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Abstract. Texture classification poses a well known difficulty within computer vi-
sion systems. This paper reviews a method for image segmentation based on the
classification of textures using artificial neural networks. The supervised machine
learning system developed here is able to recognize and distinguish among mul-
tiple feature regions within one or more photographs, where areas of interest are
characterized by the various patterns of color and shape they exhibit. The use of
an enhancement filter to reduce sensitivity to illumination and orientation changes
in images is explored, as well as various post-processing techniques to improve the
classification results based on context grouping. Various applications of the system
are examined, including the geographical segmentation of satellite images and a
brief overview of the model’s performance when employed on a real time video
stream.

1 Introduction

Texture classification is a specialized area within the field of pattern recognition.
As such, other pattern classification techniques have successfully been applied in
the past to this problem, such as statistical analysis [7], stochastic algorithms [4],
geometric methods [1], and signal processing [8]. Each of these methods has its own
advantages and they may be more or less appropriate depending on the particular
scenario they are applied to.

Textures, in the sense portrayed in this paper, refer to patterns of colors and
shapes formed by pixels in a digital image. Recognizing and distinguishing these
textures tends to be a very complicated task, as small variations in scene illumina-
tion and view perspective can lead to drastic differences in the visual appearance of
a texture, making it difficult for automated systems to successfully segregate them.
However, the applications for such a system are many and diverse, making this an
important research topic in computer vision. Some of the most typical uses of these
texture analysis algorithms are the segmentation of aerial imagery, industrial sur-
face inspection, biomedical image analysis, as well as the classification of textiles,
minerals and even wood species.
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In this paper, a different method is reviewed based on artificial neural networks.
A simplified version of this method using a trivial neural network has already been
proposed in the past [5]. This paper proposes a better implementation of this pro-
cedure involving additional steps dealing with image processing, neural network
preparation and automated results correction. This allows for the successful appli-
cation of the model on a much wider array of image types, and more importantly, to
better generalize on new images that the system has not been trained with.

2 Classification Model

The proposed model is based on a supervised neural network. This section reviews
each of the steps involved in its methodology, and then presents how the final system
can be used to classify pre-defined texture classes.

2.1 Data Preparation

The application of a neural network to data that originates from photographic im-
agery renders the preparation step even more significant, as special care must be
applied with many of the issues surrounding the handling of visual information in
machine learning tasks.

It is customary to first submit images to an enhancement filter, for which there
exist many options. Some of the best results observed are consistently obtained by
a range of specialized processes such as the Retinex filter developed by NASA for
the boosting of detail in satellite and aerial photography [6]. This filter enchances
color information in the resulting image and normalizes the variations in illumina-
tion adaptively and locally. The neural network results are greatly improved when
images are pre-processed in this fashion as it does not need to learn redundant light-
ing variations found within the shadows or highlights of the image, but can instead
focus on the inherent image characteristics.

Alternatively, a histogram equalization process can also be applied independently
on all three color channels in the image. This ensures that each data channel fed to
the neural network is properly normalized and data is evenly distributed throughout
the intensity level spectrum, a process akin to normalizing and re-distributing input
data as done in most machine learning tasks.

Figure 1 compares both pre-processing methods and their resulting level his-
tograms in each color channel.

To prepare the neural network system, several regions of interest in the input
image are defined, each of which is formed by a number of pixels within a bounded
area. A desired label is designated for each of these regions that will identify it as
one of the target texture classes. This area of pixels should ideally form an adequate
data sampling region including as much variety of the target texture as possible – as
the pixels in these regions will become the training data for the neural network, and
their labels the ideal output data. It is not necessary for a region of interest to outline
a single continuous area, and in fact, it is often desirable to extract multiple regions
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Fig. 1 Comparison of the original sample image (left), the result of the Retinex filter applied
(middle), and the result of histogram equalization (right), along with their respective RGB
histograms (bottom)

Fig. 2 Regions of interest defining the class labels for various textures in the input image

to provide a larger variation in the training data and in so doing, guarantee better
generalization of the model. Figure 2 shows an example of the labeling process.

Once the image is ready for use and its target texture classes have been declared,
the regions of interest extracted can be converted to data suitable for the neural
network to train with. This is achieved by further subdividing these areas into a grid
consisting of 5×5 pixels, thereby creating tiles of 25 pixels each. Figure 3 shows
this process in detail.

The text labels assigned to each data sample must be converted to numerical
values that the neural network can make sense of within a mathematical context.
This is achieved by replacing each string label with an output vector of the same
dimensionality as the total number of texture labels that have been assigned. Each
output vector will then be an encoded representation that uniquely identifies each of
the designated texture classes. With this end, a mapping mechanism is introduced
that employs the following label replacement assignments:
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Fig. 3 Detail of a region of interest in the input image, subdivided into a 5×5 grid producing
the sampling tiles for that particular texture; where for each tile, the collection of its 25 pixel
values in each of the three color channels yields the R

75 input vector for a training sample
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2.2 Texture Classification

The neural network used is a simple three layer feed forward network. Although it
is one of the most basic configurations available, it yields very good classification
results for the purpose at hand and in return it is capable of training within an ac-
ceptable amount of time. The neural network layer structure is arranged as follows:

1. The input layer, with one neuron for each attribute in the input sampling data.
Having 75 input neurons, this layer accomodates an input sampling vector in R

75

consisting of the three color channel values for each of the 25 pixels in every
sampling tile.

2. The hidden layer, with half as many neurons as in the input layer, which is a
good rule of thumb to follow in configurations where the amount of samples
considerably outnumbers the amount of attributes.

3. The output layer, with one neuron for each texture being classified. Each neuron
in this layer corresponds to one of the class labels defined.

Once all of the training data has been laid out, the neural network is trained with it,
using a learning algorithm such as Resilient-backpropagation (RPROP) [2], which
in our tests has resulted as one of the most optimal methods when compared to other
traditional algorithms such as simple Backpropagation.

Upon completion of the training process, the system can be used to classify the
texture regions in an image. For this procedure, it is first necessary to subdivide the
entire image into a similar 5× 5 grid, and extract all of the individual tiles outlined
by this grid. As before, each tile becomes a new sampling point that can be expressed
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Fig. 4 The effect of varying θ in the final results, showing θ = 12,16,20 and 24 respectively

as a vector in R
75. The values for each sample tile in the testing image grid are

sequentially fed to the trained neural network, and the output generated by each is
then the predicted texture at that region. This process is repeated for every tile in the
image, until all areas in the image have been classified.

For better results, a final post-processing procedure is applied to the resulting
classified tiles. This consists of a simple nearest-neighbor search and replace process
which seeks to correct any outlier tiles that usually represent misclassified data. Each
tile is tested and compared against its neighbors up to a distance of 2 tiles apart, that
is with the closest 24 neighboring tiles. A parameter θ is introduced as a threshold,
where if the number of neighbors with a label different than that of the currently
tested tile exceeds this parameter θ , then the current tile’s label is changed to match
that of the surrounding majority. This is analogous to a smoothing procedure as is
usually applied at the end of many image processing algorithms to alleviate noise
introduced by the system. Figure 4 shows the result of varying θ in the classification
results.

3 Results

A comparison of the results obtained on the sample image when three different al-
gorithms are applied is shown in Fig. 5. The first of these is a well known image
processing algorithm known as Chan-Vese segmentation [3]. Although this algo-
rithm has been widely proven to be succesful on images with a clear subject and
background distinction, it is evident that in more complex images such as the one
presented here, it fails to distinguish the textures, instead focusing on local varia-
tions such as the spots in the leopard’s skin, while being quite sensitive to shadows.

The following result shown is that of the non-optimized neural network solution
proposed by Natarajan et al.[5]. The results in this case are much closer to what
would be expected of a texture classifier. Although it is able to distinguish the sky
portion of the background properly, it is not capable of correctly segregating the
branch region of the background.

The final image shows the result of applying the system proposed in this paper,
where the silhouette of the leopard is fully distinguishable from the background,
with very little noise remaining in the final classification.

The neural network can also be applied to other images having similar texture
characteristics. Figure 6 shows an example of a continuous video stream where only
the first frame of the stream was used to train the neural network model. Yet, the
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Fig. 5 Comparison of various systems, Chan-Vese segmentation [3] (left), a non-optimized
neural network system [5] (middle), and the procedure proposed in this paper (right)

Fig. 6 Multiple frames of a video stream classified with a neural network model trained on a
single frame of the video

Fig. 7 A single image with multiple texture labels classified by the proposed system

system is able to generalize the classification results to the rest of the frames in the
video, properly identifying the walking leopard and following it throughout the rest
of the video sequence.

The system can be extended to classify multiple textures by defining additional
labeled classes in the training set, as can be seen in the example results of Fig. 7.
Here, multiple regions in the image are defined for each of the textures of interest,
each one with its own unique class label.

A common application for texture classification is in the topographical study of
aerial photography. The proposed system can be successfully applied to this field as
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Fig. 8 An example of the system trained only on the left image for the classification of topo-
graphical terrain on satellite imagery of the Missouri River, where three types of surfaces are
recognized by the model: croplands, woodlands, and the river surface

shown in Fig. 8. Here, the model is able to classify surface types by learning features
in the various terrain types, even when such features may be complex and non-
repeating such as in the segmentation of croplands shown in the example images.

4 Conclusions and Future Work

A new method was proposed for the classification of textures in an image through
a supervised neural network model. The various steps involved in preparing and
processing the image were described, and some results and applications of such a
system were reviewed.

The current method gives reasonable results in a wide array of sample images,
but improvements to the system’s robustness can always be improved upon. In par-
ticular, enhancements to the context representation of neighboring tiles for better
classification consistency would be of great benefit to this technique. Additionally,
this neural network model could be a stepping stone to building an unsupervised
classification system where no textures or labels are defined beforehand – but in-
stead regions would automatically be clustered together by their features in a man-
ner not unlike current color segmentation algorithms, but with all the improvements
described here.
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