operation algorithm 
 
0. (Initialization) 
  Inputs:  neural network weights, W 
  Time slot for visual update rate 

1. For each time slot: 

a. Scan network traffic and acquire 
packets 

b. Extract numerical features 

c. Associate with each packet datum a 
four-dimensional feature vector, x 

d. Feed the AABP network with vector x 

e. Register the two-dimensional mapping 
vector, v, spanned by the middle-layer 
neurons 

f. Feed the visual interface to the 
network manager with vector v. 

  
 
Fig. 4. The run-time operation algorithm of the neural-network based IDS. 



were involved in the experiment.    
As anticipated in Sec IV, network packets were 

characterized by a feature set (i.e., Protocol ID, Source Port, 
Destination Port and Size) spanning a four-dimensional space. 
Thus, the eventual AABP-based IDS was trained to map such a 
four-dimensional space into a two-dimensional space for an 
intuitive visualization of the traffic progress.  

In the experiments presented here, the configuration of the 
AABP network included a number of 30 nodes in the hidden 
layers (coding and reconstruction), while of course the number 
of neurons in the middle layer was Nh=2.  Although theoretical 
studies did not succeed in providing any established design 
criterion to set the number of a network’s hidden nodes, the 
literature provides both analytical [25] and practical criteria 
[26] for dimensioning a network size, in order to ensure 
prediction accuracy while minimizing the risk of overfitting 
training data. The present research adopted a well-known 
practical approach [26] mainly because of its simplicity and 
proved effectiveness.  

In summary, the architecture of the overall AABP network 
was set as follows: four nodes in the input layer, 30 nodes in 
the compression layer, 2 nodes in the coding layer, 30 nodes in 
the decompression layer, and four nodes in the output layer.  

Fig. 5 presents the results obtained by the AABP mapping; 
the graph in Fig. 5-a) plots the network packets by using as 
coordinates the two outputs of the coding layer, i.e. the 
compressed representation of the inputs, which therefore is the 
actual visual rendering of the original four-dimensional 
representation of the network traffic. One easily notes that the 
data pattern exhibits two anomalies, which are quite apparent 
because most of the data are organized according to almost 
parallel patterns, whereas two different, smaller groups of data 
evolve in a different direction.  

To allow a correct interpretation of these results, Fig. 5-b) 
augments the displayed information by associating different 

markers with the actual packet nature: the data points marked 
by gray crosses relate to anomalous traffic. This graph points 
out that the two groups of abnormal data, which the previous 
(unsupervised) analysis highlighted due to the odd direction of 
progression, did in fact involve packets that should be 
classified as anomalous traffic. This confirmed that the bi-
dimensional mapping process obtained by using the AABP 
network, adjusted empirically during the training process, 
succeeded in identifying anomalous traffic.  

Fig. 6 shows indeed that with the present testbed the AABP-
based approach outperforms conventional PCA. The figure 
illustrates the result obtained by mapping into the two-
dimensional space provided by PCA the same dataset used in 
the experiment described above.  
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Fig. 5. AABP compression supports the accurate detection of traffic anomalies. Normal traffic evolves along parallel lines while abnormal traffic diverges from the 
normal direction: a) Unsupervised representation of traffic progress; b) Traffic representation where malicious traffic is highlighted. 

a) 

Fig. 6. PCA compression does not support the detection of traffic anomalies.



The graph clearly points out that PCA does not attain a 
satisfactory representation of the network traffic, as all the data 
is depicted in the same way. PCA is not able to differentiate 
the anomalous traffic from the normal one. The used dataset is 
a representative and complete sample as it includes both 
normal and anomalous traffic. The anomalous situations 
contained in the dataset are characteristic of SNMP-related 
intrusive actions. 

             

VI. CONCLUSIONS 

This paper presents a network-based IDS supporting a 
powerful 2-D visualization of network traffic. The IDS has 
been designed to support the network manager in detecting 
traffic anomalies by embedding a synthetic visualization of the 
traffic analysis on a 2-D display.  

The proposed method exploits a connectionist approach to 
tackle the crucial issue of the effective representation of 
network traffic on a two-dimensional domain. The major result 
of the present research lies in showing that AABP neural 
networks can represent a valuable tool for addressing such a 
task. Indeed, two important aspects make the AABP-based 
approach interesting: 1) the set up of AID model follows an 
unsupervised paradigm, and 2) the AABP network can 
implement universal nonlinear approximation.   
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