
Using Natural Interfaces for Human-Agent

Immersion

Angel Sanchis1, Vicente Julián1, Juan M. Corchado2,
Holger Billhardt3, and Carlos Carrascosa1

1 Departamento de Sistemas Informáticos y Computación
Universitat Politècnica de València, Spain

2 Department of Computer Science, University of Salamanca, Spain
3 CETINIA, Universidad Rey Juan Carlos, Spain

angel2esoc@hotmail.com, {vinglada,carrasco}@dsic.upv.es,
corchado@usal.es, holger.billhardt@urjc.es

Abstract. Multi-agent technology allows the development of current
AmI applications. Specifically, a multi-agent system allows the forma-
tion and management of applications where the main components can
be humans and software agents interact and communicate with humans
in order to help them in their daily activities. This kind of applications
are what we call a Human-Agent Society, where agents provide services
to humans or to other agents in an environment of whole integration.
This paper presents a solution for the problem of human immersion pre-
sented in this kind of systems, providing the use of natural interfaces for
the interaction among humans and software agents.

Keywords: Virtual Agents, Human-Agent Societies.

1 Introduction

Ambient Intelligence (AmI) imagines a future where technology surrounds the
users [1], and helps them in their daily lives. The AmI scenarios described by
the Information Society Technologies Advisory Group (ISTAG) have intelligent
environments capable of recognizing and responding to the presence of different
individuals in a simple, unobtrusive and often invisible way [5]. AmI is heavily
based on the concept of Ubiquitous Computing (UC), introduced by Weiss in the
90s, which describes a world where a multitude of computational objects interact
and communicate in order to help humans in daily activities [10]. The main goal
of AmI systems is to be invisible, but very useful. This raises some requirements
for AmI -based [9] systems. The technology must be transparent to users, ser-
vices must be adapted to the context and user preferences and the applications
must provide intuitive interfaces and must be friendly to users. This situation
attributes to Intelligent Systems (IS) a key role in achieving the AmI goals [8].
AmI provides distributed complex problems by applying methodologies inspired
by human techniques for solving problems. That is, to provide machine learn-
ing procedures, interaction protocols, distributed communication, coordination

J.M. Corchado et al. (Eds.): PAAMS 2014 Workshops, CCIS 430, pp. 358–367, 2014.
c© Springer International Publishing Switzerland 2014

Using Natural Interfaces for Human-Agent Immersion 359

and cooperation and adaptive behavior models to the knowledge representation
formalisms of AmI.

Recent trends in AmI, based on intelligent systems, have not had much suc-
cess. There are two main reasons as the cause of this failure. For one side,
intelligent systems have not reached the maturity level of other information
technologies, and for a long time, they have forgotten traditional industry [6].
On the other hand, it is required an interdisciplinary perspective, which is diffi-
cult, since a considerable amount of resources (scientific, economic and human)
would be required.

Agent technology, although still immature in some ways, allows the develop-
ment of systems that support the requirements of AmI applications. Specifically
it allows the formation and management of systems where the main components
can be humans and software agents providing services to humans or other agents
in an environment of whole integration. This kind of applications are what we
call a Human-Agent Society, which can be defined as a computing paradigm in
which the traditional notion of application disappears. Rather than developing
software applications that accomplish computational tasks for specific purposes,
this paradigm is based on an immersion of the users in a complex environment
that enables computation.

This paper deeps in the immersion problem of this kind of systems providing
the use of natural interfaces for the interaction among humans and software
agents. When a human is completely immersed into a system of this kind, the
human can interact with the system using natural gestures. Moreover, agents
inserted in the system can learn about human actions adapting its behaviors
and taking decisions about future situations. Examples of these systems can
be domotic scenarios, production lines in an industry, entertainment industry,
. . . where humans interact with the rest of components only moving, for example,
their arms or hands. In order to show this, the paper presents a proof of concept
of this kind of immersion.

The rest of the document is structured as follows. Section 2 describes what we
have called Human-Agent Societies. Next, in Section 3, we describe JGOMAS,
a framework for 3D simulated worlds where we situate our proposal. After that,
Section 4 presents the proposal we have made for a Human-Agent Society proof
of concept. Finally, the conclusions of this paper are commented in Section 5.

2 Human-Agent Societies

With the term Human-Agent Society (HAS) we refer to a computing paradigm
in which the traditional notion of application disappears. Rather than developing
software applications that accomplish computational tasks for specific purposes,
this paradigm is based on an immersion of the users in a complex environment
that enables computation. The environment itself is populated by computational
entities with different capacities and intellectual properties, ranging from simple
devices that offer specific capacities or rudimentary information, like screens or
sensors, to autonomous artificial agents that provide high level services and are

360 A. Sanchis et al.

able to engage in complex interaction protocols. This view of a system is closely
related with the development of AmI applications.

When defining a HAS, it can be seen as the next evolution of Multi-agent
Systems, where there is an immersion at two levels of agents and humans re-
spectively. Thus, in the MAS level, humans are situated and integrated into the
system in such a way that they appear as agents for the other agents. Whereas
in the human level (from the perspective of humans) interaction is performed
with objects and actions a person is accustomed. This is because the MAS is
modeled as an ubiquitous system. Thus, integration of both types of features is
achieved allowing a maximum level of immersion of users in the MAS, minimiz-
ing the level of difficulty of the interaction. Moreover, considering all this, the
satisfaction level of the user is maximized.

The overall objective of this work is to deep in the development of Human-
Agent Societies through the use of natural interfaces that allow immersion in
the two previously mentioned levels.

The ability of aHuman-Agent Society to establish connecting links and achieve
goals together in a dynamic environment, allows to develop flexible and dynamic
systems where individuals, by themselves, are unable to achieve the goals that
emerge in a society. It is necessary to provide mechanisms and interfaces for such
double immersion at MAS. To achieve this extension is necessary to have infor-
mation based on the context that allows to perform a more realistic integration
of the human situation, including possible actions and behaviors that are part
of a human society. Furthermore, at human level, extension mechanisms should
be raised allowing access to agent-based systems in an ubiquitous way.

3 JGOMAS

JGOMAS1 [2] [4] (acronym for Game Oriented Multi-Agent System based on
JADE) is a framework that develops and executes agents in 3D simulated worlds.
In this framework, the social interaction to simulate is based on the rules of a
“Capture the Flag” type of game: agents belong to one of two teams that compete
to capture the opponent’s flag. This game modality has become a standard that
is included in almost all multiplayer games that have appeared since Quake.

It is very easy and intuitive to apply MAS to games of this type because each
soldier can be viewed as an agent. Moreover, agents on a team must cooperate
with each other to achieve the team’s objective, thus competing with the other
team. In fact, it is not uncommon to find applications of agent technology to
the game field in general (e.g., the board game developed by Offerman et al. [7])
and to Capture the Flag in particular.

The framework allows designers to incorporate intelligence in agents that in-
teract in a VE and to follow the evolution of these agents through an unlimited
number of visualization modules in a distributed fashion.

In summary, JGOMAS is composed of two subsystems (see Figure 1):

1 http://jgomas.gti-ia.dsic.upv.es

http://jgomas.gti-ia.dsic.upv.es

Using Natural Interfaces for Human-Agent Immersion 361

– JGOMAS MAS: This subsystem works on a JADE2 platform. There are two
different kinds of agents: Manager Agents (that control the game’s logic,
and interface with visualizers) and Player Agents (one for each member of
each team). Player Agents can play one of three roles: soldier, medic or field
operations, each of which is provided with a set of basic behaviors. JGOMAS
supports interactions between Manager Agents (virtual world) and Player
Agents, so that it abstracts these peculiarities to the users.

– Render Engine (RE): The RE is a 3D multi-platform graphic engine that
allows users to view the evolution of JGOMAS agents in the VE, to observe
how the components of each team behave and the outcome of the game. More
specifically, each RE provides a single window to observe the VE containing
the agents. It is also possible to have different RE configurations to satisfy
different visualization needs, as explained in [3].

Fig. 1. JGOMAS architecture overview

3.1 Multi-agent System

There exists two main classes of agents defined in JGOMAS: the simulation
controller and inhabitant agents (as player agents).

Simulation controller, that is also calledManager Agent, is in charge of keeping
the virtual environment’s data, maintaining the consistency at any time, along
with controlling the rules of the game. On the other hand, the inhabitant agents
simulate players (humans, animals, etc.) situated in the virtual world. These
agents are moving, looking, hearing, etc. . . in the virtual scenario. Furthermore,
they can comunicate each other in order to achieve their goals. Thus, an inhab-
itant agent interacts with other inhabitant agents and with the scenario. As a

2 http://jade.tilab.com/

http://jade.tilab.com/

362 A. Sanchis et al.

result, the virtual world can be changed. And the simulation controller generate
events for those inhabitant agents involved in the changes.

The way an inhabitant agent achieves a goal is carrying out tasks. A Task is
defined as something to carry out in an specific position in the virtual environ-
ment. So, the three main states of an inhabitant agent are:

– Standing: the agent has no current task to do, so he is waiting to do some-
thing.

– Go To Target: the agent has one current task that has been selected from
its task list (according to tasks priority). This task has to be carried out in
a different position to the one the agent is in, so it is moving to this place.
While the agent is moving, it may encounter enemy agents, and react to
them (aiming and shooting them).

– Perform Target Reached: the agent has reached the position where he has to
carry out his current task, and so it has to make the specific actions related
to the task.

There is a set of predefined tasks though the designer may change this set and
/ or change the actions to carry out when the target position is reached (tasks
priority can also be dynamically set). This set includes, but is not limited to:

– GO TO TARGET: the agent moves to the specified position.
– GET OBJECTIVE: all the agents in the attacking team have this task since

game beginning. This task makes the agents to go to the initial position of
the flag in the defending base. If the agent arrives, and the flag is still there,
the agent gets it and the task changes to return to base.

– PATROLLING: all the agents in the defending team have this task since
game beginning. This task is not related to a position but to a set of random
positions generated around the defending base. The task makes the agent
to go visiting them one after the other. When the agent arrives to the last
random position, it begins anew with the first one. So this task never ends,
and the agent is patrolling defending its base and the flag.

There is also some tasks related to the special abilities of some of the roles
agents may play in the game.

There are three different roles for inhabitant agents (though the user may add
more if he wants it): medic, fieldops and soldier. The medic can create medic
packs that allow to recuperate health to any inhabitant agent by consuming
them. In the same way, the fieldops can create ammo packs that allow to recu-
perate ammo to any inhabitant agent by consuming them. The special ability of
the soldier is that he is very skilled at shooting and he makes more damage than
the rest. Any agent registers a service to offer to the other agents in his team his
abilities. And each one of these abilities have a task related to carry them out.
So, there exist a GIVE MEDIC PACKS task, a GIVE AMMO PACKS task
and a GIVE BACKUP task (this last one for the soldier, to go to help their
teammates).

Using Natural Interfaces for Human-Agent Immersion 363

The JGOMAS package includes the multi-agent platform, the RE, maps, doc-
umentation and a sample that is ready to use. Fig. 2 shows an execution example
of this package, with JADE GUI, text console, and some instances of the RE.

Fig. 2. JGOMAS execution example

4 HAS Case Study

4.1 Design

The present proposal supposes a proof of concept about a Human-Agent Society,
that is, a system with a double immersion in it. The user is immersed in the
system interacting with it by means of a natural interface, and the agents in the
system see the user as one of them, interacting with him in the same way.

So, we have added a user to the JGOMAS system as one more of the agents
that interacts with the rest of the system (environment –Manager Agent–, and
the rest of agents –of their same team and of the other team–).

To have the human user immersed in the multi-agent system we have used
a natural interface that allows the user to easily interact with the system. This
natural interface is provided through the Kinect3 sensor device.

The Kinect sensor is composed of the following elements:

– an IR emitter and an IR depth sensor: The first one emits a pattern of
points over the elements in front of the sensor through a laser diode. The
reflex pattern is captured by the IR depth sensor and it is sent to an inner
chip to be compared with an original pattern. The result of this comparison
is the depth information.

– A color sensor: It is a RGB camera with a resolution of 640x480 px at 30fps.

3 Kinect For Windows: http://www.microsoft.com/en-us/kinectforwindows/

http://www.microsoft.com/en-us/kinectforwindows/

364 A. Sanchis et al.

– An inclination motor: It allows an inclination of 27 degrees (positive or neg-
ative) with respect to the horizontal.

– A multi-array microphone: It is a set of four microphones allowing the sensor
to capture audio and to localize the sound sources. It generates 16 bit audio
to 16 khz.

The user is seen in the MAS as any other agent, belonging to one of the com-
peting teams. The user may change the predefined behaviour of his avatar in the
virtual world by means of a pre-defined set of gestures that are captured by the
Kinect sensor. Figure 3 details the different gestures used in the implementation
of the Kinect interface. These gestures are related to the following behaviours:

Left
Arm

Right
Arm

Left
Arm

Right
Arm

Left
Right
Arm

Left
Arm

Right
Arm

Left
Arm

Right
Arm

Left
Arm

Right
Arm

Left
Arm

Right
Arm

Retreat:Move Up: Move Down: Move Left: Move Right: CallForMedic:CallForAmmo:

Fig. 3. Kindle gestures used

– Move Up: the user agent is moved up in the virtual environment map.
– Move Down: the user agent is moved down in the virtual environment map.
– Move Left: the user agent is moved left in the virtual environment map.
– Move Right: the user agent is moved right in the virtual environment map.
– CallForAmmo: the user agent sends a message to all living agents in his team

playing the field operations rol asking for ammo packs.
– CallForMedic: the user agent sends a message to all living agents in his team

playing the medic rol asking for medic packs.
– Retreat: the user agent sends a message to all living agents in his team

ordering them to retreat to their base.

Figure 4 shows how the JGOMAS architecture is left now, where the User
Agent represents the agent that is able to receive orders from the user, having
as an input mechanism the Kinect.

User gestures are translated into messages sent through a TCP-IP connection
to the User Agent. These messages are the most prioritary messages that this
agent may receive. User Agent translates them to tasks and messages to other
agents. Move Up, Move Down, Move Left and Move Right orders provoke the
user agent to add a priority Go To Target task with the corresponding position.
The rest of the orders, as have been commented above, provoke the agent to
send different messages to their teammates.

Using Natural Interfaces for Human-Agent Immersion 365

MAS Platform

Framework
Multi-Agent System

Simulation
Controller
(Agent k)

Agent 1

Visualization 1

Visualization 2

Visualization n

Agent 2

User
Agent

JADE

Kinect

Fig. 4. JGOMAS extended architecture

4.2 Evaluation

The proposal has been implemented over an scenario example in order to validate
the whole immersion of the users and software agents. To do this, the scenario
is formed by two human players which are located in different rooms playing
the same JGOMAS game each one in a different team. Moreover, the game
includes nine more software agents playing in each team. These agents have
been implemented in JADE (see figure 5).

As before commented, each human player interacts with the system through a
Kinect sensor and a JADE agent (User Agent) which represents the human in the
virtual scenario. The Kinect sensor is controlled through a driver implemented
in C# that must take into account the main technical limitations of the sensor,
which are:

– The Horizontal field of view is only a maximum of 57 degrees.
– The Vertical field of view is a maximum of 43 degrees.
– There is a low resolution in the image depth. The detection of small elements

is worse when increasing distance.
– There is a range of + - 27 degrees of vertical tilt .
– Regarding depth sensitivity there are two operating modes:

• In normal mode, the range of distances for the optimal operation of the
sensor varies from 0.8m to 4m , and in the range of 4 -8m its performance
degrades. Beyond 8m and closer than 0.4m the data has no validity.

• In the operating mode called near, the distance for an optimum perfor-
mance is reduced to 0.4 m, having an optimal range of 0.4- 3m, being un-
reliable data for 3 -8m and without any validity in 0-0.4m and beyond 8m.

366 A. Sanchis et al.

– It is able to monitor at most two active persons simultaneously, being able
to follow up to 20 joints for each active person.

Humans can control his agent through the use of the before commented ges-
tures. In absence of them, the User Agent can take the initiative and interact
with the rest of the system without intervention of the human. After several ex-
ecutions the system worked in a correct way, but some problems were detected.
Regarding the recording position process, the recognition system which has been
used requires that the positions were stored in a file that is uploaded to a serial-
izable classes in a certain structure. In the absence of any tool to record gestures
it has been implemented a block that allows to create a file with the gestures to
be recognized for each one of the possible actions to be performed. Occasionally,
the system suffered short disconnections forcing to restart the Kinect driver. A
reconnection module has been added in order to automatically manage these
short disconnections avoiding this situation. Moreover, during the development
was observed that the number of events launched by the Kinect sensor was too
low to properly recognize gestures. To solve this problem different versions of the
Kinect for Windows controller were tested over different platforms without get-
ting improvements. Finally, it was decided to limit the number of actions taken
by the Kinect taking into account at any time only one active sensor (voice, rgb,
or depth).

Fig. 5. Real implementation test

5 Conclusions

This work presents the problem of the double immersion in Human-Agent Soci-
eties, where human and agents must coexist in a framework of maximum integra-
tion. In order to achieve this kind of immersion, a case study has been developed
over the JGOMAS framework using natural interfaces allowing an easy integra-
tion of the human in the MAS. Future work in this research area will focus on

Using Natural Interfaces for Human-Agent Immersion 367

developing a learning module which will allow to modelize the human behavior.
This learning mechanism can be seen as a training process allowing software
agents to anticipate to human actions. This will allow humans to minimize the
number of gestures needed to react in front of typical situations.

Acknowledgments. This work was supported by the Spanish government
grant MINECO/FEDER TIN2012-36586-C03-01,

References

1. Augusto, J.: Ambient Intelligence: the Confluence of Ubiquitous/Pervasive Com-
puting and Artificial Intelligence. Intelligent Computing Everywhere (2007)

2. Barella, A., Carrascosa, C., Botti, V.: Agent Architectures for Intelligent Virtual
Environments. In: 2007 IEEE/WIC/ACM International Conference on Intelligent
Agent Technology, pp. 532–535. IEEE (2007)

3. Barella, A., Mart, M., Carrascosa, C., Botti, V.: Multi-Agent Systems applied
to Virtual Environments: a Case Study. In: ACM Symposium on Virtual Reality
Software and Technology, pp. 237–238. ACM SIGGRAPH (2007)

4. Barella, A., Valero, S., Carrascosa, C.: JGOMAS: New Approach to AI Teaching.
IEEE Transactions on Education 52(2), 228–235 (2009)

5. Group, I.A.: The European Union report: Scenarios for Ambient Intelligence in
2010 (2001),
ftp://ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf

6. Hendler, J.: Where Are All the Intelligent Agents? IEEE Intelligent Systems 22,
2–3 (2007)

7. Offermann, S., Ortmann, J., Reese, C.: Agent based settler game (2005),
http://x-opennet.org/netdemo/Demos2005/aamas2005/_netdemo/_settler.pdf,
part of NETDEMO, demonstration at the international conference on Autonomous
Agents and Multi Agent Systems, AAMAS 2005

8. Ramos, C., Augusto, J., Shapiro, D.: Ambient Intelligence?the Next Step for Ar-
tificial Intelligence. IEEE Intelligent Systems 23, 15–18 (2008)

9. Satyanarayanan, M.: Pervasive Computing: Vision and Challenges. IEEE Personal
Communications 8(4), 10–17 (2001)

10. Weiser, M.: The Computer for the 21st Century. Scientific American 265, 94–104
(1991)

ftp://ftp.cordis.europa.eu/pub/ist/docs/istagscenarios2010.pdf
http://x-opennet.org/netdemo/Demos2005/aamas2005/_netdemo/_settler.pdf

	Using Natural Interfaces for Human-Agent
Immersion
	1 Introduction
	2 Human-Agent Societies
	3 JGOMAS
	3.1 Multi-agent System

	4 HAS Case Study
	4.1 Design
	4.2 Evaluation

	5 Conclusions
	References

