
  

MODEL PREDICTIVE CONTROL FOR THE SELF-OPTIMIZED OPERATION 
IN WASTEWATER TREATMENT PLANTS: ANALYSIS OF DYNAMIC ISSUES 

 

M. FRANCISCO*, S. SKOGESTAD**, P.VEGA* 

* Department of Computing and Automation. University of Salamanca, (Salamanca, Spain) 
mfs@usal.es, pvega@usal.es 

** Department of Chemical Engineering, Norwegian University of Science and Technology (Trondheim, Norway)   
skoge@ntnu.no 

 

Abstract−−This paper describes a procedure to find the best controlled variables in an economic sense for the activated sludge 
process in a wastewater treatment plant, despite the large load disturbances. A novel dynamic analysis of the closed loop 
control of these variables has been performed, considering a nonlinear model predictive controller (NMPC) and a particular 
distributed NMPC-PI control structure where the PI is devoted to control the process active constraints and the NMPC the 
self-optimizing variables. The well-known self-optimizing control methodology has been applied, considering the most 
important measurements of the process. This methodology provides the optimum combination of measurements to keep 
constant with minimum economic loss. In order to avoid non feasible dynamic operation, a preselection of the measurements 
has been performed, based on the nonlinear model of the process and evaluating the possibility of keeping their values 
constant in the presence of typical disturbances.  
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1. INTRODUCTION 

 

The efficiency of most wastewater treatment plants (WWTP) is an important issue still to be improved. In order to fulfil the 
imposed legal effluent requirements for large load variations the operating costs are usually higher than the actually needed. 
Optimization of WWTP would provide a significant cost reduction, but it has not been extensively considered yet. There are 
some works in the literature, but most of them only consider the problem from a heuristic viewpoint or stating a particular 
optimization problem. In Stare et al. (2007), different control strategies are proposed and compared in terms of the operating 
costs, which are evaluated but not optimized. Other works, such as Ingildsen et al. (2002), Machado et al. (2009) and 
Samuelsson et al. (2007), tackle the problem of reducing costs, but not in a systematic way. Some of them (Francisco et al., 
2011; Rivas et al., 2008) also include plant design, and others are only focused on tanks aeration (Amand and Carlsson, 
2012). Only Araujo et al. (2011, 2013) provides a comprehensive approach, performing a sensitivity analysis of optimal 
operation for the selection of the best control structure in term of costs and effluent quality. The work of Cadet et al. (2004) is 
similar but without considering the economics of the system. 
 
The aim is to satisfy effluent quality regulations with reasonable economic expenses. The WWTP influent variations are 
rather large making the plant to work away from the optimal operation point, with the subsequent economic loss. One 
possible approach to overcome this is the re-optimization of the plant when some disturbances occur by applying Real Time 
Optimization techniques (Darby et al., 2011), which can be very demanding computationally, or perform the set point 
optimization off-line (Machado et al., 2009; Guerrero et al. 2011). In this work, the approach considered is the selection of 
some controlled variables that when kept constant, the economic loss is small with respect to costs when the operation is re-
optimized. The methodology used to find these variables is the self-optimizing procedure of Skogestad (2000). The WWTP 
model considered for its application is the widely used Benchmark Simulation Model nº 1 (BSM1), described in (Alex et al., 
2008). 
 
The appropriate control structure selection is crucial for the optimal operation of plants. The decisions on which variables 
should be controlled, which should be measured, and which inputs should be manipulated are part of the control structure 
selection. Generally, these decisions are based on heuristic methods that cannot guarantee optimality, but in this work, self-
optimizing control (SOC) is applied, which is a methodology for the selection of the best controlled variables that minimize 
operating costs, considering a steady state of the process. The initial quantitative ideas related to self-optimizing control are 
presented in (Morari et al, 1980), and later, (Skogestad, 2000) defined the problem more precisely, including also 
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implementation error. The methodology is well developed for linear models that generate quadratic optimization problems, 
and for that reason a nonlinear validation is needed. The “exact local method” (Halvorsen et al., 2003) provides the best 
controlled variables for both disturbances and implementation errors, and it was the first author that proposed linear 
combinations of measurements as controlled variables, determined by a matrix H. The problem of finding such combination 
may be reformulated as a quadratic optimization problem with linear constraints (Alstad et al., 2009), and the analytical 
solution to this problem provides a straightforward way to obtain the matrix H (Yelchuru and Skogestad, 2011). Specific 
worst-case and average loss minimization have been also proposed (Kariwala, 2007; Kariwala et al., 2008), and the use of 
branch and bound methods has been introduced to enable the application of the methodology to large-dimensional processes 
(Cao and Kariwala, 2008). 
 
For processes with large load disturbances it is common that the steady state is difficult to reach. Then, the controlled 
variables can be determined and adapted on the basis of an algorithm that tracks the necessary conditions of optimality 
(NCO), making the SOC adaptive to operating conditions changes. Model-free NCO tracking procedure using finite 
perturbations to calculate the gradients has been developed in Srinivasan et al. (2008). The regression-based approach (Ye et 
al., 2013) and its extension to hierarchical control (Ye et al., 2014) provide a new methodology to determine CVs 
approximating the necessary conditions of optimality (NCO) in the whole operating region, achieving near-optimal operation 
globally, enlarging the operation region where the economic loss is acceptable. In Jäschke et al. (2011), it is shown that NCO 
tracking in the optimization layer and SOC in the lower control layer are complementary methodologies because unexpected 
disturbances, which are not rejected by SOC, can be handled by the model free NCO tracking procedure. There are also other 
methodologies based on neighboring-extremal control (NEC) (Gros et al., 2009), where the gradients are evaluated by model 
based approaches, but eventually they are also local approximations. Another possibility to deal with large disturbances is the 
use of dynamic SOC, where the operational cost during transient response is taken into account. In Hu et al. (2013), a 
formulation of dynamic SOC which considers economic cost and setpoint tracking cost at the same time has been developed, 
stating a multiobjective optimization problem equivalent to an optimal control problem. 
 
The work presented in this article is one of the first approaches to the SOC of the Benchmark Simulation Model No. 1 
(BSM1) of a WWTP, which is a complicated nonlinear process benchmark, whose optimization is a difficult task. Therefore, 
the local SOC approximation has been chosen as a starting point, in order to find possible difficulties in the methodology and 
to propose the basis for implementing a more complex structure, particularly the one described in Jäschke et al. (2011). With 
this approach, the SOC variables control decreases the operating costs with respect to the single active constraints control, 
which is the first step to improve the plant economy and safety (Maarleveld and Rijnsdorp, 1970). Moreover, in this article 
the focus is more on checking the controllability of the SOC variables and active constraints by using an advanced controller, 
particularly a NMPC. 
 
Although there are plenty of successful works of SOC (see for example Umar et al., 2012) the dynamic validation of results 
is usually performed by means of decentralized PI controllers, making a previous pairing with variables (Larsson et al., 2001; 
Araujo and Skogestad, 2008).  In (Alstad, 2005), the dynamic performance has been improved adding compensators on the 
measurements to avoid right half plane zeros, and the effect of the basis vectors for the null space method on poles and zeros 
has been studied. In (Baldea et al., 2008), a singular perturbation-based framework has been employed, which accounts for 
the time scale separation present in the open loop dynamics of integrated plants, resulting in a controller design procedure 
that accounts for both economical optimality and dynamic performance. It is important to note that controllability can be 
improved by changing the matrix of combinations measurements H (Alstad, 2005), reducing the coupling and allowing for 
the implementation of decentralized PI controllers. Regarding to the active constraints control in SOC, only works dealing 
with dynamic validation of the control structures select a particular controller for that task. When there are active constraints 
only for manipulated variables, it is straightforward to keep constant the corresponding variable. For example, in Araujo et al. 
(2008) the operation is optimal for maximum cooling in the heat exchangers for the ammonia synthesis process. In other 
situations, when constraints are active for some measurements, decoupled PI controllers based on the RGA matrix study are 
proposed (Alstad, 2005; Gera et al., 2012). In addition, if the set of active constraints changes depending on the disturbances 
affecting the process, the self-optimizing variables have to be recalculated following a systematic procedure, as in Manum et 
al. (2012), that determines the different regions using a parametric program, based on a link with explicit model predictive 
control. Another approach is the implementation of a cascade control structure to satisfy both optimality and constraint 
requirements (Cao, 2003). In Jacobsen et al. (2011), a methodology for finding active constraints regions is also proposed.  
 
For the case of the WWTP, it has been proved that the set of active constraints does not change with the disturbances, but 
there is some coupling between active constraints control and the control of the self-optimizing variables. This coupling 
cannot be fully removed only by changing the matrix H of measurements combinations, and therefore in this work, a 
multivariable NMPC controller is considered as a novelty. The NMPC is a mature control strategy, and in this case an offset 
free formulation is considered to tackle the plant model mismatch and unknown disturbances based on (Pannocchia et al, 



  

2003) and the extension to nonlinear MPC in (Morari et al., 2012), using an augmented model with an additional integrating 
disturbance vector and adapting the MPC reference to the current disturbance estimate.  
 
The first objective of this work is to find the self-optimized variables for the BSM1 following the simple procedure of 
(Yelchuru and Skogestad, 2011), which considers set-point and implementation errors and provides a set of optimal 
controlled variables as combination of the available measurements. The second objective is to evaluate the dynamic 
behaviour of those variables by implementing a multivariable constrained nonlinear model predictive controller (NMPC). In 
particular, two approaches have been considered: one centralized MPC controlling the active constraints and self-optimized 
variables, and a distributed control structure with an NMPC controlling the self-optimized variables and local PI controllers 
for the active constraints control.  
 
This article is structured as follows. First, the WWTP is described, in particular the activated sludge process. Then, the 
controlled variables selection methodology is explained, and the local methods for self-optimizing control. In the next section 
the methodology is applied to the BSM1, followed by the process controllability analysis with the description of the NMPC 
formulations and the distributed control structure. The article ends with a dynamic analysis and conclusions. 
 

2. DESCRIPTION OF THE PROCESS 

 
The purpose of a wastewater treatment plant (WWTP) is to process sewage and return clean water to the river.  Activated 
sludge process (ASP) is a very important part of the cleaning procedure, and the benchmark simulation model nº 1 (BSM1) 
(Alex at al., 2008) has been used as a standard ASP model for performance assessment of control strategies and process 
optimization. The BSM1 consists of five biological reactors connected in series and one secondary settler. The reactors are 
modeled according to mass balances described in the Activated Sludge Model nº 1 (ASM1), developed by the IWAQ 
(International Association on Water Quality) (Henze et al., 1987). 
 
As presented in Figure 1, the nitrogen removal is achieved using a first denitrification step performed in the anoxic tanks, 
placed before the aerated tanks where the nitrification step is carried out. The first two anoxic tanks are assumed perfectly 
mixed and have a volume of V1 =V2 =1000 m3. The rest of the three aerated tanks have a volume of V3 =V4 =V5 =1333 m3. 
Eight different processes are modelled, involving thirteen state variables at each bioreactor. An internal recycle (Qa) from the 
last tank to the first one is used to supply the denitrification step with nitrate. In order to maintain the microbiological 
population, sludge from the settler is recirculated into the reactors by means of an external recycle (Qr), and sludge excess is 
purged from the bottom of the settler (Qw). For the secondary settler the one-dimensional ten-layer model implementing the 
double exponential settling velocity model has been used (Takacs et al., 1991). The total volume of the settler is Vdec = 6000 
m3. The full dimensions of the BSM1, the value of the kinetic and stoichiometric parameters and the influent characteristics 
are defined in (Alex at al., 2008). 
 

3. CONTROLLED VARIABLES SELECTION 

 

In this section a summary of the plant-wide design procedure is given (top-down part), where the controlled variables selection 
is a fundamental issue. The main steps of the methodology are described below. 

• Define operational objectives and constraints: 

The first step is the selection of a scalar cost function that comprises the whole operational plant costs. A typical cost function 
for a non-productive plant includes only energy balances. The operational constraints imposed by process safety, 
environmental regulations, control limitations, and product specifications, must be also identified. 

• Determine the steady state optimal operation: 

In this work we assume that the economics of the plant are primarily determined by steady state behavior, so the steady state 
degrees of freedom are the same as the economic degrees of freedom. The number of steady state degrees of freedom can be 
obtained counting the number of dynamic manipulated variables and subtracting the number of degrees of freedom with no 
steady state effect.  These variables can be identified from the flow sheet of the process. Particularly, the most relevant degrees 
of freedom are the ones that affect the cost function. In the SOC methodology, the number of steady state degrees of freedom 
determines the number of steady-state controlled variables that need to be selected.  

In order to state the optimization problem to determine the process optimal operation, the most relevant disturbances are 
selected previously evaluating the sensitivity of the cost function to each disturbance and choosing those with the highest 
sensitivity. 



  

Then, the following optimization problem is stated, considering nominal disturbances d0: 

( )
0

0 0 0min , ,J
u

x u d  (1) 

subject to:  

( )1 0 0, , 0g =x u d  (Steady state model equations) 

( )2 0 0, , 0g ≤x u d  (process constraints and others) 

where x is the state vector, u0 the steady state degrees of freedom and d0 the disturbances vector. 

• Selection of the active constraints for control: 

The active constraints found when solving (1) must be controlled tightly for optimal operation (active constraints control), 
consuming part of the degrees of freedom. For further application of the SOC methodology, as it is based on local analysis, it is 
assumed that the set of active constraints does not change for all typical disturbances. Although this assumption is important, it 
is satisfied for many processes allowing for a direct application of SOC. If this is not the case, the next steps of the 
methodology must be performed for each set of active constraints (Jacobsen et al., 2011). 

• Select primary controlled variables (CV): 

In this point, the identification of as many economic controlled variables as the number of remaining degrees of freedom is 
performed. Then, close-to-optimal operation is achieved with constant nominal set points, even when disturbances appear. 

Firstly, all candidate measurements must be identified, together with the expected static measurement error. The measurements 
can also include manipulated variables (e.g. flow rate measurements) or measured disturbances. Then, the economic controlled 
variables (also called self-optimized variables) can be selected as single measurements or combination of measurements, 
defined by a coefficient matrix H with real constant terms, where c is the vector of controlled variables and y is the vector of 
available independent measurements: 

c H y= ⋅  (2) 

The selection can be based on a qualitative approach, following heuristic rules, or based on a quantitative approach, such as the 
local approach based on the Taylor expansion of the loss function around the equilibrium nominal point uopt(d). In order to 
achieve near-optimal operation without the need to re-optimize the process when disturbances occur, the loss must be 
minimized: 

( ) ( ) ( ) 1, , ( ), ( ) ( )
2

u d u d u d d u u d J u u d
T

c opt opt opt uu optL J J    = − = − −     (3) 

where Jc is the cost value when the set point is kept constant, and Jopt is the optimum cost re-optimizing for the corresponding 
d, uopt is the optimum value for u and Juu is the Hessian of the cost function. Some particular techniques based on that are the 
maximum gain rule (Halvorsen et al., 2003), the nullspace method (Alstad et al., 2007) and the exact local method (Alstad et 
al., 2009). 

• Nonlinear validation of losses: 

The procedure described is of local nature, hence the proposed controlled variables are not globally optimal and the actual 
nonlinear losses must be calculated in order to validate the results. If non feasibilities appear for some disturbances, the set of 
selected controlled variables should be dismissed. 

• Dynamic analysis of the selected CV: 

The last step of the methodology is the dynamic analysis of the control of selected CV, by means of classical PIDs or more 
advance multivariable controllers, when typical disturbances are applied to the process. In this case, the steady state degrees of 
freedom u0 are the manipulated variables of the controllers, whose objective is to maintain the self-optimized variables c at the 
optimal set-points. 

 

4. LOCAL METHODS FOR SELF-OPTIMIZING CONTROL 

 

Exact local methods give loss expressions for the worst and average case of disturbances. Although CV can be selected as a 
subset of the available measurements, lower loss is achieved by selecting CV as linear combinations of measurements. For that 
reason, a combination matrix H is defined as in (2), and it can be found through minimization of  the following expression 



  

(Halvorsen et al., 2003; Alstad et al., 2009) that considers combined disturbances and measurement errors and it is valid for 
average and worst case of disturbances: 

( ) 11/2min
H

J HG HYy
uu

F

−      (4) 

where  
1F G G J Jy y

d uu ud
−= − ; [ ]Y FW Wd n= ; y G u G dy y

d= +  

Wd and Wn are scaling matrices for disturbances and implementation errors, G y and G y
d are the process transfer matrices 

(linearized model), and Juu, Jud are the Hessians:   
2

2J
uuu
J∂

=
∂

2

J
u dud

J∂
=
∂ ∂

 

Although this optimization problem seems to be non-convex, it can be reformulated as a convex problem for the case when H 
has no particular structure: 

1/2

min

. .
FH

HY

HG Jy
uus t =

 (5) 

An analytical solution to this problem is given by (Alstad et al., 2009) and it has been simplified by (Yelchuru et al., 2011):  

( ) 1
H YY G QT T y−

=  (6) 

where Q is any nonsingular matrix of nc x nc (nc is the number of controlled variables). 

 

5. METHODOLOGY APPLIED TO THE BSM1 

 

In this section, the described methodology is applied to the ASP in the BSM1 benchmark.  

A. Operational objectives and constraints 
The operational objectives of the WWTP include operational costs and other process and regulations constraints. The cost 
function defined in (Alex et al., 2008) has been considered: 

( )E DJ k AE PE ME k SP= + + +  (7) 

where PE is the pumping energy cost, AE is the aeration energy, ME is the mixing energy and SP is the sludge production cost; 
kE and kD are the weights representing the energy price and sludge disposal cost respectively. The expressions for all terms in 
(7) are the following: 

 

( ) ( ) ( )( )
0

0

1 0.004 0.008 0.05
t

a r w
t

PE Q t Q t Q t dt
+Q

= ⋅ + ⋅ + ⋅
Q ∫  (8) 

( )
0

0

5
,

11.8 1000

t k
O sat

k L k
kt

S
AE V K a t dt

+Θ =

=

= ⋅
Θ ⋅ ⋅ ∑∫  (9) 

0

0

15

1

0.005 ( ) 2024
0

t
k L k

kt

V if K a t d
ME

otherwise

+Θ −

=

  ⋅ <
=    Θ   

∑∫  (10) 

( )
0

0

1 0.75
t

w w
t

SP TSS Q t dt
+Q 

= ⋅ ⋅ ⋅  Q  
∫  (11) 

where Qa is the internal recycling flow, Qr is the external recycling flow, Qw is the purge flow, KLa is the mass transfer 
coefficient for oxygen, SO,sat is the oxygen saturation concentration, and Θ is the range of time where the indexes are evaluated. 



  

The previous equation for sludge production represents the total solid flow from wastage and assuming that the amount of 
solids accumulated in the system over the period of time considered is null due to the steady state operation. 

The constraints needed for process operability are listed in table 1, where COD is the chemical oxygen demand, BOD5 is the 5 
day biological oxygen demand, TSS is the total suspended solids concentration, and TN is the total nitrogen concentration, all 
measured in the effluent. 

 

B. Degrees of freedom and most relevant disturbances 

Using the information given in the process flowsheet in Figure 1, it can be found that there are eight manipulated variables that 
correspond to eight degrees of freedom (u): Qa, Qr, Qw, 1 5( )

LK a − . The liquid levels in the reactor tanks are assumed to be 
constant at maximum capacity. 

The disturbances selected are some the most important inputs to the plant, which are the influent flow Q(in), the chemical 
oxygen demand in the influent COD(in), and the total suspended solids in the influent TSS(in). The total nitrogen in the influent 
TN(in) and the process temperature T have not been considered in the SOC methodology in order to simplify the results, but its 
inclusion is straightforward. The weather profile events and derived disturbances are presented in table 2: d0 corresponds to the 
nominal load conditions (average during dry weather), d1 are the average load values during the rainy weather, d2 are the 
average load values only for a rain event (extracted from the rain BSM1 disturbances), d3 are the average load during the 
whole period for storms, d42 are the average values during the second storm (of BSM1 storm influent), d5 are the average 
values for one year with average temperature. 

C. Steady state optimal operation 

The nominal operating point for the process can be seen in Table 3, for the most relevant variables. The measurement range 
and noise only is specified for the variables susceptible to be part of the measurements sets determined later. The 
optimization of the process has also been performed for different disturbances, always showing the same three active 
constraints. The results have been obtained with the interior-point method using fmincon function of MATLAB®. Multiple 
starting points for the optimization have been considered due to the local nature of the algorithm, in order to get an optimum 
close to the global solution. 

D. Active constraints control 
The optimization shows that three constraints are active: total effluent suspended solids, TSSe (upper limit), effluent 
ammonium SNHe  (upper limit), and internal recycling flow Qa (lower limit). Two of them are output active constraints, so they 
will be associated to two degrees of freedom, remaining 5 available degrees of freedom (nu= 5). The other is an input 
constraint, Qa=0. The fact that Qa=0 can be explained by the fact that the recycling sludge from the secondary settler returns 
quite sufficient organic matter and nitrate for denitrification. For this process, the set of active constraints does not change with 
typical disturbances, so the control structure obtained with the self-optimizing procedure is fixed. The three active constraints 
must be controlled to ensure optimal operation.  

E. Selection of the primary controlled variables 

The expression (6) with matrix Q selected as the identity has been considered to obtain the optimal set of five unconstrained 
self-optimizing control variables associated with the unconstrained degrees of freedom as a combination of measurements 
determined by matrix H. The expected range of disturbances for the activated sludge process has been calculated as 

( )0 ,max 0 ,minmax ,d d d di i− − , where di,max and di,min are the maximum and minimum values for all disturbances:  

22371 0 0
0 100 0
0 0 110

d

 
 =  
 
 

W  

In this work, a prescreening of measurements has been performed, very useful to avoid infeasibilities when controlling the CV 
variables obtained as a result of the SOC methodology (Larsson et al., 2001). The economic losses have been calculated with 
equation (3) for different weather conditions using the nonlinear mathematical model of the process, considering only 
individual measurements taken out of the relevant variables presented in table 3, and the results are shown in table 4. More 
precisely, the results of this table have been obtained solving different optimization problems (1) with cost function (7), 
keeping constant at its steady state value one measurement at a time and applying the different load disturbances (weather 
events). The loss is obtained calculating the difference between these results and the costs obtained solving (1) without the 
constraint on the corresponding measurement (i.e. re-optimizing the process). 



  

The prescreening consists of removing the primary CV candidate variables that make the process infeasible for some load 
disturbances, which in this case study are 1

NHS ( ) and 2
NHS ( ) . Infeasibility arises because the influent to the plant does not provide 

enough concentration of the corresponding compound to satisfy the nominal reference and keep the optimal operation. 

Then, based on this study, several sets of measurements have been considered providing different combination matrices H, 
showing three of them in this article (table 5). Note that additionally, some inputs and disturbances have also been considered 
as measurements. The range and noise level (included in matrix Wn) for each measurement are provided in table 3. In order to 
select the most suitable, the general principle stating that increasing the number of measurements improves the control has 
been followed. The nonlinear losses have been obtained for each set (see table 6). The combination of measurements provided 
by H1 is rejected because it gives no feasible solutions when trying to maintain the nominal references with the least 
demanding disturbance d1. In the case of H2, where more measurements have been added, there are still some cases providing 
infeasibility for the largest disturbances. Finally, for matrix H3, where MLSS has been removed as a measurement, there are no 
infeasibilities, so this is the selected combination and the corresponding matrix H3 is: 

3

2 05 4 0 0932 0 0678 0 0877 0 0807
1 94 4 0 0466 0 0807 0 0548 0 0468
1 97 4 0 0479 0 0487 0 0927 0 0495
1 70 4 0 0345 0 0351 0 0413 0 0685
1 68 4 0 0348 0 0354 0 0411 0 0337
5 92 5 0 2882 0 1530 0 2078 0 2064
7 90

- . - . . . .
- . - . . . .
- . - . . . .
- . - . . . .
- . - . . . .
- . - . . . .

.
H T

e
e
e
e
e
e

=
5 0 2092 0 2304 0 0975 0 1071

5 70 5 0 2002 0 2087 0 3017 0 0777
7 57 5 0 1012 0 0993 0 1481 0 1680
4 76 5 0 0719 0 0824 0 0971 0 0659
3 23 8 5 448 6 5 627 6 5 451 6 3 111 6
1 02 6 4 280 4 2 604 4 2 777 4 3

- . .  . .
- . - . . . .
- . - . . . .

. - - . - . - . - .
- . - . - . - . - . -
- . - . - . - . -

e
e
e
e
e e e e e
e e e e 679 4

1 97 7 6 133 5 6 402 5 8 102 5 7 133 5
8 54 6 1 045 3 9 714 4 2 487 3 3 620 3
7 62 8 1 888 5 1 943 5 2 188 5 1 671 5

. -
- . - . - . - . - . -
- . - - . - - . - - . - - . -

. - . - . - . - . -

e
e e e e e
e e e e e
e e e e e

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

For numerical calculation of the sensitivity matrices F, disturbance variations of ±1% have been considered, and the linearized 
model of the process has been obtained using SIMULINK®. 

In order to analyze the influence of each measurement in the self-optimized variables, the 2-norm of the corresponding column 
of H3 is presented in table 7, where the magnitude of the elements of H3 has been normalized such that 3 1H

F
= and the 

matrix has been scaled with respect to the measurements such that the new scaled matrix 3H H Dy= ⋅  where 

( )D ( )y diag span y=  and span(y) is the measurement range in table 3. From the economic perspective, the nitrate and nitrite 
concentrations in all reactors are the most important measurements in the linear combinations for self-optimizing, and the less 
relevant are the oxygen concentrations in the reactors. 

 

6. PROCESS CONTROLLABILITY ANALYSIS 

 

Once the economically optimal controlled variables have been selected, the closed loop control dynamic behavior has been 
evaluated. The methodology followed for obtaining the linear combinations of measurements is based on steady state models, 
and they can have a complex dynamic behavior, making this study an essential step for a successful implementation. In this 
work, some advanced control structures have been considered to keep the selected the optimal CV at optimal set points despite 
influent disturbances, based on multivariable nonlinear MPC (NMPC) and PI control. 

A. Nonlinear model predictive control formulation  
 



  

The first control structure considered is a centralized multivariable NMPC for controlling the active constraints and the self-
optimized variables, with the following objective function: 

1
22 2

( | ) 0 0
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where y is the vector of controlled outputs, u the vector of manipulated variables, r is the set points vector, P is the terminal 
penalty weight matrix, Q is the output weighting matrix, R is the move suppression weighting matrix, all of them positive 
definite, Hc is the control horizon, Hw and Hp are the initial and final prediction horizons respectively, umin and umax are the 
lower and upper bounds for the manipulated variables, ymin and ymax are the lower and upper bounds for the output variables, 
Δumin and Δumax are the lower and upper bounds for the control moves. The index k denotes the current sampling point, 

( | )y k i k+  is the predicted output at time k+i, depending of measurements up to time k,  and ( | )u k i k∆ +  are the future control 
moves at time k+i, depending of measurements up to time k. The use of a terminal penalty weight matrix P ensures closed loop 
stability (Mayne et al., 2000). 

The predictions are obtained using the following nonlinear discrete time prediction model of the process along the prediction 
horizon: 
 

( )
( 1| ) ( ( | ), ( | ), ( | ))
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x f x u d
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k k k k k k k k
+ =

=
  (13) 

 
where x is the vector of measured or estimated states, u is the vector of manipulated variables and d is the vector of measured 
disturbances (including feedforward action), f and g are vector functions that represent the mathematical model of the process 
(nonlinear differential equations). 

B. Offset free nonlinear model predictive control formulation  
 
In order to cope with model plant mismatch and unmeasured disturbances, another formulation for the NMPC has been 
considered, stating the following optimization problem: 
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where ( ),s sx u  are the state and manipulated variables vectors that determine the target equilibrium, v is the vector of an 
additional unknown disturbance that captures the model plant mismatch and other unmeasured disturbances, xmin and xmax are 
the lower and upper bounds for the state variables, ( )1|t k+x are the predicted states along the prediction horizon, Q is in 
this case the states weighting matrix, S is the manipulated variables weighting matrix. 



  

 
In this formulation, the NMPC penalizes deviations of the state and inputs from a new reference, called target equilibrium, 
obtained within the iterative receding horizon NMPC optimization problem. As can be seen from the constraints above, this 
target is a steady state obtained including the effect of an unmeasured disturbance v. In turn, the prediction model is augmented 
with the mentioned unmeasured disturbance model. Note that the unmeasured disturbance v is considered to affect the process 
through the plant dynamics, so v is a vector with nu elements, where nu is the number of manipulated variables. Moreover, as in 
the SOC the controlled variables may include a direct feed-through part, the unmeasured disturbances are also considered in 
the output equations: 
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v v
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This disturbance is estimated from the measured process variables using an estimator. This estimator provides the initial point 
for the predictions of the next receding horizon step of the NMPC.  

( )( )
( )( )

ˆ ˆ ˆ ˆ( 1| ) ( ( | 1), ( ), ( ), ( | 1)) ( ) ( | 1), ( ), ( ), ( | 1)

ˆ ˆ ˆ( 1| ) ( | 1) ( ) ( | 1), ( ), ( ), ( | 1)

x p

d p

k k k k k k k k k k k k k k k

k k k k k k k k k k k

+ = − − + − − −

+ = − + − − −

x f x u d v L y g x u d v

v v L y g x u d v
  (16) 

where yp is the real plant measurement vector and Lx , Ld are the estimator gain matrices.  

The implementation of this observer in this article is a steady state Extended Kalman Filter, where the gain matrices Lx and 
Ld are obtained using a linearization of the process (13) at the working steady state. For more details see (Pannocchia et all, 
2003; Morari et al.,2012). 

C. Model predictive control applied to the BSM1 
 
For the application of the described NMPC formulations to the SOC of the BSM1, the measured disturbances are d=(Q(in), 
COD(in), TSS(in)), the manipulated variables are u=(Qr, 1 5( )

LK a − , Qw) and x is a vector comprising 145 states corresponding to 
the full BSM1 description of the plant (5 reactors and secondary settler) (Alex et al., 2008). The internal prediction model of 
the NMPC controller is the full BSM1 mathematical model, which is simulated over a prediction horizon integrating the 
nonlinear differential equations of the model, and choosing the coincidence points with a sampling period of Ts= 0.052 days. 
Model plant mismatch is also possible by modifying some parameters of the BSM1 model. The NMPC constraints are: 
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D. Distributed NMPC-PI control structure 
 
The use of the centralized NMPC is a straightforward solution to control the process because the interactions are automatically 
tackled by the controller when it performs predictions. Nevertheless, the number of tuning parameters is rather high, making 
the tuning a difficult task. This motivates the search for more simple control structures such as distributed NMPC-PI 
controllers. The control of active constraints is crucial for the optimal operation of the plant, and this control structure has the 
advantage that if the NMPC fails, the PI controllers still keep the active constraints in the desired values. On the other hand, the 
use of decoupled PI controllers can be a complex task due to the interactions between variables and it has been not considered 
in this work. 

Regarding the practical choice of manipulated variables, note that typically the mass transfer coefficients of oxygen in each 
reactor 1 5

LK a −( ) are considered as manipulated variables, to avoid including the details of the aeration systems and reactors 
geometry. However, in this work the volumetric air flow rates are also considered as more realistic variables for dynamic 
assessment, considering the following correlation equations (Flores-Tlacuahuac et al., 2009). 

( )( )1.2( ) 240 1 1,..., 4
j

airQj
LK a e j− ⋅= − =  (18) 

( )(5)0.55(5) 240 1 airQ
LK a e− ⋅= −  (19) 



  

Then, the corresponding NMPC constraints are replaced with 3
1 50 10 /airQ m d−≤ ≤  if Qair flows are considered as 

manipulated variables.  

In order to select the most appropriate loops for PI control in the decentralized NMPC-PI control structure, the Relative Gain 
Array (RGA) matrix has been calculated with an open-loop linearized model of the plant around the nominal optimum 
operating point, with 1 2 3 4 5( ) ( ) ( ) ( ) ( )

r air air air air air wu Q Q Q Q Q Q Q =    and 1 2 3 4 5,e NH ey TSS S c c c c c =   , where the 
variables ci are the components of the vector c, as combinations of measurements. 

( )

0 0001 0 0001 0 000 0 000 0 000 0 000 1 000
0 012 1 11 0 249 0 245 0 719 0 907 0 000

1 041 0 012 0 027 0 063 0 002 0 009 0 0001
0 0 051 10 798 8 888 0 403 2 928 2 472 0 0004

0 036 7 678 12 691

.  . .    . .   . .
. . . . . . .

. .  . .   .  . .
. . .   .   .  . .

. . .   
RGA ω

− − − −
− −

− − − −
= = − − − −

− −4 038 0 796 0 809 0 0004
0 055 0 634 3 799 7 634 1 888 0 259 0 0003

0 040 0 367 0 719 2 376 4 303 1 320 0 0002

.    . . .
. . .    . .   . .

. . .   .    .  .   .

 
 
 
 
 
 
 − −
 
− − − − − 

 − − − − 

 

The frequency dependent RGA is also important for the consideration of the process dynamics in the variables pairing. Then, 
the RGA for the typical frequency of the disturbances ( 2c rad dω π≈ ) is: 

( )

0 0060 0 0000 0 0000 0 0000 0 0000 0 0000 0 9943
0 1504 0 3825 0 1135 0 1268 0 3681 0 4736 0 0048
1 1166 0 1373 0 0148 0 0929 0 0382 0 1528 0 0097

2 0 7405 3 5592 2 9638 0 0410 0 7868 1 5123 0 0441
0 7447 2

. . .  .  .  . .

. .  .  .  .  . .

. .  .  .  .  . .

.  .  .  .  .  . .

.  
RGA ω π= =

3291 4 8387 1 3538 0 1015 0 7338 0 0474
0 3854 0 7773 1 3380 2 8094 0 4815 0 1372 0 0292
0 3908 0 4006 0 1552 0 8248 1 1759 1 2454 0 0264

.  .  .  .  . .
.  .  .  .  .  . .
.  .  .  .  .  . .

 
 
 
 
 
 
 
 
 
 
 

 

At the view of both RGA matrices, the following pairings have been selected: TSSe (controlled variable) – Qw (manipulated 
variable), and SNH,e (controlled variable) - Qair5 (manipulated variable),  which is coherent with the process functioning by 
looking at the process layout. Although this is the best possible pairing, note that some coupling is still detected when choosing 
Qair5 as manipulated variable. Other possible pairings could arise from the RGA study, but they have not been considered 
because of the poor dynamic results. Then, for the rest of variables, a multivariable NMPC has been implemented, where the 
internal model of this NMPC includes the PI controllers in the predictions. This fact is important in order to produce reliable 
predictions for the NMPC, assuming that the PI controllers are properly tuned. Finally, it can be observed from the magnitude 
of some of the elements of the RGA that the plant is ill-conditioned, and therefore difficult to control. 

As for PI controllers tuning, the guidelines of  Skogestad (2003) have been followed, with some practical considerations due to 
the complexity of the process. The tuning parameters are: 

11
p

c

K
K

τ
τ θ

=
+

 (20) 

( )( )1min ,4i cτ τ τ θ= +  (21) 

where Kp is the proportional gain of the controller, τi is the integral time of the controller, τ1 is the time constant, K is the gain, 
and θ the time delay of the first order system identified from a Qw step response of TSSe, and τc is the desired closed loop time 
constant, which is in fact a tuning parameter. 

 

7. DYNAMIC ANALYSIS 

 
In this section, the closed loop performance of the process is evaluated in the presence of step disturbances corresponding to 
the different weather events of table 2 and some of the dynamic sets of disturbances provided in (Alex et al. 2008) for the 
BSM1. The control structures considered are the centralized NMPC and the distributed NMPC-PI described above (see table 8 
for a summary). In order to simplify the control structures, particularly to implement real independent PI controllers in the 
distributed NMPC-PI control structure, the measurements Qair5 and Qr have been removed from the linear combinations of 
measurements that conform the selfoptimized variables, thus obtaining a new combination matrix H4 analogous to H3. The 



  

inclusion of Qair5 as measurement would imply a permanent communication of the PI controller with the NMPC that in this 
way has been removed. On the other hand, although the volumetric air flows Qair have been considered here as more realistic 
manipulated variables, dynamic responses considering KLa factors as manipulated variables are similar if the controllers are 
properly tuned, because the additional nonlinearity of (18) and (19) is embedded in the NMPC predictions.  In order to perform 
also more realistic simulations, disturbance TN(in) has been added as an additional unmeasured disturbance, although it has not 
been considered when obtaining the SOC combination matrices.  

The references for the five self-optimized variables obtained from the economical optimization of the plant are the following: 
c1=-0.001; c2=2.099; c3=1.864; c4=1.982; c5=1.356.  As for the selfoptimized variable c1, it has not been considered for 
control because its significance in costs is negligible, at the view of the corresponding row of the measurements combination 
matrix. In figures 2, 3 and 4 the dynamic responses for centralized NMPC control of the selfoptimized variables and active 
constraints are presented, together with control actions. The figures show that for all step disturbances applied, the set point 
tracking is good, with a settling time of approximately 1.5 days.  The overshoot is larger for the rain and storm events, 
because they are the most demanding disturbances. For these weather events, the TSS(in) concentration decreases and the 
influent flow Q(in) increases considerably, moving the process operating point far from nominal conditions. The complex 
nonlinearities involved in the process also deteriorates the performance, and the presence of right-half plane zeros may limit 
the bandwidth of the controller.  
 
The controller tuning has been performed considering the following guidelines. The weights on the outputs have the ability of 
direct control efforts towards the tracking of a particular output. In this case, the interest is in the selfoptimized variables in 
order to minimize economic losses, so Q = diag(1 1 2 2 2 2 2). For the weights on the rate of change of inputs, the tuning has 
been performed by trial and error, starting from a small value until closed loop stability is achieved. A small further detuning 
has been performed, in order to give some robustness to the controller and then R = diag(0.1 0.014 0.014 0.014 0.014 0.014 
0.005). The NMPC horizons are 1wH = , 5pH =  and 1cH = . No analytical tuning has been performed because most of the 
techniques available are only for linear prediction models and mainly first order prediction models. 
 
In figures 5, 6 and 7, the dynamic responses for the distributed NMPC – PI control of the selfoptimized variables and active 
constraints are presented, together with some of the control actions. The figures also show good set point tracking for all 
disturbances, with approximately the same settling time than in the centralized NMPC responses.  The main difference is in 
the overshoot, which is considerably smaller than in the case of the centralized NMPC, for all controlled variables excepting 
TSSe, and all weather events, particularly for the most demanding disturbances. The PI control of the active constraints in a 
fast time scale and its consideration in the NMPC predictions, allows for a better transient of the selfoptimized variables, 
which are in a slower time scale. Another reason that explains this behavior is that the tuning of a centralized NMPC is 
complex due to the large number of parameters. For the distributed control structure, the NMPC is easier to tune, and the PI 
controllers can be tuned using the SIMC rules or other standard techniques. 
 
The tuning parameters for the distributed NMPC-PI control are Q = diag(2 2 2 2 2), R = diag(0.5 1 1 1 1) and the same 
MPC horizons than for the centralized NMPC. The tuning parameters for the PI control No.1 are Kp= -54.8,Ti= 27.4 and Kp= 
-0.2, Ti=0.08 for No. 2, and they have been selected by SIMC rules with the following considerations. The τc parameter for PI 
No.1 has been selected equal to the system effective time delay (Skogestad, 2003), but the integral time has been increased 
considerably due to the natural integrating properties of this loop. For PI nº 2, the τc has been selected to approximately four 
times the system effective time delay, with a final fine tuning, in order to have a less oscillating response. 
 
In order to complete the dynamic analysis, simulations for different sets of time varying disturbances (5 days) taken from 
BSM1 have been performed. In figures In figures 8, 9 and 10 a performance comparison of the centralized NMPC and the 
distributed NMPC-PI structure for dry weather conditions is presented, together with the open loop behavior. At the view of 
the figures, the controller improves the set point tracking with respect to the open loop, but no further adjustment is possible 
because of the large varying influent. In table 9, the performance indices for rain weather dynamic disturbances are presented. 
By looking at this table, the cost for open loop is much smaller than for any of the control structures, but this is not a 
desirable behavior because of the large violations of the active constraint for TSSe. The cost for the case of either distributed 
NMPC-PI or centralized NMPC control are smaller than the active constraints control, because these control structures also 
regulate the selfoptimized variables. Theoretically, the centralized control should provide also smaller cost than the 
distributed NMPC-PI control because it takes into account all the interactions in a comprehensive fashion, but for these 
disturbances, due to the tuning difficulties and the effect of transients the cost is a bit larger.  
 
The dynamic performance evaluation using the full time varying disturbance profiles for different weather conditions take the 
plant to a non steady state operating point, and then the requirements for SOC are not fully satisfied. The slow dynamics of 



  

the process and the varying conditions in the influent prevent from reaching a complete steady state, and consequently the 
SOC results are only extrapolated to this situation as an approximation. Therefore, an analogous comparison has been 
performed with the rain event step disturbance d3 (Table 10), and the storm weather step disturbance d4 (Table 11). These 
step disturbances represent a load step change from the mean dry weather conditions to the mean values for the mentioned 
weather conditions. As expected, both the centralized NMPC and distributed NMPC-PI provide smaller cost, showing the 
advantage of controlling the selfoptimized variables. In these cases, the centralized NMPC cost is smaller than the distributed 
NMPC-PI cost, because it is an easier operating scenario for the process. Then, it is easier to tune the controller in this latter 
case than in the case of varying influent, and therefore in tables 10 and 11 the cost is smaller with the centralized NMPC. The 
time horizon for evaluating all the cost indices is Θ= 5 days, based on the BSM1 disturbances data sets for one week. 
 
In the previous results, although no plant model mismatch has been considered in order to stress other aspects of the 
methodology, the formulation (14) can be applied in all NMPC controllers, giving an offset free response. In other to show 
the effectiveness of that formulation, a plant model mismatch has been considered varying the “real” process temperature 
while keeping constant the temperature of the model at T = 15 ºC. In particular, the real plant has been represented with the 
BSM1 model with an increase of 3 ºC in temperature, affecting to the value of all kinetic parameters because of their 
temperature dependences. The prediction model is the original BSM1 with T=15 ºC. The results of figures 11, 12 and 13 
show a comparison of performance of both formulations, for a rain event step disturbance d3. The use of the new formulation 
reduces the existing plant model mismatch offset considerably with respect to the NMPC formulation (12). The results are 
obtained in this case with H3 matrix and KLa as manipulated variables. 
 
 

8. CONCLUSIONS 

 

In this work, the SOC methodology has been applied to find the optimum controlled variables as a combination of 
measurements in a wastewater treatment plant. A prescreening of the most suitable measurements to avoid unfeasibilites 
when large load disturbances appear has been performed. The dynamic controllability of these variables has also been 
studied, by implementing a multivariable centralized nonlinear MPC, and a distributed control structure with PI control for 
the active constraints and a nonlinear MPC for the self-optimizing variables. The results show that both control structures 
give good set point tracking, despite of a long transient particularly for the most severe disturbances. The distributed NMPC-
PI control shows better performance because of the separate treatment of the different time scales of the process and the 
easier tuning of the controllers. In particular, the overshoots for the selfoptimized variables are considerably smaller than 
those for the centralized NMPC. Finally, a dynamic evaluation with the full profile of disturbances for different weather 
conditions has been performed. For this latter case, the process never reaches a steady state operating point, as it is supposed 
in SOC methodology, and because of that costs only decrease a small amount when controlling the selfoptimized variables. 
In order to overcome this behaviour, the application of NCO tracking in an upper optimization layer is proposed as future 
work. Another possibility is the consideration of transients costs in the SOC cost function, arising a tradeoff between good 
dynamic performance and economics.  
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Figure 1.  Benchmark Simulation Model nº.1 (BSM1) 

 
Figure 2. Self-optimized variables using the centralized NMPC control structure, for disturbances d1 (red), d2 (blue), d3 (green), d42 (black), d5 (magenta) 

 

 
Figure 3. Manipulated variables for the centralized NMPC control structure, for disturbances d1 (red), d2 (blue), d3 (green), d42 (black), d5 (magenta) 
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Figure 4. Active constraints control for the centralized NMPC control structure for disturbances d1 (red), d2 (blue), d3 (green), d42 (black), d5 (magenta) 

 

 
Figure 5. Self-optimized variables using the distributed NMPC-PI control structure, for disturbances d1 (red), d2 (blue), d3 (green), d42 (black), d5 (magenta) 

 



  

 
Figure 6. Manipulated variables for the distributed NMPC-PI control structure, for disturbances d1 (red), d2 (blue), d3 (green), d42 (black), d5 (magenta) 

 

  
Figure 7. Active constraints control for the distributed NMPC-PI control structure for disturbances d1 (red), d2 (blue), d3 (green), d42 (black), d5 (magenta) 

 



  

 
Figure 8. Self-optimized variables control for the distributed NMPC-PI control structure (green), the centralized NMPC (black) and open loop behaviour 

(blue) for dry weather disturbances 
 

 
Figure 9. Manipulated variables for the distributed NMPC-PI control structure (green), the centralized NMPC (black) and open loop behaviour (blue) for dry 

weather disturbances 



  

 
Figure 10. Active constraints control for the distributed NMPC-PI control structure (green), the centralized NMPC (black) and open loop behaviour (blue) 

for dry weather disturbances 
 

 
Figure 11. Selfoptimized variables when disturbance d3 is applied, using centralized NMPC (blue:standard NMPC formulation - magenta: offset free NMPC 

formulation - black: references) 
 

 



  

 
Figure 12. Manipulated variables when disturbance d3 is applied, using centralized NMPC (blue:standard NMPC formulation - magenta: offset free NMPC 

formulation) 
 
 

 
Figure 13. Control of active constraint SNHe when disturbance d3 is applied, using centralized NMPC (blue:standard NMPC formulation – magenta:offset free 

NMPC formulation – black: reference) 



  

 

Table 1. Constraints 

Effluent constraints Constraints on the 
manipulated variables 

100eCOD ≤ (gCOD/m3)  1 50 360LK a −≤ ≤ (m3/d) 

5, 10eBOD ≤ (gBOD/m3) 1844.6wQ ≤  (m3/d) 

18eTN ≤ (gN/m3) 92230aQ ≤  (m3/d) 

30eTSS ≤ (gSS/m3) 36892rQ ≤  (m3/d) 

4NH eS ≤ (gN/m3)  

 

Table 2.Disturbances 

 Q(in) (m3/d) COD(in) (g/m3) TSS(in) (g/m3) T (ºC) 

d0 18446 381.19 211.26 15 

d1 21320 332.81 183.38 15 

d2 40817 204.85 115.61 15 

d3 19746 353.87 195.89 15 

d42 44453 140.43 77.52 15 

d5 20851 347.56 198.73 15 

 
Table 3. Steady state operating point 

 
Optimal 

point 
results 

Measurement 
range 

Measurement 
noise 

Cost 406.54   

Qr (m3/d) 20320 0-100000 2500 

Qa (m3/d) 0   

Qw (m3/d) 172.05   

1
LK a( ) (1/d) 133.98   

2
LK a( ) (1/d) 122.12   

3
LK a( ) (1/d) 97.95   

4
LK a( ) (1/d) 90.11   

5
LK a( ) (1/d) 91.08 0-360 9.000 
1

OS ( )  (g/m3) 0.1323 0-10 0.250 
2

OS ( )  (g/m3) 0.1744 0-10 0.250 
3

OS ( )  (g/m3) 0.1442 0-10 0.250 
4

OS ( )
 (g/m3) 0.1426 0-10 0.250 

5
OS ( )  (g/m3) 0.1671 0-10 0.250 
1

NOS ( )  (g/m3) 1.4725 0-20 0.500 
2

NOS ( )  (g/m3) 2.4598 0-20 0.500 
3

NOS ( )  (g/m3) 3.3600 0-20 0.500 
4

NOS ( )
 (g/m3) 4.4497 0-20 0.500 

5
NOS ( )  (g/m3) 6.0781 0-20 0.500 

MLSS (g/m3) 5385.5 0-10000 250.00 

TNe (g/m3) 13.45   

CODe (g/m3) 70.75   



  

BOD5e (g/m3) 5.028   

S_NHe (g/m3) 4   

TSSe (g/m3) 30   
inQ( ) (m3/d) 18446 0-100000 2500.0 
inCOD( ) (gCOD/m3) 381.19 0-1000 25.000 
inTSS ( ) (gSS/m3) 211.26 0-10000 250.00 

 
 

Table 4. Nonlinear losses for different measurements as candidates to primary controlled 
variables 

Candidate Nominal optimal value d1 d2 d3 d42 d5 

1
OS ( )  0.1323 0.0039 0.0762 0.0054 0.1362 1.1058 
1

NOS ( )  1.472 0.0049 0.2599 0.0006 0.5340 0.3918 
1

NHS ( )  15.39 0.42839 Inf 0.1870 Inf 4.8878 
2

OS ( )  0.174 0.00451 0.6107 0.0008 0.1764 0.1109 
2

NHS ( )  12.86 0.17324 35.642 0.0859 Inf 4.3033 

 
Table 5. Measurements sets 

Set 1 (H1) 1 1 5 5 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,in in in
O NO O NO L rS S S S Q COD TSS K a Q  

Set 2 (H2) 1 5 1 5 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ..., , , ..., , , , , , ,in in in
O O NO NO L rS S S S Q COD TSS MLSS K a Q  

Set 3 (H3) 1 5 1 5 5( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ), ..., , , ..., , , , , ,in in in
O O NO NO L rS S S S Q COD TSS K a Q  

 
Table 6. Nonlinear losses for different combination matrices and 

disturbances 

 d1 d2 d3 d42 d43 d5 

H1 Inf Inf Inf Inf Inf Inf 

H2 0.223 Inf 0.127 Inf Inf 1.229 

H3 0.038 0.627 0.069 1.182 0.821 0.300 

 
Table 7. Sensitivity of measurements in H 

 S_O(1) S_O(2) S_O(3) S_O(4) S_O(5) 

( )3H :, i  2.0437 1.4526 1.5448 1.1585 0.8972 

 S_NO(1) S_NO(2) S_NO(3) S_NO(4) S_NO(5) 

( )3H :, i  10.8114 8.4629 10.4801 6.5360 3.9557 

 Q(in) COD(in) TSS(in) 5( )
LK a  Qr 

( )3H :, i  1.2374 0.8393 1.7221 2.0495 4.7614 

 

Table 8. Control structures 

Control structure Controlled 
variables 

Manipulated 
variables 

Centralized NMPC c=H3y, SNH,e, TSSe Qair1- Qair5,Qr,Qw 

Distributed 
NMPC-PI 

control 

NMPC c=H3y Qair1- Qair4,Qr 

PI No.1 TSSe,  Qw 

PI No.2 SNH,e Qair5 



  

 

Table 9. Performance indices for rain weather dynamic disturbances 

Control structure (rain 
weather dynamic profile) Cost PE AE ME SP 

Open loop  400.5293 169.3954 2763.1 0 1.7075e+06 

Only active constraint 
control  575.4935 181.9706 2359.4 123.9801 4.1952e+06 

Centralized NMPC  574.0025 293.3383 2.3683e+03 147.1967 4.0151e+06 

Distributed NMPC-PI 545.4043 180.3966 2.3200e+03 80.6949 3.9138e+06 

 

Table 10. Performance indices for rain event step disturbances 

Control structure (step 
disturbance d3) 

Total 
Cost PE AE ME SP 

Centralized NMPC 616.5386 250.6723 2.8666e+03 4.5353 4.1947e+06 

Distributed NMPC-PI  684.5272 186.9036 2.8303e+03 0 5.1622e+06 

Only active constraint 
control 684.7230 186.9023 2.8327e+03 0 5.1620e+06 

 
 

Table 11. Performance indices for storm weather step disturbances 

Control structure (step 
disturbance d4) 

Total 
Cost PE AE ME SP 

Centralized NMPC 417.4922 170.4853 2.7226e+03 0 1.9639e+06 

Distributed NMPC-PI  419.2097 170.6695 2.7222e+03 0 1.9856e+06 

Only active constraint 
control 419.2689 170.6694 2.7229e+03 0 1.9856e+06 
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