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José Carlos R. Alcantud 1,2, Gustavo Santos-Garcı́a 2

1 BORDA Research Unit
2 Multidisciplinary Institute of Enterprise (IME),

University of Salamanca, E-37007 Salamanca, Spain
E-mail: {jcr, santos}@usal.es

Abstract

We put forward a completely redesigned approach to soft set based decision making problems under
incomplete information. An algorithmic solution is proposed and compared with previous approaches in
the literature. The computational performance of our algorithm is critically analyzed by an experimental
study.
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1. Introduction

In this paper we revisit the soft set based decision
making problem under incomplete information as
approached by Han et al. 16, Qin et al. 23, and Zou
and Xiao 38.

Many real life problems require the use of impre-
cise or uncertain data (cf., Kahraman et al. 17). Their
analysis must involve the application of mathemat-
ical principles capable of capturing these features.
Fuzzy set theory meant a paradigmatic change in
mathematics which allows partial membership. The
publication of Zadeh’s seminal article 33 has trig-
gered a vast literature on fuzzy sets and their ap-
plications, which includes a number of successful
generalizations.

Of these variations we are especially inter-
ested in the application of soft sets theory and
their extensions to decision making problems (cf.,
Molodtsov 22 for a definition and arguments about

its applicability to several fields). Further relevant
references include Aktaş and Çağman 1, Alcantud 3,
Ali 7,8, Ali et al. 9, and Maji et al. 21. Ali et al. 10

define lattice ordered soft sets for situations where
some order 5,6 exists among the elements of the pa-
rameter set. Qin et al. 25 combine interval sets and
soft sets, and Zhang 37 studies interval soft sets.
Maji, Biswas and Roy 19 introduce fuzzy soft sets
(see also Ali and Shabir 11 for techniques that permit
to study logic connectives for soft sets and fuzzy soft
sets, and Alcantud 2 for a recent decision-making
procedure based on fuzzy soft sets). Relatedly, Shao
and Qin 29 define fuzzy soft lattices and discuss their
structure. Wang, Li and Chen 31 introduce hesitant
fuzzy soft sets. As mentioned above, Han et al. 16,
Qin et al. 23, and Zou and Xiao 38 are concerned
with incomplete soft sets. Rodrı́guez et al. 26,27 are
recent surveys on hesitant fuzzy sets (cf., Torra 30).
There are also interesting hybrid models in recent
literature, e.g., rough soft hemirings (a new rough
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set theory which is an extended notion of a rough
hemiring and a soft hemiring) in Zhan et al. 34,35,
or Z-soft rough fuzzy ideals of hemirings (cf., Zhan
and Zhu 36).

Maji, Biswas, and Roy 20 pioneered soft set
based decision making. They established the crite-
rion that an object can be selected if it maximizes
the choice value of the problem. Relatedly, Zou and
Xiao 38 argued that in the process of collecting data
there may be unknown, missing or inexistent data.
Therefore, standard soft sets under incomplete in-
formation must be taken into account, which calls
for the inspection of incomplete soft sets. After-
wards Han et al. 16 and even Qin et al. 23 present
other interesting approaches to incomplete soft set
based decision making. However, in the frequent
cases in which there is perfect uncertainty about the
real value of the missing data, it seems appropriate
to proceed with a decision making procedure that
avoids estimations. This is the purpose of the present
contribution.

Our paper contributes to decision making stud-
ies in the context of incomplete soft sets from an
altogether different perspective. We propose to go
through all the filled tables that can be produced
from the original incomplete table. All cases are
evaluated according to their respective choice val-
ues, and finally the alternatives are ranked by the
proportion of tables in which they receive the high-
est choice value.

Our proposal is justified by a classical Laplacian
argument from probability theory. Under Laplace’s
principle of indifference, due to our complete ig-
norance we are entitled to assume that all tables in
which the ∗’s can be replaced with either 0 or 1 are
equiprobable. It is sensible to compute the objects
which should be selected according to soft-set based
decision making in each of these cases in order to
make a decision for any object that is selected in the
highest proportion of cases.

The use of probabilities in decision making un-
der incomplete information in soft sets already ap-
pears in Zou and Xiao’s 38 seminal article as a tool
that permits to attach weights to the possible choice
values of the options. Nevertheless, we provide ex-
amples which prove that our solution is indeed dif-

ferent from theirs and other proposed approaches in
the existing literature. Consequently, pretty simple
situations confirm that making decisions according
to our methodology produces decisions that do not
necessarily coincide with solutions in the literature.
We discuss some issues of efficiency of our Algo-
rithm by means of a computational experiment.

This paper is organized as follows: Section 2 re-
trieves some terminology and definitions. We define
a notion of domination of alternatives that is used
in our decision making algorithm. Section 3 con-
tains a review of the solutions proposed by earlier
investigations as well as our proposal and an illus-
trative example. Then we compare our algorithm
with previous solutions in order to ensure its nov-
elty. In subsection 3.5 the computational features of
our proposal are examined, too. Finally, our conclu-
sions are in Section 4.

2. Definitions: Soft Sets and Incomplete Soft
Sets

We adopt the usual description and terminology for
soft sets and their extensions: U denotes a universe
of objects and E denotes a universal set of parame-
ters.

Definition 1. [Molodtsov 22] A pair (F,A) is a soft
set over U when A⊆ E and F : A−→P(U), where
P(U) denotes the set of all subsets of U .

A soft set over U is regarded as a parameterized
family of subsets of the universe U , the set A be-
ing the parameters. For each parameter e ∈ A, F(e)
is the subset of U approximated by e or the set of
e-approximate elements of the soft set. Many schol-
ars have performed formal investigations of this and
related concepts. For example, Maji, Bismas and
Roy 21 develop this notion and define among other
concepts: soft subsets and supersets, soft equalities,
intersections and unions of soft sets, et cetera. Fur-
thermore, Feng and Li 14 give a systematic study on
several types of soft subsets and various soft equal
relations induced by them. Concerning (pure) soft
set based decision making, we refer the reader to
Çağman and Enginoğlu 12, Maji, Biswas and Roy 20,
and Feng et al. 15
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In order to model increasingly general situations,
Definition 2 below has been subsequently proposed
and investigated:

Definition 2. [Han et al. 16] A pair (F,A) is an in-
complete soft set over U when A⊆ E and F : A−→
{0,1,∗}U , where {0,1,∗}U is the set of all functions
from U to {0,1,∗}.

Obviously, every soft set can be considered an
incomplete soft set. The ∗ symbol in Definition 2
permits to capture “lack of information”: when
F(e)(u) = ∗ we interpret that u belongs to the subset
of U approximated by e is unknown. As in the case
of soft sets, when F(e)(u) = 1 (resp., F(e)(u) = 0),
we interpret that u belongs (resp., does not belong)
to the subset of U approximated by e.

As is well known since the early antecedent in
Yao 32, when both U and A are finite (as in the ap-
plication references mentioned above), soft sets and
incomplete soft sets can be represented either by ma-
trices or in tabular form. Rows are attached with ob-
jects in U , and columns are attached with parameters
in A. In the case of a soft set, these representations
are binary (i.e., all cells are either 0 or 1).

3. The Problem: Preliminaries and New
Proposals of Solution

In this section we tackle the problem of applying in-
complete soft sets in decision making practice.

3.1. Preliminaries and Antecedents

Concerning (pure) soft set based decision mak-
ing, the fundamental reference is Maji, Biswas and
Roy 20. When a soft set (F,A) is represented in ma-
trix form through the matrix (ti j)k×l , where k and l
are the cardinals of U and A respectively, then the
choice value of an object hi ∈ U is ci = ∑ j ti j. A
suitable choice is made when the selected object hk
verifies ck = maxi ci. In other words, objects that
maximize the choice value are satisfactory outcomes
of this decision making problem.

Concerning incomplete soft set based decision
making, the most successful approaches are prob-
ably Han et al. 16, Qin et al. 23, and Zou and Xiao 38.
Let us survey their ideas.

Zou and Xiao 38 initiated the analysis of soft sets
and fuzzy soft sets under incomplete information. In
the first, standard case they propose to calculate all
possible choice values for each object, and then cal-
culate their respective “decision values” di by the
method of weighted-average. To this purpose the
weight of each possible choice value is computed
by existing complete information. In particular, they
put forward some simple indicators that can even-
tually be used to prioritize the alternatives, namely,
ci(0) (the choice value if all missing data are assumed
to be 0), ci(1) (the choice value if all missing data are
assumed to be 1) and di−p (which is easily shown to
correspond to (ci(0)+ ci(1))/2).

Because Zou and Xiao’s definition of di is com-
plex and difficult to understand, Kong et al. 18 have
designed a simplified approach to decision mak-
ing for incomplete soft sets that is equivalent to
the weight-average of all possible choice value ap-
proach.

Inspired by the data analysis approach in Zou and
Xiao 38, Qin et al. 23 propose a new way to fill out
the missing data in an incomplete soft set. To that
purpose, they introduce the relation between param-
eters. Thus, they prioritize the association between
parameters rather than the probability of objects ap-
pearing in F(ei). This way they attach a completed
soft set with any incomplete soft set. However, the
procedure of Qin et al. 23 presupposes that there are
associations among some of the parameters. Their
proposal relies on to Zou and Xiao’s method 38:
when an exogenously given threshold is not reached,
the data is filled out according to Zou and Xiao’s ap-
proach. Incidentally, there is no clue as to which
threshold is suitable for each problem.

Qin et al. hint that their procedure can be used
to implement subsequent applications involving in-
complete soft sets, but they do not make any explicit
statement as to decision making. In fact, these au-
thors criticize the approach for (crisp) soft sets in
Zou and Xiao 38 because the missing data are still
missing at the end of the process, and “the soft sets
cannot be used in other fields but decision making”.
Nevertheless, it seems appropriate to complement
their filling procedure with a prioritization of the ob-
jects according to their choice values Qi, as is stan-
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dard in soft-set based decision making. Han et al. 16,
section 1.3, explain that “this method is good when
objects in U are related with each other”.

Relatedly, we also mention that Khan et al. 28

deal with predicting the performance of handling
missing data in incomplete soft sets, but they do
not advocate for any decision making mechanism.
Therefore Khan et al. 28, like Qin et al. 23, are not di-
rectly concerned with decision making mechanisms.

Finally, Han et al. 16 develop and compare sev-
eral elicitation criterions for decision making of in-
complete soft sets which are generated by restricted
intersection. Here we do not pursue that avenue.

Table 1 summarizes the definitions of elements
that we have explained above.

Index Description Source
di Calculate all possible choice Zou & Xiao 38

values for each object. Kong et al. 18

Then calculate their di by
method of weighted-average

di−p (ci(0)+ ci(1))/2 Zou & Xiao 38

ci(0) Choice value if missing data are 0 Zou & Xiao 38

ci(1) Choice value if missing data are 1 Zou & Xiao 38

Qi Choice value of soft set completed Own ellaboration
by data filling approach from Qin et al. 23

Table 1. Indicators that permit to make decisions about soft sets
in an environment with incomplete information.

3.2. A Preparatory Step

Here we comment upon some solutions in Zou and
Xiao 38. Let us fix an incomplete soft set.

The researcher can conduct a pre-screening op-
eration before selecting a final option. We calcu-
late the maximum value c0 of all choice values c j(0)
across options u j. If this value is strictly greater than
the choice value ck(1) of an alternative uk, this alter-
native can be removed from the initial matrix. The
reason is that if all missing data for uk are assumed
to be 1, there is another option i verifying that when
all missing data for ui are assumed to be 0, still op-
tion i has a greater choice value than option k. This
argument suggests the following novel definition:

Definition 3. Let (F,A) be an incomplete soft set
over U . An option i dominates an option k when
ck(1) < ci(0).

Clearly, if we adhere to any choice value based
solution, we can freely discard dominated options.
For example, if we use either d j, c j(0), c j(1) or d j−p
as an indicator for any option j, option k cannot
maximize the selected indicator when option i dom-
inates it.

This simplification is basically inconsequential
in the case of Zou and Xiao’s solutions, however
we can apply it in other computationally costly al-
gorithms in order to reduce calculations.

3.3. A New Proposal of Solution

We must emphasize that our purpose here is not to
fill any missing data but to give advice on which
choice should be made when data are missing in
the context of soft sets. Due to the criticisms
raised above, to that purpose we cannot support the
idea that averages, probabilities or any other spe-
cific evaluations should be used to fill missing data.
Given that generally there is perfect uncertainty
about the real value of these absent data, we propose
a completely different approach. We evaluate each
feasible filled table according to their choice value.
Then we order the alternatives by the proportion of
tables where they receive the highest choice value.

The intuition for our proposal is as follows. Ac-
cording to Laplace’s principle of indifference in
probability theory, under complete ignorance we
must assume that all tables where the ∗’s are re-
placed with either 0 or 1 are equiprobable. Hence
the best we can do is to compute which objects
should be selected according to soft-set based deci-
sion making in each of these cases, and then opt for
any object that is optimal in the highest proportion
of cases with completed information.

In accordance with this idea and our arguments
in section 3.2, we endorse the following algorithm
for the problems where both U and A are finite:

Algorithm 1. Incomplete Soft Sets Algorithm

1. Input the incomplete soft set on k′ objects
with l parameters in the form of an input ta-
ble whose cell (i, j) is denoted ti j ∈ {0,1,∗}.
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2. Calculate c0 = maxi=1,...,k′ ci(0) from the in-
complete matrix.

Remove each row i from the incomplete ma-
trix such that ci(1) < c0. Denote by k the num-
ber of remaining objects.

3. In the trimmed k× l matrix, enumerate the
cells with value ∗ as ((i1, j1), . . . ,(iw, jw)).

4. For each vector v = (v1, . . . ,vw) ∈ {0,1}w,
construct a k× l matrix Cv = (ci j)k×l where

(a) ci j = ti j if (i, j) is not listed in
((i1, j1), . . . ,(iw, jw)).

(b) ci j = vz if (i, j) = (iz, jz), z ∈
{1,2, . . . ,w}.

5. For each i = 1, . . . ,k, let ni denote the number
of vectors v = (v1, . . . ,vw)∈ {0,1}w for which
object i (denoted hi) maximizes the choice
value at Cv. Define si = ni/2w for each i. For
dominated alternatives, we let si = 0.

6. The decision is any object ul that maximizes
the score computed in Step 5, i.e., any ul such
that sl = maxi=1,...,k si.

Observe that because choice values can be re-
peated at each Cv matrix, one has ∑

k
i=1 ni > 2w.

We can reinterpret the Algorithm above as fol-
lows. Firstly, we eliminate dominated alternatives at
Step 2. Suppose that due to our complete ignorance
of the real data, all completed soft sets from the in-
put of the problem are considered equally probable.
Suppose that in case of (complete) soft set problems,
we opt for any object with the highest choice value.
Then a solution for our original problem is any ob-
ject such that the probability of its being a solution
of a randomly selected completed soft set problem
(that is to say, si = ni/2w) is maximal.

The following example from real practice illus-
trates our proposal. Afterwards we use it to explain
the fundamentals of our proposal in practical terms.

Example 1. Let U = {h1,h2,h3} be a universe of
houses. With respect to the set of parameters (or at-
tributes or house characteristics) E0 = {e1,e2,e3,e4}

the following information is known in the form of an
incomplete soft set (F0,E0):

(a) h1 ∈ F0(e1)∩F0(e3) and h1 6∈ F0(e4), but it is
unknown whether h1 ∈ F0(e2) or not.

(b) h2 ∈ F0(e2) and h2 6∈ F0(e3)∪F0(e4), but it is
unknown whether h2 ∈ F0(e1) or not.

(c) h3 ∈ F0(e1)∩F0(e4) and h3 6∈ F0(e2)∪F0(e3).

(d) h4 /∈ F0(e1) ∪ F0(e2) ∪ F0(e4), but it is un-
known whether h4 ∈ F0(e3) or not.

Table 2 captures the information defining
(F0,E0). We observe that houses 1 and 3 dominate
house 4, hence h4 is eliminated and a 3×4 table re-
mains. In such trimmed table we have w= 2, and we
enumerate the cells with value ∗ as ((1,2),(2,1)).

e1 e2 e3 e4
h1 1 ∗ 1 0
h2 ∗ 1 0 0
h3 1 0 0 1
h4 0 0 ∗ 0

Table 2. Tabular representation of the incomplete soft set
(F0,E0) in Example 1.

For each v ∈ {0,1}w = {v1 = (0,0),v2 =
(0,1),v3 = (1,0),v4 = (1,1)} one feasible com-
pleted table arises. These four tables are represented
in Table 3, together with the choice values of the
houses at each table. We observe that h1 attaches
the highest choice value at all these four tables, h2
attaches the highest choice value at Cv2 only, and h3
attaches the highest choice value exactly at Cv1 and
Cv2 . Therefore we easily obtain the s1,s2,s3 scores
as in Step 5.

Table 4 contains this information as well as the
indicators by other focal proposals of solution for
this problem, as defined in section 3.1. The optimal
alternatives for each procedure are represented too.
In addition, observe that the fact that houses 1 and 3
dominate house 4 stems from Table 4 by comparing
the maximum of column ci(0) —which is attained
at 1 and 3— and the values in column ci(1) that are
strictly smaller than such maximum.
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Cv1 matrix
e1 e2 e3 e4 ci

h1 1 0 1 0 2
h2 0 1 0 0 1
h3 1 0 0 1 2

Cv2 matrix
e1 e2 e3 e4 ci

h1 1 0 1 0 2
h2 1 1 0 0 2
h3 1 0 0 1 2

Cv3 matrix
e1 e2 e3 e4 ci

h1 1 1 1 0 3
h2 0 1 0 0 1
h3 1 0 0 1 2

Cv4 matrix
e1 e2 e3 e4 ci

h1 1 1 1 0 3
h2 1 1 0 0 2
h3 1 0 0 1 2

Table 3. The four completed tables for the incomplete soft set
(F0,E0) according to Step 4 in our Algorithm, with the respec-
tive choice values for each alternative.

si di di−p ci(0) ci(1) Qi

h1 1.00 2.50 2.50 2 3 3
h2 0.25 2.00 1.50 1 2 1
h3 0.50 2.00 2.00 2 2 2
h4 0 0.33 0.5 0 1 1

Optimal {h1} {h1} {h1} {h1,h3} {h1} {h1}

Table 4. Solutions for the problem represented by (F0,E0) in
Example 1 according to various indicators (v., Algorithm 1 and
Table 1).

In order to explain how the intuition of our idea
applies to this example, we take advantage of the
very competent introduction to incomplete soft sets
in real practice by Han et al. 16 . Maybe the indeter-
minacy at attribute e1 is due to the fact that the real
estate salesman refuses to show the required certifi-
cate for the second house. Similarly, if the second
attribute concerns “convenient underground facili-
ties” it may happen that it is not yet known whether
a subway will be built nearby the first house; one
needs to consult the municipal construction plan-
ning. But if all the possibilities are accounted for, ul-
timately one of the four tables represented in Table 3
contains the complete information that is needed to
make the decision. Since we do not know which one
will be correct, we must assume that these tables are
equiprobable according to Laplace’s principle of in-
difference. It is then sensible to compute which ob-
jects should be selected according to soft-set based
decision making in each of these cases, and then se-
lect any object that is optimal in most cases.

3.4. A Comparison with Existing Solutions in
the Literature

The primary objective of this subsection is to prove
that our proposal is different from any of the solu-
tions provided by previous literature. To that pur-
pose, we first perform an extensive analysis of the
incomplete soft set that Qin et al. 23 use to illustrate
their data filling approach. Specifically, in Exam-
ple 2 below we compute various indicators that in-
duce procedures for the prioritization of the objects,
including our own proposal.

Example 2. A University department is recruiting
researchers, and 8 persons apply for the job. The
universe of applicants is U = {a1, . . . ,a8}. E =
{e1, . . . ,e6} is the parameter set, the ei (i = 1, . . . ,6)
standing for the parameters “experienced”, “young
age”, “good command of the language”, “the highest
academic degree is PhD”, “the highest academic de-
gree is Master’s” and “studied abroad”, respectively.
The recruiting committee must make a recommen-
dation on the basis of an incomplete soft set (F,E)
that captures the “capabilities of the candidates” ac-
cording to the information contained in Table 5.

e1 e2 e3 e4 e5 e6
a1 1 0 1 0 1 0
a2 1 0 0 1 0 0
a3 0 1 0 0 1 0
a4 0 1 ∗ 1 0 ∗
a5 1 0 1 1 0 0
a6 0 1 0 0 ∗ 0
a7 1 ∗ 1 0 1 0
a8 0 0 1 1 0 0

Table 5. Tabular representation of the incomplete soft set (F,E)
in Qin et al. 23 .

In order to analyze this choice situation, Ta-
ble 6 collects several indicators suggested by pre-
vious procedures as well as si provided by our own
Algorithm. Recall that the Qi indicators correspond
to the choice values in the table completed by Qin
et al.’s filling algorithm, which they give at Qin et
al. 23 . At the bottom of Table 6 we present the re-
spective recommendations by these methodologies.
As is apparent, this example readily proves that our
proposal of solution does not coincide with the so-
lutions provided by either the ci(0) or the ci(1) or the
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Qi indicators.

si di di−p ci(0) ci(1) Qi

a1 0.375 3 3 3 3 3
a2 0 2 2 2 2 2
a3 0 2 2 2 2 2
a4 0.5 2.57 3 2 4 2
a5 0.375 3 3 3 3 3
a6 0 1.42 1.5 1 2 2
a7 0.875 3.42 3.5 3 4 3
a8 0 2 2 2 2 2

{a7} {a7} {a7} {a1,a5,a7} {a4,a7} {a1,a5,a7}

Table 6. Indicators by several focal proposals and prescribed
solutions for the incomplete soft set (F,E) in Table 5.

In order to complete our comparative analysis,
Example 3 below proves that our solution is indeed
different from the solutions provided by the di and
the di−p indicators as well. Of course, the reason
is that when Zou and Xiao define the weights of all
possible choice values, they acquiesce that there is
an inherent relationship between object.

Example 3. In the situation of Example 1, three
agents need to decide on the basis of the information
contained in the incomplete soft set (F1,E0). The
first agent follows the recommendations by the di−p
indicator, whereas the second one follows the rec-
ommendations by the di indicator, and the third one
follows the recommendations by our Algorithm.

Now the first agent observes a tie since the eval-
uations of di−p at h1 and h2 are 2 whereas its value is
1.5 at h3, thus her decision is {h1,h2}. The second
agent’s only winning option is h1 because d1 = 2,
d2 = 1, and d3 = 1.5. However, the third agent’s
only winning option is h3 because s1 = 0.6562, s2 =
0.6875, and s3 = 0.4062.

Hence, we confirm that neither the solutions by
the di−p indicators nor the solutions by the di indi-
cators necessarily coincide with the solutions by our
si indicators.

e1 e2 e3 e4
h1 1 1 0 0
h2 1 0 ∗ ∗
h3 ∗ ∗ ∗ 0

Table 7. Tabular representation of the incomplete soft set
(F1,E0) in Example 3.

3.5. Computational Experiment

An operational objection to the Algorithm in sub-
section 3.3 is that it is computationally inefficient:
the number of completed tables in Step 4 is 2w, thus
when the number of missing data is very high we
cannot reach a solution in a timely manner. Put more
precisely, the Algorithm execution time has order
O(2w) +O(n×m), where n×m is the size of the
matrix and w is the number of unknown data in the
matrix associated to the soft incomplete set. It is
nevertheless possible to apply our Algorithm to all
the examples that we have found in related literature
in a very reasonable execution time. We proceed to
give experimental grounds for this assurance.

The Algorithm we have developed is written in
R2014b Matlab language. We run it on a Mac com-
puter with OSX Yosemite system, processor Intel
Core i5 CPU I5-2557M at 1,7 GHz and 4 GB RAM.

# unknown Matrix Dimensions (n,m)
values (5,10) (25,100) (50,200) (75,250) (100,500)

1 0.0008 0.0009 0.0009 0.0011 0.0018
2 0.0012 0.0014 0.0014 0.0014 0.0029
3 0.0017 0.0024 0.0025 0.0028 0.0050
4 0.0032 0.0038 0.0048 0.0049 0.0075
5 0.0056 0.0068 0.0088 0.0093 0.0126
6 0.0109 0.0127 0.0148 0.0174 0.0271
7 0.0226 0.0244 0.0301 0.0318 0.0460
8 0.0446 0.0490 0.0584 0.0702 0.1004
9 0.0926 0.0959 0.1157 0.1542 0.2041

10 0.1836 0.1926 0.2331 0.2844 0.4128
11 0.3782 0.3879 0.4726 0.5603 0.8252
12 0.7535 0.7700 0.9245 1.0916 1.5072
13 1.5563 1.5493 2.0415 2.1525 2.9577
14 3.0519 3.0954 3.8883 4.2896 5.8508
15 6.0364 6.2123 7.3964 9.0436 12.2864
16 12.1147 13.2758 15.4481 17.3812 26.9188

Table 8. Matlab implementation performance of our Algorithm:
running times in seconds.

In order to perform a more practical experimen-
tal analysis, in Table 8 we consider the following
matrix sizes: (a) n= 5, m= 10; (b) n= 25, m= 100;
(c) n = 50, m = 200; (d) n = 75, m = 250; (e)
n= 100, m= 500. Figure 1 shows only cases (a), (d)
and (e) to avoid cumbersome displays. For each ma-
trix size we represent a series. In the abscissa axis,
the number of unknown data in our matrix is rep-
resented. The ordinate axis represents the average
runtime in seconds of our Algorithm for 10 random
examples of matrices with the same conditions.
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Fig. 1. Matlab implementation performance of our Algo-
rithm. For convenience we partially display the data in Ta-
ble 8.

Fig. 2. Matlab implementation performance of our Algo-
rithm. For interpretation of the data, see Section 4.

For larger sets of data, experimental analyses be-
come tediously lengthy. Consequently, Figure 2 is a
logarithmic representation analogous to Figure 1 of
the same cases (a), (d), and (e) ∗. However, in this
graph instead of using 10 random matrices, we only
consider three experiments for the sake of minimiz-
ing execution time.

In all series we found that the running time of the
Algorithm is exponential to the number of unknown
elements in the matrix. For example, we tested it for
a matrix with n = 100, m = 500, and w = 30 and the
execution time was 2.2848 · 105 seconds (= 63,46
hours = 2.64 days) with the same basic computer.

We must acknowledge that when the value of w
grows above a certain level, the running time makes
the Algorithm impracticable as it stands. But that
level does not seem to be surpassed in the litera-
ture we have sampled. In this regard it seems con-
venient to compare our proposal where every miss-
ing data are either 0 or 1, with other possible studies
where the incomplete infomation is filled with num-
bers ranging in a larger set. We believe that even if
the researcher attempts to estimate the missing data,
the majority of the approaches restrict the options to
0 or 1 (cf., DFIS in Qin et al. 24, ADFIS in Khan
et al. 28, and Qin et al. 23). As an exceptional case
where larger sets of values can be used, we can only
cite the recent Kong et al. 18 (see their Tables 4, 7
and 12).

4. Final Comments and Conclusion

Our proposal provides a new criterion for soft set
based decision making problems under incomplete
information. We have demonstrated that this method
is different from the approaches in the existing liter-
ature.

The main advantage of our work is that under the
conditions in which there is no inherent relationship
between objects and between parameters, the deci-
sion result will be more convincing than other ap-
proaches. In the general framework where no such
information on relationships is available, the user
must avoid the recourse to possible similarities be-
tween objects and/or parameters that are the premise
of other approaches. According to Laplace’s princi-
ple of indifference, in case of complete ignorance
we are entitled to assume that all tables in which the
∗’s are replaced with either 0 or 1 are equiprobable.
In each of these cases it is reasonable to compute the
objects selected according to soft-set based decision
making in order to make a decision that is optimal
in the highest proportion of cases.

In view of the computational analysis in subsec-
tion 3.5, in our future investigations we will focus on
related algorithms that permit to preserve the ethos
of our approach and take on the cases that require a
large execution time.

∗We use logarithmic representations in order to avoid extreme distortions in the graphical display.
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The following two techniques can be used for
that purpose.

1. The researcher can select a random sample out
of the 2w possible matrices in such way that with a
sufficiently large number of samples, the estimate si
of our true coefficient si is deemed sufficiently reli-
able (cf., Alcantud and Santos-Garcı́a 4).

This procedure is efficient since it can be stopped
at any time. The verdict as to which options are op-
timal is adjustable because it depends on the pro-
portion of filled tables that are used. This main fea-
ture is common to other approaches (e.g., the use of
thresholds in Qin et al. 23 in this context; or the ad-
justable approach by Feng et al. 13 in fuzzy soft set
based decision making). The choice of the thresh-
olds in the latter proposals is under the control of
the users, and the technique in Alcantud and Santos-
Garcı́a 4 leaves the decision of such proportions to
the users too.

2. One can produce a modification of our idea in
subsection 3.3 that exploits the fact that when there
are several missing data for an option, the result of
its choice value does not depend on the precise al-
ternatives that are completed with a 1, but rather it is
dependent on the exact number of alternatives that
are completed with a 1, since the choice value is
computed by addition. Hence, our Algorithm can
be refined to run in less time by replacing Steps 4
and 5 with a better procedure that goes through all
the possibilities and computes how many times each
case takes place. We emphasize that a non-trivial
combinatorial problem emerges.

Finally, it would be interesting to extend our ap-
proach to the theories formulated by Han et al. 16

regarding decision making of incomplete soft sets
generated by restricted intersection.

Table 4 summarizes the techniques available to
the practitioner for the problem we have studied.
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12. N. Çağman and S. Enginoğlu. Soft set theory and uni-
int decision making. European Journal of Operational
Research, 207(2):848–855, 2010.

13. F. Feng, Y.B. Jun, X. Liu, and L. Li. An adjustable
approach to fuzzy soft set based decision making.
Journal of Computational and Applied Mathematics,
234:10–20, 2010.

14. F. Feng and Y. Li. Soft subsets and soft product oper-
ations. Information Sciences, 232:44–57, 2013.

15. F. Feng, Y. Li, and N. Çağman. Generalized uni-
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