Fuzzy sets from the ethics of social preferences: slides for ESTYLF 2014

José Carlos R. Alcantud

Universidad de Salamanca

ESTYLF 2014. Zaragoza.

Outline

Presentation of the problem

Social welfare functions and fuzzy sets

Definition

Prominent examples

Ethical fuzzy sets: variations of the concept

Aggregation of utility streams: The framework

 $X\subseteq\mathbb{R}^\mathbb{N}$ is a domain of utility sequences or infinite-horizon utility streams.

Usual notation for utility streams: $\mathbf{x} = (x_1, ..., x_n,) \in \mathbf{X}$.

Comparing streams

A social welfare function (SWF) is a function **W** : $X \longrightarrow \mathbb{R}$.

$$W(x)\geqslant W(y)$$
 means "x is (socially) at least as good as y "

It induces a *representable* social welfare ordering according to the expression:

$$x \succcurlyeq y$$
 if and only if $W(x) \geqslant W(y)$

Comparing streams

We are concerned with combinations of axioms of different nature for SWRs / SWFs on **X**.

- Axioms related to efficiency: Strong/Weak/Partial Pareto, Weak Dominance, or Monotonicity.
 - Strong Pareto: If $\mathbf{x}, \mathbf{y} \in \mathbf{X}$ and $\mathbf{x} > \mathbf{y}$ then $\mathbf{x} \succ \mathbf{y}$.
- Axioms related to equity: especially Anonymity, others like Pigou-Dalton transfer principle, variations on the Hammond Equity axiom, ...
 - Anonymity: Any finite permutation of a utility stream produces a socially indifferent utility stream.

The codomain of SWFs can be restricted to [0, 1]

Because there exist strictly increasing mappings $\rho: \mathbb{R} \longrightarrow [0,1]$, every social welfare function $\mathbf{W}: \mathbf{X} \longrightarrow \mathbb{R}$ can be transformed into a mapping $\mathbf{W}' = \rho \circ \mathbf{W}: \mathbf{X} \longrightarrow [0,1]$ in such way that $\mathbf{W}(\mathbf{x}) \geqslant \mathbf{W}(\mathbf{y})$ and $\mathbf{W}'(\mathbf{x}) \geqslant \mathbf{W}'(\mathbf{y})$ are equivalent, for all $\mathbf{x}, \mathbf{y} \in \mathbf{X}$.

The composition with ρ does not affect the fulfilment of the axioms above: **W** is SP, resp., AN, others like MON, IP, WP, WD, ... if and only if so is $\mathbf{W}' = \rho \circ \mathbf{W}$.

▶ For the purpose of investigating the existence of SWFs with the axioms we have mentioned, we do not lose generality if the codomain is assumed to be [0, 1].

Main definition

Every social welfare function $W: X \longrightarrow [0,1]$ can be identified with a fuzzy subset of X.

Each W(x) is interpreted as the degree of membership of x to the subset of 'ethically acceptable' streams in X.

To better fit these interpretations: when $\mathbf{X} \subseteq [0,1]^{\mathbb{N}}$ and both $\mathbf{1} = (1,1,...,1,...) \in \mathbf{X}$ and

when $\mathbf{X} \subseteq [0,1]^{\mathsf{T}}$ and both $\mathbf{I} = (1,1,...,1,...) \in \mathbf{X}$ and $\mathbf{0} = (0,0,...,0,...) \in \mathbf{X}$ hold true, we restrict our analysis to fuzzy subsets that verify $\mathbf{W}(\mathbf{1}) = 1$ and $\mathbf{W}(\mathbf{0}) = 0$.

Example 1: the Rawlsian fuzzy subset of $[0,1]^{\mathbb{N}}$

The Rawlsian subset of $[0,1]^{\mathbb{N}}$:

$$\mu_R(\mathbf{x}) = \inf\{x_1, x_2, ..., x_n, ...\} \text{ for all } \mathbf{x} = (x_1, x_2,) \in [0, 1]^{\mathbb{N}}$$

As requested by our definition, $\mu_R(\mathbf{1}) = 1$ and $\mu_R(\mathbf{0}) = 0$.

Example 2: δ -discounted fuzzy subsets of $[0,1]^{\mathbb{N}}$

Inspired by the most popular criteria for evaluating infinite streams, the δ -discounted fuzzy subset of $[0,1]^{\mathbb{N}}$ associated with $\delta \in (0,1)$ is

$$\mu_{\delta}(\mathbf{x}) = (1 - \delta) \sum_{i=1}^{+\infty} \delta^{i-1} x_i \text{ for all } \mathbf{x} = (x_1, x_2,)$$

As requested by our definition, $\mu_{\delta}(\mathbf{1}) = 1$ and $\mu_{\delta}(\mathbf{0}) = 0$.

Example 3: δ -rank-discounted fuzzy subsets

Let $\bar{\mathbf{X}}$ be the set of allocations of $[0,1]^{\mathbb{N}}$ whose elements can be permuted to obtain non-decreasing streams.

The δ -rank-discounted fuzzy subset of $\bar{\mathbf{X}}$ associated with $\delta \in (0,1)$ is

$$\rho_{\delta}(\mathbf{x}) = (1 - \delta) \sum_{i=1}^{+\infty} \delta^{i-1} x_{\lfloor i \rfloor} \text{ for all } \mathbf{x} \in \bar{\mathbf{X}}$$

where $(x_{\lfloor 1 \rfloor}, x_{\lfloor 2 \rfloor},)$ is the non-decreasing infinite stream which is a permutation of **x**.

As requested by our definition, $\rho_{\delta}(\mathbf{1}) = 1$ and $\rho_{\delta}(\mathbf{0}) = 0$.

Ethical fuzzy sets

Combinations of properties of fuzzy subsets of **X** yield various concepts of ethical (in the comprehensive sense) fuzzy subsets.

The following definitions refer to **anonymous** fuzzy subsets (of a domain of infinite utility streams $X \subseteq [0,1]^{\mathbb{N}}$ such that the degree of membership of $1 \in X$ is 1, resp., of $0 \in X$ is 0):

▶ A fuzzy set is anonymous when the degree of membership of any $x \in X$ does not change under finite permutations of its coordinates.

Ethical fuzzy sets: variations of the concept

- 1. **Ethical**: when x allocates more than y to some generation, and x does not allocate less than y to any generation, then x has a higher degree of membership than y.
- Pre-ethical: when x allocates more than y to an infinite number of generations, and x does not allocate less than y to any generation, then x has a higher degree of membership than y.
- 3. **Weakly ethical**: when **x** allocates more than **y** to all generations, then **x** has a higher degree of membership than **y**.

Ethical fuzzy sets: variations of the concept

- 4. **Quasi-ethical**: when **x** allocates more than **y** to a generation *i*, and **x** and **y** allocate the same amount to any generation other than *i*, then **x** has a higher degree of membership than **y**.
- 5. **Basically ethical**: when **x** does not allocate less than **y** to any generation, then **y** does not have a higher degree of membership than **x**.

Ethical fuzzy sets: relationships

Any ethical fuzzy subset of **X** is pre-ethical, quasi-ethical, and basically ethical.

Pre-ethical fuzzy subsets of X are weakly ethical.

Lemma

If a fuzzy subset of $[0,1]^{\mathbb{N}}$ is quasi-ethical and basically ethical then it is ethical.

Results: are there (pre-)ethical fuzzy subsets?

Theorem (Crespo et al., Economic Theory, 2009)

No SWF on $\mathbf{Z} = \{0,1\}^{\mathbb{N}}$ is Infinite Paretian and anonymous.

Consequence

There do not exist pre-ethical fuzzy subsets of $\mathbf{Z} = \{0,1\}^{\mathbb{N}}$.

In particular: there do not exist ethical fuzzy subsets of $\mathbf{Z} = \{0,1\}^{\mathbb{N}}$ (Basu and Mitra, Econometrica, 2003).

Although:

Example 3 (ρ_{δ}) is an ethical fuzzy subset of $\bar{\mathbf{X}}$ (Zuber and Asheim, Journal of Economic Theory, 2012).

Results: are there weakly ethical fuzzy subsets?

Theorem (Basu and Mitra, 2007)

No SWF on $[0,1]^{\mathbb{N}}$ is Weakly Paretian and anonymous.

Consequence

There do not exist weakly ethical fuzzy subsets of $\mathbf{X} = [0, 1]^{\mathbb{N}}$.

Although:

Example 3 (ρ_{δ}) is a weakly ethical fuzzy subset of $\bar{\mathbf{X}}$.

Results: are there quasi-ethical fuzzy subsets?

We have mentioned that Example 3 is a quasi-ethical fuzzy subset of $\bar{\mathbf{X}}$.

▶ In fact, there exist quasi-ethical fuzzy subsets of any $\mathbf{X} \subseteq [0,1]^{\mathbb{N}}$.

Reason:

Proposition (Basu and Mitra, 2007)

There are SWFs on $\mathbf{X} = [0,1]^{\mathbb{N}}$ that are Weakly Dominant and Anonymous.

Results: are there basically ethical fuzzy subsets?

The answer to this question is affirmative for any $\mathbf{X} \subseteq [0,1]^{\mathbb{N}}$. We just need to check that the *minimax* or Rawlsian fuzzy subset μ_R verifies the requested properties.

Although there are quasi-ethical and also basically ethical fuzzy subsets of $[0,1]^{\mathbb{N}}$, it is remarkable that quasi-ethical fuzzy subsets of $[0,1]^{\mathbb{N}}$ cannot be basically ethical.

References I

- J. C. R. Alcantud: Weak utilities from acyclicity. *Theory and decision* 47 (2), pp. 185–196, 1999.
- J. C. R. Alcantud: Inequality averse criteria for evaluating infinite utility streams: The impossibility of Weak Pareto. *Journal of Economic Theory* 147 (1), pp. 353–36, 2012.
- J. C. R. Alcantud, G. Bosi, M. J. Campión, J. C. Candeal, E. Induráin, C. Rodríguez-Palmero: Continuous utility functions through scales. *Theory and decision* 64 (4), pp. 479–494, 2008.
- J. C. R. Alcantud, M. D. García-Sanz: Paretian evaluation of infinite utility streams: An egalitarian criterion. *Economics Letters* 106, pp. 209–211, 2010.

References II

- G. B. Asheim: Intergenerational Equity. *Annual Review of Economics* 2, pp. 197–222, 2010.
- K. Banerjee: On the equity-efficiency trade off in aggregating infinite utility streams. *Economics Letters* 93, pp. 63–67, 2006.
- K. Basu, T. Mitra: Aggregating infinite utility streams with intergenerational equity: the impossibility of being Paretian. *Econometrica* 71, pp. 1557–1563, 2003.
- K. Basu, T. Mitra: Possibility theorems for equitably aggregating infinite utility streams. In: J. Roemer, K. Suzumura (Eds.), Intergenerational equity and sustainability: conference proceedings of the IWEA roundtable meeting on intergenerational equity, Palgrave, 2007.

References III

- J. Crespo, C. Núñez, J. P. Rincón-Zapatero: On the impossibility of representing infinite utility streams. *Economic Theory* 40, pp. 47–56, 2009.
- K. Kamaga, T. Kojima: *Q*-anonymous social welfare relations on infinite utility streams. *Social Choice and Welfare* 33, pp. 405–413, 2009.
- L. Lauwers: Infinite utility: insisting on strong monotonicity. *Australasian Journal of Philosophy* 75, pp. 222–233, 1997.

References IV

T. Mitra, K. Basu: On the existence of Paretian social welfare quasi-orderings for infinite utility streams with extended anonymity. In: J. Roemer, K. Suzumura (Eds.), Intergenerational equity and sustainability: conference proceedings of the IWEA roundtable meeting on intergenerational equity, Palgrave, 2007.

T. Sakai: A characterization and an impossibility of finite length anonymity for infinite generations. Journal of Mathematical Economics 46, pp. 877–883, 2010.

L.-G. Svensson: Equity among generations. *Econometrica* 48, pp. 1251-1256, 1980.

References V

S. Zuber, G. B. Asheim: Justifying social discounting: The rank-discounted utilitarian approach. *Journal of Economic Theory* 147, pp. 1572–1601, 2012.