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Abstract: CBR systems are normally used to assist experts in the resolution of 
problems. During the last few years researchers have been working in the 
development of techniques to automate the reasoning stages identified in this 
methodology. This paper presents a Maximum Likelihood Hebbian Learning-based 
method that automates the organisation of cases and the retrieval stage of case-
based reasoning systems. The proposed methodology has been derived as an 
extension of the Principal Component Analysis, and groups similar cases, 
identifying clusters automatically in a data set in an unsupervised mode. The 
method has been successfully used to completely automate the reasoning process of 
an oceanographic forecasting system and to improve its performance. 

1 Introduction 

Case based reasoning (CBR) systems have been successfully used in several domains 
such as diagnosis, prediction, control and planning [1], [10], [23], [26]. However, a 
major problem with these systems is the difficulty in case retrieval and case matching 
when the number of cases increases; large case bases are difficult to handle and require 
efficient indexing mechanisms and optimised retrieval algorithms, as explained later. 
Also there are very few standard techniques to automate their construction, since each 
problem may be represented by a different data set and requires a customised solution. 
This paper presents a method that can be used to alleviate these problems. 

In the CBR cycle there is normally some human interaction. Whilst case retrieval and 
reuse may be automated, case revision and retention are often undertaken by human 

 



experts. This is a current weakness of CBR systems and one of their major challenges. 
For several years we have been working in the identification of techniques to automate 
the reasoning cycle of CBR systems [4], [8], [10], [19]. This paper presents a Maximum 
Likelihood Hebbian Learning (MLHL) based model to automate the process of case 
indexing and retrieval, that may be used in problems in which the cases are characterised 
predominantly by numerical information. 

Maximum Likelihood Hebbian Learning (MLHL) based models were first developed 
as an extension of Principal Component Analysis [21], [22]. Maximum Likelihood 
Hebbian Learning Based Method attempts to identify a small number of data points, 
which are necessary to solve a particular problem to the required accuracy. These 
methods have been successfully used in the unsupervised investigation of structure in 
data sets [2], [3]. We have previously investigated the use of Artificial Neural Networks 
[8] and Kernel Principal Component Analysis (KPCA) [11], [12] to identify cases, which 
will be used in a case based reasoning system. In this paper, we present a novel hybrid 
technique.  

Maximum Likelihood Hebbian Learning Based models can be used in case based 
reasoning systems when cases can be represented in the form of numerical feature 
vectors, examples of which would be temperature (ºC), distance (m), time (hh,mm,ss), 
dates (dd,mm,yy) etc. This is normally the case in most instance based reasoning systems 
(IBR) [19]. Large case/instance bases may have negative consequences for the 
performance of the CBR/IBR systems. This has been shown in several projects such as 
INRECA [27] and ORKA [5], [6]. When a CBR system is used in a real time problem, 
such as the oceanographic one presented latter in this paper, it may not be possible to 
manage a large case base and the necessary pre-processing algorithms with reasonable 
computational power. As has been shown in the ORKA project, new and updated cases 
should be included and maintained in the case base, and obsolete and redundant cases 
should be eliminated or transformed to maintain a case base with a stable size, in order to 
control the response time of the system and maintain its efficiency. The transformation of 
a number of cases into one representative case may help to reduce the volume of 
information stored in the case base without losing accuracy. The ability of the Maximum 
Likelihood Hebbian Learning-based methods presented in this paper to cluster 
cases/instances and to associate cases to clusters can be used to successfully prune the 
case-base without losing valuable information.  

An instance based reasoning system developed for predicting oceanographic time 
series and to identify oceanographic fronts ahead of an ongoing vessel [4], [5], in real 
time, will be used to illustrate the efficiency of the solution here discussed. The 
identification of oceanographic fronts (areas in which two or more water masses 
converge) is very important for nuclear submarines [6]. This paper first presents the 
Maximum Likelihood Hebbian Learning Based Method and its theoretical background. 
The oceanographic problem in which this technique has been used is presented, and 
finally we show how this approach has been implemented to forecast oceanographic 
thermal time series in real time.  

 



2 Maximum Likelihood Hebbian Learning Based Method 

The use of Maximum Likelihood Hebbian Learning Based Method has been derived 
from the work of [3], [11], [12], [13], etc. in the field of pattern recognition  as an 
extension of Principal Component Analysis (PCA) [21], [22]. We first review Principal 
Component Analysis (PCA) which has been the most frequently reported linear operation 
involving unsupervised learning for data compression, which aims to find that orthogonal 
basis which maximises the data’s variance for a given dimensionality of basis. Then the 
Exploratory Projection Pursuit (EPP) theory is outlined. It is shown how Maximum 
Likelihood Hebbian Learning Based Method may be derived from PCA and it could be 
viewed as a method of performing EPP. Finally we show why Maximum Likelihood 
Hebbian Learning Based Method is appropriated for this type of problems. 

2.1 Principal Component Analysis (PCA) 

Principal Component Analysis (PCA) is a standard statistical technique for compressing 
data; it can be shown to give the best linear compression of the data in terms of least 
mean square error. There are several artificial neural networks which have been shown to 
perform PCA e.g. [21], [22]. We will apply a negative feedback implementation [9]. 

The basic PCA network is described by equations (1)-(3). Let us have an N-
dimensional input vector at time t, x(t), and an M-dimensional output vector, y, withW  

being the weight linking input j to output i. η is a learning rate. Then the activation 
passing and learning is described by  
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We can readily show that this algorithm is equivalent to Oja’s Subspace Algorithm [21]: 
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and so this network not only causes convergence of the weights but causes the weights to 
converge to span the subspace of the Principal Components of the input data.  We might 
ask then why we should be interested in the negative feedback formulation rather than 

 



the formulation (4) in which the weight change directly uses negative feedback. The 
answer is that the explicit formation of residuals (2) allows us to consider probability 
density functions of the residuals in a way which would not be brought to mind if we use 
(4). 

Exploratory Projection Pursuit (EPP) is a more recent statistical method aimed at 
solving the difficult problem of identifying structure in high dimensional data. It does 
this by projecting the data onto a low dimensional subspace in which we search for its 
structure by eye. However not all projections will reveal the data's structure equally well. 
We therefore define an index that measures how “interesting” a given projection is, and 
then represent the data in terms of projections that maximise that index. 

The first step in our exploratory projection pursuit is to define which indices represent 
interesting directions. Now “interesting” structure is usually defined with respect to the 
fact that most projections of high-dimensional data onto arbitrary lines through most 
multi-dimensional data give almost Gaussian distributions [7]. Therefore if we wish to 
identify “interesting” features in data, we should look for those directions onto which the 
data-projections are as far from the Gaussian as possible.  

It was shown in [16] that the use of a (non-linear) function creates an algorithm to find 
those values of W which maximise that function whose derivative is f() under the 
constraint that W is an orthonormal matrix. This was applied in [9] to the above network 
in the context of the network performing an Exploratory Projection Pursuit. Thus if we 
wish to find a direction which maximises the kurtosis of the distribution which is 
measured by s4, we will use a function f(s) ≈ s3 in the algorithm. If we wish to find that 
direction with maximum skewness, we use a function f(s) ≈ s2 in the algorithm.  

2.2 ε-Insensitive Hebbian Learning  

It has been shown [28] that the nonlinear PCA rule 
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can be derived as an approximation to the best non-linear compression of the data. Thus 
we may start with a cost function 
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which we minimise to get the rule (5). [18] used the residual in the linear version of (6) 
to define a cost function of the residual 
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where 
2

1 .=f  is the (squared) Euclidean norm in the standard linear or nonlinear PCA 

rule. With this choice of , the cost function is minimised with respect to any set of 
samples from the data set on the assumption that the residuals are chosen independently 
and identically distributed from a standard Gaussian distribution. We may show that the 
minimisation of J is equivalent to minimising the negative log probability of the residual, 
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Then we can denote a general cost function associated with this network as 

KpJ +=−= 2)()(log ee  (9)   
where K is a constant. Therefore performing gradient descent on J we have 
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where we have discarded a less important term. See [16] for details. 

In general [25], the minimisation of such a cost function may be thought to make the 
probability of the residuals greater dependent on the probability density function (pdf) of 
the residuals. Thus if the probability density function of the residuals is known, this 
knowledge could be used to determine the optimal cost function. [11] investigated this 
with the (one dimensional) function:  
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with ε being a small scalar . 0≥
 
[11] described this in terms of noise in the data set. However we feel that it is more 
appropriate to state that, with this model of the pdf of the residual, the optimal  
function is the ε-insensitive cost function: 
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In the case of the negative feedback network, the learning rule is 
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The difference with the common Hebb learning rule is that the sign of the residual is 

used instead the value of the residual. Because this learning rule is insensitive to the 
magnitude of the input vectors x, the rule is less sensitive to outliers than the usual rule 
based on mean squared error. This change from viewing the difference after feedback as 
simply a residual rather than an error permits us to consider a family of cost functions 
each member of which is optimal for a particular probability density function associated 
with the residual. 

2.3 Applying Maximum Likelihood Hebbian Learning 

The Maximum Likelihood Hebbian Learning algorithm is constructed now on the bases 
of the previously presented concepts as outlined here. Now the ε-insensitive learning rule 
is clearly only one of a possible family of learning rules which are suggested by the 
family of exponential distributions. This family was called an exponential family in [15] 
though statisticians use this term for a somewhat different family. Let the residual after 
feedback have probability density function 
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Then we can denote a general cost function associated with this network as 
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where K is a constant independent of W and the expectation is taken over the input data 
set. Therefore performing gradient descent on J we have 
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where T denotes the transpose of a vector and the operation of taking powers of the norm 
of e is on an elementwise basis as it is derived from a derivative of a scalar with respect 
to a vector. 

 



Computing the mean of a function of a data set (or even the sample averages) can be 
tedious, and we also wish to cater for the situation in which samples keep arriving as we 
investigate the data set and so we derive an online learning algorithm. If the conditions of 
stochastic approximation [17] are satisfied, we may approximate this with a difference 
equation. The function to be approximated is clearly sufficiently smooth and the learning 
rate can be made to satisfy η  and so we have the rule: ∑∑ ∞<∞=≥

k
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We would expect that for leptokurtotic residuals (more kurtotic than a Gaussian 
distribution), values of p<2 would be appropriate, while for platykurtotic residuals (less 
kurtotic than a Gaussian), values of p>2 would be appropriate. Researchers from the 
community investigating Independent Component Analysis [14], [15] have shown that it 
is less important to get exactly the correct distribution when searching for a specific 
source than it is to get an approximately correct distribution i.e. all supergaussian signals 
can be retrieved using a generic leptokurtotic distribution and all subgaussian signals can 
be retrieved using a generic platykutotic distribution. Our experiments will tend to 
support this to some extent but we often find accuracy and speed of convergence are 
improved when we are accurate in our choice of p. Therefore the network operation is: 
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[11] described their rule as performing a type of PCA, but this is not strictly true 
since only the original (Oja) ordinary Hebbian rule actually performs PCA.  It might be 
more appropriate to link this family of learning rules to Principal Factor Analysis since 
PFA makes an assumption about the noise in a data set and then removes the assumed 
noise from the covariance structure of the data before performing a PCA. We are doing 
something similar here in that we are basing our PCA-type rule on the assumed 
distribution of the residual. By maximising the likelihood of the residual with respect to 
the actual distribution, we are matching the learning rule to the probability density 
function of the residual.  

More importantly, we may also link the method to the standard statistical method of 
Exploratory Projection Pursuit: now the nature and quantification of the interestingness 
is in terms of how likely the residuals are under a particular model of the probability 
density function of the residuals. In the results reported later, we also sphere the data 
before applying the learning method to the sphered data and show that with this method 
we may also find interesting structure in the data.  

 



 
 
2.4 Sphering of the Data 
 
Because a Gaussian distribution with mean a and variance x is no more or less interesting 
than a Gaussian distribution with mean b and variance y - indeed this second order 
structure can obscure higher order and more interesting structure - we remove such 
information from the data. This is known as “sphering''. That is, the raw data is translated 
till its mean is zero, projected onto the principal component directions and multiplied by 
the inverse of the square root of its eigenvalue to give data which has mean zero and is of 
unit variance in all directions. So for input data X we find the covariance matrix. 

Where U is the eigenvector matrix, D the diagonal matrix of eigenvalues, T denotes 
the transpose of the matrix and the angled brackets indicate the ensemble average. New 
samples, drawn from the distribution are transformed to the principal component axes to 

give y where  
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Where n is the dimensionality of the input space and m is the d
sphered data.  

3 IBR for oceanographic real-time forecasting 

A forecasting system capable of predicting the temperature of the
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retrieved instances are adapted by an Unsupervised Kernel method during the reuse 
phase to obtain an initial (proposed) forecast [10]. Though the revision process, the 
proposed solution is adjusted to generate the final forecast using the confidence limits 
from the knowledge base [5]. Learning (retaining) is achieved by updating the Kernels. 
A complete description of this system can be obtained in [10]. This IBR system has been 
successfully tested and it is presently operative in several oceanographic vessels. 
Improving this system has been our challenge and this section will outline the 
modifications that has been done to it with the intention of demonstrating that the 
Maximum Likelihood Hebbian Learning algorithm can provide successful results and 
automate the instances indexing and the instance retrieval process. The following tables 
shows the changes that have been done in the IBR system for real time oceanographic 
forecasting. 

 
 

RETRIEVAL 

RETAIN 

REVIEW Final solution: 
forecast 

REUSE 

Initial solution: 
forecast 

m-retrieved 
instances 

 
 

 
Instan

 
Instance 

base ce 
base 

Knowledge 
acquisition 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1. IBR system architecture. 

Table 1: Changes in the IBR system for real time oceanographic forecasting 

STEP Operating IBR system Modifications and improvements 
Indexing Rule based system Maximum Likelihood Hebbian Learning algorithm 
Retrieval Kernel methods Maximum Likelihood Hebbian Learning algorithm 

Reuse Unsupervised Kernel methods Unsupervised Kernel methods 
Retrain Kernel methods Kernel methods / Maximum Likelihood Hebbian Learning 

algorithm 
 

Table 1 outlines the changes made to the original system. The first column of the table 
indicates in which parts of the IBR system the changes have been made, the second 
column indicates the method originally used (and now eliminated) and column three 
indicates which methods have been included in the system. The changes indicated in 

 



table 1 have been introduced with the intention of developing a robust model, based on a 
technology easy to implement and that can automate the process of defining the retrieval 
step of the IBR system, facilitating the indexing of cases and helping in the learning and 
adaptation stage. The Maximum Likelihood Hebbian Learning algorithm automates these 
processes, clustering the instances and facilitating the retrieval of the most similar cases 
to a problem case. In this particular application the adaptation stage is carried out by an 
unsupervised kernel network, which structure need to be identified in advance, and tuned 
manually. We now present the structure of a case and indicate how the Maximum 
Likelihood Hebbian Learning algorithm has been used in the mentioned IBR parts. 

3.1 The Instance 

Each stored instance contains information relating to a specific situation and consists of 
an input profile (i.e. a vector of temperature values) together with the various fields 
shown in Table 2. A 40 km data profile has been found to give sufficient resolution to 
characterise the problem instance [6].  

Table 2.  Instance structure. 

Instance Field Explanation 

Identification unique identification: a positive integer in the range 0 to 64000 
Input Profile, I A 40 km temperature input vector of values Ij, (where j = 1, 2, … 40) 

Representing the structure of the water between the present position of the vessel and its 
position 40 km back. 

Output Value, 
F 

A temperature value representing the water temperature 5 km ahead of the present location 

Time Time when recorded (although redundant, this information helps to ensure fast retrieval) 
Date Date when the data were recorded (included for the same reasons as for the previous field). 
Location Geographical co-ordinates of the location where the value I40  (of the input profile) was 

recorded. 
Orientation Approximate direction of the data track, represented by an integer x, (1 ≤ x ≤12). 
Retrieval Time Time when the instance was last retrieved. 
Retrieval Date Date when the instance was last retrieved. 
Retrieval 
Location 

Geographical co-ordinates of the location at which the instance was last retrieved. 

Average Error Average error over all forecasts for which the instance has been used during the adaptation 
step. 

 
The parametric features of the different water masses that comprise the various 

oceans vary substantially, not only geographically, but also seasonally. Because of these 
variations it is therefore inappropriate to attempt to maintain an instance base 
representing patterns of ocean characteristics on a global scale; such patterns, to a large 
extent, are dependent on the particular water mass in which the vessel may currently be 
located. Furthermore, there is no necessity to refer to instances representative of all the 

 



possible orientations that a vessel can take in a given water mass. Vessels normally 
proceed in a given predefined direction. So, only instances corresponding to the current 
orientation of the vessel are normally required at any one time. 

3.2 Indexing and Retrieving Instances the Maximum Likelihood Hebbian Learning 
algorithm 

To explore the structure of a data set we are using Maximum Likelihood Hebbian 
Learning. Applying equations 20 to 22 to the Case-base, the MLHL algorithm groups the 
cases in clusters automatically. The proposed indexing mechanism classifies the 
cases/instances automatically, clustering together those of similar structure. This 
technique attempts to find interesting low dimensional projections of the data so that 
humans can investigate the structure of the data even by eye. One of the great advantages 
of this technique is that it is an unsupervised method so we do not need to have any 
information about of the data before hand. When a new case is presented to the IBR 
system, it is identified as belonging to a particular type by applying also equations 20 to 
22 to it. This mechanism may be used as an universal retrieval and indexing mechanism 
to be applied to any problem similar to the presented here. 

3.3 Forecasting with the Instance-base Reasoning System 

Several experiments have been carried out to illustrate the effectiveness of the IBR 
system, which incorporates the MLHL algorithm. Experiments have been carried out 
using data from the Atlantic Meridian Transept (AMT) Cruise 4 [6]. We show in Figure 
2 the errors on a data set of 500 instances randomly taken from the AMT 2000 data set 
(composed of more than 150.000 instances) using the Kernel based CBR system. Figure 
3 shows the results obtained with the new MLHL proposed modification. The mean 
absolute error, when forecasting the temperature of the water 5 Km ahead of an ongoing 
vessel, along 10.000 km (form the UK to the Falkland Island) was 0.0205 ºC [10]. With 
the new proposal, the average error have been reduced to 0.0167 ºC, for the whole data 
set, which compares very favourably with the initial Instance based reasoning system and 
other previous methods [6]. Using the MLHL algorithm the number of predictions with 
an error higher than 0,1 has been reduced in more than 30%. The reason may be that the 
data selection carried out with the MLHL algorithm facilitate the creation of more 
consistent models during the adaptation stage than with the Unsupervised Kernel 
algorithm. We have compared the proposal presented in this paper with several 
classification algorithms that may be used for the indexing and retrieval of cases: 
Principal Components Analysis (PCA), Kernel Methods and Growing Cells Structures 
(GCS) [20]. The Maximum Likelihood Hebbian Learning method outperforms the others 
techniques improving the final results clustering the instances adequately for a future 

 



adaptation using and Unsupervised Kernel algorithm. The average forecasting error 
obtained with the PCA method was of 0.0310 ºC, with the Kernel Method was of 0.0205 
ºC and with the GCS was of 0.0231ºC. 
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Fig. 2. Average error of the working IBR system in 500 forecasts carried out during the 
AMT 2000 cruise from the UK to the Falkland Island. 
 
 New prototipe IBR - Forecasting Error (ºC) 

0

0,1

0,2

0,3

0,4

0,5

0,6

0                   100                200                300              400 
500 cases

Te
rp

ar
at

ur
e 

(º
C

)

 
 
 
 
 
 
 
 
 
 
Fig. 3. Average error with IBR system using MLHL algorithms in the same 500 
predictions as the ones showed in Figure 2. 
 

For pedagogical purposes, we illustrate the method on a small sample of cases. 150 
instances which characterise the oceanographic problem has been selected from five 
different areas of the Atlantic ocean (five water masses with different properties). This 
has been done because it is useless to represent the 150000 instances in one Figure. 
Figure 4 shows the classification ability of the MLHM proposed, which gives a rather 
better separation of the individual five oceanographic areas found in the data set. We are 
using an unsupervised learning technique in the field of artificial neural networks so 
generally we do not need any information about the data. Of course, the data must have 
some kind of structure (correlation, redundancy, etc). The only condition that we need is 
to set the dimension of the output vector (M), i.e. the number of output neurons, to be 

 



greater than the number of patterns or factors (number of water masses, in this case), 
otherwise some outputs will have found two or more patters simultaneously. We have 
used 10 output neurons in this experiment.  
 

       
(A)      (B) 

     
(C)      (D) 

Fig. 4. Figure A shows the results of the Maximum Likelihood Hebbian learning 
network using p=0. The Maximum Likelihood Method identifies a projection, which 
spread the data out identifying the five different clusters. Figure B presents the result 
obtained with the PCA method, Figure C shows the clusters obtained with the Kernel 
Method and Figure D presents the results obtained with the GCS methods. 

4. Conclusion 

We have demonstrated a new technique for case/instance indexing and retrieval, which 
could be used to construct instance based reasoning systems. The basis of the method is a 
Maximum Likelihood Hebbian Learning algorithm. This method provides us with a very 
robust model for indexing the data and retrieving instances without any need of 
information about the structure of the data set in advance. It has been shown to give 
extremely accurate results on an exemplar-forecasting task: our results of 0.0167 ºC error 
are among the best we have ever achieved on this data set. This is very important in the 

 



identification of fronts in these large bodies of water particularly since such fronts have 
an extremely adverse effect on underwater communications. The retrieval of the best 
matching instance is a very simple operation using the proposed method and presents no 
major computational obstacles. The whole system may be used with any number-based 
data set; an area of ongoing research is the application of algorithms that combine MLHL 
and kernel methods. We believe that this method may be improved with Competence-
coverage techniques [24], and several experiments are in progress. This method is also 
more stable and accurate than previous implementation carried out with Kernel Methods, 
K-nearest neighbour algorithms, and growing cells structures. 
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