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 INTRODUCTION 

1. C3G 

1.1. Generalities 

C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a Guanine 

Nucleotide Exchange Factor (GEF) for several members of the Ras superfamily of GTPases, 

mainly Rap1 and R-Ras (Gotoh, T. et al. 1995, Gotoh, T. et al. 1997). C3G mediates functions 

associated with its catalytic domain, thus promoting the binding of GTP to the GTPases. In 

addition, C3G can behave as an adapter protein, performing functions based on protein-

protein interactions, independently of its GEF domain (Guerrero, C. et al. 1998, Shivakrupa, 

R. et al. 2003, Guerrero, C. et al. 2004). The alternative names of C3G are RapGEF1, GRF2, 

and CRK SH3-binding GNRP (guanine nucleotide releasing protein). 

C3G was initially isolated as a Crk SH3-binding protein (Knudsen, B.S. et al. 1994, 

Tanaka, S. et al. 1994) and later identified as the first Rap GEF described (Gotoh, T. et al. 

1995). Although C3G is ubiquitously expressed in human adult and fetal tissues, high levels 

of C3G have been reported in specific tissues, such as placenta, heart and skeletal muscle, 

while it is poorly expressed in the liver (Guerrero, C. et al. 1998). 

1.2. C3G structure 

The human C3G gene comprises 3231 bp, distributed in 24 exons spanning 163 kb on 

chromosome 9q34.3 (Acc. Num. NM_005312) (Takai, S. et al. 1994, Radha, V. et al. 2011), 

although several isoforms have been described, as detailed below. The C3G ORF encodes a 

protein of 1077 amino acids, which has several functionally and structurally, well differentiated, 

domains (Tanaka, S. et al. 1994) (Figure I-1).  

The C-terminal region of C3G contains a 224 aa sequence corresponding to the 

Catalytic Domain, responsible for the GEF function. This domain is also known as CDC25-

H (CDC25-homology) for its homology to the CDC25 protein of S. cerevisae (Martegani, E. et 

al. 1992). Upstream the catalytic domain is the REM domain (Ras Exchange-Motif), which, 

collaborates with the catalytic domain in the exchange reaction (Bos, J.L. et al. 2007). The 

central region, called SH3-binding Domain (SH3b), contains five proline-rich sequences 

(amino acids 280 to 646) that follow the Pro-Pro-X-X-Pro-X-K/R consensus motif (Knudsen, 

B.S. et al. 1994). These motifs bind to SH3 domains of adaptor proteins, such as Crk 

(Matsuda, M. et al. 1992) and p130Cas (Kirsch, K.H. et al. 1998), as well as tyrosine kinases, 

such as c-Abl (Radha, V. et al. 2007) and Bcr-Abl (Gutierrez-Berzal, J. et al. 2006), among 

many others proteins (Maia, V. et al. 2013). The N-terminal region (amino acids 144 to 230) 
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includes an E-cadherin binding domain (Hogan, C. et al. 2004), which is involved in the 

recruitment of E-cadherin during the initial steps of junction formation (Hogan, C. et al. 2004, 

Pannekoek, W.J. et al. 2009). The N-terminal region also behaves as a cis-acting negative 

regulatory element, inhibiting the GEF activity of C3G. This negative effect is suppressed 

when C3G is phosphorylated in Tyr-504 (Ichiba, T. et al. 1999). 

 

Figure I-1. Schematic representation of C3G structure, showing its domain organization. The 
illustration shows the C-terminal Catalytic domain (purple) homologous to CDC25 (CDC25-H), the Ras 
Exchange Motif or REM (red), the central SH3b domain, containing five proline-rich sequences (blue), 
and the N-terminal region containing the E-cadherin binding domain (orange). The numbers indicate the 
amino acids (aa) that approximately limit the start and end of each domain. The position of the tyrosine 
residue 504 is indicated in red (Y504). 

In human, two isoforms of C3G, a and b, generated by alternative splicing, have been 

described. These isoforms differ in the N-terminal region, with isoform b having 18 more aa 

than isoform a (Figure I-2). Both C3G isoforms show ubiquitous expression in human tissues 

(Zhai, B. et al. 2001, Radha, V. et al. 2011). 

A third isoform of 87 kDa (p87C3G) has been characterized in chronic myeloid 

leukemia (CML) cells. This isoform lacks the first 305 amino acids, corresponding to the E-

cadherin binding domain and the two first proline-rich regions (Gutierrez-Berzal, J. et al. 2006) 

(Figure I-2). The p87C3G isoform is overexpressed in CML cell lines and also in primary bone 

marrow cells from CML patients. In addition, p87C3G is phosphorylated by Bcr-Abl, 

suggesting a role for C3G in CML (Gutierrez-Berzal, J. et al. 2006).  

 

 

Figure I-2. Human isoforms of C3G. Schematic representation of the three isoforms of C3G described 
in human tissues. Isoforms a and b, arise due to alternate splicing and differ in the N-terminus. A truncated 
isoform, p87C3G, is expressed in CML cells and patients. For the legend of the different domains, see 
Figure I-1. 

1.3. Activation of C3G 

C3G is activated by multiple extracellular stimuli, which indicates its involvement in 

different signaling pathways. Among the stimuli that activate C3G signaling pathways are 

interferon-gamma (IFN-) (Alsayed, Y. et al. 2000), growth hormone (GH) (Zhu, T. et al. 1998, 
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Ling, L. et al. 2003), insulin (Okada, S. et al. 1997), platelet-derived growth factor (PDGF) 

(Yokote, K. et al. 1998), interleukin-3 (IL-3) (Nosaka, Y. et al. 1999) and integrin binding to 

extracellular matrix (ECM) components (Buensuceso, C.S. et al. 2000). In particular, it has 

been reported that hematopoietic cells stimulated with IL-3 cytokine, which is involved in the 

proliferation of megakaryocytes colonies, show an activation of gene transcription, mediated 

by Elk-1- and c-fos, through the CrkL-C3G complex (Nosaka, Y. et al. 1999).  

The activation of C3G requires its recruitment to membranes through binding to Crk 

adapter proteins, CrkII, CrkI (an alternative spliced form of CrkII) and CrkL (Birge, R.B. et al. 

2009). CrkII and CrkL are composed of a SH2 domain that interacts with tyrosine 

phosphorylated residues present in focal adhesion proteins, such as p130Cas, Cbl and 

paxillin, and two SH3 domains, which bind to proteins containing proline-rich sequences (Bhat, 

A. et al. 1997). The N-T-SH3 domain of Crk proteins has been found to interact with C3G, 

Sos, DOCK180, c-Abl and EPS15 (Feller, S.M. et al. 1994, Matsuda, M. et al. 1994, Ren, R. 

et al. 1994, Schumacher, C. et al. 1995, Hasegawa, H. et al. 1996). However, so far no 

binding-partners have been described for the C-T-SH3 domain (Birge, R.B. et al. 2009). In 

addition, it has shown that binding of the SH3 domain of p130Cas to Pro-267 and Pro-270 

residues of C3G might be required for optimal activation of C3G, suggesting that Crk brings 

C3G to the vicinity of p130Cas to facilitate its interaction and subsequent phosphorylation and 

activation (Kirsch, K.H. et al. 1998). The phosphorylation of C3G can be performed by several 

tyrosine kinases, such as c-Src, Hck, Fyn. c-Abl and Bcr-Abl (Ling, L. et al. 2003, Shivakrupa, 

R. et al. 2003, Radha, V. et al. 2004, Gutierrez-Berzal, J. et al. 2006, Mitra, A. et al. 2010). It 

has been reported that C3G is completely active when is phosphorylated in Y504 (Ichiba, T. 

et al. 1999), although the implication of other phosphorylated residues in its activation is not 

excluded (Mitra, A. et al. 2010). Removal of the N-terminal region of C3G, including Tyr-504, 

generates a mutant that is fully active, in concordance with the negative regulation exerted by 

this region on the catalytic activity.  

1.4. C3G as a GEF of small GTPases 

C3G through its catalytic domain promotes guanine nucleotide exchange reactions for 

the Ras family members, Rap1, Rap2, R-Ras and TC21, and for the Rho family member, 

TC10 (Radha, V. et al. 2011). Ras proteins are small monomeric GTPases that cycle between 

a GTP-bound (active) conformation and a GDP-bound (inactive) one, leading to a quick on/off 

switch of the signaling pathways. In the active conformation, the GTPase interacts with 

effector proteins, thereby inducing downstream signaling events. The GDP-GTP cycle is 

regulated by GEFs, such as C3G, which induce the release of bound GDP to be replaced by 
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GTP, and by GAPs (GTPase Activating Proteins) that catalyze the hydrolysis of GTP to GDP 

(Figure I-3). 

 

Figure I-3. GTPase activity cycle. C3G GEF activity, modulated by upstream signals, catalyzes the 
dissociation of GDP from the GTPase by modifying its affinity for the nucleotide-binding site. GDP is 
released and subsequently replaced by GTP, 10 times more abundant than GDP in the cells, allowing the 
activation of downstream signaling pathways. GTP-bound GTPases (active) associates with GAPs, which 
accelerate the hydrolysis of GTP, releasing an inorganic phosphate. GEF: Guanine-nucleotide exchange 
factor; GAP: GTPase-activating protein; GTP: guanosine triphosphate; GDP: guanosine diphosphate; Pi: 
inorganic phosphate. 

1.5. C3G as an adapter protein 

C3G is able to modulate several cellular functions independently of its catalytic, GEF, 

domain. Its central region contains several poly-proline tracts that can interact directly with 

proteins that contain SH3 domains, such as Crk, Abl, Hck and p130Cas (Knudsen, B.S. et al. 

1994, Tanaka, S. et al. 1994, Kirsch, K.H. et al. 1998, Shivakrupa, R. et al. 2003), among 

many others (Maia, V. et al. 2013). In addition, it has been described that through its N-

terminal region C3G is also able to interact with E-cadherin (Hogan, C. et al. 2004).  

The interaction with Crk is especially relevant, since the formation of Crk-C3G 

complexes is essential for the subsequent activation of C3G-mediated Rap1 signaling 

pathways (Ichiba, T. et al. 1997, Radha, V. et al. 2011). 

1.6. Functions of C3G 

C3G plays a crucial role in several cellular processes. As mentioned, some of these 

functions are mediated by its GEF activity, while others are established by protein-protein 

interactions through its SH3-binding region. The main functions and interactions of C3G are 

summarized in Figure I-4. 



 

7 
 

 INTRODUCTION 

 

Figure I-4. Interacting partners of C3G and the specific functions in which they are involved 
(Radha, V. et al. 2011). Except for E-cadherin and Rap, all these interactions are established through the 
proline-rich region of C3G and SH3 domains present in the indicated proteins. A direct interaction has 
been characterized between C3G and Crk, CasL (p130Cas-related protein), Hck and Abl. 

 

C3G is involved in the following functions: 

Embryonic development 

C3G is essential for mouse embryonic development, since C3G −/− homozygous mice 

die before embryonic day 7.5 (Ohba, Y. et al. 2001). C3G-knock-out mice show defects in the 

nervous system, due to lack of cortical neuron migration (Voss, A.K. et al. 2006), and in blood 

vessel maturation, caused by inappropriate development of vascular supporting cells (Ohba, 

Y. et al. 2001, Voss, A.K. et al. 2003). Embryonic fibroblasts from these mice show impaired 

cell adhesion, delayed cell spreading and accelerated migration. These defects were rescued 

by the expression of active Rap1 or R-Ras, suggesting the importance of the GEF function of 

C3G in cell adhesion, spreading and embryogenesis. The fact that other GEFs do not 

compensate for embryonic lethality highlights the relevance of the C3G-Rap1 pathway in 

adhesion during the early stages of embryogenesis (Ohba, Y. et al. 2001). 
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Cell adhesion and migration. Role of integrins  

Integrins play a role in the control of proliferation, apoptosis, migration and mobilization 

of hematopoietic cells in the bone marrow. Specifically, integrins α5β1 and αIIbβ3 are 

especially important in the adhesion of megakaryocytes to fibronectin (Schick, P.K. et al. 

1998). In mouse embryonic fibroblasts, recruitment of C3G to the p130Cas-Crk complex is 

related to the activation of inside-out integrin signaling pathways through Rap1 (Ohba, Y. et 

al. 2001). Similarly, in hematopoietic cells the formation of the CrkL-C3G complexes induces 

the activation of the inside-out 1 and 2 integrin signaling, and consequent adhesion of 

hematopoietic cell to fibronectin, by activation of R-Ras and Rap1 pathways (Arai, A. et al. 

1999, Arai, A. et al. 2001). Additionally, in Ba/F3 hematopoietic cells, overexpression of C3G 

enhances CrkL-dependent migration through the formation of Cbl-CrkL-C3G complexes 

(Uemura, N. et al. 1999). Finally, the CrkL-C3G complex induces sustained activation of the 

Ras/Raf/ERK signaling pathway in hematopoietic cells upon stimulation with EPO and IL-3 

(Nosaka, Y. et al. 1999).   

Platelet aggregation and activation  

Rap1 GTPases (mainly the Rap1b isoform) play an essential role in most platelet 

functions, including aggregation, coagulation, adhesion and spreading, through activation of 

the platelet integrin IIb3 (Franke, B. et al. 2000, Chrzanowska-Wodnicka, M. et al. 2005). 

Rap1b also modulates the interaction of integrin IIb3 with the actin cytoskeleton in murine 

megakaryocytes, which exhibit inside-out signaling similar to platelets (Bertoni, A. et al. 2002). 

Although it had been described that platelet Rap1b was mainly activated by CalDAG-GEFI 

(Crittenden, J.R. et al. 2004, Bergmeier, W. et al. 2007), CalDAG-GEF KO platelets showed 

Rap1 activation and platelet aggregation in response to thrombin and PMA (Crittenden, J.R. 

et al. 2004), indicating the existence of Rap1b-GEFs other than CalDAG-GEF, involved in 

platelet function.  

In this line, using transgenic mouse models, our group has established that C3G 

increases platelet activation and aggregation, both in vitro and in vivo (Gutierrez-Herrero, S. 

et al. 2012). C3G mediates platelet functions triggered by thrombin, ADP, PMA and collagen 

through the activation of Rap1b. In particular, C3G is a mediator of Rap1 activation induced 

by thrombin and PMA via PKC pathways (Gutierrez-Herrero, S. et al. 2012). This new role of 

C3G in platelets has been supported by other investigators, who have proposed the formation 

of a ternary CrkL-C3G-VASP complex regulating Rap1b (Benz, P.M. et al. 2016). 
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Cell differentiation and cell cycle arrest 

Numerous evidences indicate a central role of C3G in differentiation of multiple cell 

types. C3G levels are upregulated during differentiation of monocytes to macrophages 

(Radha, V. et al. 2011). In addition, C3G overexpression in mouse mesenchymal cells 

enhances myotube formation and myogenic differentiation through Akt activation. During this 

process, there is an increase in tyrosine phosphorylated C3G (pY504), indicating the 

participation of its catalytic activity (Sasi Kumar, K. et al. 2015). Additionally, association 

between Crk and C3G is required for adipocyte differentiation (Jin, S. et al. 2000). Finally, 

C3G induces the differentiation of human neuroblastoma cells, independently of its catalytic 

domain, while simultaneously repressing cell cycle progression through the induction of the 

cell cycle inhibitor p21 (Radha, V. et al. 2008). 

It has been speculated that C3G could be involved in megakaryocytic differentiation 

(hereafter referred as MK differentiation) induced by TPO through interaction of the CrkL-C3G 

complex with Mpl receptor (Oda, A. et al. 1996, Stork, P.J. et al. 2005). The proposed TPO-

induced megakaryocytic differentiation model has two components; initially a Sos-1-Ras-

dependent transient ERK activation is required for the proliferation of MK progenitors, which 

is replaced later by a sustained activation of ERK dependent on Rap1 (Stork, P.J. et al. 2005). 

However, the Rap1-GEF involved in this process remains unknown.  

Nuclear functions of C3G 

The first evidence of a putative role of C3G in the nuclear compartment came from the 

observation that C3G is highly expressed in the nuclei of differentiated myotubes, suggesting 

that C3G could contribute to skeletal muscle differentiation, which involves the formation of 

multinucleated cells, by modulating specific nuclear functions (Sasi Kumar, K. et al. 2015). In 

addition, a recent study showed that C3G has functional NES (Nuclear Export Signal) and 

NLS (Nuclear Localization Signal) sequences located in the central domain, and that these 

sites, along with the N-terminal region, are responsible for the translocation of C3G into the 

nucleus, where C3G is associated with chromatin and nuclear matrix fractions (Shakyawar, 

D.K. et al. 2017). These authors suggest a role for C3G in the nuclear compartment, through 

the regulation of chromatin dynamics in response to physiological stimuli. 

Cell-cell junction assembly and disassembly 

There are two main types of junctions that mediate adhesion in epithelial cells, 

adherens junctions and focal adhesions. Adherens junctions facilitate cell-cell adhesion 

through hemophilic interactions between two E-cadherin molecules in adjacent cells. C3G 
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participates in the early stages of adherens junctions formation, through direct interaction 

between its N-terminal domain and the cytoplasmic tail of E-cadherin (Hogan, C. et al. 2004). 

Moreover, there is evidence of a c-Src-Crk-C3G-Rap1 signaling pathway, which regulates the 

formation of adherens junctions in keratinocytes (Fukuyama, T. et al. 2005). 

 C3G is also involved in the formation of focal adhesion complexes, submembrane 

structures that connect integrins to the actin cytoskeleton. Our group has described a role for 

C3G in the regulation of CML cell adhesion, through its interaction with p38 MAPK and focal 

adhesion proteins, such as Cbl, p130Cas, paxillin and FAK (Maia, V. et al. 2013). 

Filopodia formation 

C3G is required for c-Abl-induced filopodia formation during cell spreading on 

fibronectin. In epithelial cells, C3G expression induces the reorganization of the actin 

cytoskeleton and promotes filopodia formation by the activation of the Crk-C3G pathway 

(Radha, V. et al. 2007).  

Role in tumor growth 

Our group has described that overexpression of C3G blocks the focus-forming activity 

of co-transfected, activated, sis, ras, v-raf, dbl and R-ras oncogenes in NIH/3T3 cells 

(Guerrero, C. et al. 1998, Guerrero, C. et al. 2004). This transformation suppressor function 

of C3G is independent of its GEF activity, but dependent on its SH3-binding domain (Guerrero, 

C. et al. 2004). The mechanism of suppression involves PP2A-mediated inhibition of ERK 

phosphorylation, and the consequent reduction in cyclin A expression, resulting in loss of the 

anchorage-independent growth ability of the oncogenic cells (Guerrero, C. et al. 2004, Martin-

Encabo, S. et al. 2007). However, in v-Crk transformed cells, C3G, through its GEF activity, 

enhances growth rate and anchorage-independent growth via R-Ras and JNK (Tanaka, S. et 

al. 1997, Mochizuki, N. et al. 2000). 

In fact, the function of C3G in cancer is quite controversial as it can act as either a 

tumor suppressor or promoter. As a tumor suppressor, C3G expression was shown to be 

reduced in cervical squamous cell carcinoma (Okino, K. et al. 2006). In contrast, an increased 

C3G expression was found in human non-small-cell lung cancer (Hirata, T. et al. 2004). Crk-

C3G-Rap1 pathway, downstream RET, has also been implicated in the process of 

transformation produced in papillary thyroid carcinoma (De Falco, V. et al. 2007). The 

expression of p87C3G isoform in CML cells is also associated with the development of this 

type of cancer (Gutierrez-Berzal, J. et al. 2006). Recent data also suggest that C3G, acting 
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through Rap1, would promote invasion of epithelial ovarian cancer cells through increasing 

MMP2 and MMP9 secretion (Che, Y.L. et al. 2015). Finally, somatic demethylation of C3G 

intronic sequences, suggestive of C3G expression, is frequently found in colorectal, cervical 

and ovarian cancers (Samuelsson, J. et al. 2011). 

Cell survival and apoptosis 

C3G has been shown to modulate apoptosis in several cell types and in response to 

multiple stimuli. For example, C3G, independently of its GEF activity, interact with Hck and 

collaborates with this kinase in inducing apoptosis in primary hematopoietic cells (Shivakrupa, 

R. et al. 2003). In addition, a dual regulatory role for C3G in CML cells has been described; 

on one hand C3G modulates imatinib-induced apoptosis, via a Rap1-p38 MAPK-dependent 

pathway, and on the other hand, C3G induces ERK and Akt survival pathways, through Rap1-

independent mechanisms (Maia, V. et al. 2009). C3G also plays a dual role in regulating cell 

death in mouse embryonic fibroblasts (MEFs), depending on the stimuli. Thus, upon serum 

deprivation, C3G induces survival, but in response to oxidative stress, C3G acts as a pro-

apoptotic/anti-proliferative molecule. In both cases, C3G acts through the inhibition of p38α 

MAPK activity and in a Rap1-independent manner (Gutierrez-Uzquiza, A. et al. 2010). Finally, 

phosphorylation of C3G in Y504 by c-Abl is essential for the regulation of the apoptosis 

induced by oxidative stress in Cos-1 cells (Mitra, A. et al. 2010). 
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2. Hematopoiesis 

Hematopoiesis is the process by which the cellular components of the blood are 

formed. Primary sites of blood cell production change throughout the development of most 

vertebrates. In mice and humans, blood cells first emerge in the extraembryonic yolk sac, 

which generates transitory hematopoietic cell populations, such as primitive erythrocytes, 

megakaryocytes and macrophages. With the onset of the vascular system, the liver becomes 

the predominant site of blood cell production and the spleen and marrow also become 

producers. In both mice and humans, hematopoiesis in the bone marrow is maintained 

throughout adult life, being the main blood-forming organ. In adults, all hematopoietic blood 

lineages (erythroid, myeloid and lymphoid) are continuously produced from a pool of 

progenitors cells that derive from hematopoietic stem cells (HSCs) (Yoder, M.C. 2002, Kauts, 

M.L. et al. 2016). 

2.1. HSCs and models of the hematopoietic hierarchy 

HSCs undergo successive lineage commitment steps to generate mature blood cells. 

Each HSC is programmed to allow the efficient production of the cellular blood components 

and is defined by its pluripotentiality. The capacity of a single HSC to generate any type of 

mature hematopoietic cells is based on its ability to undergo asymmetric cell divisions; one of 

the daughter cells remains as a stem cell (self-renewal), to maintain the pool of immature 

HSCs in the bone marrow, while the other is committed to a specific lineage (Seita, J. et al. 

2010). 

In the classical model of hematopoiesis (Figure I-5), HSCs give rise to increasingly 

committed progenitors with a progressively decrease in their self-renewal capacity and a more 

restricted lineage potential. Initially, pluripotent HSCs commit to either myeloid or lymphoid 

lineages, called Common Myeloid Progenitors (CMP) and Common Lymphoid Progenitors 

(CLP), respectively. The first isolation of CLPs determined that these progenitors can develop 

T and B Lymphocyte and Natural Killer (NK) cells but not myeloid cells (Kondo, M. et al. 1997). 

In the same way, CMPs exclusively produce the granulocyte/macrophage (neutrophils, 

eosinophils, basophils and monocytes-macrophages) and the megakaryocyte/erythroid 

(platelets and erythrocytes) lineages (Akashi, K. et al. 2000). 
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Figure I-5. Classical model of hematopoiesis. The figure shows the development of the different blood 
cells, from HSC to mature cells, and the major cytokines that stimulate the development of the different 
lineages. Figure from (Kaushansky, K. 2006).   

However, this model has been changed with the study of the origin of the 

megakaryocyte precursors. In fact, the identification of the different precursors following the 

Multipotent Progenitors is very controversial. Recent studies suggest a new, non-classical, 

megakaryocytic differentiation model in which the megakaryocytes (MKs) can be generated 

from multiple pathways, some of which do not require transit through the megakaryocyte-

erythroid progenitor (MEP) stage (Figure I-6). According to this new model, there is 

heterogeneity within the HSC population, including a megakaryocytic-biased HSC that would 

give rise directly to MK progenitors, thus bypassing the intermediate MEP stage (Woolthuis, 

C.M. et al. 2016). 
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Figure I-6. Models of the hematopoietic hierarchy. A) Classical model with a strict separation between 
the myeloid and lymphoid lineages as the first step in lineage commitment downstream of the HSCs. B) 
Recently published model proposing an immediate committed progenitor with restricted megakaryocytic 
potential. LT-HSC (long-term-HSC), ST-HSC (short-term-HSC), MPP (multipotent progenitor), CMP 
(common myeloid progenitor), CLP (common lymphoid progenitor), MEP (megakaryocyte-erythrocyte 
progenitor), GMP (granulocyte-macrophage progenitor), MkP (megakaryocytic progenitor), EryP 
(erythroid progenitor) and LMPP (lymphoid-primed multipotent progenitor). Figure modified from 
(Woolthuis, C.M. et al. 2016). 

 

3. Megakaryopoiesis 

Megakaryopoiesis is the process by which mature megakaryocytes (MKs) develop 

from HSCs. This is a complex process that involves the commitment of HSCs to the 

megakaryocyte lineage, proliferation of progenitors, MK maturation and terminal 

differentiation to produce platelets (thrombopoiesis) (Yu, M. et al. 2012). Platelets are small 

anucleated cell fragments (1-3 µm of diameter) that, apart from their main role in hemostasis, 

participate in many other processes, such as angiogenesis, inflammation and innate immunity, 

among others (Blair, P. et al. 2009). Platelets are formed from the cytoplasm of MKs, large 

(50-100 µm), multilobulated and polyploid cells that are located in the bone marrow in a low 

proportion (0.01% of nucleated bone marrow cells).  

In response to cytokines and environmental factors, the bipotential MEP sequentially 

develops into the highly proliferative potential-colony-forming unit-megakaryocytes (HPP-
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CFU-MK), the burst-forming unit-megakaryocytes (BFU-MK) and the colony-forming unit-

megakaryocytes (CFU-MK), being CFU-MK the most differentiated MK progenitor and the first 

in the MK lineage that have been identified by its surface markers-based phenotype (Deutsch, 

V.R. et al. 2006, Szalai, G. et al. 2006). CFU-MKs then give rise to immature MKs or 

megakaryoblasts, which undergo endomitosis to increase in size and in DNA content. In 

addition to undergoing endomitosis, immature MKs increase their reservoir of granules and 

cytoskeletal proteins and form the Invaginated Membrane System (IMS), also known as 

Demarcation Membrane System o DMS (Behnke, O. 1968, Radley, J.M. et al. 1982). 

Megakaryoblasts are transition cells to mature MKs, which are polyploid and no longer 

proliferates. Mature MKs then begin the process of shedding their cytoplasm to produce 

platelets, which is a complex process that requires the formation of elongated structures called 

proplatelets. Platelet formation and release is a terminal process for mature MKs, which leads 

to their apoptosis and subsequent phagocytosis by macrophages (Radley, J.M. et al. 1983, 

Severin, S. et al. 2010). (Figure I-7). 

 

Figure I-7. Megakaryocyte differentiation and maturation, and platelet formation. The figure 
illustrates the development of mature MKs (megakaryopoiesis) and platelets (thrombopoiesis) from HSC. 
Associated surface markers are shown to indicate the MK stage at which they are expressed. Growth 
factors and cytokines involved in the process are depicted between each cell type. Figure modified from 
(Pendaries, C. et al. 2007). 

3.1. Cytokines involved in megakaryopoiesis and thrombopoiesis 

Megakaryocyte development and platelet formation are regulated at multiple levels by 

many different cytokines and environmental factors. Thrombopoietin (TPO) is produced in the 

liver, and is the main regulator of megakaryopoiesis and thrombopoiesis, modulating all 

stages of MK development, from HSC proliferation to cytoplasmic maturation. TPO alone 

through its receptor, c-Mpl, is able to increase MK size, ploidy and expression of lineage-

specific markers, such as glycoproteins GPIb and GPIIb/IIIa (Kaushansky, K. et al. 1994). 

Additionally, although in vitro TPO is sufficient to produce MK colonies from CFU-MKs, it has 
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been observed that in combination with other cytokines, such as IL-3, IL-11 and Stem Cell 

Factor (SCF), it is able to increase the size of the colonies (Kaushansky, K. et al. 1995). 

Furthermore, in vitro studies have shown that TPO increases the survival of hematopoietic 

progenitor cells (CD34+), especially in combination with IL-3 and SCF, suggesting the 

importance of TPO, not only in the MK lineage, but also in HSC proliferation and survival (Ku, 

H. et al. 1996). Despite the great effects that TPO seems to have on MK differentiation and 

maturation, it appears to have little effect during platelet release. 

Concerning other cytokines involved in this process, we focused our attention on SCF, 

IL-3, IL-6 and IL-11. IL-3 produces an additive effect to that of TPO and may play a role 

primarily as a proliferation factor, but does not participate in terminal differentiation into 

polyploid cells. On the other hand, SCF and IL-11 synergize with TPO to increase the number 

and maturation of megakaryocytes, although its main effect is on the proliferation of MKs 

progenitors (Broudy, V.C. et al. 1995). Finally, IL-6 stimulates the megakaryopoiesis, being 

important at the end of this process, modulating MK maturation and the increase in the number 

of platelets (Figure I-7).  

3.2. TPO-mediated signaling pathways implicated in MK differentiation 

and maturation 

The TPO receptor, c-Mpl, is a member of the hematopoietic cytokine receptor 

superfamily and is expressed on the surface of platelets, megakaryocytes and MK progenitors 

(Li, J. et al. 1999). The extracellular domain of c-Mpl is composed of two repeating modules, 

which form a dimer upon binding of TPO (Kaushansky, K. et al. 1995). c-Mpl has no intrinsic 

kinase activity, but is associated with the cytoplasmic tyrosine kinase, Janus kinase 2 (Jak2), 

so that TPO-mediated signaling is dependent on the activation of Jak2. The activation of Jak2 

occurs when the domains of the receptor dimerize, so that two Jak2 molecules are close 

enough to be activated by trans-autophosphorylation (Witthuhn, B.A. et al. 1993). The 

phosphorylation of Jak2 and c-Mpl result in the recruitment of a variety of adapter protein that 

contain SH2 domains, leading to the activation of several signaling pathway that regulate 

cellular proliferation and differentiation. The signaling pathways activated in response to TPO 

are JAK-STAT, mitogen-activated protein kinase (MAPK) and phosphoinositol-3-kinase 

(PI3K) pathways (Figure I-8). 
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Figure I-8. Signaling pathways induced by TPO through the c-Mpl receptor. TPO binds to its receptor 
(c-Mpl) and initiates the downstream signaling pathways including STAT, ERK and PI3K. Figure from 
(Severin, S. et al. 2010). 

Even though TPO is the most physiological signal promoting MK differentiation, it is 

well established that, in vitro, phorbol esters, such as PMA (phorbol 12-myristate 13-acetate), 

are able to mimic the physiological MK differentiation through activation of Protein Kinase C 

(PKC), as reported in the erythroleukemic cells lines K562 and HEL (Long, M.W. et al. 1990, 

Jacquel, A. et al. 2006, Conde, I. et al. 2010, Sardina, J.L. et al. 2010). 

3.2.1. MAPK signaling 

Multiple studies have demonstrated the importance of the TPO-induced MAPK/ERK1/2 

signaling in megakaryocytic differentiation. However, there is no functional evidence for a role 

of p38 MAPK in MK differentiation of primary bone marrow cells. In contrast, in cell lines p38 

MAPK seems to modulate differentiation, although the mechanism and significance are 

unclear. Similarly, the role of JNK in MK differentiation is poorly defined.  

MAPKs are a family of serine/threonine kinases that control the major cellular 

processes and contribute to proliferation, migration, differentiation and apoptosis. MAPKs 

comprise several subfamilies: extracellular signal-regulated kinases 1 and 2 (ERKs 1/2 or 

p44/p42), p38 MAPK (p38α, p38β, p38γ, p38δ) and c-Jun N-terminal kinases (JNKs) (Severin, 

S. et al. 2010). The members of the different MAPK subfamilies are regulated by upstream 
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dual kinases called MAPK kinases (MEKs and MKKs), which are capable of phosphorylating 

MAPKs in both threonine and tyrosine residues and exhibit relative specificity for each MAPK 

subfamily. The MEK/ERK pathway is preferentially activated by mitogens, such as serum or 

growth factors, whereas p38 and JNK pathways are mainly regulated by stress stimuli (Roux, 

P.P. et al. 2004).  

The strength and duration of MAPK activation plays an important role in the regulation 

of hematopoietic cell functions. Transient MAPK activation (minutes/hours) is sufficient for cell 

cycle progression and proliferation, whereas sustained activation (several days) is required 

during cell cycle arrest and differentiation (Marshall, C.J. 1995). 

In general, studies using ERK1/2 inhibitors have demonstrated a positive and negative 

role of ERK1/2 and p38 pathways, respectively, in the acquisition of MK surface markers, 

polyploidization, hematopoietic progenitors commitment, and even in MK migration and 

proplatelet formation (Miyazaki, R. et al. 2001, Mazharian, A. et al. 2009).  

MEK/ERK signaling pathway  

The Ras/Raf/MEK/ERK is a very conserved pathway that is involved in the control of 

several main cell processes, such as cell proliferation, survival, differentiation, motility and 

metabolism (Fernandez-Medarde, A. et al. 2011). The role of this pathway in MK 

differentiation was described in PMA-stimulated cell lines, and then confirmed in TPO-induced 

murine bone marrow MKs (Herrera, R. et al. 1998, Rojnuckarin, P. et al. 1999). 

Numerous evidences point to a positive role of ERK1/2 pathway in MK differentiation 

in K562 and HEL cell lines (Herrera, R. et al. 1998, Jacquel, A. et al. 2006, Conde, I. et al. 

2010, Sardina, J.L. et al. 2010). ERK1/2 is rapidly activated in response to PMA, which results 

in cell cycle arrest, increase in cell size and DNA content and increased adhesion. This is 

accompanied by an increased expression of cell surface markers associated with MK 

differentiation, such as CD41 (also called glycoprotein IIb, GPIIb or integrin αIIβ) and CD61 

(glycoprotein IIIa, GPIIIa or integrin β3), as well as a reduction of erythroid markers such as 

GPA (glycophorin A) (Long, M.W. et al. 1990, Herrera, R. et al. 1998, Sardina, J.L. et al. 2010). 

In agreement, the ERK inhibitor, PD98059, was found to block all these effects (Melemed, 

A.S. et al. 1997, Sardina, J.L. et al. 2010). Phospho-ERK1/2 levels are modulated by a 

NADPH oxidase-dependent ROS production, during MK differentiation (Sardina, J.L. et al. 

2010). Additionally, constitutive ERK expression has been shown to induce MK characteristics 

as does PMA (Whalen, A.M. et al. 1997). Therefore, sustained activation of the ERK pathway 

is required to initiate the MK differentiation program in K562 cell lines, while transient ERK 
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activation causes cell proliferation (Melemed, A.S. et al. 1997, Racke, F.K. et al. 1997, 

Whalen, A.M. et al. 1997, Herrera, R. et al. 1998, Uchida, M. et al. 2001). However, other 

authors have demonstrated, in PMA-stimulated K562 cells, that a sustained activation of ERK 

is not required for the expression of megakaryocytic markers and that ERK is not involved in 

endomitosis (Conde, I. et al. 2010), so the role of ERK in MK differentiation remains 

controversial. 

In contrast, in murine bone marrow MKs, treated with TPO, ERK1/2 is rapidly but 

transiently activated, with a decrease over 1-2h probably due to longer exposure to TPO 

(Rojnuckarin, P. et al. 1999). It has been reported that the Shc/SOS/Ras/Raf-1 signaling 

pathway is the responsible of the transient activation of ERK by TPO (Avruch, J. et al. 2001). 

However, subsequent sustained activation of ERK, which is necessary for proper MK 

differentiation, could be mediated by the Rap1-B-Raf signaling pathway (Garcia, J. et al. 2001, 

Geddis, A.E. 2010).  

p38 MAPK pathway 

The role of p38 MAPK in MK differentiation is not clear. Some studies suggest a 

negative role of p38 MAPK in MK differentiation, through the inhibition of the ERK pathway. 

In contrast, other authors have proposed a regulatory role of p38 MAPK in MK differentiation, 

depending on its levels. Thus, low doses of SB202190 (1-10 M), a p38 MAPK inhibitor, would 

favor the acquisition of MK surface markers in K562 cells stimulated with PMA. On the other 

hand, high SB202190 concentration (20-40 M) would result in inhibition of MK differentiation 

and induction of death cell (Jacquel, A. et al. 2006). Based on this data, downregulation of 

p38 activity could be important to stimulate the early expression of MK markers, whereas, a 

transient activation of p38 MAPK may induce cell cycle arrest and modulate the increase of 

DNA content (Conde, I. et al. 2010). On the other hand, p38 MAPK pathway is not involved in 

MK migration and proplatelet formation (Mazharian, A. et al. 2009). 

It has been reported that p38 and ERK can differentially regulate the same cellular 

events, in which p38 could negatively regulate ERK signaling under various stimulation 

conditions and in several cell types (Ding, B.C. et al. 2001, Li, S.P. et al. 2003, Liu, Q. et al. 

2004). Additionally, this antagonistic role of ERK and p38 MAPK was observed in platelet 

physiology (Mazharian, A. et al. 2005) and in K562 cells, where cyclin D1, which is involved 

in the acquisition of ploidy features, is up-regulated during PMA-induced MK differentiation via 

ERK pathway, (Lee, C.H. et al. 1999) presumably through a negative regulation of p38 

(Chang, Y.I. et al. 2010). 
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Additionally, it has been described that inhibition of ERK, together with the activation 

of p38 MAPK, promotes the acquisition of erythroid markers, suggestive of a positive role of 

p38 in erythroid differentiation (Miyazaki, R. et al. 2001, Uddin, S. et al. 2004, Moosavi, M.A. 

et al. 2007), which could be considered an antagonist process to that of MK differentiation. 

JNK pathway 

The implication of JNK signaling pathway in MK differentiation and maturation is less 

studied. Some reports have described a modest role of JNK in this process. In one study, full 

acquisition of MK phenotype induced by PMA in K562 cells required the activation of JNK, 

ERK and the inhibition of p38 MAPK (Jacquel, A. et al. 2006). Additionally, inhibition of JNK 

produced a significant increase in all MK markers, but had little effect on other MK features, 

such as cell morphology or cell size (Sardina, J.L. et al. 2010). These results would suggest 

that, as in the case of p38 MAPK, moderate levels of JNK may be required for the normal 

acquisition of MK markers in K562, but excessively high levels may have a negative effect on 

differentiation. 

3.2.2. Jak2/STAT signaling 

Signal transducer and activator of transcription (STAT) proteins are important signal 

regulatory proteins activated by TPO and other cytokines involved in megakaryopoiesis such 

as IL-6 or lL-11. Once TPO binds to its receptor, c-Mpl, Jak2 is activated and phosphorylates 

STAT3 and STAT5, which dimerize and translocate into the nucleus, where they act to 

promote gene transcription (Drachman, J.G. et al. 1997). Jak2 protein expression 

progressively increases along normal human megakaryopoiesis, where its levels regulate 

megakaryocytic proliferation versus differentiation (Besancenot, R. et al. 2014). STAT5 is 

required for the normal MK development, since STAT5-deficient mice showed reduced 

platelet production. This effect is probably due to impaired survival and proliferation of HSCs 

(Snow, J.W. et al. 2002). In contrast, STAT3 deficiency in mice showed no effect on the 

number of megakaryocytes and platelets, although a role in the early stages of 

megakaryopoiesis is not discarded (Kirito, K. et al. 2002).  

3.2.3. PI3K/Akt signaling 

TPO and PMA activate PI3K, which leads to the phosphorylation and activation of its 

effector, Akt. Activation of this pathway has been shown to be involved in the expression of 

MK markers CD41, CD61 and CD42b (GPIb) (Conde, I. et al. 2010). In addition, it modulates 

the expression of the cell cycle inhibitor p27, which is required for the cell cycle progression 

of MK progenitors leading to polyploidy, but its constitutive activation is not sufficient to drive 
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proliferation in the absence of TPO (Geddis, A.E. et al. 2001, Nakao, T. et al. 2008). Moreover, 

in primary murine megakaryocytes stimulated by TPO, activation of PI3K and PKC, 

specifically PKCζ, contributes to ERK phosphorylation through activation of MEK or Raf-1, 

suggesting a Shc-Ras-independent ERK activation, with an important role in 

megakaryopoiesis (Rojnuckarin, P. et al. 2001). Other studies have described a role for p-Akt 

in MK differentiation independently of PI3K, whose levels are modulated through ROS 

production by NADPH oxidases (Sardina, J.L. et al. 2010).  

3.3. Expression of glycoproteins during megakaryocyte differentiation 

and maturation 

Like all blood cells, MKs derive from HSCs and during differentiation into mature cells, 

they undergo changes in their cell surface markers. Through the use of flow cytometry 

techniques, it has been possible to identify the hierarchical relationship between different cell 

populations during hematopoiesis, since each population produced along hematopoiesis is 

associated with specific markers on the cell surface. 

Murine HSCs are highly enriched in a population of Lin-Sca1+c-Kit+ (LSK) cells (Ikuta, 

K. et al. 1992, Okada, S. et al. 1992). A subpopulation of HSC is the so called LT-HSC (Long-

term Hematopoietic Stem Cell). These cells can reconstitute a lethally irradiated animal and 

provide multilineage hematopoiesis for the lifetime of the animal. Through a process of 

asymmetric cell division, LT-HSC can self-renew, to maintain the stem cell pool, or 

differentiate into a second subpopulation defined as ST-HSC (Short-term HSC), which are 

only able to sustain hematopoiesis in the short term (see Figure I-6) (Uchida, N. et al. 1998). 

In mice, both populations, LT-HSC and ST-HSC are (LSK)CD34-Flt3- and (LSK)CD34+Flt3-, 

respectively, while in humans they are CD34+CD38-. ST-HSCs give rise to the multipotent 

progenitor (MPP), which is (LSK)CD34+Flt3+ (Yang, L. et al. 2005, Seita, J. et al. 2010). Then, 

MPP gives rise to the committed lymphoid progenitor (CLPs), which can form all cells of the 

lymphoid lineage, and the committed myeloid progenitor (CMP), which can differentiate into, 

either granulocyte/macrophage progenitors (GMPs), or megakaryocyte/erythroid progenitors 

(MEPs). These last progenitors have Lin-Sca1-cKit+CD34- cell surface marker phenotype 

(Akashi, K. et al. 2000). 

One of the hallmarks of the MK lineage is the presence of the surface markers CD41 

and CD61, two membrane glycoproteins that dimerize to form the integrin αIIbβ3. CD41 is 

present on about 3% of CD34+ cells and is enriched in megakaryoblasts. The expression of 

CD41 precedes the onset of CD42a (GPIX) and CD42b (GPIb); thus CD34+CD41+CD42- 

cells correspond to megakaryoblast, whereas CD34-CD41+CD42+ cells are 
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promegakaryocytes. Therefore, the expression of CD42 correlates with late differentiation 

stages. On the other hand, CD61 expression begins with the differentiation of MEP to 

megakaryoblast and finally, as cells mature, the expression of CD34 disappears (Debili, N. et 

al. 1992, Chang, Y. et al. 2007) (See Table I-1).  

Table I-1. Expression of the most relevant surface markers during the different stages of mouse 
megakaryopoiesis. 

 MEP Megakaryoblast Promegakaryocyte Megakaryocyte 

CD34 - -/+ - - 
CD41 ++ + + ++ 
CD42 - - -/+ + 
CD61 - + + ++ 
vWF - + + + 
PF4 - + + + 

Additionally, mature megakaryocytes and platelets express on their surface: CD51 

(integrin αV), platelet α-granules proteins, von Willebrand factor (vWF), platelet factor 4 (PF4), 

β-thromboglobulin (β-TG), fibrinogen, c-Mpl, coagulation factor VIII, and factor V (Tomer, A. 

2004). 

3.4. Endomitosis 

Megakaryocytic differentiation is characterized by the development of progressive 

polyploidy and accumulation of large nuclear mass and cytoplasmic volume, presumably to 

execute more functions than diploid cells. During differentiation, diploid megakaryoblasts lose 

their proliferation capacity and undergo repeated incomplete cell cycles, in which mitosis is 

aborted in late anaphase with failure of both karyokinesis (division of the nucleus) and 

cytokinesis (division of the cytoplasm to form two separate daughter cells). This process by 

which cells do no longer divide but continue increasing the DNA content, is called endomitosis 

(Geddis, A.E. et al. 2006). MK progenitors undergo a proliferative 2n stage, in which their 

progression through the cell cycle is identical to that of other cells. Then, megakaryoblasts 

undergo endomitosis and accumulate a DNA content of 4n, 8n, 16n, 32n and 64n in mouse, 

and even 128n in humans, in a single polylobulated nucleus before proceeding with their final 

maturation and subsequent proplatelet formation (Zimmet, J. et al. 2000). An important thing 

to keep in mind is the difference between endomitosis and endocycle (Figure I-9). 

Endomitosis involves entry in mitosis, progression through metaphase, chromosome 

condensation, spindle formation and initiation of chromatid separation, but anaphase is not 

completed, due to defects in karyokinesis/cytokinesis, resulting in a polyploid cell with a 

polylobulated nucleus (Lordier, L. et al. 2012). However, in the endocycle, polyploidy is 

produced as a result of aberrant regulation, since DNA synthesis is initiated multiple times, 
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without ending in mitosis (successive DNA synthesis and gap phases). Both endocycles and 

endomitosis lead to duplication of the genome (Sher, N. et al. 2013). Another feature of MK 

maturation is that the expression of CD41 and CD61 correlates directly with the increase in 

cell size and ploidy, being the mean diameter of normal human bone marrow cells 14 ± 2 µm, 

while in MKs it ranges between 21 ± 4 µm, in 2n cells, and 56 ± 8 µm in 64n cells (Tomer, A. 

2004).  

 

Figure I-9. Normal cell cycle, endocycle and endomitosis. Left: normal cell cycle responsible for cell 
proliferation, in which G1, S, G2 and M phases are well defined. Center: endocycle, in which mitosis is 
not produced, so the S phase is followed by the G phase. Right: endomitosis cycle, in which cells do not 
complete mitosis.  

Progression through normal cell cycle is controlled by cyclins, whose expression is 

subjected to periodic synthesis and destruction cycles, in synchrony with the specific cell cycle 

phase they regulate, resulting in the partner kinase activity being turned on and off (Bertoli, C. 

et al. 2013). The regulation of the cell cycle during MK differentiation is mainly mediated by 

the action of cyclin D3, which expression is increased during endomitosis, leading to 

polyploidization (Zimmet, J.M. et al. 1997, Ravid, K. et al. 2002). 

p21WAF1/Cip1, is a potent CDK inhibitor, which is upregulated during MK differentiation 

induced in hematopoietic cell lines with a megakaryocytic phenotype, such as CMK, UT-7, 

MEG-01, Dami and K562 (Kikuchi, J. et al. 1997, Matsumura, I. et al. 1997). The expression 

of p21 is an early event in MK differentiation and precedes polyploidization, suggesting its 

implication in this process (Kikuchi, J. et al. 1997). TPO-induced overexpression of p21, which 

is mediated by the STAT5 signaling pathway, was sufficient to induce MK differentiation in 

CMK cells (Matsumura, I. et al. 1997). Other report suggests that the complex p21-cyclinD3-

Cdk4 is crucial in the G1/S transition during the endomitotic cycle, acting when proliferation 

stops. In general, the role of p21 in normal MK differentiation leading to polyploidy is not 

critical, but it became crucial in conditions where the level of cyclin D3 is decreased (Raslova, 

H. et al. 2006). However, the expression of p21 needs to be transient to irreversibly inhibit 

mitosis but not DNA replication (Munoz-Alonso, M.J. et al. 2012).   
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3.5. Influence of the microenvironment on megakaryocyte maturation 

HSCs reside in complex and dynamic microenvironments known as niches. This 

microenvironment is composed of supportive cells, extracellular growth factors, metabolic 

components and matrix factors, which actively regulate stem cell functions and enable a 

sustainable and responsive HSC pool. Two physiologically distinct HSC niches have been 

described in the BM (Figure I-10): the osteoblastic or endosteal niche at the BM interface and 

the vascular niche around the specialized vascular endothelium (Kiel, M.J. et al. 2008). Most 

HSCs are perivascular and are preferentially located in the endosteal regions in the bone 

marrow, consisting of a complex network of stromal cells that are involved in the maintenance 

of HSCs. 

Megakaryopoiesis and thrombopoiesis occur within these niches, where the 

interactions between stem cells and the microenvironment are bidirectional; MKs require 

several cytokines that are present in the microenvironment, such as TPO and interleukins, 

whereas, MKs are able to maintain the quiescence and proliferation of HSCs under normal 

and injury conditions. In fact, osteoblast expansion and HSC engraftment after irradiation are 

promoted and regulated by TPO, and by the relocalization of MK to the endosteal surface 

proximal to this niche (Olson, T.S. et al. 2013). 
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Figure I-10. Bone marrow niches. Figure modified from (Psaila, B. et al. 2012). Osteoblastic niche. 
Osteoblasts and osteoclasts maintain the HSCs (dark blue) in a quiescence state by secretion of 
numerous factors such as calcium. Type I collagen, which is very abundant in this niche, inhibit proplatelet 
formation. Vascular niche. Fibronectin, vitronectin and Type III and IV collagens are found around blood 
vessels, which enhance MK development and function. CAR cell / MSC: mesenchymal cell. HPC: 
hematopoietic progenitor cell (light blue). 

3.5.1. Osteoblastic niche 

The majority of LT-HSCs are found near the endosteal niche of the bone, where they 

are in close contact with osteoblasts and osteoclasts. Osteoblasts secrete several growth 

factors required for HSC maintenance, including TPO and stromal-derived factor-1 (SDF1), 

while osteoclasts retain HSCs close to the endosteum by releasing Ca2+ and stem cell factor 

(SCF) (Psaila, B. et al. 2012). 

The dynamic interaction of MKs with the different component of the extracellular matrix 

in the endosteum regulates their differentiation, maturation and subsequent migration to the 

vascular niche before proplatelet formation and platelet release. The most abundant 

component of the osteoblastic niche is type I collagen, which binds to integrin α2β1 and GPVI 

of megakaryocytes (Zou, Z. et al. 2009). The interaction with integrin α2β1 activates a 

mechanism that negatively regulates proplatelet formation, presumably through the activation 
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of the Rho/ROCK signaling pathway (Sabri, S. et al. 2004), while type II and IV collagens, 

which are found around the bone marrow vessels, possibly support it (Balduini, A. et al. 2008). 

Additionally, using a co-culture model with osteoblasts, it has been demonstrated that cell-cell 

contacts promotes MK differentiation and inhibits MK maturation and proplatelet formation by 

a mechanism dependent on the interaction with Type I collagen (Pallotta, I. et al. 2009). 

3.5.2. Vascular niche 

The murine bone marrow is highly vascularized, with large central arteries branching 

into progressively smaller arterioles that eventually ramified to form venous sinusoids near the 

bone (osteoblastic niche). 

The vascular niche supports thrombopoiesis, during which mature and polyploid MKs, 

primary located near the bone marrow cells, produce proplatelets and release the platelets 

through the endothelium into the bloodstream. Several studies have implicated chemokine 

stromal cell-derived factor-1α (SDF1α) signaling, via its receptor CXCR4, in the migration of 

MK to the vascular niche. SDF1 is produced locally by stromal cells, creating an increase 

gradient that promotes the migration and contact of the MKs with the vascular niche (Hamada, 

T. et al. 1998).  

The vascular niche is composed by extracellular matrix proteins, such as type IV 

collagen, fibronectin, fibrinogen and von Willebrand factor. Interaction of the MKs with these 

components favor their migration to the vascular niche. In particular, integrin αIIbβ3, through 

outside-in signaling pathways, modulates proplatelet formation in response to fibrinogen 

(Larson, M.K. et al. 2006). 

3.6. Demarcation membrane system 

Following nuclear polyploidization, megakaryocytes undergo cytoplasmic maturation, 

consisting in the accumulation of granules, and a large quantity of protein and phospholipids, 

to create the demarcation membrane system (DMS, also called invaginated membrane 

system or IMS). The DMS is an extensive complex of cisternae and tubules distributed 

throughout the MK cytoplasm that is continuous with the plasma membrane of the cell, through 

which it is in contact with the external environment (Figure I-11) (Behnke, O. 1968, Nakao, K. 

et al. 1968). There is a great controversy about the events that give rise to DMS and the 

subsequent formation of platelets during thrombopoiesis. In the most accepted model, DMS 

would be formed by invagination of the plasma membrane to form long extensions that will 

form the future proplatelets. Therefore, DMS would acts as a reservoir for the plasma 
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membrane of future blood platelets and would partition at the edge of this structure to release 

the platelets (Radley, J.M. et al. 1982, Italiano, J.E., Jr. et al. 1999).  

 

Figure I-11. Demarcation membrane system in bone marrow MKs. A) TEM image of the DMS and 
perinuclear region (arrow) and the connection with the cell surface (arrowhead). B) 3-D reconstruction of 
the DMS (orange) in a bilobulated MK. Figure modified from (Eckly, A. et al. 2014). 

 

3.7. Platelet production 

Two models have been proposed to explain platelet formation from mature MKs: 

3.7.1. Proplatelet formation in the bone marrow 

During the initial stages of proplatelet formation, MKs remodel their cytoplasm into 

pseudopodia by a process based on microtubules. Then, the pseudopodia elongate into 

proplatelets, which form constrictions along their length, in a structure reminiscent of “beads 

on a string” (Italiano, J.E., Jr. et al. 1999). More recently, it has been observed that the MKs 

extend the proplatelets into the lumen of sinusoids, where they are segmented by the flowing 

blood and thereby produce proplatelets that subsequently fragment into individual platelets 

(Junt, T. et al. 2007). 

Dynamic reorganization of tubulin (specially β1-tubulin) in the cytoskeleton precedes, 

promotes and is essential for proplatelet formation, as it has been demonstrated using 

chemical inhibitors of polymerization and depolymerization (Italiano, J.E., Jr. et al. 1999). In 

addition, during proplatelet formation specific platelet membrane proteins, such as receptors, 

are synthetized and sent to the MK surface, while others are packaged into secretory granules, 

mainly α-granules (derived from the Golgi, which is close related to DMS formation) (Heijnen, 

H.F. et al. 1998). 
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Imaging studies supports this model: proplatelet production has been observed in vivo 

in sinusoidal blood vessels of the bone marrow (Junt, T. et al. 2007), and spontaneous 

proplatelet formation also occurs in vitro in MKs derived from murine fetal liver cells (Italiano, 

J.E., Jr. et al. 1999, Patel, S.R. et al. 2005) and in human MKs (Miyazaki, R. et al. 2000) 

(Figure I-12). 

The MEK/ERK1/2 pathway plays an important role in the regulation of MK 

differentiation, promoting polyploidization in the later stages of the process. However, there is 

no consensus on the implication of this pathway in proplatelet formation, since it has been 

published that the inhibition of ERK1/2, increases, decrease or has no effect on this process 

(Minamiguchi, H. et al. 2001, Rojnuckarin, P. et al. 2001, Jiang, F. et al. 2002). A more recent 

study with murine bone marrow and fetal liver cells argues that ERK1/2 MAPKs, but not p38 

MAPKs, play a role in proplatelet formation by the regulation of the phosphorylation state of 

microtubule-associated proteins, and subsequent organization of the microtubule networks 

(Mazharian, A. et al. 2009). Additionally, studies performed in human megakaryocytic cell lines 

demonstrated that activation of the MEK/ERK1/2 and PI3K pathways are required for 

proplatelet formation in vitro, through integrin β1 signaling (Kawaguchi, T. et al. 2012). 

 

Figure I-12.  Proplatelet images. A) Differential interference contrast images of proplatelets from mouse 
megakaryocytes, formed in vitro, indicating some of their features: tip, shafts, swellings and branch point. 
B) Immunofluorescence images of murine MKs grown in culture and labeled with β1–tubulin. Figure 
modified from (Patel, S.R. et al. 2005). 

3.7.2. Proplatelet formation in the lungs  

The presence of intravascular MKs in the lungs was first described by Aschoff in 1893 

and the idea that lungs could be a new site of platelet production first appeared in 1937, based 

on the fact that blood leaving the lungs contained more platelets and less MKs than blood 

entering the lungs (Howell, W.H. et al. 1937). Additionally, it was observed in humans that 

98% of MKs leaving the lungs were devoid of cytoplasm (Levine, R.F. et al. 1993), 

characteristic of post-platelet release MKs. Nowadays is accepted that MKs migrate from the 
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bone marrow to the lungs through circulation (Tavassoli, M. et al. 1981) and that they break 

up into platelets in the lung microvasculature.  

Since all the evidences that platelets are released from MK into the pulmonary 

capillaries were indirect, this concept was not universally accepted. This changed with a 

recent report (Lefrancais, E. et al. 2017), demonstrating in vivo by video microscopy the 

release of platelet from megakaryocytes in mouse lungs. Therefore, it is now clear that, in 

adult mice, functional hematopoietic precursors are able to migrate to the lungs and produce 

platelets. Furthermore, lung hematopoietic progenitors can migrate out of the lungs, 

repopulate the BM and reconstitute blood platelet counts, in a situation of thrombocytopenia.  

Additionally, this study demonstrated that the contribution of the lungs to platelet biogenesis 

is around 50% of total platelet production (10 million platelet/hour). 

3.8. Platelet release and terminal maturation 

Once the mature MKs are in the vascular niche and produce proplatelets, their 

cytoskeleton takes on a leading role, providing a mechanism for deriving platelets into the 

bloodstream (Machlus, K.R. et al. 2013). Proplatelets are highly dynamic structures that 

extend through a microtubule-based system, repeatedly bifurcate to increase the number of 

ends, and deliver packets of platelets at these ends (Italiano, J.E., Jr. et al. 1999). In vivo, 

proplatelets extend into the vascular sinusoids, where they are released and enter the 

bloodstream. A study using multiphoton intravital microscopy showed real-time proplatelet 

formation in the murine bone marrow (Junt, T. et al. 2007). In this experiment it was observed 

that blood flow helps to separate the proplatelet fragments from MKs.  

MKs release a heterogeneous proplatelet mixture into the blood, indicating that 

terminal platelet maturation can continue in the bloodstream. The presence of proplatelet-like 

structures in the blood could indicate that proplatelets are released as chains of platelet-sized 

particles called preplatelets (Schwertz, H. et al. 2010). Preplatelets are an intermediate stage 

in the platelet production. They have a diameter of 2-10 µm and can be reversibly converted 

into barbell-shaped proplatelets (Figure I-13). Preplatelets are able to mature into platelets 

both in vitro and, after transfusion in mice, in vivo, through an event in which the preplatelet 

split into two individual mature platelets (2 µm diameter) (Thon, J.N. et al. 2010).  
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Figure I-13. Preplatelet model. During barbell proplatelet formation dynamic and bidirectional assembly 
and reorganization of microtubule coils mediate platelet cytoskeleton arrangement. Barbell proplatelets 
reversibly convert into preplatelets. Platelets release from proplatelet ends after the final fission event. 
Figure modified from (Thon, J.N. et al. 2010).  
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 OBJECTIVES 

 

Our group had previously demonstrated that C3G modulates most platelet functions, 

including activation, aggregation and spreading, through a signaling pathway involving Rap1 

and PKC. Based on that, the overall scope of this work is to try to determine whether C3G is 

also involved in the differentiation processes that lead to platelet formation. To achieve this 

goal, the following specific objectives have been addressed: 

 

1. To study whether C3G regulates the expression of surface markers, as well as 

changes in morphology and ploidy status leading to MK differentiation in K562 and 

HEL cell lines 

 

2. To identify signaling pathways by which C3G regulates MK differentiation  

 

3. To analyze MK differentiation, maturation and proplatelet formation in vivo and ex vivo 

in mouse models with transgenic expression of C3G or its mutant C3GCat 
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 MATERIALS & METHODS 

1. Cell Line culture 

1.1. Cell lines 

In this work we have used the following cell lines, which grow in suspension: K562 

(Lozzio, C.B. et al. 1975) and HEL (Martin, P. et al. 1982). Both of them are derived from 

patients with different hematopoietic neoplasias (Table M-1). In addition, the adherent cell 

line, HEK-293T (Pear, W.S. et al. 1993) was used as a tool to produce lentiviral particles 

(Section 8.2). 

Table M-1. Cell lines used in this work, indicating their origin, the cell type and ATCC reference. 

Cell Line ATCC Ref. Organism Tissue Cell Type Disease 

K562 CCL-243 Human Bone Marrow Lymphoblast CML 

HEL TIB-180 Human Bone Marrow Erythroblast Erythroleukemia 

HEK-293T CRL-3216 Human Embryonic Kidney Epithelial -- 

1.2. Cell culture conditions 

‐ K562 and HEL cells were cultured in RPMI-1640 medium (Gibco) supplemented with 

10% Fetal Bovine Serum (FBS, Gibco), 2 mM Glutamine (Gibco), 100 U/ml Penicillin (Gibco) 

and 100 µg/ml Streptomycin (Gibco), at a density of 1 x 105 to 1 x 106 cells/ml, using 75-cm2 

culture flasks (40 ml). To change media, cells were centrifuged at 445 xg for 5 min, washed 

with PBS and resuspended in fresh complete RPMI medium. 

‐ HEK-293T cells were grown in DMEM medium (Sigma) containing 10% FBS, 2 mM 

Glutamine, 100 U/ml Penicillin and 100 µg/ml Streptomycin until confluence. Cells were 

dissociated by trypsinization with 0.25% Trypsin-EDTA (Gibco) and then reseeded into culture 

dishes. 

‐ All cell cultures were maintained at 37ºC in a humidified 5%CO2/95% air incubator. 

1.3. Freezing, cryopreservation and thawing of cells 

Cells were stored at -180ºC in freezing medium (complete media with 10% DMSO) 

into cryogenic storage vials. Cells suspensions were progressively frozen: at -80ºC for at least 

4h (decrease of 1ºC/min) and finally at -180ºC into a liquid nitrogen freezer.  

The cryogenic vials were quickly thawed in a 37ºC water bath and cells were placed in 

warmed complete media. 
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1.4. Differentiation of cell lines 

K562 and HEL cells are erythroleukemic cell lines that serve as a model to study the 

molecular mechanisms associated with megakaryocytic differentiation. K562 and HEL cells 

function as pluripotent hematopoietic precursors, expressing, in undifferentiated conditions 

markers for both erythroid and megakaryocytic lineages. To stimulate megakaryocytic or 

erythroid differentiation and study the signaling pathways that are involved in this process, 

cells were treated with PMA alone or in combination with the inhibitors shown in Table M-2.  

Table M-2. Reagents used in the treatment of cell lines, their concentrations and Suppliers. 

Name Description Final concentration Supplier and reference 

Phorbol 12-Myristate 13-
Acetate (PMA) 

Protein Kinase C 
(PKC) activator 

20 nM 
Sigma 

(P1585) 

U0126 (U0) MEK1/2 inhibitor 10 µM 
Selleckchem 

(S1102) 

SB203580 (SB) p38 MAPK inhibitor 10 µM 
Calbiochem 

(559389) 

Wortmannin (W) PI3K inhibitor 10 µM 
Calbiochem 

(681676) 
Bisindolylmaleimide I, 

hydrochloride (Bis) 
PKC inhibitor 10 µM 

Calbiochem 
(133052) 

Imatinib mesylate  
(STI-571) 

Tyrosine Kinase 
inhibitor 

0.5-2 µM 
Sigma 

(SML1027) 

 

Figure M-1. Squematic representation of the main targets of the activator (green) and inhibitors (red) 
used in this work. 

The signaling pathways involved in megakaryocytic differentiation were analyzed by 

Western Blot. Cells (~2 x 105 per/ml) were starved for at least 6h and then stimulated with 

PMA for 10 min in the presence of inhibitors of the different signaling pathways, that were 

added 1h before. After stimulation, cells were harvested and processed as indicated in 

Section 4 (Protein analysis by Western Blot). Figure M-1 represents the targets of the 

activator and the inhibitors used.  
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Expression analysis of megakaryocytic (CD41, CD61) or erythroid (Glycophorin A) 

surface markers was performed by flow cytometry. Cells were simultaneously incubated with 

the activator and inhibitors for 48h and then harvested and processed as described in Section 

9 (Analysis of cell surface markers by flow cytometry). 

2. Primary cell culture 

2.1. Mice 

The transgenic mice used for this work are C57BL/6-derived mice generated in our 

laboratory, in collaboration with the company GenOway (Lyon, France), as described 

previously (Gutierrez-Herrero, S. et al. 2012). In these transgenic mice, human full-length C3G 

and mutant C3GΔCat (mutant lacking the last 439 bp of the gene, affecting the catalytic 

domain) are expressed under the control of the PF4 (platelet factor 4) gene promoter, specific 

of platelets and megakaryocytes. For transgenic full-length C3G, lines 2C1 and 6A6 were 

used and for transgenic C3GΔCat, 8A3 line was used. All mice used in these studies were 8 

– 12 week-old. 

All animal surgeries were performed under Isoflurane anesthesia, and all efforts were 

made to minimize suffering. This study was carried out in strict accordance with the EU 

Directive 2010/63/EU for the protection of animals used for experimentation and other 

scientific purposes. 

2.2. Isolation of bone marrow cells from femurs and tibia of mice  

The femurs and tibias were removed after mouse euthanasia by cervical dislocation 

under anesthesia. Bone marrow was isolated by flushing with PBS using a 25-gauge needle. 

All bone marrow is considered to have been expelled when the color of the bones changes 

from red to white. Washed cells were resuspended in IMDM (Iscove´s Modified Dulbecco´s 

Medium, Gibco) supplemented with 10% FBS, 100 U/ml penicillin and 100 µg/ml streptomycin. 

Primary bone marrow cells (BMC) were maintained at 37ºC, 5% CO2/95% humidity in air 

incubator at a density of 1 x 106 cells/ml. The expected number of nucleated cells is detailed 

in Table M-3. 

Table M-3. Expected cell recovery from mice bones. 

Bones Flushed Number of nucleated cells 

1 femur 1 – 2 x 107 

1 tibia 0.6 – 1.2 x 107 
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2.3. Isolation of cells from the bone matrix 

After isolation of bone marrow cells (Section 2.2) the remaining bones were cut into 1 

mm pieces and incubated with 1 mg/ml collagenase type I (Sigma) and 1 mg/ml dispase type 

II (Sigma) at 37ºC for 2h under vigorous stirring. To remove small pieces of bone, the released 

cells were filtered using a cell strainer (70 µm nylon, Falcon). Then, cells were stained for 

CD41/CD61 (Section 9, Analysis of cell surface markers by flow cytometry).  

2.4. Red Blood Cell Lysis 

For some experiments, the erythrocytes were eliminated from the isolated bone 

marrow cells by incubation, for 2 min on ice, with 2 ml of Red Blood Cell (RBC) lysis buffer 

(155 mM NH4Cl, 10 mM KHCO3, 0.1 mM EDTA pH 7.4). Lysis is completed when the color of 

the pellet changes from red to white. Erythrocyte-free BMCs were incubated in complete 

IMDM. 

2.5. Megakaryocytic differentiation of bone marrow cells  

Freshly isolated BMCs were incubated with recombinant mouse thrombopoietin (TPO) 

alone or in combination with Stem Cell Factor (SCF), Interleukin-3 (IL-3), IL-11 and IL-6 (Table 

M-4) to induce the differentiation and production of mature megakaryocytes. After 6 - 8 days 

mature megakaryocytes were harvested to perform the experiments.  

Table M-4. Cytokines used for the differentiation of BMCs into megakaryocytes, indicating working 
concentration and Suppliers.  

Name Supplier and reference Final concentration 

Mouse TPO Miltenyi Biotec (130-094-083) 50 ng/ml 

Mouse SCF Miltenyi Biotec (130-094-079) 10 ng/ml 

Mouse IL-3 Invitrogen (PMC0034) 10 ng/ml 

Mouse IL-6 Miltenyi Biotec (130-094-065) 10 ng/ml 

Mouse IL-11 Miltenyi Biotec (130-093-950) 10 ng/ml 

 

2.6. Blood collection and serum preparation 

Blood from anesthetized mice was collected by cardiac puncture into a glass tube 

without anticoagulant and allowed to clot, first for 2h at 37ºC and then o/n at 4ºC. Serum was 

clarified by centrifugation at 2000 xg for 5 min and stored in small aliquots at -80ºC until use. 
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3. Determination of cell viability and cell counts 

To determine the concentration and viability of the cell suspensions, we used two 

different methods:  

3.1. Cell counting by Trypan blue exclusion 

Cell concentration and viability were quantified by staining with 0.4% Trypan Blue 

(Sigma) for 5 min and visual counting with a Neubauer Chamber (Marienfeld). Trypan blue is 

a permeable staining for dead cells; therefore, non-viable cells will be blue, and viable cells 

will be uncolored. The concentration was calculated with the following formula: 

Cells

ml
=

Number of Cells

Number of counted	Squares
 × Dilution Factor × 104	

3.2. Cell Counting by flow cytometry 

 For the cell counting by flow cytometry, we used the Muse® Count & Viability Kit 

(Merck Millipore). Cell suspension was stained with the Count & Viability reagent, containing 

two DNA binding dyes, for 5 min at RT. Samples were acquired with a Muse® Cytometer 

(Merck-Millipore), which generated the following data: i) Viable cell count (cells/ml), ii) 

Percentage of viability (%) and iii) Total cell count (cells/ml).  

4. Protein Analysis by Western Blot 

4.1. Protein sample preparation 

Cell lines were lysed under nondenaturing conditions using Cell Lysis Buffer from Cell 

Signaling Technology (10X, #9803), which composition (1X) is: 20 mM Tris-HCl pH 7.5, 150 

mM NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Triton X-100, 2.5 mM Sodium Pyrophosphate, 

1 mM Na3VO4, 1 mM β-glycerophosphate, 1 µg/ml Leupeptin. This buffer was supplemented 

with 25 µM NaF and 1 mM PMSF.  

Cultured cell lines were collected on ice, washed with cold PBS and resuspended in 

cold lysis buffer. Cells were maintained on ice for 30 min, shaking every 10 min. The lysates 

were cleared by centrifugation at 16000 xg for 10 min at 4ºC. Supernatant was transferred to 

a new tube and stored at -80ºC.  

Bone marrow cell cultures were harvested on ice, PBS washed, resuspended in cold 

RIPA buffer and maintained on ice for 20 min. Suspended cells were sonicated (in a Sonics 
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VibracellTM VCX750 Ultrasonic Cell Disrupter at 30% amplitude) by applying pulses of 5 

seconds, with 30 second on ice between each pulse, until the lysate was not viscous 

(generally about 3 pulses). Cell lysates were cleared by centrifugation at 16000 xg for 10 min 

at 4ºC and the supernatant stored at -80ºC. 

4.2. Protein quantification 

Protein concentrations were determined with a Bradford assay (Bradford, M.M. 1976). 

Briefly, 200 l of Bradford reagent (0.25 mg/ml Coomasie Brilliant Blue G-250, 25% Methanol, 

42.5% orthophosphoric acid) were added to 800 µl of an aqueous solution containing 1-2 l 

of lysate. After vortexing, the mixture was incubated for 5 min for color development from 

brown to blue and the absorbance was measured on a spectrophotometer at a wavelength of 

595 nm. Different known concentration of bovine serum albumin (BSA, 0 to 5 µg/µl) were used 

to create a standard curve by plotting the 595 nm values (y-axis) versus their concentration in 

µg/ml (x-axis). The unknown sample concentration was determined using this standard curve. 

4.3. Protein denaturation for SDS-PAGE 

Prior electrophoresis, proteins were denatured in Laemmli buffer (240 mM Tris-HCl pH 

6.8, 40% glycerol, 8% SDS, 0.04% Bromophenol Blue, 5% β-mercaptoethanol), by boiling at 

95-100ºC for 5 min. For determination of phospho-proteins, lysates were boiled immediately 

to prevent protein dephosphorylation.  

4.4. Western Blot 

4.4.1. Electrophoresis 

SDS-Polyacrylamide gel electrophoresis (SDS-PAGE) is used to separate proteins in 

an electric field based on their length and mass‐to‐charge ratio. Equal amount of denatured 

protein was loaded onto polyacrylamide gels. The concentration of polyacrylamide depends 

on the molecular weight of the protein of interest, being inversely proportional to the size of 

the protein (Table M-5).  Prestained protein standards (PageRulerTM Plus Prestained Protein 

Ladder, ThermoFisher) were used for the identification of the size of the proteins. The 

electrophoresis was performed in running buffer (25 mM Tris-HCl pH 8.3, 250 mM Glycine, 

0.1% SDS) at constant voltage. 
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Table M-5. SDS-PAGE gels composition. 

 Stacking 

Gel 

Separating Gel 

7.5% 10% 12.5% 

Upper Tris 4x (pH 6.8) 0.625 ml - - - 

Lower Tris 4x (pH 8.8) - 2.5 ml 2.5 ml 2.5 ml 

Acrilamide 30% / Bis 3.3% 0.29 ml 2.5 ml 3.325 ml 4.167 ml 

H2O 1.555 ml 5 ml 4.125 ml 3.325 ml 

Ammonium Persulphate (APS) 10% 25 μl 70 μl 70 μl 70 μl 

Temed 1.875 μl 5 μl 5 μl 5 μl 

 

4.4.2. Transfer of proteins to PVDF membranes 

After electrophoresis, proteins were transferred to methanol-pretreated Immobilon-P 

PVDF membranes (Merck Millipore) by wet transfer using Mini Trans-Blot® system (Bio-Rad). 

The transfer was performed in transfer buffer (66 mM Tris-HCl pH 8.3, 386 mM Glycine, 0.1% 

SDS, 20% methanol) at a constant amperage of 0.3 A for 3 hours. 

After transfer, membranes were incubated in blocking buffer (5% non-fat dry milk in 

TTBS [10 mM Tris pH 7.3, 150 mM NaCl, 0.5% Tween-20]) for 1h at RT to reduce non-specific 

protein binding. For determination of phospho-proteins, membranes were blocked with 5% 

BSA in TTBS.  

4.4.3. Immunodetection 

Membranes were incubated with primary antibodies in 2% BSA in TTBS for 1h at RT 

or o/n at 4ºC in rotation. After that, membranes were washed 3 times with TTBS (5 min/each) 

and incubated with secondary antibodies in 5% milk in TTBS for 1h at RT in rotation. Finally, 

they were washed 3 times with TTBS (5 min/each), prior detection. The dilution of the primary 

and secondary antibodies is specified in Table M-6. 

For the detection by chemiluminescence, membranes were incubated with HRP-

conjugated secondary antibodies, and proteins were detected using the reagents from the 

commercial kit, ClarityTM Western ECL Blotting Substrates (Bio-Rad) following the 

manufacturer´s instructions. For the detection by immunofluorescence, using Odyssey 

Infrared Imaging System (LI-COR), membranes were incubated with fluorochrome-

conjugated secondary antibodies. The primary and secondary antibodies are described in 

Table M-6. 
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Table M-6. Primary and secondary antibodies used in Western Blot 

Primary antibodies 

Antibody Target Host Supplier Molecular 
Weight 

Dilution 

C3G 
(C-19) 

C-terminus of human C3G Rabbit Santa Cruz 
(sc-869) 

121 kDa 1:1000 

C3G 
(H-300) 

N-terminus of human C3G Rabbit Santa Cruz 
(sc-15359) 

121 kDa 1:1000 

ERK 
(K-23) 

Subdomain XI of ERK Rabbit Santa Cruz 
(sc-94) 

44/42 kDa 1:1000 

p21 
Waf1/Cip1 

C-terminus of human p21 Rabbit Cell Signaling 
(2947) 

21 kDa 1:1000 

p38α 
(C-20) 

C-terminus of mouse p38α Rabbit Santa Cruz 
(sc-535) 

38 kDa 1:1000 

p-C3G 
(Tyr 504) 

Sequence containing Tyr 504 
phosphorylated human C3G 

Rabbit Santa Cruz  
(sc-12926) 

135 kDa 1:750 

p-C3G 
(Tyr 504) 

Sequence containing Tyr 504 
phosphorylated human C3G 

Mouse Santa Cruz 
(sc-365994) 

135 kDa 1:1000 

p-ERK  
(E-4) 

Sequence containing Tyr 204 
phosphorylated human ERK 

Mouse Santa Cruz 
(sc-7383) 

44/42 kDa 1:1000 

p-p38 Sequence containing Thr 180 
and Tyr 182 p-p38 

Rabbit Cell Signaling 
(9211) 

43 kDa 1:1000 

Rap1 Aa 1-184 human Rap1 Mouse BD Biosciences 
(610196) 

21 kDa 1:1000 

Rap1 
(121) 

C-terminus of human Rap1 Rabbit Santa Cruz 
(sc-65) 

21/24 kDa 1:1000 

β-tubulin β-tubulin Mouse Sigma 
(T 5293) 

50 kDa 1:1000 

α-globin 
(H-80) 

Amino acids 62-142 of human 
α-globin 

Rabbit Santa Cruz 
(sc-21005) 

16 kDa 1:1000 

Secondary Antibodies 

Antibody Target Host Detection Supplier Dilution 

Anti-Mouse 
IgG 

HRP-linked 

Anti-
Mouse 

Sheep Chemiluminescence 
GEHealthcare 

(NXA931) 
1:5000 

Anti-Rabbit 
IgG 

HRP-linked 

Anti-
Rabbit 

Goat Chemiluminescence 
Santa Cruz 
(sc-2004) 

1:10000 

Goat Anti-
Mouse IgG, 
Dylight 680 

Anti-
Mouse 

Goat Fluorescence 
ThermoFisher 

(35518) 
1:5000 

Goat Anti-
Mouse IgG, 
Dylight 800 

Anti-
Mouse 

Goat Fluorescence 
ThermoFisher 

(35521) 
1:5000 

Goat Anti-
Rabbit IgG, 
Dylight 680 

Anti-
Rabbit 

Goat Fluorescence 
ThermoFisher 

(35568) 
1:10000 

 

4.4.4. Membrane stripping  

To reuse the immunoblotted membranes, they were stripped by incubation in 62.5 mM 

Tris-HCl pH 6.8, 2% SDS, 0.74% β-mercaptoethanol, at 55ºC for 30-40 min, followed by 3 
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washes with TTBS. Thereafter, the membranes were blocked again prior to incubation with 

antibodies.  

4.4.5. Quantification  

Quantification of the Western Blot bands was performed by densitometry using the 

ImageJ software. Relative levels of protein were calculated using actin or tubulin levels as 

loading controls. 

5. DNA/RNA analysis 

5.1. Total RNA isolation 

Purification of total RNA was performed using RNeasy Mini Kit (Qiagen) following the 

manufacturer´s instructions. The size, concentration and quality of the isolated RNA were 

measured using a LabChip (Agilent). RNA was stored at -80ºC until use. 

5.2. cDNA synthesis 

cDNA synthesis was performed by a reverse transcription (RT) reaction according to 

the manufacturer´s specifications of SuperScriptTM III First-Strand Synthesis System 

(ThermoFisher). Essentially, 1.5 µg of RNA was denaturalized at 65ºC for 5 min in the 

presence 50 ng/µl of oligo(dT) and 1 mM of dNTP mix, and immediately put on ice. After a 

minute, a cDNA synthesis mix (1X RT buffer, 5 mM MgCl2, 10 mM DTT, 2 U/µl RNaseOUT 

Recombinant) was added to each sample, incubating for 2 min at 42ºC. Then, 200 U of 

SuperScript III RT was added to each tube and reaction was continued for an additional 50 

min to allow cDNA synthesis. The reaction was stopped by incubation at 70ºC for 15 min to 

inactivate the enzyme. Finally, the sample was treated with RNase H to degrade the RNA. 

The cDNA was stored at -80ºC. 

5.3. Semi-quantitative PCR 

The semi-quantitative PCR technique was used to evaluate the expression levels of 

C3G, p38 MAPK, CD61 and GPA genes, using the specific primers described in Table M-7. 

PCR was performed by mixing 2 µl of cDNA, 1X PCR buffer, 1.5 mM MgCl2; 200 µM dNTPs; 

0.03 units of BioTaqTM polymerase (Bioline) and 0.3 µM of each specific primers (forward and 

reverse).  
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Table M-7. Sequence of primers used in PCR and size of the generated amplicon. The primers used in 
qPCR are indicated with an asterisk. The nomenclature of the primers Ex3F-Ex5R and Ex22F-24R refers 
to the exons of C3G they amplify. 

Gene Forward Primer (5´-3´) Reverse Primer (5´-3´) Amplicon 

C3G Ex3F-
Ex5R* 

GCAACAGACAGATTTCTACCAG CTTCACTCCATCCAGCACA 446 bp 

C3G Ex22F-
Ex24R* 

GGCCTGGCCGAGTACT TGCTGGAAGCAGCGCATG 223 bp 

p38 GTGCCCGAGCGTTACCAGACC CTGTAAGCTTCTGACATTTC 293 bp 
GPA GGAATTCCAGCTCATGATCTCAGGATG TCCACATTTGGTTTGGTGAACAGATTC 497 bp 
CD61 TATAGCATTGGACGGAAGGC GACCTCATTGTTGAGGCAGG 372 bp 

GAPDH * TGCACCACCAACTGCTTAGC TCTTCTGGGTGGCAGTGATG 105 bp 
 

PCR results were verified by agarose gel electrophoresis in TAE buffer (1.6 M Tris, 8.8 

M sodium acetate and 40 mM EDTA), using the GeneRuler 1Kb DNA ladder (ThermoFisher) 

as a marker. 

5.4. Quantitative PCR 

The quantitative PCR (qPCR) allows to measure the amount of the product 

synthesized during each PCR cycle, which is proportional to the fluorescence signal and can 

be correlated with the amount of starting product (Woo, T.H. et al. 1998). qPCR was performed 

using the SYBR Green master mix (Biotool), by mixing 1 µl of cDNA, 1X SYBR Green and 0.4 

nM of each primer (forward and reverse). PCR reactions were performed in duplicate and the 

levels of gene expression were normalized against the housekeeping gene GAPDH.  

The data were analyzed using the 2-ΔΔCT method (Livak, K.J. et al. 2001); the CT values 

of the gene of interest and GAPDH control were provided by the real-time PCR equipment 

software (Bio-Rad iQ5). The CT is the cycle number at which the fluorescence signal of the 

amplification curve crosses the threshold, and is inversely correlated with the initial template 

concentration (Figure M-2). 

The data were analyzed using the next equation: 

2-ΔΔCT = 2 -(ΔCT gene - ΔCT GAPDH) =, where ΔCT gene is: 

ΔCT gene = CT gene in problem sample - CT gene in control sample 

and ΔCT GAPDH is: 

ΔCT GAPDH = CT GAPDH in problem sample - CT GAPDH in control sample 



 

47 
 

 MATERIALS & METHODS 

Therefore, 2-ΔΔCT represents the fold-change in expression of a given gene in the 

problem sample with respect to the control of sample. 

 

Figure M-2. Model of real time quantitative PCR plot. The threshold level and CT value of a hypothetical 
curve sample are indicated. 

6. General molecular biology techniques 

6.1. Recombinant DNA maintenance and production 

Recombinant plasmid DNA was maintained in the bacterial non-pathogenic strain of 

Escherichia coli, DH5α, easily transformable with high efficiency. Transformed bacteria 

(Section 6.5) were selected in LB agar plates (LB media supplemented with 15 g/l agar) or 

grown in liquid LB (5 g/l Tryptone, 5 g/l yeast extract and 5 g/l NaCl) or 2xYT media (16 g/l 

Tryptone, 10 g/l yeast extract and 5 g/l NaCl) with the antibiotic ampicillin (100 µg/ml). 

Plasmids were isolated from bacterial cultures using GeneJETTM Plasmid Miniprep and 

Maxiprep Kits (ThermoFisher) according to the manufacturer´s specifications. 

6.2. Oligos designed for gene silencing 

The shRNA oligonucleotides used to downregulate C3G and p38α MAPK expression 

were designed following the instruction indicated in the web site of GE Dharmacon  

(http://dharmacon.gelifesciences.com/) (Table M-8). 

Table M-8. ShRNAs used to downregulate C3G and p38 MAPK expression, their position in the 
sequence and the name of the corresponding constructs. 

Oligo Sequence (5´-3´)  Position Construct Name 

C3G #3 CGGAGGAACGACGACATTATA 
3178-3198 nt 

(C-T, RasGEF domain) 
pSuper-C3Gi3 

C3G #4 GCAAGGTGCTGGAGGCCAT 
467-485 nt  

(N-T, Cadherin Domain) 
pSuper-C3Gi4 

C3G #7 CCACTATGATCCCGACTAT 
1233-1251 nt 

(SH3b domain) 
pLVTHM-C3Gi7 

p38α GCACATGCCTACTTTGCTC 909-927 nt pSuper-p38αi 
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With these sequences two complementary oligonucleotides of 59-63 bp were designed 

with the structure: 

 

6.3. Annealing of shRNA oligos 

The two shRNA oligos were annealed by mixing 1 µM of each primer in annealing 

buffer (10 mM Tris pH 7.5, 50 mM NaCl, 1 mM EDTA). The mix was heated for 5 min at 95ºC 

and then cooled down gradually to 15ºC. The resulting double strand DNA was cloned into 

the proper vector (Sections 6.4 and 6.5). 

6.4. Digestion 

To perform the digestion, 0.2-1.5 µg of DNA was incubated with BglII and HindIII 

restriction enzymes, in the presence of the proper 1x buffer, for 2-4h at 37ºC. The products of 

digestion were confirmed by electrophoresis. 

After digestion, the vector was dephosphorylated by adding 1U FastAP 

Thermosensitive Alkaline Phosphatase (ThermoFisher), to prevent self-ligation.  

Digested and dephosphorylated DNAs were purified from gel using GeneJET Gel 

Extraction Kit (ThermoFisher) according to the manufacturer´s specifications. Ligation was 

performed by incubating the purified insert and vector (molar ratio of 3:1) with 1x ligase 

reaction buffer and 1 U T4 DNA ligase (ThermoFisher) in a final volume of 10 L, for 2h at RT. 

The ligation was transformed into E. coli DH5 competent bacteria. 

6.5. Transformation of competent DH5α cells by heat-shock method 

The ligated DNA was mixed with E. coli DH5α competent cells and maintained for 30 

min on ice. The mixture was then heated at 42ºC for 45 secs (heat-shock) and placed 

immediately on ice for 1 min. After the addition of 4 volumes of 2xYT medium, the cells were 

allowed to recover at 37ºC for 45-60 min at 250 rpm. Finally, the transformed cells were spread 

onto LB agar plates containing ampicillin and incubated o/n at 37ºC to allow colony growth. 
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6.6. Screening of colonies by PCR 

To identify bacterial colonies harboring the expected construct, we performed a 

screening by PCR. A small amount of the bacterial colony, used as template, was mixed with 

1x PCR Buffer, 2 mM MgCl2, 0.2 mM dNTPs, 0.1 µM each primer and 0.05 U/µl biotaq 

polymerase. The PCR conditions were: 94ºC, 30 secs; 51ºC, 45 secs and 72ºC, 45 secs/kb 

for 40 cycles. The results were confirmed by electrophoresis using agarose gels in TAE buffer. 

6.7. Sequencing 

When necessary, DNA constructs were sequenced using the ABI-3130 xl Genetic 

Analyzer (Applied Biosystems) in the Genomic Unit at CIC. 

7. DNA constructs   

Table M-9 summarizes the DNA constructs performed in this work.  

Table M-9. C3G DNA constructs used in this work. 

Vector Plasmid type DNA cloned Construct name 

pLTR2 Overexpression 

Full-length C3G 
ΔN 

SH3b 
RemCat 
ΔCat 

pLTR2-C3G 
pLTR2-ΔN 

pLTR2-SH3b 
pLTR2-RemCat 

pLTR2-ΔCat 

pSuper.gfp/neo shRNA 
shRNA C3G 
shRNA p38α 

pSuper-C3Gi 
pSuper-p38αi 

pSuper-C3Gi-p38αi 
CRISPR knock-out gRNA C3G CRISPR-C3G 
pLVTHM shRNA shRNA C3G pLVTHM-C3Gi 

pWpI.PGK.neo Overexpression Full-length C3G pWpI-C3Gi 
 

The vectors used are described below: 
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7.1. pLTR2  

pLTR2 is a mammalian expression vector highly efficient for overexpression based on 

resistance to xanthine, mycophenolic acid and HAT (Table M-12). It was used to clone full-

length C3G, as well as several mutants (Guerrero, C. et al. 1998). pLTR2 constructs used in 

this work are represented in Figure M-3. 

 

Figure M-3. Schematic representation of pLTR2 and pLTR2-C3G constructs. The structure of full-
length C3G and C3G mutants is shown, indicating the different modular domains. LTR: long terminal 
repeats; AmpR: ampicillin-resistance gene; gpt: gene encoding xanthine phosphoribosyltransferase, 
which confers resistance to xhantine, mycophenolic acid and HAT salts. 
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7.2. pSuper 

pSuper.GFP/neo constructs (hereafter referred as pSuper) were used to downregulate 

the expression of C3G and p38α MAPK in K562 cells. Figure M-4 summarizes the steps 

followed to clone the aligned oligos into the vector (see 6.2).  

 

Figure M-4.  Schematic representation of the cloning strategy of shRNA C3G #7 in pSuper.neo+GFP, 
indicating the sequence and structure of the annealed oligos. Cloning was confirmed by double EcoRI-
HindIII digestion. Inserts of 227 bp or 286 bp were observed for pSuper and pSuper-hC3Gi, respectively. 
AmpR: ampicillin resistance gene; Neo: neomycin resistance gene; ori: replication origin; EGFP: 
enhanced green fluorescence protein; H1 promoter: H1 RNA polymerase III promoter, which drives the 
expression of the shRNA. 
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7.3. pWpI 

pWpI.PGK.neo (hereafter referred as pWpI) is a lentiviral plasmid which was used to 

overexpress C3G in HEL cells. Full-length C3G was cloned by PCR with primers described in 

Table M-10. The cloning strategy, which includes the insertion of a PGK-neo cassette, is 

summarized in Figures M-5 and M-6. 

Table M-10. Primers used in the amplification of full-length C3G and PGK-neo cassette for their cloning 
into pWpI plasmid. Start and stop codons, as well as, PvuI and Pac1 restriction sites are indicated. 

Primer Sequence (5´-3´)  

PvuI-C3G 
GAG GAT CCG ATC GCC ATG TCC GGC AAG ATC GAG AAA 

                                      PvuI          Start 

PacI-C3G 
AGA CTA GTT AAT TAA CTA GGT CTT CTC TTC CCG GTC 

                                      PacI          Stop 

PacI-PGKneo 
AAA TTA ATT AAT TCT ACC GGG TAG GGG AGG 

                                     PacI            

PacI-PGKneo 
AA ATT AAT TAA TCA GAA CTC GTC AAG GCG 

                                     PacI         Stop 
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Figure M-5. Schematic representation of the strategy for cloning C3G into the pWpI lentiviral expression 
vector. AmpR: ampicillin resistance gene; ori: replication origin; EGFP: enhanced green fluorescence 
protein; SV40 NLS: nuclear localization sequence of SV40; LTR: long terminal repeats; RRE: Rev 
response elements; IRES: internal ribosome entry site; WPRE: Woodchuck hepatitis virus post-
transcriptional regulatory element. 

 

Figure M-6. Schematic representation of the cloning strategy of the PGK-neo cassette (PGK promoter + 
neomycin resistance gene) in the pWpI and pWpI-C3G vectors. Cloning was confirmed by NcoI digestion. 
Two different patterns of bands (6597 bp, 3263 bp, 1858 bp, 1234 bp, 316 bp) or (9855 bp, 3263 bp, 1234 
bp, 988 bp, 316 bp) were observed for pWpI-PGKneo and pWpI-C3G-PGKneo, respectively. AmpR: 
ampicillin resistance gene; Neo: neomycin resistance gene. 

7.4. pLVTHM 

pLVTHM is a lentiviral vector which was used to downregulate the expression of C3G 

in HEL cells. Figure M-7 summarizes the design followed to clone the shRNA oligo C3G #7 

into this vector (Table M-8). 
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Figure M-7. Schematic representation of the cloning strategy of the shRNA oligo C3G #7 into pLVTHM 
plasmid. Cloning was confirmed by double EcoRI-XbaI digestion The pattern of bands observed for 
pLVTHM-hC3Gi was 10592 bp and 558 bp. AmpR: ampicillin resistance gene; NeoR: neomycin 
resistance gene; ori: replication origin; EGFP: enhanced green fluorescence protein; SV40 NLS: nuclear 
localization sequence of SV40; RRE: Rev response elements; WPRE: Woodchuck hepatitis virus post-
transcriptional regulatory element. 
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7.5. CRISPR/Cas9 

The plasmids used to knock-out C3G in K562 cells by the CRISPR/Cas9 system are 

from Santa Cruz Biotechnologies. K562 cells were co-transfected by electroporation with 

CRISPR/Cas9 KO and HDR plasmids (Figure M-8). The CRISPR/Cas9 KO plasmid harbors 

3 guide sequences (gRNA) specific for C3G. The HDR plasmid contains sequences 5´arm 

and 3´arms that recognizes the target sequences (Table M-11). After the cells are transfected 

with the CRISPR and HDR plasmids, the sequences of Cas9 and the gRNAs are transcribed 

and form a complex capable of recognizing the target DNA. When gRNA-Cas9 complex binds 

to the target DNA, the Cas9 enzyme cleaves both DNA strands creating a Double-Strand 

Break (DSB) in the target DNA. Then, the DNA flanking the DSB is recognized by the 

homology arm sequences (5´arm and 3´arm) in the HDR plasmid, and the sequences of RFP 

(Red Fluorescent Protein) and puromycin resistance are inserted by homologous 

recombination. The insertion of the puromycin resistance and RFP fluorescence are the proofs 

of the successful gRNA-Cas9-induced DSBs. 

 

Figure M-8. CRISPR/Cas9 KO and HDR vector maps. The CRISPR system used 3 different gRNAs, 
(Table M-11) represented on the top, to increase the efficiency of the system. 

Table M-11. Commercial C3G gRNA sequences cloned in the CRISPR/Cas9 knock-out plasmids 

gRNA Name Sequence Recognition 

sc-401616A1 GGGCGCGACCTCTTCATCCG 863-882 nt (SH3b domain) 

sc-401616A2 TTATCAACCACCCGAATGCC 901-920 nt (SH3b domain) 

sc-401616A3 GCCTCGCCAACCTCATTCGC 563-582  (N-T, Cadherin domain) 
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8. Transfection of mammalian cells 

In this work we have used the following transfection techniques.  

8.1. Electroporation 

K562 cells were transfected with pLTR2, pSuper and CRISPR vectors by 

electroporation using Gene Pulser® Electroporation System with 0.4 cm electrode gap 

cuvettes (Bio-Rad). Exponentially growing cells (5-10 x 106) were collected and washed once 

with serum-free RPMI. Then, cells were resuspended in 400 µl of serum-free RPMI, place into 

the cuvette and mixed with 25 µg of plasmid DNA. Electroporation conditions were 260 V and 

950 µFa for 10-12 msec. After electroporation, 800 µl of warmed complete RPMI medium was 

added to the cuvette to allow cell recovery for 5 min. Finally, cell suspension was transferred 

to a 25 cm2 flask containing 10 ml of complete RPMI medium, and incubated under standard 

conditions for 48h prior to processing or addition of selection reagents (Section 8.3). 

8.2. Production and purification of lentiviral particles  

Lentiviral vectors are derived from the human immunodeficiency virus (HIV-1). To 

increase the safety during the handling of these viruses, the necessary components for their 

production are distributed in different plasmids. We have used a second generation lentiviral 

packaging system, whose components are: 

‐ Lentiviral transfer plasmid, encoding the insert (pWpI for cDNA and pLVTHM for 

shRNA, Figures M-5, M-6 and M-7). The transgenic sequence is flanked by LTR (Tat 

dependent) sequences, which facilitate integration of the cloned DNA into the host 

genome. The cloning was made as described in Section 7.3 and 7.4. 

‐ Packaging plasmid (psPAX2, Figure M-9). This plasmid contains the genes encoding 

for Gag (polyprotein of retroviral core), Pol (reverse transcriptase), Rev and Tat 

(regulatory proteins). 

‐ VSV-G envelope expressing plasmid (pMD2.G, Figure M-9). This plasmid contains 

the VSV-G gene (G glycoprotein, which facilitates the formation of the viral particles). 
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‐  

Figure M-9. Maps of pMD2.G and psPAX2 vectors indicating the packaging genes (HIV-1 gag and HIV-
1 pol) and envelope genes (VSV-G). AmpR: ampicillin resistance gene. CMV: cytomegalovirus. 

8.2.1. Transient transfection of HEK-293T cells 

The HEK-293T cell line is a highly transfectable derivative of HEK-293 cells, containing 

the SV40-T antigen, which makes them competent to replicate vectors carrying the SV40 

region of replication. So we used them to produce the lentiviral particles. For that, HEK-293T 

cells were simultaneously transfected with the 3 viral plasmids described above using a PEI 

(Polyethylenimine linear, Polysciences Inc.) transfection protocol. HEK-293T cells in complete 

DMEM medium were seeded on 100-mm culture dishes, coated with collagen (100 µg/ml Rat 

Tail Collagen, BD Sciences), until a confluence of ~100%. The transfection mix [1.2 ml NaCl 

(150 mM), 6 µg pLVTHM or pWpI, 6 µg psPAX2, 4.5 µg pMD2.G and 60 µl PEI (1 mg/ml, pH 

7)] was incubated for 20 min at RT, to promote the formation of the DNA:PEI complexes, and 

then added to the cultures. Then, the medium was replaced with fresh DMEM + transfection 

mixture, followed by incubation o/n at 37ºC. The next day (day 2), medium was replaced by 

fresh complete DMEM medium, which was maintained for a further 24 h. The efficiency of the 

transfection was verified by the fluorescence emitted by the GFP protein encoded by the 

Lentiviral transfer plasmid. 

8.2.2. Harvesting and concentration of lentivirus by ultracentrifugation 

The medium, containing the lentiviral particles, was collected into a 50 ml centrifuge 

tube 48h after transfection and stored at 4ºC. Fresh complete DMEM medium was added to 

the culture to continue producing lentiviral particles for an additional  ̴12h.  

On day 4, lentiviral particles were concentrated by ultracentrifugation at 20000 rpm for 

2h at 16ºC using an OptimaTM Le-80K Ultracentrifuge (Beckman). Then, the virus was 
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resuspended in 200 µl of serum-free DMEM for 4h at 4ºC and finally stored in small aliquots 

at -80ºC. 

8.2.3. Titration of infectious particles 

To titrate the above lentiviral suspensions, HEK-293T cells (~105) were infected with 

different amounts of viral suspensions (1-10 l from a 1:10 dilution) and the number of infected 

cells was quantified by flow cytometry. Incubation was performed in the presence of 8 µg/ml 

Polybrene (Hexadimethrine bromide, Sigma) to increase the efficiency of the infection. 

Additionally, the plate was centrifuged at 1000 xg for 90 min and 30ºC to promote the infection. 

Medium was refreshed after 24h. 

After 3 days of infection, GFP positive (GFP+) cells were analyzed by flow cytometry. 

The number of Transforming Units per ml (TU/ml) was calculated with the following formula: 

HEK െ 293T		
TU
ml

ൌ number	of	plated	cells	x	
%	GFP	cells/100		

amount	of	viral	suspension	ሺmlሻ
 

Percentages of GFP+ cells greater than 20% increase the probability of cells being 

infected by 2 viral particles, while below 5% cytometer measurement is not reliable. 

8.2.4. Infection of HEL cells 

The Multiplicity of Infection (MOI) is the ratio of the number of viral particles to the 

number of target cells, and it is dependent on the cell line. The MOI for HEL cells is between 

25-50, and the amount of viral suspension needed to obtain a percentage of GFP+ cells around 

100% is calculated with the following formula: 

Amount	of	virus	ሺμlሻ ൌ 	
Number	of	plated	cells	x	MOI

TU/ml
	x	1000 

HEL cells at, a density of 4 x 105 cells/ml, were starved (RPMI + 1% FBS) 16h before 

infection. Then, 8 x 104 cells were plated in 96 well plates in 1% FBS RPMI with the proper 

amount of viral particles in a final volume of 200 µl. The plate was centrifuged at 1000 xg for 

90 min at 30ºC and cultured under standard conditions until confluence.  

8.3. Selection of stable-transfected cells 

Transfection of a plasmid containing antibiotic resistance genes confers the cells the 

ability to grow in the presence of selective medium, such as Killer HAT medium or neomycin 

containing medium (Table M-12).  
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Table M-12. Plasmids used in transfection, indicating the method of transfection and the selective 
medium. 

Cell Line 
Method of 

Transfection Vector Selective medium 

K562 Electroporation 

pLTR2 

Killer Hat Solution (1:20): 

‐ 12,5 µg/ml Xanthine Sodium Salt 

‐ 1,25 µg/ml Mycophenolic acid 

‐ 0,05x HAT Solution (20 nM aminopterine, 

5 µM hypoxanthine and 0,8 µM thymidine) 

pSuper.gfp/neo 250 µg/ml neomycin (G418) 

CRISPR + HDR - 

HEL Lentivirus 
pLVTHM - 

pWpI 250 µg/ml neomycin (G418) 

 

Selection medium was added 48h post-transfection and refreshed every 2-3 days until 

all cells were resistant (typically 15 days). The appropriate concentration of the antibiotic was 

calculated by a kill curve, which determines the lowest antibiotic concentration at which all 

untransfected-cells are dead after a week.  

Cells transfected with the CRISPR/Cas9 plasmids or with the pLVTHM plasmid were 

selected by single-cell isolation and clonal expansion. Single cells, expressing GFP or RFP, 

were isolated by Fluorescence-Activated Cell Sorting (FACS) into 96 well/plates and 

expanded. Clones with the lower levels of C3G were selected by Western Blot and qPCR 

(Section 4 and 5, respectively). 

The proliferative capacity of single cell cultures was increased by adding a 1:1 mixture 

of fresh medium and conditioned medium from a culture of the same cell type. The conditioned 

medium provides growth factors and cytokines released from the cells in culture, which 

improves the growth of low density cultures. The concentration of the conditioned media was 

gradually reduced as the density of the culture increased. 

9. Analysis of cell surface markers by flow cytometry 

K562 or HEL cells, differentiated to megakaryocytes, as well as bone marrow cells, 

from the transgenic mice, were harvested by centrifugation at 445 xg, for 5 min and washed 

once with cold PBS. Then, 105 cells were resuspended in 100 µl of PBS and incubated with 

0.5-1 µg of fluorochrome-conjugated antibodies (Table M-13) for 20 min on ice and protected 

from light. After the incubation, the excess antibody was washed out with 500 µl of PBS, and 
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cells were resuspended in 200 µl of PBS for acquisition using FACSCaliburTM or BD AccuriTM 

cytometers. 

Table M-13. Fluorochrome-conjugated antibodies for flow cytometry 

Antibody Target Host Supplier 

FITC Anti-Human GPA 
Human CD235a  
(Glycophorin A) 

Mouse 
Immunostep 

(235AF-100T) 

PE Anti-Human GPA 
Human CD235a  
(Glycophorin A) 

Mouse 
Immunostep 

(235APE-100T) 

PE Anti-Human CD41 Human integrin αIIb Mouse 
Immunostep 
(41PE-100T) 

APC Anti-Human CD61 Human Integrin β3 Mouse 
Immunostep 
(61A-100T) 

APC Anti-Mouse CD41 Mouse Integrin αIIb Rat 
eBioscience 
(17-0411) 

FITC Anti-Mouse CD41  Mouse Integrin αIIb  Rat 
BD Pharmigen 

(553848) 

PE Anti-Mouse CD41  Mouse Integrin αIIb  Rat 
BD Pharmigen 

(558040) 

PE Anti-Mouse/Rat CD61 Mouse/Rat Integrin β3 
Armenian 
Hamster 

eBioscience 
(12-0611) 

 

10. Analysis of DNA ploidy by flow cytometry 

After 6-10 days of differentiation, cultures of cell lines and bone marrow cells were 

harvested, washed and fixed with 70% ethanol. The cells were resuspended in 50 µl of PBS, 

and 100 µl EtOH was slowly added dropwise to the cell suspension, while vortexing to avoid 

aggregates. The fixed cell suspension was stored at 4ºC o/n prior the staining. Then, cells 

were washed twice with PBS by centrifuging at 200-500 xg for 10 min at 4ºC. Washed cells 

were stained with fluorochrome-conjugated CD41 antibody (primary cells only), as described 

in Section 9, and subsequently incubated with a mixture of 100 µg/ml RNase (Promega) and 

50 µg/ml Propidium Iodide (PI, Sigma) in PBS for at least 40 min at RT in the dark. The ploidy 

distribution of the CD41+ populations was determined using a BD AccuriTM cytometer.  

For the analysis, we first gated the CD41+ cell population. Cell doublets were excluded 

based on pulse-width vs pulse-area. These gates (CD41+ and single cells) were combined 

and the PI histogram plot (Cell count vs PI intensities) applied. The histogram plot is composed 

of several peaks (Figure M-10), where each peak represents a population of CD41+ single 

cells having equal DNA content. The first peak corresponds to the population of diploid cells, 

the second correspond to tetraploid cells, and so up to the seventh peak (128n). 
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Figure M-10. Representative flow cytometry plots showing polyploid cells. A) PI-Area vs Width plot 
with a gate that represents the single cell populations B) Representative dot plot, FSC-A vs PI, that reflects 
the cell size and the DNA content. Note that cell size increases with increasing ploidy. C) Representative 
histogram plot of ploidy distribution, where each peak represents a population. This is an ideal plot in 
which all 7 possible populations (2n, 4n, 8n, 16, 32n, 64n and 128n) are identified.  

 

11. Immunofluorescence 

Cells were seeded at a concentration of 2 x 106 cell/ml onto 6 cm plates containing 

glass coverslips pre-coated with 5 µg/ml of fibronectin (Sigma). Cells were incubated with 

serum-free media for 48h, which allowed for enhanced cell attachment, and then the 

coverslips were washed with PBS to remove excess medium, and fixed with 3.7% 

paraformaldehyde (PFA, Sigma) for 15 min. The fixed cells were washed twice with PBS, 

permeabilized with 0.1% TritonTM X-100 (Sigma), and washed again with PBS. Coverslips 

were blocked with 2% BSA for 1h, incubated with primary antibodies for 1h, washed three 

times with PBS, and incubated with secondary antibodies for 1h, each step at room 

temperature. Nuclei were stained with DAPI for 10 min. After staining, coverslips were washed 

three times with PBS and once with H2O, and finally were mounted with Mowiol® 

(Calbiochem). All antibodies used for immunofluorescence are described in Table M-14. 

Images were obtained at the same exposure time with a Leica TCS SP5 confocal microscope 

and pictures were processed using LSM Image Browser, ImageJ Software and ZEN lite 

Imaging Software. 
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Table M-14. Primary and secondary antibodies used for immunofluorescence 

Primary Antibodies 

Antibody Target Host Supplier Dilution 

C3G 1008 
SH3b-RemCat domains 

from human C3G 
Rabbit 

C.Guerrero  
et al, 1998 

1:50 

GST (B-14) Specific domain of GST Mouse 
Santa Cruz 

(sc-138) 
1:30 

Phospho-C3G 
(Tyr 504) 

Fragment containing 
phosphorylated Tyr 504 

from hC3G   
Rabbit 

Santa Cruz 
(sc-12926) 

1:50 

Rap1 (121) 
C-terminus of human 

Rap1 
Rabbit 

Santa Cruz  
(sc-65) 

1:30 

Secondary Fluorochrome-conjugated Antibodies 

Antibody Target Host Supplier Dilution 

Cy3-AffinityPure IgG (H+L) Mouse Goat 
Jackson 

immunoresearch 
(115-165-146) 

1:100 

Cy3-AffinityPure IgG (H+L) Rabbit Goat 
Jackson 

immunoresearch 
(111-165-144) 

1:100 

Cy5-AffinityPure IgG (H+L) Mouse Goat 
Jackson 

immunoresearch 
(115-175-146) 

1:100 

Cy5-AffinityPure IgG (H+L) Rabbit Goat 
Jackson 

immunoresearch 
(111-175-144) 

1:100 

 

12. Rap1 pull-down activity assay 

To analyze the activation state of Rap1 we performed a pull-down assay based on the 

specific interaction between the active, GTP-bound, Rap1 form and the Rap-binding domain 

(RBD) of its target RalGDS fused to GST (glutathione S-transferase). The complexes are 

recovered by incubation with glutathione-Sepharose beads, with high affinity for GST.  

12.1. Binding of GST-RalGDS-RBD to Glutathione-Sepharose beads 

The first step of this assay was the pre-incubation of 20 µg of purified GST-RalGDS-

RBD (a gift from Jose Maria de Pereda) with Glutathione-Sepharose 4 fast flow (GE 

Healthcare) in PBST buffer (2 mM EDTA, 0.1% β-mercaptoethanol, 0.2 mM PMSF in PBS) 

for 1-2h at 4ºC in rotation. After incubation, beads were washed 4 times with PBST, 

resuspended in MLB 1x (25 mM HEPES pH 7.5, 150 mM NaCl, 1% Igepal CA-630, 10 mM 

MgCl2, 1 mM EDTA, 2% Glycerol, 0.4 µg/ml Leupeptin, 1 mM PMSF, 25 mM NaF, 1 mM 

Na3VO4) and kept on ice. All centrifugations with the beads were made at 300 xg and at 4ºC. 
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12.2. Cell lysis and pull-down  

Confluent K562 cells (~4 x 106) were serum-deprived o/n. Starved cells were 

stimulated with PMA for 1-5 min to induce the activation of Rap1. Then, cells were collected, 

washed with PBS and lysed with 500 µl of 1x MLB by keeping them 10 min on ice. 0.5-1 mg 

of total cell lysate was incubated with GST-RalGDS-RBD bound beads (see above) for 30 min 

at 4ºC with gentle rotation. After incubation, the Beads-GST-RalGDS-RBD-Rap1-GTP 

complexes were washed twice with 1x MLB by centrifugation and then boiled with Laemmli 

buffer 2x to denature and separate the proteins from the beads. 

12.3. Detection of Rap1-GTP 

 Samples were separated by 12.5% SDS-PAGE and activated Rap1-GTP was 

detected by Western Blot using an anti-Rap1 antibody (Section 4.4). 

13. Rap1 activity assay by immunofluorescence 

Cells were seeded at a concentration of 1 x 106 cell/ml (4 ml) onto 6 cm plates 

containing glass coverslips. Cells were incubated with serum-free media o/n at 37ºC, to allow 

cell attachment. Next day, cells were treated with 20 nM PMA at indicated times and then cells 

were fixed adding 4 ml of 8% paraformaldehyde (PFA, Sigma) for 15 min. Fixed cells were 

washed twice with PBS, permeabilized with 0.2% TritonTM X-100 (Sigma) in PBS containing 

1% BSA for 5 min, and washed again with PBS. Coverslips were incubated with 0.3 mg/ml 

GST-RalGDS-RBD purified protein for 45 min, washed three times with PBS and incubated 

with primary antibodies for 1h (Table M-14). Then, cells were washed three times with PBS, 

and incubated with secondary antibodies for 1h (Table M-14), each step at room temperature. 

Nuclei were stained with DAPI for 10 min. After staining, coverslips were washed three times 

with PBS and once with H2O, and finally were mounted with Mowiol® (Calbiochem). Two 

negative controls were performed as follows: (1) without the GST-RalGDS-RBD protein, as 

control of the specificity of the anti-GST primary antibody; (2) without anti-GST primary 

antibody, to detect any non-specific staining by the secondary antibody. Images were obtained 

at the same exposure time with a Leica TCS SP5 confocal microscope and pictures were 

processed using LSM Image Browser and ImageJ.  

14. Bone marrow explants 

The bone marrow explants are used to evaluate the formation of proplatelets.  In this 

model, the environment and the interaction with the matrix are preserved in a more 
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physiological context. Small pieces of fresh bone marrow (explants) are maintained in a 

physiological buffer and monitored for 6h by time-lapse microscopy. After 30 min, 

megakaryocytes, which are visible at the periphery of the explants, begin to change their 

morphology, from round cells to cells with long extensions called proplatelets.  

Mouse euthanasia and femur and tibia harvesting were performed as described in 

Sections 2.1 and 2.2. Once the bones were completely clean, the marrow was obtained intact 

by flushing it into a tube with Tyrode´s buffer (134 mM NaCl, 0.34 mM NaHPO4, 2.9 mM KCl, 

12 mM NaHCO3, 20 mM HEPES, 5 mM Glucose, 0.35% Albumin, 1 mM MgCl2, 2 mM CaCl2 

and 10 U/ml Penicillin/Streptomicin) using a 21-gauge needle (Behnke, O. 1968). The marrow 

was cut into 0.5-1 mm thick transverse sections with a surgical blade, under a binocular 

microscope. The explants were placed in an incubation chamber (µ-Slide 8 well IbiTreat, Ibidi) 

with Tyrode´s buffer containing 5% mouse serum (Section 2.6) and were maintained at 37ºC 

for 6h. Megakaryocytes at the periphery of the explant were monitored under an inverted 

microscope (Nikon Eclipse TE2000-E) coupled to a video camera (Hamamatsu Orca-er) and 

processed using Metamorph® software.  

14.1. Quantification of Proplatelet-forming cells  

To better identify the megakaryocytes in the periphery of the explant, anti-mouse 

CD41-APC antibody (eBiosciences) was added to the Tyrode´s buffer prior to placing the 

explants in the incubation chamber. Megakaryocytes were quantified using ImageJ. 

Megakaryocytes were classified according to the morphology: i) spherical megakaryocytes, ii) 

megakaryocytes with protrusion and iii) megakaryocytes with proplatelets. 

14.2. Time-course acquisition 

The images were sequentially acquired at 10 min intervals for 6h and then mounted 

and processed using ImageJ software. The video was used to determine the velocity and the 

mobility of each megakaryocyte from the explant, using ImageJ software. 

15. Platelet counts in peripheral blood 

Peripheral blood samples were collected from the submandibular plexus of 6-months-

old mice into 1.6 mg/ml EDTA-containing tubes (Sarstedt). Platelet count was determined from 

30 µl EDTA-anticoagulated blood using a hemocytometer (Hemavet Counter HV950FS).  
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16. Statistical Analysis 

Data have been represented as the mean ± SEM (Standard Error of the Mean) or the 

median ± SEM values of at least 3 independent experiments from each genotype. The 

Kolmogorov-Smirnov test was performed to determine if the data fit into a normal distribution. 

To compare between two experimental groups, unpaired Student´s t-test was computed, when 

the data were normally distributed. The Mann Whitney´s U-test was computed as a non-

parametric procedure when our data were not normally distributed.  

In fluorescence measurements in cell lines cultures, due to high variability in 

fluorescence intensities between independent experiments, the data were normalized against 

the control values.  To calculate the significance between the different experimental 

conditions, a two-way ANOVA test was performed. Then, Holm-Sidak post-hoc pairwise 

analysis was calculated to determine the significant differences in groups two to two. 

17. Software Programs 

17.1. Plasmid design 

‐ Serial Cloner 

‐ SnapGene Viewer 

17.2. Imaging 

‐ ImageJ Software 

‐ LSM Image Browser 

‐ Metamorph® Software 

‐ ZEN lite 2.3 SP1 Digital Imaging Software 

17.3. Cytometry 

‐ FlowJo 

‐ BD Accuri C6 Software 

‐ Muse Software 

17.4. Graphs and statistics 

‐ Excel 

‐ SigmaPlot 
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1. Analysis of the implication of C3G in megakaryocytic 

differentiation using transgenic cell lines 

The most widely used cellular models for studying megakaryocytic differentiation are 

the hematopoietic cell lines, K562 and HEL. As mentioned in the Introduction, K562 cell line 

behaves as a pluripotent hematopoietic precursor that expresses, under undifferentiated 

conditions, markers for both erythroid and megakaryocytic lineages. These cells could 

differentiate into one lineage or another depending on the stimulus. Thus, TPO or phorbol 

esters, such as PMA, induce MK differentiation, whereas Imatinib induces erythroid 

differentiation. PMA-induced differentiation is accompanied by changes in cell morphology, 

cell growth arrest, endomitosis and acquisition of specific megakaryocyte markers, in part 

mimicking the physiological process that takes place in the bone marrow.  

The first evidence of the implication of C3G in MK differentiation was the observation 

of a high proportion of K562 cells, stably transfected with the plasmids pLTR2-C3G and 

pSuper.GFP/neo and thus overexpressing high levels of C3G and GFP, with an aberrant 

morphology. K562 cells are non-adherent, rounded and small blasts, whereas some of the 

cells overexpressing C3G were larger, vacuolated and with several extensions in the 

membrane, features which resemble that of megakaryocytes (Figure R-1). 

K562 pLTR2-C3G/pSuper.GFP/neo 

      

Figure R-1. Representative images of K562 cells transfected with the plasmids pLTR2-C3G and 
pSuper.GFP/neo. pSuper.GFP/neo harbors a gene encoding for the Green Fluorescence Protein (GFP). 
The arrows indicate cells with megakaryocyte-like features: large vacuolated cells and cells with long 
extensions. Left image: Differential Interference Contrast Microscopy (DIC). Right image: Fluorescence 
microscopy. 

As mentioned before, PMA is a good inducer of MK differentiation in our two cellular 

models, K562 and HEL cells. Therefore, we analyzed whether C3G expression was increased 

along the PMA-induced MK differentiation in non-transfected K562 and HEL cells. For this 
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purpose, cells were cultured in the presence of 20 nM PMA for 3 days and harvested every 

24 hours to determine C3G levels by Western Blot. Figure R-2A shows a clear increase in 

C3G protein levels over time in HEL cells, that correlates with the acquisition of a 

megakaryocytic morphology (Figure R-2B), indicating that C3G might be involved in this 

process. Although to a lesser extent, C3G levels also increased in PMA-treated K562 cells.  

 

Figure R-2. Analysis of C3G expression in K562 and HEL cells. K562 and HEL cells were stimulated 
with 20 nM PMA for 3 days. A) The cultures were harvested at the indicated times and the expression of 
C3G was determined by Western blot. Tubulin was used as loading control. Relative C3G/Tubulin ratios 
are shown. All values are relative to non-treated cells. B) Representative images showing the morphology 
of HEL cells after 24, 48 and 72 hours of PMA treatment. Images were obtained using a Zeiss Axiovert 
135 inverted microscope. 

1. Establishment of transgenic, knock-down and knock-out C3G cell 

lines 

In order to deep inside the involvement of C3G in the differentiation process, we 

generated stable cell lines with modified C3G expression. C3G overexpression or 

downregulation was confirmed in all clones prior their characterization. 

1.1.1. C3G expression models in K562 cells 

K562 cells were transfected by electroporation with plasmid pLTR2-C3G to 

overexpress C3G or with pSuper-C3Gi to silence it. After electroporation, the transgenic 

clones were selected by resistance to Killer Hat medium or G418 antibody respectively, as 

detailed in Materials and Methods (Figure R-3A).  The expression of C3G was measured by 

RT-PCR and Western Blot, using specific oligonucleotides and antibodies. As shown in 

Figure R-3B C3G expression was increased by 11-fold in pLTR2-C3G-expressing cells, 

compared to cells expressing empty pLTR2 vector (pLTR2-CT). Similarly, Figure R-3C 

showed a 2-fold decrease in C3G expression in the pSuper-C3Gi clone, compared to its 

control (pSuper-CT).  
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Figure R-3. Analysis of the expression of C3G in K562 transgenic cell lines. A) Temporal scheme of 
electroporation and subsequent selection of stable clones. B) Left panel: Representative semiquantitative 
RT-PCR analysis of C3G mRNA expression in K562 cells transfected with pLTR2-CT and pLTR2-C3G, 
using primers Ex3F-Ex5R and normalized against GAPDH. Right panel: Representative Western Blot 
showing C3G expression detected with anti C3G H-300 antibody. C) Expression of C3G in K562 cells 
transfected with pSuper-C3Gi or empty pSuper-CT plasmids. The histograms show the relative mRNA 
expression of C3G measured by qPCR. The right panel is a representative Western Blot showing the 
expression of C3G with anti-C3G H-300 antibody. The expression of tubulin was used as loading control 
in the Western Blots. Relative C3G/Tubulin ratios are shown. Values are relative to non-transfected cells. 

Additionally, the expression of C3G in K562 cells was downregulated using the 

CRISPR/Cas9 system. In this case, the transfected cells were selected by single-cell isolation 

and clonal expansion. Once the clonal populations were established, a total of 3 clones for 

each genotype were selected to analyze C3G expression. The efficacy in C3G ablation was 

analyzed by qPCR using the oligonucleotides Ex3F-Ex5R and Ex22F-Ex24R, and confirmed 

by Western Blot using anti-C3G C-19 antibody (Figures R-4A and R-4B). We selected H11 

as the C3G KO clone (CRISPR-C3G), and G5 as the control clone (CRISPR-CT) to perform 

the experiments of MK differentiation. 

 

Figure R-4. Identification of CRISPR/Cas9 knock-out clones by Western Blot and qPCR. A) Relative 
C3G mRNA expression by qPCR in a representative subset of CRISPR-CT and CRISPR-C3G clones. 
GAPDH was used as housekeeping gene. B) C3G protein expression in a representative subset of 
CRISPR-CT and CRISPR-C3G clones. The clones selected to perform the experiments are shown in red. 
The expression of tubulin was used as loading control. Relative C3G/Tubulin ratios are shown.  
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1.1.2. C3G expression models in HEL cells 

HEL is a cell line very sensitive to transfection by electroporation. Therefore, we used 

lentiviral particles as an alternative for the transfection of this type of cells. Lentiviral 

production, HEL infection and subsequent selection of transfected cells were performed 

following the scheme in Figure R-5.  

 

Figure R-5. Schematic representation of lentiviral particle production and HEL cell infection. The 
selection of stable cell lines by addition of neomycin was only performed with the pWpI clones. 

After infection, we checked whether HEL cells had incorporated the lentiviral plasmid 

(pWpI or pLVTHM). As these plasmids contain the Green Fluorescence Protein gene, the 

percentage of transfected cells could be measured by flow cytometry. As shown in Figure R-

6A, the percentage of GFP+ cells exceeded 90% in both clones. Then, the GFP+ cells were 

purified by FACS (Fluorescence-Activated Cell Sorting) and their genotype validated by PCR 

and by Western Blot. Images R-6B and R-6C show the increase and silencing of C3G 

expression in the HEL-pWpI and HEL-pLVTHM clones, respectively.  
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Figure R-6. Analysis of C3G expression in HEL transgenic cells. A) Representative plots showing the 
expression of GFP in HEL cells infected with lentiviral particles harboring the shRNA plasmids, pLVTHM-
CT and pLVTHM-C3Gi. Numbers represent the percentage of GFP+ cells. Expression of C3G in HEL 
cells transfected with pWpI-CT (empty vector) and pWpI-C3G (two clones) (B), or containing the shRNA 
plasmids pLVTHM-C3Gi (two clones) and pLVTHM-CT (empty vector) (C) by qPCR, using 
oligonucleotides Ex22F-Ex24R (left histogram), and by Western Blot, using the antibody anti-C3G H-300 
(right panels). GAPDH was used as housekeeping gene in the qPCR and the expression of tubulin was 
used as loading control in the Western Blots. Relative C3G/Tubulin ratios are shown. All values are 
relative to control cells. 

1.2. C3G modulates the expression of megakaryocytic surface markers 

As mentioned above, exposure of K562 and HEL cells to PMA induces MK 

differentiation. One of the changes that these cells undergo during this process is the 

modification of their surface markers. Megakaryocytes are identified by the increased 

expression of glycoproteins GPIIb (CD41) and GPIIIa (CD61), whereas cells differentiating 

into erythrocytes can be identified by the expression of glycophorin A (GPA) on their surface 

membrane. In this way, we can study the development of MK differentiation by measuring the 

levels of these surface markers by flow cytometry.  

Based on the idea that C3G might be involved in MK differentiation, we decided to 

characterize the expression of megakaryocytic (CD41 and CD61) and erythroid (GPA) 

markers in our C3G-modified K562 and HEL clones in response to PMA. 

1.2.1. Impact of C3G overexpression on the expression of CD41, CD61 and 

GPA on the surface. Effect of PMA 

In a first approach, we measured in untreated C3G-transgenic K562 cells the 

expression of CD61 and GPA by semiquantitative RT-PCR.  pLTR2-C3G transgenic cells 

showed two-fold higher CD61 levels, compared to cells transfected with pLTR2-CT, whereas 

GPA levels remained almost unchanged (Figure R-7).  

 

Figure R-7. Expression of megakaryocytic and erythroid markers in pLTR2-C3G K562 cells. 
Analysis of CD61 and GPA mRNA expression in untreated K562 clones, pLTR2-CT and pLTR2-C3G, by 
RT-PCR using oligonucleotides that amplify CD61 and GPA. Numbers represent values of expression, 
relative to control cells, pLTR2-CT. GAPDH was used as housekeeping gene. 
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To deeply characterize the effect of C3G in the expression of these markers, we 

analyzed them in two different C3G-overexpressing K562 clones: pLTR2-C3G and pLTR2-

C3G/pSuper, as well as in their corresponding controls (K562 cells transfected with pLTR2 

and pLTR2/pSuper respectively). Cells were cultured with PMA (20 nM) for 48h and the 

expression of CD41, CD61 and GPA was analyzed by flow cytometry (Figures R-8A and R-

8B). C3G overexpression significantly increased CD41 and CD61 levels in both untreated 

clones, compared to their controls, although the increase in CD61 only reached significance 

in the pLTR2-C3G clone. On the other hand, GPA levels remained unchanged in both clones, 

although with a downward trend in the C3G clones. These results support the idea that C3G 

overexpression per se may induce the acquisition of MK markers. 

On the other hand, PMA treatment induced a significant increase in the levels of both 

CD41 and CD61 markers in K562 cells expressing the empty vector, compared to untreated 

cells, especially in the case of CD61. These results support a role for PMA in the MK 

differentiation of K562 cells, as previously described (Jacquel, A. et al. 2006, Sardina, J.L. et 

al. 2010). However, overexpression of C3G did not further modify the increased levels of these 

MK markers induced by PMA, indicating that C3G could participate in the PMA-induced 

differentiation pathway. 

It should be highlighted that, in most cases, the overexpression of C3G induced CD41 

and CD61 expression levels similar to, or greater than, those induced by PMA in clones with 

endogenous expression of C3G (see red points in Figure R-8B), indicating an important 

contribution of C3G overexpression to this effect. On the other hand, and contrarily to the 

published, neither C3G overexpression nor PMA treatment produced a significant decrease 

in the levels of GPA (Jacquel, A. et al. 2006). This is probably due to the low levels of 

expression of this marker on the surface of our cells, making it very difficult to detect any 

additional decrease. 
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Figure R-8. Overexpression of C3G in K562 clones increases megakaryocytic markers. A) 
Expression of CD41, CD61 and GPA markers was analyzed by flow cytometry using specific 
fluorochrome-conjugated antibodies (CD41-APC, CD61-PE and GPA-FITC). Representative flow 
cytometry plots are shown. B) Histograms represent the mean ± SEM of the fluorescence intensity 
(relative units) of CD41, CD61 and GPA from at least 4 independent experiments with each clone, treated 
as indicated. 2-way ANOVA and Holm-Sidak method were done. **p<0.01, ***p<0.001.  

1.2.2. Impact of C3G ablation on the expression of CD41, CD61 and GPA on 

the surface. Effect of PMA 

To verify that the results obtained with overexpressing C3G clones were due to an 

increase in C3G protein levels and not to others factors, the same experiments were 

performed on K562 cells, in which the expression of C3G was silenced by a shRNA (pSuper-

C3Gi) or eliminated using CRISPR/Cas technology. The results were confirmed in another 

human erythroleukemia cell line, HEL, in which the expression of C3G was also 

downregulated. 

First, we determined the mRNA expression of CD61 and GPA by semiquantitative RT-

PCR in cultures of untreated K562 cells with silenced C3G expression. As shown in Figure 

R-9, CD61 levels slightly decreased in pSuper-C3Gi cells, compared to control (pSuper-CT) 
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cells, whereas expression of the erythroid marker GPA clearly increased, indicating that C3G 

modulates the acquisition of megakaryocytic markers against erythroid.  

 

Figure R-9. Expression of megakaryocytic and erythroid markers in a K562 cell line with silenced 
C3G expression. A) Analysis of CD61 and GPA mRNA expression by RT-PCR in untreated K562 clones, 
pSuper-CT and pSuper-C3Gi, using oligonucleotides to amplify CD61 and GPA. Numbers represent 
values of expression relative to control cells. GAPDH was used as housekeeping gene. 

Then, we determined by flow cytometry, whether C3G silencing or knock-out also 

modulates the expression of megakaryocytic markers on the cell surface. As shown in Figures 

R-10A and R-10B, and contrarily to the expected, C3G ablation did not modify the expression 

levels of CD41 and CD61, measured in untreated cells of the indicated clones. These results 

are in contrast to the clear increase in these markers observed in the C3G-overexpressing 

cells (Figure R-8B). The fact that the C3G silencing or knock-out does not reduce the levels 

of these MK markers below the control levels, but that the overexpression of C3G increases 

them, could indicate that C3G would contribute to the appearance of megakaryocytic markers 

but is not essential.  

In addition, no differences were observed in the expression of CD41, CD61 and GPA 

between C3G silenced/knock-out cells and their controls following treatment with PMA. This 

suggests that the pathway activated via PMA is still induced despite the lack of C3G. It is 

possible that the cells compensate for the absence of C3G by the parallel activation of C3G-

independent signaling pathways. 
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Figure R-10. Stable C3G silencing and knock-out in K562 and HEL cell lines did not modify the 
expression of megakaryocytic and erythroid markers. A) The expression of CD41, CD61 and GPA 
markers was analyzed by flow cytometry using specific fluorochrome-conjugated antibodies (CD41-APC, 
CD61-PE and GPA-PE). Representative flow cytometry plots are shown. B) Histograms represent the 
mean ± SEM of the fluorescence intensity (relative units) of CD41, CD61 and GPA from at least 4 
independent experiments of each clone. 2-way ANOVA and Holm-Sidak method were done. *p<0.05, 
**p<0.01, ***p<0.001. 

1.2.3. Effect of C3G on the erythroid differentiation induced by Imatinib 

The erythroleukemia cell line K562 can be differentiated into erythroid cells by 

treatment with Imatinib mesylate (STI-571 or Gleevec®). STI-571 acts by blocking the Tyr-

kinase activity of Bcr-Abl and it has been shown to induce the expression of erythroid markers, 

such as GPA and α-globin. Since the role of C3G in the expression of the erythroid marker 
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GPA was not clarified by the flow cytometry analysis, we studied the expression of α-globin 

by a different approach.   

Thus, K562 cells with C3G overexpression and its control were cultured and treated 

with a low concentration of STI-571 (2 µM) for 24 hours and then, α-globin expression was 

analyzed by Western Blot (Figure R-11). The results show that the STI-571 treatment strongly 

increased α-globin levels, suggesting that STI-571 induces erythroid differentiation, in 

agreement with the literature (Jacquel, A. et al. 2007). In contrast, α-globin expression was 

virtually undetectable in the pLTR2-C3G clone. The effect of C3G on -globin expression was 

reverted by STI-571, but without reaching the levels observed in pLTR2-CT cells.  

 

Figure R-11. Expression of the erythroid marker -globin in C3G-overexpressing K562 clones.  
Expression of -globin was analyzed by Western Blot in the indicated clones, treated or not with 2 M 
STI-571. The expression of total ERK was used as loading control. Relative -globin/ERK ratios are 
shown. All values are relative to control, non-treated cells. 

Altogether, these results suggest a role for C3G in the regulation of the expression of 

differentiation markers in K562 and HEL cells, thus contributing to the commitment of these 

cells to the megakaryocytic lineage.  

1.3. Overexpression of C3G induces MK morphological features  

To analyze whether C3G is involved in the acquisition of the morphological features 

that characterize megakaryocytic cells, we analyzed by immunofluorescence confocal 

microscopy the morphology of K562 clones transfected with pLTR2-C3G/pSuper (C3G 

overexpression), pSuper-C3Gi (C3G silencing) and their controls. For that, cells were stained 

with a specific antibody for C3G (anti-C3G antiserum #1008, (Guerrero, C. et al. 1998)) and 

with the DNA marker, DAPI. The images shown in Figure R-12 corroborated the increased 

expression of C3G in the pLTR2-C3G/pSuper clone, and the decreased expression of C3G in 

the pSuper-C3Gi clone, as compared to their control clones, pLTR2-CT/pSuper and pSuper-

CT, respectively. Overexpression of C3G, which shows a membrane and cytoplasmic 

localization, induced an increase in cell size, as a result of a nuclear enlargement, 
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accompanied by an aberrant phenotype (see also Figure R-1), features that were not visible 

in cells with lower expression of C3G.  

 

Figure R-12. The overexpression of C3G in K562 cells increased cell size an induced an aberrant 
phenotype. The indicated clones of K562 were plated on fibronectin-coated coverslips and stained with 
rabbit anti-C3G antiserum #1008 and DAPI. All clones express the GFP protein, encoded in the pSuper 
plasmid. Images were obtained using a Leica TCS SP5 confocal microscope. Scale bars: 25 µm. 

After the observed differences in cell size between cells overexpressing C3G and 

control cells, we analyzed other morphological features using May-Grünwald-Giemsa staining. 

This staining allows to identify the structural changes associated with the MK differentiation, 

consisting of nuclear polylobulation, the marked expansion of the cytoplasm and the 

appearance of membranous vesicles. 

C3G-overexpressing cells (pLTR2-C3G/pSuper) and their controls (pLTR2-

CT/pSuper) were cultured in the presence of 20 nM PMA for 72h. Untreated control cells 

showed a round morphology, small size (approximately 4 µm), rounded nucleus at the center 

of the cell and a small cytoplasmic region, reflecting an undifferentiated morphology (Figure 

R-13). In the PMA-treated control cells we could distinguish 4 different morphologies: i) small 

rounded cells (the most abundant) similar to untreated control cells; ii) larger rounded cells 

(~7 µm) with abundant cytoplasm, large nucleus at the periphery and pseudopod-like 

structures in some of them; iii) fusiform cells with a large nucleus and abundant cytoplasm; 

iv) cells with a big nucleus with condensed chromatin and with microvesicles in the cytoplasm.  

As expected, untreated C3G-overexpressing cells showed 3 of the phenotypes 

described in the PMA-treated control cells: i) small rounded cells; ii) large polynucleated cells 

(~10 µm) with some dense nucleoli and some cells with pseudopod-like structures; and iii) 
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fusiform cells. Finally, PMA-treated C3G-overexpressing cells showed the 4 described 

morphologies, with a smaller proportion of small rounded cells. 

 

Figure R-13. K562 cells stably overexpressing C3G show megakaryocytic morphological features. 
May-Grünwald-Giemsa staining of the indicated K562 clones untreated or treated with 20 nM PMA for 
72h. Scale bars: 10 µm. 

These results indicate that, in K562 cells, the overexpression of C3G mimics PMA in 

the induction of the morphological features that characterize megakaryocytes.  

1.4. Analysis of ploidy in K562 and HEL cells 

At the end of the proliferation phase, megakaryocyte precursors exit the normal cell 

cycle and undergo endomitosis. These progenitors become polyploid through repeated cycles 

of DNA replication without karyokinesis and cytokinesis, resulting in cells with a unique 

polylobulated nucleus with a DNA content up to 128n. In order to establish the role of C3G in 

this phase of the differentiation of megakaryocytic progenitors, leading to polyploidy, we 

determined the ploidy status of our K562 and HEL clones, induced by PMA. For this purpose, 

our C3G-transgenic, or knock-down/knock-out, K562 and HEL clones were cultured in the 

presence of 20 nM PMA for 10 days. After fixation and permeabilization, the DNA was stained 

with Propidium Iodide (PI) and the DNA content measured by flow cytometry. Before 

performing the analysis, it is necessary to exclude cell doublets (pulse area vs pulse height) 

because PI staining increases cell aggregation, leading to false positives. Figure M-10 

(Materials & Methods), shows the DNA content distribution of a typical histogram plot (Cell 

count vs PI intensity), which is composed of different peaks, where each peak represents a 

population of cells having equal DNA content. The first peak corresponds to the population of 

diploid cells, the seconds correspond to tetraploid cells, and so on up to the seventh peak 

(128n). 
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1.4.1. Effect of decreased C3G expression on ploidy 

First, we analyzed the ploidy status of K562 cells, in which the expression of C3G was 

depleted by the CRISPR/Cas9 system. 

After the identification of 2n and 4n peaks, the percentage of cells with a DNA content 

equal to or greater than 8n (polyploidy) was estimated. As shown in Figure R-14, the 

percentage of polyploid cells decreased in C3G KO cells, compared to control cells. This was 

accompanied by an increase in the percentage of diploid cells.  

 

Figure R-14. C3G knock-out in K562 cells decreases polyploidization. The polyploidization state was 
identified by Propidium Iodide staining after 10 days of differentiation with 20 nM PMA. A) Two 
representative flow cytometry plots of ploidy distribution are shown. We identified 4 different populations: 
2n, 4n, 8n and cells with a DNA content of 16n and higher (≥16n). B) Table indicating the percentage of 
cells of the different clones corresponding to each population. C) Stacked bar histograms represent the 
mean of the percentage of cells of each genotype belonging to the different ploidy populations (2n, 4n, 8n 
and ≥16n). D) Histograms represent the mean ± SEM of the quantification of the percentage of individual 
ploidy population of CRISPR-CT and CRISPR-C3G. Data from 3 independent experiments of each 
genotype are shown. Data were analyzed using the Mann Whitney U test, but no significant differences 
were observed between CRISPR-C3G and CRISPR-CT. 

1.4.2. Effect of C3G overexpression on ploidy 

To corroborate the above results, we performed a similar study in clones with C3G 

overexpression. Results, using pLTR2/pSuper (K562) and pWpI (HEL) clones, showed that 

the percentage of polyploid cells was higher in the C3G-overexpressing cells, in both cell lines, 

as compared to their controls (Figure R-15). As expected, this increase in the number of 

polyploid cells was accompanied, in general, by a decrease in diploid cells. Although only one 

experiment has been performed with each clone (one pLTR2-C3G and two pWpI-C3G), these 
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results are in concordance with those performed with the C3G KO clones (Figure R-14). 

Therefore, our results suggest a role for C3G in the modulation of endomitosis in K562 and 

HEL cells during MK differentiation. 

 

Figure R-15. Overexpression of C3G in K562 and HEL increases polyploidization. The 
polyploidization state was identified by Propidium Iodide staining after 10 days of differentiation with 20 
nM PMA. A) Two representative flow cytometry plots of ploidy distribution are shown. We identified 3 
different populations in K562 and HEL clones: diploid (2n), tetraploid (4n) and polyploidy cells (with a DNA 
content ≥8n). B) Table indicating the percentage of cells of the different clones corresponding to each 
population. C) Stacked bar histograms represent the percentage of cells of each genotype belonging to 
the different ploidy populations (2n, 4n and ≥8n) of pLTR2/pSuper (top panel) and pWpI clones (bottom 
panel). D) Histograms represent the quantification of the percentage of individual ploidy population of 
pLTR2/pSuper (top panel) and pWpI clones (bottom panel). An experiment of each genotype is shown. 

1.4.3. Effect of C3G on cell cycle arrest  

As mentioned in the Introduction, the polyploidization of early MK progenitors requires 

cell cycle arrest and entry into the endomitosis cycle (Baccini, V. et al. 2001, Trakala, M. et al. 

2014). p21Waf-1/Cip-1 (p21) is a potent inhibitor of cyclin-dependent kinases (CDKs) involved in 

cell cycle arrest of various cell types. It has been shown to be highly expressed in mature 

megakaryocytes, suggesting an important role of this protein in the proliferative arrest of cells 

during MK differentiation (Matsumura, I. et al. 1997). However, p21 is not essential for the 
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acquisition of the polyploid profile, since p21 knock-out does not rescue the mitotic arrest 

during differentiation. Nonetheless, the analysis of its expression is commonly used as a 

marker of mitotic arrest (Baccini, V. et al. 2001, Besancenot, R. et al. 2010). Additionally, it 

has been shown that C3G overexpression in neuroblastoma cell line induces the expression 

of p21 through activation of the ERK signaling pathway (Radha, V. et al. 2008). On the other 

hand, our data suggest that C3G might be involved in the regulation of endomitosis in K562 

cells, triggered by PMA.  

With all these considerations, we analyzed the expression of p21 in our K562 clones 

with C3G overexpression (pLTR2-C3G/pSuper) or downregulation (CRISPR-C3G). Cells 

were differentiated with 20 nM PMA for 3 days and harvested at the indicated time points to 

determine the expression of p21 by Western Blot. Figure R-16 shows a clear increase in p21 

expression throughout the treatment with PMA, that was maximum between 6 and 24h of 

stimulation. Interestingly, K562 cells overexpressing C3G showed a ten-fold increase in p21 

expression under non-stimulation conditions, as compared to control cells. In addition, these 

pLTR2-C3G/pSuper cells maintained sustained levels of p21 throughout the time course. This 

result indicates that C3G could modulate the expression of p21, thus contributing to the arrest 

of cell cycle. In contrast, CRISPR-C3G expression hardly altered the levels of p21 throughout 

the time course, indicating that this function of C3G can be countervailed by other proteins.  

 

Figure R-16. Effect of C3G on p21 expression in K562 cells. Time course Western Blot analysis of the 
expression of p21 in K562 cells transfected with pLTR2/pSuper plasmids (A) or CRISPR plasmids (B) 
cultured with PMA (20 nM). Left panels: representative images of Western Blot. The numbers indicate 
expression of p21, relativized against tubulin (p21/Tub) or ERK (p21/ERK), which were used as loading 
controls. All values are relative to control, non-treated cells. Right panels: Line/scatter plots of the 
relativized p21 expression. 
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1.5. Determination of the C3G domain implicated in MK differentiation 

The above results strongly suggest a role for C3G in some of the processes that occur 

during MK differentiation. C3G can perform functions dependent on its catalytic, GEF domain, 

but C3G actions often involve protein-protein interactions through its proline-rich sequences, 

or other N-terminal sequences, which is independent of its GEF function (Guerrero, C. et al. 

1998, Hogan, C. et al. 2004). Therefore, we aimed at investigating which of the C3G domains 

were involved in the MK differentiation process.  

K562 cells were transfected by electroporation with different C3G deletion mutants, 

cloned in pLTR2 (Figure R-17A) and transfected clones were selected by culturing in Killer 

Hat media. Expression of the mutants was checked by Western Blot using anti-C3G H-300 

(against the N-terminus) and anti-C3G C-19 (against the C-terminus) antibodies (Figure R-

17B). Therefore, C3G H-300 identified full-length C3G, ΔN, SH3b and the ΔCat mutant, 

whereas C3G C-19 detected full-length C3G, ΔN and RemCat mutants.   

 

Figure R-17. Analysis of C3G expression in K562 transgenic cells. A) Structure of full-length C3G 
and the C3G mutants expressed in K562 cells, indicating its domains, its size (kDa) and the regions 
recognized by C3G H-300 and C3G C-19 antibodies (See Figure I-1 of Introduction for description). B) 
Representative Western Blot using C3G H-300 (left panel) and C3G C-19 (right panel) antibodies, 
showing the expression of the different mutants (red boxes). C-19 antibody also recognizes endogenous 
C3G p87 isoform, abundantly expressed in K562 cells as described (Gutierrez-Berzal, J. et al. 2006). 

To deeply characterize what is the domain of C3G involved in the acquisition of the 

megakaryocytic markers, C3G-mutant clones were cultured with PMA (20 nM) for 48h and the 
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expression of CD41, CD61 and GPA was analyzed by flow cytometry. Results in Figure R-18 

show that full-length C3G-overexpression increased CD41 levels, as previously shown. In 

contrast, all C3G deletion mutants reduced the expression of this marker to control levels or 

even below control, as in the case of the ΔN mutant. A similar tendency was observed when 

the expression of CD61 was analyzed, i.e., all deletion mutants induced CD61 levels similar 

to those of control, with the exception of the RemCat mutant, which induced CD61 levels 

similar to the full-length clone. These clones showed the same behavior under non-stimulation 

conditions, although in this case the differences were more difficult to appreciate. Our data 

indicate a relevant role for the catalytic (GEF) and N-terminal domains of C3G in regulating 

MK differentiation, although other domains may also play a role. 

Additionally, the Anova analysis indicated that the CD41 expression results obtained 

with the ΔN mutant were significantly different, with respect to the other clones, independently 

of the treatment (p=0.017 ΔN mutant vs CT).  

 

Figure R-18. Overexpression of C3G mutants in K562 cells affect the expression of 
megakaryocytic markers. K562 clones expressing the indicated C3G-mutants were maintained with 
PMA (20 nM) for 48h. Expression of the markers was analyzed by flow cytometry using specific 
fluorochrome-conjugated antibodies (CD41-APC, CD61-PE and GPA-FITC). Histograms represent the 
mean ± SEM of the fluorescence intensity (relative units) of CD41, CD61 and GPA from at least 3 
independent experiments of each clone. 2-way ANOVA and Holm-Sidak method were done. *p<0.05, 
**p<0.01.  

To further clarify which domain of C3G is involved in the regulation of the expression 

of megakaryocytic and erythroid markers, we analyzed the expression of -globin in K562 

cell, overexpressing different C3G mutants, that were untreated or treated with 2 µM STI-571 

for 24 hours. Untreated K562 cells transfected with the empty vector (pLTR2-CT) showed high 

levels of α-globin (Figure R-19), in agreement with the erythroid nature of these cells. On the 

other hand, overexpression of full-length C3G and mutants N and SH3b, greatly reduced -

globin expression. In contrast, expression of a mutant lacking the catalytic domain (Cat) did 

not affect the levels of -globin. As expected, treatment with STI-571 further increased -

globin expression in control and Cat-expressing cells, and partially reverted the inhibitory 

effect of the other C3G mutants. These results suggest that the catalytic function of C3G could 

prevent the acquisition of erythroid markers under stimulation with Imatinib, or stimulate their 
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loss during MK differentiation. Results in Figure R-19 also uncovered an essential role of the 

SH3b domain in the regulation of -globin expression, probably acting as a dominant negative 

mutant, sequestering other regulators through protein-protein interactions.  

 

Figure R-19. Overexpression of C3G mutants in K562 cells affect the expression of -globin. 
Analysis of α-globin by Western Blot in K562 cells overexpressing full-length C3G, ΔN, RemCat, ΔCat and 
SH3b mutants, untreated or treated with STI-571 for 24 hours. Total ERK was used as loading control. 
Relative -globin/ERK ratios are shown. All values are relative to non-treated cells expressing the empty 
vector (pLTR2-CT). 

Altogether these results indicate that C3G would modulate the expression of 

megakaryocytic and erythroid markers in K562 through its catalytic function, although other 

domains, such as the N-terminal region or the SH3b domain, could also contribute, probably 

through the modulation of the catalytic activity of C3G or by establishing interactions with other 

proteins.  

1.6. Involvement of C3G in the megakaryocytic signaling pathways 

induced by PMA 

Once we have demonstrated the involvement of C3G in the acquisition of 

megakaryocytic features in K562 and HEL cell lines treated with PMA, such as the expression 

of megakaryocyte markers and the increase in DNA content, we wanted to analyze the 

putative participation of C3G in the PMA-triggered signaling pathways involved in MK 

differentiation.  

As previously commented, our model of study consisted in the stimulation of MK 

differentiation by PMA in K562 and HEL cells, whose phenotypic features classify them as 

erythroid cells. Several signaling pathways are involved in this process. It has been 

demonstrated that activation of the MEK/ERK1/2 transduction cascade is required for the MK 

differentiation, whereas the p38 MAPK signaling pathway contribute to the induction of 

erythroid differentiation (Jacquel, A. et al. 2006, Conde, I. et al. 2010). Based on this idea, we 

attempted to elucidate the signaling pathways in which C3G plays a role. 
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Since activation of C3G by phosphorylation on tyrosine 504 is required to carry out 

some of its functions (Ichiba, T. et al. 1999), we analyzed the phosphorylation status of C3G, 

in K562 and HEL cells treated with 20 nM PMA at several time points (10, 30 and 60 minutes), 

using a specific anti-phospho-Tyr 504 antibody. Figure R-20 shows a gradual increase in the 

amount of the Tyr 504 phosphorylated form of C3G over time in both cell lines, indicating that 

activation of C3G is induced upon treatment with PMA.  

 

Figure R-20. PMA treatment induced C3G phosphorylation in K562 and HEL cells. Time course 
Western Blot analysis of phospho-C3G (p-C3G) expression in non-transfected K562 and HEL cells treated 
with 20 nM PMA for 10, 30 and 60 minutes, using a polyclonal antibody against phospho-Tyr-504. The 
expression of tubulin was used as a loading control. Relative p-C3G/Tubulin ratios are shown. All values 
are relative to control, non-treated cells. 

1.6.1. Activation of Rap1 by C3G during PMA-induced MK differentiation 

As mentioned in the Introduction, Rap1 is an ubiquitous Ras-related GTPase 

particularly abundant in blood platelets, which plays important functions in cell adhesion 

through the activation of integrins. In addition, it has been suggested that Rap1 may be 

involved in megakaryopoiesis and platelet production, as its levels increases during MKs 

differentiation (Balduini, A. et al. 2004). Activation of Rap1 by the PMA-PKC pathway has 

been described in murine myeloid leukemia cells (Dupuy, A.J. et al. 2001) and in platelets 

(Gutierrez-Herrero, S. et al. 2012). Taking into account that C3G is one of the main Rap1-

GEFs and that C3G is phosphorylated during PMA-induced MK differentiation (see Figure R-

20), we wanted to study whether PMA induces Rap1 activation via C3G. For that, we 

performed a Rap1 activity assay using our K562 clones expressing different C3G deletion 

mutants (Figure R-17).  

Lysates from cells stimulated with 20 nM PMA for 5 min were incubated with RalGDS-

RBD protein (RalGDS domain that specifically binds Rap1-GTP), fused to GST, as described 

in Materials & Methods. PMA treatment increased the activation of Rap1 in pLTR2-CT and in 

all C3G-mutants, compared to their respective untreated clones, with the exception of the 

RemCat mutant, which per se, was able to induce maximum levels of Rap1-GTP (Figure R-

21). In addition, Rap1-GTP levels were increased in untreated clones expressing full-length 

C3G, as well as in mutants SH3b, Nand, especially RemCat, as compared to cell transfected 

with the empty vector. In contrast, and, as expected, Rap1 was poorly active in cells 
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expressing a C3G mutant lacking the GEF domain (Cat). The largest increase in Rap1-GTP 

levels induced by the expression of the RemCat mutant, as compared to full-length C3G, is in 

agreement with an inhibitory role played by the N-terminal domain of C3G on its catalytic 

activity (Ichiba, T. et al. 1999). 

 These results confirmed that C3G is involved in PMA-induced Rap1 activation, 

although we can not exclude the possibility that other Rap1 GEFs may contribute. 

Surprisingly, cells overexpressing the SH3b domain showed increased levels of Rap1-GTP, 

relative to control cells. One possibility is that this domain may act by sequestering negative 

regulators of the C3G-Rap1 pathway, through protein-protein interactions. These results, 

together with those in Figure R-19, are in favor of a role for the SH3b domain of C3G in the 

PMA pathway the regulates the expression of megakaryocytic and erythroid markers in K562 

cells. 

 

Figure R-21. Activation of Rap1 in K562 cells expressing C3G mutants. Representative pull-down 
assay to detect Rap1-GTP after treatment with 20 nM PMA for 5 min. Detection of total Rap1 in cell 
lysates was used as loading control. Relative Rap1-GTP/total Rap1 ratios are shown. All values are 
relative to EGF-treated cells (positive control of Rap1 activation).  

To complement the data obtained from the Rap1 pull-down assay, we performed a 

Rap1 activity assay on intact cells by immunofluorescence confocal microscopy, as described 

(Balduini, A. et al. 2004). For that, C3G-overexpressing K562 cells and its control 

(pLTR2/pSuper clones) were stimulated with 20 nM PMA for 2 minutes. Next, the expression 

and subcellular localization of Rap1-GTP was examined by confocal microscopy using purified 

GST-RalGDS-RBD protein, in combination with anti-GST antibodies, as described in Materials 

& Methods. Total Rap1 was detected with anti-Rap1 antibodies. This experiment was 

complemented by several negative controls shown in Figures R-22B and R-23B.  

Figure R-22 shows a cytoplasmic distribution of total Rap1 in both K562 clones, 

whereas active Rap1 was located mainly in the plasma membrane, indicating that following 
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activation Rap1 is translocated from the cytosol to membranous compartments. In addition, 

cells overexpressing C3G showed increased levels of Rap1-GTP, accompanied by increased 

levels of total Rap1, compared to control cells.  

 

Figure R-22. Detection of Rap1-GTP and total Rap1 by immunofluorescence confocal microscopy 
in K562 cells with C3G overexpression. A) K562 cells were cultured on coverslip and starved o/n. Then 
cells were fixed, permeabilized and incubated with: anti-Rap1/anti-rabbit Cy3 antibodies (green), to mark 
total Rap1; purified GST-RalGDS-RBD and anti-GST/anti-mouse Cy5 antibodies (red) to detect Rap1-
GTP; DAPI (Blue) to detect the nucleus. The overlay layers are made without DAPI channel. B) Negative 
controls of Rap1 activity assay by immunofluorescence. These controls were analyzed in parallel to the 
assay to interpret in a proper manner our microscopy images. The Ral-GDS-RBD negative control was 
made without the Ral-GDS-RBD purified protein; anti-GST and anti-Rap1 negative controls were made 
without primary antibodies anti-GST or anti-Rap1, respectively. C) Quantification of fluorescence intensity 
(relative values) of Rap1-GTP (left panel) and total Rap1 (right panel) in pLTR2-CT/pSuper and pLTR2-
C3G/pSuper clones. Scale bars: 7.5 µm. 

Next we wanted to analyze whether C3G overexpression modifies the activation of 

Rap1 induced by PMA, and whether the phosphorylation of C3G is involved. For that, starved 

pLTR2/pSuper clones were stimulated with PMA at different time points and the levels of 

Rap1-GTP, total Rap1 and phospho-C3G analyzed by immunofluorescence confocal 

microscopy as above. 

Similarly to the results of the pull-down assay (Figure R-21), treatment with PMA 

induced an increase in the Rap1-GTP levels that was maximal between 2 and 5 min of 

stimulation and decreased after 10 min (Figure R-23), indicating that PMA promotes a 

transient activation of Rap1, as described by other authors (Franke, B. et al. 2000). In control 

cells, phospho-C3G levels clearly increased after 2 min of treatment with PMA, validating 

results shown in Figure R-20. On the other hand, C3G-overexpressing cells showed 
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increased basal levels of phospho-C3G that peaked at 2 min of PMA stimulation and lasted 

throughout the time course. Moreover, overexpression of C3G induced a more sustained 

Rap1 activation, in correlation with the sustained C3G phosphorylation. Overall, these results 

indicate that overexpression of C3G increases PMA-induced Rap1 activation and that 

phosphorylation of C3G is important in this effect. However, we can not exclude the 

participation of other Rap1GEFs in the activation of Rap1 induced by PMA.  

 

Figure R-23. Effect of C3G on PMA-induced Rap1 activation, using immunofluorescence confocal 
microscopy. A) K562 cells were cultured on coverslip and starved o/n. Then cells were treated with 20 
nM PMA for 2, 5 and 10 min, fixed, permeabilized and incubated with: anti-phospho-C3G/anti-rabbit Cy3 
antibodies (green); purified GST-RalGDS-RBD and anti-GST/anti-mouse Cy5 antibodies (red) to detect 
the Rap1-GTP, and DAPI (blue) to detect the nucleus. The overlay images are made without DAPI 
channel. B) Negative controls of Rap1 activity assay by immunofluorescence. The staining of Ral-GDS-
RBD negative control was made without the Ral-GDS-RBD purified protein, anti-GST and anti-p-C3G 
negative controls were made without the corresponding primary antibodies. Scale bars: 7.5 µm 
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1.6.2. Role of PKC in the effect of C3G on MK differentiation  

As previously mentioned, PMA induces MK differentiation in K562 and HEL cells 

through activation of protein kinase C (PKC). Bisindolylmaleimide (Bis), a highly selective 

inhibitor of all PKC isoforms, has been used to demonstrate the role of this protein in PMA-

induced MK differentiation in K562 and HEL cells, as it completely inhibits PMA responses 

(Hong, Y. et al. 1996). 

Results in Figure R-8 corroborated that C3G is able to induce the appearance of 

megakaryocytic features per se without external stimulation, such as PMA. However, as 

demonstrated in Figures R-20 and R-23, PMA activates C3G, which suggests a putative role 

of C3G in PMA-triggered pathways. In addition, we have demonstrated the involvement of 

C3G in the PKC-Rap1 pathway induced by thrombin in platelets (Gutierrez-Herrero, S. et al. 

2012). Therefore, the participation of C3G in the acquisition of megakaryocytic features 

induced by PMA was further investigated by analyzing, in our K562 clones, the expression of 

megakaryocytic and erythroid markers, in the presence or absence of Bis (1 µM).  

As shown in Figure R-24, Bis completely abrogated the increase in CD61 expression 

induced by PMA in the pLTR2-CT/pSuper clone, and partially the increase in CD41, 

demonstrating the inhibitory effect of Bis on the effects of PMA. However, expression of CD61 

and, especially that of CD41 were poorly affected by this inhibitor in cells overexpressing C3G. 

This suggests the participation of C3G downstream of PKC in the PMA-triggered pathway. 

Additionally, Bis induced a slight increase in GPA expression, mainly in cells with C3G 

overexpression, indicating a role for C3G in the negative regulatory effect of PMA-PKC on the 

expression of this marker. 

 

Figure R-24. Effect of the PKC inhibition on the expression of CD41, CD61 and GPA markers during 
PMA-induced MK differentiation. K562 cells were treated with 20 nM PMA for 48 hours in the presence 
or absence of 1 µM Bis. Histograms represent the mean ± SEM of the fluorescence intensity (relative 
units) of CD41, CD61 and GPA from at least 2 independent experiments with each clone, treated as 
indicated. 2-way ANOVA and Bonferroni t-test were done. *p<0.05, **p<0.01. 
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1.6.3. Role of ERK signaling pathway in the effect of C3G on MK 

differentiation  

The role of the Raf/MEK/ERK signaling pathway, downstream of PKC in 

megakaryocytic differentiation, has been extensively studied and is considered one of the 

most important pathways that regulate this process. ERK1/2 (also called MAPK p44 and p42, 

respectively) is required for the expression of megakaryocyte surface markers but is not 

involved in cell endomitosis, suggesting that the ERK1/2 signaling pathway acts primarily at 

the onset of the megakaryocytic differentiation process (Conde, I. et al. 2010). In addition, it 

had been reported that inhibition of this pathway plays a role in the signal transduction 

mechanisms leading to erythroid differentiation (Jacquel, A. et al. 2006).  

Based on the above, we wanted to study whether C3G is involved in the regulation of 

MK differentiation through the modulation of ERK1/2 activation. To do so, we performed a 

series of experiments in the presence of U0126 (U0), a selective inhibitor of MAP kinase 

kinases (MEK1 and MEK2), which acts by preventing the activation of ERK1 and ERK2. 

Firstly, we analyzed, in our K562 clones transfected with the C3G constructs, the 

induction of ERK1/2 phosphorylation at short times or during several days of PMA treatment. 

Overexpression of C3G increased by two-fold the basal levels of phospho-ERK1/2 (Figure R-

25A), indicating a role for C3G in this pathway. As expected, PMA stimulation increased 

ERK1/2 phosphorylation in both, control and pLTR2-C3G/pSuper cells, with no differences 

between clones being observed at short times (Figure R-25A, left panel). In addition, C3G 

depletion barely decreased ERK phosphorylation at short times of PMA stimulation (Figure 

R-25A, right panel). On the other hand, while activation of ERK1/2 reached a peak in control 

cells after 24h of PMA treatment and then decreased, it was maintained for, at least, 72h in 

cells overexpressing C3G (Figure R-25B, left panel). This effect was not observed in the 

absence of C3G (Figure R-25B, right panel), indicating that C3G is required for the sustained 

activation of ERK1/2 induced by PMA. 

Since Rap1-mediated sustained activation of ERK1/2 has been linked to cell 

differentiation in PC12 cells and other cellular models (York, R.D. et al. 1998, Conde, I. et al. 

2010, Takahashi, M. et al. 2017), our results are in favor of a role for C3G-Rap1 in 

megakaryocytic differentiation through the sustained activation of the ERK1/2 pathway. 
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Figure R-25. Analysis of p-ERK1/2 levels in C3G transfected K562 cells at different times of PMA 
stimulation. Time course of p-ERK1/2, analyzed by Western Blot, in C3G-overexpressing and C3G 
knock-out clones treated with 20 nM PMA for 10, 30 and 60 min (A) or 1, 2 and 3 days (B) using anti-
phospho-ERK1/2 antibodies. The expression of total ERK was used as a loading control. Relative p-
ERK/ERK ratios are shown. All values are relative to control, non-treated cells.  

Next, we analyzed the expression of CD61, CD41 and GPA markers in the same 

clones after treatment with PMA for 48h, in the presence or absence of 10 µM U0126 (Figure 

R-26A). Unexpectedly, the addition of U0 had no effect on the expression of the PMA-induced 

megakaryocytic markers in K562 cells, either in control cells or in C3G-overexpressing cells. 

However, GPA levels increased slightly upon inhibition of the MEK-ERK1/2 signaling pathway, 

mainly in C3G overexpressing cells, indicating that this pathway plays a negative role in the 

acquisition of erythroid markers in K562, in agreement with the literature (Jacquel, A. et al. 

2006), and that C3G is involved. Pretreatment with U0 completely abolished basal ERK1/2 

phosphorylation in both, control and C3G-overexpresing clones, and partially inhibited PMA-

induced ERK1/2 phosphorylation (Figure R-26B). This indicates that the results in Figure R-

26A were not due to poor inhibitor functioning. 

The involvement of C3G in the PMA pathway downstream of PKC was further 

corroborated by the analysis of the activation of ERK1/2 in our C3G-overexpressing clones 

treated with PMA and Bis. Results in Figure R-26B showed that inhibition of PKC suppresses 

the phosphorylation of ERK1/2 induced by PMA in control cells. In contrast, Bis hardly affected 

PMA-induced ERK1/2 phosphorylation in pLTR2-C3G/pSuper cells, indicating that C3G is 

capable to activate ERK1/2 independently of PMA-PKC. 
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Figure R-26. Effect of the ERK1/2 inhibition on the expression of CD41, CD61 and GPA induced by 
PMA in C3G-overexpressing K562 clones. A) Histograms represent the mean ± SEM of the 
fluorescence intensity (relative units) of CD41, CD61 and GPA from at least 2 independent experiments 
with each clone, treated as indicated. 2-way ANOVA and Bonferroni t-test were done. *p<0.05, **p<0.01. 
B) Analysis of phospho-ERK1/2 by Western Blot in pLTR2/pSuper K562 clones treated with 20 nM PMA 
for 2 min in the presence or absence of 10 M U0126 or 10 M Bis. Total ERK was used as loading 
control. Relative p-ERK2/ERK ratios are shown. All values are relative to non-treated cells expressing the 
empty vector (pLTR2-CT/pSuper).  

To corroborate the results obtained above, we analyzed the expression of CD41, CD61 

and GPA in our C3G-silenced HEL clones treated with PMA in the presence or absence of U0 

(Figure R-27). In contrast to the observed in K562 cells, U0 clearly inhibited PMA-induced 

CD41 and CD61 expression in control HEL cells. However, and according to the results in 

Figure R-26, U0 did not modify the increase in CD41 and CD61 markers induced by PMA in 

C3G-silenced HEL cells. In a similar way to that observed in C3G-silenced K562 cells, U0 

induced an increase in GPA expression in these HEL clones, validating the negative effect of 

the ERK1/2 pathway on erythroid differentiation.   
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Figure R-27. Effect of the ERK1/2 inhibition, on the expression of CD41, CD61 and GPA induced 
by PMA in pLVTHM HEL clones. Histograms represent the mean ± SEM of the fluorescence intensity 
(relative units) of CD41, CD61 and GPA treated as indicated. 2-way ANOVA and Bonferroni t-test were 
done. *p<0.05, **p<0.01 and ***p<0.001.  

Altogether, these data suggest that C3G can modulate the activation of ERK1/2 

independently of PKC, and that ERK1/2 do not participate in the effect of C3G on the 

expression of MK markers.  

1.6.4. Role of p38 MAPK signaling pathway in the effect of C3G on MK 

differentiation 

Some studies suggest that p38 MAPK is upstream of the pathway that leads to ERK1/2 

activation, acting as a negative regulator of MK differentiation by inhibiting the ERK signaling 

pathway (Herrera, R. et al. 1998, Jacquel, A. et al. 2006, Chang, Y.I. et al. 2010). In addition, 

our group has described a functional relationship between C3G and p38 MAPK in a pro-

apoptotic context in K562 cells, in which the C3G-Rap1 pathway acts by inhibiting p38 MAPK 

activation, thus promoting the activation of ERK1/2 (Maia, V. et al. 2009). A negative regulation 

of p38 MAPK activity by C3G, independently of Rap1, has also been demonstrated  

(Gutierrez-Uzquiza, A. et al. 2010, Priego, N. et al. 2016). 

The effect of p38 MAPK, the most common isoform, is generally studied by the use 

of its specific inhibitor, SB203580 (SB), which may also inhibit p38 isoform. It has been 

reported that SB can produce different effects on MK differentiation in a dose-dependent 

manner: at low doses (5-10 µM) it induces cells to differentiate into megakaryocytes, whereas 

at higher concentrations (20-50 µM) it drastically reduces MK differentiation and induces cell 

death (Jacquel, A. et al. 2006). 

Considering these data, we wanted to elucidate whether p38 MAPK is involved in the 

effect of C3G on the differentiation of K562 and HEL cells to megakaryocytes, induced by 

PMA. For that, the megakaryocytic (CD41 and CD61) and erythroid (GPA) markers were 

analyzed in our transfected clones treated with PMA in the presence or absence of the p38 

MAPK inhibitor, SB. Cell were treated with 20 nM PMA alone or in combination with 10 µM 

SB for 48 hours, and the cell markers were analyzed by flow cytometry. Figure R-28A shows 
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that SB did not affect the basal levels of these markers in the K562 clones, with the exception 

of the pLTR2-C3G-expressing clone, in which SB significantly increased CD41 levels. 

Moreover, SB modestly increased CD61 expression in K562 cells expressing pLTR2-

C3G/pSuper. This is in favor of a negative role of p38 in the effect of C3G on MK differentiation. 

However, SB did not alter the expression of megakaryocyte markers induced by PMA, 

indicating that p38 MAPK does not seems to play a relevant role in MK differentiation induced 

by PMA in K562 cells. SB did not modify the expression of GPA either, despite the described 

role of p38 in the erythroid differentiation of K562 cells induced by imatinib (Jacquel, A. et al. 

2006, Jacquel, A. et al. 2007). 

To relate the flow cytometry results to the state of p38 phosphorylation, phospho-p38 

levels were analyzed by Western Blot on C3G-overexpressing K562 and HEL cells treated 

with 20 nM PMA for 10 minutes, after SB treatment for 1 hour. Basal levels of phospho-p38 

MAPK were increased by two-fold in both C3G-overexpressing cells (Figure R-28B). In 

addition, an increase in p-p38 levels was observed after PMA treatment, especially in HEL 

cells expressing the lentiviral construct pWpI-C3G, indicating that PMA promotes p38 

activation in a C3G-dependent manner.  

It is worthy to mention that SB does not inhibit p38 phosphorylation by its MAPKKs but 

it blocks p38 MAPK binding to ATP, thus preventing the phosphorylation of its direct targets 

(Cuenda, A. et al. 2007). However, it has been described a mechanism of p38 activation, 

independent of MAPKK, in which p38 can autophosphorylate (Ge, B. et al. 2002), which could 

explain our results in control cells. The increase in phospho-p38 MAPK, observed mainly in 

the PMA+SB-treated cells, could be related with the deactivation of a negative feed-back 

mechanism regulated by p38 MAPK. 

Although it is not reflected in Figure R-28, the Anova results indicate that there is 

significant variability between pLTR2-C3G cells and control cells, independently of the 

treatment used (p<0.001 in CD41 expression results and p<0.01 in CD61 expression results). 
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Figure R-28. Effect of the p38/ MAPK inhibition on the expression of CD41, CD61 and GPA 
induced by PMA in C3G overexpressing K562 clones. A) Histograms represent the mean ± SEM of 
the fluorescence intensity (relative units) of CD41, CD61 and GPA treated as indicated. 2-way ANOVA 
and Bonferroni t-test were done. *p<0.05, **p<0.01, ***p<0.001.  B) Analysis of phospho-p38 levels by 
Western Blot in K562 clones (left panel) and HEL clones (right panel). Total p38 and tubulin were used 
as loading controls respectively. Relative p-p38 levels are shown. All values are relative to non-treated 
cells expressing the empty vector (pLTR2-CT and pWpI-CT).  

To reinforce the above data, we performed similar analysis in a HEL clone with silenced 

C3G expression (pLVTHM-C3Gi) and its control (pLVTHM-CT). In addition, we included in the 

analysis K562 clones with silenced expression for C3G (pSuper-C3Gi), p38 isoform (pSuper-

p38αi) or both (pSuper-C3Gi-p38αi), together with control cells transfected with empty vector 

(pSuper-CT).  

Results in Figure R-29A, show that SB pretreatment did not modify the expression of 

the markers induced by PMA in either the HEL clones or the single-silenced K562 clones, in 

agreement with results in Figure R-28. However, double C3G/p38 silencing induced a 

significant increase in GPA expression, in contrast with the positive role of p38 MAPK in 

erythroid differentiation (Jacquel, A. et al. 2006). This indicates a cooperative effect of C3G 

and p38 in the regulation of erythroid differentiation, where C3G would play an inhibitory role.  

As mentioned above, p38 inhibition by low doses of SB enhances PMA-induced MK 

differentiation. This fact is in accordance with the modest increase in CD61 expression 
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observed in the pSuper-p38αi clone, under PMA+SB treatment. However, CD41 and CD61 

levels decreased in PMA-treated pSuper-C3Gi-p38αi cells, while GPA levels showed the 

highest values in this clone with low expression of both proteins.  

Figure R-29B shows the phosphorylation status of p38 in these C3G and p38 

silenced clones treated with PMA and/or SB. As expected, p38 expression and 

phosphorylation were greatly diminished in pSuper-p38i and pSuper-C3Gi-p38i clones. 

Surprisingly, PMA induced a clear increase in phospho-p38 in control cells. Moreover, 

similarly to C3G overexpression, C3G silencing also increased basal levels of phospho-p38 

MAPK, which were not modified by PMA treatment. These results suggest that the activation 

of p38 MAPK is modulated by the levels of C3G. 

All these results support a regulatory role for C3G in p38 activation. In addition, 

although the involvement of p38 MAPK in MK differentiation induced by PMA is unclear, it is 

likely that p38 collaborate with C3G in this effect. 

Although it is not reflected in Figure R-29A, the Anova analysis indicated that there is 

significant variability between pSuper-p38α and pSuper-CT, and between pSuper-C3Gi-p38αi 

and pSuper-CT clones, independently of the treatment used (p<0.05 in CD41 results). 
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Figure R-29. Effect of the p38/ MAPK inhibition on the expression of CD41, CD61 and GPA 
induced by PMA in C3G and/or p38 silenced clones. A) Expression of CD41, CD61 and GPA markers 
in C3G-silenced cells, pLVTHM HEL clones (up panels) and the indicated pSuper K562 clones (Bottom 
panels). Histograms represent the mean ± SEM of the fluorescence intensity (relative units) of CD41, 
CD61 and GPA from at least 2 independent experiments with each clone, treated as indicated. 2-way 
ANOVA and Bonferroni t-test were done. *p<0.05, **p<0.01 and ***p<0.001. B) Analysis of phospho-p38 
and total p38 by Western Blot in HEL clones (left panel) and K562 clones (right panel). Total ERK was 
used as loading control. Relative p-p38/ERK ratios are shown. All values are relative to non-treated cells 
expressing the empty vector (pLVTHM-CT and pSuper-CT, respectively). 

To better understand the regulation of p38 and ERK1/2 MAPK pathways in K562 and 

HEL cells, as well as the role played by C3G, we analyzed the levels of ERK phosphorylation 

in our C3G-overexpressing or silenced K562 and HEL clones, in combination with clones in 

which the p38 function has been downregulated by pretreatment with SB203580 or by gene 

silencing.  

In general, treatment with SB caused an increase in basal levels of p-ERK (Figure R-

30). These data are in agreement with the literature, and indicate that p38 has an inhibitory 

effect on ERK (Li, S.P. et al. 2003). On the other hand, the fact that the treatment with PMA 

and SB together further increase the levels of phospho-ERK indicates that the activation of 

the MEK/ERK pathway is being reinforced by two different pathways, by direct activation 

through PKC and by elimination of p38 inhibition.  

In addition, overexpression of C3G in HEL cells clearly increased SB-induced 

phospho-ERK levels (Figure R-30B), which were even higher in PMA+SB-stimulated cells.  It 

is worthy to mention that the levels of phospho-ERK and phospho-p38 in HEL cells seem to 

be dependent on the levels of C3G expression, as already suggested by results in Figures 

R-28B and R-29B. Thus, the clone pWpI-C3G2, which expresses high levels of C3G (see 

C3G expression of pWpI clones in Figure R-6B), showed intermediate values of p-p38 and 

higher levels of p-ERK, compared to pWpI-C3G1 and pWpI-CT clones. In contrast, the clone 

pWpI-C3G1, whose C3G levels are intermediate, showed higher levels of p-p38 and lower 

levels of p-ERK, under the different stimuli (Figure R-30B). These results strongly suggest 

that the levels of expression of C3G could modulate the levels of phospho-p38, which in turns, 

would regulate the activation of ERK1/2.  

Additionally, we analyzed the expression of phospho-ERK1/2 in C3G- and/or p38-

silenced K562 clones. Figures R-30C and R-30D showed that the knock-down of p38 

increased phospho-ERK levels in any experimental condition, in agreement with the results 

with SB and in concordance with the negative effect of p38 on ERK1/2 phosphorylation. C3G 

silencing slightly decreased phospho-ERK1/2 levels, mainly in PMA+SB treated cells and in 
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the p38i silenced cells, probably through an increase in the levels of active p38, further 

confirming the regulatory role of C3G levels on p38 MAPK activity.  

 

Figure R-30. Effect of the p38/ MAPK inhibition on ERK1/2 phosphorylation in K562 and HEL 
clones treated with PMA. Levels of phospho-ERK1/2 and phospho-p38 in K562 pLTR2/pSuper clones 
(A), HEL pWpI clones (B), K562 pSuper clones (C) and HEL pLVTHM clones (D) pretreated with 10 µM 
U0126 or 10 µM SB203580 for 1 hour and/or 20 nM PMA for 10 minutes. Total ERK and total p38 were 
used as loading controls. Relative p-p38/p38 and p-ERK/ERK ratios are shown. All values are relative to 
non-treated cells expressing the empty vector. 

1.6.5. Role of the PI3K signaling pathway in the effect of C3G on MK 

differentiation 

It has been reported that activation of phosphoinositide 3-kinase (PI3K)-Akt signaling 

pathways is important for MK differentiation, specifically for the entry into the endomitosis 

cycle (Geddis, A.E. et al. 2001), although its role in MK marker expression is controversial 

(Jacquel, A. et al. 2006, Conde, I. et al. 2010, Sardina, J.L. et al. 2010). Based on that, we 

wanted to investigate in our clones whether this pathway is involved in the acquisition of 

megakaryocyte markers and whether C3G plays a role. For this, we analyzed the expression 

of CD41, CD61 and the erythroid marker GPA, by flow cytometry in K562-pLTR2-C3G and 

control clones, which were treated with the PI3K inhibitor, Wortmannin (W), and with PMA for 

48 hours. 

The results in Figure R-31 show that W did not modify the expression of these markers 

in controls cells. However, the expression of the megakaryocyte markers, mainly CD41, 

decreased in W-treated cells overexpressing C3G, compared to the same untreated cells. 
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This suggests the involvement of PI3K in the C3G-mediated pathway that regulates MK 

differentiation.   

 

Figure R-31. Effect of PI3K inhibition on the expression of CD41, CD61 and GPA induced by PMA 
in C3G-overexpressing K562 clones. A) Expression of CD41, CD61 and GPA markers in pLTR2 clones 
treated with 20 nM PMA and/or 10 µM W for 48 hours. Histograms represent the mean ± SEM of the 
fluorescence intensity (relative units) of CD41, CD61 and GPA treated as indicated. 2-way ANOVA and 
Bonferroni t-test were done. *p<0.05, **p<0.01 and ***p<0.001.  

A similar study was performed in HEL pLVTHM clones. According to the above results 

and, although the data were not significant, probably due to the low number of experiments, 

W induced a slight increase in the expression of CD61 in C3G-silenced cells treated with PMA 

(Figure R-32).   

Although further studies should be performed to achieve statistical significance of the 

data, these results could indicate a positive role of PI3K in the PMA-C3G pathway leading to 

megakaryocytic differentiation in K562 and HEL cells.   

 

Figure R-32. Effect of PI3K inhibition on the expression of CD41, CD61 and GPA induced by PMA 
in C3G-silenced HEL clones. A) Expression of CD41, CD61 and GPA markers in C3G-silenced, 
pLVTHM, clones treated with 20 nM PMA and/or 10 µM W for 48 hours. Histograms represent the mean 
± SEM of the fluorescence intensity (relative units) of CD41, CD61 and GPA from at least 2 independent 
experiments with each clone, treated as indicated. 2-way ANOVA and Bonferroni t-test were done. 
*p<0.05, **p<0.01 and ***p<0.001.  
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2. Analysis of the implication of C3G in megakaryocytic 

differentiation using mouse models 

Megakaryopoiesis and thrombopoiesis are multistep processes through which 

hematopoietic progenitor cells become mature megakaryocytes and form proplatelets. The 

production of megakaryocytes from adult HSCs of bone marrow (BM) or from embryonic HSCs 

of liver and cord blood, cultured with certain cytokines, is an ex vivo model commonly used to 

study the mechanisms involved in the expansion and differentiation of megakaryocytic 

progenitors. Multiple cytokine cocktails and culture conditions have been developed for the 

production of MKs, but it is known that TPO, the main regulator of megakaryopoiesis, is 

sufficient to induce the differentiation and maturation of hematopoietic progenitors to MKs.  

In this work, we have used two transgenic mouse lineages for C3G (Tg-C3G, lineages 

2C1 and 6A6) and one for C3GΔCat (Tg-C3GCat, 8A3 lineage, in which C3G is deleted in 

its catalytic domain), which had been generated and characterized by our group in a previous 

work (Gutierrez-Herrero, S. et al. 2012). Both transgenes, C3G and C3GΔCat, are expressed 

under the control of the megakaryocyte and platelet specific PF4 (platelet factor 4) gene 

promoter. Therefore, with these mice we can specifically study the involvement of C3G in the 

development of mouse megakaryocytes.  

2.1. Analysis of MK surface markers in transgenic BM cells 

As first approach, we analyzed by flow cytometry the CD61 positive population in 

freshly isolated BM cells from Tg-C3G and Tg-C3GΔCat mice. This measurement was 

performed at basal conditions to determine whether C3G is able perse to stimulate the 

differentiation of megakaryocytes in our mouse models. Similar percentages of CD61-positive 

cells were observed in both Tg-C3G and in Tg-C3GΔCat BM cells, compared to their 

corresponding wild type (WT) cells (Figure R-33).  

 

Figure R-33. Quantification of the percentage of CD61-positive cells in BM from our transgenic 
mice, at basal conditions. Freshly isolated bone marrow cells from the indicated genotypes were labeled 
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with anti-CD61 antibodies and analyzed by flow cytometry. Histograms represent the mean ± SEM of the 
percentage of CD61+ cells in at least, 3 different measures of each genotype. Mann-Whitney U test was 
done. No significant differences were observed between Tg-C3G or Tg-C3GΔCat vs WT. 

Next, we studied the presence of megakaryocytes in mouse BM cultures of the different 

genotypes, stimulated with TPO, by flow cytometry analysis of the CD41 and CD61 positive 

cells. Since primary BM cultures include a mixture of different cell populations, it is more 

appropriate, in this context, to analyze the megakaryocytic markers by detecting the 

percentage of positive cells, rather than measuring fluorescence intensities. 

Thus, freshly isolated BM cells from our transgenic mice were cultured with 50 µg/ml 

TPO for 6 days and then the levels of CD41 and CD61 positive cells measured by flow 

cytometry. The percentage of CD41+, CD61+ and double CD41/CD61+ megakaryocytes of 

each transgenic mouse are shown in Figure R-34. BM cultures from Tg-C3G mice harbored 

a higher percentage of megakaryocytes than WT or Tg-C3GCat mice, results being 

statistically significant in the CD41+ and double CD41+/CD61+ populations. On the other 

hand, there was a significant decrease in the percentage of CD41/CD61+ megakaryocytes in 

the bone marrow cultures of Tg-C3GΔCat mice, compared to WT and Tg-C3G cells.  These 

results indicate that C3G plays a positive role in the acquisition of megakaryocyte markers, 

induced by TPO stimulation, which is dependent on its catalytic, GEF, activity, and are in 

agreement with our results in human cell lines. 

 

Figure R-34. Quantification of the percentage of CD41+ and/or CD61+ cells in BM from Tg-C3G, 
Tg-C3GΔCat and WT mice stimulated with TPO. Freshly isolated BM cells were cultured with 
thrombopoietin (TPO) for 6 days. The percentage of CD41+, CD61+ and double CD41+/CD61+ cells was 
analyzed by flow cytometry. A) Box plots representing the median ± SEM of the percentage of positive 
cells of 6 different measures from three independent cultures of each genotype. Mann-Whitney U test 
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was done. *p<0.05, **p<0.01 and ***p<0.001. B) Table indicating the mean (± SEM) of the percentage of 
positive cells of each genotype. 

2.2. Analysis of ploidy in primary bone marrow cells 

In order to establish whether, as in the K562 and HEL cell lines, C3G plays a role in 

increasing DNA content in megakaryocytes, ex vivo, we determined the ploidy status of 

megakaryocytes from our transgenic Tg-C3G and Tg-C3GΔCat mice. For this purpose, freshly 

isolated BM cells were cultured, for 6 days, in the presence of 50 ng/ml TPO and the following 

cocktail of cytokines: 10 ng/ml SCF, 10 ng/ml IL-3, 10 ng/ml IL-6 and 10 ng/ml IL-11. BM cells 

were removed at 2, 4, and 6 days and stained with CD41-FITC antibody, prior to staining with 

propidium iodide, to analyze the DNA content only in cells committed to the megakaryocytic 

lineage.  

During the 6 days of MK differentiation a progressive increase in the percentage of 

CD41+ cells was observed by flow cytometry (Figure R-35A). Since the increase in the 

number of megakaryocytes over time was accompanied by an increase in cell size, two 

different populations of megakaryocytes could be distinguished; small cells expressing CD41 

(FSClow/CD41+) and large cells expressing high levels of CD41 (FSChigh/CD41+). Results in 

Figure R-35B, showing the ploidy distribution of each population separately, indicated that 

the small MKs were predominantly 2n (less mature), while the large MKs were polyploid cells 

(more mature). Therefore, we evaluated the ploidy of large, CD41+, BM cells.  

 

Figure R-35. Analysis of CD41+ populations in BM cultures differentiated to MKs. A) Flow cytometry 
dot plots showing forward-scatter and CD41 profiles of CD41+ BM cells. Cells were harvested after 2, 4 
and 6 days of treatment with TPO plus cytokines cocktail. In each plot, two gates are shown containing 
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small megakaryocytes (FSClow) and large megakaryocytes (FSChigh). B) Representative flow cytometry 
plots of ploidy distribution of small and large MKs, left and right panel, respectively.  

2.2.1. Effect of C3G overexpression on TPO-induced polyploidization ex vivo 

Next, we examined the polyploidization status of MKs of BM cells from Tg-C3G (2C1 

and 6A6 lineages), as described above. Overexpression of C3G increased the polyploidization 

of MKs (Figure R-36). Specifically, a significant increase in CD41+ cells with a DNA content 

≥8n (14% in Tg-C3G vs 9% in WT) was observed in Tg-C3G 2C1 lineage, which was coupled 

to a significant decrease in 2n CD41+ cells (64% in Tg-C3G vs 71% in WT). Similar tendency 

was observed in the 6A6 lineage (12% in Tg-C3G vs 8% in WT). These results indicate that 

C3G overexpression in megakaryocytes induces a higher rate of DNA replication.  
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Figure R-36. Transgenic C3G expression increases MK polyploidization. Freshly isolated BM cells 
were cultured with TPO, SCF, IL-3, IL-6 and IL-11 for 6 days. DNA content in CD41+ cells was measured 
by flow cytometry. A) Representative flow cytometry plots of ploidy distribution of FSChigh/CD41+ MKs 
from 2C1 lineage (WT and Tg) are shown. We identified 5 different populations; 2n, 4n, 8n, 16n and ≥32n. 
B) Table indicating the percentage of FSChigh/CD41+ MKs of the different clones corresponding to each 
population. C) Stacked bar histograms of the percentage of MKs of each genotype belonging to the 
different ploidy populations (2n, 4n, 8n, 16n and ≥32n) of BM cells from 2C1 mice (top panel) and 6A6 
mice (bottom panel). Red bars indicate the percentage of cells with a DNA content ≥8n. D) Histograms 
represent the mean ± SEM of the percentage of individual ploidy populations of BM cells from 2C1 (top 
panel) and 6A6 (bottom panel) mice lineages. Data correspond to 3 different experiments from 3 mouse 
of each genotype. Data were analyzed using the t-test. *p<0.05 and **p<0.01.  

 

2.2.2. Effect of C3GΔCat overexpression on TPO-induced polyploidization ex 

vivo 

To verify the results obtained with the Tg-C3G mice, polyploidization was analyzed in 

mature CD41+ megakaryocytes of the Tg-C3GΔCat mice. The results shown in Figure R-37 

indicate a DNA distribution of mature Tg-C3GΔCat megakaryocytes similar to that of the WT 

(12% in Tg-C3GΔCat vs 13% in WT). Additionally, the distribution of the different ploidy 

populations, ranging from 2n to 32n, was similar in Tg-C3GΔCat and WT megakaryocytes, 

indicating that overexpression of this mutant did not affect endomitosis. 

These results, together with the results obtained with the Tg-C3G mice, suggest a 

regulatory role for C3G in the acquisition of polyploid features that seems to be dependent on 

its GEF activity. In addition, these results also suggest that, in this context, Tg-C3GΔCat does 

not behave as a dominant negative mutant.  
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Figure R-37. Transgenic C3GΔCat expression does not affect MK polyploidization. Freshly isolated 
BM cells were cultured with TPO, SCF, IL-3, IL-6 and IL-11 for 6 days. DNA content in CD41+ cells was 
measured by flow cytometry. A) Two representative flow cytometry plots of ploidy distribution of 
FSChigh/CD41+ cells are shown. We identified 5 different populations; 2n, 4n, 8n, 16n and ≥32n. B) Table 
indicating the percentage of FSChigh/CD41+ MKs, corresponding to each population in the two genotypes. 
C) Stacked bar histograms of the percentage of FSChigh/CD41+ MKs of each genotype belonging to the 
different ploidy populations (2n, 4n, 8n, 16n and ≥32n) of BM cells from 8A3 mice lineage. Red bars 
indicate the percentage of cells with a DNA content ≥8n. D) Histograms represent the mean ± SEM of the 
percentage of individual ploidy populations of bone marrow MKs from 8A3 mice.  Data correspond to 3 
different experiments from 3 mouse of each genotype. Data were analyzed using the t-test. No significant 
differences were observed between Tg-C3GΔCat and WT. 

2.3. Analysis of the microenvironment in transgenic BM cells 

BM microenvironment plays an important role during the differentiation of 

hematopoietic lineages. Specifically, the interaction of megakaryocytic progenitors with the 

microenvironment is essential for proper megakaryopoiesis and subsequent development of 

megakaryocytes into platelets. Therefore, we aimed at studying the effect of the BM 

microenvironment on MK differentiation and its interplay with C3G. 

As previously commented in the Introduction, the processes of megakaryopoiesis and 

platelet production involve two distinct BM niches: osteoblastic and vascular. Gradients of 

cytokines and growth factors, as well as different protein-protein interactions regulate the 

migration of hematopoietic progenitors between the two niches, throughout their differentiation 



 

108 
 

 RESULTS 

and maturation. It has been hypothesized that the dynamic interaction of MKs with 

extracellular matrix proteins in the bone marrow allows their maturation from HSCs and their 

subsequent migration to the vascular niche, where the process of proplatelet formation would 

begin (Machlus, K.R. et al. 2013). Integrins, that are highly expressed on the surface of 

megakaryocytes, are crucial for cell migration and adhesion during MK differentiation, 

particularly integrin αIIbβ3, whose activation is mediated by Rap1 (Deutsch, V.R. et al. 2013). 

In this line, our group has reported that C3G participates in the activation of integrin αIIbβ3 by 

Rap1 in platelets (Gutierrez-Herrero, S. et al. 2012). 

Taking into account the importance of migration from the osteoblastic niche to the 

vascular niche during the differentiation and maturation of megakaryocytes, we analyzed the 

motility of megakaryocytes of our transgenic mice. Due to the importance of the 

microenvironment in MK migration, we need a model in which the microenvironment that 

supports megakaryocytic maturation is minimally modified.  

For that, we used bone marrow explants, which are prepared by collecting the intact 

bone marrow from the mouse femur, cutting it transversely into small sections and keeping it 

in a physiological buffer for several hours. During this time, the cells migrate progressively at 

the periphery of the explant and due to the large size of mature MKs, we can follow them 

through optical microscopy (Strassel, C. et al. 2009, Gibbins, J.M. et al. 2011). Over time, the 

MKs change their morphology and we can classify them according to this: spherical MKs, MKs 

with protrusions and MK with extending proplatelets (Figure R-38). 

 

Figure R-38. Bone marrow explants. Representative optical microscopy images of migration and 
differentiation of megakaryocytes from BM explants at 0, 3 and 6 hours. Boxes show the amplification of 
representative regions from each time point. Three different morphologies can be distinguished over time: 
spherical MKs, MKs with protrusion and MKs with proplatelets.  
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2.3.1. Role of C3G on the migration of mature megakaryocytes 

To study whether C3G regulates megakaryocyte motility, we analyzed the migration 

capacity of mature MKs in bone marrow explants of the different genotypes. The results of the 

velocity of migration and the distance covered are summarized in Figures R-39A and R-39B, 

respectively. The migration velocity of MKs released from the bone marrow of 6A6 mice was 

significantly higher in the Tg-C3G explants than in their WT. Similar results were obtained with 

the 2C1 lineage, although in this case differences were not statistically significant. On the 

other hand, Tg-C3GΔCat MKs showed a significant decrease in motility, compared to their WT 

MKs (8A3 lineage). These data were correlated with the results obtained when analyzing the 

distance covered, although only in 6A6 and 8A3 lineages the results were statistically 

significant (Figure R-39B). 

These results suggest that C3G, through its catalytic activity, is able to positively 

modulate the motility of MKs during their maturation, at least in this context.  

 

Figure R-39. C3G regulates megakaryocyte motility. Transverse sections of bone marrows from the 
different genotypes were plated in an incubation chamber and maintained at 37ºC for 6 hours. MKs at the 
periphery of the explants were tracked under the microscope and images were acquired at 10 min 
intervals. A) Box plots represent the mean ± SEM velocity (µm/second) of individual megakaryocytes 6 
hours after their release from bone marrow explants. Three mice of each genotype were analyzed. Mann 
Whitney U test were done. B) Box plot represent the mean distance (µm) covered by megakaryocytes 
from bone marrow explants. **p<0.01, ***p<0.001. 
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2.3.2. Effect of C3G on the adhesion of MKs to the osteoblastic matrix 

Proplatelet formation by megakaryocytes in vivo is temporarily regulated by 

interactions with the extracellular matrix. Type I collagen, which is particularly abundant in the 

osteoblastic niche, strongly inhibits proplatelet formation, whereas types IV and III collagens, 

which are located around the bone marrow vessels, support it. It is possible that these 

antagonistic events act by preventing the premature release of platelets into the circulation 

prior to the localization of megakaryocytes at the vascular interface of the bone marrow. 

Similarly, adhesion to perivascular fibronectin and vitronectin enhance megakaryopoiesis and 

proplatelet formation (Psaila, B. et al. 2012). 

In order to analyze the interaction of our transgenic megakaryocytes with the 

extracellular matrix of the bone marrow, we studied the megakaryocyte progenitors that are 

most strongly associated with the bone matrix. To do this, after isolating the bone marrow from 

femurs, small fragments of bone were incubated with collagenase and dispase to release the 

progenitors that are attached to the bone. The released cells were stained with anti-CD61 

antibodies and the presence or megakaryocytes was detected by flow cytometry. The results 

shown in Figure R-40 indicate that C3G overexpression modestly decreases the percentage 

of MK progenitors that are bound to the bone matrix, whereas overexpression of the C3GΔCat 

mutant showed no effect.  

Overall, our data suggest a role for C3G in the mobilization of mature megakaryocytes 

into the circulation.  

 

Figure R-40. Percentage of MKs most strongly associated to the osteoblastic niche. After extraction 
of the bone marrow, small pieces of femur were treated with collagenase and dispase for 2 hours and the 
presence of CD61+ cells was analyzed by flow cytometry. Mann-Whitney U test was done. 

2.4. Effect of C3G on proplatelet formation 

Initially, we attempted to study the final stage of the differentiation and maturation of 

megakaryocytes, the formation of proplatelets, using megakaryocytes cultured in coverslips 

coated with fibronectin or collagen. However, the experiments performed were unsuccessful 

because this process occurs, in vivo, in close association with cellular and extracellular 
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components of the bone marrow. Therefore, it is necessary to use a more physiological 

system, such as the bone marrow explants. Bone marrow explants were obtained in the same 

manner as previously indicated, except that in this case, an anti-CD41 specific fluorescence 

antibody was added to the physiological buffer. This improvement in the experimental 

approach allowed a better visualization of the megakaryocytes by fluorescence microscopy, 

which enabled to distinguish different morphologies (Figure R-41A). 

The results in Figure R-42B show that the overexpression of C3G increased the 

proportion of cells capable of producing proplatelets, by 10% in Tg-C3G of the 2C1 lineage, 

and by 20% in Tg-C3G of the 6A6 lineage, compared to their WT. In addition, the implication 

of the catalytic domain of C3G in this effect was verified by the decrease of about 20% in the 

ability of the C3GΔCat mice to form proplatelets, as compared to its control. These results 

indicate that the overexpression of C3G, through its catalytic domain, promotes the formation 

of proplatelets in mature megakaryocytes. 

 

Figure R-41. C3G promotes the formation of proplatelets from mature megakaryocytes. A) 
Representative images of the different stages of MK maturation: spherical megakaryocytes, 
megakaryocytes with extending protrusions and megakaryocytes with proplatelets. Fluorescence 
microscope images (Left panels) and brightfield inverted microscope images (right panels). B) The 
histograms represent the mean ± SEM of the percentage of cells of each phenotype measured in two 
different experiments, with at least 4 explants from each genotype. 

2.5. Analysis of the number of platelet in blood 

The above results suggest that C3G may induce the formation of a greater number of 

platelets. Therefore, we performed platelet counts in periphery blood collected from mice of 

the different genotypes using the Hemavet Counter. Surprisingly, the overexpression of C3G 

in our transgenic mice did not affect the final number of platelets (Figure R-42). Additionally, 

no differences were found in platelet counts between males and females (data not shown). 
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Figure R-42. C3G did not modify platelet counts. Counts were performed in peripheral blood collected 
from 6-month mice of the different genotypes using Hemavet Counter HV950FS. The histograms 
represent the mean ± SEM of the number of platelets. Mann-Whitney U test was done, but no significant 
differences were observed between Tg-C3G or Tg-C3GΔCat vs WT.  
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In the present work, we have examined the implication of C3G in the modulation of 

different stages of megakaryopoiesis leading to platelet formation. These include acquisition 

of surface markers, changes in morphology, polyploidization, migration from the osteoblastic 

niche to the vascular niche and proplatelet formation. For this purpose, we have used two 

different experimental models: (i) hematopoietic cell lines K562 and HEL, in which C3G has 

been proven to modulate the expression of CD41, CD61 and GPA membrane glycoproteins, 

as well as changes in morphology and ploidy status, and (ii) primary bone marrow cells from 

C3G transgenic mice, where, in addition to the above, we have demonstrated that C3G 

promotes MK migration from the osteoblastic to the vascular niche, and proplatelet formation. 

A role for C3G in differentiation has been demonstrated in many other systems, such 

adipocytes (Jin, S. et al. 2000), neuroblastoma cells (Radha, V. et al. 2008), monocytes to 

macrophages (Radha, V. et al. 2011) and mesenchymal cells to myotubes (Sasi Kumar, K. et 

al. 2015), which is probably a reflect of its essential role during embryogenesis (Ohba, Y. et 

al. 2001). 

  

1. Implication of C3G in MK differentiation using transgenic 

cell lines 

Megakaryocytic differentiation, induced by PMA, has been extensively studied in 

hematopoietic cell lines, such as K562 and HEL. PMA mimics TPO, the physiological inducer 

of megakaryopoiesis, in the in vitro stimulation of the morphological changes that take place 

during this process (Long, M.W. et al. 1990, Jacquel, A. et al. 2006, Conde, I. et al. 2010, 

Sardina, J.L. et al. 2010). Through the use of PMA, numerous signaling pathways have been 

described that are involved in modulating the acquisition of the MK features. However, certain 

mechanisms are not completely decrypted. 

K562 and HEL cells behave as a pluripotent hematopoietic precursor, expressing in 

undifferentiated conditions, features of both erythroid and megakaryocytic lineages. In fact, 

both cell lines can be induced to undergo erythroid or megakaryocytic differentiation 

depending on the stimuli (Long, M.W. et al. 1990). Thus, K562 and HEL cells treated with 

PMA exhibit characteristic features of megakaryocytes, including large size, presence of 

vacuoles and long extensions. These same features were observed in unstimulated K562 

cells overexpressing C3G, which provided the first evidence that C3G could be involved in the 

modulation of morphological changes accompanying MK differentiation, presumably acting 

downstream of PKC. Moreover, the expression of C3G was increased in K562, and specially 
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in HEL cells, upon treatment with PMA for several days, further suggesting that C3G could be 

involved in the actions of PMA leading to MK differentiation. In this regard, we have previously 

demonstrated the participation of C3G in the PMA-PKC pathway leading to integrin IIb3 

activation in mouse platelets (Gutierrez-Herrero, S. et al. 2012).  

In agreement with a possible role of C3G in MK differentiation, expression of the 

megakaryocyte markers, CD41 and CD61, dramatically increased in K562 cells with stable 

overexpression of C3G, with no other stimuli. This indicates that C3G, per se, is capable of 

triggering the process by which these erythroid cell lines commit to the megakaryocytic 

lineage.  

However, and contrarily to the expected, neither C3G-silencing, nor even C3G 

ablation, induced a decrease in the expression of these markers below the control levels, 

neither in basal conditions nor under PMA treatment. This, indicates that in K562 and HEL 

cells C3G modulates the acquisition of these megakaryocytic markers but is not essential. 

Assuming that C3G functions are, at least partially, mediated by its GEF activity on Rap1, a 

possible explanation for the lack of effect on the expression of MK markers in C3G-silenced 

cells is that a compensatory mechanism might be produced in which, the absence of C3G is 

countervailed by other Rap1-GEFs. A potential candidate is CALDAG-GEFI, which is one of 

the most abundant GEFs in murine platelets and plays a significant role in their function 

(Crittenden, J.R. et al. 2004, Schultess, J. et al. 2005). However, there are no indications 

about a possible role of CalDAG-GEFI in MK differentiation. 

On the other hand, according to the existence of a common precursor for the erythroid 

and megakaryocytic lineages, the acquisition of the megakaryocytic markers in these cell lines 

was linked to the downregulation of the erythroid ones. In accordance, expression of -globin 

was completely abrogated by C3G-overexpression in K562 cells, which was even able to 

inhibit that induced by Imatinib. Similarly, although to a lesser extent, the expression of GPA 

also decreased in the C3G-overexpressing K562 cells. In addition, although we did not 

observed changes in the expression of megakaryocytic markers in cells with C3G silencing, 

we observed a clear increase in the expression of GPA mRNA in K562-pSuper-C3Gi cells. All 

these results suggest a role for C3G in the regulation of early stages in the 

erythroid/megakaryocytic commitment.  

Interestingly, untreated C3G-overexpressing cells showed levels of MK markers similar 

or even higher than control cells treated with PMA. The fact that PMA did not further increase 

the expression of these markers induced by C3G, suggests that both effects are not 

synergistic and that, therefore, C3G must be acting in the PMA-PKC pathway. In fact, while 
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inhibition of PKC, by treatment with Bis, completely abolished PMA-induced CD41 and CD61 

expression in control cells, it slightly affected the induced by C3G, indicating that C3G is 

downstream of PKC in this pathway, as observed in platelets (Gutierrez-Herrero, S. et al. 

2012). Also, these results indicate that C3G overexpression is sufficient to trigger downstream 

pathways involved in MK differentiation without the participation of upstream elements. 

Treatment with PMA induces morphological changes in K562 and HEL cells 

reminiscent of megakaryocytes (Long, M.W. et al. 1990, Jacquel, A. et al. 2006, Conde, I. et 

al. 2010, Sardina, J.L. et al. 2010). We have observed that the overexpression of C3G induces 

the acquisition of MK differentiation features similar to those induced by PMA, including 

increase in size, appearance of large nuclei and long cytoplasmic extensions. However, 

contrarily to its role on the expression of CD41 and CD61, the effect of C3G in morphology is 

enhanced by treatment with PMA. 

An important process that occurs along the differentiation and maturation of 

megakaryocytes is the increase of the DNA content through repeated cycles of endomitosis 

(Geddis, A.E. et al. 2006). The increase in polyploid state is accompanied by an increase in 

cell and nuclei size (Tomer, A. 2004). As indicated above, an increase in nuclear size was 

observed in C3G-overexpressing K562 cells, suggesting that C3G could be facilitating the exit 

of normal cell cycle and the entry into an endomitotic cycle. The analysis of the DNA content 

in C3G overexpressing and C3G silenced K562 and HEL cells indicate that C3G plays an 

important role in the modulation of polyploidy in these cells. Thus, overexpression of C3G 

increase the proportion of polyploid cells in both cell lines, while its ablation induced a clear 

decrease in the proportion of polyploid K562 cells. It should be highlighted that, although these 

results did not reach statistical significance, they were consistent in the two cell lines used 

and in both experimental conditions, i.e. C3G overexpression and C3G knock-out. The role of 

C3G in the regulation of ploidy was PMA-dependent, since no changes in ploidy status were 

observed in untreated clones. We have shown that treatment with PMA induces an increase 

in the phosphorylation of C3G in Y504. It has been described that phosphorylation of C3G in 

this residue, and possible in others, although is not essential, plays an important role in its full 

activation, probably through the release of some autoinhibitory mechanisms (Ichiba, T. et al. 

1999, Mitra, A. et al. 2010). It is possible that an increase in C3G phosphorylation is required 

in later stages during MK differentiation, but not during the initial phases involved in the 

expression of the MK markers.  

Additionally, overexpression of C3G in K562 cells induces an increase in the 

expression of p21, a negative regulator of the normal cell cycle, which is up-regulated during 
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MK differentiation (Matsumura, I. et al. 1997). Upregulation of p21 by C3G overexpression, 

through the ERK signaling pathway, has been also reported in neuronal differentiation (Radha, 

V. et al. 2008). However, p21 levels in our C3G knock-out K562 cells remained similar to those 

in control cells. This fact could not explain why these cells reach lower levels of ploidy. A 

plausible explanation is that the function of C3G in the induction of the endomitotic cycle 

requires other cell cycle regulators, in addition to p21. In fact, it has been shown that p21 

knock-out does not rescue the mitotic arrest during differentiation, indicating that its role in 

endomitosis is not essential (Baccini, V. et al. 2001). 

As mentioned, C3G is a Guanine Nucleotide Exchange Factor (GEF), so its main 

functions dependent on its catalytic, GEF domain. However, C3G also participates in the 

regulation of multiple cellular events through protein-protein interactions involving its central 

polyproline region (SH3-binding) and its N-terminal (E-cadherin-binding) domains, regardless 

of its catalytic function. In addition, these domains can contribute to the modulation of the 

catalytic activity (Ichiba, T. et al. 1999). Our results obtained using C3G deletion mutants 

indicate that both functions seem to be relevant in the acquisition of MK markers. That is, C3G 

could modulate MK differentiation through interactions with other proteins and additionally, 

through its function as GEF, modulating the activation of GTPases, presumably Rap1, 

considering its important role in megakaryocyte and platelet biology (Stork, P.J. et al. 2005). 

Additionally, the results of -globin expression, which gave us a more precise view of the 

changes occurred in the erythroid markers than the flow cytometric data, clearly indicate that 

these three C3G domains contribute to the regulation of the levels of -globin and, therefore 

to the prevention of erythroid differentiation following induction with Imatinib. 

MK differentiation signaling pathways modulated by C3G  

As previously commented, our results indicate that C3G is downstream PKC in the 

PMA pathway, as demonstrated by the lack of effect of Bisindolylmaleimide on the expression 

of MK markers, or in the activation of ERK1/2, induced by C3G overexpression. In fact, C3G 

is phosphorylated in a PKC-dependent manner, probably through Src, since activation of Src 

by PKC has been documented (Tatin, F. et al. 2006), as well as phosphorylation of C3G by 

Src-family kinases (SFK) and other non-receptor tyrosine kinases (NRTK), such as Abl or Bcr-

Abl (Shivakrupa, R. et al. 2003, Radha, V. et al. 2004, Gutierrez-Berzal, J. et al. 2006, Mitra, 

A. et al. 2010). It should not be forgotten that Bcr-Abl is the main kinase that regulates 

signaling in K562 cells. 

The Raf/MEK/ERK1/2 signaling pathway is considered one of the most important 

pathways that modulate MK differentiation. In K562, ERK1/2 is rapidly phosphorylated by PMA 



 

119 
 

 DISCUSSION 

and its activity has been related to early stages of MK differentiation and maturation. 

Specifically, transient phosphorylation of ERK1/2 is required to induce proliferation of 

progenitors and expression of surface markers (Jacquel, A. et al. 2006, Conde, I. et al. 2010), 

whereas a more sustained activation is needed during MK maturation. However, our analysis 

of the expression of MK surface markers, using the ERK inhibitor U0126, did not suggest a 

clear implication of ERK1/2 in this early differentiation event, as U0 inhibited the expression 

of these markers in HEL, but not in K562, control cells. However, what was clear is that U0 

did not modify the expression of these markers modulated by C3G in any of these cell lines. 

The increase in GPA expression observed in both cell types upon treatment with U0 is in 

agreement with the negative effect of ERK signaling on erythroid differentiation described by 

other authors (Jacquel, A. et al. 2006).  

On the other hand, we have observed that at short times of PMA stimulation, there are 

no differences in ERK1/2 phosphorylation between C3G-overexpressing, or silencing clones, 

and control clones. This indicates, that C3G does not participate in the transient activation of 

ERK1/2 by PMA. However, at longer PMA exposure times, C3G overexpression induced a 

sustained ERK1/2 phosphorylation, which was completely abrogated in cells with C3G 

ablation. These results indicate that C3G is involved in the activation of pathways leading to 

sustained ERK1/2 activation, which are needed for the maturation of megakaryocytes.  

Moreover, these results are in agreement with the lack of effect of U0 in the expression 

of MK markers regulated by C3G, since this is an early event during MK differentiation. 

Therefore, our results indicate that C3G can modulate early stages of MK differentiation, such 

as marker expression, with independence of the ERK1/2 activation. Furthermore, C3G is able 

to activate ERK1/2 independently of PMA-PKC, as assessed by the lack of effect of Bis on 

C3G-induced ERK phosphorylation, indicating an uncoupling between PKC and C3G in the 

activation of ERK1/2. 

TPO-induced MK differentiation requires an initial transient activation of ERK, which is 

mediated by the Shc/SOS/Ras/Raf signaling pathway. At later stages during MK differentiation 

a more sustained activation of ERK1/2 through the Rap1-B-Raf pathway, is produced (Stork, 

P.J. et al. 2005). Our results suggest that C3G could be the Rap1-GEF modulating this 

process in megakaryocytes. In fact, while Rap1 was transiently activated by PMA in K562 

control cells, rapidly decaying after 2 min, Rap1-GTP levels were maintained for 10 min in 

C3G overexpressing cells, in correlation with a sustained C3G phosphorylation.  Rap1 activity 

assays in PMA-stimulated K562 clones, expressing different C3G mutants, showed that N-

terminal and the SH3-binding domains of C3G regulate its catalytic activity, reflecting the 
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complexity of the regulation of C3G activation by PMA. In addition, the observed increase in 

Rap1-GTP produced by the overexpression of a C3G mutant harboring only the SH3-binding 

domain, could be the result of the sequestration of Rap1 inhibitors interacting with this domain, 

or, alternatively could be due to the interaction of this domain with other proteins, forming 

complexes that stimulate the activation of Rap1 by other GEFs.  

Interestingly Sos1/2 double KO mice show significant increase in platelet counts, 

without alteration of other blood parameters (Baltanas, F.C. et al. 2013). In hematopoietic cells 

Sos1/2 is the main Ras regulator leading to transient ERK1/2 activation, while sustained 

activation of ERK1/2 is driven by a CrkL-C3G-Ras pathway (Nosaka, Y. et al. 1999). 

Therefore, we can speculate that this increase in platelet count could be due to a higher 

megakaryopoiesis in these KO mice as a result of an increase in C3G-Ras or C3G-Rap1 

pathways leading to a sustained ERK activation in the hematopoietic precursors.  

Altogether, all the above results indicate that PMA induces the phosphorylation of C3G 

resulting in activation of the Rap1 signaling pathway that leads to the sustained activation of 

ERK1/2, which is necessary for MK maturation. Furthermore, our results suggest that 

C3G/Rap1 could modulate ERK1/2 in a PKC-independent manner and that the transient 

activation of ERK by PMA is not involved in the effect of C3G on the expression of MK surface 

markers.  

The involvement of p38 MAPK pathway in MK differentiation is well documented. It has 

been suggested that p38 MAPK can play opposite roles during MK differentiation depending 

on its levels of activation. Thus, high levels of active p38 MAPK inhibits MK differentiation 

through its inhibitory effect on ERK1/2 phosphorylation, which, as mentioned is needed during 

early MK differentiation events. A functional relationship between p38 and ERK, in which p38 

would act as a negative regulator of the activation of ERK1/2, has been extensively described 

(Ding, B.C. et al. 2001, Li, S.P. et al. 2003, Liu, Q. et al. 2004). However, it has been reported 

that low levels of phospho-p38 MAPK are needed during the initial stages of PMA-induced 

MK differentiation, while a drastic reduction in the levels of activated p38 MAPK blocked MK 

differentiation and increase cell death (Jacquel, A. et al. 2006). It has been proposed that 

transient p38 activation may induce cell cycle arrest, triggering a differentiation program in 

which sub-sequent p38 down-regulation is required for the acquisition of MK features (Conde, 

I. et al. 2010).  

Our results using double C3G and p38α silenced K562 clones suggest that C3G and 

p38 collaborate in the regulation of the expression of megakaryocytic and erythroid markers, 

although the implication of this relationship in the regulation of early MK differentiation is not 
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clear. A functional relationship between C3G and p38 MAPK has been already described 

(Maia, V. et al. 2009, Gutierrez-Uzquiza, A. et al. 2010, Maia, V. et al. 2013, Priego, N. et al. 

2016). Moreover, treatment with SB increased the expression of MK surface markers in cells 

with C3G overexpression, indicating a negative role of p38 MAPK in C3G actions.  

PMA slightly increase p38 MAPK phosphorylation, indicative of its contribution to the 

regulation of PMA-induced MK differentiation. In addition, C3G overexpression also increased 

basal levels of phospho-p38, both in K562 and HEL cells, in agreement with the need for 

certain levels of p38 during MK differentiation. Moreover, the effect of PMA and C3G on p38 

MAPK activation seems to be additive, indicating a possible dissociation between PMA-PKC 

and C3G pathways in the regulation of p38 MAPK. In any case, these results are in apparent 

contradiction with a negative role of p38 MAPK in the C3G actions. However, the use of two 

clones of HEL cells, expressing different levels of C3G, indicate that C3G modulates phospho-

p38 levels, so that high levels of C3G could induce a decrease in the levels of phospho-p38. 

In this line, an interesting aspect is that p38 MAPK seems to be a mediator in the regulatory 

effect of C3G on ERK1/2 phosphorylation, at least in HEL cells stimulated with PMA. Thus, 

HEL cells with high levels of C3G, showed intermediate levels of phospho-p38. Similarly, cells 

with intermediate levels of C3G (higher than control) present higher levels of phospho-p38. 

Therefore, the increase in p-ERK levels observed in the clone with high C3G expression could 

be an indirect effect due to the lower levels of phospho-p38 MAPK in these cells. A negative 

regulatory effect of C3G over p38 MAPK activity has been observed in many systems (Maia, 

V. et al. 2009, Gutierrez-Uzquiza, A. et al. 2010, Maia, V. et al. 2013, Priego, N. et al. 2016). 

Our results also showed a positive effect of SB on p38 MAPK phosphorylation. This 

apparently contradictory result can be explained by a p38 autophosphorylation mechanism, 

independent on MEKK (Ge, B. et al. 2002). In addition, we can not rule out the existence of 

negative feed-back mechanisms, hitherto unknown, regulated by p38 MAPK. 

Regarding the role of PI3K-Akt in the effect of C3G on MK differentiation, our results, 

using PI3K inhibitor wortmannin (W), suggest a contribution of this pathway to the C3G-

induced MK marker expression. However, W did not show any effect in PMA-stimulated 

control cells. The involvement of PI3K-Akt pathway in MK differentiation has not been 

completely clarified. Some authors have claimed that this pathway is necessary, but not 

sufficient, to induce endomitosis (Geddis, A.E. et al. 2001, Conde, I. et al. 2010), although it 

seems to also stimulate expression of MK surface markers, in cooperation with the ERK1/2 

pathway (Conde, I. et al. 2010).  However, according to other authors, Akt, but not PI3K, would 

be the one involved in the regulation of the expression of CD41 and CD61 during MK 
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differentiation in K562 and HEL cells (Sardina, J.L. et al. 2010). Finally, other authors, using 

two different PI3K inhibitors, Wortmannin (a covalent, irreversible, PI3K inhibitor) and 

LY294002 (a reversible PI3K inhibitor), did not observed any contribution of this pathway to 

MK differentiation in K562 cells (Jacquel, A. et al. 2006). Our results in control cells would be 

in accordance with these last two authors. In contrast, PI3K would be involved in the effect of 

C3G, independently of PMA. This is an interesting aspect that deserves more investigation. 

 

2. Implication of C3G in MK differentiation using mouse model 

In this part of the work we have used primary bone marrow cells, isolated from our 

transgenic C3G and C3GCat mice and their corresponding wild type siblings, in which, 

besides analyzing the process of acquisition of megakaryocytic markers and polyploidy status, 

we have also performed studies focused on the stages of megakaryopoiesis and 

thrombopoiesis that are probably more dependent of the microenvironment, such as migration 

of MKs and formation of proplatelets.  

Analysis of the percentage of megakaryocytes in transgenic bone marrow (BM) cells, 

cultured in the presence of TPO, showed a higher proportion of CD41/CD61 positive cells in 

Tg-C3G mice, and a lower percentage in Tg-C3GΔCat mice, compared to wild type animals. 

This indicates that C3G plays a positive role in the early stages of MK differentiation induced 

by TPO, which depends on its GEF domain. This in agreement with the increase in CD41 and 

CD61 expression in K562 and HEL clones with C3G overexpression. However, the 

percentage of megakaryocytes in untreated mouse BM cells were similar in Tg-C3G, Tg-

C3GΔCat mice and their controls. These results indicate that, in contrast to the observed in 

the cell lines, C3G alone is not able to modulate the acquisition of MK markers in a more 

physiological context, requiring an additional stimulation, such as TPO, to potentiate this 

process. 

K562 and HEL cell lines behave like MEP (megakaryocyte-erythroid progenitor cells). 

So, they are multipotent cells that, depending on the stimulus they receive, commit to the 

megakaryocytic or erythroid lineage. As we have demonstrated, C3G induces the expression 

of MK markers, an early event in the MK differentiation program, being therefore, involved in 

the commitment of these cell lines into the megakaryocytic lineage. Hence, it would be 

interesting to study ex vivo whether C3G is also involved in the proliferation and differentiation 

of MEPs into HPP-CFU-MKs, the less differentiated MK progenitor, which follows the MEPs. 

However, since Rap1 expression has been reported to occur during maturation, rather than 



 

123 
 

 DISCUSSION 

differentiation, of megakaryocytes from cord blood progenitor cells (Balduini, A. et al. 2008), 

a participation of C3G, through Rap1 activation, in the early differentiation of MK progenitors 

is unlikely. 

Our results, showing a higher proportion of mature megakaryocytes (large CD41+ 

cells) with a DNA content ≥8n in the bone marrow of our transgenic mice, confirmed our 

previous data in cell lines. In both Tg-C3G lineages (2C1 and 6A6), C3G overexpression 

induced a higher ratio of DNA replication, being statistically significant in the 2C1 mice. In 

contrast, the levels of polyploidy of large CD41+ cells from the BM of Tg-C3GΔCat mice were 

very similar to those of the control mice. These results corroborate the positive role played by 

C3G in the acquisition of polyploid features, which seems to be dependent on its GEF activity.  

An important stage in MK differentiation is the migration of megakaryocyte precursors 

from the osteoblastic to the vascular niche. The interaction of megakaryocytes with the matrix 

is an essential process for a proper migration. Type I collagen, is found in the extracellular 

matrix, being the most abundant component of the osteoblastic niche. It has been described 

that its interaction with immature megakaryocytes through its main receptors, integrin α2β1 

and GPVI, inhibits the premature release of platelets (Pallotta, I. et al. 2009, Zou, Z. et al. 

2009). For this reason, we found it interesting to analyze the megakaryocytes that are most 

closely linked to the bone in our transgenic mice, which would reveal whether C3G 

overexpression modifies the interaction of MKs with the endosteal collagen. The results 

indicated a lower proportion of MKs bound to the osteoblastic matrix in Tg-C3G mice, 

compared to wild type mice, indicating that C3G overexpression decreases the interaction 

between the megakaryocytes and the endosteal niche through collagen. Several explanations 

may account for these observations: i) C3G accelerates the onset of MK differentiation and 

maturation, and therefore, the pool of MK progenitors in the endosteum is smaller; ii) C3G 

decreases the proliferation of progenitors, resulting in a decrease in the pool of immature MKs 

in the osteoblastic niche; iii) C3G expression impairs a proper interaction between MKs and 

type I collagen, thereby MK are released prematurely. Since transgenic and wild type mice 

showed similar percentages of MK in the bone marrow in vivo (see Figure R-33) and we did 

not observe changes in platelet levels in peripheral blood, we discarded the first possibility 

(see Figure R-42). To discriminate between the two other options, it would necessary to 

perform a CFU-MKs assay. 

Interestingly, the proteomic analysis of platelets from Tg-C3G 2C1 mice and their 

controls, revealed a differential expression of several proteins involved in adhesion and 

migration, such as Integrin-linked protein kinase, Rho GDP-dissociation inhibitors, Cofilin-1, 
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Tubulin -1 chain or Actin-related protein 3 (unpublished results of the group), which is in favor 

of a role of C3G in the regulation of adhesion and migration during MK maturation. 

This is reinforced by the observation that C3G expression in bone marrow explants 

increases the velocity of migration and the distance covered by megakaryocytes, being the 

catalytic activity of C3G responsible of this effect. In addition, the migration capacity and the 

formation of proplatelets are two processes that are highly related, since both involve 

cytoskeleton dynamics. This idea is reinforced by our last experiment in which, according to 

the migration results, we observed an increase in the number of proplatelet-forming 

megakaryocytes in our C3G transgenic mice, whereas C3GΔCat transgenic mice showed a 

reduced percentage of proplatelets, compared to wild type mice. We can conclude that C3G, 

through its catalytic, GEF, domain, modulates MK migration and proplatelet formation.  

Several studies have demonstrated a role for C3G in migration. In Ba/F3 hematopoietic 

cell, C3G in complexes with CrkL and Cbl, induces migration in response to a SDF1α gradient 

through the activation of integrin 1 and ERK1/2  (Uemura, N. et al. 1999). C3G also plays an 

essential role in the migration of neural precursors during the cerebral cortex development 

(Voss, A.K. et al. 2008, Yip, Y.P. et al. 2012). More recently, it has been shown that C3G, in 

complexes with CrkII, regulate T lymphocyte adhesion and migration in response to 

immunophilins (Nath, P.R. et al. 2014). A negative regulation of migration by C3G has also 

been reported (Ohba, Y. et al. 2001, Priego, N. et al. 2016). 

The increased proplatelet formation observed in Tg-C3G mice would suggest the 

production of a greater number of platelets in these animals. However, as stated above, this 

was not the case. This prompt us to speculate that C3G might play a role in MK differentiation 

and maturation under pathological conditions, such as cancer or wound injury, rather than in 

normal megakaryopoiesis. In this line, we have recently demonstrated a role for platelet C3G 

in tumor angiogenesis and metastasis (unpublished results of the group). Future experiments 

will be conducted to address this hypothesis. 

 

 

In summary, from the results obtained in this study, and previous data on the signaling 

pathways activated by PMA that are involved in the regulation of MK differentiation, we 

propose a model in which C3G could act as an inducer or mediator of the megakaryocytic 

differentiation by PMA- dependent and independent pathways (Figure D-1). In addition, 
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Figure D-2 summarizes the stages of megakaryopoiesis in which we have shown that C3G 

plays a role. 

 

Figure D-1. Proposed model of the signaling pathways mediating the effect of C3G in MK 
differentiation and maturation. A) Previous proposed model of PMA-stimulated pathways during MK 
differentiation. B) Proposed model of signaling pathways induced by C3G overexpression; C3G would 
regulate early MK differentiation events by a PMA-PKC-independent pathway, involving the activation of 
PI3K-Akt, and possibly other pathways not yet identified C) Proposed model of the involvement of C3G 
in MK maturation. C3G would be phosphorylated by PMA through Src or other kinases. Overexpressed 
phosphorylated C3G induce a higher, sustained, activation of ERK by maintaining low levels of p38.  
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Figure D-2. Stages of megakaryopoiesis showing the processes in which C3G is involved. 
Arrowheads indicate the stages of megakaryopoiesis and thrombopoiesis in which our results in cell lines 
and primary bone marrow cells have demonstrated that C3G plays a role: acquisition of megakaryocytic 
features in early MK differentiation, increase in DNA content through endomitotic cycles after treatment 
with TPO or PMA, migration and proplatelet formation. BM: bone marrow. 
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1. C3G is involved in the regulation of megakaryocytic and erythroid surface markers, 

indicating its role in the early commitment of erythroid/megakaryocytic progenitors. In 

cell lines, this function is independent on stimulation, while in mouse bone marrow cells, 

it depends on TPO stimulation. 

 

2. The role of C3G in the expression of megakaryocytic surface markers is mediated by 

Rap1 and PI3K but is independent on activation of PKC and transient activation of 

ERK1/2 and p38 MAPK. The N-terminal and SH3-binding domains of C3G play a role in 

the regulation of megakaryocytic and erythroid markers expression, probably through 

the modulation of the catalytic activity of C3G. 

 

3. PMA induces the phosphorylation of C3G in Y504, leading to the sustained activation of 

the Rap1-ERK1/2 signaling pathway, which is probably involved in megakaryocytic 

maturation. 

 

4. C3G regulates ERK1/2 activation through the modulation of phophos-p38 MAPK levels. 

 

5. C3G modulates the increase in DNA content in cell lines treated with PMA through 

upregulation of p21 levels, and in bone marrow cells upon TPO stimulation. 

 

6. In ex vivo models, C3G, through its catalytic activity, modulates megakaryocytic 

migration and proplatelet formation. 

 

7. In vivo, the number of megakaryocytes in the bone marrow and the number of platelets 

in blood are not regulated by C3G overexpression. 

 

Final Conclusion 

C3G plays a role in the regulation of different stages in the megakaryocytic 

differentiation: acquisition of specific surface markers, changes in morphology, polyploidy, 

migration from de osteoblastic niche to the vascular niche and proplatelet formation. This 

effect of C3G on megakaryocytic differentiation does not lead to higher platelet counts under 

physiological conditions. 
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