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Abstract. By improving accuracy in the quantification of the ocean’s CO2 
budget, a more precise estimation can be made of the terrestrial fraction of 
global CO2 budget and its subsequent effect on climate change. First steps have 
been taken towards this from an environmental and economic point of view, by 
using an instance based reasoning system, which incorporates a novel clustering 
and retrieval method - a Cooperative Maximum Likelihood Hebbian Learning 
model (CoHeL). This paper reviews the problems of measuring the ocean’s CO2 
budget and presents the CoHeL model developed and outlines the IBR system 
developed to resolve the problem. 

1 Introduction 

This paper presents the results obtained with an instance based reasoning system  
(IBR) developed to estimate the ocean-atmosphere partial pressure of CO2 (pCO2) 
from information extracted from satellite pictures, wind direction and strength and 
other parameters such as water temperature, salinity and fluorescence. The final goal 
of our project is to construct a model that calculates the exchange rate and the global 



 

budgets of CO2, between the ocean and the atmosphere. An understanding of the 
natural sources and sinks of atmospheric carbon dioxide is necessary for predicting 
future atmospheric loading and its consequences for global climate. Present estimates 
of emissions and uptake do not balance, and although some have attributed the 
imbalance to a terrestrial sink, the magnitude of the oceanic sink remains undefined 
[7]. The rapid increase in atmospheric CO2 resulting from atmospheric changes in the 
carbon cycle has stimulated a great deal of interest. Important decisions need to be 
made about future tolerable levels of atmospheric CO2 content, as well as the lead and 
fossil fuel usage strategies that will permit us to achieve our environmental goals. The 
solution to these types of problems requires the use of dynamic systems, capable of 
incorporating new knowledge and facilitating the monitoring and estimation work 
carried out by oceanographers [14].   

Case based reasoning (CBR) and IBR systems have been successfully used in 
several domains such as diagnosis, prediction, control and planning [13] [5] [18]. 
However, a major problem with these systems is the difficulty of case retrieval and 
case matching when the number of cases increases; large case bases are difficult to 
handle and require efficient indexing mechanisms and optimised retrieval algorithms. 
Moreover, there are very few standard techniques for automating their construction, 
since each problem may be represented by a different data set and requires a 
customised solution. Based on recent successful experiments with this technology [6] 
an instance based reasoning system has been developed for estimating the partial 
pressure of CO2 in the ocean. The IBR system developed incorporates a novel 
Cooperative Maximum Likelihood Hebbian Learning model for the data clustering 
and retrieval and a radial-bases function neural network for instance adaptation and 
forecast, which is an extension and an improvement of the one presented in [6].  

This paper reviews a method that can be used for the automation of IBR systems 
especially developed for estimating the partial pressure of CO2 in an area of the 
Pacific ocean from Latitude 22,6ºS to 24ºS and Longitude 70ºW to 72ºW, which 
corresponds to a water mass situated off the Chile coasts of “Mejillones” and 
“Antofagasta”. The Cooperative Maximum Likelihood Hebbian Learning (CoHeL) 
method is a novel approach that features both selection, in which the aim is to 
visualize and extract information from complex, and highly dynamic data. The model 
proposed is a mixture of factor analysis and exploratory projection pursuit [8] based 
on a family of cost functions proposed by Fyfe and Corchado [9] which maximizes 
the likelihood of identifying a specific distribution in the data while minimizing the 
effect of outliers [9] [16]. It employs cooperative lateral connections derived from the 
Rectified Gaussian Distribution [3] [15] in order to enforce a more sparse 
representation in each weight vector. This method is used for the clustering of 
instances, and during the retrieval stage of the IBR cycle, the adaptation step is carried 
out using a radial basis function network while the revision stage is manually carried 
out by an oceanographer (since the specific aim of this project is to construct a tool 
for oceanographers). Finally, the system is updated continuously with data obtained 
from the afore mentioned satellites and sensors. 

First, the present paper will describe the oceanographic problem that defines the 
framework of our research, then the CoHeL method, used to automate the retrieval 
stage of the IBR systems, will be described. A presentation will then be made of the 



 

 

instance based reasoning model and finally, the results of the experiments will be 
described.  

2  Ocean-atmosphere interaction  

The oceans contain approximately 50 times more CO2 in dissolved forms than the 
atmosphere, while the land biosphere including the biota and soil carbon contains 
about 3 times as much carbon (in CO2 form) as the atmosphere [17]. The CO2 
concentration in the atmosphere is governed primarily by the exchange of CO2 with 
these two dynamic reservoirs. Since the beginning of the industrial era, about 2000 
billion tons of carbon have been released into the atmosphere as CO2 from various 
industrial sources including fossil fuel combustion and cement production. At present, 
atmospheric CO2 content is increasing at an annual rate of about 3 billion tons which 
corresponds to one half of the annual emission rate of approximately 6 billion tons 
from fossil fuel combustion. Whether the missing CO2 is mainly absorbed by the 
oceans or by the land and their ecosystems have been debated extensively over the 
past decade. It is important, therefore, to fully understand the nature of the physical, 
chemical and biological processes which govern the oceanic sink/source conditions 
for atmospheric CO2 [11] [17]. 

New satellite sensors: ENVISAT, Aqua and other new Earth Observation satellites 
herald a new era in marine Earth Observation. Satellite-borne instruments provide 
high-precision, high-resolution data on atmosphere, ocean boundary layer properties 
and ocean biogeochemical variables, daily, globally, and in the long term. All these 
new sources of information have changed our approach to oceanography and the data 
generated needs to be fully exploited. Wind stress, wave breaking and the damping of 
turbulence and ripples by surface slicks, all affect the air-sea exchange of CO2. These 
processes are closely linked to the "roughness" of the sea surface, which can be 
measured by satellite radars and microwave radiometers. Sea surface roughness 
consists of a hierarchy of smaller waves upon larger waves (photograph, left, and 
close-up, below). Different sensors give subtly different measurements of this 
roughness. Our final aim is to model both the open ocean and shelf seas, and it is 
believed that by assimilating Earth Observation (EO) data into artificial intelligence 
models these problems may be solved. EO data (both for assimilation and for 
validation) are vital for the successful development of reliable models that can 
describe the complex physical and biogeochemical interactions involved in marine 
carbon cycling. Satellite information is vital for the construction of oceanographic 
models, and in this case, to produce estimates of air-sea fluxes of CO2 with much higher 
spatial and temporal resolution, using artificial intelligence models than can be achieved 
realistically by direct in situ sampling of upper ocean CO2.  

The systems have been tested in a number of cruises carried out off Chile during 
the austral summer of 2000, such as the one shown in Figure 1. The oceanographic 
cruises had several purposes including the calibration of new satellites and sensors, 
evaluation of the model proposed, etc. During the cruise, data was obtained in situ 
from temperature, chlorophyll, fluorescence and salinity sensors, and satellite images 
were also obtained. Partial pressure of CO2 (pCO2) was also calculated in real time. 



 

This data was used to calibrate satellite sensors and to feed the IBR system, with the 
intention of developing a model that may allow, in the future, the calculation of pCO2 
values from satellite images rather than from in situ cruises. 

 

 
 

Fig. 1.  Cruise track in the Pacific waters. 

3  CoHeL Model 

The Cooperative Maximum Likelihood Hebbian Learning (CoHel) method used 
during the retrieval stage of an IBR system is closely related to factor analysis and 
exploratory projection pursuit. It is a neural model based on the Negative Feedback 
artificial neural network, which has been extended by the combination of two 
different techniques. As mentioned before, this method is an extension and an 
improvement of the Maximum Likelihood Hebbian Learning (MLHL) method 
presented in [6]. This is a more robust method, based on a more solid mathematical 
formulation and that enforces a more sparse representation due to the use of 
cooperative lateral connections among the output neurons of the neural net, which 
also guaranties a faster convergence and clustering.  

In this case, after selecting a cost function from a family of cost functions which 
identify different distributions - this method is called Maximum-Likelihood Hebbian 
learning [4][9] - cooperative lateral connections derived from the Rectified Gaussian 
Distribution [15] were added to the Maximum-Likelihood method which enforced a 
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greater sparsity in the weight vectors. To understand the proposed method is 
necessary to review the concepts presented in the following sections.  

3.1  The Negative Feedback Neural Network 

First, we shall present the Negative Feedback Network, which is the basis of the 
Maximum-Likelihood model. Feedback is said to exist in a system whenever the 
output of an element in the system partially influences the input applied to that 
particular element. It is used in this case to maintain the equilibrium on the weight 
vectors.  

Consider an N-dimensional input vector, x , and a M-dimensional output 
vector, y , with 

ijW  being the weight linking input j  to output i  and let η  be the 
learning rate. The initial situation is that there is no activation at all in the network. 
The input data is fed forward via weights from the input neurons (the x -values) to 
the output neurons (the y -values) where a linear summation is performed to give the 
activation of the output neuron. We can express this as: 
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The activation is fed back through the same weights and subtracted from the inputs 

(where the inhibition takes place): 
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After that simple Hebbian learning is performed between input and outputs: 

             ijij yeW η=∆
                                                               (3) 

The effect of the negative feedback is to stabilise the learning in the network. 
Because of this, it is not necessary to normalise or clip the weights to get convergence 
to a stable solution. 

Note that this algorithm is clearly equivalent to Oja’s Subspace Algorithm [12] 
since if we substitute Equation 2 in Equation 3 we get: 

i
k
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This network is capable of finding the principal components of the input data in a 
manner that is equivalent to Oja’s Subspace algorithm [12], and so the weights will 
not find the actual Principal Components but a basis of the Subspace spanned by these 
components. Since the model is equivalent to Oja’s Subspace algorithm, we might 
legitimately ask what we gain by using the negative feedback in such a way. Writing 
the algorithm like this gives us a model of the process which allows us to envisage 
different models which would otherwise be impossible [9]. 

Factor Analysis is a technique similar to PCA in that it attempts to explain the data 
set in terms of a smaller number of underlying factors. However Factor Analysis 



 

begins with a specific model and then attempts to explain the data by finding 
parameters which best fit this model to the data. Charles and Fyfe [2] have linked a 
constrained version of the Negative Feedback network to Factor Analysis. The 
constraint put on the network was a rectification of either the weights or the outputs 
(or both). Thus if the weight update resulted in negative weights, those weights were 
set to zero; if the feed forward mechanism gives a negative output, this was set to 
zero. We will use the notation +][t for this rectification: if t<0, t is set to 0; if t>0, t is 
unchanged.  

3.2 ε-Insensitive Hebbian Learning 

It has been shown that the nonlinear PCA rule 
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can be derived as an approximation to the best non-linear compression of the data. 
Thus we may start with a cost function 

( ) ( )( ){ }21 xx TT WWfEWJ −=                                          (6) 
which we minimise to get the rule(5). Fyfe and MacDonald [10] used the residual 

in the linear version of (6) to define a cost function of the residual 
          ( )yxe WffJ −== 11 )(                                                            (7) 

where 
2

1 .=f  is the (squared) Euclidean norm in the standard linear or nonlinear 

PCA rule. With this choice of ( )1f , the cost function is minimized with respect to 
any set of samples from the data set on the assumption that the residuals are chosen 
independently and identically distributed from a standard Gaussian distribution.  We 
may show that the minimization of J is equivalent to minimizing the negative log 
probability of the residual, e, if e is Gaussian. Let:                     

)exp(1)( 2ee −=
Z

p          (8)                         

The factor Z  normalizes the integral of ( )yp  to unity.  
Then we can denote a general cost function associated with this network as 
                                   KpJ +=−= 2)()(log ee      (9) 
where K is a constant. Therefore performing gradient descent on J we have 
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where a less important term has been has been discarded. In general, the 

minimisation of such a cost function may be thought to make the probability of the 
residuals more dependent on the probability density function (pdf) of the residuals 
[16]. Thus if the probability density function of the residuals is known, this 



 

 

knowledge could be used to determine the optimal cost function. Fyfe and MacDonald 
[10] investigated this with the (one dimensional) function:  
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with ε  being a small scalar 0≥ . Fyfe and Corchado [9] described this in terms of 
noise in the data set. However we feel that it is more appropriate to state that, with this 
model of the pdf of the residual, the optimal ( )1f  function is the ε -insensitive cost 
function: 

                  ( )
ε

ee =1f                                              (13) 
In the case of the Negative Feedback Network, the learning rule is 
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The difference with the common Hebb learning rule is that the sign of the residual 

is used instead of the value of the residual. Because this learning rule is insensitive to 
the magnitude of the input vectors x, the rule is less sensitive to outliers than the usual 
rule based on mean squared error. This change from viewing the difference after 
feedback as simply a residual rather than an error will permit us later to consider a 
family of cost functions each member of which is optimal for a particular probability 
density function associated with the residual. 

3.3 A Family of  Learning Rules 

Now the ε-insensitive learning rule is clearly only one of a possible family of learning 
rules which are suggested by the family of exponential distributions. Let the residual 
after feedback have probability density function 
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Then we can denote a general cost function associated with this network as 
KpJ p +=−= ||)(log ee                                (17) 

where K is a constant. Therefore performing gradient descent on J we have 
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where T denotes the transpose of a vector.  We would expect that for leptokurtotic 
residuals (more kurtotic than a Gaussian distribution), values of p<2 would be 
appropriate, while for platykurtotic residuals (less kurtotic than a Gaussian), values of 
p>2 would be appropriate. It is a common belief in the ICA community that it is less 
important to get exactly the correct distribution when searching for a specific source 
than it is to use a model with an approximately correct distribution i.e. all 
supergaussian signals can be retrieved using a generic leptokurtotic distribution and 
all subgaussian signals can be retrieved using a generic platykurtotic distribution. The 
experiments [3] tend to support this belief to some extent but we often find accuracy 
and speed of convergence are improved when we are accurate in our choice of p. 
 

Therefore the network operation is: 
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Weight change:                           ( ) 1||.. −=∆ p
jjiij eesignyW η                      (21) 

Corchado and Fyfe [3] described their rule as performing a type of PCA, but this is 
not strictly true since only the original (Oja) ordinary Hebbian rule actually performs 
PCA.  It might be more appropriate to link this family of learning rules to Principal 
Factor Analysis since this method makes an assumption about the noise in a data set 
and then removes the assumed noise from the covariance structure of the data before 
performing a PCA. We are doing something similar here in that we are basing our 
PCA-type rule on the assumed distribution of the residual. By maximising the 
likelihood of the residual with respect to the actual distribution, we are matching the 
learning rule to the pdf of the residual.  

This method has been linked to the standard statistical method of Exploratory 
Projection Pursuit (EPP) [8]:  EPP also gives a linear projection of a data set but 
chooses to project the data onto a set of basis vectors which best reveal the interesting 
structure in the data; interestingness is usually defined in terms of how far the 
distribution is from the Gaussian distribution.  

3.4 Rectified Gaussian Distribution 

The Rectified Gaussian Distribution [15] is a modification of the standard Gaussian 
distribution in which the variables are constrained to be non-negative, enabling the 
use of non-convex energy functions. The multivariate normal distribution can be 
defined in terms of an energy or cost function in that, if realised samples are taken far 
from the distribution’s mean, they will be deemed to have high energy and this will be 
equated to low probability. More formally, we may define the standard Gaussian 
distribution by: 
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The quadratic energy function ( )yE  is defined by the vector B and the symmetric 

matrix A. The parameter T
1=β  is an inverse temperature. Lowering the 

temperature concentrates the distribution at the minimum of the energy function.  
One advantage of this formalisation is that it allows us to visualise regions of high 

or low probability in terms of energy and hence to view movement to low energy 
regions as movement to regions of high probability. 

The quadratic energy function ( )yE  can have different types of curvature 
depending on the matrix A. Consider the situation in which the distribution of the 
firing of the outputs of our neural network follows a Rectified Gaussian Distribution. 
Then it is possible to identify values of A which give increasingly sparse firings and 
in the extreme, a single neuron will respond to the whole data set. Two examples of 
the Rectified Gaussian Distribution are the competitive and cooperative distributions. 
The modes of the competitive distribution are well-separated by regions of low 
probability. The modes of the cooperative distribution are closely spaced along a non-
linear continuous manifold. Our experiments focus on a network based on the use of 
the cooperative distribution. 

Neither distribution can be accurately approximated by a single standard Gaussian. 
Using the Rectified Gaussian, it is possible to represent both discrete and continuous 
variability in a way that a standard Gaussian cannot. 

Not all energy functions can be used in the Rectified Gaussian Distribution. The 
sorts of energy function that can be used are only those where the matrix A has the 
property: 

0Ayy T >  for all Ni0yi ...1,: =>y                           (24) 
where N is the dimensionality of y. This condition is called co-positivity. This 

property blocks the directions in which the energy diverges to negative infinity. The 
cooperative distribution in the case of N variables is defined by: 
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where ijδ  is the Kronecker delta and i and j represent the identifiers of output 
neuron. To speed learning up, the matrix A can be simplified [3] to: 

( )( )( )NjiA ijij /2cos −−= πδ                                        (27) 
The matrix A is used to modify the response to the data based on the relation 

between the distances between the outputs. The outputs are thought of as located on a 
ring (“wraparound”). Note that the modes of the Rectified Gaussian are the minima of 
the energy function, subject to non-negativity constraints. The modes of the 



 

distribution characterize much of its behaviour at low temperature. Finding the modes 
of a Rectified Gaussian is a problem in quadratic programming. However we will use 
what is probably the simplest algorithm, the projected gradient method, consisting of 
a gradient step followed by a rectification: 

( ) ( ) ( )[ ]+−+=+ Ay1 btyty ii τ              (28) 

where the rectification [ ]+  is necessary to ensure that the y-values keep to the 
positive quadrant. If the step size τ  is chosen correctly, this algorithm can probably 
be shown to converge to a stationary point of the energy function [1].  

In practice, this stationary point is generally a local minimum. The mode of the 
distribution can be approached by gradient descent on the derivative of the energy 
function with respect to y. This is: 
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which is used as in  Equation 28. 
Now the rectification in Equation 28 is identical to the rectification which 

Corchado and Fyfe [3] used in the Maximum-Likelihood Network. Thus we will use 
this movement towards the mode in the Factor Analysis version of the Maximum-
Likelihood Network before training the weights as previously. The net result will be 
shown to be a network which can find the independent factors of a data set but do so 
in a way which captures some type of global ordering in the data set.  

We use the standard Maximum-Likelihood Network but now with a lateral 
connection (which acts after the feed forward but before the feedback).  Thus we have 
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Where the parameterτ  represents the strength of the lateral connections. 

4  A CoHeL-IBR system for calculating the exchange rate of CO2  

An IBR system has been constructed for obtaining the value of the exchange rate or 
surface partial pressure of CO2 (pCO2) in oceanographic waters from biological 
parameters and satellite information. The IBR system uses the Cooperative Maximum 
Likelihood Hebbian Learning Model for clustering the Instance-base and for the 
retrieval of the instances most similar to the “problem instance”, due to its topology 
preserving properties. The selected instances are used during the reuse stage to train a 
radial function neural network [5] [9], that provides the value of the pCO2 for a given 



 

 

point and the result is evaluated by an oceanographer. The learning (retain stage) is 
carried out by updating the instance base, updating the weights of the radial basis 
function network and by re-calling the Cooperative Maximum Likelihood Hebbian 
Learning Model for the clustering of the data.  

Table 1. Instance attributes. 

Instance Field Measurement 
JD Serial day of the year 
LAT Latitude 
LONG Longitude 
SST Temperature 
S Salinity 
WS Wind strength  
WD Wind direction 
Fluo_calibrated fluorescence calibrated with chlorophyll 
SW pCO2 surface partial pressure of CO2 

 
Applying equations 30 to 33 to the instance-base, the algorithm automatically 

groups the instances into clusters, grouping together those of similar structure. This 
technique is a classification and visualisation tool for high dimensional data on a low 
dimensional display. One of the advantages of this technique is that it is an 
unsupervised method so we do not need to have any information about the data 
beforehand. When a new instance is presented to the IBR system, it is identified as 
belonging to a particular type by applying equation 30 to it. Each stored instance 
contains information relating to a specific situation.  

Table 1 presents the values used to define the problem. Where JD, LAT, LONG, 
SST, S, WS, WD, Fluo_calibrated and SW represent the problem description and 
pCO2 is the value that the IBR system has to identify from the problem descriptor. 
These values for a given point can be obtained from cruises using sensors or from 
satellite images. Initially the system was tested in situ during the cruise carried out in 
Pacific waters. The instance-base of the system was fed with 85% of the instances 
recorded during the cruise (over 85.000 instances). The other 15%, homogeneously 
spread along the cruise track, was left in order to test the system after the cruse was 
completed.  

The results obtained were very accurate, with an average error of 7,4%, which is 
less than the error provided by the other techniques we used to evaluate the IBR 
system. Table 2 presents the average error obtained with the CoHeL-IBR system, with 
the MLHL-IBR system [6], a Radial-basis Function Neural Network, a Multi-layer 
Perceptron Neural Network, a Growing Cell Structures Neural Network and a K-
nearest neighbour algorithm. 

Starting from the error series generated by the different models, the Kruskall-
Wallis test has been carried out. Since the P-value is less than 0,01, there is a 
statistically significant difference between the models at the 99,0% confidence level. 
Table 3 shows a multiple comparison procedure (Mann-Withney test) used to 
determine which models are significantly different from the others. The asterisk 
indicates that these pairs show statistically significant differences at the 99.0% 



 

confidence level. Table 3 shows that the IBR system presents statistically significant 
differences from the other models. The proposed model generates the best results of 
all the tested techniques. Figure 3 presents the error obtained in 40 cases in with the 
system was tested. These cases have been randomly obtained from the testing data set 
(15% of the whole data set), the other 85% of the data set was used to create the 
model. 

 

Table 2. Average error obtained with the IBR system and other methods. 

Method Average Error 
CoHeL-IBR system 7,4% 
MLHL-IBR system 8,2% 
Radial-basis Function Network 9,8% 
Multi-layer Perceptron 10,1% 
Growing Cell Structures 16,2% 
K-nearest neighbour 13,6% 

 

Table 3: Mann-Withney test results. 

 CoHeL-IBR MLHL-IBR RBF MLP GCS KNN 
CoHeL-IBR       
MLHL-IBR *      

RBF * *
MLP * * =  
GCS * * * *  
KNN * * * = *  

 
The final goal of the project is to calculate the value of pCO2 from satellite images, 

such as the ones shown in Figure 2. Most of the values of the parameters presented in 
Table 1 can be directly obtained from such photographs and others may be extracted 
with some well-known calculation. In this case, the CoHeL-IBR system was tested 
with data extracted from satellite images of the area in which the cruise took place, 
such as the ones presented in Figure 2. Problem instances (vectors with the values of: 
JD, LAT, LONG, SST, S, WS, WD, Fluo_calibrated and SW) were constructed, along 
the cruise track from such images and were fed into the CoHeL-IBR system, in order 
for it to obtain the value of the pCO2. In this case the average error of the CoHeL-IBR 
system was slightly higher, but still very accurate compared with the results obtained 
with the other techniques. Oceanographers have also consider these results to be 
highly significant. The second column of Table 4 shows these results. Then problem 
instances were obtained from the same photographs, but from points outside the cruise 
tracks, and similar results were obtained, as shown in the third column of Table 4. 



 

 

  
Fig. 2. Processed NOAA Satellite images, showing temperature values, obtained at one week 
intervals. 

Table 4. Average error obtained with the IBR system and other methods on Satellite data. 

Method Average error 
(Track data) 

Average error  
(Out side track data) 

CoHeL-IBR 9,7% 10,3% 
MLHL-IBR  12,3% 13,9% 

RBF 13,1% 14,5% 
MLP 15,2% 14,7% 
GCS 18,9% 18,8% 
KNN 17,2% 18,1% 

5  Conclusions and Future Work 

The CoHeL-IBR system presented is able to produce a forecast with an acceptable 
degree of accuracy. The final constructed tool constitutes the first system developed 
for calculating the pCO2 in situ and from satellite images. The IBR system 
incorporates a novel clustering technique capable of indexing huge instance-bases in 
an unsupervised way and of successfully retrieving instances with a similar structure, 
which is vital for constructing a model with a radial basis function neural network.  

The Cooperative Maximum Likelihood Hebbian Learning Model has also 
performed better that other algorithms, due to its fast convergence and clustering 
abilities. It enforces a more sparse representation due to the use of cooperative lateral 
connections among the output neurons of the neural net. With this technique, the 
retrieval of the best matching instance is a very simple operation using the proposed 
method and presents no major computational obstacles. The proposed method is both 



 

advantageous in the creation of and retrieval from instance bases but is also important 
in its own right in the unsupervised investigation of interesting structure in high 
dimensional data sets. The results obtained in both experiments are very encouraging 
and the model presents great potential. The experiments carried out have allowed us 
to determine the efficiency of the model when the data used to create the instance-
base and the problem instances is reliable. It has also been shown the potential of the 
model to automate the resolution of the problem with the help of satellite 
photographs. In this case, the error may be due to calibration imbalances, lack of 
definition of the photographs, presence of clouds, errors in the wind measures, etc. 
These are some of the problems that have to be solved in the framework of this 
project. Table 4 also shows the generalization capabilities of the proposed model, 
since it is even able to generate reasonable results in an extended area, when the 
instance-base has only been constructed with data from one part of the area. More 
experiments need to be carried out for the model validation and techniques to 
facilitate the revision of the solution have to be obtained. The uncertainty and the 
dynamism of oceanographic systems have to be taken into consideration and 
techniques for monitoring such factors need to be incorporated into the system. The 
proposed model is a first step towards the resolution of this complex problem, which 
still requires a great deal more work and research. 
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