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Introduction

The theory of General Relativity (GR) was developed by Einstein and completed in
1915 and it is, so far, the most accurate theory to describe gravitational physics. It
generalizes the Special theory of Relativity, published in 1905. Einstein understood that
in presence of gravitational fields, the spacetime is a four dimensional differentiable
manifold endowed with a metric tensor of signature (1, 3) solving the so-called Einstein
field equations of General Relativity, which are fundamental to study the gravitational
interaction. Einstein’s theory makes remarkable statements concerning the structure of
space and time and the nature of the gravitational field. The theory uses complex and
powerful mathematical tools.

The influence of Riemann’s ideas was essential for the foundation of GR. Minkowski's
and Ricci's work endowed Einstein’s special and general theory of relativity with a solid
geometrical structure, and contributed to set the pillars of both theories. In 1906 Ein-
stein published the Equivalence Principle and from 1907 to 1911 Einstein’'s work was
directed to the obtention of a field law for gravitation. With the help of Grossmann for
a better understanding of the arising mathematical difficulties, Einstein’s main achieve-
ment in the period going from 1912 to 1914 was the Principle of General Covariance.
After a long and difficult process, including a final race with Hilbert, Einstein published
his famous field equations of gravity in his article ,, Die Feldgleichungen der Gravitation”
("“The field equations of Gravitation”) the 25th of November of 1915 in the Prussian
Academy of Sciences [31].

GR theory can be applied to numerous areas of physics. Among others, it allows us
to study the evolution of the universe as a whole. The theory can also be used to study
the behaviour of highly energetic, compact astronomical objects such as quasars and
compact X-ray sources. It is also the best theory to study the gravitational collapse of
a massive object and it predicts accurately the behaviour of moving bodies in strong
gravitational fields. Einstein's theory also predicted in 1916 the existence of gravitational
waves, ripples of the distorted spacetime traveling at the speed of light and caused by



massive accelerating objects. A major confirmation of the theory has been the recent
detection of gravitational waves by the observatory LIGO on the 14th of September
2015 [62]. Other GR predictions have also been found to be in excellent agreement
with experiments and observations. It is also believed that General Relativity will play a
capital role in the future development of a quantum theory of gravitation.

The subject of this thesis is the so-called Penrose inequality conjecture. In order to
describe the general context in which it arises we start with some general remarks on
gravitational collapse.

To study the process of collapse, the spacetime is often divided in two well differen-
tiated regions, the interior of the massive body and its exterior. The (exterior) metric
generated by the isolated massive object is modeled by a so called asymptotically flat
vacuum solution (a precise definition will be given in Chapter 2). Asymptotically flat
(AF) spacetimes require restrictions “far away” from the sources, specifically the metric
and a finite number of its derivatives are assumed to approach the Minkowski values
at an appropriate rate in the far away region. The limit can be taken along null direc-
tions (null infinity) or spacelike directions (spacelike infinity). As a consequence, several
notions of asymptotic flatness exist.

In 1939 Oppenheimer, Snyder, and Volkoff [81] [82] studied for the first time a par-
ticular a process of gravitational collapse under the assumption of spherical symmetry.
This led eventually to the concepts of “white dwarfs”, “neutron stars” (both as stellar
remnants), and of “black holes” (solutions of the vacuum field equations), as possible
outcomes of such collapsing process. When a massive star exhausts its nuclear fuel, it
leaves behind a small, dense remnant core. If the core mass is greater that two to three
solar masses it is believed to enter the stage of continual gravitational collapse without
any final equilibrium state. The radius shrinks and the star reaches higher densities.
One of the most important problems that the General Relativity attempts to solve is
to predict and to explain the final state of such an object. This is a central question in
relativistic astrophysics and gravitation theory today.

The discovery of the Schwarzschild vacuum solution to the Einstein field equations in
1915, combined with the work of Oppenheimer, Snyder, and Volkoff on gravitational
collapse, allows one to understand the whole process of collapse of a spherically sym-
metric non-rotating star and the consequent “formation” of a Schwarzshild black hole
and a singularity. In 1915 Karl Schwarzschild solved the Einstein vacuum field equa-
tions for an uncharged spherically symmetric non-rotating single mass. The work was
published in 1916 with the title , Uber das Gravitationsfeld eines Massenpunktes nach
der Einsteinschen Theorie" (“On the Gravitational Field of a Point-Mass, according to
Einstein’s Theory" ). Concerning Oppenheimer, Snyder, and Volkoff's work, the amount
of mass that determines if the final state of collapse is a neutron star or a black hole is
known as the Tolman-Oppenheimer-Volkoff (TOV) limit. It is estimated to be around
two to three solar masses.




1. Introduction

The natural philosopher and geologist John Michell speculated in 1783 about the
existence of massive bodies generating such a strong gravitational field that not even
light could escape, and Laplace published the same idea in his masterpiece “Exposition
du Systeme du Monde” (“The system of the world”) in 1796. However, Einstein's
General Relativity proved the theoretical existence of black holes for the first time. In
1964, the journalist Ann Ewing wrote an article about this topic titled “'Black holes’
in space”. Three years later Wheeler popularized the term “black hole”. Nowadays,
existence of black holes is accepted by most of astronomers. In fact it is widely believed
that most of the galaxies have a supermassive black hole in their center.

Black holes are an important outcome of gravitational collapse. Another, and in fact
an even more generic one is the existence of singularities. Indeed, there exist theorems
in GR asserting that under quite general circumstances when the collapse has gone past
a certain point the formation of a singularity is inevitable (see for instance [44],[08]). The
concept of singularity in GR is not trivial since, by definition, a singularity cannot be part
of the manifold. The natural idea that some physical or geometrical quantity must blow
up at the singularity turns out to be inadequate as there exist spacetimes with regular
(or even vanishing) curvature invariants which are nevertheless singular. To avoid this
difficulty, the most commonly accepted way to define singularities is by using spacetime
curves as pointers to them. The curves represent real or hypothetical particles that are
travelling across the spacetime and suddenly disappear in a finite time (this may happen
both to the future or to the past of the trajectory). The basic definition of singularity
is the existence of incomplete and inextendible non-necessarily geodesic curves in the
spacetime. For this definition to make sense it is necessary that the spacetime itself is
assumed to be inextendible. The incomplete curves are usually assumed to have a causal
character, although spacelike curves can be also used to define singularities. However,
all singularity theorems intend to prove the geodesic incompleteness of the spacetime,
which is a stronger condition.

The theory of singularities was mostly developed in the 60s. The first singularity
theorem was published by Penrose in 1965 [83], who proved null geodesic incompleteness
under fairly general initial conditions describing states of collapse. This was signaled by
the presence of a closed trapped surface. The use of such surfaces helped to prove many
other important singularity theorems, including the most important one due to Hawking
and Penrose in 1970 [45]. These theorems are remarkable since they can be applied
to cosmological situations, to star or galaxy collapse and to collision of gravitational
waves.

A fundamental issue is whether singularities and black holes always come together
when gravitational collapse occurs. More specifically, in a gravitational collapse setup,
one possibility is that an event horizon starts developing at a sufficiently early phase
such that the collapsing star and the eventual singularity gets hidden inside the event
horizon. In this case not even light can escape and reach a far-away observer in the




exterior region. The spacetime contains a non empty ‘“region of no escape”, which is
causally disconnected from future null infinity. A spacetime satisfying this property is
called a black hole. The singularity theorems of Hawking and Penrose do not state that
a shielded singularity forms necessarily as a consequence of gravitational collapse. On
the other hand, if the formation of the event horizon gets delayed sufficiently (or does
not form at all) during the collapse, the result is a naked singularity, and radiation from
the singularity could escape to infinity. This might happen for instance if the formation
of the singularity at the center of the collapsing spherical star lies to the causal past of
the instant when the star surface enters its Schwarzschild radius.

Naked singularities have been found to be possible, e.g. in the collapse of spherically
symmetric inhomogeneous dust, depending on the nature of the initial data. However it
is widely believed that the symmetry assumption plays an important role for the existence
of such models. The outcome of collapse is crucial to the problem of asymptotic
predictability. The difference between the two types of singularities is very significant. In
a spacetime that develops a naked singularity, there would be a total loss of predictability
in the future of the singular point. In the case of the shielded singularity, predictability
would be preserved at least in the spacetime region outside the horizon. This issue
has great importance for black hole astrophysics and for the theory of black holes. The
validity of many theorems on black hole dynamics depends on the assumption of absence
of naked singularities.

The conjecture that states that, generically, the singularities of gravitational collapse
are contained in black holes was first proposed by Penrose in 1969 and is known as
the weak cosmic censorship conjecture [84]. In physical terms, the main idea behind
this conjecture is that any observer that is sufficiently far away from a collapsing object
will neither encounter any singularities nor effects coming from them. In other words,
the weak cosmic censorship conjectures that distant observers can live out their lives
free from the effects of any catastrophic events happening in the collapsing area of
spacetime. Consequently, if singularities arise, they cannot be seen from infinity. As
already mentioned, the outcome of the collapse is not always a black hole and a naked
singularity can occur in some situations. However the most important question is the
genericity and stability of such naked singularities arising from initial regular data. The
weak cosmic censorship would hold in case the initial data subspace giving rise to naked
singularities has zero measure in a suitable sense. In other words, the weak cosmic
censorship allows naked singularities, as long as they are not generic. Another related
conjecture, called strong cosmic censorship conjecture, also formulated by Penrose in
1979 [86], states that, generically, timelike singularities never occur, so that even an
observer who falls into a black hole will never “see” the singularity.

So far no version of weak cosmic censorship has been proved in full generality. One
of the main problems is that the event horizon is a feature that depends on the whole
future behaviour of the solution of the field equations over an infinite period of time.
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Any proof of the weak cosmic censorship requires a much deeper knowledge of general
global properties of the Einstein equations than we have today. One possible way to
approach the problem is to study the stability of particularly relevant spacetimes.

The idea is that proving the (non-linear) stability of either singularity-free or black hole
spacetimes would provide us with a large class of spacetimes with the same properties,
which in turn would give support to the weak cosmic censorship conjecture. The global
non-linear stability problem is formulated from initial data on a spacelike hypersurface
which is a small perturbation of a spacelike slice of the spacetime under consideration.
The initial data set contains the geometric information of the initial spacelike hyper-
surface and its initial content of matter. The fundamental existence result is due to
Choquet-Bruhat [17] and asserts that for a suitable matter model (including vacuum),
each initial data set has a unique maximal, globally hyperbolic Cauchy development
(intuitively, the maximal part of the spacetime uniquely determined by the prescribed
initial data).

The only non-linear stability result known so far is the Christodoulou and Kleinerman
global stability of the Minkowski spacetime [18]. The initial spacelike slice is a constant
time hyperplane in Minkowski space. Christodoulou and Kleinerman proved that for
small but non-linear perturbations of this Minkowski data, the Cauchy development has
qualitative behaviour similar to Minkowski spacetime. In particular, the causal past of
future null infinity is the whole spacetime. This means that all spacetimes arising from
this perturbed data do not collapse nor form black holes, and consequently the weak
cosmic censorship conjecture holds for all of them.

The problem of stability of explicit black hole spacetimes is a formidable problem and
it is natural to consider linear perturbations first, i.e. the study of the convergence
or divergence of the evolution of scalar, vector and tensor fields in those black hole
spacetimes. If the fields do not decay at infinity, non-linear effects are expected to
enhance this and we can expect that the solution is not (non-linearly) stable. On the
other hand, linear stability would support the validity of the weak cosmic censorship
conjecture.

In the four dimensional case, the perturbation analysis of the Schwarzschild metric
was initiated by Regge and Wheeler [90]. Later on, Vishveshwara [105] proved linear
stability to axial (“odd parity”) perturbations in 1970. Shortly afterwards, Price [88],
B9] gave a partial result concerning the stability of the Schwarzschild black hole, with
precise information about the decay properties of the perturbations. The work of Zerilli
[113] and Moncrief [79] also contributed to determine the modal (i.e. in terms of its
decomposition in spherical harmonics) linear stability of gravitational perturbations for
the Schwarzshild black hole. The study of black hole non-modal stability was initiated by
Kay and Wald [56], giving a proof of the boundedness of perturbations at asymptotically
late times of the Schwarzshild black hole. This area of research has been very active
in the last decade or so, with the culminating breakthrough of Dafermos-Holzegel-




Rodnianski [25] in 2016, in which the linear stability was fully proven. Very recently,
Hung, Keller and Wang [53] have found an alternative, complementary and simpler
proof for the linear stability of the Schwarzshild black hole.

The stability of a Kerr black hole is much more difficult to prove. Whiting [112]
proved in 1989 the modal stability for the Kerr black hole using the Teukolsky equation.
An analogue theorem to the one proved by Kay and Wald, applicable to a large class
of backgrounds (including the slow rotating Kerr black hole) was proved by Dafermos
and Rodniansky [27]. The same authors also provided in [26] the essential elements for
the proof of decay of solutions of the scalar wave equation in general subextremal Kerr
backgrounds. This finally allowed Dafermos, Rodnianski and Shlapentokh-Rothman [28]
to prove in 2014 the linear stability for scalar fields on such backgrounds. Extremal black
holes have also been object of study because they lie at the boundary between black
holes and naked singularities and hence are believed to be good indicators to test the
weak cosmic censorship. In [2, 4], Aretakis exhibited instability properties of a general
class of extremal black holes (including the Kerr extremal black hole) with respect to
scalar perturbations. These instabilities are determined by local properties of extremal
horizons and hence do not depend on global aspects of the spacetime. On the other
hand, Dain and Gentile de Austria [30] found a positive definite and conserved energy
for axially symmetric linear gravitational perturbations of the extreme Kerr black hole,
which gives support to its linear stability against axial perturbations. The existence of
such a conserved quantity does not contradict Aretakis instability because the former
is only defined in the black hole exterior region and does not involve any transverse
derivative at the horizon.

So far, the tests of stability of black holes to general, linear perturbations have provided
support to the weak cosmic censorship. However, there have also been attempts to
disprove Penrose’s conjecture. The setup that Penrose used to test the validity of
the conjecture was a shell of null dust moving inwards at the speed of light in a flat
spacetime. Penrose devised this construction as a potential counterexample to weak
cosmic censorship. Several attempts to find counterexamples using time symmetric
initial data have also been considered. The two following properties are crucial in order
to put forward the counterexamples. The first is that if weak cosmic censorship holds,
then every trapped surface must lie in the black hole region (a trapped surface S is a
compact, two dimensional surface satisfying that the convergence of both the outgoing
and ingoing null geodesics normal to S is everywhere negative). The second is that if
the weak cosmic censorship holds, and if the matter satisfies the null energy condition
(i.e. if T(k, k) > 0 for all null k), then the area of the event horizon of a black hole
cannot decrease with time.

As we will see with detail in the Chapter [ the weak cosmic censorship conjecture
together with additional physically reasonable assumptions imply the inequality that is
the core of this thesis: the Penrose inequality. This inequality involves the concept of
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total mass/energy of the spacetime, and the area of surfaces related to quasi-local black
holes. The total energy is defined in terms of integrals in the corresponding asymptotic
region, where the metric is close to Minkowski, and its definition depends on the chosen
infinity, spatial or null. In any case, both energies are defined as components of two
respective vectors: the ADM energy-momentum vector where the integral is taken at
spatial infinity, and the Bondi energy-momentum vector where the integral is taken at
null infinity. Both transform as Lorentz vectors under suitable transformations, and
their Lorentz lengths are called masses (ADM mass and Bondi mass respectively). The
ADM mass is a conserved quantity upon evolution and the Bondi mass is monotonically
decreasing in advanced time. More information about such energy-momentum vectors
can be found e.g. in [106]. These different masses give rise to different versions of the
Penrose inequality.

In this thesis, we will mainly focus our attention in the so-called null Penrose inequality,
which as its name indicates, is related to the Bondi energy-momentum vector of the
spacetime. However in this introduction, and for the sake of completeness we also
discuss briefly its “spacelike version”. In 1973, Penrose [85] came to the conclusion
that the ADM mass of an asymptotically flat spacetime should be at least the mass
of the black holes that it contains, if the energy density is non-negative everywhere.
Penrose’s heuristic argument (partly based in the assumption of weak cosmic censorship
and that will be exposed in the next chapter in full detail) drove him to formulate the
following so-called Penrose inequality conjecture (precise definitions will be given later):

Conjecture 1.0.1 (The Penrose inequality for the ADM mass in asymptotically flat
spacetimes). Let (M, g) be a four dimensional spacetime satisfying the DEC (dominant
energy condition), admitting an asymptotically flat spacelike hypersurface (*,y, K).
Assume that ¥ contains a closed (compact and without boundary) WOTS (weakly
outer trapped surface) S. Then

‘Smin(s)‘

M >
ADM Z l6n

where Mapy is the ADM mass of the spacetime, and Snin(S) the minimal area enclosure
of S (i.e. the outermost of all surfaces in ¥ that enclose S and have less or equal area
than any other surface enclosing S). Moreover, if the inequality becomes equality,
(X,7, K) can be isometrically embedded in the Schwarzschild spacetime.

Although the heuristic argument by Penrose was originally formulated in a four di-
mensional context, the Penrose inequality for the ADM mass in asymptotically flat
spacetimes can also be formulated in arbitrary dimensions. The form of the inequality
in a (n+ 1)-dimensional spacetime is




where w,_1 is the area of the unit (n — 1)-sphere. Studying the Penrose inequality is
an interesting problem because its validity would provide a strengthening of the positive
mass theorem, and in the context of gravitational collapse it would give indirect support
to the validity of weak cosmic censorship.

We next describe briefly the main results known concerning the validity of the Penrose
inequality. More information and references can be found for instance in [69].

Malec and O Murchadha [68] proved the so called Penrose inequality in spherical
symmetry. They studied three-dimensional spherically symmetric asymptotically flat
spacelike hypersurfaces ¥, satisfying the dominant energy condition. Moreover, the
hypersurfaces were assumed to be maximal, i.e. with second fundamental form of
vanishing trace. In this setup they proved that

| 15]
>4/ =L
Eapm > 167"

where Eapy is the ADM energy of ¥, and S is the outermost trapped surface whose
exterior does not contain any other trapped surface. This inequality is weaker than
the Penrose inequality since it involves the ADM energy instead of the mass. In 1996
Hayward [47] proved the inequality in full generality, i.e. for non-maximal hypersurfaces,
using properties that he obtained in [46] of the so-called Misner-Sharp quasi-local en-
ergy [78], which coincides with the Hawking energy when particularized to spherical
symmetry.

The Riemannian Penrose inequality is formulated in asymptotically flat Riemannian
three manifolds with non-negative scalar curvature and states that the area of the
outermost minimal surface S (i.e. the minimal surface that encloses any other minimal
surface in X) is bounded by the ADM mass by

Mapm > 1/ 2. (1.1)

This version of the inequality corresponds to the case where the hypersurface ¥ is
time-symmetric (i.e. with vanishing second fundamental form) because in this setup
the dominant energy condition transforms into the condition of non-negative scalar
curvature and S,in(S) is necessarily the outermost minimal surface. The Riemann
Penrose inequality for three dimensional hypersurfaces was proved by Huisken & llmanen
[52] for a connected S, and by Bray [12] for arbitrary S. Bray and Lee [14] proved the
conjecture for hypersurfaces with dimension at most seven. The Riemannian Penrose
inequality has also been proven in arbitrary dimension for graphs in the Euclidean space
[57, 50]. Given the importance of the breakthroughs of Huisken & limanen and Bray
we describe very briefly the main ideas in their proofs.

The method used by Huisken and limanen [52] to prove the inequality is based on an
earlier heuristic argument due to Geroch [33] and improved later on by Jang & Wald

38
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[55], which uses the monotonicity of the Hawking energy under inverse mean curvature
flow. Moreover, the Hawking energy tends to Eapp When the flow approaches large
spheres at infinity. If the initial surface 0% is minimal, an immediate combination of
these properties yields the Penrose inequality. The complication is that in general the
inverse mean curvature flow develops singularities. This issue was handled by Huisken
and Illmanen by putting forward a weak formulation of the inverse mean curvature flow
and proving both existence of this generalized flow and that all the necessary mono-
tonicity and asymptotic requirements are satisfied. The method also allowed Huisken
and llmanen to prove the rigidity part of the Penrose inequality.

Bray [12] proved the Riemannian Penrose inequality in full generality in 2001. His
method was based on the existence of a conformal flow of metrics on >, which interpo-
lates between the initial metric and the Schwarzschild metric. The crucial facts are that
the ADM mass of the metrics does not increase along the flow, and that the metric
outside the outermost minimal area enclosure of 0% tends to the Schwarzschild metric

of mass at least %. Bray's method can be extended up to dimension seven (Bray

and Lee [14]), whereas Huisken and limanen’s can only be applied to three-dimensional
manifolds. It should be emphasized that for the rigidity part Bray and Lee had to assume
that the manifold is spin (which holds automatically in three-dimensions).

The Penrose inequality for asymptotically hyperbolic manifolds has also attracted con-
siderable attention. Asymptotically hyperbolic Riemannian manifolds arise as slices of
asymptotically flat vacuum spacetimes, and whose second fundamental form is propor-
tional to its metric (umbilical initial data). Such slices cannot reach spatial infinity, and
they are usually called asymptotically hyperbolic or hyperboloidal. In fact, they approach
null infinity. Asymptotically hyperbolic manifolds also arise as time-symmetric hyper-
surfaces in spacetimes solving the vacuum field equations with negative cosmological
constant.

The Penrose inequality is different in each context. In the umbilical case, where the
second fundamental form is a constant A times the metric, the surface S of interest
is the outermost surface with mean curvature Hs = 2|\|. In the time-symmetric and
N\ < 0 case, the surface to consider is outermost minimal. In both cases the scalar
curvature of the hypersurface satisfies Scal, > —6A?, where in the time-symmetric case
X is defined by A = —3X?. The appropriate asymptotic behaviour of the hypersurface
and the definition of mass (see e.g. [22]) are more difficult than in the euclidean case.
When the boundary at infinity has spherical topology, the definition of mass was first
given in [107], and the Penrose inequality reads

S| N S| :
> I, _|__ . R
M= 16w = 2 (1=¢) A ) ' (1.2)

where M is the mass of the asymptotically hyperbolic manifold, and € = 0, 1 depending
on whether we are in the time-symmetric case, or in the umbilical case.
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Several authors have worked on this problem. In [80] Neves showed that in the
umbilical version of (I.2)), the inverse mean curvature flow along the hyperboloid does
not have the necessary convergence properties. More specifically, the method requires
that the limit along the flow of the Hawking energy is not larger than the total mass
M of the manifold, and Neves showed that this cannot be guaranteed in general.

A method to prove the validity of the non-time symmetric Penrose inequality in the AF
case was put forward by Bray and Khuri in [13], where the inverse mean curvature flow
was used in combination with the generalized Jang equation to get a system of PDEs
which, provided existence of solutions with suitable boundary and asymptotic behaviour
holds, would imply the Penrose conjecture for a single black hole. Using an analo-
gous reasoning, Ye Sle Cha, Khuri and Sakovich [16] showed that the problem in the
asymptotically hyperboloidal case could be reduced to the asymptotically flat one pro-
vided a suitably modified system of PDE also admits solutions. In [29], Dahl, Gicquaud
and Sakovich proved the validity of Penrose-type inequalities in arbitrary dimension for
asymptotically hyperbolic graphs over the hyperbolic space H” with a minimal horizon
[, and whose scalar curvature satisfies Scal > —n(n — 1). In the particular case where
[ C H" is star-shaped and mean convex, the time symmetric version of the Penrose
inequality (L2)) has been proved by Lopes de Lima and Girdo [65]. The same authors
have also proved in [64] the umbilical version of (2] in the graph case where the
horizon [ satisfies suitable restrictions.

After this brief description of the known results in the spacelike case, we next discuss
the null Penrose inequality, which is the main topic of this thesis. This inequality involves
spacetimes that admit a null hypersurface Q2 extending smoothly to past null infinity.
The precise form for the Penrose conjecture in this setting is

Conjecture 1.0.2 (The Penrose inequality for the Bondi mass in asymptotically
flat spacetimes). Let (M, g) be a four dimensional spacetime, asymptotically flat at
null infinity, satisfying the dominant energy condition, and admitting a null hypersurface
Q2 that extends smoothly to past null infinity. Assume that {2 has an embedded closed
weakly outer trapped surface S. Then

S|
Mg > ] —, 1.3
F=Vie6r (1.3)
where Mg is the Bondi mass of the spacetime determined by the cut of 2 with past null
infinity. Moreover, the inequality becomes equality if and only if Q is isometric (intrin-
sically and extrinsically) to a spherically symmetric null hypersurface in a Schwarzshild
spacetime.

As already mentioned, the original construction that led Penrose to formulate his
inequality in 1973 was a collapsing shell of null dust in the Minkowski spacetime which,
after passing, leaves two well defined regions separated by the null hypersurface along
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1. Introduction

which the shell propagates. The inner region is isometric to the Minkowski spacetime
while the exterior region is no longer flat. Once a cross section S of €2 is selected, the
matter content of the shell can be adjusted so that S becomes a WOTS with respect
to the outer geometry . The crucial advantage of the construction is that the inequality
(3] can be rewritten solely in terms of the inner geometry (details of the construction
will be given in the following chapter). Specifically, the equivalent form of (L3]) in
arbitrary dimension in terms of the Minkowski geometry reads

/ 65 > (n — 1)(wo_s) ™3| S|55, (1.4)
S

where 6, is the outer null expansion of S, and w,_; is the area of the (n — 1)-sphere.
We will refer to inequality (L4]) as the shell Penrose inequality.

A proof of the general null Penrose inequality (I.3]) was claimed by Ludvigsen & Vickers
[67]. However, a gap was found by Bergqvist [8] who, at the same time, substantially
streamlined the argument. Ludvigsen & Vickers and Bergqvist's argument was based
on two facts. The first one was the existence of a quasi-local object defined on surfaces
which enjoyed monotonicity properties along past directed null geodesic foliations. This
functional was introduced by Bergqvist [8] and we refer to it as Bergqvist mass in this
thesis (also in [69] [74]) The second fact was a suitable upper bound for the area of the
weakly outer trapped surface Sy. Establishing this bound involved that the geodesic
null foliation {S,} of €2 starting at Sy satisfied two additional properties. The first one
was that the future null expansion 6, of S, along the future null generator k tangent
to 2 admits an expansion of the form

ek:_—2+o(i), (1.5)

i.e. with vanishing coefficient in the term r=2. The second one was that the rescaled

metric r—2y(r) (where «y(r) is the induced metric of S,) approaches a round metric
on the sphere when r — 4+o00. The main result by Ludvigsen & Vickers is that under
these circumstances the Penrose inequality (I.3]) follows. Ludvigsen & Vickers took
for granted that a geodesic foliation {S,} satisfying these two properties always exists.
Bergqvist noted that under the assumption ([LLA) it was not at all clear that the condition
that the metric r—27(r) approaches a round sphere needs to be satisfied. This was the
gap in the original paper [67]. Despite this, the ideas of Ludvigsen & Vickers and
specially Bergqvist have been a relevant source of inspiration for this thesis, as it will
become clear later.

Concerning successful proofs of the null Penrose inequality in particular situations,
the only case fully addressed is when the null hypersurface €2 is shear-free in a vacuum
spacetime. This result was proved by Sauter [93], in his Ph.D. thesis. More recently,
Tafel [99] has proved the null Penrose inequality for a cross section of the event horizon
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in black hole spacetimes under asymptotic conditions to the future weaker than station-
arity. Finally, Alexakis [1] has proved the null Penrose inequality for vacuum spacetimes
that are small but non-linear perturbations of Schwarzshild.

Concerning the shell Penrose inequality (IL4]), the first case that was solved involved
surfaces S lying on a constant time hyperplane {t = ty}, and was proved by Gibbons in
[36, 37], who showed that the inequality reduces to the classic Minkowski inequality (see
e.g. [10]) between the total mean curvature and the area of convex surfaces in Euclidean
space. The second case refers to surfaces S contained in the past null cone of a point
and leads to a non-trivial inequality for functions on the sphere [85] B]. In spacetime
dimension four, its validity was proved by Tod [101] using the Sobolev inequality in R*.
In fact, the four dimensional spherical case can also be viewed as a particular case of
a Penrose inequality for spacetimes admitting shear-free null hypersurfaces extending
from the trapped surface to past null infinity proved by Sauter [93].

Regarding the general case (i.e. when the surface S does not lie necessarily in a
hyperplane), Gibbons claimed [37] to have a general proof. However, the argument
contains a serious gap. His strategy in [37] was to project S along the time translation
Killing vector of the Minkowski spacetime onto a constant time hyperplane. The main
idea was to rewrite the shell Penrose inequality in terms of the geometry of the projected
surface as a hypersurface of the Euclidean space. Gibbons computed an (erroneous)
expression for the mean curvature of the projected surface. This gap was noticed for
the first time by Mars in [69].

In spacetime dimension four, Wang [108] has proved the inequality for surfaces lying
on a spacelike hyperboloid of Minkowski with the properties of being mean convex and
star-shaped. Recently Brendle and Wang [15] have proved the inequality for another
large class of surfaces, namely those lying on a timelike cylinder over a convex surface.
These cylinders are called convex static timelike hypersurfaces in [15]. In fact, the case
analyzed by the authors refers to a generalization of inequality (I_4]) conjectured for the
Schwarzschild spacetime, but the argument applies to the Minkowski situation as well.
The main idea behind their result consists again in performing a projection of S along
the time translation £ onto a constant time hyperplane ;. By relating the geometry
of S to the geometry of the projected surface S on ¥, inequality (I4) becomes
a consequence of the standard Minkowski inequality in Euclidean space provided S is
convex.

In the remaining of this Introduction, we will give a general idea of the structure of
the thesis and will describe its main results.

In Chapter 2] we describe the heuristic argument by Penrose to support his conjec-
ture and present the calculations involved in the derivation of the shell version of the
inequality. In addition we give the main definitions used throughout this thesis. The
standard heuristic argument is formulated for AF spacetimes, so we start by introducing
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1. Introduction

this concept and the associated notion of energy-momentum four vector. As already
mentioned, the Penrose inequality can be considered as a strengthening of the Positive
mass theorem, which we state in Theorem 2.3.2] At this point, and after defining the
concept of black hole and stating the weak cosmic censorship conjecture, we have the
necessary ingredients to describe in detail Penrose’'s heuristic argument. We start with
the original formulation in terms of the ADM mass and then describe the modifications
that are required for the null case. In the second part of Chapter 2l we justify the rela-
tion between the null Penrose inequality (IL3]) and its shell version (I4]) in Minkowski
by using the theory of shells of general character introduced by Mars [71] and that we
also summarize in the second part of Chapter 2l

As already mentioned, Gibbons [37] attempted the projection of spacelike surfaces
in Minkowski onto a constant time hyperplane in order to rewrite and prove the shell
Penrose inequality in terms of the projected geometry. Although the computations were
wrong, the idea is nevertheless worth exploring. In fact the natural setup to do this is
the class of spacetimes which admit both a timelike Killing along which one can project
and also geometrically privileged spacelike hypersurfaces onto which one can project.
Since the shell Penrose inequality can in principle be formulated for shells propagating
in other backgrounds than Minkowski (e.g. in the Schwarzshild spacetime, or others)
this more general setup may also have applications for the Penrose inequality.

Chapter 3B begins by recalling the concept of staticity, and studies in detail the pro-
jection of embedded spacelike surfaces along the static Killing field onto constant time
hypersurfaces. Projections of this sort in the Minkowski spacetime have also been stud-
ied in connection to a new definition of quasi-local mass by Wang and Yau [109], [110].
Partial results in the general static case have also appeared in [13]. However, to the
best of our knowledge, no systematic or exhaustive account of the relation between all
the intrinsic and extrinsic geometric properties of S and its projection S has appeared in
the literature, neither in the Minkowski nor in the general static case. We devote most
of Chapter @ to this task. With this machinery at hand we can describe why Gibbons
argument is erroneous. This is also discussed in full detail in Chapter [3, which we con-
clude by giving an alternative proof of Brendle and Wang's main result [15] mentioned
before. In fact our proof of this result was simultaneous and independent of Brendle and
Wang's, and used the projection identities described in Chapter 3], which were published
in [75].

Chapter @ is devoted to the study of the projection of the surface S along its past null
cone €2 onto constant time hyperplanes in the Minkowski background. This projection
was used for the first time in [74] to tackle the shell Penrose inequality, and allows
us to rewrite the original shell Penrose inequality in terms of the time height function
T = t|s — tp and the geometry of a convex Euclidean surface, specifically the one
obtained by intersecting the past null cone €2 of S with a constant time hyperplane
{t = to}. This alternative form of the shell Penrose inequality is given in Theorem
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4370 A powerful Sobolev type inequality on the sphere due to Beckner [7] allows us
to prove the validity of this inequality in the case when the surface S lies in the past
null cone of a point (Theoremd.4.4]). This generalizes to arbitrary dimension the result
by Tod [101] in spacetime dimension four and shows that a conjecture put forward by
this author regarding the optimal form of the inequality is in fact true. The geometry
of convex, compact hypersurfaces in Euclidean space can be fully described in terms of
a single function h on the unit sphere. This function is called the “support function”
and plays an important role in this thesis. In spacetime dimension four, the support
function was already used in [I03] in a related but different context. One of our main
results is Theorem 4.2 where we write down the Penrose inequality in Minkowski
as an inequality involving two smooth functions on the n-dimensional sphere. Inspired
by the argument by Ludvigsen & Vickers [67] and Bergqvist [8], we are able to prove
(Theorem [A.5.3)) the validity of this inequality in four spacetime dimensions for a large
class of surfaces which can be explicitly characterized and which contains an open set
of surfaces. However, when applied to surfaces lying on the past null cone of a point,
the only case covered by this theorem is when S is a round sphere. Thus, the cases
covered by Theorem 4.4 and by Theorem are essentially complementary, which
indicates that any attempt of proving the shell Penrose inequality in Minkowski in the
general case will probably require a combination of both methods.

In Chapter Bl we consider the (n + 2)-dimensional Minkowski spacetime, with n > 2,
and three different surfaces: the initial surface S embedded in the null hypersurface
Q2, the euclidean surface §0, obtained as the intersection of the past null cone Q2 of S
and the constant time hyperplane {t = ty}, and the euclidean surface S, which is the
projection of S along the time translation £ onto the constant time hyperplane %, .
Brendle and Wang's main result in [I5] (Theorem B3.7] in this thesis) showed that
the convexity of S was sufficient for the validity of the shell Penrose inequality for S.
The convexity of S can also be codified in the geometry of §0 and in the time height
function 7 of S, which measures the “distance” that separates S from the constant
time hyperplane {t = tg}. This codification is made in Theorem [5:31], where we obtain
an explicit differential inequality for 7 and the geometry of §0 which implies the validity
of the shell Penrose inequality for S. This requires analyzing the geometry of S as a
graph over Sy. Most of our work consists in relating the induced metric and second
fundamental forms of S to those of §0. This is a calculation purely in Euclidean space
which had not been considered before. This chapter is concluded with two examples in
order to give an idea of the range of applicability of the result.

Chapter [@l is devoted to studying the Hawking energy along null hypersurfaces. The
Hawking energy is known to approach the total energy of the spacetime when the
surfaces approach round spheres both in the asymptotically flat [41], [52] and asymptot-
ically hyperboloidal case [80]. The same is true for surfaces along null hypersurfaces
[6l, B7]. However, understanding the behaviour of the Hawking energy at infinity when
the condition of round spheres is not imposed is much more subtle. The aim of Chapter
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1. Introduction

Is to carry out such an analysis for surfaces embedded in a asymptotically flat null
hypersurface. This problem is interesting for several reasons. First of all, it is relevant
in order to help clarifying the physical meaning of the Hawking energy, which is related
to an energy in some circumstances but not in others. From a more practical point
of view, the Hawking energy has become a very valuable tool for various problems in
geometric analysis. The underlying reason is that the Hawking energy enjoys interesting
monotonicity properties for specific flows of surfaces. In order to become truly useful,
this monotonicity needs to be complemented with a good behaviour of the Hawking
energy at infinity, so that its asymptotic value can be related to the ADM (or Bondi)
energies of the spacetime. Whenever the flow can be proved to approach large round
spheres, the results above suffice, but often this is not the case and understanding the
behaviour of the Hawking energy at infinity under general circumstances becomes a
useful piece of information.

Studying the limit of the Hawking energy along flows in null hypersurfaces is particularly
interesting because it allows for a very neat description of spacelike surfaces embedded
in the null hypersurfaces as graphs with respect to a background foliation that can
be chosen conveniently. We exploit this fact in order to obtain an explicit and simple
expression for the limit of the Hawking energy at infinity for a very general flow of
spacelike surfaces (see Theorem in Chapter [@]). In addition to this theorem we
also find an interesting covariance property of the integrand in (Z57]) under changes of
background foliation. This is part of the content of Theorems [6.5.5] [6.5.6] and
in Chapter [@l

Chapter[Zis devoted to the use of flows of general character along null hypersurfaces in
AF spacetimes satisfying the dominant energy condition with the purpose of addressing
the null Penrose inequality. Motivated by Ludvigsen & Vickers and Bergqvist ideas
[67, 8], in the first part of the chapter we consider the setup where (LH) is kept
and we relax the condition of approaching large spheres. Geodesic foliations with this
property are named Geodesic Asymptotically Bondi in this work (or GAB for short). A
motivation for this name will be given later. GAB foliations turn out to always exist
and be (geometrically) unique given any cross section Sy in a past asymptotically flat
null hypersurface. Our main result in this setting is a Penrose-type inequality which
relates the area of any weakly outer trapped surface Sp and the limit at infinity of
the Hawking energy along the GAB foliation associated to Sy. This is the content of
Theorem[Z3.8l In combination with the study of the limit of the Hawking energy along
general foliations of asymptotically flat null hypersurfaces Q2 carried out in Chapter
(and published in [76]), this theorem provides an interesting Penrose-type inequality with
potentially useful applications. This theorem immediately extends Ludvigsen & Vickers
and Bergquvist result because when the flow approaches large spheres one automatically
has that the limit of the Hawking energy along the flow is the Bondi energy of the cut
at .#~ defined by Q and measured by the observer defined by the flow.
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The second method we analyze is complementary to the previous one. Here we
relax condition (LK) and keep the assumption that the flow of surfaces along the null
hypersurfaces approaches round spheres. In this context, one of our main achievements
is Theorem [Z.5.5], where we find two sufficient conditions that imply the validity of the
null Penrose inequality. The method that has allowed us to obtain these conditions has
been called Renormalized Area Method (a motivation for this name will be given later),
and uses monotonic properties and limits of a suitable functional on spacelike surfaces
which we introduce.

In this chapter we also study applications of the two methods. The Renormalized
Area Method is applied to two particular but relevant cases, namely the case when Q2
is shear-free and vacuum (where, as mentioned, the null Penrose inequality is known to
hold by other methods [93]) and the case of null shells propagating in the Minkowski
spacetime. The latter will allow us in particular to provide a link between the analysis
here and the one in Chapter [@ Concerning the application of Theorem to the
Minkowski setting, we derive a shell Penrose type inequality (Theorem [Z.8.2]) valid for
any closed spacelike surface in Minkowski for which its outer past null cone extends
smoothly to past null infinity.

Some known results that are needed in this thesis are presented in three different
Appendices. Appendix [Alis devoted to the study of the geometric relations between an
embedded non degenerate pseudo-Riemannian manifold N in an ambient one M. In this
Appendix we find the relation between the second fundamental form vectors of more
than two successively embedded manifolds, as well as the equation relating the Hessian
of N and M. We also state and prove the Gauss, Ricci and Codazzi identities.

We devote Appendix [B] to study the geometry of null hypersurfaces Q. We start
by introducing the standard quotient structure that allows to define a positive definite
metric and a second fundamental form. We then devote most of the appendix to derive
the evolution equations of various geometric quantities associated to €2 and to foliations
of Q.

Appendix (] is devoted to the study of the relation of the geometry of a convex
body C in R” with the geometry of the standard sphere. In particular we define the
support function and present its main properties. Our main objective is to find explicit
expressions for the first and second fundamental forms of C in terms of the support
function and the geometry of the standard sphere. This is relevant for Chapter [ in
order to find an alternative form of the shell Penrose inequality.

To summarize, in this thesis we have studied the null Penrose inequality in detail.
We have been able to prove the inequality in some cases and give a full proof of a
Penrose type inequality. The general methods presented here open up new possibilities
to address the problem. In fact, a recent approach by Roesch [92] uses as a key tool
the main result of [76] corresponding in this thesis to Theorem in Chapter [0
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Exploiting the limit of the Hawking energy along Q2 Roesch is able to prove the null
Penrose inequality provided {2 admits a geodesic foliation satisfying certain restrictions.
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Fundamentals for the Penrose inequality

2.1 Basic Definitions

All manifolds in this thesis will be smooth and Hausdorff. Let (M, g) be an m-dimensional
oriented pseudo-Riemannian manifold of arbitrary signature. Tensors in M carry Greek
indices and we denote by V the Levi-Civita covariant derivative of M. Our sign con-
vention for the curvature tensor is

R(X, Y)Z = vayz - VyVXZ — V[X,Y]Z,

where X, Y, Z are vector fields on M. The Riemann tensor Riem? of (M, g) is defined
in terms of the curvature tensor by Riem?(X,Y, Z, T) := g(T,R(Z, T)Y). Contracting
the first and third indices of Riem?, we obtain the Ricci curvature tensor Ric?(X,Y) =
trg (Riem9(-, X, -, Y)), and its trace is the scalar curvature Scal’. The Einstein tensor
Ein? of (M, g) reads

1
Ein? = Ric? — EScalgg.

Embedded submanifolds will play a relevant role in this work, and we devote Appendix
[Alto describe their geometry. The basic objects are as follows: let N be an n-dimensional
submanifold embedded in (M, g) with non-degenerate first fundamental form y. The
Gauss formula (cf. Appendix [A]) relates the ambient connection V with the induced
connection V¥ by the formula

VxY = VY +(VxY)*, (2.1)

for any vector fields X,Y tangent to N, where '+’ is the operator that gives the or-
thogonal component to N of a vector. The second term of the right-hand side of (Z.1])

defines the so called second fundamental form vector.
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2.1. Basic Definitions

Definition 2.1.1 (Second fundamental form vector). The second fundamental form
vector of N as an embedded manifold in M is the (2, 1)-tensor

K(X,Y)=—(VxY)* (2.2)

The second fundamental form vector is by construction, orthogonal to N (see Figure
2.10). In Appendix [Al we show that K is also symmetric in X, Y.

l

K(X,Y)

Figure 2.1: Schematic representation of the Gauss formula. The difference between the
induced connection V" on a non-degenerate embedded manifold N and the ambient
connection V of a pseudo-Riemannian manifold M is the second fundamental form
vector of N, namely VxY = VLY — K(X,Y).

Definition 2.1.2 (Mean curvature vector). The trace H of the second fundamental
form vector with respect to the induced metric on N is the mean curvature vector, i.e.

—

H:= tryK.
Let us consider a normal vector field v to N, i.e. a vector v satisfying v(p) € T,N*
Vp e N.

Definition 2.1.3 (Second fundamental form tensor along v). The second fundamen-
tal form tensor along v is defined as

KYX YY) = (0, KX, Y))g = — (1, VxY)g = (Vx1,Y)g with X,Y €T(TN).

20



2. Fundamentals for the Penrose inequality

The second fundamental form tensor is symmetric, i.e. KY(X,Y) = KY(Y, X), as a
consequence of the symmetry of K.

Definition 2.1.4 (Expansion along v). The expansion of N along v, denoted by 6,, is
the function
9,/ = tl’/\/(Ku).

Definition 2.1.5 (Volume element). The volume element ny of (M, g) is the m-form

(nM)al...an Y |det g|€a1...an

in any coordinate chart of the associated oriented atlas, where €4, 4, IS the Levi-Civita
symbol and det g is the determinant of g in this chart.

Everything we have said is so far valid in any signature. To define the notion of
spacetime we need the concept of time orientability and time-orientation:

Definition 2.1.6. A Lorentzian manifold (M, g) is time-orientable if and only if there
exists a vector field u € X(M) which is timelike everywhere on M. In this case a
time-orientation is a choice of a timelike vector field u which is declared to be future
directed.

Definition 2.1.7 (Spacetime). A spacetime (M, g) is an m-dimensional Lorentzian
manifold, connected and orientable, endowed with a time orientation.

The metric g satisfies the Einstein field equations, which take the form

8nG

Ein+Ag=xT, x= o

where G is the Newton gravitational constant, c is the speed of light in vacuum, T is
the energy-momentum tensor of all non-gravitational fields and A is the cosmological
constant.

The energy conditions are usually defined in terms of the energy-momentum tensor
T. We may express them in terms of the Einstein tensor Ein? because in our setting the
cosmological constant A vanishes. By defining the energy conditions directly in terms of
Ein? we can forget altogether about the Einstein field equations so that all our results
become applicable to the geometric theory of gravity. The energy conditions we use
are

Definition 2.1.8. Let (M, g) be a spacetime. Then

e (M, g) satistfies the null energy condition (NEC) if the Einstein tensor Ein?
satisfies Ein?(k, k) > 0 for any null vector k € X(M).
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2.2. Asymptotically flat spacetimes

e (M, g) satisfies the dominant energy condition (DEC) if the Einstein tensor Ein?
satisfies that —Ein?"  X"|, is a future directed causal vector for any future directed
causal vector X € X(M) and all p € M (or equivalently when EinJ X*Y" > 0 for
all future causal vectors)

Remark 2.1.9. Note that the NEC is obviously weaker than the DEC.

In physical terms the DEC means that any observer measures a positive energy density
for the field and the energy flows at a speed no larger than c.

Let S be a compact, embedded, oriented, codimension-two surface in an m-dimensional
spacetime (M, g). The mean curvature vector Hof S plays an important role since the
surface S can be classified according to its causal character. Since the surface has codi-
mension two, we can consider a future oriented null basis {k, £} of vectors normal to S
and normalized so that (k, £) = —2. In this case the mean curvature vector decomposes
as

S
A= —7 (Ock +6.8).

Definition 2.1.10. A closed surface is a:

e Future trapped surface if 6, < 0 and 6, < 0. Or equivalently, if H is timelike
and future directed.

e Weakly future trapped surface if 6, < 0 and 6, < 0. Or equivalently, if H is
causal and future directed.

e Marginally future trapped surface /f either, 6, = 0 and 6, < 0 everywhere, or,
0x < 0 and 6, = 0 everywhere. Equivalently, if H is future directed and either
proportional to k or proportional to £ everywhere.

In spacetime dimension four, the Hawking energy is a functional acting on closed
spacelike surfaces S with spherical topology and reads

Definition 2.1.11 (Hawking energy). The Hawking energy of S is defined by

mi(S) = 1/ 1o (1 - /5 H2n5> , (23)

where H is the mean curvature of S and |S| is the area of S.

2.2 Asymptotically flat spacetimes

The notion of asymptotically flat (AF) spacetime is suitable to describe isolated objects.
There are two different types of AF spacetimes depending on the infinity considered.
We start with asymptotic flatness at spatial infinity.
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2. Fundamentals for the Penrose inequality

Definition 2.2.1. An asymptotically flat end of a spacelike hypersurface ¥ with first
fundamental form g and second fundamental form K is a subset 3° C > which is dif-
feomorphic to R3\ Bg, where B is an open ball of radius R. Moreover, in the Cartesian
coordinates {x'} induced by the diffeomorphism, the following decay conditions hold

Scal?! = O(r %), V5(K", — (tryK)8",) = O(r %), (2.4)

where r = |x| = \/x2xb8,;,, Scal9 is the scalar curvature of g and V* is the Levi-Civita
connection on .

Definition 2.2.2 (AF spacelike hypersurface). A spacelike hypersurface ¥ with first
fundamental form g and second fundamental form K, possibly with boundary, is asymp-
totically flat /f =~ = K U X, where K is a compact set and ¥>° = |JE° is a finite

union of asymptotically flat ends :%°.

Definition 2.2.3 (AF spacetime at spatial infinity). A spacetime is asymptotically
flat at spatial infinity if it admits an AF spacelike hypersurface.

We next characterize AF spacetimes at null infinity. This requires using basic notions
of causality . Let p and g be two different points in the spacetime M. We say that

e p chronologically precedes g (denoted by p << q) if there exists a future-directed
timelike curve from p to g.

e p strictly causally precedes g (denoted by p < q) if there exists a future-directed
causal curve from p to q.

e p causally precedes g (denoted by p < q) if p strictly causally precedes g or p = g.

These notions allow one to define the chronological future and past and the causal
future and past of a point:

e The chronological future of p, denoted by /™(p), is the set of all points g in M
such that p chronologically precedes g: IT(p) ={qg€ M: p << g}.

e The chronological past of p, denoted by /= (p), is the set of all points g in M such
that g chronologically precedes p: 1= (p) ={qg € M : g << p}.

e The causal future of p, denoted by J*(p), is the set of all points g in M such
that p causally precedes q: JT(p) ={qge€ M:p < q}.

e The causal past of p, denoted by J~(p), is the set of all points g in M such that
q causally precedes p: J=(p) ={ge M:q < p}.
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2.3. Energy-momentum vectors in AF spacetimes

In order to define the concept of asymptotically flat spacetime at null infinity, we
consider a compactification of the spacetime (see e.g. [106] for definitions), where
spatial infinity will be denoted by /%, and the hypersurfaces representing past and future
null infinity will be denoted by .#~ and .# " respectively.

Definition 2.2.4 (AF spacetime at null infinity). A spacetime (M, g) is said to be
asymptotically flat at null infinity if there exits a manifold M with boundary, with smooth
metric G, and a conformal isometry of M onto the interior of M with conformal factor
Q. By defining .% as the boundary of M, the following conditions are required:

(i) & can be written as the disjoint union of two pieces . and %, such that
N J7[int(M)] =0 and Z— N JT[int(M)] = 0.

(i) Q can be extended to a C* function on all of M. On .+ and .#~ we have Q = 0
and dQ2 # 0.

(iii) #* and .#~ each have the topology S? x R.

(iv) There exists a smooth function f defined on M, with f >0 on MU.#*U.#~ and
satisfying Vo (f*n*) = 0 on .+ U #~ (where V,, is the connection associated
with g), the vector field f~1n* is complete on .+ U .7 ~.

Both types of asymptoticity are combined in the following definition:

Definition 2.2.5 (AF spacetime). A spacetime (M, g) is said to be asymptotically flat
if is is AF at null infinity and it admits an AF spacelike hypersurface

2.3 The ADM and Bondi energy-momentum four vec-
tors in AF spacetimes

The concept of energy in General Relativity is a delicate issue. In particular there is
no notion of energy density of the gravitational field, However, there exists a useful
notion of the total energy of an isolated system which is described by the total energy-
momentum four-vector P. This vector is defined in an abstract Minkowski spacetime
with metric . The time component of this vector is the energy E of the spacetime, and
the rest of the components define an spacelike three-momentum p. Ilts Minkowskian
length is the total mass of the spacetime.

In an AF spacetime, two different types of energy-momentum four vector can be
defined depending the infinity that we are considering. The ADM (Arnowitt, Deser,
Misner) four-momentum Papy = (Eapm, Papm) IS associated to spacetimes that are
AF at spatial infinity /%, and the Bondi energy-momentum four-vector Pg = (Eg, pg)
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2. Fundamentals for the Penrose inequality

is measured at a cut S of null infinity .#, where S is a spacelike cross section of the
null hypersurface .#. The Bondi four-momentum depends on the cut and approaches
the ADM four-momentum at /% under suitable conditions [114].

The expression for the total energy-momentum Papy is given in terms of the geometry
of an AF hypersurface (¥, g, K) and was put forward by Arnowitt, Deser and Misner in
1962 [3]:

Definition 2.3.1. Consider a spacelike hypersurface (¥, g, K) with a selected asymp-
totically flat end X3°. Then, the ADM energy-momentum Papy associated to X3 is
the spacetime vector with components

_ 1
Papmo = Eapm = Im — (ObGab — 02ghr) M Ns,
r—o0 167‘(‘ S,

PADMa = PaDMa = lim i (Kab - gabtrgK)mbn&
r—o00 8T s,
where {x?} are the Cartesian coordinates induced by the diffeomorphism which defines
the asymptotically flat end, S, is the surface at constant r, m? is the outward unit
normal of S, and ms its volume form. Eapy Is called the ADM energy and papuv the
ADM spatial momentum vector.

The notion of ADM mass (the Minkowskian length of Papy,) is independent of the
choice of coordinates as long as the decay conditions (2.4]) are satisfied. One of the
most important theorems concerning the ADM energy-momentum is the Positive mass
theorem (PMT) by Schoen and Yau [95].

Theorem 2.3.2 (Positive mass theorem (PMT), Schoen & Yau, 1981). Let (%, g, K)
be an asymptotically flat spacelike hypersurface without boundary and satisfying the
DEC. Then the total ADM energy-momentum Papy, is a future directed causal vector.
Furthermore, Papy = 0 if and only if X is a slice of the Minkowski spacetime.

The PMT was proved by Schoen and Yau for manifolds of dimension less or equal
than seven, and by Witten [111] for spin manifolds of arbitrary dimension using spinor
techniques.

Concerning the Bondi energy, the first definition was given in coordinates and was
introduced by Bondi, van der Burg and Metzner in 1962 [9]. Later Geroch and Winicour
[35] gave an alternative form in terms of asymptotic time translations, i.e. vector fields
that tend to a Killing vector near infinity and satisfy V,£% = 0. Specifically, let {S,}
be a one-parameter family of topological spheres, which in the associated compactified
spacetime approach a cross section S of .#~. Then, the quantity

1
ES=— lim — [ euprsVE (2.5)
T Js,
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is independent of how S, approaches S,,. We refer to EéB as the energy measured by
the observer £&. Formula (2.5]) reduces to the Komar mass in stationary spacetimes.

In practice, there is a very effective way to compute the Bondi energy of a spacetime
admitting a null hypersurface €2 that extends smoothly to null infinity, and is based on
the use of the Hawking mass functional my (see Definition 23] in Chapter D)) evaluated
on flows {Ss} approaching large spheres along Q2. Specifically

Eg = lim my(Ss),
S—00

where u is the observer determined by the foliation {Ss} (for more information, see
Chapter [@). This is actually the method used in this thesis to compute the Bondi
energy. As in the ADM case, the Bondi energy is the time component of an energy-
momentum four vector Pg, i.e. Ef = —n(Pg, u), where 1 the Minkowski metric in the
abstract space where the observer u is defined. In analogy with the ADM case, the
Bondi mass Mg is the Lorentzian length of Pg.

The ADM energy represents the total energy available in the spacetime, whereas the
Bondi energy is interpreted as the energy remaining in the spacetime at the “retarded
time” given by the cross section S,, of # T, after emission of gravitational radiation.
There is also a theorem of positivity of the Bondi energy (Horowitz and Perry 1982
[49]; Schoen and Yau 1982 [96]; Ludvigsen & Vickers 1982 [66]; Reula and Tod 1984

[o10).

2.4 Black holes and the weak cosmic censorship con-
jecture

The heuristic argument put forward by Penrose to formulate the Penrose inequality
conjecture is based on the weak cosmic censorship conjecture. As already mentioned
in the Introduction, this conjecture states roughly that singularities are always hidden
within a black hole.

A spacetime (M, g) is a black hole if it is asymptotically flat at null infinity and
if there are events causally disconnected from the asymptotic region, i.e. no causal
curves starting at the event in question ever reach the asymptotic region. The black
hole region B of the spacetime is defined by

B=M\I~(5%),

where the chronological past /= is considered in the conformally completed spacetime.
The event horizon H of the black hole is defined to be the boundary of B in M

H = 0B.
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2. Fundamentals for the Penrose inequality

The event horizon H is the topological boundary of the black hole region. H is a
(Lipschitz) null hypersurface ruled by future inextendible null geodesics [44].

A more precise statement of the weak cosmic censorship conjecture is as follows:

Weak cosmic censorship conjecture: Let (¥, g, K;v¢) be an asymptotically flat
initial data set of the Einstein field equations with suitable matter (where 1) represents
the matter fields). Then, generically, its maximal Cauchy evolution is asymptotically
flat at future null infinity, with complete .# .

The notions of suitable and generic are kept deliberately vague since their precise
meaning will here to be adjusted to the actual theorem one can eventually prove. How-
ever, roughly speaking, suitable matter should mean that the initial value formulation for
the coupled Einstein-matter field equations is well posed and the stress-energy tensor
satisfies suitable energy conditions. The genericity condition should mean that initial
configurations leading to naked singularities have empty interior in a suitable topology
in the space of initial data sets.

2.5 The Penrose inequality conjecture. Heuristics

This section is devoted to describe the heuristics behind the Penrose inequality. In
the following section we will concentrate on the study of hypersurfaces and shells in
spacetimes, with the aim of writing down the shell Penrose inequality.

The Penrose inequality conjecture is a strengthening of the positive energy theorem
when black holes are present. In spacetimes satisfying the null energy condition (NEC),
i.e. spacetimes where Ein?(k, k) > 0 for all null vectors k, the event horizon satisfies
the area theorem, which essentially says that in such spacetimes the area of the cross
sections of the event horizon grows with time [42, 43|, [20]. The precise formulation of
the area theorem reads as follows:

Theorem 2.5.1 (Black hole area theorem [20]). Let (M, g) be a black hole spacetime
satisfying the NEC. Let ¥, and ¥, be achronal hypersurfaces (no timelike curve
intersects them twice), and spacelike and define Hy, == HN X, (a = 1,2) sections of
the event horizon. If Hy, lies in the past of Hs,, then |Hs,| < |Hs,|.

In physical terms, it is expected that any black hole spacetime must settle down to
an asymptotic stationary state in the distant future. All matter fields (except electro-
magnetic ones or, perhaps, other fields with globally conserved charges) are expected
to be radiated away or fall into the black hole region. The asymptotic spacetime is then
expected to be electrovacuum and stationary. The black hole uniqueness theorem (see
e.g. [19, 48]) can be applied to conclude that the exterior region of the asymptotic
black hole is isometric to the exterior region of a Kerr-Newman black hole.
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Let us recall a few known properties of the Kerr-Newman black hole spacetime
(M, 9m.aq). The metric is described by three parameters m, a and g (mass, angu-
lar momentum parameter and charge) satisfying

m > +\/a? + q=2.

When a = g = 0, we have the Kruskal spacetime. All sections S of the event horizon
H are isometric to each other and have area

|S| =8mm (m +v/m?— a2 — q2> —4mg® < 16Tm°.

As already mentioned, the paradigm described above can be rephrased by saying that
for any dynamic black hole spacetime, there exist m, a, g € R satisfying \/a% + ¢2 <
m # 0 such that the exterior region of the black hole approaches (in a suitable sense)
the spacetime (M, gm.2.q) When t — +oc.

The Bondi-mass Mg = (E3 — 135)% decreases to the future and its limit at iy is
the ADM mass Mapn := (E3py — ,5A2DM)%. This property physically means that the
gravitational radiation can only extract energy from the spacetime. Moreover the Bondi
mass of the Kerr-Newman spacetime is m. Using these facts, Penrose obtained the
following chain of inequalities:

[Hs| < [Hse | < 16mm? < 16mM3 < 16TM3o 0,

where the first inequality is a consequence of the area theorem, the second is a property
of the Kerr-Newman spacetime, and the two last ones are consequences of the properties
of the total energy-momentum in an asymptotically flat spacetime.

The resulting inequality |Hy| < 16mM3p,, involves no future asymptotic properties,
but still involves the event horizon, which is a global concept in the spacetime. A
priori one does not know if the event horizon exists or where it lies. The second main
observation of Penrose was that the paradigm of gravitational collapse also implied an
inequality “local in time"” as follows.

Strong gravitational fields can be detected by weakly future trapped surfaces. Con-
sider an AF spacetime (M, g) satisfying the DEC. Assume that the spacetime contains
a weakly future trapped surface S embedded in an asymptotically flat spacelike hyper-
surface X with one end. Under these hypotheses it follows [83], 40] (see also [98] for a
nice review) that the spacetime (M, g) has a singularity (in the sense that there is an
inextendible, incomplete causal geodesic and the spacetime itself is inextendible). Under
weak cosmic censorship, this singularity is shielded from infinity by an event horizon and
M is necessarily a black hole. A fundamental property of the black hole spacetimes is
that any weakly future trapped surface S is necessarily contained in the black hole region
[106], 21]. Consider the spacelike hypersurface ¥ that contains S. This hypersurface
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b (M, 9)

Figure 2.2:  When the spacetime (M, g) satisfies the dominant energy condition and
contains a weakly outer trapped surface S, it necessarily contains a singularity. Under
the weak cosmic censorship the singularity must lie in a black hole region B, and (M, g)
is a black hole. The surface S must lie in B. The surface Sq that minimizes area among
all those surfaces in a spacelike hypersurfaces ¥ enclosing S satisfies |Sg| < |Hg| (where
‘Hs is the intersection of the event horizon with ¥) and does not have to lie necessarily
within B. Under the standard paradigm of gravitational collapse (including weak cosmic
censorship) the Penrose inequalities |So| < 16mM3 < 16mM3p,, follow.

m

>

Figure 2.3:  Equivalent representation to Figure 2.2, where the standard paradigm of
gravitational collapse is represented. The spacetime becomes asymptotically stationary
as time goes to infinity and it is therefore expected to tend to Kerr-Newman. The
area of the cross sections Hy of the event horizon H grows with time, and in the
limit |Hx_| < 16mm?, with m the mass of the Kerr-Newman spacetime. The relation
between the masses m < Mg < Mapy, implies |Hy| < 16mM3 < 16mM3p,,, and since
So minimizes area among all those surfaces in the spacelike hypersurfaces ¥ enclosing S
(in particular |So| < |Hs|), the Penrose inequalities |So| < 167M3 < 16wM3,,, follow.
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intersects the event horizon in a cross section Hy . If the area |S| were smaller than the
area of Hs, we would have

S| < [Hs| < 167M3 < 16TMap,,. (2.6)

i.e. |S| < 16mM3p,,, which already involves only the geometry of the spacelike hyper-
surface X. Although Hy encloses S, it is not necessarily true that |S| < |Hg|, because
from the fact that H N X encloses S does not follow that its area is necessarily larger.
This problem can be avoided by considering the minimal area enclosure of S, i.e. the
outermost of all surfaces which enclose S and have less or equal area than any other
surface enclosing S. The minimal area enclosure of S always exists provided the di-
mension of the spacetime is n < 8 and S bounds an exterior domain. We will denote
by Smin(S) the minimal surface enclosure of S. The spacelike cut H N X of the event
horizon also encloses S, so we have |Smin(S)| < [H N X|. From (2.8), it follows

|Smin(5)|
16m
and considering the supremum among all weakly outer trapped surfaces, we finally obtain

/ |‘Smin(5)|
> -
MADI\/I =~ Sup 167 .

Defining Sg, we arrive at the two inequalities

Mapm 2>

|So| < 16mM3  and  |So| < 16mMap,y,. (2.7)

These inequalities do not require to know anything about the future of the spacetime.
Inequalities (2.7]) are called Penrose inequalities and are the main theme of this work
(variations of these inequalities are also sometimes considered, while keeping the name
of Penrose inequalities). Proving them would give strong indirect support to the general
paradigm of gravitational collapse and would also be a strengthening of the positive
energy theorem. In this thesis we concentrate on the so-called null Penrose inequality.

For this case, assume that (M, g) admits a null hypersurface €2 containing a weakly
future trapped surface S and extending smoothly all the way to past null infinity .# .
In this case, any spacelike surface S’ lying to the past of S along Q2 satisfies |S| < |S/].
The Bondi energy Eg(£2) and mass Mg(£2) of Q can be defined. Following the above
reasoning, under weak cosmic censorship (M, g) must be necessarily a black hole and S
must be completely contained in the black hole region, and this necessarily implies that
the intersection Hq of the event horizon H with €2 must lie completely in the causal
past of S. This implies |Hq| > |S|, i.e. the area S is smaller than the area of the
section of the event horizon lying on €2. Thus, we can work with S and there is no need
to take the minimal area enclosure as in the spacelike case above. Applying the same
reasoning as above, it follows

S| < |Hal < |Ha| < 16mm°.
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Figure 2.4:  Analogous case to Figure 2.2 where now the hypersurface €2 is null and
contains a weakly future trapped surface S. Following the same argument as in Figure
2.2] S lies within the black hole region B under the standard paradigm of gravitational
collapse. Since |S| < |Hq|, there is no need to consider the minimal area enclosure
of S as in the spacelike case in Figure 2.2l In these circumstances the paradigm of
gravitational collapse implies the null Penrose inequality |S| < 16mEZ(Q).

The mass m of the Kerr-Newman spacetime satisfies m < Mapy. The spacetime
(M, g) is determined from the initial data on Q and on .# . Now we use the fact that
the spacetime (M, g) can be changed without modifying the data on Q (in particular
without changing the Bondi mass Mg(£2)). We are free to impose the condition that
there is no incoming radiation at .# . In this case, the Bondi mass Mg(€2) defined by
the cut of the hypersurface €2 and past null infinity equals the total ADM mass and we
can conclude
S| < 16TM3(Q) < 16mE3(Q).

The inequality |S| < 16mE2(Q) is the so called null Penrose inequality and involves only
the geometry along €2.

2.6 Hypersurfaces and shells

A particular but very interesting case of the null Penrose inequality is the original con-
struction used by Penrose [85] in 1973, which consisted of a shell of collapsing dust
moving inwards in the Minkowski spacetime. The shell separates the spacetime into
two components. The interior one has a Minkowski metric and the outer part is no
longer flat. The two components are joined by a null hypersurface. One of the main
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Mgp(2)

Figure 2.5:  Analogous representation as in Figure 2.3 in the case where €2 is null.
The area of the cross sections Hq of the event horizon H grows with time, and in
the limit |Hqo | < 16mm?, with m the mass of the Kerr-Newman spacetime. Since
m < Mupwn and Hq lies in the causal past of S, then |S| < |Hq| < 16TM35,,. We
are allowed to change the spacetime to the future of €2 by assuming that there is no
incoming gravitational radiation at .# —, and hence Mapn = Mg(£2), which implies the
null Penrose inequality |S| < 16mE3(RQ).

aims in this chapter is to recover the particular expression that Penrose found for his
inequality in this shell setup. To that purpose we find it convenient to study in a more
general setting the geometry of embedded hypersurfaces of arbitrary causal character
that will separate two different spacetimes matched across their boundaries. This ge-
ometry is relevant because it determines the expression that the energy-momentum
tensor of the shell concentrated on the hypersurface has, as well as the corresponding
shell field equations (see [71]). This will allow us to particularize to the case when the
interior spacetime is Minkowski and the exterior is a non-flat spacetime generated by
the incoming null shell of dust as in Penrose’s construction, and will allow us to rewrite
the original null Penrose inequality as a geometric inequality for surfaces embedded in
the Minkowski spacetime. The exposition here is based on the results by Mars presented
in [70].

Let ® : 2 — M be the embedding of a hypersurface 2 of arbitrary causal character
into the spacetime. In order to describe the intrinsic and extrinsic geometry of €2, is is
convenient to introduce an additional structure, namely a spacetime vector field along
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2 which is transverse to €2 everywhere. Such vector field, called rigging, was first
introduced by Schouten [97]:

Definition 2.6.1. (Schouten [97]) A rigging £ is a smooth section £ € T (TqM) satisfying
2|, & T2 for all p € Q.

We can define the scalar £2) = g(¢, £) and the one-form £ := g(¢, -). Consider a basis
{e,} tangent to Q. Pulling £ back to 2, we obtain a one form £, = g(4, e;). We denote
by v the pullback on 2 of the ambient metric g. Note that -y is degenerate whenever
2 is a null hypersurface. However, the square matrix

Yab ga
A= 2.8
< eb ! 2 ) ( )
always has Lorentzian signature at every point p € Q (because this is simply the matrix
representation of the ambient metric g in the basis {e,, £}). This suggested the following

definition [7I] where everything refers to 2 as an abstract manifold, not embedded in
any ambient spacetime:

Definition 2.6.2. A smooth three-dimensional manifold €2, a symmetric tensor y,p, a
one-form £, and a scalar £ define a hypersurface metric data set provided the square
matrix A has Lorentzian signature at every point p € €.

In this case the inverse of A exists and a symmetric tensor P2, a vector n? and a
scalar n® can be defined by means of

Pab n?
-1 ._
wm (B2 29)

In [71] Mars also introduced the following definition:

Definition 2.6.3 (Hypersurface data). A five-tuple {2, Yap, £, £, Yo} where {Q, ap,
4, 2(2)} Is hypersurface metric data and Y., is a Ssymmetric tensor is called hypersurface
data.

This abstract definition makes sense insofar it can be connected to the intrinsic and
extrinsic geometry of 2 when this is embedded in a spacetime. The following definition
summarizes this connection:

Definition 2.6.4 (Embedding of hypersurface data). Let {Q, V.5, £., £, Y} be hy-
persurface data. This data is embedded in a spacetime (M, g) if there exists an
embedding ® : 2 — M and a choice of rigging £ such that, with £ := g(£, ),

©'(g) =7 (LN =t gEO)=1D, SO (£L9)=Y
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There is a natural way of defining a connection on the hypersurface Q. Given two
vectors X,Y € X(Q2) we define

VxY = (VxY)ll,
K(X.Y) = —(VxY)™,

where !z denotes the tangent component to Q, and *¢ the parallel component to £ in
the direct sum decomposition T,M = T,Q® < £, >. It is immediate to check [72] that
V defines a torsion-free covariant derivative on Q and that K(X,Y) is a symmetric
tensor. As shown in [72], the Christoffel symbols ', associated to V are defined by

Veaeb = —KabE +rzaec.

In any coordinate basis of €2, ng takes the following explicit form

— 1 1
Mo = §P6d(3a’)’bd + OpYad — OYap) + n° (_Yab + E(aa/b + ab/a)) :

Note that this expression makes sense even when €2 is not embedded. Thus the con-
nection V exists already at the abstract hypersurface data level.

When the hypersurface data is embedded in the spacetime (M, g), we can consider
the scalar p, and the one-form J, on Q defined as

pe .= —Ein?(n,£), J,:=—Ein(n,e,).

The scalar py is called [71] the “energy along £" and J, the “energy flux". Both depend
on the choice of the rigging. The definition of matter-hypersurface data was also put
forward in [71]:

Definition 2.6.5 (Embedded matter-hypersurface data). A 7-tuple {Q, V.52, Yap,
pe, J2} defines embedded matter-hypersurface data provided the hypersurface data
{Q, Yap, £, 82, Yy} is embedded with embedding ® and rigging £, and the scalar p, and
one-form J, on 2 satisfy

pe = —®*(Ein?(£, n)), J=—-®"(Ein?(-, n)),

with n being the vector normal to Q satisfying g(n,£) = 1.

With these notions at hand one can define the notion of shell. Shells arise naturally
in the matching theory of two spacetimes. Consider two different spacetimes (M*, g*)
with diffeomorphic boundaries 8M=*. Let Q be diffeomorphic to 8M* (or 8M~), and
®* 1 Q — M?* be embeddings such that ®*(Q) = OM*. The map ®* o (7)1 es-
tablishes a diffeomorphism between OM™ and @M ~. The two spacetimes can be joined
accross the boundaries to produce a spacetime with continuous metric provided addi-
tional conditions are satisfied. Clarke and Dray [24] studied the case of the boundaries
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with constant signature case (including null), and they set the necessary and sufficient
conditions to match both spacetimes. These conditions are that the induced first fun-
damental form on Q from both embeddings ®* coincide. In [72] the arguments were
extended to the case of arbitrary causal character. However, in the case when the
boundary has null points, it turns out that the equality of the first fundamental form
is a necessary condition but it fails in general to be also sufficient. The necessary and
sufficient conditions were given in [73]. With the notation introduced above we can
state this theorem as follows:

Theorem 2.6.6 ([24], [72], [73]). Consider two (m+1)-dimensional spacetimes (M=*, gF)
with boundaries DM*. They can be matched across their boundaries to produce a space-
time (M, g) with continuous metric (in a suitable differentiable atlas) if and only if:

e There exists hypersurface metric data {Q,fyab,ﬂa,é(z)} which can be embedded
both in (M*,g") and in (M=, g~) with respective embedding and riggings ®*
and ¢£*. Moreover, the embeddings satisfy ®*(Q) = 0Q*.

e The rigging vectors £* point, respectively, inside and outside of M*.

When the requirements of this theorem are translated into hypersurface data level, it
is necessary to consider two hypersurface data {2, v.p, £2, 22, ng} which differ at most
on the transverse tensor Yj, i.e. such that they define the same hypersurface metric
data. The first case that was studied was the non-null one. In this setting and when
[Kan] = KI, — K, = 0, there is a subatlas of the matched spacetime (M, g) where
the metric g is C* [11], 54]. The Riemann tensor of (M, g) may be discontinuous at
(2 but it is otherwise regular everywhere. In physical terms this means that there is no
matter-energy or gravitational field concentrated on the matching hypersurface. On
the other hand, if [K,,] # 0, the Riemann tensor has a Dirac delta function supported
on € when it is considered as a tensor distribution in (M, g) (see [61], 100, 34, [72], [60]).
The interpretation of this phenomena is that there is a layer of energy and momentum
concentrated on the hypersurface Q2 (a “shell” of matter-energy). The Dirac delta part
of the Einstein tensor (still in the nowhere null case) reads in this case

Ein9 = 1%elel§g,  with T, = —([Kap] — [K]vap), 0q : Dirac delta on (Q2,7),

where the Dirac delta distribution is defined by integration with the volume form of the
induced metric on the shell. The (distributional) conservation equations div4Ein? = 0
imply

(Kop + Kop) T = 2[Einf, n*n”],  Vyr®, =[],

which are the lIsrael field equations for the shell [54], 58, £9]. These field equations

were extended to the null case by Barrabes and lIsrael [5] by taking limits where the
spacelike/timelike matching hypersurface becomes null.
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In the spacelike case, the Israel equations can also be derived from the usual constraint
equations

20 = 2Ein§5n°‘nﬁ|9 = Scaly, — KapK?® + K2, K :=4""K_y,
—J, = EinggednP|q = Dy(K", — K&®,),

where D is the Levi-Civita covariant derivative of (€2,) and Scaly its curvature scalar,
n* the unit normal used to define K, and e is the push-forward to M of the coor-
dinate vector 9, in 2. The Israel equations follow by simply taking the difference of
both equations at each side of the matching hypersurface, and using the fact that the
induced metric and the corresponding Levi-Civita connection do not jump across the
shell. Exploiting a similar procedure Mars obtained the shell equations for matching
hypersurfaces of arbitrary causal character in [71] by taking differences of the con-
straint equations on two hypersurface data of the form ({Q,vap, £a,£®,Y1}). With
this approach there is no need to introduce spacetime distributions nor specific atlas,
and it is conceptually simpler. The method does not require either the existence of
the spacetime (although our presentation here has been restricted for simplicity to the
embedded case from the outset, see Definition 2.6.5]), so we prefer to use this more
general framework to obtain the expression of the shell Penrose inequality.

A disadvantage of the connection V described above is that it depends on the extrinsic
curvature of Q via Y,p. In [71] a new connection was introduced that depends only on
the metric hypersurface data. Its explicit definition is

. 1 1
b= §P6d(aa’)’bd + OpYad — OdYab) + §”C(aa/b + Obla).

This connection is called metric hypersurface connection. It is torsion-free and it relates
to the induced connection F:b by

—Cc o

— c a
rab — rab —n ch

In terms of the embedded matter hypersurface data {2, Vap, €2, £, Yap, 0o, Jo}, the
constraint field equations are expressed as [71]

1 . 1 - o
0 = ERlemcbchbd + EZaRlemabchbdnC + V((P*n° — PPn?)Y,.)

1
+ 5”(2)Pbdpac(ybcyda — YbaYea)

1 .
+ E(Pbdnc — PPn) [6®V yUpe + (Upe + 1DV )04l + 2V (Far — Yar)n'],
(2.10)
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Jo = 4,Riem’, nn? — Vv, [(nP PP — nPn?)(85Yhe — 65 Vha)]
(Pbd — K(z)nbnd)(?dch — ﬁcUbd)
(n@ pPd — nbn?) x

1 1
E(ch + Y, )04 — E(Ubd + n®Yp4)0:L? + (Yo Far — YoaFer)n'

— (Pbdnf — bend)deUCf — Pbdnf(chFdf — UbdFCf), (211)

where Riémabcd is the Riemann tensor of the connection V, F := %de and the tensor
U,p I1s defined as

1
Uab = E(fn’)’ab + Kaﬁbn(z) + Zbéan@)). (212)

Assume we are given two embedded matter-hypersurface data {Q,7.5.£.,£?, Y07,
J¥} and let us define Vi, := YL — Y,,. Define also the jump in the “energy density”
and in the “energy flux" as [p,] := p; — p; and [J,] := JI — J;. These jumps, when
computed using (2-I0) and (ZIT) involve naturally a two contravariant tensor 7(V/)
defined as

T(V)ab — (nanc+anac)nd\/cd_ (n(2)Pachd+ Pabncl’)d)\/cd—l— (n(2)Pab_ nanb)PchCC/-

(2.13)
Thus, hypersurface data admits a natural linear map from symmetric two-covariant
tensors into symmetric two-contravariant tensors. For the sake of simplicity, we will use
72 instead of 7(V)?” when no confusion arises.

The tensor 7(V)?" has the symmetries of an energy-momentum tensor and recovers
the standard definition of the energy-momentum tensor on the shell in the case where
there are no null points. When two spacetimes are matched across null hypersurfaces,
7(V)? also recovers the definition for the energy-momentum tensor put forward by
Barrabes and Israel (see (31) in [5]). In the particular case where the matching hy-
persurface has a general causal character, the tensor T7?%%eke! agrees with the Dirac
delta part of the Einstein tensor of the matched spacetime (M, g) obtained in [72] (see
expression (71) in that paper). These considerations lead to the following definition

[71]:

Definition 2.6.7 (Shell). A shell is a pair of matter-hypersurface data of the form

{Q, Yap, £2, ), Ya% ,ozt, JE}. The energy-momentum tensor on the shell is the symmet-

ric 2-covariant tensor T(V)® defined above, where Vo, =Y., — Y., .

The shell field equations are the following pair of partial differential equations [71] :

Definition 2.6.8 (Shell field equations). Consider the shell {2, Yap, £, €2, Y5, pi, J£}.
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

The shell field equations are the pair of partial differential equations

. 1 1
Va(r?l) + 71, (5”(2)5a£(2) + Facnc) — ST (Yo + Vo) = led. (2.14)

. 1
Vo’ + 77, (En(2)ab£(2) - Fbcnc) + 7°LUpa = [Ja]. (2.15)

2.7 Penrose construction in Minkowski. The shell Pen-
rose inequality

Penrose's original setup to test the validity of cosmic censorship used a shell of matter
propagating in a flat spacetime at the speed of light. The shell is assumed to have the
topology S? x R and the matter within the shell is made of null dust (the particles are
massless and all pressures vanish). In order to have a flat metric inside the shell, it is
necessary that no point in the interior lies in the causal future of the shell. In other
words, if a Minkowskian time t is chosen inside the shell, the null hypersurface 2 must
not develop self-intersections to the past of some t = t;. Thus, the setup requires that
the null hypersurface has one cross section S;, = QN {t = to} which is convex as an
euclidean surface of the hyperplane {t = ty}. This property is then true for all t < to,
which means that the null hypersurface Q2 extends to past null infinity smoothly without
developing caustics. On the other hand 2 will become singular to the future at the first
focal point of the incoming null geodesics. The collapsing dust may emit gravitational
waves which alter the metric of the spacetime outside the shell, so when the shell has
passed the metric is no longer flat.

Let k be the future directed null tangent to €2 normalized by k(t) = 1. Consider any
closed, spacelike surface S embedded in €2 and let £ be its future null normal satisfying
(k,£) = —2. The energy momentum of the spacetime is a distribution supported on 2
which reads T,g = 8Tpkyksd, where p is the energy density of the shell and the Dirac
0 is defined with respect to the volume form induced by the normal k to €2. The null
expansion 8, jumps across €2, and this jump can be determined using the Raychaudhuri
equation and some properties of the Dirac delta §, see e.g. [69]. However we compute
this jump using the formulation presented above.

For an arbitrary spacelike surface embedded in €2, its expansion along k coincides
with the null expansion of the hypersurface. This means that the expansion does not
depend on how the surface is embedded in the null hypersurface and only depends on
the point where this expansion is considered (see Appendix [B]). We will prove later that
0 = —trp(£,y), i.e. that 6, depends only on the metric hypersurface data of 2. As
a consequence, the incoming null expansion 6y is continuous across the shell. On Sy,
the null expansion 6, coincides with the mean curvature of S as a surface in Euclidean
space with respect to the inner normal and it is therefore non positive (because Sy
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2. Fundamentals for the Penrose inequality

is convex) and not everywhere zero (since Sy, is closed). The Raychaudhuri equation
then implies that 6, < 0 everywhere on €2 to the past of S;. Then, after the shell has
passed, a spacelike surface S C Q is marginally outer trapped (i.e. 6, = 0) if and only
if it is marginally future trapped (6, = 0 and 6, < 0).

Consider a general asymptotically flat four dimensional spacetime (M, g) admitting a
null shell Q extending smoothly to past null infinity .#~, and satisfying the DEC (we will
return to the Minkowski spacetime later). Let us assume that there exists a compact
cross section S satisfying 6 = 0 (i.e. Sis a MOTS after the shell has passed). We
do not assume yet that the shell is made of any specific type of matter (we will later
prove that in the case of shells of null dust, given any cross section S C €2 the shell can
always be chosen so that S is a MOTS with respect to the outer geometry). Using the
standard heuristic argument described in Section 2.5 it follows

woal . [19
> I > —_— .
f5 2\ 1er = Vier (2.16)

where E} is the Bondi energy of past null infinity at the cut defined by Q in the exterior
spacetime. The main idea of Penrose’s construction for shells is that this inequality can
be expressed fully in terms of the interior geometry by using the shell properties. For
instance, knowing the Bondi energy of the interior spacetime and its jump across the
shell, then EZ will be fully determined. As mentioned before, the Bondi energy can be
computed using limits at infinity of the Hawking energy along a suitable foliation.

Select a nowhere zero null vector field k tangent to €2. The level sets of the function

A 1 Q — R solution of the equation k(A) = —1 with initial value Als, = 0 define
a foliation of surfaces {S,}, along @ with Sy, = {p € Q2 : X(p) = Xo}. In adapted
coordinates k = —0y. Assume that {S,} tends to large spheres (a precise definition will

be given in Chapter[@]). Let M/ (S») be the Hawking mass of S, as a surface embedded
in the outer spacetime. Since {S,} tends to large spheres, the limit of M/ (Sy) is the
Bondi energy E‘g of the cut defined by the hypersurface 2 and past null infinity (see
[87) 6] and Chapter[@). Likewise M (Sy) tends to the Bondi energy Ez of the interior
spacetime. Hence

JL}”SO[MH(SA)] = [Eg]. (2.17)

It is clear that in order to compute the left-hand side we need to evaluate the jump
of the Hawking energy across the leaves of the foliation Sy of Q. From (2.3]) we have

M) =~ 5\ 1o [ 1P, (219)

where [H?] = (H*)2 — (H™)?. Consider the null vector £ orthogonal to each Sy and
normalized by g(k,£) = —2 and choose this vector field along Q as rigging vector.
Decomposing H in the null basis {k, £} one has H = —%ng — %Gké, and hence

[A?] = [~6k64].
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

The first fundamental form 7., of €2 and the choice of the rigging £ determine the
matrix A given in (Z.8]), and hence the vector field n is also uniquely determined. Since
n is normal to Q and it satisfies g(n, £) = 1, it is clear that n = —1k. Fix any leaf Sy
of the foliation, and consider its second fundamental form K” along n. We first show
that the scalar 8, = —26,, = —2(*7_1)ABKQ\B does not jump across the hypersurface 2.
More precisely, we want to prove that 8, = —trp(£,7y) which only depends on metric
hypersurface data. Given that in this case n® = 0, (Z12)) becomes Uap = 2 £,7,0. We
prove first that U(X,Y) = K"(X,Y), where X,Y are any vector fields tangent to Sj.
To this purpose it is necessary to evaluate U,, at X, Y. We can extend X and Y along
n so that [n, X] =[n,Y] =0. Then

£,(¥(XY)) = Va((X,Y) = (VaX Y) + (X, V,Y) = (Vxn,Y) + (X, Vyn)
= 2K"(X,Y).

Besides
Ly(y(X.Y)) = (L) (XY) +9(£.X,Y) + (X, £,Y) = (£,7)(XY),

and we conclude (£,y)(X,Y) = 2K"(X,Y), which implies Uag = KZ5. The following
step is to prove that trpU = try K", so it is necessary to compute P35 In this setting
where the rigging is null and satisfies g(k,£) = —2, we have that £? = (¢,¢) = 0.
Consider the basis {e,} = {k, Xa}|, tangent to 2 so that {Xa} are tangent to S, C Q.
In this case £y = (¢, k) = —2 and £a = (£, Xa) = 0 (we will simply write £, = (—2,0,0)
in the corresponding dual basis). Denoting by 445 = (X4, Xg) the metric of Sy, then
the first fundamental form -y,, of the null hypersurface €2 reads

y :(O O)
=\ 0 A /)

Since we know £,, £ and 7., the corresponding tensors P??, n? and n‘® can be
computed by inverting the matrix A given in (2.8]). The result is

0 0 1
ab = a = —_— (2) =
pab - ( 0 (5 1) ) ., n < 2,O,O) , n 0.

It becomes now clear that
0 = —20, = —2(F ) BKiz = —2P%U,, = —2trpU = —trp(£Y).

This shows that 6, does not jump across the shell and we simply write 8, = 9: =0,

from now on. Consequently
[H?] = —6k[64].

For later use we show that U,,n® = 0. Indeed, let T be any vector tangent to  and
compute

2Uap®T? = (£,7)(n, T) = n(y(n, T)) =(£n, T) = (n, £,T) =0,
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2. Fundamentals for the Penrose inequality

where we used y(n,-) =0, and [n, n] = 0.

A fundamental step in the shell construction is to study the relation between [6,] and
the energy-momentum tensor of the shell. This requires studying the transverse tensor
Y. In our construction the embedding ® : 2 — M and the transverse null vector ¢
that plays the role of the rigging are given, and consequently the symmetric tensor Y
is uniquely defined. In order to compute it, consider X, Y tangent vectors to the cross
section Sy C €2, and define the function Qx by Vik = Qk (recall that k is autoparallel,
being null and hypersurface orthogonal). Then

Y (k, k) = %(vae[3 + Vo) K*KP = (V1 £, k) = — (£, Vik) = —(£, Qxk) = 2Qy.
In addition
Y(k,X) = %(vaeﬁ + Vglo ) kO XP = %((kao + (V£ k))
= L VAX) — (€ TxK) = —25(X)

where s,(X) = %(ka%) is the connection one-form of S, (see Appendix [B]) (note
that we have used the property [X, k] = 0). Finally

Y(XY) = %(vaeﬁ + Vo) X2YP = %((vxe, Y) 4+ (Vyl, X)) = KYX,Y),

where K4(X,Y) = (Vx£,Y) is the second fundamental form along £ of Sy (see Appendix
B)). In summary, the tensor Y has the form, in matrix notation

Y., = < 2Qk ‘ —2(Sg)A )
7\ —2s)s ‘ Kis '

This together with the value of P?*, n? and n®® given in (29) fully determines the shell
energy-momentum acting on the tensor Y. In this null case (2-13]) takes the form

TY)=X"@n+ne@X +Q"P
where Q¥ :=Y(n, n), and X¥ := P(Y(n,-),-) — 2(trpY)n. Observe that if
Q=0 P(VI(n,).-)=0, (2.19)
then the energy momentum tensor on the shell will be of the form
T([Y]) = —[trpY]n® n, (2.20)

i.e. it will correspond to the energy momentum tensor of null dust. Note that trpY =
PbY,, = PABY, g = (7 1)AB K45 = 0, so an alternative form of (Z20) is

T([Y]) = —[B]n @ n. (2.21)
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

If we choose the jump so that
[Yan] = Yah — Yap = —(870)Vab,

with p : Q — R, then conditions (2-19]) are automatically satisfied and we are in the
case of null dust. Substituting V., = [Yas] = —(87p)vap in (BI3) it follows

T([Y]))? = (167p)n°n® (2.22)

after using that

(P-[Y])? = P**[Ye] = ( : (fy?)AB )( 0 —(8733)’736 > - ( ; —<87r0p>6Ac ) /

From (Z21]) and (2222)) it follows that the jump of transverse null expansion 6, is directly
related to the energy density p of the null dust:

[6,] =6 — 6, = —167p. (2.23)

Substituting this in (Z18]), we find

Ma(5] =~/ 12 [ ouoms, (220

To compute the limit of the right-hand side of (2.24]) evaluated on this foliation, we
need to find the asymptotic expansions of 8, ms, and p at A = oo. As we will show in
Chapter [@ the expansion of 8, has the form

-2 6
0k = 74—?4—0(}\ ). (2.25)

From equation (B.4Q) in Appendix [Bl, the volume form admits the expression ns, =
(A4 0(X\?))ng, where n; is the volume form of the standard two-sphere. It just remains
to compute the asymptotic expansion of p. To do so, we need to know how p evolves
along the null direction k. This is equivalent to computing the expressions for the shell
field equations (2.14]) and (2.15)). Since we already know the expression for U,,, we just
need to calculate F,,. The simplest way to to this is by restricting to the case where the
basis {e,} = {k, X4} is a coordinate basis, i.e. there exist adapted coordinates {\, x}
such that k = —0, and X4 = 0,4a. Given that the components of £, are constant, we
have

1 1
Fap = E(dg)ab = E(aaeb —Opt,) =0, (2.26)
which is of course independent of the choice of basis.

In order to write down the shell equations we need to make a choice of energy-
momentum tensor of the spacetime left after the shell has passed. The simplest case
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2. Fundamentals for the Penrose inequality

(and the corresponding to the original Penrose construction, too) is [pg] = [J,] = 0,
which we assume from now on. Inserting the expression (2.26l) for F,p, the first term

in (2.14]) becomes

V.(T?h) = V.((167p)n°nPl,) = V.((16mp)n?) = 167 (n(p) + pV.n?)
167(n(p) + p6n)-

The second term in (2.14]) clearly vanishes, and for the third term we have
TP(YE +Y,,) = (16mp)n?n°(2Y., — 8mpy.p) = (32mp)Y " (n, n) = —(32mp) Q..
Consequently equation (Z.14]) turns into
n(p) +p(6, + Q) = 0. (2.27)
For the second equation (Z.1H]), the first term vanishes since
TP = 7%, = 16mpn®(n“y.,) = 0.

The second term clearly vanishes and the third term also becomes zero since 7°U,,, =
(167p)n°n°U,,, because Up,n® = 0. So, the only shell equation for null dust is (227))
above.

Let us now return to the original Penrose construction where (M~, g~ ) is Minkowski.
Recall that a Minkowskian time t had been chosen, and consequently a unit Killing
vector £ defined by £ = —dt existed. Also, the null vector k was normalized so that
(k,&) = —1. In this situation, the corresponding foliation {S,} automatically tends to
large spheres, and the particularization of formula (2.24]) to this situation gives

A“_)m [My(S3)] = Eg, (2.28)

where we have used that the Bondi energy of the Minkowski spacetime is zero.

The normalization of k implies that the null geodesics along €2 generated by k are
affinely parametrized in the Minkowski spacetime. Indeed, by multiplying the geodesic
equation Vik = Qxk with &, one finds —Q = (Vik, &) = —(k, V&) = 0, where the
last equality follows because £ is covariantly constant. The geodesics are also affinely
parametrized in the outer spacetime for null dust (which recall satisfies [Q,] = 0).
Hence equation (Z.27]) simplifies to

k(p) + pb) = 0. (2.29)

This equation will be used to show that the integral of the energy density p on each
leaf Sy of the foliation is independent of A and in fact takes the value Eg, and also to
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

determine the expression for the asymptotic expansion of p at A = co. For the latter,
choose sp > 0 and X > s5. Since k = —0,, integrating (Z29) in [sp, A\] gives

o(N) = p(s0) exp( / ~ 0s)ds)

Substituting (Z25)) it follows

A A (1)
p(A) = p(sp)exp </ éds) exp (/ (% + 0(5—2)> ds)
2 A (1)
_ pggi%em></v <%§u+o@r%>cw). (2.30)

We next use the property that for every continuous function f € o(s™2), there is
a constant C(sp) such that f;s() f(s)ds = C(sp) + o(A™1). To show this we write

fA f(s)ds as

/S; f(s)ds = /S: f(s)ds — /:O f(s)ds := C(so) — /:O f(s)ds,

where both integrals extending to infinity are finite because a function f € o(s72)
is automatically integrable. It just remains to prove that [~ f(s)ds € o(A71), i.e.
AIim A [ f(s)ds = 0. Applying the L'Hépital rule gives

—00

> . f(s)d —f(X
lim x/ f(s)ds = fim 1SSy =FO)
A—00 A A—00 ~ A—00 —3

where the last equality follows from f € o(A™2). Applying the result to the exponential

in (2.30),
A 9(1) 9(1) 9(1)
exp / ? +o(s?) |ds| = exp —% + sL + C(s0) + o(A71)
s=s0 0

9(1) 9(1)
= exp | C(so) + % | exp [ =5+ o(A7")
So A

N J/
g

==a(so)

= als) (1 +0(1)) = als) + o(1),

and we conclude

~

0

= ﬁ + O(}\fz)

o
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for some p independent of A. We can now substitute the expansions of 6, ns, and p
in the right-hand side of (2.24]) to compute its limit. Since 1/|S»| = V4TA + o(N), it
follows

lim —\/@/ 0om
A—ro0 167 Js, KT

= Jim = (Vama+ o) [ (2400 (5400 02 + o0)my -

We still need to relate this integral at infinity with integrals along {S,}. This is achieved
from the following two observations. First

lim /SA pns, = lim / (;2 +o(\™ 2)) (A% + o(A\?))ng = /s2 Mg, (2.31)

A—00

and second, fsx pMs, is in fact a constant independent of A because
([ oms.) = [ koms,+ [ oktns) = [ (~pms,+ [ (ovms, =0, 232
S)\ S)\ S>\ S)\ SX

where we have used (229) and the expression for the Lie derivative of a volume form

along k (see (B.41) in AppendixBl). Putting together (2228)), (2-24)), (Z31]) and (2.32))
yields

o o =N A
Eg = )]me[MH(SA)] = )\leOO (— ﬁ /SA kanSA = /§2 Mg = }JL”;O /S)\ PNs,
- / oms, VA (2:33)
Sa

So far, we have used the evolution equation (Z29]), but we still have not fixed any
initial condition for p. It remains to show that the initial data for p can be chosen so
that the initial surface S is a MOTS in the exterior geometry. Indeed, from the jump

equation (223)).
[0e]]s = (6, )]s — (6, )]s = —16mps,

S will be a MOTS in the outer spacetime ((9+)|5 = 0) if and only if

pls = ( BIE

Combining with (233]), we have

/9;175 — 167Ep,
S
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

and the Penrose inequality (Z18]) finally becomes
/ezns > \/16mS]. (2.34)
s

This inequality has the remarkable property of making no reference to the exterior
geometry at all. Since the density p is freely specifiable, this inequality should hold for
any closed spacelike surfaces S in Minkowski spacetime for which the null hypersurface
(2 generated by past directed and outer null geodesics orthogonal to S remains reg-
ular everywhere. We emphasize that analogous shell Penrose inequalities (also called
Gibbons-Penrose inequalities in the literature) exist in arbitrary spacetime dimension.
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Projection along the Killing in static spacetimes

3.1 Introduction

After having explained in detail the Penrose inequality conjecture and introduced the
fundamental notions we will use, we start with the presentation of the original results
in this thesis.

In this chapter we approach the shell Penrose inequality by means of a vertical pro-
jection along the time translation Killing vector. As explained in the introduction, this
was the method proposed by Gibbons to address the problem. Although his implemen-
tation was wrong, the idea is nevertheless interesting and worth exploring. In view of
potential applications of the method in more general settings than in Minkowski, we
analyze in detail the projection of general codimension two spacelike surfaces embedded
in a static spacetime. The projection is performed along the static Killing and onto a
hypersurface orthogonal to this Killing. We study the relationship between the intrinsic
and extrinsic geometry of the original surface with the projected one. In particular,
we find explicit expressions for the relation between the induced metrics, the second
fundamental forms and the connection of the normal bundle between the two surfaces.
Definitions of these concepts and basic results concerning the geometry of embedded
submanifolds are summarized in Appendix [Al

Although our main interest to find these geometric relations is with regard to the
shell Penrose inequality, the results are of independent interest. The computations are
performed in the static setup but, for the sake of generality we also give the expressions
in the case when the ambient manifold is of euclidean signature (and admits a hyper-
surface orthogonal nowhere zero Killing vector). The results in this chapter have been

published in [75].

In connection to the shell Penrose inequality, we first explain where and for which
reason the calculation by Gibbons fails. This is done in Subsection B3Il In Subsection

47



3.2. The metric determined by the Killing

we apply our result to give an independent proof of the theorem by Brendle and
Wang [15] mentioned in the introduction and which gives sufficient conditions for the
validity of the shell Penrose inequality in terms of the convexity of the projected surface.
As already stated, our proof of this theorem was obtained at about the same time as
Brendle and Wang and in a completely independent way.

3.2 The metric determined by the Killing

Throughout this thesis and unless otherwise stated, (M, g) denotes an (n + 2)-dimen-
sional spacetime. We always take n > 2. On a manifold with metric -y, we denote by
(-, ) the scalar product with this metric. When the scalar product is with respect to
the spacetime metric g we simply write (-, ).

Definition 3.2.1 (Killing vector field). Let £ be a vector field in a spacetime (M, g).
& Is a Killing vector field if it satisfies the relation

£5g =0. (31)
This condition is equivalent to:
Vb + Vpéa = 0. (3.2)

Definition 3.2.2 (Stationary spacetime). Let (M, g) be a spacetime admitting a Killing
vector field . (M, g) is stationary if € is timelike.

Definition 3.2.3 (Static spacetime). A spacetime (M, g) is static if it is stationary, and
in addition there exists a spacelike hypersurface ¥ which is orthogonal to the integral
curves of the corresponding Killing vector £ through each point. Such & is called static.
By the Frébenius theorem, a stationary spacetime with Killing vector £ is static if and
only if

£1aVpty) = 0. (3.3)

The following theorem is well-known. We include its proof for completeness.

Theorem 3.2.4. Let (M, g) be a spacetime that admits a static Killing vector field &
with the norm £%€, = —V/?, and V' a strictly positive function. Then there exists locally
in M a differentiable function t so that

50{ - _\/2vatv
and a coordinate system where the metric is expressed as
g = —V3dt®> + hjdx'dx’,

with hj; a positive definite metric.
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3. Projection along the Killing in static spacetimes

Remark 3.2.5. A function t is locally defined in M when it is defined in some (non-
empty) open neighbourhood U(p) around any point p.

Proof. We denote by £ the one form obtained from £ by lowering indices. By the
Poincaré lemma dt = —%> will have a local solution if and only if d(=) = 0, i.e. if

and only if
.(S:) () o

VA€ + EuViy Ve =0. (3.4)
Expanding &, V&4 = 0 and multiplying it by &, we obtain

or equivalently

0= 6€M£[uvu€a] = 2V2v[a£u] + 2£u£uva£u - zgaguvugu,y

where we have used the Killing equation. Inserting V,V? = =28V €, yields (B4), as
required.

Let ¥; be the level sets of t, and fix ty = t(p) for any choice p € M. Let {x'} be a
coordinate system in ¥, and extend it off 3, by means of £(x') = 0. It is clear that
(t, x") forms a system of coordinates in a neighbourhood of p. From £(x') = 0 we have
that £ is parallel to 8;. Moreover, the conditions (£,€) = —V? and § = —\V?2dt yield
that

5 = at,

so that the metric of M locally reads
g = —V2dt* + hjdx'dx,

where hj; = (Oyi, Oyi), With (¢, gj», = h) a Riemannian hypersurface. Obviously V' and
hij are independent of t because £ = 9, is a Killing vector.

]

3.3 Geometry of the intial surface in terms of the pro-
jected one

From now on we are in the setup of Theorem 3224l Consider a codimension-two
spacelike surface S in M. Since all calculations are local we can assume without loss of
generality that S is embedded, and as before let t : M — R be defined by € = —\V/2dt.
Choose any t; € R and let ¥, = {t = t;}. The projection S of S onto ¥, along
the orbits of £ defines a codimension-two surface which again can be taken to be
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embedded (after restricting S if necessary). Thus, we have a diffeomorphism 7 : S — S
defined by projection along £ (see Figure B.1l). The induced metrics and covariant
derivative on S (resp. S) are denoted as v and D (resp. 4 and D). The function
T = t|s — tp and Vs := V|s will play an important role in relating the geometry of
the two surfaces. Scalar functions on S will be transferred to S by means of 7 while
keeping their names. The precise meaning will follow from the context. Here and in the
following |Df|2 = ¥*Bfafg for any function f : S — R, and likewise |Df |2 = ¥*®f 47 5.

Figure 3.1: The spacetime convex surface S is projected along the Killing £ onto the
constant time hyperplane ¥, = {t = t} in the static spacetime M. S lies at a time
height distance 7 from X,. The tangent vector X to S is projected orthogonally to
the tangent vector X. For the normals, the vector 7 on S is Lie-dragged to S along ¢
and u is the normalized normal component of £ to S.

For any vector field X € X(S) we denote its projection dm(X) € X(S) as X. Given
any such vector X we extend it along the orbits of the Killing vector by Lie transport
along &, i.e. solving [¢, X] = 0. Again we keep the same name for the extension. Note
that X is everywhere orthogonal to £&. With these definitions it is straightforward that,

atany p € S,
X]p = X(T)€lp + X]p. (3.5)

As a consequence, the metrics vy and 7y are related by
YX Yo = (X(ME+ X V(T)E+Y) o = (1 (F) — VEdT @ dTl,) (X, Y)]p,
where we have used d7|,(X) = X|x(» and X(7) = d7(X). So, we conclude

v =7"(7) - VdT @ dT. (3.6)
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3. Projection along the Killing in static spacetimes

The inverse metrics are then related by

Fyl=dr(y 1) - \\/\//—Szzgrad,y(T) ® grad~(T), W= /1 - Ve|dT|2, (3.7)
which has, as immediate consequences,
dm(grad. (1)) = ——grad(), |dT]} = Ty = ! . (38)
w v N e,

The bound 1 — VZ|dT[5 > 0 (necessary for W to be real) is a consequence of S being
spacelike everywhere. It is also immediate to show that the respective volume forms ns
and ms are related by

Ns = Wns. (3.9)

In order to study the relation between the extrinsic geometries of S and S it is useful to
choose a basis of the normal bundle of each surface. Concerning S, the natural choice
is {V, V< €|s}, where U is a unit normal of S as a hypersurface in ¥,. We denote
by K the second fundamental form of S along 7. Concerning S, the Lie constant
extension v along the Killing & defines a spacelike and unit normal to S, still denoted by
U. For the second vector, note that £|s is nowhere tangent to S and hence its normal
component £* in the orthogonal decomposition T,M = T,S& N,,S is nowhere zero and,
in fact, timelike. From & = —V2dt we have, for any X € T,S, (¢|s, X) = —VZd7(X)
which means that the tangential component of §|s is —Vi2grad.,(T), or equivalently
&+ = ¢|s+ VEgrad, (). Following [110] we denote by u the future directed unit vector
tangent to £+, Its explicit form is

u= % (&ls + Vgrad,, (1)), (3.10)

as a consequence of u being unit and orthogonal to grad.,(7) and the property (£, &) =
—V2. We note that {7, u} defines an orthonormal basis of the normal bundle of S.

The extrinsic geometry of S is encoded into its second fundamental form vector K and
the connection of the normal bundle a. For the basis above, this geometric information
is in turn given by the two symmetric tensors K := (K, u), K := (K,7) and the one-
form az(X) = (V¥7, u), X € X(S). The following proposition relates these objects
with the geometry of the projected surface:

Proposition 3.3.1. With the notation above,

K" = m(K) — Vs(V)|sdT ® dT, (3.11)
Ki = % (dVs @ dT + d7 @ dVs + Vs* (Hesss (1))

— ngdvs(grady(ﬂ)dfr @dr, W=,/1-VldT[Z, (3.12)
oy = % (Vs (K(grad(T),)) — D(V)|sdT) . (3.13)
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3.3. Geometry of the intial surface in terms of the projected one

Proof. Inserting (B.H) in the defining expression KY(X,Y) = (VDY) gives, after
using X(1) = d1(X),

K7 (X, Y) =dT(Y)(VYD, &) + dT(X)(V'D,Y) + (VYD Y). (3.14)

Now, (V¥7,&) = X(T)(V¥D, &) + (V¥D,£) = X(1)(V¥D,£), the second equality
following from %, being totally geodesic. To elaborate this further, we note that
dé =2V 1dV A € as a consequence of € = —V/?dt. Hence
1o v(V)ls
M
— = —d ) = —F
vI/€ 2 €(U’ ) VS é'

where in the first equality we used the Killing equations and in the second the orthog-
onality of 7 and £. Raising indices and recalling that [£, 7] = 0 we conclude

_ v(V)ls
ViD=V = A
and therefore
(VXD, &) = =Vsu(V)|sdT(X). (3.15)

Using these expressions, the first term in (3:14]) becomes —Vsv(V)|s(dT®@dT)(X,Y),
while thg second term vanishes. Finally, the last term gives the second fundamental
form of S and (B.I1]) follows (to our knowledge, this identity appeared for the first time

in [15]).
Concerning K", its symmetry properties allows us to write K“(X,Y) = 2 ((V¥u,Y) +
(V¥u, X)), which after inserting (310 yields

KY(X,Y) =% (VYE V) + (VYE X0+

+ (V¥ (Végrad (1)), Y) + (V{(Vigrad,, (1)), X)). (3.16)

The Killing equations imply that the first two terms cancel each other. Now, the
tangential projection to S of a spacetime covariant derivative coincides with the intrinsic
covariant derivative on S. More precisely, for any vector fields X, Y, Z tangent to S we
have (X, VyZ) = (X, DyZ),. Thus, the third term in (B.16]) becomes

(Y, Vx(Vigrad,T)) = 2VsX(Vs)(Y,grad,T) + VZ (Y, Dxgrad,T)
= 2Vs(dVs @ dT)(X,Y) + VEHess,7(X,Y),  (3.17)

where we used the definition of Hessian Hess,7(X,Y) = (Y, Dxgrad,7). The same
reasoning is valid for the fourth term. It follows immediately

KY=W (dVs ® dT + dT @ dVs + VsHess (7)) . (3.18)
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3. Projection along the Killing in static spacetimes

In order to rewrite this in terms of the projected geometry, we need to find the relation
between the Hessians of 7 on each one of the surfaces. To that aim, recall that the
difference between connections D and D on a given manifold defines a type (1, 2) tensor
Z such that the following identity holds for any one-form w (see e.g. [106]):

(Dw)(X,Y) — (Dw)(X,Y) = —Z(w, X,Y). (3.19)

In our context, we can use 7" (%) on S and the corresponding connection D it defines.
Given the relation (3.4l), a straightforward computation gives

Z(d'T, . ) = —Vsld’?",zy(d\/g ®@dT +dT ® dVs +
+Vsm*(Hess5(7))) + VsdVs(grad,(7))dT & dT.

Inserting this into (B19) with w = d7 and using (B8)) it follows

W?Hess (1) = 7" (Hessy(T)) + Vs|dT2(dT ® dVs + dVs ® dT) —
—VsdVs(grads(T))dT @ dT.

Combining this and (BI8]) gives (312 at once.
It only remains to compute the connection 1-form az(X) = (V¥7, u). Substituting

(BIQ) one finds
w - 2
ay(X) = VS<VX v, £+ Vsgrad, (7)) =

- %<VXU, §) + WVsK”(grad,, (1), X) =

— —WD(V)|sdT(X) + WVsK”(grad., (1), X),

where in the last equality we used (BIH). Replacing (BI1]) and using the first and
second relation in (B8] and the definition of W, then

az(X) = —Wr(V)|sdT(X) +
+WVs (1*(K)(grad (1), X) — Vso(V)|sldT[2dT(X)) =

= —Wop(V)|sdT(X) + % (K(grad(7), dm(X)) = VB(V)|s|dT[5dT(X)) =
B V2| dT|2

— %K(gradq(ﬂ, dm(X)) — (W + %) v(V)]sdT(X) =

= 1 (K(grad (), dn(X)) ~ B(V)|sdr(X))

as claimed.
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3.3. Geometry of the intial surface in terms of the projected one

Remark 3.3.2. Although we have assumed £ to be timelike, all the calculations above
are similar when € is spacelike_and nowhere zero. In particular the geometric relations
between S and its projection S in a purely Riemannian context where (£, €) = V2 and
¢ = V?dt are

v = 7))+ VidT @ dT,

ns = Wng W= /1+VE|dTIZ,
KU = 71'*(7) + st(\/)|5d’r ® dT,

1 V2
KY = W (dVs ® dT + dT ® dVs + Vs (Hessz(T))) — Wsdvs(gradﬁ('r))dT ® dT,

ay = o (~Vem (K(grads(r), ) +7(V)Isdr)

where this time the unit vector u reads
w
U=c (5’5 - Vfgradq(T)) -
s

Remark 3.3.3. Note that the expressions above contain all the information needed to
relate any geometric quantity on S with geometric information on its projection S.
For instance, the mean curvature vector of S can be related to the projected geometry
simply taking the trace in K = K”U— KYu with the metric y~! and using (3.8]) together
with the results in Proposition B3] If we choose any other null basis {k, £} of the
normal bundle normalized so that (k,£) = —2, it must be necessarily of the form

k=f(—v+u), £L=Ff1*v+u), (3.20)
where f : S — R\ {0} is smooth.

The null second fundamental forms KX, K* of S along the basis of null normals
{k, £} can be obtained directly from Proposition B3] using the decomposition ([320).
Namely, if we consider a linear combination w = av + bu of the vectors {V, u} we have

K/‘XB = <VXA(3U+ bU),XB> = a(VXAU, XB> + b<VXAU, XB> = QKZB + bKZB
Hence using (B.20]) and Proposition 3.3.1], we obtain
Kﬁs = f(Kag — KZB)
1 Ve _
= f (W (dVs @ dT+ dT7® dVs) + WSW*(Hessq(T)) — " (K)

+ (VSU(V)|5 — VW‘ngS(grad,y(T))) dT ® dT) ,
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3. Projection along the Killing in static spacetimes

and

KE\B = f_l(KZB + KZB)

1 % —
= ! (W (dVs @ dT+ dT ® dVs) + WSW*(HGSSW(T)) + 1 (K)

- (VSU(V)IS + ngdvs(gradq(T))) dT ® dT) : (3.21)

We can now take the trace of (B.21I]) with the contravariant form of the metric y to
obtain

6, = %dvs(gradw(ﬂ) + try (%w*(Hessw(T)) + w*(?))

- (VSD(V)|5 + VWSdVS(gradW(T))> ldT|2.

Using now the first and second relations in (3.8]), and expression (B.7]), we obtain

0, = 3 aVa(arady(1) + 1o (5em) + F+ os(Hesss(r)) (arads (), grad(7))
+ 5 R(grads (1), arad (1)) — 55(V)sldT2 — 5 avi(arady(r)ldrl2

W2 W2 w3

It is convenient to organize the terms in the following form:
2

f0, = H+%(?(gradw(f),gradw(ﬂ)—U(VS)’SW ’2) =

where

= ;3 dVs(grad(7)) + — vs (A*’T) + V\/V—SZ(Hessy(T))(grady(T), grad~(7))

V2
—5 —2_dVs(grad(7))|dT2. (3.22)

We next prove that = is proportional to a divergence. We use here index notation for
convenience. We want to show that

1_— V2—A
= VSVA (WV '7'> .

Expanding the right-hand side

Ve _a AVZ. Vs
— — = — A§T. 2
VSVA (WV T) VSVA (W V + — W ~T (3 3)
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3.3. Geometry of the intial surface in terms of the projected one

The expression W = /1 — VZ|dT[Z implies

— 1 NV
VW = W(_VSVSA’dT‘% - VSQ(VAVLT)T,L)'

so that (B.23]) becomes

V. 2 V2 VE
V;A T+ Ve AT A+ 25 Ve 4T A d T + 53(VAVB'T)’T'AT‘B,

which is exactly (B22)) after using the definition of W.

In summary, we have obtained an expression for 6, in terms of the geometry of the
projected surface:

b= L (7 Y5 (Reoraty o) st ) — D02 ) 4 L (Bt )

Observe that

fWw
(€ +VEgrad, (7). &) = A (Ve = VeldTl3)

Vs
- =
w'

where we have used that 7 is orthogonal to &, the definition of W and that

(€)= rlu-p.6) = Flu.g) = 77

(grad,(7), &) = (grad (1), &" — Végrad (7)) = —V<|dTl3.

Hence, if we normalize k so that (k,&) = —1, the value of f (that we will call in this
case f*) becomes
. W
fr=—
Vs

This value is special when computing the total null extrinsic curvature fs 0yms, because
the divergence term of 6, vanishes upon integration (recall the relation between volume
forms (B9])). In other words, for f = f* the total null extrinsic curvature becomes

/504115 :/S(HVSJrV\\//—SZ (V(gradW(T),gradw(T)) _ v )|5|d |2)> ns.  (3.24)

Concerning the connection one-form, its behaviour under change of basis is not ten-
sorial (being a connection), so it is worth giving its explicit expression in the null ba-
sis {k,£}. With the usual definition of connection one-form in this basis given by
s(X) 1= 2(V¥k, £) we have

X(f)

1 1
s(X) = §<V>Aé’k,€> = E(Vé\f(—fﬁ+ fu), f o+ ftu) = - az(X),
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3. Projection along the Killing in static spacetimes

and hence JF )
s=-—F + W (T(V)|sdT — Vs (K(grad(7),-))) .
The following lemma shows that the null expansions K* and K* of any spacelike
surface S in a strictly static spacetime are not independent to each other. In the case

of the Minkowski spacetime this result was proved in [37].

Lemma 3.3.4 (Relationship between null extrinsic curvatures). Let (M, g) be an
(n + 2)-dimensional static spacetime with static Killing vector §&. Let S be a spacelike
surface in (M, g). With the notation above, we have

— (&, K)KE — (£, 0)KF — 2Vs(dT @ dVs + dVs @ dT) — 2VZHess, T =0,  (3.25)

where k and £ are a basis of null normal vectors to S satisfying (k,£) = —2, and where
Vs and T are respectively, the restriction of V. andt on S.

Proof. Since the relationship is local, it suffices to work on a suitably small neighbour-
hood U, of a point p € S. We choose U, small enough so that &, = —V?2V4t on Up
and work on U, from now on. Decomposing £ in tangential and normal components we

have (cf. (B10)) .
s =

The Killing equation V&5 + Vg€, = 0 implies, on U,, and for X,Y € [(TS)

(€ k) — %(g, Lk — VZgrad,T. (3.26)

(X, Vy€) + (Y, Vx§) =0. (3.27)

Let us work out the first term. Inserting the decomposition (3.26]) and using the
definition of null extrinsic curvature it follows

(X, Vy€) = —%<5, KYKYHX,Y) — %<§,£>K"(X, Y) = (X, Vy(Végrad,T)). (3.28)

The third term of (B.28]) is developed as in (BI7). Inserting this result into (3.28]) we
conclude

1 1
(X, Vvg) = =5, KYKA X, Y) — §<$,£>Kk(xy Y) —2Vs(dT @ dVs)(X,Y)
—VZHess,T(X,Y),
which combined with (B.27]) proves the Lemma. ]

Remark 3.3.5. If we choose a basis {X4} of the tangent space to S, the relation (B 25])
can be expressed in index notation as

—(&, K)K,s — (6, 0)KEg — DA(V2DgT) — D(V2DaT) = 0.
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3.3. Geometry of the intial surface in terms of the projected one

Corollary 3.3.6. Under the same assumptions as in the previous Lemma,
(€ 0)(& k) = V(1 +VZ|DT[3). (3.29)
Proof. Squaring (3.20)) it follows

—VE = (£, &) = (& k) (€, 0) + Ve (grad,T, grad,T) = — (£, k) (€, £) + V&' |DTI3.
O

The projection along the Killing was used by Gibbons [37] in Minkowski to address the
shell version of the Penrose inequality. However, his proof contained serious mistakes.
In the following section we analyze his procedure and correct the expressions. To this
purpose we will use all the machinery developed in the first part of the chapter.

3.3.1 A critical revision of Gibbons’ argument

In this subsection we discuss the gap in Gibbons' attempt [37] to prove the general
inequality (I.4]). Following the notation of the previous section, we will denote by S
the spacelike, spacetime convex surface involved in the inequality. However, in order
to stick to the notation used by Gibbons in [37] as much as possible, here the future
directed null normals are called k and L and satisfy the normalization (k,§) = —1 and
(L, k) =—1.

The strategy in [37] was to project S along &% onto a constant time hyperplane
orthogonal to £*. The projected surface is denoted by S. The main idea was to rewrite
the shell Penrose inequality (I_4))

n 1 n—1
/ pms > 1(w,)1S]"7 (3.30)
S

in terms of the geometry of S as a hypersurface in Euclidean space, where 2p 1= VL2
is the null expansion of L (hence p = %94 when compared with the normalization we
used in (B3]), since £ =2L), and ns is the area element of S.

Gibbons' gap consists in his claim that

1 _
/ ons =+ / Fins. (3.31)
S 4 S

It is clear that (B31]) contradicts our result (324]) that gives the value of the total
null expansion along L in a static spacetime. With the current normalization conditions
(V =1), instead of (B.31]) we find

1 /— 1 —
/,0"75 = /Z (H + WK(gradﬁT, grady'r)) M. (3.32)
s S
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3. Projection along the Killing in static spacetimes

The expression (B32)) differs from (B31) since K(gradyT, grad-T) # 0 in general.

Before discussing in detail the problem that led Gibbons to conclude (erroneously) that
expression (331]) holds, let us briefly explain how Gibbons' argument would have con-
tinued had (331]) been valid. The area of S is not smaller than the area of S (because
of (B9))) and hence inequality (330 would follow from (B.31]) and the Minkowski-type
inequality

/ Fng > n(w,)|S|+ (3.33)
S

that Trudinger [104] claimed to be applicable to general mean convex surfaces in Eu-
clidean space (i.e. surfaces with non-negative mean curvature). Notice that Gibbons
finds not only (B.31]) but also (B.39) below from which H > 0 follows from p > 0.

The original Minkowski inequality (B33]) (for convex bodies) proves that “among
all convex bodies of given surface area the sphere has the smallest integral of mean
curvature”. Its proof can be found in [I0] (see expression (4) in Section 56), and it can
also be derived from the Aleksandrov-Fenchel inequalities discussed in [104].

Trudinger gave an argument to show (B33)) using an elliptic method. However, Guan
and Li [39], showed this argument is incomplete and at present it is not known whether
inequality (B33]) holds for general mean convex bodies. In [39] a parabolic argument is
proposed which proves the inequality for mean convex starshaped domains in Euclidean
space (a starshaped domain is defined by the property that it contains a point x, and
all segments between x; and any other x in the domain).

Let us now go into the projection method used by Gibbons and see where it fails.
Gibbons first extends k to an ingoing null hypersurface N by solving the affinely
parametrized null geodesic Vk = 0 with initial data kK on S. Similarly, L is extended to
a null vector field on the outgoing null hypersurface £ passing through S and with tan-
gent vector L. These vector fields are then extended to a spacetime neighbourhood of S
by parallel transport along & (see Figure B.2]). With this extension, we have (k, &) = —1
everywhere. Defining B on this neighbourhood by B := —(&, L), the following vector
field can be introduced:

R 1
0= 5 (LK) (3.34)

It follows immediately that U is everywhere normal to £&. Moreover, this field is orthog-
onal to S and unit on this projected surface (in fact it agrees with the v we introduced
in the previous section).

Gibbons used in [37] that the mean curvature H of the projected surface S can be
expressed as H = VaP®|s. This is one of the key problems in his argument, because
this expression is not generally satisfied. Let {X 4} be a tangent basis for the projected
surface S, so that we can write

Al = 78 K = 7% (V5,0 o).
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3.3. Geometry of the intial surface in terms of the projected one

Figure 3.2: Two null hypersurfaces starting at S are represented. Gibbons' construction
uses a null hypersurface N generated by the geodesic null vector field k, and a null
hypersurface £ generated by the geodesic null vector L. k and L are extended to a
neighbourhood of S by Lie-dragging them along the Killing £&. The product of k and
L is —1 when evaluated at points of S. The vector field U = ﬁ(L — Bk), where
B := —(&, L), when evaluated on S agrees with its outer unit normal on ¥,.

We want to relate this expression with V,0%|s. In order to do so, let B = {e,} be any
basis of vectors of the Minkowski spacetime defined on points of S. Then

Val¥s = N (Ve 0, es).

Choosing the basis B = {£|<, D|<, X4}, the metric 1 is

-1 0| O
Nop = 0O 1] 0 , (3.35)
0 0748
so that inverting (B35 we have
Vab®lg = —(VeD, &) + (VoD, D) + 7% (Vx, 0, X5). (3.36)
The vectors £ and U are everywhere orthogonal and £ is covariantly constant. Thus
(Ve &) = —(0, V&) = 0, and the (correct) expression for the mean curvature in
B39) is
_ 1
H = V0|3 — §Vp(19, D)+ (3.37)

Thus Gibbons ignored the term V, (o, 7). This term vanishes whenever o has constant
norm. However, the extension of U is already fixed and, as we shall see later in an
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3. Projection along the Killing in static spacetimes

example, it does not keep the norm of o constant. Gibbons still makes a second
mistake when computing V,0%. The following expression is written down in [37]

Hevprev (2 je_ P a1 g oy P (g e
H= V4D (\/_L \/_k>—m(VaL) m(vak ), (3.38)

which implicitly assumes that the derivatives of B along k and L are zero. Using the
extension VL = 0 and that £ is covariantly constant it is immediate to check that
V.8 = 0. However as our example below will show, it is not true that V,G = 0. In
summary, Gibbons finds the erroneous expression (cf. (5.11) in [37])

H= \/gm V2B, (3.39)

where —2u = 6,. From here the argument is concluded by invoking the identity 2p —
2Bu — A1 = 0 so that

/Spns = /S(%F—ﬁu)nszl(%ﬁ—p+%ﬁwf)ns
&)

which leads to (B3T)) by solving for [ pns and using 15 = v/287s.
In contrast, the correct expression for H is, combining (337) and (338)

= \/gp—f— \/%,u'_vk (\/é) —%Va@ﬂ .

where we have already used V6 = 0. Expression (3.40) agrees with (3.39]) only if
the last two terms cancel each other. Neither V;(7, 7) nor the derivative of 3 along
k need to vanish on S. Even more, they need not, and in fact do not, cancel out in
general. It is possible to derive general expressions both for V3 and for V{0, ) on S
(or S) which show that such cancellations do not occur. Instead of doing so, we find it
more convenient to present an explicit example where the last two terms in (3.40) do
not cancel each other. For completeness, we also evaluate H, p and u explicitly on this
example and show that (B39)) is not valid.

(3.40)

For the example, we use spherical coordinates {t, r,0, ¢} in Minkowski, and consider
the past null cone Q, of the origin p {t = 0,r = 0}. The defining equation for €, is
t +r =0, so the null tangent k satisfying (k,0;) = —1 is

k:&g—ar.

In intrinsic coordinates {7, 0, ¢} of Q satisfying k = —0; the first fundamental form
is 4 = P2(d6? + sin0d@?). Using the fundamental identity £,4 = 2K* (which we
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3.3. Geometry of the intial surface in terms of the projected one

prove explicitly in Appendix [Bl), where K"]q is the extrinsic null curvature along k of
any spacelike surface S, embedded in the cone and that contains g € €2,,, we find

KK = —74, (3.41)

where § is the standard metric on the sphere.

We consider an axially symmetric (with respect to the Killing vector Og) spacelike
surface S embedded in €2,. The embedding is then given by

F:(0,¢) — (—R(6), R(0),6,9),

where R is a smooth, positive function (satisfying suitable regularity properties at the
north and south poles, as usual). The induced metric y on S is v = R?§.

Let us first compute 8 = —(&, L). Using formula (B.29)) with the conditions (&, k) =
—land V =1, and since £ = 2L, we have

1
B =501+ IDTR),

where 7(6, ¢) = —R(6). Explicitly

RZ + (RI)Q

P=—""R

where prime means derivative with respect to 6. We next compute V3. The analogous
decomposition to (B.26]) in the basis {k, L} is

§ =Bk+ L —grad,T, (3.42)
so that

ViB = —(Vi& L) — (£ Vil) = —(& Vil) = —(§, V%(g_LngradwT)L>
1
= F@:Vgradwfu'

where in the last equality we used V¢L = VL = 0, which hold directly from the way
how L has been extended. Inserting again (3.42)) in the right-hand side

-1 1
VB = F<L +Bk —gradyT, Vyraq L) = —(k Vgrag L) + B<Vgrad77L' grad,7)
1
= s.(grad,7) + =K"(grad, 7, grad, 1), (3.43)

B

where s (X) := (Vxk, L) with the present normalization. Given that

si(X) = (Vxk, L) = (Vxk, & — Bk + grad,T) = (Vxk, grad,7) = K*(X, grad,T),

62



3. Projection along the Killing in static spacetimes

([B43]) becomes
1
VB = K*(grad,T, grad,,T) + BKL(gradW'r, grad,T). (3.44)

We can use now the curvature equation (3.25]), which in the present normalization is

K: +BK* — Hess,T = 0, (3.45)
and (B:44]) simplifies to
1 2
VB = BHess,yT(gradyT, grad,T) = %fy (grad, (ID7[3) , grad, 7).
Inserting |DT|7 = (R, , B = R2;§,§) and grad,, T = *R—’E’a@, we conclude

2(R/)2(_RR// + (Rl)2)
R3(R? + (R')?)

VB =

and the fourth term in the right hand-side of ([3.40Q) is

é B __1 2 B (R/)2(R//R _ (RI)Q)
— Vi <\/;> =7 \/;(Vkﬁ) = T R(RR L (R (3.46)

It remains to compute the last term of (3.40]). We need to know the value of V, (7, D),
with o as in (334]). Recall that the vector k has been extended from S by Vik = 0
and then by V¢k = 0. Thus k stays null in a whole spacetime neighbourhood of p. The
same reasoning applies to L. Thus

(D, D) = % (L, L)+ B2k, k) — 26(k, L)) = —(k, L), (3.47)
and we need to compute
6]
Violk, L) = V%BL_%B,((/(, Ly = \/—_<VL/< Ly — \/%(VKL, k). (3.48)

Each term can be computed from (B.42]) as follows

(Viki L) = (Ve geigrad kL) = (Vgrad ki L) = (Vgraq k. & — Bk + grad,7)

= (Vgrad.-k 9rad,7) = K*(grad, T, grad,7),
v

-1
(Vil, k) = L k)= —(Vgrad -k L)

<Vgrad LK) = B

QR+~

<Vg(g—L+g rad,)

—1
— FKk(grad,Y’r, grad,T),
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3.3. Geometry of the intial surface in terms of the projected one

and (B49) is finally
2 —2(R')?
Vilk, L :\/ij rad. T, grad.,7) = ,
(k) = | i arady grady ) = s
where in the last equality we inserted KX = —R§ and grad,T = _R—’E’/@e. In summary,

(B47) becomes
_(R/)2

—re) R2V/RE+(R)Z

which is not only nonzero but also does not cancel with (348l) in general.

;V,;(D, v)

(3.49)

For completeness we compute now the null expansions. Since w is a property of €2,
it suffices to find the null expansion along k of the past null cone €2,,. Let g € 2,. We
know by (BZI) that KX = —7§, and since 7y, = 7?4, it follows

To compute p, we will use the curvature equation (3.48]), whose trace reads in this case
as
20 —2Bu — A, = 0. (3.50)

The Laplacian of 7(6,¢) = —R(0) is

—cosO R R

Ag= 7R &
T TGne B2 R2

Since 8 = % and u = %, equation (BE0) implies
_ —RR'"+R*+(R)> R'cosf

- 2R3 2R?sinf’

Using the values above together with (3.46]) and (3.49]) and substituting them in (3:40)),
we obtain

o

Hle 1 2R* 4+ 3(R')> = RR"  R'cosf (3.51)
ST Rzt (R')? R2 + (R)2 R sin@ ) '

On the other hand these expressions in the right-hand side of (3.39)) gives

2 1 2R?+2(R')> - RR"” R'cos#®
h 2 — _
o+ Vu] = g (R )

which is clearly different to the expression for H|< in (B5I]). This proves that (339)
cannot be correct. If we instead perform the analogous substitution in (3.40]) we find a
consistent expression.
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3. Projection along the Killing in static spacetimes

3.3.2 The projection along the Killing direction in Minkowski. Ap-
plications to the shell Penrose inequality.

Brendle and Wang have proved [15] a generalization of the shell Penrose inequality for
the Schwarzschild spacetime. In the particular case of the Mikowski spacetime, the
inequality holds for the class of surfaces whose projection along the Killing direction
onto a constant time hypersurface is convex.

In the following theorem we quote Brendle and Wang result [I5] and give a proof which
in fact was obtained independently before their result was published. Our proof uses
the machinery developed at the beginning of the chapter (and published in [75]), which
allows us to express the shell Penrose inequality for the initial surface S in Minkowski
in terms of the projected geometry.

Theorem 3.3.7 (S. Brendle & M.T. Wang). Let (M1 n) be the (n+2)-dimen-
sional Minkowski spacetime with t a Minkowskian time defining a unit Killing § = —dt.
Let S be a closed, connected, orientable and spacetime convex surface in (M1 n)
with contravariant metricy~*. Let m: MY — 3 be the orthogonal projection onto
the hyperplane ¥, = {t = to} and define S = w(S). Denote by ns its volume form
and by K its second fundamental form as a hypersurface of (n + 1)-Euclidean space
with respect to the outer unit normal. Then the shell Penrose inequality with respect
to & for S is equivalent to

/trdw('y 1)K > n(wn) |5’7 (352)
and holds if S is convex.

Proof. With the normalization we have been using up to now ((k, &) = —1 and (k, £) =
—2) the shell Penrose inequality for arbitrary dimension reads

/menmmHﬂT
S

We can use now the expression (B.24]) for the total null extrinsic curvature in static

spacetimes for f = f* (because k has been chosen to satisfy (k,&) = —1), and with
V = 1. This expression becomes in this case
1 _
/Gms = / (H + WK(gradWT, gradnYT)) Ne = /trdﬂ(q-l)K'rr, (3.53)
s s s

and the shell Penrose inequality can be rewritten as (3.52)).

To conclude, we see that if S is convex it follows V(gradﬁ', gradﬁT) > 0, and that
implies

/@m>/ ns = n(wa) [SIF = n(wn)}|S),
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3.3. Geometry of the intial surface in terms of the projected one

where we have used the Minkowski inequality for convex surfaces in the Euclidean space
and |S| > |S].

]

Remark 3.3.8. By definition, a spacetime convex surface S embedded in a constant
time hyperplane 2 is a convex euclidean surface. When this happens, the vector £
decomposes as £ = £ +v and then 6, = (H,{+v) = (Hv, £+ v) = H and consequently

/92775://_/"75,
s s

and the shell Penrose inequality conjecture turns out to be in this case the Minkowski
inequality for convex surfaces in the Euclidean space, and hence a true inequality. This
result is also recovered in (B.53]) by setting 7 = 0. This particular case of the shell Pen-
rose inequality was first proved by Gibbons [37]. Note that this shell Penrose inequality
is with respect to the Killing orthogonal to the hyperplane 2.

Although Gibbons used an alternative proof, this case is immediately covered by The-
orem 3.3 7. In fact, this theorem also implies the validity of the shell Penrose inequality
for S with respect to any other time translation, as we show next.

Theorem 3.3.9. Let S be a closed, connected and convex surface embedded in a
spacelike hyperplane Z’té — M3 Let &€ be any unit time translation (not necessarily
orthogonal to Z/r() ). Then the Penrose inequality with respect to € holds for S.

Proof. Let v/ be the outward normal to S in Z/té' Since a hyperplane is totally geodesic,

the second fundamental form vector of S is K = K¥'v/, where K is positive semidef-
inite. Choose any hyperplane ¥;, orthogonal to £ and define S as the orthogonal
projection of S onto ;. To prove the theorem it suffices to show that S is convex,
i.e. that its second fundamental form K with respect to the unit outer normal 7 in ¥,
is non-negative. From Proposition B3] in Chapter @ (formula (BI1), with V =1, as
we are in Minkowski) we have

K" = m(K),

where ™ 1 S — S is the projection along &, U is the parallel extension along € of the
normal vector U of S evaluated on S and K” := (K, 7). Thus, K is non-negative if and
only if (V/, V), is non-negative. Now, both v/ and U are normal to S, spacelike and unit.
Since they belong to a two-dimensional Lorentzian space, (v, V), vanishes nowhere,
and, hence, has constant sign. For the choice £ = £/, i.e. the time translation normal
to Z’%, we obviously have v/ = T and the sign is positive. Since £ can be obtained from
& by a smooth deformation, and 7 also changes smoothly, it is impossible that the sign
of (V, V), changes from +1 to —1, and the theorem is proved. ]
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3. Projection along the Killing in static spacetimes

Figure 3.3:  Particular case of the projection along the Killing in Figure BI] where
S’ := S lies in a hyperplane orthogonal to a time translation £ different from £. In this
case, if S’ is convex, S is also convex and S’ satisfies the shell Penrose inequality with
respect to £. The shell Penrose inequality with respect to £ transforms in this context
in a Minkowski type inequality for euclidean surfaces and reads fs, H'fng > \/16m|S'|,
where H' is the mean curvature of S’ as a surface of R3, and f = (V/,€) — (¢, €).

This theorem implies a Minkowski type inequality for S’ := S as a convex surface of
Euclidean space (see Figure B.3]). Indeed, the Killing vector £ can be decomposed as
€ =/1+|v]2€ + v where v is a translation of Euclidean space (R3, gg) (identified
with the hyperplane Z/té). With the definition of null vectors k =& — v and £ =&+ /
on S’ and, given that the mean curvature vector of S’ is H'V/, where H' is the mean
curvature of S’ < R3, the Penrose inequality (2.34]) with respect to ¢ becomes

/ H'fns > \/167|5, (3.54)

where
f=+v1+|v]2+ge(V, v).

Obviously, when v = 0 we recover the standard Minkowski inequality. The validity of
this inequality suggests that it might be worth studying for which functions f Minkowski
type inequalities of the form (3.54]) hold for arbitrary convex surfaces of Euclidean space.
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Projection along the past null cone €2 in Minkowski

4.1 Introduction

In the previous chapter we have studied the projection in the Killing direction onto time
constant hyperplanes in static spacetimes. Another natural projection that turns out
to be useful for the Penrose inequality is to drag the surface along its outward past
null cone. This dragging will be studied in full detail in a subsequent chapter. Here we
concentrate in the Minkowski case. Most of the content of this chapter was published
in [74], where this projection was used for the first time to address the shell Penrose
Inequality.

Specifically, we consider spacelike closed surfaces S in the Minkowski spacetime whose
past null cone 2 extends smoothly all the way to past null infinity. Our aim in this chapter
is to rewrite the shell Penrose inequality in Minkowski in terms of the geometry of the
surface §0 determined by the intersection of 2 with a constant time hyperplane {t = to}
lying to the past of S. The solution to the evolution equations of the quotient metric
and second fundamental form (Ricatti equation) with which the null hypersurface Q is
endowed allows us to rewrite the geometry of any cross section of Q (in particular S) in
terms of the geometry of the euclidean surface §0, which turns out to be convex. The
fundamental results we need concerning the geometry of null hypersurfaces are explained
in Appendix Bl The expression we find for the shell Penrose inequality (Theorem 3.0
involves the time height function 7 = t|s — ty of S, that measures the “time distance”
that separates S from {t = ty}. In the case that the surface lies in the past null cone of a
point in Minkowski, the resulting inequality is proven to hold in arbitrary dimension. The
key tool that allows us to prove this result is a Sobolev type inequality on the sphere due
to Beckner [7]. Our result generalizes the validity for the shell Penrose inequality with
spherical symmetry achieved by Tod [I01] in the four dimensional Minkowski spacetime.

As explained in detail in Appendix [C, the geometry of a convex surface in Euclidean
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4.2. Notation and basic definitions

space can be fully encoded in terms of a single function. This function is called the
support function of the surface. This allows us to find an alternative expression foL the
shell Penrose inequality in Minkowski which involves the support function h of Sg =
QN {t = ty} and the above mentioned time height function T, which is naturally
associated to the initial surface S. Both h and 7 can be defined on the sphere using
suitable pullbacks. The new expression for the shell Penrose inequality in terms of h
and T involves the inverse of matrices of size n x n. The special case n = 2 (spacetime
dimension four) is considered in Theorem [£Z4.8], where the particular expression of the
inequality with the explicitly computed inverses is obtained.

The final part of the chapter makes use of flows of surfaces beginning at S and moving
along 2 with the purpose of addressing the shell Penrose inequality in Minkowski. Null
flows were already used by Ludvigsen & Vickers [67], whose idea was later improved by
Bergquist [8]. Analyzing the monotonicity properties of what we call Bergqvist mass we
find an inequality between 7 and h which is sufficient for the validity of the shell Penrose
inequality. In particular we find that the class of surfaces which satisfy the Penrose
inequality as a consequence of this method includes a non-empty open set. In contrast,
the set of surfaces covered when applying Ludvigsen & Vickers' and Bergqvist's method
[67, [8] to the Minkowski spacetime turns out to be of measure zero.

4.2 Notation and basic definitions

For the sake of clarity let us start this chapter with a brief summary of the geometry of
null hypersurfaces. Details can be found in Appendix Bl

Let Q be a null hypersurface of an (n + 2)-dimensional spacetime M, and k a future
directed vector field tangent to 2 which is nowhere zero and null. This vector field is
defined up to multiplication with a positive function F : Q — R™. It is well-known (see
e.g. [32]) that given any point p € 2, an equivalence relation can be defined on T,Q2 by
means of X ~ Y if and only if X—=Y = ck with ¢ € R. The equivalence class of X € T,{2
is denoted by X and the quotient space by T,Q/k. The set TQ/k = UpGQ T,Q/k, is
endowed naturally with the structure of a vector bundle over 2 (with fibers of dimension
n) which is called quotient bundle.

Given X, Y € T,Q/k, it follows that v*(X,Y) := (X, Y) is a positive definite metric on
this quotient space. The tensor K(X,Y) := (Vxk,Y) is well-defined (i.e. independent
of the representatives X, Y € 7,82 of X, Y and of the extension of Y to a neighbourhood
of p). This tensor is symmetric and plays the role of a second fundamental form on Q.
The Weingarten map, which we denote by K, is the endomorphism obtained from K*
by raising one index with the inverse of ¥*2. Finally, the trace of K with respect to ¥
is the null expansion 8, of €2. Under a rescaling k — Fk, these tensors transform as
K? — FK® K® — FK® and 6, — F6,.
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4. Projection along the past null cone 2 in Minkowski

A derivative of TQ/k can be defined via (X) := V,X. Again this derivative is
well-defined (i.e. independent of the representative chosen in the definition). Note,
however, that it does depend on the choice of k. As usual, this derivative is extended
to tensors in T2/k with the Leibniz rule. An important property of null hypersurfaces
is that the quotient metric v*, the quotient extrinsic curvature K and the ambient
geometry (M, g) are related by the following equations (see equations (B.6]) and (B.12)
in Appendix [B)

(v?) = 2K?,
(K2 + K20 K%+ R —QxK” =0, (Ricatti equation)

where K o K is the composition of endomorphisms, R(X) := R(X, k)k and Qy is
defined by Vik = Qkk (the integrals curves of k are necessarily null geodesics but the
parameter along them need not be affine).

In order to transform this system of equations into a system of ODE for tensor
components, let us choose k to be affinely parametrized, i.e. satisfying Vi k = 0.
Let us also select n vector fields X, (A, B,C = 1,---,n) tangent to 2 satisfying the
properties (i) [k, Xa] = 0 and (ii) {k|,, Xalp} is a basis of T,Q2 at one point p € Q.
Denote by a,(0) an affinely parametrized null geodesic containing p and with tangent
vector k (for later convenience we do not fix yet the origin of the affine parameter o).
Then {Xala, (o)} is a basis of Ty, (5)$2/k and the tensor coefficients vz (0), Kis(o) of
¥, (o) and Ko, (o) in this basis satisfy the ODE (see equations (BII]) and (BI2)
in Appendix [B)

2\A
C/(ga) B — (KA (K?)C, — RA,
Q
K8 (k) (41)

where R4, are defined by R(X5) = R“3X 4 and indices are lowered and raised with the
metric (7)) g and its inverse (y?)AE.

4.3 Shell Penrose inequality in the Minkowski space-
time in terms of the geometry of convex surfaces

We will restrict in this chapter to the (n+ 2)-dimensional Minkowski spacetime
(MY m) (n > 2). Choose a Minkowskian coordinate system (t, x*) and define
& = 0;. Since this Killing vector is unit, we have V =1 in the notation of the previous
chapter. The hyperplanes at constant t = t, will be denoted by 2.

The main purpose of this section is to rewrite the shell Penrose inequality in terms of
the geometry of the projected euclidean surfaces obtained by intersecting the past null
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4.3. Shell Penrose inequality in M!"*! in terms of Euclidean geometry

cone of the original surface (provided it satisfies suitable conditions of regularity) with
a constant time hyperplane.

As already mentioned, the physical construction leading to the Penrose inequality
involves null hypersurfaces which extend smoothly all the way to past null infinity. We
introduce the following definition which captures this notion conveniently (recall that a
null hypersurface is maximally extended if it cannot be extended to a larger smooth null
hypersurface).

Definition 4.3.1 (Spacetime convex null hypersurface). Let Q2 be a maximally ex-
tended null hypersurface in (MY n). Q is spacetime convex if there exists t; € R
for which the surface §0 = QNX, is closed (i.e. smooth, compact and without bound-
ary), connected and convex as a hypersurface of the euclidean geometry of Xy, and
the null expansion of the future null generator k of Q2 evaluated at Sy satisfies 9k|§o <0

. Q is called spacetime strictly convex /f §o is strictly convex, namely with positive
principal curvatures at every point.

Remark 4.3.2. Note that if the hypothesis 9k|§0 < 0 is removed there would be two

possible choices of hypersurface €2: the future null cone of §0 and the past null cone of
So.

Remark 4.3.3. The idea of the definition is, obviously, that if the shape of the null
hypersurface at some instant of Minkowskian time is convex, then the past directed
outgoing null geodesics cannot develop caustics and hence the null hypersurface will
extend smoothly to past null infinity. It is also clear that if 2N, is closed and convex
for some ty, the same occurs for all t < t,.

Given a spacetime convex null hypersurface 2, we always normalize the tangent null
vector k uniquely by the condition (k,&) = —1. This vector field will also be normal
to any spacelike surface embedded in 2. Since the Penrose inequality involves precisely
this type of surfaces the following definition is useful:

Definition 4.3.4 (Spacetime convex surface). A spacelike surface S embedded in
(ML n) s called spacetime (strictly) convex if it can be embedded in a spacetime
(strictly) convex null hypersurface Q of (M1 n).

It is intuitively obvious that a spacelike, closed and connected surface S can be embed-
ded at most in one spacetime convex null hypersurface €2. Thus, for any such surface
we can define unambiguously a null basis {£, k} of its normal bundle by the conditions
that k is tangent to the spacetime convex null hypersurface €2 containing S and the
normalization conditions (k, &) = —1, (£, k) = —2. We refer to £ as the outgoing null
normal and to k as ingoing null normal. The Penrose inequality (4]) involves the null
expansion 8, with respect to the outer null normal. The idea we want to explore in this
chapter is how this inequality can be related to the geometry of a convex hypersurface
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4. Projection along the past null cone 2 in Minkowski

of Euclidean space. The most natural convex surface arising in this setup is precisely the
surface §0 = QNX,, (see Figure[I]). On the other hand, any convex surface §0 — 24
defines uniquely a spacetime convex null hypersurface Q2 and, then, any spacelike sur-
face embedded in €2 is defined uniquely by the “time height” function over ¥, , namely
the function 7 := t|s — tp. This function is defined on S. However, and similarly as in
the previous chapter, there is a canonical diffeomorphism ¢ : S — §o defined by the
condition that ¢(p) lies on the maximally extended null geodesic o, passing through
p and with tangent vector k|,. This diffeomorphism allows us to transfer geometric
information from S onto Sy and viceversa. In particular, we can define (¢p~1)*(7). Since
no confusion will arise, we still denote this function by 7. The precise meaning will be
clear from the context.

(Ml,n-i-ly ,n)

Figure 4.1: Schematic figure representing the construction above, where the spacetime
convex surface S is projected along €2 onto the constant time hyperplane X, = {t =
to}. The vectors on the normal bundle of S are normalized so that (k,&) = —1 and
(£, k) = —2. The vector field v is unit, normal and pointing outside the surface §0
within the hyperplane 2.

The idea is thus to transform the Penrose inequality (L4]) into an inequality involving
the geometry of Sy as a hypersurface of Euclidean space (R"!, gg) and the time height
function 7. The result is given in the following theorem [74] :

Theorem 4.3.5 (Shell Penrose inequality in Minkowski in terms of Euclidean geom-
etry). Let (MY"1 n) be the Minkowski spacetime with a selected Minkowskian coor-
dinate system (t, x%), £ = 8;. Let (S,~y) be a spacetime convex surface in (M1 n)
and Q the convex null hypersurface containing S. Consider the closed, convex surface
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4.3. Shell Penrose inequality in M!"*! in terms of Euclidean geometry

§o = QN as a hypersurface of Euclidean space (R"*!, gg) and let «yy be its induced
metric, Mg, its volume form, Ky its second fundamental form with respect to the outer
unit normal and Ky the associated Weingarten map. Then the shell Penrose inequality
for S can be rewritten as

[ (L+[(1d =7 Ko) ) (15 1) PraTs) tr[Koo (Id — T Ko) ] Altlng, >
So

n—1
n

</§o A[T]n§0> , (4.2)

with w, the area of the n-sphere, and where ld is the identity endomorphism, T = t|s—tg
and A[T] :=det(ld — 7 Ky).

S|

> n(wp)

Proof. Let us start by relating the integrals of 6, and 6. Taking the trace of (B 25])
with respect to «y (and using Vs =1, (k, &) = —1) gives

Qg - <£, />9k - QA,YT =0,

where Ay, = DaD* is the Laplacian of (S, 7). Corollary (B3.8]) gives —(£,£) = 1+|D7|?
and the equation above becomes

0, + (1 +|DT[3)0c — 2/, = 0. (4.3)

Integrating on S it follows

/ 6ms — — / (14 |D7R)8,7s, (4.4)
S S

which gives the desired relationship.

The second step is to use the Ricatti equations on €2 in order to relate 6, on S with the
extrinsic geometry of §0. To that aim, we first note that the vector field k on €2 satisfies
Vik = 0 (this is an immediate consequence of the fact that £ is covariantly constant
and (¢, k) = —1). Thus, the Ricatti equations on 2 take the form (41l provided we
have selected n vector fields {X4} tangent to Q and satisfying the requirements that
(i) [k, Xa] = 0 and (ii) {k|p, Xalp} is a basis of T,$2,Vp € Q (more precisely {k, Xa}
is a basis of the tangent space of €2 on suitable open subsets, however this abuse of
notation is standard and poses no complications). Without loss of generality we take
{Xa} tangent to S. Equations (&1]) still admit the freedom of choosing the initial
value of the affine parameter o on each one of the null geodesics ruling €2. It turns out
to be convenient to select o so that 0 = 0 on §0. This determines o uniquely as a
smooth function ¢ : 2 — R which assigns to each point p € €2, the value of the affine
parameter of the geodesic starting on §0, with tangent vector k and passing through
p. Given that

k(t) = dt (k) = (& k) =1,
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4. Projection along the past null cone 2 in Minkowski

and t|g, = to, it follows that o = t|qo —to. In particular ofs = 7 (this is the main reason
why this choice of the origin of the affine parameter o is convenient).

A crucial property of the geometry of a null hypersurface Q2 (see Appendix B) is that,
given any point p € €2 and any embedded spacelike surface S, in €2 passing through
p, the induced metric 75, of S, and the second fundamental form Kép of S, along
the null normal k|, satisfy vs,(X,Y) = ¥2(X,Y) and K& (X, Y) = K%(X,Y), where
X,Y € T,S,. In other words, the induced metric and the extrinsic geometry along k of
any embedded spacelike surface in 2 depends onIy on p and not on the detalls of how
S, is embedded in €2. Applying this result on So we have, for any point p € So

KQ(YA,YB)ha: KgO(XA,)?B)b, (45)

where Xals is defined by the properties (i) Xalp 5 and (i) Xals is tangent to
Sg at p (it is immediate that these two properties define a unique X4). Now, the
Jordan-Brouwer separation theorem (see e.g. [63]) states that any connected, closed
hypersurface of Euclidean space separates R” in two subsets, one with compact closure
(called interior) and one with non-compact closure (called exterior). Let v be the
unit normal of §0 pointing towards the exterior, and denote by Ky the corresponding
second fundamental form and by K, the associated Weingarten map. Let (Ky)ag be
the components of Ky in the basis {X,}. Since ¥, is totally geodesic and (k, Vs, =
—1 (which follows from the fact that k is ingoing, future directed, null and satisfies
(k,&) = —1), we have

p = —(Ko)aslp. (4.6)

Expressions (&38]) and (&8]) provides us with initial data K%s|,—0 = —(Ko)as for the
Ricatti equation (4.1]), which in the Minkowski spacetime simplifies to

Ko O
Kg, (Xa,

d(KQ)A
TB = —(K®)" (K%, (4.7)
d(¥?)as Q
——— =2(K . 4.
Jo (K*)as (4.8)
It is a matter of straightforward computation to check that the solution to these equa-
tions with initial data K$slo—0 = —(Ko)as is
(KQ)ABL - (Ko)Ac‘w(p) [(Id - U(P)Ko‘w(p))_l]c& (4-9)
(’YQ)ABL = (’YO)AC|7r(p) [(I1d — U(P)Ko|7r(p))2]csv (4.10)

where m(p) is defined as the unique point on §0 lying on the null geodesic a,. Now,
the null expansion 6y is related to K by

Ok = try KX = 45 (V. k, Xg) = v (Vx, k, Xg) = (V)P Kiis = (KD %
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Evaluating (EQ) on S (i.e. on o = 7) and taking the trace we find 6|, = —(Ko)"-[(/1d—
TKo) | 4ln(p). OF equivalently

ot =—tr[Koo(ld —TKo) '], (4.11)

where ¢ := 7|s is the diffeomorphism between S and §0 introduced above. As we did in
the previous chapter and in order to simplify the notation, we will from now on suppress
all references to ¢ when transferring information from S to Sy via this diffeomorphism.

The remaining steps are to relate the volume forms of S and §0 and to determine
|DT|3 (which appears in (&4))). Both involve the metric v on S. Evaluating (&I0) on
S and using Yag = Y3s it follows

Yag = (Vo) acl(ld — TKo)?]%. (4.12)

By construction, yas is positive definite, and hence invertible. Obviously this places
restrictions on the range of variation of 7 (which clearly come from the fact that Q
cannot be extended arbitrarily to the future as a smooth hypersurface). The precise
range of variation of 7 will be discussed below. Since -y is positive definite, it follows
that I'd — 7Ky is also invertible and

(v ) =1[(1d — TKo) e (v 1P, (4.13)
which implies, in particular,
D72 = [(1d = TKo) (16" ) BT AT 5. (4.14)

Taking determinants in ([@12) it follows that the volume forms of S and S, are related
by
ns = A[7]ng,, (4.15)

where A[T] :=det(ld — 7 Ky). Inserting (A11]), (£14) and (£13) into (&4 we find

/911"75 = /A (T+1[(1d = 7 Ko) 1 (o )BT aTs) tr [Koo (Id — 7 Ko) '] Al7]ng,,
s 5

and the Penrose inequality (.4]) becomes (4.2), as claimed. ]

A natural question for Theorem is what is the class of functions 7 : §0 — R for
which inequality (4.2]) is conjectured. By construction, this amounts to knowing which
is the range of variation of o in . Let {Ky, -+, K,} be the eigenvalues of Kj, i.e.
the principal curvatures of §0 as a hypersurface in Euclidean space. §0 being convex,
all these curvatures are non-negative, and at least one of them is different from zero
(because Sy is closed). The eigenvalues of the endomorphism I'd — 7K, are obviously
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4. Projection along the past null cone 2 in Minkowski

{1 —7TKy,---,1—TK,}. Hence, this endomorphism is invertible as long as 7 satisfies
the bound
< —1 (4.16)
T .
max {Ka}
1<A<n

Thus, the Penrose inequality, as written in inequality (4.2]), is conjectured to hold
for arbitrary smooth functions 7 : So — R satisfying the pointwise bound (£I8]).
Incidentally, this statement also means that the range of variation of o on the null

geodesic within Q passing through p € Sy is o € (—oo, m>

4.4 The shell Penrose inequality in Minkowski in terms
of the support function

A remarkable property of convex hypersurfaces embedded in Euclidean space is that a
single function determines all of its geometric properties, both intrinsic and extrinsic, in
a very neat way. This function is called support function, and we have devoted Appendix
to present its main properties. In the previous section we wrote the shell Penrose
inequality in terms of the geometry of convex euclidean surfaces. The next step is to
use the support function of this convex surfaces to obtain an alternative form of the
shell Penrose inequality. This expression is interesting because it takes the form of an
inequality for functions defined on the standard sphere.

The support function is defined as follows:

Definition 4.4.1 (Support function). Let §0 be a closed, convex and connected hyper-
surface embedded in the Euclidean space (R™1L, ge). Let x(p) be the position vector
of p € So. The support function h : 5o — R is defined by h(p) = (x(p), v(p))g. where
v(p) Is the unit normal at p pointing towards the exterior of §o-

Closed, convex and connected hypersurfaces in (R"!, gg) are always topologically
S". Moreover, if the surface is strictly convex the Gauss map v : §0 — S" is a
diffeomorphism. We will restrict ourselves to the strictly convex case from now on.
This entails no loss of generality for the Penrose inequality because any convex surface
SO can be approximated by strictly convex surfaces (e.g. by mean curvature flow HE:H)
Let us denote by § the pull-back on 50 of the standard metric on the n-sphere and \Y,
the correspoAndlng connection. Then, the induced metric 7o and second fundamental
form Ky of Sg < R™ can be written in terms of the support function as follows (see

formulas (CI9]) and ([C20Q) in Appendix [C):

(Ko)as = VaVgh+ Gash,
(Yo)as = (1) P(Ko)ac(Ko)snp- (4.17)
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4.4. The shell Penrose inequality in Minkowski and the support function

Combining these expressions with Theorem it becomes possible to rewrite the
shell Penrose inequality as an inequality on the sphere involving two smooth functions,
namely 7 and h. In this section we obtain the explicit form of this inequality. To that
aim, it is convenient to introduce the endomorphism B obtained by raising one index
to Ko with the spherical metric §, i.e. B%; := (§ )" (Ko)cs. It is immediate from
(4I7) that B is the inverse endomorphism of the Weingarten map Kg. Since §0 IS
diffeomorphic to S” via the Gauss map we can identify both manifolds and we can think
of §, h, B etc. as objects defined on S”. This applies in particular to the function
T ! §0 — R. With this notation, we can now state and prove the following theorem,
which gives the shell Penrose inequality in terms of the support function.

Theorem 4.4.2 (Shell Penrose inequality in terms of the support function). Let
(S,) be a spacetime strictly convex surface in (M1 n). With the same notation as
in Theorem[4.38, let h be the support function of §0. Then the shell Penrose inequality
takes the form

/ (L+[(B—=7Id) (G CPTate) tr(B—7Id) "] det(B — TId)n; >

n—1
n

> n(w,) (/ det(B — Tld)'nc-;) , (4.18)

where g, Vv, Mg are the standard metric, connection and volume form on S",
B = (41 *“VcVsh+6h, (4.19)

h:S"™ — R is the support function of §0 — R™ and 7 : S" — R is the time height
function of S.

Proof. From (417 it follows that B determines the metric 7y, via
(Vo) as = B4B%dco, (4.20)

which implies
g, = det(B)ny.

Since B is the inverse of Ky, we have

Altlng, = det (Id — TKo) ng, = det (Id — TKo) det(B)ng = det (B — 71d) 4.
(4.21)

Similarly,

tr[Koo (Id — 7Ky) Y] =tr[B o (Id — 7B 1) ' =tr[(B—7ld)"'].  (4.22)
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4. Projection along the past null cone 2 in Minkowski

It only remains to calculate [(Id — T Ko) 24 (7, 1)B. From (E20) and using again
the fact that B is the inverse of Ky we get

(1 — 7 Ko) 21 (95)8 = (1 — 7 Ko) 21 (Ke) o (Ka) 5 (071)F =
= [(1d — 7 Ko) )" (Ko)“p(Ko) e (67 1) 5", (4.23)

where in the last equality we made use of the property that (Kg)B-(§71)PF is symmetric
(this follows from (Z17]), which states in particular that this tensor is the inverse of the
symmetric two-covariant tensor (Kq)gp). Since (Id — T Kp) to Ko = (B —T7ld) ! it
follows

[(Id — T Ko)_z] o KO o KO = [(Id — TKo)_l] o (B — 'Tld)_l o) Ko
= (B—T1d)?, (4.24)

where in the second equality we have used the fact that (Id — 7K;) and (B — 7 1d)

commute. Using (E24]) in (4.23)) yields
[(1d — 7 Ko) V(% 1) % = (B — T 1d)™*)"c(¢71) P (4.25)

Substituting (£21), (£22]) and (£29) into inequality (£.2]) proves the theorem. ]

In the following section we discuss the validity of the shell Penrose inequality when
the incoming shell has spherical shape. Following [103] we refer to this situation as
the “spherical case” (note however that the incoming shell need not carry a spherically
symmetric matter distribution). In other words, we consider the case when the null
hypersurface €2 is the past null cone of a point in Minkowski spacetime and S is any
surface embedded in 2. The explicit form of this inequality in spacetime dimension four
appeared already in [85] and led to an inequality for positive functions on the sphere.
This inequality turned out to be highly non-trivial. Tod in [I0I] was able to prove the
inequality by using suitable functions on R* and using the Sobolev inequality. In this
section we show that the shell Penrose inequality for shells with spherical shape holds
in any spacetime dimension.

4.4.1 Spherically symmetric case

Let us restrict ourselves to the case when €2 is the past null cone of a point (see Figure
E2). As a consequence of Theorem [£Z42] the Penrose inequality transforms in this
case into an inequality for a single positive function on the sphere. Its validity will follow
as a simple consequence of the Beckner inequality [7] which bounds from above the L9
norm of a function on the sphere in terms of its H? norm. Specifically,
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4.4. The shell Penrose inequality in Minkowski and the support function

Theorem 4.4.3 (Beckner, 1993). Let F € CY(S") and denote as before the standard
metric, volume form and connection of the n-dimensional unit sphere by G, mg, V. Then

9-2 / S F 2, + / |F\2?7c72(wn)1_"(g IF!qna> S (426)

Where2§q<oo/fn:1orn:2and2§q§n27”2ifn23.

The following theorem [74] settles the inequality when Q is the past null cone of a
point:

Theorem 4.4.4 (Shell Penrose inequality on a past null cone of a point). Consider
a point p € MY (n > 2) and Q,, the past null cone of p. Let S be a closed spacelike
surface embedded in $2,. Then the Penrose inequality for S reads

n—1

[y ez @i ([ o) " @27)

where r = t(p)—t|s. Moreover, this inequality holds true as a consequence of Beckner's
theorem.

Proof. Select to = t(p) — 1. Then, the function 7 is written in terms of r as 7 =
tls —to = tls —t(p) +1 =1 —r and Sp = Q, N X, is the n-dimensional unit
sphere embedded in the Euclidean space. This surface has support function h = 1,
which implies (Ko)as = VaVgh + Gash = das (this simply states the well-known
property that the unit sphere has all principal curvatures equal to one). Then B4, =
(§HA(Ko)cs = 6% and (B — 71d) = (1 — 1)Id = rld, from which

1 .
L+ [(B—=1Id) ) () PBTats = 1+ E|Vr|§,
det (B — 71d) =
tr[(B—7Id)™] =

\
REERS

Substituting into (E18)) yields immediately (£27]). In order to show that this inequality
is a particular case of the Beckner inequality, we define g = -=% which clearly satisfies
the bounds 2<g<xifn=2and 2 < g< % if n> 3. Introducmg the function

— ">, (E27) becomes

2 \? . :
(n_1> IVF!qnq /FQnaz(wn)l (/ F"nﬁ) . (4.28)

Since n > 2, then £2 = ﬁ < (-%5)? and inequality (&28) is a particular case of

(4.24). O
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4. Projection along the past null cone 2 in Minkowski

Remark 4.4.5. As mentioned above, the case n = 2 of this theorem was proved by Tod
in [I01] using the Sobolev inequality in R*. In a later paper, Tod proved [102] that the
factor (-%5)? (i.e. 4 when n = 2) in front of the gradient in (#28]) could be improved
to 8/3 by using the Sobolev inequality of R® applied to suitable functions. Tod also
conjectured that this factor could be improved to the value 1. We note that Beckner's
inequality implies in particular the validity of this conjecture by Tod.

Zfo §0 ~ S"

Figure 4.2: When the spacetime convex surface S lies in the past null cone of a point
p € MY its projection along €2, onto ¥, is always an n-sphere. The Penrose
inequality transforms in this case into an inequality for a single positive function r.

4.4.2 Penrose inequality in terms of the support function in space-
time dimension four

The general expression for the Penrose inequality in terms of the support function as
written in Theorem involves the inverse of the endomorphism B — 7/d, where
BY = VAVgh + 6”gh (for notational simplicity in this section we will lower and raise
all indices with the spherical metric § and its inverse). Hence, the explicit form of
the inequality in terms of the support function is rather involved. In this section we
restrict ourselves to spacetime dimension four, where the expressions simplify notably.
The reason is that, in this case, the endomorphism B acts on a two-dimensional vector
space where inverses are much simpler to calculate. In fact, we will exploit the fact that
any endomorphism A : b — \, acting on a two-dimensional vector space V5 satisfies
the identity

A% = tr(A)A — det(A)ld. (4.29)
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4.4. The shell Penrose inequality in Minkowski and the support function

This identity is a direct consequence of the expression of the minimal polynomial in
terms of the eigenvalues of A and the fact that these eigenvalues can be expressed
in terms of the trace and determinant of the endomorphism (alternatively, (£.29)) can
be proved by direct calculation in any basis). A simple consequence of (£29)) is that,
whenever A is invertible

1 tr(A)

a det(A)A * det(A)

Taking traces in (£29) and (£30) yields, respectively,

Al =

Id. (4.30)

det(A) = % [tr(A)? — tr(A%)] (4.31)

tr(A) dtert(éz) | (4.32)

Squaring (&30) and using ([@29) and ([@31]) we get an expression for A2 which reads:
o tr(A) [tr(A)? + tr(A%)]

A= T het(A Sldet(Az 9 (4.33)

Of particular interest below is the case when A is of the form A = Ay + fld for some
scalar f. Inserting this respectively into (4.31]) and (4.33)) gives, after a straightforward
calculation,

1
det(Ay + fld) = 5 [tr(Ag)? — tr(A2)] + ftr(Ag) + 2, (4.34)
_ tF(A0)+2f
Ao+ fld)? = — A
(Ao + F1d) [det(Ao + FId) "
::W;(er,f)

% [tr(Ao)® + tr(A3)] + 2ftr(Ao) + f?
[det(Aq + f1d)]?

(. S

Z:W1(Ao,f)

Id.

(4.35)

Having noticed these algebraic identities, we can now write down the specific form of the
shell Penrose inequality in terms of the support function in the case of four spacetime
dimensions [74].

Theorem 4.4.6. Let (S,7y) be a spacetime strictly convex surface in the Minkowski
spacetime (M3, m). With the same notation as in Theorem [&4.2], the Penrose in-
equality can be written in the form

| VAT = W94 arar) (k4200 = 7)) my >
S2

> \/167r/ ((h _ Yt (Agh)(h—T) — %(hA@h)) o, (4.36)
SZ
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4. Projection along the past null cone 2 in Minkowski

where A4 is the Laplacian of the unit 2-sphere and

W o (h= T2+ 2(h—T)Agh+ 1 [(Agh)? + (VcVph)(VEVPh)] (4.37)
[(h= T2+ (h—T)Dgh+ L[(Ash)? — (Ve Voh)(VEVOR]

W, = Sgh+2(h—7) . (4.38)
[(h=T)2 4 (h = T)Agh+ L[(Ash)? — (VeVph)(VEVOR)]]

Proof. Define the endomorphism Ay%g = VAV gh, so that

tr(Ag) = Ngh,  tr(Ag?) = (VAVER)(VaVsh), B—Tld = Ay+ (h—T)ld.

=f

Applying identity (4.34]) with f = h — T gives
det(B — 7ld) = (h— 7)% 4+ Agh(h — ) + % [(Agh)? — (Ve Vph)(VEVPR)] .(4.39)
Using (4.32]) we have
tr[(B — 71d) '] det(B — 71d) = tr(B — 7ld) = Agh+2(h—T). (4.40)

We still need to evaluate (B — 7/d)~? from (&35). Using the definitions of W) =
W1 (Ao, ) and W5 := Wh(Ag, ), we have

2 [tr(Ag)? + tr(A3)] + 2ftr(Ag) + f2

Wi i=WiAo. F) = [det(A, + f1d)]2
_ 2[(Dgh)? + (VeVph) (VEVPR)] +2(h — T)Agh + (h— T)?
[(h=7)2+ (h = T)Agh+ 2[(Agh)? — (VeVph) (VPR
and
Wi = WalAo, F) = tr(Ao) + 2f

[det(A, + FId))2
Ac‘ih + 2(/7 — 7')

[(h=1)2+ (h—T)Ash + 2{(Agh)2 — (VeVoh) (VPR

in terms of which we can write
(B—71Id)? =Wild — W-A,. (4.41)
Substituting (439)), (4.40Q]) and (4.41]) into the left-hand side of inequality (4.18]) gives

the left-hand side of (£.38l). In particular, we have obtained an explicit formula for the
integral of 6, on S, namely

/9[])5 = / (1 + W1|¢T|§ - WQ(?AﬁBh)?AT65T> (Aéh + 2(/7 - ’7')) MNg- (442)
S S?
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4.4. The shell Penrose inequality in Minkowski and the support function

For the right-hand side of (&38]) we need to calculate |S| = [, det(B — T/d)n,. In
particular, we need to integrate (Agh)? — (VcVph)(VEVPh) on the sphere. We note
the following identity:

Vel(VEn)(VoVPh)] = Vel[(VPh)(VEVph)] =
= (Lgh)? = (VeVph)(VEVPh) + (VEh) [VeVpVPh = VpVPVeh] =
= (Agh)? — (VcVph)(VEVPh) + (VEh) [VeVpVPh = VpVeVPh] =
= (Agh)? = (VcVph)(VEVPR) + (VEh) (=G VEh) =
= (Lgh)> = (VcVph)(VEVPh) — |VhE,  (4.43)
where in the third equality we have used the definition of the Riemann tensor and the

fact that the sphere has constant curvature equal to one. Integrating (Z43]) and using
the fact that the left-hand side of this expression is a divergence, it follows

[ (@b = (Fe¥om @ TOm) ng = [ [hing = [ ~(hsqhim

where in the last step we have integrated by parts. Summing up,

S| = /S <(h—T)2+(A5h)(h—T) - %hAg,h) N4, (4.44)

which inserted into the right-hand side of (418]) gives the right-hand side of (4.38@)
(recall that w, = 4).

O]

It is well-known that when the surface S lies in a hyperplane of the Minkowski space-
time, the Penrose inequality (I.4]) becomes the classic Minkowski inequality for the total
mean curvature H of a surface in Euclidean space (this is a consequence of formula
([B53) of the previous chapter, by setting 7 = 0). In the case of 3+ 1 dimensions, the
Minkowski inequality reads (see Figure [£.3])

/HTls > \/167S]. (4.45)
S

Using the theorem above we can obtain the explicit form of the Minkowski inequality
in terms of the support function.

Corollary 4.4.7 (Minkowski inequality in (R>, g¢) in terms of the support function).
Let S be a spacetime strictly convex surface embedded in a constant time hyperplane
of the Minkowski spacetime (M*3,m). Then, the Minkowski inequality (£48) in terms
of the support function h of S takes the form

(/s h’”) g \/ o /S (”2 + %hﬁah) 7. (4.46)
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4. Projection along the past null cone 2 in Minkowski

M1,3

il

T7=0 fSHT]sZ\/].67T’S|

Figure 4.3: When the spacetime convex surface S lies in a constant time hyperplane
>+, the surface S is by definition convex. This is a particular case of the projection in
Figure B3, where the two Killings £ and £ are the same and ¥, and Z’té coincide. In
this situation f = 1 and the shell Penrose inequality with respect to £ transforms into
a Minkowski inequality for euclidean surfaces [ Hps > /167|S|, which is known to
hold in full generality (Minkowski theorem).

Proof. Without loss of generality choose ty as the value of t on the hyperplane where
Sq lies. This choice implies 7 = 0 and that h is the support function of Sy. Since

Va1 =0, inequality (£36]) reduces to (4£.44]). ]

Inequality (438]) in terms of the support function is still formidable. However, it is
completely explicit in terms of two functions on the sphere. In the next section we
prove its validity for a subset of admissible functions {h, 7}. This subset has not-empty
interior (in any reasonable topology) so the class of surfaces where the inequality is
proved is rather large. The proof is inspired in the flow of surfaces put forward by
Ludvigsen & Vickers [67] in their attempt to prove the general Penrose inequality in
terms of the Bondi mass. However, Bergqvist [8] found a gap in the argument and
showed that the method provides a proof only under additional circumstances which
are, in principle, not straightforward to control directly in terms of the initial surface. In
our situation we have very explicit control of the whole flow of surfaces. This allows us,
on the one hand, to find sufficient conditions for the validity of the Penrose inequality
directly in terms of the geometry of the initial surface and, on the other, to prove the
inequality for a much larger class than the one covered by Bergqvist's argument. In
Chapter [l we study in detail the relationship between the argument here and the proof
in [8] and we conclude that the argument in this chapter admits a generalization to
general spacetimes with complete past null infinity.
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4.5. Dragging the surface along its past null cone

4.5 Dragging the surface along its past null cone

In their approach to the Penrose inequality, both Ludvigsen & Vickers [67] and Bergqvist
[8] used flows of surfaces along null hypersurfaces embedded in spacetimes satisfying the
dominant energy condition. These flows consist in dragging the initial surface S along
its outer directed past null cone along affinely parametrized null geodesics. The key
property that makes these flows useful is the existence of a monotonic quantity, often
called Bergqvist mass. In this section we use foliations moving along null hypersurfaces
at a suitable velocity in the Minkowski spacetime, and we exploit the monotonic prop-
erties of the Bergqvist mass along such flows to address the shell Penrose inequality in
Minkowski. This idea will be applied in Chapter [l to more general spacetimes to tackle
the general version of the null Penrose inequality. We start by introducing the flow and
defining the Bergqvist mass in our context.

k I

M3 So

Figure 4.4: The flow of surfaces {Sy} moves along the null hypersurface €2 embedded in
M3 as Xincreases. The collection {Sy} is generated as the level sets of the function
A Q — R, which solves k(\) = —1. The starting surface of the flow is S = S, k is
normalized so that (k, &) = —1, and £ satisfies (k,£) = —2.

We put ourselves in the setting where S is a spacetime strictly convex surface in
the four-dimensional Minkowski spacetime (M3 n), Q is the spacetime convex null
hypersurface where it sits and §0 = QNX,, is closed. We have introduced in Section A3
a smooth function o : {2 — R which assigns to every point p € €2, the affine parameter
at p of the null geodesic tangent to the null vector k starting on S. By construction, o
vanishes on §0 and takes the values o|s = 7. Let us extend T to a function 7: Q2 — R
by imposing k(7) = 0 and introduce a new smooth function A: Q > R by A =7 —o0.
Geometrically, X is just an affine parameter along the null geodesics ruling © (with this
parameter the tangent vector is —k and the geodesics start on S). It is immediate
to see that the level sets Sy, = {A"1(Xg), Ao > 0} of this function define spacetime
convex surfaces embedded in 2 (see Figure [£.4]). The collection of {Sx}, X € [0, )
defines a flow starting at S = Sy. Let us denote by , and 7s, the induced metric and
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4. Projection along the past null cone 2 in Minkowski

volume form of S, and by 6,(\) the outer null expansion of Sy (with the normalization
(£, k) = =2, as before). Then, the Bergqvist mass is defined by

Mo(N) 1= 5 — = [ ounms, (4.47)
Bergquist introduced this functional in [8] and proved its monotonicity by differentiating
M, with respect to A. We use this functional in this chapter in the Minkowski spacetime
and in Chapter [l we exploit its properties in more general backgrounds. In this chapter
we give a different prove of the monotonicity of M, tailored to the Minkowski setting.
We first need the following lemma:

Lemma 4.5.1. Let (M3, m) be the four dimensional Minkowski spacetime. Let S
be a two-dimensional spacelike surface embedded in it. Consider the time translation
§ = —dt, where t is a Minkowskian time, and the null normals {k,£} normalized so
that (k, &) = —1 and (k,£) = —2. Then

(s))a = TEKE,, (4.48)

where sy(X) = 3(Vxk,£), and T = t|s. In addition the following identity holds:
AB
0 — Scal®+ (KQBW . ei) (1+ D7) + 2 (8(s) 4™ — (52)a(52)")

+2D4 (B — 75K ). (4.49)

Proof. To find the expression that the one-form (s;)4 has in Minkowski, we decompose
the Killing vector £ into normal and tangential components to S as in (B28]). Solving
for £ and inserting into the definition of s, we have

1 14 |D1l|?
Sea = §<VXAk:E> = (Vx,k, & — w

Now, from (k, &) = —1 we have (Vx,k, &) = —(k, Vx,&) = 0 because £ is covariantly
constant and (443) follows.

For the second identity, we use the Gauss identity (equation (A30Q) in Appendix [A]).
In the Minkowski spacetime, it reads

k 4+ gradT) = (Vx,k, &) +T'BK£B.

AB

Scal® = —6,0, + Kk K (4.50)

This relation can be rewritten fully in terms of the geometry of K* by exploiting the
curvature equation (B.28]), that in the present case reads

Kis + (1 +|DTI3 )Khg — 2DaDgT = 0.
The result is that (Z50]) becomes

0 = Scal® + (Kf\BKkAB - 9,3) (14 |DT2) + 2 ((Ay7T)0k — (DaDT)K*"E) . (4.51)

87



4.5. Dragging the surface along its past null cone

We want to convert all second derivatives into a divergence. Specifically we use
(AyT)8k = Da (776) — (7)) Dabi and (DaDpT)K*AB = D (T gK*4B) — T g DaK* "B
to write

(LyT)0k — (DaDpT)K*KAE = T gDAK*E — 72D pOK + Da (T70k — T K*P4) . (4.52)

The trace of the Codazzi identity (see equation (B.38]) in Appendix [B]), simplifies in the
Minkowski spacetime to

Dy (K*) 5 — Dabk + (52) K4 — Ox(se)a = 0.
Solving for Da6 and substituting in (£52]) one finds
(AWT)G;(—(DADBT)KKAB = —(SZ)A(SZ)A+9k(Sg)AT’A+DA (’T’Aek — T'BKkBA> , (453)

where we have used the relation between s, and K* in (&48)). Inserting (&53) into
(AXT)) yields the result.
[

We can now establish the following result that proves the monotonicity of the Bergqvist
mass along the flow:

Theorem 4.5.2 (Bergquist [8]). With the definitions above we have

dMp(A) 1
d)\ = 8_71_ /S%<S>\1 SA>’Y)\775)‘ Z 01

where sy is the connection one-form of Sy, defined as s\(X) := £(Vxk,£),, for any
vector field X tangent to S.

Proof. We first rewrite the Bergqvist mass in terms of the null expansion 6. Integrating
(Z3) and using the Gauss theorem, the Bergqvist mass becomes
A 1 5

To compute the derivation of M, we need the evolution equations for 8y, v and 7s,.
They are obtained in Appendix [B] (see formulas (B.14), (B-17) and (B.41)) ) and read

d d
59/&)\) = KigK*"?, a’Y(A)AB =2(KM8, £ ms, = —0(M\)ns,.

As a consequence % takes the form
dM, 1 1 k kAB 2 2 A
o — 51 1ex /SX ((KAsK*® —67) (1 +|DT[3) + 26k (s2)aT?) ms,,
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4. Projection along the past null cone 2 in Minkowski

where we have used relation (4.48]).

Note the similarity between the integrand in this expression and identity (4.49]).
Integrating this identity the divergence term cancels out and the curvature scalar

term gives fsX Scals*'rlsA = 8m by the Gauss-Bonnet theorem and we find %A(A) =

= fsx<s>\, Sx)y, Ms, as stated in the theorem. [l

The following result is the main one in this chapter. Using the monotonicity of the
Bergqvist mass, we obtain a class of surfaces for which the shell Penrose inequality
in Minkowski holds. This family of surfaces are determined in terms of the support
function h and the time-height function 7.

Theorem 4.5.3 (Class of surfaces where the shell Penrose inequality in M3 holds).
Let (S,7y) be a spacetime strictly convex surface in (M*3,n). With the same assump-
tions and notation as in Theorem 4.0l let h be the support function of §0 as a
hypersurface of Euclidean space and T = t|s — ty. If these two functions satisfy the
Inequality

2
47r/ ((Agh)? +2hDgh)ng > 47r/ Png — (/ u‘nd> , (4.54)
s? 2 §?
where u = Agh+2(h — T), then the shell Penrose inequality (2.34) holds for S.

Proof. In analogy with the definition of My(X) (@47, we define a function D(X) by

SyA
D(\) = %_E' (4.55)

With this definition, the shell Penrose inequality (I.4]) for S, can be written in the form
Mp(X\) + D(X) < 0. (4.56)

Our aim is to prove My(A = 0) + D(A = 0) < 0. Since Bergqvist's Theorem
ensures that M,(X) is monotonically non-decreasing in X, the idea of the proof is to
study the monotonicity properties of D(\) together with the limiting behaviour of both
functions when A — oo in order to see if sufficient conditions can be obtained so that
Mp(XA =0)+ D(A=0) <0 holds.

Let us start with the limit of M,(X\) at infinity. We want to exploit the fact that we
obtained in (4.42]) a general expression for the total integral of the outer null expansion
0, on any spacetime convex surface S, in particular for S,. We need to determine the
support and time height function of S,. Although it is not the only natural possibility,
a convenient choice is to fix one hyperplane %4, and project all surfaces S, along €2
onto 2. This procedure has the advantage that Sy is the same surface for all Sy
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4.5. Dragging the surface along its past null cone

and hence that the support function h is independent of A. With this choice, the time
height function 7, of S, is

Ta=tls, —to=0ls, =T — A\

Inserting these functions in (Z.42]) we find

Ms(N) | Dgh+2(h =)

T 167 Jo
+(Dgh+2(h =1+ X) (WiN)|VTZ = Wa(A)(VAVENV ATV 5T) ]| 14,

where Wi (X) and W5(\) are obtained from (4.37)-(4.38]) after substituting 7 — 7 — A.
Since Wi(X\) and W5(X) vanish as A™2 when A — oo the limit of M,(\) is simply

. -1
x“j;o Mp(N) = T6m S2(Ag;h +2(h—7))n;. (4.57)

Regarding D(X), we substitute 7 — 7 — X\ in (£44]) to obtain

|5A|:/SQ ((h—T—f—)\)z—i—A@h <g—7+x>>né, (4.58)

D(A):\/ﬁ/y ((h—T+>\)2+Ag,h(g—T+>\))né—%.

It is straightforward to check that the limit of this expression at infinity Is

so that

. 1
Im D) = 16 [ (Aah+2(h=m)mg

which together with (EE7]) implies limy oo (Mp(X) + D(X)) = 0. Since M,(X) is mono-
tonically non-decreasing, and M,(X\) + D(\) tends to zero at infinity, a sufficient con-
dition for the validity of My(A = 0) + D(XA = 0) < 0 is that D(\) is monotonically
increasing. From the definition (£.55) it follows

%(;) _ L (dldi*| _ \/167r|SA|) . (4.59)

647r‘5>\|

It only remains to find under which conditions the right-hand side of (&X&Q]) is non-
negative. Since dldi;' > 0 (because 6 < 0 on Q and d?% = —0k(N)1ms,), this is
equivalent to

d|Sa\?
— >
( I ) 167|S\| > 0. (4.60)
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4. Projection along the past null cone 2 in Minkowski

Recalling expression (4.58)) for the area of S, it follows

d|S,|
ax

= [ 2h—T1+X)+Lzh)n; :87r>\+/ umg. (4.61)
s s
On the other hand, using again expression (£58]) we have

h
16m|Sy\| = 167r/ ((h — TP+ X2+ 2X(h = T) + Ngh (5 — ’T) + AAdh) e
SQ

h
= 64mN\% + 167 (/2 unﬁ> >\+167r/2 ((h—7)2+A5h <§—T>) :
S S

(4.62)
Combining (£&1]) and (£82), it is clear that (£&Q) is equivalent to

</s2 u"'l&)2 > 167 /S2 ((h —7)2 + Ngh (g — ’T)) 4. (4.63)

Since u = 2(h —T) 4+ Agh, squaring yields

(h—T)Q:UZQ—%—Aah(h—T),

so that the right hand-side of the inequality (£63]) becomes

(/S2 um;)z > 167r/82 (“; B (Ajh)2 — Ngh(h—T) + Agh (g _T>) .

After simplification we obtain

2
(/S2 U'I]é) 2 4 \/SZ (L/2 — (Agh)2 — 2hAC‘7h> ?7(7,

which is precisely (454]).

]

Theorem gives a class of spacetime strictly convex surfaces in the Minkowski
spacetime for which the shell Penrose inequality holds. An important question regarding
this result is how large is the class of surfaces covered by the theorem. Since inequality
(£54) is quadratic in h,u and its derivatives, a natural strategy is to expand these
functions in terms of spherical harmonics and to rewrite (4.54]) as an inequality for the
coefficients of these expansions.

Let r € NUO and \A/nrq (m = —r,---r) be 2r + 1 linearly independent eigenfunctions
of the spherical Laplacian with eigenvalue —r(r + 1), i.e. AgY) = —r(r + 1)Y, .
Without loss of generality we assume that they form an orthonormal basis of L2(S?),
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4.5. Dragging the surface along its past null cone

e fo \A/,-r?js'nd = 0"°0;;. Any smooth function f on the sphere can be decomposed in

this basis as -
f= Z ar- Y,
r=0
where here and in the following we use the notation a, - Y := S, a ;”Yf Similarly
we write a2 := > (a™)?. The following corollary identifies the class of surfaces

covered in Theorem [£.5.3 in terms of the spherical harmonic decompositions of h and
u.

Corollary 4.5.4. With the notation of Theorem [4.5.3, let us expand the functions h
and u in terms of spherical harmonics as

h:iar~\7r, u:ibr.?h (4.64)
r=0 r=0

If the coefficients satisfy the inequality
doa@r(r+1)(r—1)(r+2) =Y b (4.65)
r=2 r=1

then the shell Penrose inequality holds for the spacetime convex surface S defined by
the support function h and the time height function T = h — %Adh - 3.

Proof. The orthogonality relations of the spherical harmonics imply

oo

/ (Agh)2ng = Za (r+1)? / highmg = = r(r+1)a’
82 r=0
so that the left-hand side of (£.54]) reads
/ ((Agh)? +2hAgh) ng = 47r2a r(r—1)(r+1)(r+2). (4.66)
s

On the other hand, the spherical harmonic decomposition of u implies [, ung = v4mb]
and

2 00 00
47r/ uPng — (/ unq) = 47rz b? — (V4rh))? = 4%2 b?. (4.67)
S2 S? r—0 r=1
Using (&60) and (467]), we obtain (£60]), as claimed (we note that (£.66]) and (£67])

imply that both sides in inequality (£54]) are non-negative, which will be used in the
following remark).

]
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4. Projection along the past null cone 2 in Minkowski

Remark 4.5.5. In Theorem [£5.3] we have shown that the Penrose inequality in the
spherical case holds as a consequence of the Beckner inequality (or as a consequence
of the Sobolev inequality in R™ in the case of four spacetime dimensions [101]). It is
interesting to see how does the spherical case fit into the class of functions covered in
Theorem 5.3l As we checked in Appendix[C], the support function of a sphere is either
a constant (if the origin of Euclidean space coincides with the center of the sphere)
or a linear combination of r = 0, 1 spherical harmonics (when the sphere is displaced
from the origin). In either case, the left-hand side of (&R is identically vanishing, so
that the inequality can only hold if the right-hand side also vanishes (because the right-
hand side is in any case non-negative). This forces u = const. and hence 7 = const.
too. We see that that the only “spherical case” included in Theorem Is when the
surface S itself is spherically symmetric, which is a trivial case. Thus, in some sense, the
cases covered by Beckner's inequality (which is essentially analytic in nature) and the
cases covered by the geometric flow used in Theorem are mutually exclusive. This
seems to indicate that any attempt of proving the shell Penrose inequality for spacetime
convex surfaces in the general case most likely needs some sort of combination of both
ingredients and almost surely a combination of analytic and geometric arguments.

Remark 4.5.6. The other case where the Penrose inequality in Minkowski was known to
hold involves surfaces lying in a constant time hyperplane. It is also natural to see how
this case fits into the class of surfaces covered by Theorem [£.5.3] In this situation we
have 7 = 0 and hence u = Agsh+ 2h. Inserting this function in (&X54), this inequality
becomes

2
1
(/ hné) >47r/ (P + ZhAgh)ng, (4.68)
s? S? 2

which is exactly the Minkowski inequality for 2-dimensional euclidean surfaces in terms
of the support function (see formula (4.46l)). Since the Minkowski inequality is true,
it follows that the class of surfaces covered by Theorem [£.5.3] includes the case of
convex surfaces lying on constant time hyperplanes (incidentally, it is immediate to
prove directIyAthe validity of (4&8]) by using the spherical harmonic decomposition

h=Y*,a-Y").

We finish this section, and the chapter, with a particular case of Theorem [£.5. 3] where
the ineqLiaIity (A54]) can be interpreted nicely in terms of the geometry of the projected
surface Sy and of the height function 7 of S. In Chapter [7] we will see that the set of
solutions covered by the following Corollary includes as a particular one the situation
covered by the original argument of Ludvigsen & Vickers and Bergqvist when applied to
the Minkowski spacetime. Since the corollary below restricts 7 to depend on constants
(when h is already fixed) we conclude that the original method by Ludvigsen & Vickers
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4.5. Dragging the surface along its past null cone

and Bergqvist is very restrictive. This is to be compared with our Theorem [£5.3 above
which includes the function 7 (when h is already fixed).

Corollary 4.5.7. Let §o be a strictly convex surface embedded in a hyperplane >,
and let QQ the spacetime convex null hypersurface containing §o- The shell Penrose
inequality holds for any surface S embedded in Q and defined by a function T = t|s — ty
of the form

H(S
T = 2a—( 9\) -0, (4.69)
Scal(So)
where o € [0,1], B > 2SH(|§9) - L and H(Sy), Scal(So) are, respectively, the
cal(Sp) IQESX,,{"A}

mean curvature and scalar curvature of Sy as a hypersurface of Euclidean space.

Proof. First of all observe that if 7 has the form (£.69) and satisfies the bound (£.16]),
B must satisfy

H(S, 1 H(S, 1
T:2a(—SOA)—B<—<:)2a (SOA) <B VYael0,1],
Scal(So) max {Ka} Scal(So) max {Ka}

H(§o) o 1
Scal(So) 1max{m\}'

which given the positivity of H(§0) and Scal(§o) is equivalentto 8 > 2

For surfaces in R3, the scalar curvature can be written as ScaI(SO) = 2K1Ko where Kq
and K, are the principal curvatures of So (hence positive everywhere since SO Is strictly
convex). Since H = K1 + K it follows

HG) g () Cpawke g — .
Scal(§0) ﬁ—a( + ) B=atr(Ke )-8 = atr(B) -0

K1 K2

T =21
= a(Qgzh+2h) —
As a consequence, the function u = Agzh + 2(h — T) takes the form
u=(1-2a)(Lgh+2h)+ 28,
which in terms of the coefficients in the expansion (£.64]) implies
by =—(1-2a)(r+2)(r—1)a r>1

Inserting this into (4.65]) we find that this inequality becomes

iaf(r-l— 2)(r—1) | r(r+1)—(1—-2a)*(r+2)(r—1)| > 0.
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4. Projection along the past null cone 2 in Minkowski

Since h is basically arbitrary (it is only restricted by the condition that it defines a strictly
convex surface) we need to impose that each term of the sum is non-negative. This is
achieved only if

(1-2a) < r(r+1)

S0 =1) = Z(r), Yr > 2. (4.70)

Since the sequence Z(r) is decreasing and its limit is 1 we see that this inequality holds
if (1 —2a)? <1, which is equivalent to a € [0, 1]. But «a is restricted to this range by
hypothesis, so (£70Q) holds true and the corollary follows. [
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Normal graphs in Euclidean space. Applications to
the shell Penrose inequality

5.1 Introduction

In the previous two chapters we performed two natural projections of spacelike surfaces
in the Minkowski spacetime. In Chapter B we obtained explicit expressions for the
geometry of the initial surface S in terms of its projection along the Killing direction. In
Chapter @], the solution to the Ricatti and the metric equation along the past null cone
of S was used to find the relation between the geometry of S and the geometry of the
convex surface corresponding to the intersection of the null cone with a constant time
hyperplane. The next natural step is the relate the geometries of the two projected
surfaces. This is the purpose of this chapter.

Let S be the vertical projection of the initial surface S onto the constant time hyper-
plane {t = t,}, and §0 the projection of S along its past null cone 2 onto the same
euclidean hyperplane. It is intuitively clear, and will be proven later, that S is uniquely
determined once we know §0 = QnN{t = ty} and the time height function 7 = t|s — t,
which describes how far S lies from {t = %}. In this construction, S turns out to be
a graph over Sy within the euclidean space {t = tg}. For this reason, we devote the
first part of the chapter to compute the expressions that relate the geometry of a given
orientable hypersurface embedded in the arbitrary dimensional Euclidean space with an-
other hypersurface which is a graph over the former one. For the sake of completeness,
we also give the analogous relations when the manifolds are embedded in the arbitrary
Minkowski spacetime, and are strictly spacelike or timelike. These computations were
published in [75] and, when applied to the context above, provide the first and the
second fundamental foLms of the vertical projection S in terms of the first and second
fundamental forms of Sy and the function 7.
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5.2. Geometry of normal graphs on hypersurfaces in the Euclidean space

Recall that Brendle and Wang (Chapter @, Theorem B.3.7]) found that the convexity
of the surface S was a sufficient condition for the validity of the shell Penrose inequality
in Minkowski. As a consequence of our results, we are able to rewrite this condition
explicitly as an inequality involving a tensor Tag defined on §0, and which involves the
geometry of §0 and the time-height function 7 of S.

To conclude the chapter, we present two simple examples. In the first example S is a
graph over a cylinder (suitably truncated and closed) and in the second example S is a
graph over a sphere. In both cases the tensor 745 that codifies the convexity conditions
for the respective graphs is computed explicitly.

5.2 Geometry of normal graphs on hypersurfaces in the
Euclidean space

In this section, the ambient manifold is the (n+ 1)-Euclidean space (R™!, gg), n > 2.
The flat connection is denoted by V and the corresponding (global) parallel transport
by Tpsp, @ TpR™L — T, R™ for any p;, p» € R Obviously, in Cartesian
coordinates {x*}, (a=1,..., n+ 1) this map simply preserves the coefficients of any
vector V' € T, R™1 in the basis {Oxa}. {x*} will always refer to a Cartesian coordinate
system.

Consider two embedded submanifolds §0 and S in R"*! and assume there is diffeo-
morphism ¥ : SO — S The following result relates the tangential covariant derivative
of vector fields along 50 (not necessarily tangent to So) with the corresponding parallely
transported vector field on S (see Figure B1I). This result will play an important role
below.

Lemma 5.2.1. Let §o, S and 1 as above. Let Z be a vector field along §0. Consider
X a vector field tangent to Sq and define T Z|yp) := Tp—w(p)Zp ¥P € So. Then

To—w(0)(VxZlp) = (Vaw) T Z)ly(p)- (5.1)
Proof. The left-hand side of (5.1]) is

7;)—>1/J(p)(VXZ|p) = 7;—)1/)([)) (X(Za)axo‘|p) = X(Za)|paxa|1/1(ﬁ’)' (5-2)

On the other hand, on S we have TZ = Z**0,a, where Z** = Z% o 9)~ 1. Viewing Z2
as scalar functions we can also write Z** = (¢~1)*(Z?). Its covariant derivative along

di|p(X) is

(Vawo) T Dlwwy = Vawx) (£70x) lyp) =
dY(X) (Y1) (Z%))0xalyp(p) =
= X(Z%)p0x lu(p)
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

which is the same as (5.2)). O

TZ|’L/J(P)
Rn-ﬁ-l

To—wip)(VxZ1p) = (Vapx) T 2w

Figure 5.1: Relation between tangential covariant derivatives of vector ﬁelds along 50
with the corresponding parallely transported vector field on S. Here So and S are
two embedded manifolds in R"*1 dlffeomorphlcally related by 9. Z is the vector field
defined in a neighbourhood of p € So and 7 Z the corresponding paraIIer transported
vector field defined near 1(p) € S. X, Is any tangent vector to SO at p, and Xw(p)
the pushforward of X, by 9. The covariant derivative of Z along X, coincides with the
covariant derivative of 7Z along Xy, up to a translation.

Assume now that §0 is an orientable hypersurface and select a unit normal vector field
v. Choose a smooth function o : §0 — R and consider the set of points at signed
distance o from each p € §0 C R"*! along the normal v(p). The congruence of normal
geodesics to §0 meets no focal points for distances o satisfying the bounds

l+0ka>0 A=1,---,n (5.3)

where {k,} are the principal curvatures of §0. Assuming this bound from now on, we
have that the map ¥’ : S — R"*! defined by

Y (p) =p+a(p)v(p),

(where we are obviously using the affine structure of R"*1) is such that S := ¢'(§o) is
an embedded hypersurface of Euclidean space, and, in fact, a graph over §0 (see Figure
B.2). Our aim is to relate the induced metrics and second fundamental forms of §0 and
S.

It is clear that the restriction of 9’ onto its |mage is a diffeomorphism betvveen SO
and S, which will be denoted by ¥. Let X € %(So) be a vector field tangent to So and
define X := d(X), which is obviously tangent to S.
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5.2. Geometry of normal graphs on hypersurfaces in the Euclidean space

So

Figure 5.2: Particular case of diffeomorphism relating the surfaces §0 and S in Figure
Bl In this case the set of points at signed distance o(p) from p € 50 C R along
the normal v(p) forms the embedded hypersurface S, which is in fact a graph over SO
Any tangent vector field X to S and the normal 7 can be parallely transported to SO
providing the vector fields X and U respectively. This parallel transport allows one to
perform all computations in a single manifold.

For the purposes of this section, it is convenient to transport parallely X from Y(p)
to p because this will allow us to perform all calculations in a single manifold. Thus,
let us define the vector field X € X(Sp) as le = To)—p(X|w(p). The first aim is to
relate X with X. Consider any curve c(s) in So passing through p € SO with tangent
vector X|,. From the definition of 4, the curve € := 9 o ¢ has tangent vector X|yy)
at Y¥(p). The curves expressed in Cartesian coordinates are related by

c* = c* + ov”.

Differentiating this relation with respect to the parameter s of both curves, we have

I _ I B9, g0 (5.4)
ds ds ds s '
In Cartesian coordinates,
dEa dc® do dv®
= (X" o9)(p), = X%(p), =X(0), (Vxv)¥,=

ds ds ds

Hence, relation (5.4]) can be rewritten in a tensorial way as

Too)-p(Xly(p)) = (X 4+ X(o)v + oVxv)lp.
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Recalling that the Weingarten map Ky : Tp§0 — Tp§0 is defined by Ko(X) := Vxv
we conclude

Xlp = (X +0Vxv+X(0))|, = (Id + 0Ky + do @ v) (X)) . (5.5)

From the geometric construction of S it is intuitively clear that the normal vector I or-
thogonal to S must satisfy ge(v,, v|,) # 0 for all p € So, where D], := Ty(p)—p(Plu(n))-
For a rigorous proof we use (B.5]) as follows. Given that T,y is an isometry, (E.5)
implies the following identity, valid for any X € Tp§0:

0= ge(@ X) |y = 9 (Tomsw) (D), Tomp(o) X)) lwioy = 96 (@, X) 1,
= ge(v, (1d + o Ko)(X))|p + da(X)ge(v, V)], (5.6)

Assume there is g € S, such that v|, € Tq§0 (i,e. ge(v,v) =0). Then ge(v, (Id +
oKo)(X))|q = 0 for any X € T,So, which is a contradiction with the fact that the
bound (B3]) implies that the endomorphism Id + o Kj is invertible.

Let us choose the orientation of 7 so that W := gg(¥, v) > 0 on So. Thus, we can
decompose v = W(v — T) on Sy, where T € X(Sg) is a tangent vector field. From
equation (5.8 we have

0=ge(W(w—T), (ld+ 0Ko)(X))l, + WVxalp,
and consequently
9e(T, (Id + 0 Ko)(X))lp = Vxolp. (5.7)

Using that the endomorphism Id + o Kj is self-adjoint, the vector
T = (Id + 0Ko) *(grad., (o)) (5.8)

solves relation (B.7]), where grad., (o) is the gradient of o with respect to the induced
metric 7. For notational simplicity, define the invertible endomorphism C = (Id +
oKpy) so that T = C *(grad.,(0)). The condition of T being unit fixes W to satisfy
W?2(1+ (T, T)) = 1, which, given our choice of normal in S, implies

W= ! (5.9)

V1+7(T.T)

We are ready to prove our main result of this section, which relates the geometry of
the graph S with the geometry of its base Sp.

Theorem 5.2.2. Consider the hypersurfaces §0, S of Euclidean space (R™1, gg) with
signed distance function o and diffeomorphism v, as above. The respective induced
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5.2. Geometry of normal graphs on hypersurfaces in the Euclidean space

metrics o and ¥ and second fundamental forms K, and K with respect to the normals
v and v are related by

Y(F) = Yo+20Ko+0°Koo Ko+ do @ do, (5.10)
1 —
W'IIJ*(K) = Ko+UKOOK0+O'DKO(',T,')—|—dO'®Ko(T,')+
+Ko(T, ) ® do — Hess,,(0), (5.11)

where T and W are defined in (5.8)-(29), Koo Ky is the trace of Ko® Kq in the second
and third indices, D is the Levi-Civita derivative of vy, and Hess.,(o) is the Hessian of
o In this metric.

Remark 5.2.3. These expressions reduce to well-known results when either ¢ is constant
or when the base surface is a hyperplane.

Remark 5.2.4. It is interesting that in (E11]) the symmetry of K for any o is equivalent
to the Codazzi identity D Ko(X1,+, X3) = D Ko(X3, -, X1) for §o- So, properties of
normal graphs can be used to derive curvature identities on the base hypersurface,
which usually would require different methods.

Proof. Let X,Y € X(S,) be arbitrary tangent vector fields. We start with (5I0). With
the notation above, and using that the parallel transport is an isometry:

VW) (XY )y =T (d¥]p(X), d¥[p(Y)) = ge(X, V)l = 9e(X. V)],
= ge(C(X),C(Y))|p, + do @ do|,(X,Y)
=Y ((ld + 0 Ko)(X), (Id + 0 Ko)(Y))|, + do @ da|,(X,Y),

where in the fourth equality we used (5.5)). This establishes (5.10). To prove (5.11))
we first apply Lemma [E.2.7] to find the identity

9(Vx?, Vo = G (T (VD). Tonsi)(V) luto
= 9t (Vx7.Y) lue) = KX Y)ly) = 7 (K)(X, V)], (5.12)
To evaluate the left-hand side we recall the fundamental identity, VxY = DxY —

Ko(X,Y)v (cf. formula (AI2) in Appendix [Al), valid for any pair of tangential vector
fields. Given that ge(v,Y) = 0, the left-hand side of (512]) becomes

6c(V:0.V) = X0 0 (5.9) 4 Woe (Vv ~ ), do (v ) + Cv))
— Wryo (Ko(X) — DxT, C(Y)) + WKo(X, T)da(Y). (5.13)

The first term is immediately Wy, (Ko(X),C(Y)) = W(Ky 4+ 0Kg o Kp)(X,Y). To
elaborate the second term, we use that the endomorphism C is symmetric with respect
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to Yo, 1.e. Yo(X1, €C(X2)) = Yo (C(X1), X2). Thus,

—4o(DxT,C(Y)) = —7((C o DxC *)(grad,,(0)),Y) — Yo(Dxgrad ., (0),Y)
= Y0((DxC)(T),Y) — Hessy (0)(X,Y)
=do(X)Ko(T,Y)+ 0D Ko(X, T,Y) — Hess, (0)(X,Y),

where in the first equality we used (5.8) and in the second equality —C o (DxC™') =
(DxC) o C™* . Inserting this into (5.13) yields the result. n

Remark 5.2.5. The Riemannian character of the ambient Euclidean space has only been
used when evaluating gg(v, v) and ge(v, 7). With the same arguments as before, let
§o be an embedded submanifold of the Minkowski spacetime (M1 n) with non-
degenerate induced metric 7y and unit normal v satisfying (v, v), = € with € = £1. S
Is constructed as before, where the orientation of the unit normal v is selected so that
it satisfies (v, v),, = eW, with W > 0. Under these conditions:

PV (¥) = Yo + 20Ko + 0°Kg o Ko + edo @ doa, (5.14)
1 _
W’([i*(K) = Ko + UKO o KO +oD Ko(', T, ) +do® Ko(T, )+
+ Ko(T,-) ® do — eHess ., (o), (5.15)

where all definitions are as before and the decomposition v = W (v — T) still holds, but
this time T reads T = e(ld 4+ 0Ky)~*(grad.,,(0)) and W is

1

1+ ey(T, T)'

The condition 1 + eYo(T, T) > 0 is necessary for S to be of the same causal character
as Sy.

W =

5.3 Matching the two different projections

Let (M1 n) be the (n+ 2)-dimensional Minkowski spacetime (n > 2), and consider
the same setting as in Section 43| of Chapter [l Specifically, consider three different
surfaces: the initial spacetime convex surface S embedded in the null hypersurface €,
the euclidean surface §0 = QN4 and the euclidean surface S, which is the projection
of S along the Killing direction £ onto the constant time hyperplane ¥4, .

For any closed spacetime convex surface S, S must be embedded in Y4, (otherwise
two different points of S with different time heights would project the same point onto
2, which is impossible given that they lie on a smooth null hypersurface). We can
apply Theorem to relate the geometry of Sy and S as follows: Theorem B3.11
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required the convexity of the projected surface S as the main condition for the validity
of the shell Penrose inequality for S. In the construction above and using the results of
Theorem[5.2.2], we can rewrite the second fundamental form of S in terms of the second
fundamental form of §o and the signed function between the two euclidean surfaces,
which as we will see coincides with time height function 7 of S up to a sign. This way
the convexity condition for S can be described by suitable conditions on the geometry
of the surface §0 and the time height that separates the surface S from the constant
time hyperplane %,. This underlying convexity condition of S can be translated to a
positive definite condition of a two-covariant tensor defined on the surface §0, as we
show next:

(Ml,nJrl' 77)

Zto - {t - to}

Figure 5.3: Schematic figure combining bAoth projections: the spacetime convex surface
S is projected along Q onto ¥, with Sy = QN ¥,. S is obtained by projecting S
along the Killing £. {k, £} are normalized so that (k, £), = —2.

Theorem 5.3.1 (Sufficient condition for the Penrose inequality in Minkowski in
terms of spacetime convex geometry). Let (M1 n) be the (n+2)-dimensional
Minkowski spacetime with t a Minkowskian time defining a unit Killing & = —dt. Let
S be a closed, connected, orientable and spacetime convex surface in (MYt n) and
Q) the convex null hypersurface containing S. Consider §0 = QNXy and let Ky be its
second fundamental form as an euclidean surface of ¥, with respect to its outer unit
normal v (see Figure[5.3), D the Levi-Civita connection of the metric vy of Sy, and
grad., (1) and Hess. (T) the gradient and Hessian of T in the metric -y, respectively,
where T := t|s — to. If the tensor

T = Ko—TKooKo—TD Ko(', T, ) —dT® Ko(T, ) - Ko(T, )®d7’+ HGSS.-YO(T) (516)
is positive semidefinite, where T = —(ld — TK,)*(grad. (7)), then the Penrose in-

equality with respect to £ holds for S.

Proof. Observe that in the euclidean hyperplane ¥, we can obtain S as a graph over
So moving inwards along the inner normal to Sg. Indeed, let v and T be the outer unit
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

normals of §o and S. Moving along geodesics tangent to k in the past null cone Q
a time height 7 with respect to %, Is equivalent to the projected trajectory moving
inwards the same signed distance T (see Figure B.3]). Thus, we can apply Theorem
with o = —7 and conclude that 7 = z4*(K) with W > 0. The validity of the
Penrose inequality for S is then a consequence of Theorem B3.7] []

Remark 5.3.2. The expression of 7 with an index notation is
Tag = Koag — TKoar Ko — TT"DaKogr — TH(T.aKosL + T.8Koar) + DaDgT,
where Tt = —7y[(1d — TKy) ML,

To get a flavour of the range of applicability of this result, let us consider a few exam-
ples. Consider a closed, axially symmetric convex surface §o in a spacelike hyperplane
Y, of four-dimensional Minkowski spacetime M3, and assume that this surface is
a cylinder between two parallel planes z = zy; and z = z orthogonal to the axis of
symmetry. Let py be the radius of the cylinder (see Figure 5.4]).

~ © Z-axis

So :
T :
Rn+l ) i

zZ =2

Figure 5.4: Particular case of the construction in Figure 53] where the projection §o
onto a constant time hyperplane X, of the spacetime convex surface S embedded in
M3 along its past null cone Q is a cylinder of radius py between the two parallel planes
z = zy and z = z; orthogonal to the axis of symmetry. For all those 7 for which T
is positive semidefinite, i.e. those ones that make S C R"*! convex, the shell Penrose
inequality for S holds.
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In cylindrical coordinates {¢, z}, the first and second fundamental form of the cylinder
read
Yo = pod@® + dz?, Ko = podyp®.

It is immediate to see that

KoaL Ko s = 6489,
with & the Kronecker delta. In addition, the coefficients of the metric tensor -y are
constant. This implies that the Christoffel symbols of the metric are zero, and con-
sequently DaKogc = 0, because the coefficients of Ky are also constant. Inverting
(1d — TKo)" g = PT84 + 6707, we find [(1d — TKo) !|"g = ;260,68 + 0205, and

Po
the following expression for the vector T is obtained:

Tt = —ryl(ld — TKy) Mt = — 1% gL
wl )] po(po —7) ¥

Thus we obtain TtKpa = —

2259, and it follows

-
—T (T aKosL + TeKoaL) =

a4 'T(T'AE(E + '7',552).

Using all this information, in cylindrical coordinates {y, z}, (EI€]) becomes, in the
region zop < z < 7,

-
Tag = (Po — T)0Z0% + T a5 + o

(a8 + 705,

Assuming T also axially symmetric, then 7 is positive semidefinite if and only if 7, > 0.
So, any smooth axially symmetric surface S projecting to §0 along the past null cone and
for which 7 fulfills 7., > 0 on z € [z, z1], and is a constant 73 on z > z and a constant
To on z < Zzy (although it is not the only possible way to define it, we consider such
a 7 in order to obtain a compact projected surface g), satisfies the Penrose inequality
(with respect to the time translation orthogonal to the hyperplane ¥,).

Another simple example is obtained when §0 is a sphere of radius ry in X, (see Figure
BH). In this case Ko = %’Yo, where 1y is the metric of the two-sphere of radius rp.

Clearly
1
Koar KOLB = ﬁ’)’o-
0

and we also have DaKoge = 0. Inverting (Id — TKo)" g = ror;TGAB, is now immediate
[(1d — TKy) 15 = -2-6"5, and the expression for T is

n—T

Th = —ml(Id — TKo) Mt = — % L.
o — T

The contraction TtKga = r;TlTT’A yields

2T AT
—T (T aKosL + TeKoaL) = AE

fh—T
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Z-axis

Rn—i—l

Figure 5.5: Particular case of construction in Figure 53] where the projection §0 onto
a constant time hyperplane ¥, of the spacetime convex surface S embedded in M3
along its past null cone Q is a sphere of radius ry. As in Figure [5.4], for all those 7T for
which 7 is positive semidefinite, i.e. those ones that make S C R"*! convex, the shell
Penrose inequality for S holds.

Using all the above information, in spherical coordinates {6, ¢} non-negativity of the
tensor T reads

h—T
Tag = ( Orz )fyOAB + DaDpT + TaTg > 0.

A direct computation gives that the Hessian of 7is DpDgT = T ag+sin 6 cos 07,9626‘,‘3’—

‘;f’rfgr(p(éié‘f; +6%0%). In the case that S is axially symmetric, the conditions Tge > 0

and Ty, > 0 are equivalent to (in spherical coordinates where 7(0))

(ro—T)>+ (ro — T)Tgo +2(T4)* > 0, (rp—T)sin@ + cosf1y > 0. (5.17)

Let us solve these inequalities in the strictly convex case (i.e. with strict inequalities
in (517)). With the definition z(0) := (ro — 7(0)) cos 8, the second inequality be-
comes immediately zy < 0, which can be inverted to define 8(z). With the definition
p(0(2)) := (ro —7(8)) sinBlg(z), the first inequality becomes, p ., < 0 as we show next.
Using the chain rule we have

d?p (dO\® dp d?0
Pz = W (E) + %P (5.18)

107



5.3. Matching the two different projections

d6o _ 1 d?6 _ —Ze ich i i i
From gz = 350 We have 9 = DR which inserted into (5.I8]), transforms this expres-
sion Into

_ PeeZe — P60
- (z6)?
Hence the condition p ., < 0 is equivalent to pggzg —pgz e > 0 after taking into account
that zg < 0. On the other hand, the definitions of p and z imply

pe = —Tgsinf+ (rp— T)cosH,
pee = —(Teg+ ro—T)sin® — 274 cosb,
and
zg = —TgcosO— (rp—T)sinb,
Zgog = —(Tgo+rg— T)cosO+ 2Tgsinb.

The combination pgszg — p.oZee 1S
pesZo — PoZoo = (ro — T)° + (ro — T)Teo + 2(T)*> > 0,

which implies that the first inequality in (5.17]) is equivalent to p ., < 0 as claimed.

Note also that
z (ro — )2

P—ZPz=P—Po_— = — >0
Zg

Zg

as a consequence of their definitions. Conversely, let p(z) satisfy p ,, < 0 and p—zp , >
0. We want to define the function z(8) by using the implicit function theorem in the

relation
cosf = z(\/z22+ p(2)2) | 1=z0)- (5.19)

This can be achieved by considering the function F(8, z) = z(\/22 + p(2)?)~* — cos 6
. . B oF _ _ plp—zpz)

(note that (519) is equivalent to F(6,z) = 0). It holds 3 RV v > 0 from

the conditions p > 0 and p — zp, > 0 and the implicit function theorem can be used

to define z(8). We can now construct a function 7(6) be means of

T=rn—+vz°+ P(Z)2|z:z(e)-

Then the surface S defined by this time height over the sphere §0 projects onto a
convex euclidean surface S lying in the constant time hyperplane 24, and therefore
using Brendle and Wang's Theorem 3.3.7], we prove that the constructed surface S
satisfies the shell Penrose inequality.

We note that the Penrose inequality for surfaces S lying in the past null cone of a
point in the Minkowski spacetime has been established in full generality in [I01] (for
dimension 4) and in Chapter [ of this thesis for any dimension. So, the second example
above does not extend in any way the class of surfaces for which the inequality holds.
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

However, besides giving us an idea of the proportion of surfaces in the null cone case
covered by Theorem B3 7]in Chapter 3] it also provides a method to construct a wide
family of axially symmetric surfaces S for which the Penrose inequality holds. Indeed,
assume now that §0 Is axially symmetric and consider axially symmetric functions 7
on §0 so that S is strictly convex. Let e, be the unit field tangent to the axis of
symmetry and e, tAhe unit field radially outward from the axis of symmetry. Define the
two functions on Sy

z(p) = ge(x —Tv &)l p(p) = ge(x =TV &)lp, (5.20)

where x is the position vector of a point p on §0 with respect to an origin on the axis of
symmetry and v the outward normal at p. The strict inequality 7 > 0 is equivalent to
(i) z being a coordinate on §0 away from points on the axis of symmetry and (ii) p(2)
satisfying p ., < 0. Conversely, given any function p(z) satisfying p ., < 0, if there are
two maps z, 7 : S — R solving the algebraic equations (520)) with p(p) = p(z(p)),
then the spacetime surface S defined by this time height function over §0 satisfies the
Penrose inequality. The algebraic equations will be solvable provided the parametric
surface {p(z), z, ¢} in cylindrical coordinates is a normal graph over Sy. It is obvious
that this is not always the case, so restrictions are necessary. In the spherical case
above, this restriction is precisely p — zp, > 0.
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The Hawking energy along null AF hypersurfaces

6.1 Introduction

From this chapter onwards we move on from the Minkowski case and start analyzing
the null Penrose inequality in a general context. The main strategy we shall follow is a
generalization of the ideas in Chapter [ where the surface was dragged along the past
null cone of the surface. As it will become clear in Chapter [, the method requires
understanding in detail the limit of the Hawking energy along general flows by cross
sections of €2.

Recall that the Hawking energy is a functional on surfaces which is known to approach
the Bondi energy along flows approaching large spheres. The main purpose of this
chapter is the study of the limit of the Hawking mass when this condition is relaxed. To
do that we study the geometric elements (metric, extrinsic curvatures and connection
one-form) on the leaves of general flows in terms of the geometric elements of a special
reference flow which we call background foliation. This allows us to analyze their
asymptotic behaviour at past null infinity. As a consequence, we obtain in Theorem
[6.621 an expression for the limit of the Hawking mass along these general flows in terms
of the geometry of the background foliation. These results were published in [76].

In the final part of the chapter, we particularize to those flows along €2 which tend
to large spheres, and consider the one-to-one correspondence between their asymptotic
limit at past null infinity and the solutions of the large sphere equation. The solutions
of this equation are determined by three real parameters, which also determine a unique
four-vector observer u in an abstract Minkowski spacetime that is assigned to the flow.
It is well known that the limit of the Hawking energy along such flow is the Bondi energy
E{ associated to the observer u, i.e. the component along v of an energy-momentum
four vector Pg. Our results allow us to give (Corollary 6. 7.3]) an explicit expression for
Pg in terms of the background foliation that appears to be new.
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6.2 Preliminaries

In the previous chapter we were mainly working in the Minkowski spacetime. Let us
go back to a more general setting dealing with a time-oriented spacetime (M, g) of
dimension n+ 2, n > 2, admitting an embedded smooth, connected, null hypersurface
Q. Let k be a smooth, nowhere zero, future directed null vector field tangent to €2 (i.e.
a null generator). Since the integral curves of k are geodesics, there exists Qx € F(2)
such that Vik = Qrk. We make the assumption that there is an embedded spacelike
connected hypersurface Sq in Q (with embedding ®¢) such that any integral curve of —k
intersects Sy precisely once. This implies the existence of a smooth map m: Q2 — S
(we identify Sg with its image, the meaning being clear from the context) which sends
p € €2 to the intersection of the integral curve oc’; of —k passing through p with Sg.
The map  is clearly a submersion. We choose the parameter A of the curve a’; SO
that a(0) = p.

Given k and Sy, a scalar function A € F(2) is defined by k(\) = —1 and X(p) = 0O for
all p € So. Let (A_(p), A+(p)) be the range of the function X restricted to the curve a.
We also assume that the open interval (A_ := sups, A_, Ay := infs; AL) is non-empty.
The function A having nowhere zero gradient, the level sets Sy, = {\ = A1} are either
empty or smooth embedded (not necessarily connected) hypersurfaces. The collection
{S\} is a foliation of Q. For A\; € (A_, A;) the hypersurfaces Sy, are in fact connected
and diffeomorphic to Sy.

At any p € Q let 4|, € T,M be the unique null vector field satisfying (k, £)|, = —2 and
(€, X)|p =0 forany X € T,Sxp). Sx is endowed with an induced metric «vs,, with two
null second fundamental forms K*, K* and with a normal bundle connection one-form
SZ(X) = %<ka,€>, X & %(SA)

In order to obtain the limit of the Hawking energy as described in Section [6.1], we
need to relate the geometry of different spacelike surfaces embedded in 2. Consider a
spacelike embedded hypersurface S in Q2 with embedding ® : S — Q and let p € S.
This hypersurface is uniquely defined by a diffeomorphism W : S — W(S) C S
and a function F € F(S) as follows. For all p € S define F(p) = X(P(p)) and
V(p) = (mod)(p). Conversely, a function F € F(S) with image in (A_(p), A+(p))
and a diffeomorphism W as above defines an embedding (see Figure [6.1])

¢:5—Q

We want to relate the intrinsic and extrinsic geometry of S at p with the geometry
of the surface S)—r(p). Since this is all local we can assume W(S) = Sg, which makes
the presentation simpler. We extend F to a function on €2 defined by F(q) = F((Wto
m)(q)). We keep the same symbol for the extension. It is clear that k(F) = 0. For
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6. The Hawking energy along null AF hypersurfaces

So

Figure 6.1: Embedding of the surface S in the past null cone Q2 of Sg. The flow {Sy}
of surfaces along 2 defined as the level sets of the function A : 2 — R satisfying
k(X)) = —1, and A|s, = 0. The “distance” along 2 from Sy to S is given by the graph
function F : S — R. For a point p € S, and the surface Sy_¢(,) of the flow, we can
rewrite the tangent vectors, metric, second fundamental forms along k and £s, and the
connection one form sy, of S in terms of the geometry of the leaf of the flow Sy—_¢(,).

the extrinsic geometry of S (we again identify S with its image) we define at p € S,
the null normal £4s|, by the conditions (¢s, k)|, = —2 and (¢s, X) = 0 for all X € T,S.
The induced metric 7ys, the null second fundamental forms K%, K* and the normal
connection one-form s, are defined similarly as before. The following proposition is
known (see e.g [93]) when the background foliation {Sy} is affine (i.e. QK = 0).
Although this is the situation we will require later, we include for the sake of generality
the non-affine case as well. Our proof also follows a somewhat different approach.

Proposition 6.2.1. Let p € S, then the map
TE: Tpr:F(p) — TPS
X — X=X —-X(F)k

is a well-defined isomorphism. The induced metric ys, null second fundamental forms
K*, Kk and normal bundle connection sgs of S are given by

Yslp(X',Y') =y(X,Y), (6.1)
KX, Y|, =K*(X,Y),
ses(X)|p =se(X) — K¥(X, gradF) + X(F)Qx,
K (X YD), =K4EX,Y) + IDFPKE(X,Y) + 2X(F)sy(Y) + 2Y (F)sy(X)
—2X(F)KX(Y, gradF) — 2Y (F)K*(X, gradF) — 2Hess F(X,Y)
+2QuX (F)Y (F), (6.4)
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where v, KK, K*, s, grad, Hess and |DF|?> = (gradF, gradF) refer to the surface
Sx=rF(p) and are evaluated at p.

The proof is based on the following simple identity that may be useful in other contexts.

Lemma 6.2.2. Let S be an embedded spacelike surface with embedding W : S — M.
Select a pair of null normal vector fields {k,£} along S satisfying (k,£) = —2. For
any vector field & on a spacetime neighbourhood of S write its deformation tensor as
Leg = ag. Then

ac(X,Y) = — (£, OHKK(X,Y) = (£, K)KEX,Y) + (Dx€!) (V) + (Dy€l) (X),
X,Y € %(S), where D is the Levi-Civita covariant derivative of S, €l = W*(¢) and
£:=9( ).

Remark 6.2.3. Given £ merely along S, this result can be applied to any extension of &
to a neighbourhood of S, the result being independent of the extension.

Proof. Decompose £ in tangential and normal parts € = ¢+ + £/l and &+ in the null basis
{k,€} asin B2E), i.e., £ =—3(&, )k — 2(&, k)€ + ¢l so that
ac(X,Y) =(Vx£Y) + (Vv X)

= —(& KX, Y) = & RKAXY) + (V€L Y) + (Vyél X)

= — (&, OK (X, Y) = (& KX Y) + (Dx€l, Y) + (Dyél, X)

= (& OKKXY) = (€ KX, Y) + (Dx€N)(Y) + (Dy € (X).

]

Proof of Proposition[6. 21l Trg is well-defined provided X — X(F)k is tangent to S.
This follows because S is defined by A — F = 0 (note that d(A — F) # 0 everywhere)
and Lx_xpk(A — F) = =X(F) = X(F)k(X) = 0. Tr is obviously injective, hence an

isomorphism. Properties (&1]) and (&2]) are well-known. Anyhow we also prove them
for completeness. First of all,

Ys(X,Y') = (X = X(F)k,Y =Y(F)k) =(X,Y) =~(X,Y),
and also

KEOXL YY) = (Vxk, Y'Y = (Vx-xrk, Y = Y(F)k)
= (Vxk = X(F)Qk,Y —Y(F)k) = (Vxk,Y) = KK(X,Y).

These two identities recover the fact that the objects v and K* are intrinsic to 2 at p
and independent of the details of how S containing p is embedded in €2.
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For the remaining parts of the proposition we note the decomposition
ls|, =L+ |DF|k — 2 gradF |, peSs,
which holds because the right-hand side is null:
(bs,8s) = {(£+|DF]*k —2gradF, £+ |DF|?k — 2gradF)
= —4|DF|” — 44(F) + 4|DF” = 0;
is orthogonal to X’ = Tg(X), for all X € T,S :
(bs, X'y = (€ + |DF Pk — 2gradF, X — X(F)k) = 2X(F) — 2X(F) +2X(F)k(F) = 0;

and clearly satisfies (£s, k) = —2.
To show (6.3]) we compute

1 1 1
s (X') = —E(VX,KS, k) = §<vx//<,es> = §<ka — X(F)Vk,24s)
= 5(X) — KX(X, gradF) + X (F)Qx.
For the null extrinsic curvature K* we use Lemma [B.2.2. First observe that the right-
hand side of (6.2]) makes sense for all p € Q, so it defines an extension of £s which
remains null and satisfying (¢s, k) = —2. Extend also Y € T,Sx_r(,) to a neighbour-

hood under the condition that remains tangent to the foliation {Sx}. This induces an
extension of Y which remains orthogonal to £s. Note

[k, YT =1k Y] = k(Y(F))k =k, Y] = [k, Y]I(F) = (k. Y])',

which shows that [k, Y’] is tangent to S at p (and we used that [k, Y]|, is tangent to
Sx=F(p)). We apply Lemma [6.2.2] on the surface S)_g(,) and to the vector field £s.
Concerning the deformation tensor

(Vxls,Y) =(Vxxmuls, Y + Y (F)k)
=(Vxls,Y') + X(F)(Vids,Y') + Y (F){(Vxis, k) + X(F)Y(F){(Vils, k)
=K*(X",Y') = X(F)(ViY', £s) = 2Y (F)sis(X") = X(F)Y (F){Vk, £s)
=K (X", Y') = X(F)([k,Y'] + Vy:k, £s) — 2Y (F)sss(X')
+ 2QxX(F)Y(F)
:KKS(X/, Y') — 2X(F)S¢5(Y/) — QY(F)SgS(XI) +2Q«X(F)Y(F),

where in the last equality we used that [k, Y']|, is tangent to S. Hence
s (X, Y) =2K5 (X', Y") = 4X(F)sys(Y') — 4Y (F)sy5(X") + 4Q X (F)Y (F)
=2K5 (X', Y") —4X(F)s(Y) — 4Y (F)sy(X) + 4X(F)K (Y, gradF)
+4Y (F)KX(X, gradF) — 4Qx X (F)Y (F) (6.5)
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after using (&3) in the second equality. Now Lemma gives
(X, Y) = 2|DFPKX(X,Y) + 2K4(X,Y) — 4 Hess F(X,Y). (6.6)

Solving for K (X', Y') in (&X) and (&8 yields the result.
]

The following corollary is a consequence of how the null second fundamental forms
and the normal bundle connection transforms under a boost in {£s, k}.

Corollary 6.2.4. Let S as before and for all p € S let k', = a(p)k|, and £s|, = 5i58s,

where o : S — R is a smooth positive function extended to Q by k(a) = 0. Then

se (X'), =s(X) — KX(X, gradF) + X(F)Qy — éX(a), (6.7)
KK (X, YY) =aKK(X,Y), (6.8)
KS(X Y, :é ( KAXY) + IDFPKA(X,Y) + 2X(F)sy(Y) + 2Y (F)sy(X)
—2Hess F(X,Y) — 2X(F)K*(Y, gradF) — 2Y (F)K*(X, gradF)
F2QUX(F)Y (F) ) . (6.9)

Proof. We first compute how s, transforms under change of £:
, 1 ;o 1 1 1, ., 1
Sgls(X) = §<VX//( ,£5> = §<Vxl(ak), a&g) = §<X (Ol)k + OCVX//(, 525>

_ _X(;(o‘) 5, (X).

Using relation (&3)) and X'(a) = X(a) — X(F)k(a) = X(a) yields (&7]). The change
of K¥ under rescaling is very simple:

KK(X' Y'Y = (Vxi(ak), Yy = (X' (a)k + aVxk, Yy = aK¥(X', Y"),

which in combination with (6.2)) gives (&.8]).
An analogous reasoning gives K% (X', Y’) = 1K* (X’ Y’), and (&3) follows from
(&4).
]

The trace of KX and K¢ on S, with the induced metric define the null expansions of Sy
and are denoted respectively as 8, and 6,. The relationship between the null expansions
Ok, 0o of a graph S with the corresponding ones at the level set Sy_r(,) follow from
Proposition [6.2.11.
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Corollary 6.2.5. Let S, k" and £ as in Corollary[6.2.4. The null expansions 6, and 0y
at p € S and the null expansions 6y, 6, of Sx_r(,y at p are related by

Qk/ = O[@k, (610)

1
Oy, = - (60 + |DF 6, + 4sy(gradF) — 4K*(gradF, gradF) — 2AF + 2Q«|DF|?)
(6.11)

where AF is the Laplacian of S, with the induced metric.

Another useful identity that will play a role later is the evolution equation for the
connection of the normal bundle. The proof of the following result is given in Appendix

Bl formula (B39):

Proposition 6.2.6. \With the same notation as above, let X € X(Q2) be a vector field
satisfying [k, X] = 0 and tangent to S. Then

k(S((X)) = —X(Qk) — S((X)ek -+ (dIVSrKk)(X) — Dxek — Eing(k,X), (612)

where Ein? is the Einstein tensor of (M, g).

6.3 Null asymptotic flatness of 2 and asymptotic be-
haviour

The previous section involved general properties of €2 of local nature and valid in any
spacetime dimension. We now impose global conditions and restrict to dimension four.
First of all we assume that Q admits a global cross section Sy (i.e. a smooth embedded
spacelike surface intersected precisely once by every inextendible curve along the null
generators) of spherical topology Sq. We also assume that for one (and hence any)
choice of affine null generator k (i.e. satisfying Vi k = 0) the corresponding integral
curve starting at p € Sp has maximal domain (—oc, A (p)), i.e. the null generators
are past complete. After possibly removing portions of €2 lying to the future of Sy we
can assume that €2 is foliated by the level sets {S,} of the function A € F(Q2) defined
by k(A\) = —1, A|ls, = 0 and that all these level sets are diffeomorphic to Sy (so that
in particular Q = Sy x (p,00)). The function X is called level set function of k. If
we change the selection of null affine generator k, the set of points to be removed
is different, but since we are only interested in the past of Sy this is irrelevant, and
we keep the same name Q2. A null hypersurface 2 satisfying these properties is called
extending to past null infinity, and as mentioned in Section [6.1], it generalizes the
concept of spacetime convex null hypersurface defined in Chapter @ for hypersurfaces
in the Minkowski spacetime that also extend to past null infinity.

117



6.3. Null asymptotic flatness of Q2 and asymptotic behaviour

In order to define asymptotic flatness along 2 we need to impose decay of various
objects at infinity. First note the existence of covariant tensor fields T on €2 completely
orthogonal to k (i.e. satisfying T(k,---) = T(..., k) = 0). We call such tensors
transversal. An immediate example is the first fundamental form «y. The collection of
second fundamental forms K’gX defines a transversal tensor denoted simply by K* (this
is compatible with the notation already used in the previous section). A tensor field T
(not necessarily transversal) is called Lie constant if and only if £,7 = 0.

A local basis { X4} for any cross section of X(€2) extended by [k, Xa] = 0 implies

(LxT)(Xay, - Xag) = k(T (Xay, -+, Xa,))

The following result shows the relation of transversal and Lie constant tensors with
collections of tensors just defined on the leaves of the foliation {S,} along Q:

Lemma 6.3.1. A transversal tensor T on €2 is in one-to-one correspondence with a
smooth collection of covariant tensor fields {T(\)} with each T (\) defined on each
level set Sy. If in addition T is Lie constant, then T is in one-to-one correspondence
with covariant tensors T on a fixed leaf Sx. Moreover, T(\) are all diffeomorphically
related to each other and to T.

Proof. Assume first that T(Xa,,---, Xa,) defined on Q is transversal. Then for each
A, and {X} ,---, X} } tangent to X(Sy), we define the family {T()\)} as

TO)XA, -+ Xa) =Tls, (XA, - . Xa)=T(Xa,, -, X2).

Conversely, given a family {T(X\)}, with T(X\) defined on Sy, we define the following
tensor T on Q2. For any p € 2, there is a unique A\* so that p € Sy.. Each X, € 7,02
can be decomposed as

Xa = Xn + ak, (6.13)

where X" € X(S,.). With the definition
To(Xag - Xa) = To(W)(XA, -+ XA,

T is transversal, and the first statement of the Lemma is proved. If in addition a
transversal T is also Lie constant, we have that

0= (£T)(Xay, -+ Xag) = k(T(Xay, - Xa,)), (6.14)

provided X, satisfy [k, Xa] = 0. Thus T(Xa,, -, Xa,) is constant along k. For any
a priori chosen A, let us define T := T(\). This defines T on S5 uniquely.

Conversely given a fixed A and a covariant tensor T on S5, we can build a tensor T
on €2 transverse and Lie constant. Given any p € Q, let 7(p) be the unique point of Sy
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6. The Hawking energy along null AF hypersurfaces

lying in the geodesic that contains p and is tangent to k. Let X4, be vectors in T,Q2
and extend them as usual by [Xa, k] = 0 along k. At 7(p) we decompose them as
before, i.e. X

Xa = X) + ak,

with Xil tangent to S5.The tensor field
ToXay, . Xa) = Tag (X Xa,) (6.15)

is transverse and Lie constant, as claimed. Observe that given an initial transversal
tensor T on Q (not necessarily Lie constant), we can obtain an associated T, and using
([&I0) we define another tensor that in general is not the same as the initial T. If T is
Lie constant, both tensors coincide due to property (6.14]).

We conclude by showing that in the Lie constant case the tensors T(\) are diffeo-
morphic to each other. Indeed take two different values A\, >, and two different points
p1 € Sx, and p, € Sy, so that they lie in the same geodesic tangent to kp,. From

6I5),
T OGN X0) = To(XAh - X0 = Taen (XA, . X2,)
Tatpa=ron (XA, -+ X2) = To ) (X02, -+, X02),

and it is precisely in this sense that we say that T(\;) and T (\») are diffeomorphically
related to each other.

]

Remark 6.3.2. Using the above lemma, with the collections K§ and s,(Sx) we can
define the corresponding transversal tensors K¢ and s;.

Definition 6.3.3. A transversal tensor field T is positive definite if and only if the
corresponding collection of tensors T (\) is positive definite for all X.

In the proof of Lemmal@&3I]we have used vectors X, tangent to 2 (and not necessarily
tangent to the leaves S, of the foliation). For the sake of simplicity and in order to
avoid using the decomposition (&13]), we consider a local basis {X4} on Sy extended
uniquely to X(Q2) by [k, Xa] = 0. With this extension { X4} defines a basis of each level
set S). From now on {X} will denote one basis constructed this way.

We shall say that a transversal tensor field T on Qis T = O(1) if and only if Tx,...a, :=
T(Xa,, -+, Xa,) is uniformly bounded. We write T = O,(A79), g € R, n € N if and
only if

NT =0(1), XM LT =0(1), - XL £, T=0(1).
——

n
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6.3. Null asymptotic flatness of Q2 and asymptotic behaviour

We also write T = o(A™9) if and only if limy_,oc A9T(X) a,a, = 0 and T = 0,(A79) if
and only if X*9(£,)'T = o(1) forall i =0,1,---, n. Given a transversal tensor (field)
T the tensor £x,T is also transversal. We write T = o,X(A~9) if and only if

N Ly, o Lx, T=0(1) Vi=01-,n
_,’_,’

It is clear that all these definitions are independent of the choice of {X4}.

Definition 6.3.4. Let (M, g) be a four-dimensional spacetime. A null hypersurface Q
is past asymptotically flat /f it extends to past null infinity and there exists a choice
of cross section Sqg and null affine generator k with corresponding level set function A
with the following properties:

(i) There exist two symmetric 2-covariant transversal and Lie constant tensor fields
G and h such that 4 :=«y — 22§ — Ah is 4 = o1(\) N oX ().

e

(ii) There exists a transversal, Lie constant one-form st(l) such that §, .= s, — %4— is
Sp = 01(>\71).
~ (0) (1)
(i) There exist Lie constant functions 9,50) and Qél) such that 0y := 0, — QfT — 9{—2 Is
ég = O()\fz).

(iv) The scalar Riem? (X4, Xg, Xc, Xp) along Q is such that
N
>\|I_>moo ?Rlemg(XA, Xg, Xc, XD) < 00,
and its double trace satisfies 2Ein?(k, £) — Scal® — Riem?(¢, k, £, k) = o(A72).

We remark that several parts of this definition involve foliation dependent quantities.
However, the definition is intrinsic to the null hypersurface €2 because the definition
requires the existence of a foliation with the desired properties.

This definition of asymptotic flatness is weaker in many aspects than most existing
definitions. Compared, for instance, to the definition used in [23] we demand 4 =
o1(M\)NoX () instead of the stronger condition 4 = O(1)NOX(1) and £, = O1(A72)
assumed there. We also emphasize that this definition is different to the global definition
of asymptotic flatness discussed in Chapter 2] in connection with the heuristics of the
Penrose inequality. The present definition only involves properties along €2 and makes
no assumptions on the future evolution of the spacetime where €2 is embedded. This
is in accordance with the spirit of the Penrose inequality where global assumptions are
only allowed at one instant of “time".

Sometimes it will be convenient to supplement this definition with a stronger notion
where additional decay for some components of the Einstein tensor and for the remainder
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6. The Hawking energy along null AF hypersurfaces

tensor 4 is assumed. Specifically, we say that an asymptotically flat null hypersurface
(2 satisfies the energy flux decay condition if

Eind(k, Xa)la = 0o(A7%),  £7 =o' (1).

The name is motivated by the analogous role of density flux that the Einstein tensor
component Ein?(k, X,) plays in the constraint equations for null hypersurfaces (see e.g.

().

Let us consider a past asymptotically flat null hypersurface 2 with a choice of k and
level set function A. The following proposition determines the asymptotic expansion of
K* and provides an explicit expression for 920).

Proposition 6.3.5. Let €2 be a past asymptotically flat null hypersurface with a choice
of affinely parametrized null generator k and corresponding level set function . Let
Y(MN)AE be the inverse of y(\). Then

1 1. _
YW = quB — FhAB +o(A7?), (6.16)
. 1
Kf\B = _C/AB>\ — §hAB + O(l), (6.17)
2K Gél) -2
QgZT—Fv—l—O()\ ) (618)
GAB is the inverse of Gag, indices in hatted tensors are raised and lowered with these

metrics and Kg4 is the Gauss curvature of Gag.

Proof. Expression (&16]) is an immediate consequence of item (i) in the definition of
asymptotic flatness, namely

YAB = (?AB>\2 -+ hAB>\ + 01(>\) N 02X(>\) (619)

For expression (6.17]) we use the evolution equation (B.12]) in Appendix Bl Inserting
([&19) yields (&I17]) immediately. Concerning the expansion for 6, we invoke the Gauss
identity for (Sx,v(X)) ((A27) in Appendix [A, with ¢ = 2), which says

: : 1 1
Riem gcp = Riem)5lp — i(Kchf\D + KipKec) + i(KﬁcKeBD + KgpKac). (6.20)
The decomposition (GI9) implies that Riem}2)., = A?Riemd s, + O()\) and given

that K55 = —gdasX + O(1), it follows from item (iv) in Definition [6.3.4] that K%z is of
the form

Kias = MK{oyas + o(N), (6.21)
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6.3. Null asymptotic flatness of Q2 and asymptotic behaviour

with Kfo) a transverse Lie constant symmetric tensor on €2. The trace of the Gauss
identity (equation (A3Q) in Appendix [A] with ¢ = 2) is

1
2Ein?(k,£) — Scald — 5Riemg(ze, k£, k) = 2Ky + 000k — Kig K5,

Now, Ky = 55Kg + o(A72) and the decompositions (€16)-(@.17), ©21) and the
trace condition in item (iv) of Definition [£.3.4] imply

1 _
0= (2/c@ . e§°>) +o(A?),
which, together with item (iii) in Definition proves (619). ]

Remark 6.3.6. Note that the expansion for K* only depends on item (i) in the definition
of asymptotic flatness. The expression for 9,&0) depends on items (i), (iii) and (iv).

Remark 6.3.7. We can raise the index to the tensor K*X(X) with the contravariant metric
~AB . Combining the asymptotic expansions (&.16]) and (&.17)) yields

1 1., 1 _
Kk(A)AB = —X(SAB + EhABﬁ + O()\ 2), (622)
and taking trace
2 1. 1 N OR. -2

It will be convenient to endow each level set {S,} with a covariant derivative inde-
pendent of A\. The natural choice is § which is Lie constant, a metric on each S, and
gives the leading term of the asymptotic expansion of y(\). Denote by D the covari-
ant derivative of §. In the following lemma we find the asymptotic expansion of the
difference tensor

DxY — DxY = Z(X,Y)

and apply it to relate the Laplacians on functions with respect to the metrics «y(\) and
g. This will be needed later when relating two different foliations on €2.

Lemma 6.3.8. The difference tensor Z admits the decomposition
1 . - A ~ 1
75 = E(DAhCB + Dgh©, — DChAB)X +0(\72). (6.24)
Moreover, if F is a Lie constant function on 2 then

1 e . . 1 )
DoF = BoF =5+ (~H2DaDsF — (DAB)F.c + (D6 Fc) 5+ o).
(6.25)
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6. The Hawking energy along null AF hypersurfaces

Proof. We use the general formula for the difference tensor of Levi-Civita covariant
derivatives, see e.g. [108],

1 ~ ~ ~
Zsg = E’YCD(DA'YDB + DgYpa — Dpyas).

Given that Davps = (Dahpg)X +O(1) and vP = 5GP + O(A~3), expression (6.24)
follows. For the Laplacian we use

AyF =y*8DpDgF =¥*8 (DaDgF — Z§5DcF)

1 . 1. B
— (quB_FhAB_i_O()\ 3)) %

~ ~ 1 oy ~ 2 ~ Fay 1
(DADBF = E(DAhCB + Dgh©, — DChAB)F,CX + O(Az))
= L AGF 4 (B DADEF — (DA™ F e + 2D (4P hag) Fe ) - + oA
—paJr— ADgF — (Da ),C+§ (G""hag)Fc §+0( ),
which is (G25) after recalling that trgh = 29,9). n
We conclude this section by showing that the leading term se(l) of s, is fully determined
in terms of the rest of objects whenever the energy flux decay condition is assumed.

Proposition 6.3.9. Let €2 be a past asymptotically flat null hypersurface with a choice
of affinely parametrized null generator k and corresponding level set function . Assume
that the energy flux decay condition holds. Then

~ 1.
Se(l)A = DAG,((l) — EDBhBA-

Proof. From item (ii) in Definition [£.3.4] and the decomposition (6.23]) we have

(1) (1) A (1)
2 . D a6
A +o(A2) and Dafy = /;k +o(A2).

2

Concerning the divergence of K*4 in the metric y(\) we use that the leading term
in ([&22]) is covariantly constant and then replace the D—covariant derivative by the
D-derivative and use Z45 = O(A™!) to obtain

1 R 1 . -
DpK*B . = ﬁDBhBC +o(A?) = ﬁDBhBC + o(A72).

Thus, identity (&12]) (with Qx = 0) becomes

1 1o 2p  a
2 (se(”A + 5 D5h®, — DAG,((”) +o(A2) =0,

and the result follows. ]
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6.4. Background foliation approaching large spheres

6.4 Background foliation approaching large spheres

As discussed in Section [6.1], the Hawking energy has the interesting and well-known
property of approaching the Bondi energy when the surfaces approach large spheres
in a suitable sense. Our general limiting expressions for the Hawking energy will of
course have to recover this fact. To that aim, it is useful to restrict the choice of
affinely parametrized null generator k and corresponding level set function A so that
the geometry of the level sets S, approaches, after rescaling, the standard metric of
unit radius on the sphere, denoted by §.

Definition 6.4.1. Let Q2 be null and past asymptotically flat with a choice of affine
null generator k and level set function X. The foliation {S,} is said to approach large
spheres if and only if the leading term § in the expansion (&14) of -y is the standard
metric of a unit two-sphere.

Our definition of approaching large spheres is equivalent to demanding that the
rescaled metric 557y(X), has a limit § when X — oco. In [93] the definition of ap-
proaching large spheres is defined more generally for exhaustions {Ss} of Q with all
elements diffeomorphic to each other by demanding that the rescaled metric %fys has
a limit when s — oo and defines a metric § of constant unit curvature. It is clear that

both definitions agree for the affine foliations {S,} that we are using in this chapter.

Our aim is to consider very general exhaustions {Sy/} on Q and obtain the limit of the
Hawking energy along them by referring all objects to an affine background foliation
approaching large spheres. It Is important to note that, since all Riemannian metrics
on a manifold ~ S? are conformal to the standard metric §, there always exists a (non-
unique) choice of affine null generator k in an asymptotically flat Q with corresponding
background foliation {S,} approaching large spheres (cf. Remark[6.5.2below). Tensors
raised and lowered with the metric dag and its inverse 68 will have a circle on top, so
that for instance (6.26]) reads

Y(N)AE = %aAB — %E“B +o(X73). (6.26)

Note also that since § has constant unit curvature, the null expansion 8, has asymptotic
behaviour

2 6" >
Qg—x—f—?—f—O()\ )

We will consider three types of foliations {Sy/} and then combine them to obtain the
general case treated in Theorem [6.6.2 Given a null basis {k’, £} orthogonal to a
section S in Q and satisfying (k’, ') = —2, the mean curvature H of S decomposes as
H = —%(9;«2’ + 0p k") and the Hawking energy is

_ /1Sl 1
mH(S)— 167 1+ 167 59,(/9,3/775 , (627)
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6. The Hawking energy along null AF hypersurfaces

so our aim will be to compute the limit of the areas [Sx| and of 8,:0,ms,, of the new
foliation {Sy/} in terms of the background foliation geometry. The following section
deals with the case when {Sy/} is any affine foliation (not necessarily approaching large
spheres).

6.5 Limit of the Hawking energy for affine foliations

In this section we assume that 2 is null and past asymptotically flat and endowed with a
foliation {S,} associated to an affinely parametrized null generator k and approaching
large spheres. By definition, an affine foliation in €2 is a foliation {Sy } by cross sections
defined by the function X' € F(2) such that the (unique) null generator k’ satisfying
kK'(N') = —1 is affinely parametrized. Thus, there exists a positive function ¢ € F(2),
Lie constant along k such that k€’ = ¢k. Consequently, the level set functions X and X\’
are necessarily related by A = 7 + ¢\ where 7 € F(Q2) is a Lie constant function. We
first consider the case when the two foliations {S,} and {S, } have the same starting
surface, i.e. that Sy —g = Sa—o, which fixes 7 = 0. The leaves of the new foliation are
defined as (see Figure [6.2])

Sv={p€Q:Ap) =d(p)\'}.
Thus, each of the surfaces {Sy/} can be described by a graph function
As, = Fv = ¢ls, N,

where here Fy is a function on Sy, not its extension to 2 satisfying k(Fy) = 0.

Our strategy is to use the general expressions in Section for the geometry of a
graph A = F in a background foliation, insert the resulting expressions in (&27]) and
take the limit when X — oco. We start with the following Proposition.

Proposition 6.5.1. Let Q be a past asymptotically flat null hypersurface endowed with
an affinely parametrized background foliation {Sx} with generator k and approaching
large spheres. Let ¢ > 0 be a Lie constant function and define the affine foliation {Sy/}
as Sy ={p € Q:X(p) = p(p)\'}, where the graph functions read

As, = Fx = ls N

Let k" = ¢k and £ be the null normal orthogonal to {Sy/} satisfying (k’, ¢y = —2. Then
the induced metric y(X\'), volume form ms,,, null expansions 6y, 8y and the connection
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6.5. Limit of the Hawking energy for affine foliations

So

k' = ¢k

Figure 6.2: Representation of two different flows {Sx} and {S, } associated to different
parameters X and X’. Both flows have the same starting surface Sy, and their velocities
are related by a Lie constant function ¢ as k' = ¢k.

of the normal bundle sy can be expressed in terms of the background geometry as

Yag =Y (X4 Xg) = &> Gas\? + dhasN + o(N), (6.28)
ns, = (¢2x2 + OIN + o(X)) 4, (6.29)
2 oW1 B
Ok, = — y Fﬁ + O()\/ 2), (630)
2 1 o) 4B b s 0|Vl 4GB d a(sg)
9e'=—ﬁ(ﬂa|09¢—1);+<#— ¢5’ L pe 44 ¢'4 !
2BV Vgh  2VaAChce  2VvEoWp o\ 1 -~
d)f chant A¢4 < ¢’; < w5 o), (6.31)
(1) oL
__ [ A ¢.Lh"4 i -1
Spp == ( d) 2¢2 ) N + O()\ ), (632)

where X'y := Xa — Xa(Fx)k.

Proof. As already mentioned k' is the generator of the foliation {Sy/}. For any point
p € Sy, the level set passing through p has A = Fyx(p) = ¢(p)N. Thus (&) and the
background expansion (&19]) with § — § gives

Yaglp = Va8ls,_ s = GaBA + hagX + Fr=pn
which is (€28]). ([&29)) follows by taking determinants and using the standard identity
det(M + sB) = (det M)(1 + str (M™'B) + O(s?)),
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6. The Hawking energy along null AF hypersurfaces

valid for any invertible matrix M. For 8, we use the fact that 6, is a property of Q and
not of the surface embedded in €2 passing through that point, cf. Corollary[6.2.5l Thus

2 oY1
O = Pkhr—pv = 7 + ?ﬁ +o(N7?),

as claimed in (&30)). To compute 6, we use expression (E11)) with Qx = 0, o = ¢ and
graph function F = Fy = ¢)X. As before, the right-hand side has to be evaluated at
A = ¢XN. We work out each term separately:
2 oV L. 21 6 s
Qg—x-f—v-l- o(A\~ )—ay—f—?ﬁ—f—O()\ ),
Okl DFx[* = 6y ®V AP Vs F
21 oY1 L\ (§8 1 B ,
= <—$y P +o(N77) PN N +ONTH) | 08N

2AVOE1 | (2Ppate  O7IVORY 1 o)

¢3 N\ ¢4 ¢4 22 ’

For the Laplacian of Fx we use (&.25)) which gives, using VFy = (V@)X Hessqfy =
(Hessg) X and AgFyv = (Agd) N,

AyFy = + o(N72).

Ngp 1 [ I*BVaVED  Vah“oc n (Vo )pc ) 1
¢2 2\ ¢3 ¢3 ¢3 >\/2

For the term s,(gradFy)

AB C7AB 1 1—2 sz(l)A 1 /—1 ’
st(gradFN) =7 SgAVBFN = ?ﬁ + O()\ ) ¢ >\/ + ()\ ) ¢B>\

qABSe() s 1

pe 2 +o(\N7?),
and finally K¥(gradFy, gradFy) is, inserting (&.16]) and (E.17),
badbs (. 1 - _
K*(gradFy, gradFy) =y 8y PKE a0 gN° = ﬁ (qAB — WhAB +o(N 1)) X

° 1. /— ° / 1
(CICD - WhCD +o(A 1)) (—QBD¢>\ - §hBD + 0(1))

_—IVeE1 | 30, 1

=2
IRV R I

Putting things together leads to (G.31) S 'V"”q = Aglog ¢.
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6.5. Limit of the Hawking energy for affine foliations

Finally, if we substitute in expression (@.7]) the asymptotic expansion of item (ii) in
Definition [£.3.4], and the expansion of K* of (£.22)), we have

ba Sg(l)A ba ¢L 1 Sg(l)A ¢ht,\ 1 -1
f= —— AN = ' A
Soa s T e Nt o X+ oW =75 Yl R U
1 () _

where the term in v IS Sy A

]

Remark 6.5.2. The foliation {Sy/} has limit metric limy o 1—,/2 = ¢°§ := §. Using the
formula for the scalar curvature of a conformal metric it follows

1—Aglog g
Ko = T‘; (6.33)
so that the expansion of 0y is 6, = QTK/" + o(N71) in agreement with Proposition

635 Note that the transformation law § — ¢°§’ for the leading term § in the metric
v¥(X) under change of foliation k' = ¢k holds irrespectively of whether the background
foliation approaches large spheres or not. Since as mentioned above, any metric on
S? is conformal to §, it follows that any asymptotically flat Q admits a background
foliation approaching large spheres.

We can now evaluate the limit of the Hawking energy for the foliation {Sy/} (we write
¢ =  for later convenience):

Theorem 6.5.3. Let 2 be a past asymptotically flat null hypersurface endowed with an
affinely parametrized background foliation {S,} with generator k and approaching large
spheres. Let W > 0 be a Lie constant function and define the affine foliation {Sy} as

Sy ={pe:Xp)= WX} where the graph functions read
o 1 /
Nsy = Fri= 5|, .

)\/
The limit of the Hawking energy along the foliation {Sy } is, in terms of the background
geometry,

1 1
= — 7. o) _ p) DY a1 )
!inoomH(Sk) -~ sm/16m ( /Sz W2nq> /Sz (Aqek (657 +6,7) — Adivy(s, )) V.
(6.34)

Proof. Set ¢ = W~! so that we can use the expressions in Proposition [6.5.1. We
need to compute 66,ms,,. Denoting by 9,5,1) the coefficient of the term % in By we

immediately find, from (&.29)-(E.31),

6:0ums, = <4(A(7 logp — 1) + (—2K 46" ¢p — 26§, ¢2) + o\~ 1)) N4,
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6. The Hawking energy along null AF hypersurfaces

and hence

1 1 1
1 —_— 6.6, =1 N 4(/\ | —1 —2IC“9(1) o 29(,1) LAY
+ 167 Js, kB Ms,, + Tom 82( (Aglogp — 1) + ( L0 o b )N

1

1y ) g, — (g 2o -

+o(N) ) mg = 1 /SZ(—zicg,ek ¢ —20,0¢%) my + o (N 71).
z

Concerning the area term

mw=/
S

so that the limit of the Hawking energy is

1
I Sy)=—~— 2ns | | Ims 6.35
im m(Sx) 16m/167r< /S2¢ n") /s a (6.83)

We now compute Z. Using the explicit form of s and 915,1) it follows

n&=</ﬁm)W+OWF: wm=xt/&m+an
S2 S2

>\/

I :29;((1)Ac7¢ B 46,V |V ol3 B 2(9(1) + o) + 8/Epaps 84 Cdas, s
¢? ¢? ¢ " ‘ ¢° ¢?
APBV Vpd  AVA"Bo s 4VEM 5
TR #
. 4 . 200VAp  8sMA\  2vAeg . 2
=Va (—Eh“%,g R N 2 - 5(99 +05M)
8
- adin(St(l)) =
v, —iFIABd) 29/((1)¢A¢ 8513(1)A 2@,49(1)
¢? ¢? ¢ ¢ "
2 2 8 .
+ 5Aqe$> - 5(99 +6{M) — aonvﬁ(sf”),
and (6.38]) becomes (6.34) after using the Gauss identity and ¢ = W1, n

Remark 6.5.4. It is interesting that all terms involving derivatives of ¢ (or W) combine
themselves into a divergence and drop out after integration. The behaviour of the limit
of the Hawking energy under change of affine foliation is hence much simpler than one
might have expected a priori.

Given a past asymptotically flat null hypersurface, there are many possible choices
of affine background foliations approaching large spheres. Any two such foliations are
related by A = ¢\’ with ¢ satisfying

Nglogp +¢* =1, (6.36)
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6.5. Limit of the Hawking energy for affine foliations

so that the Gauss curvature (€33)) of G is also one. In this case the limit of the Hawking
energy of the foliation {Sy/} can be computed in two different ways, namely referring
{Sx} to the background foliation {S,} and using Theorem [6.5.3 or considering {Sx'}
itself as a background foliation (so that the result would be (&34]) with W =1 and 9,21)
0‘51), él) all referred to the foliation {Sy}). It is clear that both results must agree.
This requires a kind of covariance property of the integral in (&34]). Remarkably, this
covariance occurs already at the level of the integrand, as we show next. All geometric

objects referred to the affine foliation {Sy/} will carry a prime.

Theorem 6.5.5. Let (2 be a past asymptotically flat null hypersurface endowed with an
affinely parametrized background foliation {Sy} with generator k and approaching large
spheres. Let ¢ > 0 be a Lie constant function and define the affine foliation {Sx} as
Sy ={peQ:Ap) =a¢(p)\N}, where the graph functions read

>\‘5>\/ = FX = d)’SyA/’
with ¢ satisfying (6-38). Then
1
(8460 - (6 +6") — 4divy sV 57 = (8460 — (6 +6) — 4divg i) mg.

As a consequence we have the necessary invariance of the limit of the Hawking energy

-1
; _ (1) (1)
A!I—r;rlomH(SA) 167w /Sz <0 0 )
1 1
_ o) p(D) (1) s =
= Tor ) <Aq9k (0, +6,7) —4divgs, >¢

Proof. The general expressions (£.28)-(631]) give the explicit form of the geometric
objects of {Sy/} in terms of the background foliation {Sy}, namely

- 1) .
6 o 80 APou0e  OUIVElE | 44°90a(se):
o't P ¢° ¢ ®*
25A86A63¢ I 2@A/U7AC¢’C _ 2¢C9/(<1)¢,C 5(1) . Sl(l)A _ d)’LFILA
¢* ¢* R
The Laplacian in two-dimensions is conformally covariant so that A /9(1) 12AC79,(<,1).
and hence

Ng-

G = P*das. O =

! ! 5 Ag(1 (1) 4|2
£yb® = L a6 = B 60040 29600 | 2671Vel3
qavk ¢2 ¢3 ¢4 ¢4 ¢5 .
The dlvergence of a one-form in two-dimensions is also conformally covariant dIVq/St(, ) =

_ vAsD (1) AVA 1 .. . .
divgsih) = L LA O Lt — -

7z R 2 i VA
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6. The Hawking energy along null AF hypersurfaces

Putting things together many terms cancel out and we find

A 9(1) (1) Vo2
Ny — (60 +607) — adivgsy) ==k — Tk Dqp VOl

¢® ¢3 ¢ @?
1) 1) 4
— % — % — ?dlv s(l).
Dgp VOIS

Using the large sphere equation (&.38]) " = Aglogp =1 — ¢? we find

¢)2

Ac‘i’e/(al) - (9;9) + 9(1)) — 4divgy 5(/ = <A59/((1) _ (9}((1) n Gél)) adiv 5/1(1)> =

Since the volume forms are related by 14 = ¢°ng, the result follows. []

We have considered so far the limit of the Hawking energy for affine foliations with
fixed initial surface Sg. The second step is to consider affine foliations with a different
initial surface. Let us fix an affine background foliation {S,} approaching large spheres
and, as usual, let k be the associated null generator k satisfying k(A\) = —1. Any affine
foliation with the same null generator is defined by the equation X’ = const, where X\’
is any solution of k(\") = —1. Hence k(A — X") = 0 and the function 7 := X — X is Lie
constant. This function can be interpreted as the graph function of the initial surface
Sy—o in the original foliation {Sy} (see Figure [@3)). If {Sx} starts at a larger initial
value Aj > 0, the graph function of Ské Is given by an appropriate constant shift of T,
namely 7+ Aj. The following theorem gives the limit of the Hawking energy for the
foliation {Sy/} and shows that the integrand is also covariant (in fact invariant) for this
change of foliation.

Theorem 6.5.6. Let Q2 be a past asymptotically flat null hypersurface endowed with
an affinely parametrized background foliation {Sx} with generator k and approaching
large spheres. Let T be a Lie constant function and define the affine foliation {Sy '} as
Sy ={peQ:Ap)=1(p)+ N}, where the graph functions read

>\|5x, = F>\/ = T|5x/ + N

Then we have § = g,

—2 oW 4or - 2 M —or —2A,T -
Qk/ = 7 + —k )\/2 + O()\/ 2), 0@’ - y + ¢ >\/2 d + O(>\/ 2)’
(1)
S, A+ T
Spa = %Jro()\’_l),

and

(Ag,ei” — (60 + 1) — 4divg,s§1>) ng = (D40 — (00465 —4divg st ). (6.37)
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6.5. Limit of the Hawking energy for affine foliations

Moreover, the limits of the Hawking energies along the two foliations coincide and read

: . -1
lim my(Sy) = lim my(Sy) = — (9,((1) + 9@1))7;& (Gk/ + 9(1))
A—00 N —o00 S2

167 167
Proof. Changing parameters in the first fundamental form

Yag = GasA° + hagX + Vag = dap(T + X)> + O(N) = dagA” + O(N),

it follows §’ = §. Similarly, (23] gives

2 oW 2 oV —2 oM 4 or
9, = —— “k >\72 _ k >\le - _“ k >\/72
U L G i VA Y, LR G Al VI R

so that 6 = 8" + 27. For 6, we use (EIT) with a = 1, Q, = 0 and F = Fy,. First
we change parameter in the expansion of the first terms in the right-hand side

2 9(” 2 o 2 9‘”—27

9:_+ +o(A7) = +)\/+(T+>\/)2+ o(A” 2)— 2 +o(N72).

Since DFy = D7 independent of A and ¥*% = O(X'~?), cf. (&18), we have [DFy|2 =
O(N'?) and the term 6,| DFy|3 = O(XN'~2). The same argument shows that s,(gradF) =

O(N~3) and K¥(gradF, gradF) = O(X'~3). The Laplacian term can be computed, using
&29), as
AryF)\/ —

Lo ?) =55 4+ o(N )

>\2 >\/2

Inserting also these into expression (&.11]) yields
2 oM —or  2ngT

94/ - y + /2 o N2

2 0 —21 — 2N,

O(>\l—2) — y >\/2 + O(>\I—2),

as claimed. Note in partlcular that 9(1) = 9(1) — 2A4T. The expansion of the

connection one-form s is obtained from (&.7]) Wlth a=1and Qk = 0. The term
— K (X4, grad Fy) is —Kk(XA,grad Fx) = —KX(Xa,grad7) = $74 + O(A72) after
using (622]). Given the expansion of s, in item (ii) of Definition [£.3.4] we conclude

(1)
S) A TA 1
A = S50t o3 =

se(/l)A = se(l) + Ta.

SZ( )A + TA

A

(1)
Sy AT TA 1

Foly) =

Inserting ¢, 9,((,1), 9,5,1) and s(l) in (Ag 9(1) (9(1) (1)) 4divq/se(,1))né, all terms in T
cancel out and the invarlance (637)) is established. For the last statement we use the
fact that both foliations {Sx} and {S, '} are affine foliations approaching large spheres.
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6. The Hawking energy along null AF hypersurfaces

So, both can be taken as background foliations and in each case we can apply Theorem
6.5.3 with W = 1. Using the Gauss identity, the equalities

. -1 ) X 1 1
AIl_)moornH(SA) = Tor /52(9’(‘ ) 4 95, ))T’d and I|m mH(SA,) - _/ (9( ) 4 g ))ﬂq
hold. Invoking the invariance (B.37) the remaining equality [im my;(S,) = lim my(Sy)
—00 ' o0
follows. -
A=T+N
M So

Figure 6.3: Representation of two different flows {S,} and {S,/} associated to different
parameters X and \’. Both flows have the same velocity, but start on different surfaces
separated by a “distance” 7. More precisely, the starting surface S; of {Sx } corresponds
to the graph surface A = 7. Extending 7 to a Lie constant function on 2 one has
A =T+ X\ everywhere.

6.6 Limit of the Hawking energy for non-affine folia-
tions

Our aim in this chapter is to obtain the limit of the Hawking energy along very general
foliations {Sx-}. In the previous section we dealt with the general case when the
foliations are affine. In order to go into more general settings we need to consider
vector fields k’ not affinely parametrized. We will however assume that k' is nowhere
zero even at the limit at infinity. More specifically, we assume that there exists a function
N e F(Q) satisfying kK'(N') = —1 and an affine background foliation (not necessarily
approaching large spheres) defined as the level sets of a function A € F(2) such that
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6.6. Limit of the Hawking energy for non-affine foliations

€ := X — X decays at infinity in an appropriate way. In other words, the foliation
{Syx} is assumed to approach at infinity an affine foliation {S,} at an appropriate rate.
Conversely, given an affine background foliation and a function £ € F(Q2) satisfying
€ = 01(1) we can define a function X := X — & € F(Q). The level sets of this
function are smooth surfaces at least for points at large enough X. This is because
dN (k) = k(A —€&) = —1 — k(&) # 0 given that k(&) decays at infinity. Thus, for A
bigger than some (possible large) value p;, the level sets A’ = const define a foliation
{Sx}. Each surface on this foliation is transverse to k and hence spacelike. The null

generator k' satisfying k’(\') = —1 is given by k' = 1+k(£)k because
KOV = — 5 k(W)= — 2 k(r—g) = 1
1+ k(&) 14+ k(&) '

It is clear that the foliation {Sy } is not affine in general. Given a value )\’ large enough,
the surface Sy is a graph on the background foliation {Sy}, and in particular on Sg.
The graph function A|s, = Fx is given by Fx(p) = X +&(p) for all p € Sy. As usual,
we extend the graph function to 2 by Lie dragging along k. Note that F, extended
this way is not X 4+ £, but both agree on Sy,. Thus we can safely abuse notation and
write the graph simply as Fy = X' +£|s,,. The following theorem gives the limit of the
Hawking energy for the foliation {Sy}.

Theorem 6.6.1. Let 2 be a past asymptotically flat null hypersurface endowed with an
affinely parametrized background foliation {S,} with generator k. Let & € F(S2) satisfy
€ =0:1(1)N0o5(1), and k(€) = oX(\"1) . Define the foliation {Sx} as Sy = {p € Q:
Xp) =N +&(p)}, where the graph functions read

>\|5>\/ = F)\/ = >\/ + glsy' (638)

Then the null expansions and the connection one-form of {Sx/} have, to leading orders,
the same form as for the background foliation, i.e.
9(1) 2K 9(1) ( e(l))A

+oN7?), Op="2+L+0N?), spa=

Qk' = >\/ >\/2

>\/ >\/2 + O(A/ 1)

(6.39)
where all objects in the right-hand side refer to the background foliation. The limit of
the Hawking energy along {Sx '} is the same as the limit along {S\} and reads

; —_ _ / (1)
)\I|_>moomH(Sx) = A!ToomH(SX = SW\/W IS / IC 9 9( >’f]g, (640)

where |S| is the area of (So, §) and mg the corresponding volume form.

Proof. The asymptotic expansion for 8, is obtained by simply changing the parameter
of the foliation A = X + &:

) 9(1) ) 9(1) —92 9(1)
0, = — + K A2 = N2) = <4 Tk N2
=t o) =gt r e POV ) = 5 e o),
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6. The Hawking energy along null AF hypersurfaces

where & = 0;(1) has been used in the last equality. Given that k' = ( )k and

1+k(€)
k(€) = o(A1), the null expansion along k' is

1 —2 g Y
O = (Tk(ﬁ)) 9k—7—|— G + o(N'79),

which is the first expression in ([€39]). We next compute 8, from (E11]) with a = H,l((@.
Changing parameters in the first term of the right hand side,

9 q >\l 2 4 >\/ 2 >\/ 2

For the terms involving the graph function, it is immediate to check that |DFX\§Gk =
o(N73), sy(gradFy) = o(N73), K¥(gradFy, gradFy) = o(N~3). For the Laplacian
term (&28) gives

A@FA
)\2

F
>\/2

Ag€
>\/2

ANE +o(A7?) = o(N7%) = +0o(N7%) = o(X7?),

because € = 05°(1). Finally, k(§) = o(X'7!) implies 2 =1+ k() = 1+ o(N~?!) and
([6&110) is simply

ok, oY _2Kg 6%
9@ - (1+O(>\/ 1))( N + 22 + (>\, 2) )\/q + N2 + (>\/ 2)

as stated in the theorem. The connection one-form s, is obtained from (&.7) with

Qx = 0 and & = 1. Given that aa = o(N') (because k(§) = of(X'"1)) and
se(gradFy) = o(A'72), we conclude
(1)
s
SppA = ( )\/) + (>\/ 1)

We next compute the limit of the Hawking energy along {Sx'}. The metric in Sy is
Y(N)ag = Gas X + 0(A%) = Gas(N 4+ £)* + 0o(X?) = GasX” + o(X?),

so that in particular the rescaled limit metric and corresponding volume forms remain
unchanged, ¢ = ¢ and mg = mg. This, together with the expansions (&.39]), already
implies that the limit of the Hawking energy along {Sx/} and along {S,} are the same.
To obtain expression (6.40]) we need the volume form of Sy/.. As with the metric y(\)
or with the null expansion 6 it suffices to change parameter in the volume form ns,

which is given by (629]) with ¢ = 1

M5, = (V4 €2+ 00N +€) + o(N)) mg = (N2 + 6N + o(\))q
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6.6. Limit of the Hawking energy for non-affine foliations

A straightforward computation shows that the product 6x0,ms,, is
1 _
6bums,, = <_4/ca + (—2K40 — 2951))y +o(N 1)) 4.
so that, using Gauss-Bonnet [s Kqng = 4,

1 1 1
1+ — | 6.6pms = — [ (=26 — 20y, — N,
o L O0ems, = g (2K 20 mss o)

On the other hand |Sy| = [s(A2 + 6N + o(N))mg = [SIN? + o(N?) = /[Sy] =
ISIN 4+ o()\) and
1

&1y / 1 1 /—
mu(Sy) = T ( ISIN + o(A )) (ﬁ [g(—zzcdeﬁ” - zegv)n@; +o(X 1))

_]_ N
= ——/I5] | (K46 + 68 Yng + o(1).
87!'\/16_71' | ‘/é( a¥k Z )"7:1 ()
[]

We are ready to obtain our main Theorem [6.6.2] by simply combining the previous
results. In fact, we state and prove a slightly more complete theorem that provides two
different expressions for the limit.

Theorem 6.6.2 (General Hawking energy limit). Let Q be a past asymptotically flat
null hypersurface endowed with an affinely parametrized background foliation {Sy} with
generator k that tends to large spheres. Define the foliation {Sx-} as Sy = {p € Q :
Xp) = ﬁ)\* +7(p) + &(p)}, where the graph functions read

1
As,. = Fax = Vls

A+ Tls,. +€ls,.
-

with W > 0, and T being Lie constant functions on Q and ¢ = o;(1) N 05(1) with
k(€) = of(\71). The limit of the Hawking energy along {Sx-} is

1
I [N ) (109(1) 9&”) .
A*@oomH( *) 87r\/167f< /S2 nq) /s2 % 0 ) Ma

1 1
~8my/16m ( /Sz W’”)
X /82 (AE,G,((I) — (0,9) + 951)) — 4div5(st(1))> Vng, (6.41)

where g, 9,((1) and 9‘53) refer either to the foliation {Sy-} or to the affine foliation {Sy»}

defined as Syn = {p € Q: X(p) = ﬁ)\”—i—T(p)} and whose respective graph functions
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6. The Hawking energy along null AF hypersurfaces

read Ns,, = Fy = % . N'+7ls,,, and G, 9,&1), 9,51) and sél) refer to the background
)\//
foliation {Sy}.

Proof. The strategy is to pass from the background foliation to {Sy-} in three steps.
The geometric elements of each foliation use the same symbol as the foliation, so the
meaning of each quantity should be clear. Consider first a foliation defined by the level
sets of X := X\ — 7. Theorem gives

(260 = (6" + 0 — adiva(s™)) mg = (2460 — (6 + 6) — 4divy(s”) ) my
Consider next the foliation defined by the level sets of \”, where X’ = W~=tX". Since

{Sx'} is an affine foliation approaching large spheres, Theorem [6.5.3] implies the limit
of the Hawking energy is

im me(Sa) = / .
im m ) = n.
Ny N srvien \\/ Jo w2
X / (Ag,,eﬁ%) — (6 + 65y —4divg,,(s§,”)) Ung,
SZ

which, upon using (6.6]) and m4 = m4, implies

lim my(Sx) = : / !
aioh N = e e \ ) s w2
X /s2 (Aée,((l) — (9,((1) + 9§1)) — 4div5(se(1))) VUn;. (6.42)

Now, {S,~} is affine but does not necessarily tend to large spheres. The final foliation
{S»x-} is related to {Sy/} by X' = X\* + W& Since V¢ satisfies the hypotheses of
Theorem we conclude that the Hawking energy has the same limit along {Sx~}
and along {Sx-}. In combination with ([&42]) this proves the second equality in (&41]).
For the first equality we simply note that the rescaled limit metric of {Sy/} is § = W24
and apply again Theorem [6.6.1]

U

Remark 6.6.3. In this chapter we have considered null hypersurfaces extending to past
null infinity. Obviously similar results apply for asymptotically flat null hypersurfaces
extending to future null infinity. By repeating the arguments before, the following result
is obtained: consider a future directed affine null vector k tangent to Q and define
the function A € F(Q) by k(A\) = 1 with X\ = 0 on some initial cross section. The
level sets {S,} define a foliation which allows to construct a transversal future directed
null normal Z satisfying (k,£) = —2. If the rescaled asymptotic metric of the foliation

137



6.7. The large sphere equation and the Bondi energy-momentum

is spherical §, the expansions of the null second fundamental forms and connection
one-form take the form (note the change of signs with respect to the past null case)

> oY ) o W ) o) .
9;:X+%+o(>\ 2), 9—:T+%+o(k 2) S[AZZTA—}-O()\ D)

and the limit of the Hawking energy along {S,-} (with the same definition as in Theorem
6.6.72) is

lim mH(SA*) =
A*¥—00

1 ] |
~ 8m/Torm ( /S W"‘7> /S (—248" + (6 + 6) — 4divi(s") ) g

6.7 The large sphere equation and the Bondi energy-
momentum

As mentioned in Section [} the limit of the Hawking energy when the foliation ap-
proaches large spheres is the Bondi energy. In this section we want to recover this fact
from our general expressions. Recall first that the conformal group of the two-sphere
is defined as the set of diffeomorphisms @ : (S2, §) — (S?, §) satisfying ®*(§) = ©24,
© € F(S?, R") (i.e. the set of conformal diffeomorphisms). We restrict ourselves to the
connected component of the identity of this group. It is well-known (see e.g. [87]) that
this group Is isomorphic to the connected component of the identity of Lorentz group
of Minkowski space M3, and also isomorphic to the Mdbius group of the Riemann
sphere

F:S?—$? (6.43)
az+pf a B
= F(z) = € SL(2,C), 6.44
2o Fe =228 (28 esien (6.44)
where z € C U {oco} =~ S?. In these coordinates, the standard metric on the sphere is
g = ﬁdzd? and the / = 1 spherical harmonics read
Y1:Z~|—7 1 Z-Z 1227—1
L1427 2 i1+ z2) > 14277

Remark 6.7.1. The notation used in this section for the spherical harmonics differs
from the one used in Section in Chapter [ because we do not consider here the
normalized version of such functions.
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6. The Hawking energy along null AF hypersurfaces

For a vector a € R3 we write a- Y1 := 3"7 | a’V/*. These properties allow us to obtain
easily the general solution to the large sphere equation (6.38]).

Proposition 6.7.2 (Solution of the large sphere equation). A smooth function ¢ :
S? — R* solves equation (6.38) if and only if there exists a = (a', a, a®) € R3 such

that
=+v1+la2+a-Yh (6.45)

Proof. In terms of W := % equation (&386]) becomes
V2 4 (AgV)V — [VV[Z =1, (6.46)

We first show that (48] solves this equation. Applying a rotation to S? we can
assume without loss of generality that a = (0,0, ¢) and hence V = /1 + ¢2 + c¢Y5.
Thus AgV = cAgYd = —2¢Y) = —2W 4+ 2y1+ ¢2, and [VV[2 = (1+22)20, V6,V =
422 — (W24 1—2y1+ c2V), and (6.46) holds after immediate cancellations.

(142zz)2

To show the converse we recall that equation (&3@)) is the statement that the Gauss
curvature Kgq = 1. This means that there exist coordinates z/ € C U {oo} where
P°§ = (;‘izzl,g)/Q. We can assume without loss of generality that the map F(z) = Z' is
orientation preserving. Since it is also an element of the conformal group, it must be
an element of the Mabius group (6.44]). Performing the pull-back of §

41517

$26=— 02 _dzdz.
(14 |FP)?
Thus ¢ = ;ﬂ;‘; ‘ Slnce = m if follows
v 1 |az+BP+ vz +06)°

' (1+[z[?)
This function can be expanded in terms of / = 1 spherical harmonics as

2 L 1B12 + |v]2 + 162
v _ le’+is . [v[? + 16] +Re (a8 +76) Y + Im (@B + 70) Y.
2 _|1RI2 2 _ 1512
Ll =18 + P — 19| v

2

It is straightforward to check that this expression is of the form W = /1 + |a]2+a- Y
with a € R3. Indeed the vector a is

a=(a"a a) = (Re (@B +76) , Im (aB +79), ol — 167 ; il |5|2) . (6.47)
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6.7. The large sphere equation and the Bondi energy-momentum

and we need to prove

(Ial” + 181 + v +161%)*

14 a]® = Z

The associated complex matrix that determines F belongs to SL(2,C). Therefore,
ad — By =1 and in particular |ad — B7y|*> = 1 which, when expanded becomes

2Re(aB7¥6) = |6 + |BI7|v]* — 1. (6.48)
Now
(@) +(a%)? = (Re(aB +76))* + (Im (@B +7¥3))* = [a@B + 76|
la|?IB]* + 2Re(aBY0) + |v[*[6)

P18 + [yI?181% + [el?[61* + 182 |v]* — 1
= (la* + [v*)BF +161°) — 1,

after using (&48]) in the last but one equality. Thus

(I = 1B + |y = 1617)?
4

1+lal* = (o> + (B +16) +

(o + 1817 + [v[> + 161%)?
Z ,

as a consequence of the trivial identity AB + (A — B)?> = 1(A+ B)>.
[]

The Bondi energy-momentum is a vector in an abstract Minkowski space. Let us recall
the construction for the sake of completeness and because of a subtlety that arises in
the case of past null hypersurfaces. In [87] t is shown that every Mobius transformation
corresponds to a unique restricted Lorentz transformation; conversely every restricted
Lorentz transformation corresponds to precisely two Mobius transformations, one being
the negative of the other. The Lorentz transformation x’* = A(F)* x" associated to
the Mobius transformation F has the form (see page 17 in [87])

ad + BB + vy + 68 aB+Ba+v5+6y i(aB—-Ba+v5—87) aa—pBB+vY -
1 oy +ya+B6 + 68 ab+éa+py+48 i(ad—da+y8-PB3y) ay+ya—pB6—0B

2| i(va—ay+86-B8) i(ba-ab+vB—-BY) ad+éa—-pyY—v8 i(ya—oa¥+B6—0)
ad+ B0 — vy — 66 af+pBa—v6—-06y i(aB—PBa+6y—v8) aa—pB—yy+86

To a background foliation {Syx} of Q approaching large spheres with asymptotic
rescaled metric § one can assign an asymptotic inertial reference frame {t, x'} in an
(abstract) Minkowski spacetime. This is possible because given another such folia-
tion {Sy} with asymptotic rescaled metric ¢2§, (with ¢ a solution of the large sphere
equation) one associates a Mobius transformation F (determined by the function ¢),
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6. The Hawking energy along null AF hypersurfaces

and to F one can associate a unique restricted Lorentz transformation A(F). In turn
A(F) defines a new asymptotic inertial reference frame {t’, x’'}. The inertial observer
associated to A(F) is defined by the vector

u= at/.

The transition from ¢ to F is not unique because given a', a2, a® there are many
F(z) = ?y‘i—i? that give a' as in (&47). However this freedom corresponds explicitly
to rotations in the spacial axes and hence do not change the new time direction Oy .
All this construction makes sense because the Bondi energy Ej associated to a round
asymptotic metric § corresponding to an asymptotic inertial observer u can be written

in the form (7 is the Minkowski metric)
Eg = —n(Pg, u),

where Pg is independent of u. Pg is the Bondi four-momentum. In Corollary
below we recover all these facts from our results on the limit of the Hawking energy.
To do that we need to identify 8y in terms of a'. Using that x* = A=}(F)* x"*, where
A"L(F) = n\t(F)n and m the matrix associated to the Minkowski metric, we have

6t8 N 3. ax
ot " ot

3
U= 0y = By = N(F)%0: — > A(F)°0,.
i=1

Comparing A°.(F) in the above Lorentz transformation with the expression for a’ in
([&Z470) it follows that in the case of future directed null hypersurfaces extending to
future null infinity,

u=+/1+|al?0; — a'@x,-.

The construction of A(F) in [87] is performed with the unit sphere lying at the intersec-
tion of the hyperplane t = 1 and the future null cone of the origin (see Figure[@4)). It is
hence adapted to future directed null hypersurfaces extending to future null infinity. In
this chapter we have considered null hypersurfaces extending to past null infinity. This
case is obtained from the previous one by a time inversion, which has the effect that
the observer u is expressed for past directed null hypersurfaces extending to past null
infinity as

u=+/1+ |a]?0; + a'0,
in terms of the coefficients a' in the conformal factor ¢.

We can now recover the result that the Hawking energy approaches the Bondi energy
for spherical foliations.
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6.7. The large sphere equation and the Bondi energy-momentum

M3 F(z) = 228

Figure 6.4: The intersection of the light cone of a point with two hyperplanes in
M3 define two two-spheres S?. In the Figure, two orthonormal basis associated to
the centers O and O’ of the spheres are represented. The null generators of the light
cone generate a conformal diffeomorphism F : S? — S? which induces a Lorentz trans-
formation A(F) in M3, The function ¢ defined by the pullback of the spherical metric
F*(§) = ¢°§ satisfies the large sphere equation, and is determined by three real num-
bers, which combined with the rotation parameters between the orthonormal frames in
O and O’ determine the complex numbers o, 3, 7y and § (with ad — By = 1) that define
the Mobius transformation F. The new asymptotic inertial frame {t’, x''} defines with
respect to the initial inertial frame {t, x'} a unique Lorentz transformation A(F).

Corollary 6.7.3. Let 2 be a past asymptotically flat null hypersurface endowed with
an affinely parametrized background foliation {Sx} with generator k that tends to
large spheres. Consider another foliation associated to the parameter \* so that A =
O+ T + &, as in Theorem [6.6.2, where ¢ > 0 satisfies the large sphere equation
(@38). Let u e M3 be the asymptotic inertial observer associated to this foliation.
Then

lim my(Syx) = —n(Pg, u) ;== Eg,

A*—00

where m is the Minkowski metric and the Bondi four-momentum vector Pg reads

-1 1 1
Ee = P§i= 15— Sz(eﬁ '+ 65 )mg, (6.49)
- 1 . .
P = Tor (—A(;G,((l) + (9,9) + Gél)) + 4divg sé”) Yilng, €{1,2,3}. (6.50)
S2

If, in addition, the energy flux decay condition of Proposition[6.3.9 is satisfied, then the

142



6. The Hawking energy along null AF hypersurfaces

Bondi three-momentum simplifies to

1

PL=—
B 16m e

(Ag,eﬁ) + (60 + e,ﬁ”)) Ying, i€ {123} (6.51)

Proof. We can use expression ([&41]) with W as in (6.45]) so that

1
I Spe) = ——
)x*l—rpoomH( >\) 167 S2

3
X <\/1 +lal2+ ) a’\/,-1> N5
i=1
-1
- <ﬁ/ (6" +9§1>)n&) 1+ a2 +

SZ

3
1 1 1 1 . 1 i
+; (ﬁ /S2 <A59,(< Y (0 + 6" — 4divg s )> Yilng | a
= —n(u, Pg),
with u = (1/1 + |a|?, a*, a%, a®) and P} as given in the statement of the corollary.

(Aéeﬁ” — (6 + 6Y) — adiv,, sg”) (6.52)

When the energy flux decay condition holds, we have from Proposition [6.3.9] sﬁ(l)A =
Va0 — 1V hE,, and the integral (E52) becomes

/ 2 (—3A59,§” — (60 + 6 + Q?NBF;AB) V.ng
S

where W, := /1 + a2 + a- Y!. Integrating by parts the last term and using that
HessqW, = —(a- Y1)§ = 3(A4V,)§ yields

/SQ 2V AV ghBWn, = /S2 20, AW omy = /sg 2(2g600 )W mg,

where in the first equality we used tr@/.v = 20,&1) and in the second we performed another
integration by parts. Arguing as before, the expression (G.51l) for PL follows. O

Remark 6.7.4. An analogous result can be obtained for the case of asymptotically flat
null hypersurfaces €2 approaching future null infinity. Using the general expression in
Remark for the limit of the Hawking energy in this case and using the fact that
W, =+/1+|a]2+ a-Y corresponds now to the asymptotic observer with four velocity
u = (\/1+ a2, —at, —a% —a®), the Bondi energy-momentum vector Pg satisfying
liMx 00 My(Sxi) = —m(u, Pg) := E4 is

1

. p0._ (1) (1)

Eg :=Pg = Tom /s2(9E +9£— M4,
1

PL = _——
B 16w Jo

i

<—A5,9g) + (6 + 6 — adivg sgl)) Ying.
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6.7. The large sphere equation and the Bondi energy-momentum

The energy flux decay condition in this case implies (i.e. the analogous on Proposition

6.3.9)

S0, = — D0 %DBEBA,
and the Bondi momentum simplifies to
Pl = % i (2460 + (60 +6)) Vimg, i€ {1,2,3).
Note that in this case
E4 = —n(u, Pg) = % 3 (2460 + (67 +61)) (0 = u'Y)mg. (6.53)

Remark 6.7.5. The relationship between the limit of the Hawking energy and the Bondi
four-momentum for foliations approaching large spheres has been investigated in [87]
and [6] (see also Definition 4.2 in [93]). As a useful check, it is convenient to see how
the results in this chapter fit with the results in [6]. The setup there involves so-called
null quasi-spherical coordinates which are adapted to a foliation by future outgoing null
hypersurfaces { N}, each of them foliated by codimension-two spacelike surfaces S, .,
where the parameter rg takes a value ry at the initial surface. An explicit computation
shows that the parameter rg is not affine in general.

Each S;,,, has induced metric isometric to the standard sphere of radius rg. In fact, the
null quasi-spherical coordinates {z, rg, 8, ¢} are such that the surface {z = const, rg =
const} has induced metric r3(d6? + sin®0d¢) := rad, which in particular selects the
diffeomorphism of S,, , with the standard unit sphere (S?, ). Under asymptotic condi-
tions along the null hypersurface involving the shear and its angular derivative, Bartnik
shows, among various other things, that the Bondi energy-momentum is well-defined
and agrees with the limit of the Hawking energy along the quasi-spherical foliation S, .

More precisely, defining the mass aspect function m = %rg (1 — %ﬁ2r§> of the sphere
Sz, o that my(z, rg) = ﬁfsg mmyg (recall that H is the mean curvature vector of
z,rg

the surface), Bartnik shows that lim,, .. m = mg with mg € C>(S?) and that, under
sufficient decay of suitable components of the Einstein tensor which include the energy
flux decay condition of this chapter,

1

1
Eo— lim — = y 6.54
B "Blnoo 47T S? mnq 47T S? monq ( )

, 1 1
— | —_— . o — — .1 °
PB N r.Blinoo T Js2 m\/l M4 a1 S2 moy Ma:

We have also found in Theorem|[6.6.Tlan expression for the limit of the Hawking energy
for non-affine foliations in terms of the geometry of an (affine) background foliation
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6. The Hawking energy along null AF hypersurfaces

{S5,}. Define a new affine parameter r := ry + A, such that it also becomes ry when
evaluated at the initial surface. Let us define £ as the difference between the parameter
r (that generates the affine foliation {S,}) and Bartnik's parameter rg, namely

r—rg==¢&. (6.55)

Assume that £ satisfies the decay conditions of Theorem [£.6.1l Then we recover
Bartnik's Bondi energy formula (&54]) from our expression (€53]), as we show next.

Recall that in this case the null hypersurface extends to future null infinity, and Bart-
nik's future null basis {kg, £z} is normalized so that (kg, £g) = —2, being kg the future
null normal tangent to the hypersurface. Let {k,£} the null basis associated to the
background foliation {S,}. The expansions associated to the background foliation read

2 9@) ) 9(_1)
0z = + o tol(r-n)7?). 6= ‘

r—ry (r—r)? r—ry  (r—nr)? +o((r =) ™).

We showed in Theorem[6.6.Tlthat under the change of parameter (E.55]), the expansions
associated to the Bartnik foliation preserve the form up to leading orders, that is to say

2 o) 2 il

k -2 Z -2
+o((re—r)™°). 0f = + +o((re—n ,
rs — ro (rB _ f0)2 (( B 0) ) Lp rs — ro (rB _ fo)2 (( B 0) )

6z, =

or equivalently

2 921) + 2f0 -2 9(—1) — 2/’0
Oz, = r_+—k —— +o(rg?), 65, =—+-4+—5—+o0(r5°).

The null quasi-spherical gauge has the key property that 0, — % Is automatically a

divergence on each S,,. Hence Bartnik finds that the null expansions have the form

2 divbg B -2 a B
QRB:E_ /”é +o(r32) 955:E+%+O(r82)’

and proves after suitable computations that
1, .
Moy = Z(dIVbO + a).
In terms of our notation one finds

—divhy = 6 +2r,

a = 9&—1)—21'0,
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6.7. The large sphere equation and the Bondi energy-momentum

and hence my = %(9%1) — 9%1) — 4ry). We can now recover Bartnik's result from (&53))
because, with the shorthand W, := 1y — u'Y,

1
Eb = Tor [ (008 + (67 +61)) wumg
1
~ 167 - (A;,@f-{l) * (9%1) + ngl)) — (L + 2)(9;%1) + 2f0)> W, ng
1 1
_ (1) ) -
~ 167 Z o k B 4 Wu g — 1 WU G
167 82(94 O )Vug = - Vs

where in the second expression we added zero in the form
0= / (~(24+2)(62 +200)) Wy,
SZ

Note that this integral vanishes because 0;(-(1) + 2rp is a divergence. So, the form Eg =
ﬁ sz moMg obtained by Bartnik depends crucially on the assumption that the foliation
is quasi-spherical. For general foliations, the right expression for E is given by (€53]).
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On the Penrose inequality along null hypersurfaces

7.1 Introduction

We devote the last chapter of this thesis to study the main properties of general flows
along null hypersurfaces in a AF spacetimes satisfying the dominant energy condition
with the purpose of addressing the null version of the Penrose inequality. We prove this
inequality for a large class of surfaces. Moreover, a different geometric inequality in the
same spirit as the null Penrose inequality is proven in full generality. The results of this
chapter were published in [77].

The key tool that we use in this chapter is a functional on surfaces which bounds from
above the square root of the area of any weakly outer trapped surface. If the foliation
tends to large spheres, the limit of such functional is the Bondi energy measured by the
observer determined by the flow. The functional is not monotonic in general, but it can
be split into a monotonic part, which we defined as Bergqvist mass in Chapter 4], and
a term D which is a renormalization of the area of each leaf. The latter will play an
important role to find sufficient conditions for the validity of the null Penrose inequality.

Two main foliations are essential for the obtention of our results. We call the first
Geodesic Asymptotically Bondi (GAB) foliation. A GAB foliation is defined by the
condition that the first non-trivial coefficient of the asymptotic expansion of 8 is con-
stant. We show that given any initial cross section S there exists a unique (up to
trivial reparametrization) GAB foliation starting at S. However, this foliation needs
not approach large spheres at infinity. Using GAB foliations we prove in full generality
(Theorem [£.3.9)) that the square root of the area (with the usual factor) of a WOTS S
is bounded above by the limit of the Hawking energy along the GAB foliation associated
to S. This theorem recovers Ludvigsen & Vicker's [67] and Bergqvist's [8] results in
case that the GAB foliation tends to large spheres. Applications of the GAB foliations
to the Minkowski shell case are discussed in Section [7.8]
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7.2. A functional on two-surfaces

The second family of foliations that we consider are geodesic foliations approaching
large spheres. The idea Is to generalize the methods used in the Minkowski spacetime
in previous chapters to the general case. The functional D was introduced in Chapter @
in the Minkowski case and we showed that monotonicity of D implied the shell Penrose
inequality. Here we show that the crucial property that D must satisfy for the general null
Penrose inequality to hold is that it is bounded above by its limit at infinity. One way of
achieving this is imposing monotonicity on D. We refer to this method as Renormalized
Area Method. In this chapter we find two sufficient conditions in Theorem under
which the Renormalized Area Method applies. Sections [7.7] and are devoted to the
study of applicability of the method to the case where the null hypersurfaces €2 is shear-
free, and to the four dimensional Minkowski spacetime respectively. In the Minkowski
case both conditions determine the same class of surfaces already obtained in Chapter

4

The chapter is concluded by showing yet another general inequality bounding the area
of a closed spacelike surface embedded in a past AF null hypersurface €2 in terms of an
asymptotic quantity intrinsic to 2.

7.2 A functional on two-surfaces

In Chapter [ the shell Penrose inequality was approached by using two functionals on
an affine foliation {S,} that tends to large spheres along a past null hypersurface €,

namely
A 1

Mb(>\) = E — ﬁ < 9@()\)7]&\, (71)

that was defined as the Bergqvist mass and was monotonic (see Theorem 57 in

Chapter ), and
_ S A
DO = 6w 2’

that was defined in analogy with the definition of M,. The shell Penrose inequality was
equivalent to prove (see formula (£54))

My(A = 0) + D(X = 0) < 0.

This expression suggests that a new functional defined by M,(X) + D(X) may be of
interest on its own. In the sum, the terms in A cancel out and we find an expression
that depends only on the surface S and on the choice of £ (because of the term 6, in
(Z1) ). In this chapter a critical object is the functional

_ sk 1 /
M(S,Z) = 167 167 S@g‘ns, (7.2)
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7. On the Penrose inequality along null hypersurfaces

We will analyze its properties and study whether it is a useful tool to approach the
Penrose inequality.

This quantity has geometric units of length so one may be tempted to assign to it
a physical interpretation of quasi-local mass of S. However, M(S,£) is not truly a
quasi-local quantity on the surface because it depends on the choice of null normal £,
which cannot be uniquely fixed a priori in the absence of additional geometric structure.
Note, however, that a weakly outer trapped surface S satisfies, by definition, 6, < 0
irrespectively of the scaling of £, and hence

Bl

16m < M(S,2).
So, if M(S,£) enjoyed good monotonicity properties under suitable flows and its value
on very large surfaces in an asymptotically flat context could be related to the total
mass of the spacetime, this object would be potentially useful to address the Penrose
inequality and play perhaps a similar role as the Hawking energy does in the time-
symmetric context. In this chapter we restrict ourselves to null flows because in this
case M(S,£) does satisfy an interesting evolution equation. However, there are many
other possibilities that may well be worth exploring.

Since we deal with null flows we shall work on a null hypersurface €2. Thus, let Q
be a smooth, connected null hypersurface embedded in (M, g) and admitting a global
cross section Sy (i.e. a smooth embedded spacelike surface intersected precisely once by
every inextendible curve along the null generators of 2). In this section we use the same
setting as in Section of Chapter [@, and we consider foliations {Sy} along €. We
want to investigate the derivative of M(Sy, £) with respect to A. In order to maintain
the generality, we do not make any assumption on the null vector field £ orthogonal to
Sy (other than being future directed and transverse to €2). The null generators of Q
do not have to be necessarily affinely parametrized, that is to say, it holds

Vik = Qk,

with Qx not necessarily zero. Given a smooth positive function ¢ : Q — R™, there is a
unique choice of null normal £ to Sy (denoted by £) satisfying

(k,£2) = —op.

Obviously £% depends on the foliation {S,}, so it is not an intrinsic property of €2. The
choice ¢ = 2 will be relevant later and we will denote £9=2 simply by £ from now on.
As before, sg is also a foliation dependent quantity. The evolution of M(Sy, £°) in this
general setting is given in the following lemma.

Lemma 7.2.1. Let Q be a null hypersurface embedded in a spacetime (M*, g). Assume
that 2 has topology S x R with the null generator tangent to the R factor. Consider
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7.2. A functional on two-surfaces

a foliation {Sx\} of Q2 by spacelike hypersurfaces, all diffeomorphic to S. Let k be the
future null generator satisfying k(\) = —1 and £% the null normal to Sy satisfying
(k,£9) = —@. Then

dM(Sy, £°) 1 1 / , o
= -6 + — Ein9(¢, k) — =Scal>*
dX /647S| sh( U To SA[ (& k) = 5

_ 1
+ (—lesXSpp + |s”’|’2YsA) + (Ek((p) - Qk) QN} Nsy» (7.3)

where Q is defined by Vk = Qik, Ein? is the Einstein tensor of (M*, g), Scal> the
curvature scalar of (Sx,7s,), and sg is the connection of the normal bundle of Sy. If,
moreover, @ is constant and k is affine (Qx = 0) then

dM(Sy, £%) 1 ex(5) | 1 / :
= -0 — + Eind (4%, k
X /647 S, sk( )1, 8 167 SA< (€7, k)

+ (p|5£'f’|'2y$>\> "75)\: (74)

where x(Sy) is the Euler characteristic of Sy.

Proof. We drop all reference to X for simplicity. The volume form satisfies relation
(B.41]) in Appendix [B], so the derivative along —k of M(S, £¢) is, using formula (B.29)
in Appendix B

dM(S,¢9) 1 1 a0 O iy
_ /S( s + o S[Em . 6) - Zscal

dX \/64T|S]|

. 1
+ (—divssp + |sp5.) + (Ek(w) - Qk) 94«0} 7s.

This is precisely (Z.3]). When ¢ = const and Q, = 0, (4] follows directly from ([Z.3])
as a consequence of the Gauss-Bonnet theorem [ Scal™ns = 41x(S). ]

Our purpose in deriving the general variation formula (Z3]) is to show that indeed ¢ =
const and Qx = 0 are the only clear situations leading to a (nearly) monotonic behaviour.
Indeed, the divergence term divssg has no sign (unless identically zero) which strongly
suggests the choice ¢ = const. The term in 8y, which again has no sign a priori,
suggest making the choice Qx = 0 (the seemingly more general condition of making ¢
constant only within the leaves and Qx = ¢ tk(y) is simply a reparametrization of the
previous one).

Under the dominant energy condition (DEC) on (M?*, g), this lemma implies that if S
is connected and non-spherical, then M(Sy, £¥) is monotonically increasing along any
affine flow for any past expanding (i.e. with 6_, > 0) null hypersurface.
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7. On the Penrose inequality along null hypersurfaces

Let us assume that X\ is from now on an affine parameter. For the Penrose inequality
in an asymptotically flat context, the spherical topology is the relevant one. In this
setting, M(Sx, £) is not always monotonic. However, under certain circumstances one
can relate its value on the initial surface and its asymptotic value at infinity. In fact,
obtaining such relations will be the main theme of this chapter. We first need to specify
our asymptotic conditions. We adopt here the same setting and definitions as in Section
in Chapter [@, where a detailed analysis of the limit of the Hawking energy along
null flows was obtained. We make the global assumption that Q = S° x R with the
affine null generator k tangent along the R-factor. Throughout this chapter we use
the notions transversal and Lie constant tensor, and asymptotic flatness, introduced in
Chapter [l

Our next aim is to analyze the limit of M(S, £%) at infinity. From item (i) in Definition
6.3.4lin Chapter[@ it follows that the volume form 7ms, of each S, satisfies

MNs, = <>\2 + 9,((1)>\ + O(>\)> NG, (7.5)
where the Lie constant function 9,((1) is defined by the expansion
—2 91((1) -2
The expressions become simpler if we introduce the area radius at infinity as
1
RZ = — ;
q 41 Js Na.

where S represents the surface S endowed with the asymptotic metric § along the
foliation {S,}. At this point we do not assume that the foliation approaches large
spheres. The area S, has the expansion

|Sal = /S ns, = [5 (xZ + O+ o(A)) g = ATRZN? + ([S 99%) A+ o(N),
A
and therefore W
0\Yn.
VISH = 4%R§A+M+o(l). (7.7)

24 /47TR§

We next compute the asymptotic behaviour of the second term in M(S, £%). Using
item (iii) in Definition [6.3.4] and noticing that 6, = %6, (because of the scaling relation
29 = %4), it follows (we are assuming ¢ constant here and in what follows)

Ko @b
/ Ope (N)Ms, = / (WA * + (p2<2 + 0(%2)> (Az + 67X + O(M) N4
Sy S

Ty / (wrcaol + 295”) g + o(1). (7.8)
S
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7.2. A functional on two-surfaces

Combining (7)) and (Z8)) into (Z2)) gives
Rs 1 1 ©
oy [ Dd ¥ = (= _ 1Y) .
M(S, %) (2 4>>\+167r/§(0" <Rc7 <pICq) 29,3 )nq+o(1).

This expression has a finite limit at infinity if and only if the scaling of £% is chosen so
that ¢ = 2R4. This leads to the following definition:

Definition 7.2.2. Let Q be a past asymptotically flat null hypersurface and {S,} the
foliation whose existence is assumed in Definition[6.3.4 in Chapter[@. The vector field
¢ is defined to be null, orthogonal to each leaf S, and normalized by (k,£*) = —2Rj.

Note that £* is defined by ¢ = 2R so that its relation to the canonical £ is £* = Rg4.
With this choice,

- o L o (1 Y,
lim M(S,£) = 167r/§ <9k (RA 2R, IC) R0 ) mg. (7.9)

It is useful to relate this limit to the corresponding limit of the Hawking energy along
{S»}. The limit of my(S,) was investigated in detail in Chapter [@ In particular,
Theorem [6.6.1] in this chapter gives

—Rs
16m

Combining ([Z9) and (Z.1Q), the following proposition is proved:

Proposition 7.2.3. With the choice £* = R4, the limits of M(Sx,£*) and my(S,) are
related by

lim M(Sx,€7) = lim mpy(Sy) + —/9“) <— — RoK4 ) (7.11)

lim my(Sy) = <IC o) + 9(”) 4. (7.10)

Remark 7.2.4. There are two interesting cases where the limit of M(S,, £*) agrees with
the limit of the Hawking energy along the foliation. The first one occurs when § has
positive constant curvature, in which case the area radius R4 and the Gauss curvature
are related by Ky = % and the integrand in the second term of ([ZI1]) vanishes. Recall

that such foliations arze called “approaching to large spheres” because the geometry of
the leaves tends, after a suitable rescaling, to the round spherical metric. This situation
is particularly relevant because as already discussed in the previous chapter, then the
limit of the Hawking energy is the Bondi energy measured by the observer defined by
the foliation {Sy}.

The other case corresponds to those foliations satisfying 9,((1) = constant. In this
case we have

1 1
/91((1) (R — RiKq )"’lc? :9/((1)/ (R_ — RsK4 )"’lc? :95{1)(47rR5,—47rR5) =0,
< N R

where in the second equality we have used the Gauss-Bonnet theorem. We devote the
next section to study in detail geodesic foliations with constant 9(1)
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7. On the Penrose inequality along null hypersurfaces

7.3 GAB foliations and a Penrose type inequality

As discussed in Section [71], Ludvigsen & Vickers [67] and Bergqvist [8] considered
the Penrose inequality for null hypersurfaces. A fundamental ingredient of their work
involved affine foliations for which 9,((1) vanishes identically. As we will see below, such
foliations are closely related to affine foliations with 0,((1) constant. We devote this
section to study such foliations. Our main result is a Penrose-type inequality valid in
full generality and which reduces to the Penrose inequality when the foliation approaches
large spheres. Besides its intrinsic interest, the general Penrose-type inequality helps
also putting the result of Ludvigsen & Vickers and Bergqvist into a broader perspective
and clarifies both its scope and its range of validity.

We first need a lemma showing that, no matter which affine foliation is taken, the
leading term 9,21) is always strictly positive. This may seem to contradict the original
Ludvigsen & Vickers assumption ((LH]), but this is not the case because A = 0 corre-
sponds to a cross section on €2, while the corresponding condition for r was not assumed
(and in fact does not hold) in (LH).

Lemma 7.3.1. Let Q be a past asymptotically flat null hypersurface with a choice of
affinely parametrized null generator k and corresponding level set function \. Assume
that the spacetime satisfies the dominant energy condition, then 9,(3) > 0.

Proof. Let {S,} the affine foliation defined by A and consider the function p(\) =
0|5, \2-+2X. Using the Raychaudhuri equation (B-I8)), which can be written as 2%)

dx
Z—i + W with W > 0 under DEC, the derivative of p satisfies

(N6k + 2)?
2

1
o' (\) = 200, + N2 (§9£ + W) +2> > 0.

Since p vanishes at A = 0, it follows that 0 < p(\) < AIim o(A) = 9,&1) where the last
—00

equality follows from the expansion ([Z.]). To show the strict inequality 9,((1) > 0 we
argue by contradiction. Assume that there is some null geodesic o, in €2 where 9,((1) = 0.
Then p(\) necessarily vanishes on this curve and

-2
2 _ _ ; _
Okla, A~ F22X =0 = Ola,0n) = -~ = xllﬁn3+9k|ap(>\) = —00,
which is a contradiction to the smoothness of 2 at S,. ]

The following result deals with the existence of foliations with constant 9,((1).

Lemma 7.3.2. Let Q be a past asymptotically flat null hypersurface with a choice of
affinely parametrized null generator k and corresponding level set function A. There
exists a Lie constant positive function f € F(2) and a rescaling k' = fk such that the
term 9,(</1) in the asymptotic expansion of 8, Is constant.
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7.3. GAB foliations and a Penrose type inequality

Proof. Let {Sx} be the foliation associated to k. Thus A = f\’ because k'(\') = —1
and X'|s, = 0. We use again that the null expansion 6|, is a property of Q at p € €,
independent of the cross section passing through p. Thus, as in the previous chapter,
we can transform the expansion ([Z@]) under the change of foliation A = f\’ simply as

—21 oY1

=Nt e

+o(\N7?).

Using now k' = fk and the fact that 6, scales as k,

-2 oM 1 .
Gk’ = T‘FkTﬁ‘FO()\/ 2). (712)
(1)
Since 9,&1) > 0, we can choose f = ekT for any given constant ¢ > 0. The foliation
{Sx} has 9,(<,1) = ¢, as claimed. ]

Note that, by construction, the foliation {Sy/} in this lemma is also an affine foliation.
Once 9,((1) Is constant, it can be made zero by a constant shift of A. Indeed, let X be an
affine parameter and define A = X + A\g with Xy constant. The null generator k now
remains unchanged and

—2 oW o =2 W 4o B
ek:7+§+o(x2)=7+kk—,2°++o(x2).

Thus, the coefficient 9,&1) along an affine foliation can be made zero by a change of origin
if and only if it is constant. As mentioned above, Ludvigsen & Vickers and Bergqvist
considered foliations with vanishing 9,((1). Such foliations arise naturally in the context
of conformal compactifications of null infinity and are related to the Bondi coordinates
near null infinity. This motivates the following definition.

Definition 7.3.3 (Geodesic asymptotically Bondi foliation associated to Sy). Con-
sider a past asymptotically flat null hypersurface 2 with a choice of cross section Sy.
A geodesic-affine foliation {S,} is called geodesic asymptotically Bondi (GAB) and
associated to Sq if and only if

(i) Sx—0 = So.

(i) 0,((1) is constant.

In the following lemma we show that two GAB foliations associated to Sq are nec-
essarily related by a constant rescaling of parameter, A = aX with a € R*. Thus,
the collection of surfaces {S,} remain unchanged, and GAB foliations associated to
a given Sy are geometrically unique. Obviously, when Sy changes, the corresponding
unique GAB foliation (which exists by Lemma [7.3.2]) also changes.
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7. On the Penrose inequality along null hypersurfaces

Lemma 7.3.4 (Uniqueness of GABs). Let Q2 be a past asymptotically flat null hyper-
surface and Sy a cross section. Two GAB foliations {S,} and {Sx} associated to Sy
are related by X = a\’ for some positive constant a.

Proof. Let k and k' be the null generators of {S,} and {Sx}. Since both are affine,
there exists a Lie constant positive function f such that k" = fk. We have shown in

([(12) that

-2 oW1 o .
b = + 5 o) = 57+ 55 +o(V7).

By definition of GAB foliation, both 8" and 8" are constant. Thus f is a positive
constant (say a) and the affine parameters are related by A = f\' = a)\’. [

The main result in the work by Ludvigsen & Vickers and Bergqvist can be formulated
in terms of GABs as follows.

Theorem 7.3.5 (Ludvigsen & Vickers [67], Bergquist [8]). Let 2 be a past asymp-
totically flat null hypersurface 2 in a spacetime satisfying the DEC. Assume that (2
admits a weakly outer trapped cross section Sqy. If 2 admits a GAB foliation {Sy}
associated to So and approaching large spheres, then the Penrose inequality

|So
Eg >\ —
F=Vie6r
holds, where Eg is the Bondi energy associated to the observer at infinity defined by

the foliation {Sy}.

As mentioned in Section [ZI] the possibility that the foliation can be chosen to ap-
proach large spheres was assumed implicitly in the work by Ludvigsen & Vickers. The
necessity to add this restriction explicitly was noticed by Bergqvist. Since GAB folia-
tions associated to a given Sg are unique, the condition of approaching large spheres
is indeed a strong additional assumption, that will only be satisfied in very special cir-
cumstances. It makes sense to study GAB foliations in detail dropping the assumption
of approaching large spheres. By doing this we will be able to obtain an interesting
Penrose-type inequality relating the area of Sy, not to the Bondi energy, but to the
limit of the Hawking energy along the foliation. Since the Hawking energy approaches
the Bondi energy for asymptotically spherical foliations, our result will automatically in-
clude Theorem as a corollary. In particular, this will help to clarify the role played
by the asymptotically spherical condition in Theorem [Z.3.5]

We have shown in Proposition [Z.2.3] (cf. Remark [Z.2.4]) that for GAB foliations, the
limit of the functional M(S, £*) is the same as the limit of the Hawking energy at infinity.
To obtain a Penrose-type inequality we need to relate the value of M(S, £) at the initial
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7.3. GAB foliations and a Penrose type inequality

surface with its asymptotic value. The functional M(Sy, £*) is not monotonic, so this
cannot be done straight away. However, as we saw in Section [Z.2] M(Sy, £%) can be
split in two terms one of which is automatically monotonic, so that we concentrate
in studying the non-monotonic term. In fact this splitting corresponds to the two
functionals M,(X) and D(X) used in Section [Z.11

The only difference is that now £¥ is kept free. Thus, we introduce the following
functionals, which in the case ¢ = 2 reduce to Mp(X\) and D(X) defined in Minkowski
in Section [.2}

S| e

D(S, Z‘p) = m — Z)\,

1
Mb(S, Z(‘D) :%A — ﬁ/segwns.

We obviously have M(S, £9) = D(S, £°)+M,(S, £¢). In Chapter[@]we studied conditions
under which D(X) is monotonic. In this chapter we intend to investigate in detail the
properties of the functional D(S, £%). The computation in Lemma [Z.2.T]implies that for
affine flows and ¢ = const (recall that the cross sections of €2 are topological spheres,
so that x(S) = 2)

dD(Sy, £%) 1 ©

— 0 -
d)\ 647['|5>\| 5)\( k)"75>\ 4

dMp(Sx, £° 1
b(Sx. £9) / (Eing(é“’, k) + @lsel3, ) s, (>0 under DEC).
S ’

dx ~ 16w

Recall that the monotonicity of M,(X) in the Minkowski setting required using spe-
cific properties of flat space. This general expression for M,(Sy, £%) shows that the
monotonicity is in fact a general property of spacetimes satisfying the DEC. A di-
rect consequence of My(S,£%) being monotonically increasing is that its initial value is
bounded above by its value at infinity. From ([Z.8]), this limit is given by

1 1
- oyt o),
)\I|_>mool\/lb(5>\,£ ) 167 §(p (’quk + 202 ) Ng,
which is finite irrespectively of the choice of £2. On the other hand, D(S,, £%) is not
necessarily monotonic and its limit at infinity is finite only for the choice £* = R4¢ and
given by (see (.70))

J<6nq

To bound M(S,, £*) from above we need to find an upper bound for D(S,, £*). In fact,
we shall prove D(Sy,¢") < AIim D(Sy, £*) provided the foliation {Sy} is GAB. In the
—00

following lemma we introduce a functional that turns out to be monotonic for GAB
foliations.
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7. On the Penrose inequality along null hypersurfaces

Lemma 7.3.6. Let Q2 be a past asymptotically flat null hypersurface with a choice of
affinely parametrized null generator k and corresponding level set function . Assume
that the spacetime satisfies the dominant energy condition. Consider the functional

1Sl

F(S)) = 0 2"
(8rR2A+ [56(mq)

If {Sx} is the GAB foliation associated to Sy, then F(S,) is monotonically increasing.

Proof. Writing F(S,) as

F(SA) :/ UEN : 5
5 (8TRIA + f56ng)

and using £_xms, = —0kMs,, the derivative of F(S,) is

%F(Sx) :/ lemhs O

5\ (BRI + [s6mg)  (BTRIA+ [56{mg)

B / —16TR3 + (—6k) <87TR§>\ + e 9,21)175,)
DN

(8mRIA+ [ 9“%)3
g SYk 'lq

5 | 7s»

Nsy- (714)

This derivative is non-negative provided

1 A 1
_ 2 (D, > 2 - < D,
(—6k) (87qu>\+/§9k 'nq) > 16mR; <+ 5 2" 167rR§/§9k ng. (7.15)

The Raychaudhuri equation (B.I8]) implies that the function }ek — 2 has non-negative

(1)
derivative (under DEC). Since its limit at infinity is ekT it follows

1 a6
= D <k 1
-0, 2~ 4° (7.16)
which holds true for any affine foliation. For GAB foliations we have, using f§ NG =
47rR§,
(1)
O _ 1 / 60,
4 16mR2 J¢ f T
and (IZI8) is exactly (ZIH). ]
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7.3. GAB foliations and a Penrose type inequality

The monotonicity of the functional F(S,) is useful to establish an upper bound for
D(Sy, £), irrespectively of whether the foliation is GAB or not.

Lemma 7.3.7. Let {S,} be an affine foliation with leading term metric §. If the
functional F(Sy) is monotonically increasing, then

D(S,,27) < AIim D(Sx,2%). (7.17)
—00
Proof. The monotonicity of the functional F(Sy) along {S,} implies
F(Sy) < lim F(Sy). (7.18)
A—00
To compute this limit we use
Sl = / ns, = / (N + 6N+ 0(\)mg = 4TRIN + 0(N),
Sx s
which follows from () and [smg = 4mR3. Hence

BN 1
| F(Sy) =i =
. (5) = e (8 R2A+ [ 9(1 A)Q 16TR3
5

and (ZI9) yields

EN 1 |Sal (Rq 1 / (1) )2
2> > > i g
(8 R(%)\ fg 91((1)%> 167rRa 167 2 16mR;

(7.19)
From the definition of D(Sy, £*) and using ¢ = 2R4 we have
(1)
’5A| R fse Ng
D(S, £*) = AU
(S0 E) =\ {gr 3 1= 167 R,
after using (ZZI9)). Since the right-hand side is the limit of D(Sy, £*) at infinity (Z13)),
we conclude (Z17]). n

We can now establish our main result concerning GAB foliations.

Theorem 7.3.8 (A Penrose type inequality for GAB foliations). Let QQ be a past
asymptotically flat null hypersurface and Sq a cross section. Assume that the spacetime
satisfies the dominant energy condition. Then, the area |Sy| satisfies the bound

/1Sl /
" < .
167 167[' s Gg 7’]50 ~ |Im m/_/(Sx) (7 20)

where the limit is taken along the GAB foliation {Sy,} associated to Sq. In particular,
iIf Sq Is a weakly outer trapped cross section, then

150l

167 < I|m ITI,L/(SA) (7-21)
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7. On the Penrose inequality along null hypersurfaces

Proof. From Lemmas[Z.3:@and[.37], D(S, £*) is bounded above by its limit at infinity.
The monotonicity of My(Sy, £*) then implies

M(Sx, €7) = lim M(Sy, £7) = lim mu(Sy),

where the last equality follows from Proposition [Z.2.3] since {Sx} is GAB. In particular,
for A = 0 we have (Z.20]). For the last statement we simply use that 6,- < 0 for weakly
outer trapped surfaces.

]

Inequality ((Z21]) gives a completely general upper bound for the area of weakly outer
trapper surfaces Sy in terms of an energy-type quantity evaluated at infinity along the
outward past null hypersurface generated by Sg, provided the latter stays regular all
the way to infinity. In combination to the general analysis of the limit of the Hawking
energy at infinity carried out in Chapter [@ this provides a Penrose-type inequality with
potentially interesting consequences. Obviously, this inequality will only correspond to
the Penrose inequality whenever the limit of the Hawking energy agrees with the Bondi
energy of the cut at infinity defined by €2. As already mentioned, this is known to occur
for foliations approaching large spheres. When 2 admits a GAB foliation approaching
large spheres, then the limit of the Hawking energy along this foliation is the Bondi
energy Eg associated to this observer at infinity, and the Penrose-type inequality in
Theorem becomes the standard Penrose inequality, thus recovering the original
result by Ludvigsen & Vickers and Bergqvist quoted as Theorem [Z.3.5l

7.4 On the inequality D(Sy, £) < limy_,o D(S5,,£)

The key ingredient that allowed us to prove the Penrose-type inequality (Z21]) is
D(Sy, 0*) < AIim D(Sx,¢*). In fact, the argument in the proof of Theorem [Z.3.8
—00

combined with Proposition [7.2.3] shows that any surface Sy satisfying the inequality

* : * 1 (1)
< IIim N
D(Sq,2") x“ D(Sx. ¢") 167R, /g@k N4 (7.22)

along an affine foliation {S,} starting at Sp, in a spacetime satisfying the dominant
energy condition, automatically satisfies the inequality

\/ o 1 / | 1 / (1
I o e 1 1)
Tor  Tor Js, 0-ms, < )\“_)moomH(S)\) + e . 0, = RiKo | mg.  (7.23)

This is the Penrose inequality provided Sy is a weakly outer trapped surface and the right
hand is the Bondi energy Eg along {S»}. For this it is sufficient that {S,} approaches
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7.4. On the inequality D(Sy,£) < limy_o, D(S, £)

large spheres and this will be the case we will be interested from now on. However,
we postpone making the assumption that § is the round metric until subsection
because Proposition [7.4.1] below (which holds for arbitrary affine foliations) may be of
independent interest.

In the previous section the validity of ((ZZ22]) followed from the monotonicity of F(Sy)
along GAB foliations. As shown in Lemma [Z.3.7] monotonicity of F(S,) is sufficient to
establish (Z22]) for arbitrary affine foliations. Since the derivative of (ZI4)) is

d 1 d 16mR2|S, |
an V= 2 1, \° (ﬁ = 8TR2\ +qu 6Mn, )
(87er>\+f§9k nﬁ) a s Ma
we have established:

Proposition 7.4.1. Let 2 be a past asymptotically flat null hypersurface in a spacetime
satisfying the dominant energy condition and {S\} an affine foliation. If

d 16mR2|S
ﬁ'sﬁ Z 2 d A(|1)
87ch?>\+f§0k Ng

(7.24)

holds for all X\ > 0 then the inequality (Z23) holds. In particular if {Sx} approaches

large spheres and (Z.24) is satisfied, then the Penrose inequality Eg > \/% holds,
where Eg is the Bondi energy associated to the observer defined by {S,}.

Remark 7.4.2. Expanding the area as

SA| = 4TR2A? + (/ eﬁ”nﬁ) A+0, (7.25)
S

(Z24)) becomes, after some cancellations,

2 ~
do A
(/ 9&”%) - (87rR§,>\ + / Gil)nﬁ) — > 16mR26. (7.26)
S 5 dX q
This alternative form of Proposition [Z.4.1] will be used in Section [Z.7] below.

GAB foliations have the property that (ZZ24)) is always true. It is natural to ask whether
the constancy of 0,&1) can be relaxed and still obtain sufficiently general conditions under
which (Z24]) holds. The issue, however, appears to be difficult. In the next subsection
we study the behaviour of the derivative of F(S,) near infinity and show that both cases
of F(S,) being monotonically increasing or monotonically decreasing near infinity are
possible.
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7. On the Penrose inequality along null hypersurfaces

7.4.1 On the monotonicity of F(S,) for large A

A necessary condition for (Z.14]) to be non-negative for all X\ is, of course, that its
leading term at infinity is non-negative. To determine the asymptotic behaviour at
infinity requires one extra term in the expansion of 6, as compared to ([Z.6]). To make
sure this is possible we need a slightly stronger definition of asymptotic flatness.

Definition 7.4.3 (Strong past asymptotic flatness). A null hypersurface Q in a space-
time (M#, g) is strong past asymptotically flat if it is past asymptotically flat with (i)
in Definition in Chapter[d replaced by the stronger condition

(i)’ There exist symmetric 2-covariant transversal and Lie constant tensor fields §
(positive definite), h and Vo such that i defined by v = \2G + Ah+ Vo +4 is
¥ = 01(1) N oX(1).

Remark 7.4.4. In strong asymptotically flat null hypersurfaces, all affine foliations {Sy}
automatically satisfy item (i)' in the definition. Also, there always exist affine folia-
tions {S,} for which the asymptotic metric § is the round metric of unit radius on
S? (see Chapter [l for a proof of both facts in the context of asymptotically flat null
hypersurfaces, which carries over immediately to the strong asymptotically flat case).

A first consequence of strong asymptotic flatness is that the function © defined by
M5, = (N + 07X + ©)7g (7.27)

is of the form © = @04—(:), with ©g Lie constant and 6= 01(1). A second consequence,
which follows from (B.12)), is that 6, admits the expansion

BN
Qk:T—Fv‘f‘F—FO(A ) (728)

with 9,((2) Lie constant. The following proposition relates ©¢ with Qil) and Qf) and
provides a universal bound for 9,((2).

Proposition 7.4.5. Let 2 be a strong past asymptotically flat null hypersurface and
{S,} an affine foliation. Then

. 1 2
Q= limO = 5 ((9,&”) + 9,@) : (7.29)

A—00

If in addition the spacetime satisfies the dominant energy condition then we will also
have

1 2
@ o 1 (pm\? -
6 < 2(9k) <0. (7.30)
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7.4. On the inequality D(Sy,£) < limy_o, D(S, £)

Proof. Inserting (Z.27]) and ([Z28]) into the evolution equation

£_ims, = —0kMms, (7.31)

gives

1  dO —2 oY o 3 2 | o)
(2>\+9k +K)Tlg: - T'FV-FF-FO()\ ) ()\ +9k >\+@0+O(1))1’]§

2 1
- <2>\ +o + (2@0 — <9£1’> - 99) S+ o(Al)) u

~ 2
Since 22 = o(A7!) we conclude 20, — (9,&”) — 0,((2) = 0, which proves ([Z29). For

the universal bound (Z30), let us define f(\) = (9(’)7%” Its Lie derivative is
k

A 1 4
£d0) = —r—— [ - | ms, >0,
) (0,21)+2>\)2< ‘ e§1)+2x) ”

where in the last inequality we used (ZZIA) (here is where the DEC is used). /() has
limit at infinity %'nf,. In combination with the fact that / is monotonically increasing we
conclude

7 s
I\) = —F—>—
(657 +2))2
Inserting ([(Z27]), a direct computation gives

1
< 2 Ma-
1 2 1 1 1 2
(1) -2 (1)
<_1_6<9k> +Z@°>F+O(A )<0 = eogz(ek) ,
which is simply (Z.30]) after using the explicit form of ©y. ]

Let us now find the asymptotic expansion of the right hand side of (Z14]). Plugging
the asymptotic expansion (Z.28]) gives, after a straightforward computation,

d 1 ? 2 1
— (1) 2 (1) 2 )
7S = Grray ((/s_ek nﬁ) —87rRa/§ (”) n‘?_87TRc?/§9k nﬁ> =
+o(A7?). (7.32)

The leading coefficient can be rewritten as (8:#)3, where
q

) 2 2
T (ORI (S T (|
S s °
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7. On the Penrose inequality along null hypersurfaces

which is a difference of positive quantities. Indeed, the first term is non-negative because
of (Z30]), while the term in brackets is non-positive because

( /S 9&”%)2 < 4TR2 /S (eﬁ))zna

by the Holder inequality. Depending on which term dominates, the functional F(Sy) will
be increasing or decreasing near infinity. Non-negativity of the leading term ([Z.32)) is
obviously a necessary condition for the hypothesis of Proposition[7.4.1lto hold. However,
even when ([Z.32)) has the right sign, it is not at all obvious how to ensure that F(S,) is
monotonic for all A when the foliation is, in addition, assumed to approach large spheres.
We have attempted (and failed) finding sufficient condition ensuring ;’—;F(SA) <0, as
this would immediately imply that F(S,) is increasing (because F'(Sy) — 0 at infinity).
Despite the lack of success so far, approaching the null Penrose inequality using the
monotonic functional F(S,) remains an interesting open problem, specially in view of
the fact that F(S,) is always monotonic for GAB foliations.

7.5 Renormalized area method for the Penrose inequa-
lity

Monotonicity of F(S,) along affine foliations approaching large spheres is an interesting
sufficient condition for the Penrose inequality along null hypersurfaces. However, as
discussed in the previous subsection, it appears to be difficult to find general situations
where F’(Sy) > 0 can be guaranteed. In this section we consider an a priori different
setup which implies the validity of (Z22]) and hence of the Penrose inequality whenever
the foliations also satisfies the restriction of approaching large spheres. Let us assume
from now on that § is a round metric on the sphere. Without loss of generality we
can then assume that § is a round metric of radius one, which we denote by §. Then
Rs =1 and £* = £. We want to investigate the condition

d
DS £) >0, (7.33)

which indeed implies the validity of ([Z.22]) and hence the validity of the Penrose inequal-
ity.

Note that this condition has already been used in Section of Chapter @ in the
Minkowski context. The positive results obtained there suggest that studying (Z.33])
in a general setup may be also useful to tackle the Penrose inequality for arbitrary
spacetimes. Indeed, under D' > 0, (Z.22]) holds, which in turn is sufficient for (Z.23]).
Applying this inequality in the Minkowski case for foliations approaching large spheres

we find
|Sol 1

— <
Ton 1o Jg, 21 =0
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7.5. Renormalized area method for the Penrose inequality

after using that AIim mu(Sy) = 0, because the Bondi energy of the Minkowski spacetime
—00

is identically zero. This argument shows in just a few steps how the shell Penrose
inequality follows from D’(X\) > 0.

Going back to the general setting, since |Sy| diverges at infinity like 4m\2, the func-
tional D(S,, £) can be regarded as a renormalization of the area functional, in order to
make it bounded. We thus call the approach to the null Penrose inequality via (Z.33))
the renormalized area method. It is interesting that this method is, in fact, a subcase
of the general setup involving monotonicity of F(S,).

Proposition 7.5.1. Let 2 be a strong past asymptotically flat null hypersurface and
{S»} an affine foliation approaching large spheres. Then

d d
- > R >
d}\D(SA,Z) 20 = F(Sx) = 0.

Proof. Let L := 2 [,6"ns > 0 be the limit of D(Sy,£) at infinity. Since |Sy| =
167 (D(Sx,€) + %)2 we can rewrite F(S,) as

Sl _ (Da+3)?
7 = 2
<87r>\ + Jo 9,((1)171‘7) lom(L + )

where D, is a short-hand for D(S,, ¢). Let

Dy + 3
f(X) == \/16TF(Sy) = 2

F(Sx) =

L+3
so that \ JD )
f/ L+2) =222 4 2(1=f(N). 34
0 (L+3) =G+ 5010 (7.30
If % > 0 it follows Dy < A'EQOD* = L so that f(\) = E?T? < 1 and we conclude from
(Z34) that f'(\) > 0, which is is equivalent to F'(S,) > 0. H

The derivative of D(Sy,£) is

d 1 d
JD(SNK) = —2 —167'('5)\ (ﬁ|5>\| —\V 167FS>\>

= Q\/%SA (/S‘X(—Qk)ﬂsx - \/R> :

Given that 8, < 0, the inequality d%D(SA, £) > 0 can be equivalently written in a slightly
more convenient form as G(\) > 0, where

o= ([ A(—ekm)z — 167,

We start by computing the limit of G(\) at infinity.
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7. On the Penrose inequality along null hypersurfaces

Proposition 7.5.2. With the same assumptions as in Proposition [Z.5.1],

2 2
AI|m G(A\) = </ 0,&1)1)§> — 87r/ (9,((1)) NG — 87r/ 6%n,. (7.35)
—00 S? S? S

Proof. We have shown in Proposition [7.4.5] that

5 = (v +0A+ 5 <(9(”) ef’) + o(l)) 4. (7.36)

From expansion (7€), we have 6,ms, = —2\ — 9,21) + 0o(1), so that

2 2
(/ ans)\) — 647r2>\2+167r>\/ 6 n, + (/ egmd) +o(1).
Sx S2 S2

Also form (Z.34)),

1 2
sl [ o0ma+ [ 2((67) 6 o0

Inserting both into G(\) the divergent terms cancel out and we are left with (Z35]). [

Remark 7.5.3. The limit of G()\) is directly related to the leading term in the asymptotic
expansion of F(S,) so that the inequality “at infinity” F,, > 0 is necessary for both
methods. Thus, for sufficiently large A, the renormalized area method does not only
imply F’(Sx) > 0, but it is in fact equivalent to it (possibly excluding the case F,, =0
where higher order terms dominate). However, we do not expect this to be true for all
A, as it appears that D’(Sy,£) > 0 should be a proper subset of F'(Sy) > 0.

Assuming we are in the situation where XIim G(M\) > 0, we can ensure G(A) > 0 by
—00
the condition G’(X\) < 0. This derivative is, from the Raychaudhuri equation (B.18)),

oo -2( [ om) (5 o) )
— 2 (/S eknsx) (/5 (R.cg(k k) — 102 + Nk I'IkAB) ns, + 87r) ,

with M5 1= KAz — 20kvas the trace-free part of K45. Since the first term is always
negative, G’'(\) < 0 is equivalent to H(\) > 0, where we have defined

1
H(\) = / (Rlcg(k k) — —Qk + Mk |—|kAB> 7s, + 8.
Sx

We proceed with the computation of the derivative of this function and of its limit at
infinity.
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7.5. Renormalized area method for the Penrose inequality

Proposition 7.5.4. With the same assumptions as in Proposition[Z51], AIim H(A) =0
— 00
and the derivative of H(\) is

H'(\) = /S (—29kRicg(k. k) 4+ 2(M*PRag + C%\Ricg(k, k)) s, (7.37)

where Rag := Riem? (X4, k, X5, k).

Proof. For the limit, we split Hg\) in three terms and show that each one tends to
zero. We start with [ MM *®ns,. From equation (BI2) and the expansion (i) in
Definition [.4.3] for the metric -y, it follows

i 1
Kk = —Gagh — EhAB +0o(1), (7.38)

so that its trace-free part is M55 = O(1). Since Y(A\)ag = A2das + o(N), its inverse is

1. B
Y(A)E = quB +o(\7?) (7.39)

and M4gMK48 = O(A™*) so that

/ (Men®) ms, > 0
Sx

as a consequence of ns, = A?n3+O(X). Concerning the term in Ric?(k, k), we note that
inserting the expansion (IZ.8)) into the Raychaudhuri equation (B:18)) yields M4 gM*A8 +
Ric?(k, k) = O(A™*) which implies Ric?(k, k) = O(A™*) and again [¢ Ric?(k, k)ns, oy
0. Finally, 62ns, = (4 + o(1))n4 from which

1 00
/ <__9k2) 7s, + 8™ >i> 0.
s»\ 2

We next compute the derivative of H(X). Using now equation (B:19)) in Appendix [B]

we obtain J
= (MM 2,4) = 26,tr(N*)?) + 2R M.
Using this together with (Z31]) and the Raychaudhuri equation, the derivative ([Z.37))

is obtained after a number of cancellations. [l

We can combine the previous computations to find a set of sufficient conditions under
which the renormalized area method applies.

Theorem 7.5.5 (Sufficient conditions for the renormalized area method). Let Q2 be
a strong past asymptotically flat null hypersurface and {S,} an affine foliation approach-
ing large spheres. Assume that the spacetime satisfies the dominant energy condition.
If the two conditions
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7. On the Penrose inequality along null hypersurfaces

2 2
(i) (/ k m) ‘8'”/ (6) g —m / 6n4 > 0,
S2 S2 S2

d
(ii) (—29kRic9(k, k) 4+ 2(M)*PRap + d—ARicg(k, k)) ns, <0, YA >0
Sx

hold, then

/15l /
<
167 167[' s, 92 Ns, = EB (740)

where Eg is the Bondi energy associated to the foliation {Syx}. In particular, if Sg is a

weakly outer trapped surface then the Penrose inequality Eg > \/% holds.

Proof. From (ii) we have H'(X) < 0 which implies H(\) > 0, as this function tends to
zero at infinity. Hence G’(\) < 0. From (i) and Proposition[Z.5.2]we have AIim G(A\) >0
—00

and we conclude G(X) > 0, or equivalently D’(Sy,£) > 0. The theorem follows from
([Z23) using the fact that {Sx} approaches large spheres. ]

It is remarkable that H’(\) only involves curvature terms. This makes checking the
validity of H'(\) > 0 feasible, at least in some cases. In the next two sections we
explore the validity of conditions (i) and (ii) in two simple, but relevant situations.

7.6 Shear-free vacuum case

In this section we consider whether the functional M(Sy,£) can be used to prove the
Penrose inequality in the case of shear-free null hypersurfaces Q (i.e. satisfying K¥ =
%Qk'y) embedded in a vacuum spacetime. The Penrose inequality in this setup was
proven by Sauter [93] in full generality exploiting properties of the Hawking energy. Our
interest in analyzing the shear-free case is to gain insight on the range of applicability
and limitations of the methods discussed above.

For instance, concerning the renormalized area method in subsection [ 5], the vacuum
and shear-free conditions immediately imply that H'(\) = 0, so condition (ii) in The-
orem is always satisfied. Thus H(X) vanishes identically, which is equivalent to
G(X) = const. The method works if and only if this constant is non-negative. It can
be computed from its limit at infinity in Proposition as

2 2
G(A) = lim G(A) = </s2 O,El)ng) — 87 /S2 (9,((1)) N5 — 8™ /S2 6n,. (7.41)
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7.6. Shear-free vacuum case

In the shear-free vacuum case, the Raychaudhuri equation (BI8)) is simply % = —%Gﬁ,
which integrates to
2
9/( = - 1
A+ a

where a > 0 (because 6, < 0 all along €2) is a Lie constant function. Expanding near
infinity
2 2a 2a?

Gk - _X + 7 - 7 + O(>\73) — 9&1) = 20(, 9,((2) = —2a2,

which inserted into (Z41]) yields

G(\) =4 ((/S2ané)2—47r/82a2né> :

By the Holder inequality this constant is always non-positive and vanishes only when
a = const (i.e. when {5,} is a GAB foliation). Except in this case (which corresponds
in the present setup to 6x|s, = const) we have G(A\) < 0 and D(Sy,£) is strictly
monotonically decreasing, which makes the renormalized area method method fail. In
fact, as discussed in Remark [[.5.3], the function F(S,) is also monotonically decreasing,
at least in a neighbourhood of infinity, so the approach discussed in Proposition [Z.4.1]
also fails in the present setup.

Despite all this, the method involving the functional M(Sy, £) is capable of establishing
the Penrose inequality in the shear-free vacuum case. However, as we shall see next,
the argument is not based on the monotonicity of M(Sy,£) (which fails in general,
see below) but via an integration of ([Z4]), which in turn relies on the fact that all the
geometric information along €2 can be computed explicitly in the shear-free vacuum
case. From the shear-free condition and the expression for 8y, the metric «ys, can be

obtained from (B.12)

C/’st
dX
where we used the fact that the foliation {S,} approaches large spheres. The volume
formis s, = (A\+a)?ng. As shown in Lemmal[Z.21], the derivative of My(Sy, £) involves
the connection one-form s,. This object satisfies the following evolution equation along
an arbitrary foliation defined by a null generator k (see equation (B.39)) in Appendix [B])

k(se(X)) = =X (Qx) — se(X)bx + (divs, K¥)(X) — Dx8i — Ein9(k, X),

2
A+

= 2KX = —s, = Ys» — vs, = (A +a)?d

where X is tangent to S, and satisfies [k, X] = 0. In the vacuum, affine and shear-free
case this equation becomes
dSt(X) . 2

D ot

Otay @
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7. On the Penrose inequality along null hypersurfaces

after using the explicit form of 8. This equation can be integrated to

S = (Ao + w), (7.42)

1
A+ a)?

where w is a Lie constant transversal one-form. In order to investigate the monotonicity
of the functional M(Sy, £) we need to evaluate ((ZZ4]) and in particular |5¢|215A"75A' Using

([Z42]) and the form of ys, we have

1
|5t|§sx"75A = mp\da + w|q77q

and identity (Z4) simplifies to

1 1 1
L — O\ ot [ = |
\/fszHa)?nq/Sz( FOM =3 5y f B T wlame

We want to bound this expression from below. The Lie constant one-form w can be
uniquely split into

dM(sA 0 _

w=—Fda+w", (w-, da);=0,

where 3 is a Lie constant function on €2. Thus

omist) _L(_JpOram ), 17 (O pPel ),

ai 2 \/47_(_ f§2(>\ + a)Zné 87!' ()\ + Oé)4

(7.43)

The Holder inequality implies that the term in parenthesis is non-positive and strictly
negative unless a constant (which corresponds both to the GAB case and also to the
D'(Sx,£) > 0 case in the present context). Since (3 may be positive and constant and w*
is allowed to be zero, it follows that Mh:ﬁ may have either sign. This shows that
one cannot expect M(S,,£) to be a monotonic functional on all cases. Nevertheless,

the right-hand side in ([Z.43)) is an explicit function in X that can be integrated explicitly

M(Sx.,£) — M(So.2) — % \/W PN

OL2 a 2
DR it e et o Nt Bk Lo
8T Js A+ a)3

Na
A=0
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7.6. Shear-free vacuum case

Sending X; to infinity, evaluating at A = 0 and using that the flow approaches large
spheres

Es = M(So, )
1 ldalf (B — $)*ldal; + |w*[
_ . 2 q q .
" g (/S oM 4T /Sza ma /g ( " 300 Ma
[1Sol / .
16m 16w Jo Gl
1 |doc|§, , (B —$)?ldali + |wh[3
+8_’7T(/ (Ol+ do 77(7— 47T/S2Ol 7]5—}-/82 30(3 77(7)-
Z;,/l

g

I=/2

(7.44)

This identity is valid for any spacelike cross section S; embedded in a shear-free and
vacuum 2. We now use the Beckner inequality already used in Chapter [ (formula
(#28)) ), which for g =4 and n = 2 reads

/(F2+|dF|§)naZ 47r/ F4ng
S2 S2

with equality only for the constant functions. Writing F = \/a it follows

/ a+|da|§ Ng > 47r/ o’
s2 da 4= s2 q

and /; is non-negative. The Penrose inequality in this case follows because /5 is mani-
festly non-negative and on a weakly outer trapped surface 6, < 0.

The proof by Sauter [93] of this inequality in the vacuum, shear-free case involved
computing the Hawking energy for a foliation {Ss} with the property 6,(Ss) = % This
is in general a different foliation to the one used before (they only agree when « is
constant). A fundamental step in Sauter’s argument was also the Beckner inequality.

Note also, that the Penrose inequality in the shear-free case involves not only the gap
given by the Beckner inequality, but a second gap given by /». The stronger Penrose
inequality ([ZZ44]) is obviously sharp because if Sp is a MOTS (6, = 0) we have equality
in (Z44]). It is an interesting question whether one can give a physical interpretation to
each of the two positive terms in ((Z.44]). Note that

2 1

o

2
w=uo St\so, a=— QZE’YSO,

9k|So,

so that B and w' can be determined in terms of the data on Sy and both /; and /5 can
be written fully in terms of the geometry of the initial surface.
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7. On the Penrose inequality along null hypersurfaces

7.7 Renormalized area method for the shell Penrose
inequality in M?!3

In Chapter ] we studied the shell Penrose inequality

/ 9@1’]50 2 \/ 167'("50‘ (745)
So

by imposing the condition D’(X\) > 0. This corresponds to the renormalized area method
developed in this chapter in full generality. It is therefore convenient to apply the general
results to the specific case of Minkowski. By doing this we should (and will) recover
the results in Chapter @ We will also see how the general tools developed here allow
us to derive the results in Minkowski in a much easier and efficient way. In addition
we analyze the size of the set of solutions obtained with the renormalized area method
in comparison with the ones obtained under the Ludvigsen & Vickers and Bergqvist
assumptions (existence of a GAB foliation that also tended to large spheres) in the
Minkowski spacetime, cf. Section[Z.3l In Section [Z.8 we study the GAB foliation in the
Minkowski setting.

The renormalized area method is particularly well-suited to the Minkowski spacetime.
Indeed, the curvature tensor vanishes identically in this spacetime, so from Proposition
[ 54 we have that H(\) is constant and hence zero, as its limit at infinity always van-
ishes. Thus, as in the shear-free case, G(\) is constant and its sign can be decided
by its asymptotic value ([Z35). We need to determine GS) and 0,((2). In the Minkowski
spacetime this is simple because RAB = 0 makes the Ricatti equation explicitly inte-
grable.

The solution to the Ricatti equation for K* (&7)) and for the metric v (&38) has
already been obtained in Chapter [ in (£39)) and (£IQ) respectively. There the initial
data was given in terms of the geometry of the euclidean surface §o obtained when
intersecting the past null cone of Sy with a constant time hyperplane {t = tg}. In this
chapter it is more convenient to express the solutions in terms of initial data defined on
the surface Sy, specifically in terms of its second fundamental form K&ag along k and
Its metric, namely

(K| = (Kl 101 = M) KEl30) ). (7.46)

(Nas| = Maclr [(1d = XEIKE )%, (7.47)

where 7t(p) is the (unique) point on Sy lying on the null geodesic containing p and
tangent to k|,. Here K¥ denotes the endomorphism with components (K&)%; and
K& ag stands to the null second fundamental form of Sy along k. Taking the trace of
(Z48) we find 0k|, = (K&) [(1d — XKE) ] 4] #(»), which for the sake of simplicity we
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7.7. Renormalized area method for the shell Penrose inequality in M?*3

write simply as
B.(\) = tr [Kg o(ld - AKg)_l] , (7.48)

dropping all reference to the point p.

Let us expand (Z48]) near infinity. In order to do so,

Kko(1d k)™ = ((K§)™ - >\Id>_1 = 5 (Id -5 (k) )_1
—1d —(K§)"

_ — (K&
= N T T e T

+ ...,

where we have used the relation (Id —eA)™' = Id +€A+¢€>A®+ ..., for small €. Then
the expansion of ([Z.48]) becomes

2 —tr (KO —tr (K& ) L,
0, = 5+ 32 + 33 +o(X7?). (7.49)

Thus,
o) = —tr (K™Y, 6% = —tr (K5)™2). (7.50)

We want to express the leading coefficients in the expansion (ZZZ9)) in terms of the
time height function 19 of Sy and the support function h of the surface §0 obtained
as the intersection of the past null cone 2 with the constant time hyperplane > .
We could use solution (746 to obtain an expression of K& in terms of the second
fundamental form of So. Replacing A = 7o in ([7.44), using that K"|§0 = —(Kp) and
solving for K& we would obtain the desired expression. However we find more direct to
use the expression of K* in terms of K, computed in Chapter @ In this case and since
K¢ = —(Ko) o (Id — ToKo) ™!, we have

0 = —tr (K& =tr (Ko) "o (I1d — ToKy)) -

We use now the relation B := (Ko) ' that we saw in Chapter @ where B*; =
(G- 1)ACVCVBh+5A h, W|th g the spherical metric, V the spherical connection and h
the support function of S (cf. (@IJ) in Chapter @ ). Hence

6 = tr (B —1old) = Agh+2(h— 7o) = u.

This function v is defined in exactly the same way as in Chapter [l

As we already saw in Chapter 4] any 2 x 2 matrix A satisfies

tr(A?) = tr(A)? — 2det(A),
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7. On the Penrose inequality along null hypersurfaces

which applied to K& gives 6% = 2det ((K£)~!) — 2. Inserting this into (Z-35) yields

2
Foo = xlmoG(M = (/SQ U"h‘i) — 167 /s2 (det ((K&)™)) mg. (7.51)
This expression can be related to the area of |Sg| as follows. From the definition

oY) L (d = AKE)?
I=lm e Slm T e =k (7:52)

we can relate the volume forms at Sy and “at infinity” by

ns, = det((K§)")nq. (7.53)

and (Z.&1]) becomes

2
Foo = lim G(X) = </ u‘rl&) — 167|So].
A—00 S2

Summarizing, in the Minkowski spacetime G(\) = F., and F,, > 0 implies (cf. Theorem
[ 5] the validity of ((Z40Ql), which is exactly (ZZ45]) because the Bondi energy of the
Minkowski spacetime vanishes identically. We have thus proved that the shell Penrose
inequality in Minkowski holds provided

(/82 uné>2 > 167|So|. (7.54)

The formula for the area of Sq in terms of h and 7y is (cf. (4.44]))

Sol = [ (=70 + (2ah)(h =) = Snssah) my

As it happened in Theorem 53] in Chapter [ when we insert this last expression into
([754)) and after some manipulations, ([Z.54]) can be rewritten in the form

2
47!'/ ((Adh)2 + 2/7&5,/7)?75, > 47['/ Uzné — (/ U?’]&) .
S? S? S?

This is precisely the sufficient condition for the shell Penrose inequality in Minkowski
obtained in Chapter[dl This is not surprising since the method in Chapter[@lalso involved

a monotonicity condition for D(X) = fs—*ﬂ' — 2X\. However, the general framework

developed here leads to the result in a much more efficient way. In fact, there is an
even more direct way of reaching this conclusion as a consequence of Proposition [Z.4.1],
or rather of its rewriting in Remark [[.4.2] Indeed, from ([7.47]) and (Z.53),

ns, = det ((KK)™ = Ald) 74 = (AQ + 60\ + det ((Ké)’1)> ng =

|Sa| = 4% + (/ 9,((1)7]&) A +/ det ((K&)™) ma, (7.55)
s? s
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7.7. Renormalized area method for the shell Penrose inequality in M?*3

where in the second equality we used the first expression in ((Z50). Comparing with
(Z28)) it follows that © is Lie constant and takes the value © = |Sg|, so that the
necessary condition ([Z26]) becomes precisely (Z.54]).

In Corollary 5.7l of Chapter [, we saw that among all the solutions that the renor-
malized area method gave in Minkowski, we could find a relatively small two-parameter
family of solutions of the form

To = a(Dgh+2h) — B, (7.56)

witha € [0,1],8 > 2 H(Sy) 1 where H(§o) and Scal(§o) are, respectively, the

Scal(So) max {Ka}’

mean curvature and scalar curvature of §0 as a hypersurface of the Euclidean hyperplane
{t = to}. Bergqvist proves the validity of the Penrose inequality when he uses flows
that correspond in our case to GAB foliations, and that also tend to large spheres. As
9,&1) = u = 203, with constant 8 > 0, this corresponds, after solving for 19 to

1
To — §(A5h+ 2/7) —6,

which is clearly a subcase of the family of solutions defined by (Z5€]). This indicates that
the family of solutions obtained when applying the Bergqvist method to the Minkowski
spacetime is rather modest.

The following proposition summarizes the results for the shell Penrose inequality in
Minkowski obtained so far and shows, in addition, that in the Minkowski case mono-
tonicity of D(Sy,£) is in fact equivalent to the a priori more general conditions (Z.22),
or F/(Sx) > 0.

Proposition 7.7.1 (Equivalence of the monotonicity methods in M'3). Let Q be
a past asymptotically flat null hypersurface in M*3 and {Sx} an affine foliation ap-
proaching large spheres. The following conditions are equivalent:

(i) (/SQ ungi)2 > 167|So|,

d
(i) JD(SA, £) > 0 (Renormalized area method),

=18, >
(iii) d}\!SA!

— 2 (F'(Sy) > 0 method),
_87r>\+f82un5( (52) 2 )

(iv) D(Sx.8) < lim D(Sx, £),

where u = —tr ((K&)™'). The shell Penrose inequality for So holds if one (and hence
any) of these conditions holds.
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7. On the Penrose inequality along null hypersurfaces

Proof. The implications (/i) == (iii) and (/i) == (iv) are generally true. The equiv-
alence of (/) and (/i) is a consequence of G(\) = F,, and (Z.&1]), as discussed above.
We have also seen before that (/i) is equivalent to (/) as a consequence of Remark
[[.42] It only remains to show that (iv) = (iii). Expression (.BR]) for the area |S,|
yields

d 167|S
= | A‘<1)
8TA + [ 0, g

2
= (87r>\+/ 9,2”m;> > 167|S,|
SQ

1Sxl A 1 / 1)
Al 2 .
Tor 2 = 16w Jo Ok M

which establishes (iv) <= (iii).

7.8 GAB foliations in M!3. Applications to the shell
Penrose inequality

In the previous section we studied the renormalized area method for the shell Penrose
inequality in Minkowski. In this section we investigate in the same setting the conse-
quences of the general Penrose-type inequality obtained in Theorem [Z.3.8 To that
aim we need information on the limit of the Hawking energy along GAB foliations. In
Chapter [@l we have studied the limit of the Hawking energy at infinity for a large class of
foliations {S,} along asymptotically flat null hypersurfaces. The results we need from
that chapter can be summarized as follows:

Let {Sx} be an affine background foliation approaching large spheres and define 0,&1),
Gél) and sl(l) as in Definition [6.3.4] Consider any other affine foliation {S,/} starting
on the same cross-section Sy. The level-set functions A and A’ are necessarily related
by A = fX, with f > 0 and Lie constant on €2. Then the limit of the Hawking energy
along {Sy/} is (see Theorem in Chapter [@])

1
li S\ )= —— 29, A‘,g(l) _ 9(1) 9(1)
XinoomH( )\) 87r /_167'(' < /S\Z "7q> \/S\z ( GY i ( k ‘I’ 0 )

: 1
—4d|vc7(st(l))) M- (7.57)

In order to apply this result in the Minkowski context, we need to compute 9&1), Gél)
and se(l) for the background foliation, which we fix exactly as in Chapter [ as follows:
choose a Minkowskian coordinate system (t,x') and define the unit Killing £ = 6;.
The null generator k of Q is then uniquely selected by the condition (k, &) = —1 and
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7.8. GAB foliations in M3, Applications to the shell Penrose inequality

{S\} is defined to be the level-set foliation of A € C>(£2, R) defined by A|ls, = 0 and
k(X\) = —1. It is immediate to check that {S,} approaches large spheres.

The time-height function Ty of the level set Sy with respect to the hyperplane {t = 0}
is defined to be

Ty ‘= t’sk.

For simplicity and without loss of generality we have chosen the hyperplane {t = 0},
although any other ¥, would have been valid. In particular 7y = t|s, and, in fact,
Txlp = Tolx(p) — A as a consequence of our choice of normalization for k.

Lemma 7.8.1 (Asymptotic expansion at A\ = +00). Let Q2 be a past asymptotically
flat null hypersurface in M3 and {S\} an affine foliation associated to a choice of
Minkowskian coordinate system {t,x'} as described above. Let £ be orthogonal to
{S,} and satisfying (£, k) = —2. Then the following asymptotic expansions hold

-2
O =+ 33 + oA u=—tr((K?)  (758)
2 —U—|—2A°To _
O, =" 2 —+0o(A7?), To = t]s, (7.59)
-V
Sya = AATO +o(ah), (7.60)

where K& is the second fundamental form of Sy along k.

Proof. In the previous section we already proved ([Z.58]). For 6, we exploit the identity
6, + (1 +|DT[3)0k — 2/, =0, (7.61)

valid for any spacelike surface S in Minkowski whenever T := t|s. This identity is a
simple consequence of the fact that £ is a covariantly constant vector field and it has
been used several times in this thesis (see Chapter B, Lemma B34 for a proof). We
apply this identity to S, and expand for large A up to order A=2. In particular, we
can neglect all terms of order O(A3) or higher. Since 7, = 7o — X\ and vs, has the
expansion ([Z39), the gradient term is [DT[3 = ,Y;ABTO'ATOYB = O(XA72) and the term
|DT|,2YQk is O(A73) so that it can be ignored. Concerning the Laplacian term, since
A, = Ay we have, in local coordinates {\, y*} adapted to the foliation {Sy} (i.e.
such that k = —0,)

1 / —1\AB
AyTy = ?()aA ( det(y)(v™ ) 587'> AyTo

- dt( 0a (VARG 705) 35 + OO ) = (Aamo) 55 + O,
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7. On the Penrose inequality along null hypersurfaces

(1)

where we have used ¥(X\) = A% + O(X). Inserting 6, = % + 9{—2 + o(A72) and (Z.59)
into (Z&1)) and keeping only the terms in A=2 we obtain Qél) + u— 2410 = 0, which
gives ([Z.59)).

(1)
It only remains to compute st(l) in the expansion s, = f&— + o(A71). Using formula

(448)) in Chapter M the expansion (7.60]) follows directly after taking into account
([Z39) and ([Z.38)).
O

Lemma[Z.81l allows us to compute the limit of the Hawking energy along very general
foliations by exploiting the results in Chapter[@l For affine foliations A = f\’ we simply
need to evaluate (Z57]), which becomes

1 1
[ Syv)= ——— 2ms AY 2T9)=MNg.
)\/lnoomH( >\) 87!'\/16_7[' < /S2 "7q> /S2 q(u+ TO)f-nq
oD

In particular, the GAB foliation associated to Sq has rescaling function f = - =
4 ¢ > 0 so that, along this GAB foliation,

1 1
i SY——— Y A+ 210) e
X[poomH(SA) Sv16m ( /S2 u "7q> /S2 Ng(u+ 7'o)u"lq

Thus, the particularization of Theorem [Z.3.8 to the Minkowski setting reads

Theorem 7.8.2. Let Q be a past asymptotically flat null hypersurface in M*3 and Sg
a spacelike cross section of 2. Then the following inequality holds:

[1S)] _ 1 / 1 / / 1
— < — 6. —_— ’n. AY 2To)—MNg, 7.62
16m ~ 167 Js vV 5rvion o) a(u+2m0) s (7.62)

where u = —tr ((K¥)™), 7o = t|s, with t a Minkowskian time coordinate. The round
asymptotic metric G is defined by (Z52) and {k, £} are the future directed null normals
to So with k tangent to 2 and satisfying k(t) = 1 and (k,£) = —2.

We can now rewrite the first term of the right-hand side of the inequality (Z.62]) in
terms of 6,. To do so we need to relate the vector £ = Rz¢' with vector £, where ¢’ is
the transverse vector to Q2 orthogonal to each S, and satisfying (k’,¢') = —2. Since
k' = <k, then £' = £ necessarily. Using now that A = £)’, the expansion of the first

fundamental form of 2 can be expressed as

o ~ /\C2
¥ =GN +0(W) = GN)* + o(XN)?) = 432"+ o(X),
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which shows that

We finally conclude

c c |1 u? 1
=RV =Ri—f = —, ] — ~mf = 2
¢ at quZ u\l 47 Js C2n‘7Z ( 412 /Sz . ) b

and using in (({62)) that Or4|s, = FOyls, for any F : So — R, we obtain

B 1/ 1 /
< 216
16m = 16w Jo, \ \[ 4w Jo 1) T

P / 2 /A( +2710)2
—_— u2ng s(u+279)—n3,
amv16m s? M S2 7 0 Unq

which, after factorizing the right-hand side, can be rewritten as

[15] 1 / / 1 / 1
< 2m. _ o —7-
16T — 327/ - M So uemsO + @ Halu+ 27-O)L/T'q '

where u = —tr ((K&) ™) = Agh+ 2(h — 75) (note that we write u in two different
ways: in terms of the geometry of the surface Sy for the first term of the right-hand
side, and in terms of the spherical geometry for the second term).

7.9 An upper bound for the area of S) along Q2

We close the chapter returning to the general setup of asymptotically flat null hyper-
surfaces in spacetimes satisfying the dominant energy condition. We also return to
affine foliations not necessarily approaching large spheres. In this section we provide a
general upper bound for the area |S,| in terms of asymptotic quantities intrinsic to Q.
We find an inequality which is weaker than the inequality D(Sy,£") < AIi_)mooD(SA,Z*),
the difference between both being a Holder inequality term.

The general idea behind the inequality in the present section is the observation that
one possible method to approach the condition D(S,, £*) < AIim D(S,, £7) it to obtain
—00
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7. On the Penrose inequality along null hypersurfaces

an interpolating function P(X) satisfying D(Sy,£*) < P(A\) < AIim D(Sx,£%). While
—00

this is hard (as finding such a P(\) would prove the Penrose inequality), we have been
able to find a P(\) satisfying only the first inequality D(Sy, ") < P(X), from which a
general inequality bounding |Sg| from above in terms of asymptotic quantities follows.

Proposition 7.9.1. Let Q2 be a past asymptotically flat null hypersurface embedded in
a spacetime that satisfies the dominant energy condition, Sq a cross section and {Sy}
an affine foliation starting at Sq. Let 9,9) be the asymptotic coefficient defined in (Z4)
and § the asymptotic metric associated to {Sx}. Then,

1 (1) ?
S < [ (60 +23) g, (7.63)
S
and in particular |Sg| < %fg(Q;((l))z"la-

Proof. Let us fix any A\ > 0 and consider the volume form on S, (A > 0) defined by

L 1
775; T ()\_’_}\0)27’5)\-
Using the evolution equation £_,ms, = —6k7ms,, the Lie derivative of fs, is
. 2 .
L_Ms, = — (9k + m) 75, (7.64)

Writing fjs, = f(\)ns, (Z64) becomes a differential equation for f, which can be
integrated as

F() = F(0)e B (o),
The initial value f(O) can be computed “at infinity” as a consequence of fls, — 74
when X\ — co. Thus £(0) = (5 755) 95 4nd therefore

F) = R (Beraig)es

We aim at finding an upper bound for f()\). We use inequality (ZI8)), which implies

2 —4 2
Ok + i < FONE b and then

2

00 2 o0 —4 2 o\ + oW
0, + ds < + ds =log | 2"k )| |

/A (k 5+>\0) S_/>\ <25—|—9,((1) 5+>\o> > =10d (2(>\+>\0)

Finally,

|S>\| - / MNs, = /A(>\ + >\o)2fé(>\)n@ = /A(>\ + >\O)2ef>‘oc(ek—"_ﬁ)als'r]‘j
Sx S S

(1)
2246,

2
(),
- (>\+>\O)2/§e SOTAS) ﬂa21/§(9£1)+2k)2’7a-
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Remark 7.9.2. The condition D(S,,£") < xIim D(Sy, £*), namely
—00

ISxl Rg 1 / 1)
a2 AP\ QL (G
16r 2 = 16mR, Jo K M

is equivalent to

1 2
< oY 4 ox)mg |

As mentioned above, this inequality is stronger than (Z&3]), the difference being a
Holder inequality term. Indeed, a direct application of the Holder inequality yields

1 S|
(1) (1) 2
< +2 5 < = +2 .
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Conclusions

In this thesis we have addressed the null Penrose inequality conjecture and we have
obtained several results that support both the validity of the general version of the
Inequality and its respective shell version. Projections in static spacetimes, graphs over
hypersurfaces in the euclidean space and flows of surfaces along null hypersurfaces have
been the main tools that we have used to address the problem. The following list
summarizes the main results of this thesis.

1. Given a spacelike surface S embedded in a static spacetime, we have obtained
the expressions for its intrinsic and extrinsic geometry in terms of the geometry
of its projection along the Killing direction onto a constant time hyperplane. We
have also computed the analogous expressions when the projection is performed
in a purely Riemannian context.

2. We have analyzed in full detail the gap in Gibbons" attempt [37] to prove the shell
Penrose inequality in the Minkowski spacetime by using the projection along the
Killing direction, and we have computed the correct expression for the total outer
null expansion fs 6,ms in terms of the geometry of the projected surface S. The
correct expression for the mean curvature H of S involving the null expansions of
the original surface S is also obtained.

3. We have proved the validity of the shell Penrose inequality in Minkowski for con-
vex surfaces embedded in a constant time hyperplane. This result was obtained
simultaneously and independently by Brendle and Wang [15].

4. We have obtained an expression for the shell Penrose inequality in the Minkowski
spacetime of any dimension in terms of the so called time-height function 7, which
describes how far the initial surface S lies from the constant time hyperplane, and
in terms of the euclidean geometry of the surface obtained by intersecting the past
null cone 2 of the initial surface S with a constant time hyperplane. This has
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10.

been possible by formulating and solving the equations for the quotient second
fundamental form (Ricatti equation) and the metric of €2 in Minkowski, which
allow us to rewrite the geometry of the initial surface S in terms of its projection
along its past null cone.

. With the previous result at hand, and since the geometry of convex bodies is fully

determined by the so-called support function h associated to the projection of
S along its past null cone, we have obtained an expression for the shell Penrose
inequality in Minkowski in terms of h and the time height function 7 of S. Using
this form for the shell Penrose inequality, we have proved its validity in the partic-
ular case that the surfaces S lies in the past null cone of a point in the arbitrary
dimensional Minkowski spacetime.

The expression for the shell Penrose inequality in terms of the support function
involves the inverse of endomorphisms represented by matrices of size nx n. In the
particular case n = 2 (spacetime dimension four), we have computed explicitly
this inverse and have obtained an explicit expression for the shell inequality in
terms of the support function and the time height function.

In an euclidean context, and given an orientable hypersurface §0, we have studied
the geometry of a graph over §o, and we have obtained the expressions that relate
its first and second fundamental forms of the graph with those of the base and
the graph function. This result has allowed us to relate the two projections of
S in the Minkowski spacetime: the projection in the Killing direction S and the
projection §0 along the past null cone 2 onto a constant time hyperplane. This
has been applied to rewArite the convexity condition on S in terms of the geometry
of the convex surface Sy and the time-height function 7.

In a general spacetime that admits a null hypersurface 2, we have obtained the
expressions for the metric, extrinsic null curvatures and connection one-form of
any cross section of €2 in terms of geometric elements defined on the leaves of a
background foliation associated to a given future null vector field k tangent to €.

We have obtained a formula that gives the limit of the Hawking mass along flows
of general character in a past asymptotically flat null hypersurface {2 in terms
of the geometry of an affinely parametrized background foliation that tends to
large spheres. The expression of the Bondi four momentum energy vector Pg
associated to the background geometry has also been computed in terms of the
background geometry.

We have introduced the notion of GAB foliations along a null hypersurface €2 in an
AF spacetime satisfying the dominant energy condition, and we have obtained a
Penrose-type inequality for any cross section S of 2 which involves the limit of the
Hawking energy along such foliation. In the particular case when S is WOTS, the
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8. Conclusions

11.

12.

inequality takes the same form as the null Penrose inequality but with the Bondi
energy replaced by the limit of the Hawking energy along the GAB foliation. In
addition, if the GAB foliation tends to large spheres, our inequality becomes the
standard null Penrose inequality.

Combining the previous result with the expression for the limit of the Hawking
energy along general flows on a null hypersurface 2, we have proved the validity
of a shell Penrose type inequality in the four dimensional Minkowski spacetime.

Finally, we have developed a method to address the null Penrose inequality in AF
spacetimes satisfying the dominant energy condition, and which is called renor-
malized area method. We have found two sufficient conditions for the method
to apply. In the particular case of the four dimensional Minkowski spacetime,
this method proves the validity of the shell Penrose inequality for the same class
of surfaces as in Chapter [4], which were obtained by exploiting properties of the
Minkowski spacetime. Thus the renormalized area method can be considered a
generalization of the approach in Chapter 4] to general spacetimes satisfying the
dominant energy condition.

The results in this thesis represent a substantial step forward in our understanding of
the null Penrose inequality. In fact, some of our results (definition of asymptotically flat
null hypersurface and general limit of the Hawking energy) have played a central role in
another very recent approach to the null Penrose inequality put forward by H. Roesch

[92].
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Geometry of non-degenerate submanifolds

In this appendix we compile elementary results on the relation between the geometry of
an ambient manifold and an embedded submanifold. Specifically, the relation between
the connections, the second fundamental forms, the Hessians and the curvature is given
explicitly.

A.1 Induced connection and second fundamental form

Let M and N be pseudo-Riemannian manifolds of dimension m and n respectively, with
m > n. A differentiable map ¢ : N — M is called an immersion, if for any p € N,

do¢ . TN — TyyM

is injective. If an immersion ¢ : N — M maps N homeomorphically onto its image ¢(/N)
in M, ¢ is called differentiable embedding. Any immersion is locally a differentiable
embedding.

Let N be an n-dimensional submanifold embedded in (M, g). The pullback of the
metric g on N gives a symmetric tensor <y called first fundamental form, that depending
on the nature of N, can be degenerate or not. When the pullback is positive definite,
we will say that N is spacelike. A submanifold will be called degenerate (respectively
non-degenerate) provided the first fundamental form has this property.

When N is non degenerate, we can define its Levi-Civita connection. The connection
of M (the ambient connection) will be denoted by V and the connection on N (induced
connection) by V. For any point p € N, consider the tangent space T,N and choose

an orthonormal basis of vectors By = {ey, ..., en}. Since T,N C T,M, let us extend
By to a basis B = {ey, ..., en Uns1, - -, Um} of T,M. By using the Gram-Schmidt or-
thogonalization method we obtain an orthonormal basis B = {ey, .. ., €n €ntly - - s em}
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A.l. Induced connection and second fundamental form

of T,M, where
B ={en1, ..., em} C (T,N)* ={veT,M/{v,x), =0 ¥x € T,N}.

We have that T,N N (T,N)*= = 0, since otherwise there would be a degenerate vector

for N, against hypothesis. Since the set of vectors of By and B’ form a basis of T,M,
we have that

T,M=T,N& (T,N)*. (A1)
According to (Al), we can write the orthogonal decomposition
VxY = (VxY)" +(VxY)*, (A.2)

T

where the operators 'T' and '+’ give the tangent part and orthogonal part to N of any

vector respectively.

The following proposition shows the relation between the ambient and the induced
connection.

Proposition A.1.1 (Induced connection). Let N be a non-degenerate n-dimensional
submanifold embedded in a pseudo-Riemannian m-dimensional manifold (M, g). Then

VY = (VxY)T, with X, Y € 2(N), (A.3)

where X(N) is the set of vector fields tangent to N, and T : T,M — T,N with p € N
Is the orthogonal projection.

Proof. Let us define the mapping V : X(M) x X(M) — X(M), by
V(X,Y):=VxY = (VxY)".

It is immediate to see that V satisfies

(i) VixsgvZ = fVxZ + gVy Z,
(i) Vx(Y + 2Z2) =VxY +VxZ,
(i) Tx(FY) = X(F)Y + FVxY,

where X,Y,Z € X(N), and f,g : N — R are C*. Hence V is an affine connection.
To see that V is the Levi-Civita connection of N, we check that it is torsion-free
(Te(X,Y) = VxY — Vy X — [X, Y] = 0) and metric (Vy = 0). For the first, recall
that the ambient connection V is torsion free

To(X,Y)=VxY —-VyX —[X Y] =0.
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A. Geometry of non-degenerate submanifolds

Applying the operator 'T' and using [X,Y]" = [X, Y] the torsion-free property of V
follows immediately. For the second, we compute, for X,Y, Z € X(N),
(Vz)XY) = Vz(y(X.Y)) =v(VzX,Y) =v(X,VzY)
= Z(v(XY) = 9((VzX)TY) =y(X (VzY)T)
= Vz(9(X.Y)) = g(VzX,Y) = g(X,VzY) = (Vzg)(X,Y) =0,

where in the last inequality we have used that V is metric. Since the Levi-Civita
connection is the unique torsion-free and metric connection, it must be V.=V". [

From (A3)), (A.2]) becomes
VxY = VY + (VxY)* (A.4)

The second term of the right-hand side of (A.4]) defines the so called second funda-
mental form vector, namely

Definition A.1.2 (Second fundamental form vector). The second fundamental form
vector of N as an embedded manifold in M is

K(X,Y)=—(VxY)*. (A.5)

The second fundamental form vector is symmetric because
K(X,Y) = —(VxY)t = —~(Vy X + [X, Y] = —(Vy X)L = K(Y, X),
where we have used that '+ is linear and [X,Y] € [(TN), since X,Y € [(TN).

It is convenient to have the relation among several second fundamental forms when
we have more than two manifolds, and successive embeddings:

Proposition A.1.3 (Successive embeddings). Let S, ¥, M be three pseudo-Riemannian
manifolds, with S embedded in - and > embedded in M. Let g be the metric on M.
Assume that the metrics on S and ¥ are induced by g. Let Ks_s be the second
fundamental form vector of S as a submanifold embedded in %, K;HM the second fun-
damental form vector of ¥ as a submanifold in M, and K s_ynm the second fundamental
form vector of S as a submanifold in M. Then

Ksom(X,Y) = Ksos (X, Y) + Keoam(X,Y) with X,Y € T(TS). (A.6)

Proof. Given X,Y € I'(TS), and by the definition of second fundamental form, we have

S M: V¥Y =V3Y — Ksou(X,Y), (A7)
S Y VXY =V3Y — Keos(X,Y), (A.8)
Y M: VMY = VLY — Kem(X,Y). (A.9)
Computing (A7) — (B8) — (AQ), we obtain —V%Y = —VXY — Ks_m(X.Y) +
Ksos(X,Y) + Ke_m(X,Y), which is (A6 after rearranging. ]
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A.2. Induced Hessian

Remark A.1.4. If the dimension of the embedded manifold is the same as the dimension
of the ambient manifold, then the second fundamental form vector is by definition
identically zero.

Remark A.1.5. The second fundamental form vector of S as a submanifold of > satisfies
Ks,y € T,Z N (T,S)*, and on the other hand Ksy_u € (T,X). The vector space
tangent to M splits in the direct sum T,M = T,S&(T,S)*. Likewise we split (T,S5)* =
[T, 2N (TpS) 1®(T,x)*. For the sake of simplicity let us call (T>S)* = [T,xN(T,S)],
so that we have

(Tp,S)" =(TrS)" & (T,x)".

Relation ([A.6]) corresponds in fact to the decomposition associated to this direct sum.

A.2 Induced Hessian

We want to find relations between objects defined on the ambient manifold and the
respective induced ones on the embedded submanifold. Let us compute the explicit
relation between the Hessian of any function defined on the ambient manifold and
the Hessian of the function obtained by restricting the original one to the embedded
manifold:

Proposition A.2.1 (Hessian relation in an embedding). Let N be an n-dimensional
submanifold embedded in a pseudo-Riemannian m-dimensional manifold M so that the
pullback of the metric on N is non-degenerate. Let ¢ be the embedding. Let f : M —
R a smooth function defined on M. If we denote by Hessy the Hessian of the ambient
manifold M and Hessyn the induced one on the submanifold N, we have

Hess v f(d¢(X), dp(Y)) = Hessyn(f 0 ¢)(X,Y) + (gradf, K(X,Y)),

where X,Y € T(TN).

Proof. By definition, the Hessian is
Hessf(X,Y) = X(Y(f)) — df(VxY).
In M and N we have the following relations
Hess v f(d@(X), dp(Y)) = dp(X) (dp(Y)(f)) — df (Vapx)dd(Y)) . (A.10)
Hess gn(f o ¢)(X,Y) = X (Y(f o)) — d(f o dp)(VLY). (A.11)

In (A4]) and ([AR) we identified the vectors tangent to the abstract submanifold with
the tangent vectors to the embedded one. Adding explicitly the embedding ¢, the Gauss
formula reads

Vo) dd(Y) = dop(VXY) = K(X,Y). (A.12)
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A. Geometry of non-degenerate submanifolds

Therefore it follows

df (Vagpodd(Y)) = df (dqb(VQY) ~R(X, y)) = d(fod) (VYY) — (gradf, K(X,Y)).
(A.13)
Inserting (A 13) into (AIQ) we have

Hess v (dp(X), dp(Y)) = dp(X) (dp(Y)(F)) — d(f o ¢)(VXY) + (gradf, K(X,Y)).
(A.14)
Since X(f o @)|, = ¢.(X)f|p(p), we finally obtain

do(X) (do(Y)(f)) = X (Y(f o).

The two first terms of the right-hand side of (A14]) are precisely (A1), which proves
the result.

]

A.3 Gauss, Ricci and Codazzi identities

The following aim is to relate the curvature of the ambient manifold M and the em-
bedded manifold N. In our notation the curvature tensor is defined as

R(X,Y)Z =VxVyZ —VyVxZ = VixyiZ  X.Y.ZeT(TN).

Theorem A.3.1 (Gauss equation). Let N be an n-dimensional non-degenerate sub-
manifold in a pseudo-Riemannian m-dimensional manifold (M, g). Let R be the curva-
ture tensor of M and RV the curvature tensor of N. Then

(RIX,Y)Z, T) = (RVNX,Y)Z, T) — (K(Y, Z), K(X, T)) + (K(X, Z2), K(Y, T)),
where X,Y,Z, T € T(TN).

Proof. Using VxY = VY — K(X,Y), we compute
R(X,Y)Z =VxVyZ —VyVxZ —VixyZ =
Vx(VYZ = K(Y, 2)) = Vy(VXZ = K(X,2)) = VixyZ + K([X, Y], Z) =
VNV Z — R(X, VEZ) = VxK(Y,Z) = VIVNZ + K(Y,V}Z) +
VyK(X,Z) =V Z + K(X. Y], 2) =
RN(X,Y)Z — K(X,VYZ)+ K(Y.VYZ) + K([X,Y], Z) — VxK(Y, Z) +

—

VyK(X, 2). (A.15)

Multiplying by a tangent vector T, and using that K is orthogonal to NV we obtain
(RIX,Y)Z,T) = (RM(X,Y)Z,T) — <VXK(Y, Z), T)+ (VyK(X, Z), T). (A.16)
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Using the orthogonality between K and T we have

—

(VxK(Y, 2), T) = —(K(Y, 2),VxT) = (K(Y, 2), K(X, T)). (A.17)
Likewise (Vy K (X, Z), T) = (K(X, Z), K(Y,T)). Combining (A1) in (AIA) gives the
result. []

Given X € I(TN) and n € T((TN)*), the normal connection V+ of the embedding
is defined by
V)Ld? = (Vx??)L = Vxn— (VX'U)T-
It defines a connection because it is linear in X, additive in m, and satisfies

Vx(fn) = X(f)n+ FVxn.

The curvature tensor associated to the connection is denoted by R+ and is given, as
usual, by

RHE(X,Y)n = VxVyn — VyVxn — Vixyn. XY €(TN),nel((TN)"). (A.18)

The following result gives a relation between the ambient curvature tensor and the
curvature tensor associated to the normal connection. The identity involves the so-
called Weingarten map defined as

Wy i ToN — TN, Wy(X) = (Vxn) .

Theorem A.3.2 (Ricci equation). Let N be an n-dimensional non-degenerate subma-
nifold in a pseudo-Riemannian m-dimensional manifold (M, g). Let R be the Riemann
tensor of M and R+ the normal curvature of the embedding. Then

(RIX,Y)N,¢) = (RE(X,Y)n, C) + (We, Wyl (X), Y),
with [We, Wpl(X) = WeWy — WWe)(X), and where X, Y € T(TN), and n,¢ €
C(TN)L).
Proof. By definition,

R(X,Y)n=VxVyn—VyVxn—Vixyn=

Vx(Wa(Y) + V#}T]) — Vy(Wy(X) + V}m) —Wi([X,Y]) - V[Jk,y]n =
VEW,(Y) = K(X, Wn(Y)) + Wy, (X) + VVyn — VIW,(X) +
K(Y, Wy(X)) = Wein(Y) = VyVin = Wy(IX, Y1) = Vixyn-

Using (A18]) and multiplying by the orthogonal vector ¢, all the terms tangent to N
cancel out and we obtain

(RO, V)N, €) = (RE(X, V)N, €) — (K(X, Wy(Y)), ) + (K(Y. Wy(X)), ¢).  (A.19)
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A. Geometry of non-degenerate submanifolds

Observe that
(KX, Y),m) = (=VxY.m) = (Y, Vxn) = (Wp(X),Y). (A.20)

The symmetry of K implies that the operator W, Is self-adjoint, i.e.

Wn(X),Y) = (X, Wy(Y)). (A.21)
A consequence of ([A.20)) and ([A.21]) is
(KX, Wn(Y), €)= We(X), Wy(Y)) = (W W (X), Y). (A.22)

The same reasoning applies to (K(Y, W,(X)),¢). Inserting this and (A22) in (A19)
gives the result.

]

The last theorem of the appendix relates the ambient curvature tensor contracted
with three tangent vectors and one normal vector with the covariant derivatives of
the second fundamental form vector of the embedded submanifold. Since this result
requires the use of covariant derivatives of the second fundamental form vector, we
introduce the operator V as

(VxRK)Y, Z) = VxK(Y,Z)-K(VYY, 2) - K(Y.VYZ), XY, ZeT(TN). (A.23)

Theorem A.3.3 (Codazzi equation). Let N be an n-dimensional non-degenerate sub-
manifold in a pseudo-Riemannian m-dimensional manifold (M, g). Let R be the Riemann
tensor of M. Then:

(RX.Y)Z,m) = (VyK)(X, Z),m) = (VxK)(Y. Z), ),

where X,Y,Z € T(TN) and n € T((TN)?1).

Proof. Recall expression (AIR) for R(X,Y)Z. If we multiply both sides by 7, and use
that [X,Y] = VxY — Vy X we obtain

(RIX,Y)Z,m) = —(K(X, V¥Z), m) + (K(Y,VXZ), m) + (K([X, Y], Z2).m) —
(VxR(Y. Z),m) + (VyR (X, Z2),m) = (VyK(X, Z),m) = (K(V¥X, Z),m) —
(ROXVYZ).m) = (VxR (Y. 2),m) = (R(VAY. Z).m) = (R(Y. VEZ),m)) =
(VyK)(X. Z),m) = (VxRK)(Y. Z), ).
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The curvature identities above can also be written in terms of the Riemann tensor,
which is defined as
Riem(X,Y,Z,T)=(R(Z T)Y, X)

The corresponding expressions for the identities are:
e Gauss equation:

Riemd(X,Y, Z, T) = Riem™(X,Y, Z, T) — (K(X, Z), K(Y, T)) + (K(Y, Z), K(X, T)),

(A.24)
e Ricci equation:
Riem?(X,Y,n,¢) = Riem*(X,Y,n, ) + (W,, W](X),Y), (A.25)
e Codazzi equation:
Riem?(X,Y, Z,n) = (VxK)(Y. Z).m) = {(VyK)(X, Z), 7). (A.26)

We conclude this appendix by taking the double trace of the Gauss equation when
the ambient manifold M is Lorentzian and N is codimension-two and spacelike. This
calculation is easier in index notation. Let {X4} be a basis of N. The Gauss equation
is expressed in index notation as

Riem4scp = Riemigep — (Kac, Kep) + (Ksc, Kap)
For every p € N, let us complete the basis {Xa|,} to a basis of T,M with two null

vectors k, and £, orthogonal to N normalized as (k,£) = —¢ for a given positive
function ¢ : N — R. Decomposing K = —%(K’%—k K*%k) we have

Riemégcp =Riemhzcp — —(KEcKbp + KipKEc)

1
®»
1
+ E(KZCKZBD + K§pKac) (A.27)
Taking the trace once on the first and third indices we obtain
: _ 1 1
Y Riemfgcp = Ricgp — E(KKABKE\D + K pKe) + E(QKKZBD + 6:Kgp).

Taking the trace again we find

. 2 2
¥BPyARiem$5-p = Scal — aK"ABKﬁ\B + 69k9¢- (A.28)
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In the basis { X4, k, £}, the contravariant version of the metric g of M reads
J" =" Xa @ Xg— —k®L——L®Kk.
P %
A straightforward computation shows that
BDACD g crg . Y oig 2 .
YZEy " Riem$gcp = Scal? + GRIC (k,2) — ERlem (k. £, k,2). (A.29)

Inserting (A29) into (A28) finally yields

4 2 . 2 2 AB
ScalY + —Ric9(k,£) — —Riem9(k. £, k,£) = Scal™ + =6,0, — =KX K*
" (k. £) > ( ) 50K0e = S Kas

Using the definition of the Einstein tensor, the relation above also becomes

2

4 2 D
SEN%(k.€) = Scal’ — - Riem? (k. £, k. £) = Scal" + 0~ 5KQBK‘ZAB. (A.30)
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Geometry of null hypersurfaces

In this appendix we present a self-contained description of the geometry of null hyper-
surfaces (for a detailed work on null hypersurfaces see e.g. [32], 38]). In particular we
obtain the evolution equations along general flows by spacelike cross sections of the
geometric elements of the leaves.

B.1 Hypersurfaces and null geodesics

Definition B.1.1 (Null hypersurface). Let (M, g) be an m-dimensional spacetime. A
manifold Q2 embedded in M is a null hypersurface when it has codimension one, and the
pullback of g on €2 is a degenerate tensor.

As we said before, the nature of this kind of submanifolds makes impossible to define a
unique second fundamental form vector, since in this case Vp € Q, T,Q2N(T,Q)* # 0.
Any vector in this intersection is automatically lightlike and defines a degeneration
direction of the pullback of g.

Let us first see that on a null hypersurface {2 there is just one degenerate direc-
tion. Assume that there are two degenerate directions < £; > and < ¢, >, where
< Vi ..., vk > denotes the minimal subspace generated by {vi, ..., vk }. Without loss
of generality we can consider 4; and 4> to be future. Then £; 4+ 4> is a timelike vector
whose inner product with £; and £, is zero (since they are degenerate directions), but
this is impossible as the product of a timelike vector with a null vector can never be
zero. Let us call this unique degenerate direction k. The rest of the directions X € T,£2
satisfy (X, X) > 0. If not, there would be a timelike direction Xy ((Xo, Xo) < 0) sat-
isfying (k, Xo) = 0, which cannot happen. Moreover, if X ¢< k > and X # 0, then
(X, X) > 0, because otherwise, X would be lightlike and orthogonal to k, which can
only occur if X is parallel to k, against hypothesis.
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B.1. Hypersurfaces and null geodesics

Let us next prove that (k,)* = T,Q. Since k, € T,QN(T,Q2)* we have (k,)* D T,Q.
To prove the reverse inclusion, consider t, a timelike vector of T,M. Since < t, >
NT,Q = 0, we have T,M =< t, > ®T,Q. Then for X, € (k,)*, and decomposing
Xp=oat,+Y, foracRand Y, c T, yields

0 = (ko Xp) = (kp, atp + Yp) = aulkp, tp).
Since (kp, t,) # 0, it follows necessarily that a = 0, and hence X, € T,%2.
We can check the consistency of the previous results by analyzing the validity of the
Grassman identity, which reads
dim (T,Q+ (T, =dimT,Q+ dim (T,Q)*" —dim [T,QN (T,Q)*]. (B.1)
Given that (W) = W for any subspace of a vector space with metric g, we have
< kp>=[(kp)1H = (T,Q)F Vpe

sothat dimT,Q=m—1, dim(T,2)* =1, and dim [T,Q2 N (T,)*] =1, and (BI)
holds.

Proposition B.1.2 (Null geodesics). Let (M, g) be an m-dimensional spacetime. Con-
sider a null hypersurface €2 embedded in M. The integral curves of k are null geodesics
(and they are also called null generators of €2).

Proof. It suffices to prove:
Vik = Ak.

Let us consider p € 2. We want to prove that Vik|, € (T,Q2)t =< k, >, or equiva-
lently (Vikl|p, X) =0 VX € T,Q. To this purpose extend X € T, making it invariant
under the flux generated by k,

[k, X] = VX — Vxk = 0. (B.2)

The system (B.2)) always has a unique solution because in a suitable coordinate system
rectifying k, this equation becomes an ordinary differential equation of first order with
X, as initial data. By construction, the extended vector X remains tangent to €2, so
that (k, X) = 0 holds. Differentiating along k we obtain

Vilk, X) = (Vik, X) + (k, Vi X) = 0.

Therefore:

(Vik, X) = —(k, Vi X) = —(k, Vxk) = —%X(k, k) = 0.
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B. Geometry of null hypersurfaces

B.2 Quotient structure on a null hypersurface

The difficulty that arises with null hypersurfaces is that they do not inherit a metric
from the ambient manifold. Hence it is not possible to raise and lower indices of tensor
fields on €2. We cannot define a natural connection on €2 either. In order to address
this difficulty, it is useful to introduce the following equivalence relation in 7T,£2:

For X,Y € T(TS2), we define
X~Y <= X—-Y =Xk, with A €R.

This endows T, with a quotient structure (see Figure B.I]). The quotient vector
space, denoted by T,$2/k, is the set of equivalence classes of each X, € T,$2, denoted
by X,, namely

T,Q/k ={X, : X, € T,Q}.

The fiber bundle on 2 is the collection of all quotient spaces

TQ/k = T,Q/k.

pEQ

The dimension of the fibers is m — 2. From now on and for the sake of simplicity, we
will simply write X instead of X,,.

B.3 Positive definite metric on T /k

It is convenient to construct a metric on the quotient bundle. Define the map:

Y T,Q/k x T,Q/k — R
YA(X,Y) = (X,Y).

The first thing to check is that the map is well defined, i.e., that it does not depend
on the chosen representatives: let X’ ~ X, and Y/ ~ Y. This means there exist two
real numbers o, 3 so that X' = X +ak , Y' =Y +Bk. Then ¥*(X',Y") = (X', Y') =
(X+ak,Y+Bk) = (X, Y)+B(X, k) +alk,Y)+aB(k k) = (X,Y) =4%X,Y), where
we used (k,)*t = T,Q.

The next thing to see is that 4 is in fact a metric. Consider X & T,Q/k, X # 0.
This means that X € T,2 is not parallel to k,, i.e. X is a spacelike direction. In other
words

Y(X, X) = (X, X) >0,

which directly implies that v is a metric.
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B.4 Second fundamental form on TQ/k

We next define on T,$2/k the Weingarten map (see for instance [32]), which will be
useful later to define the second fundamental form tensor. Consider the map

K?:T,Q/k — T,Q/k
KYX) = Vxk. (B.3)
This definition is consistent because (Vxk), € T,2. Indeed (k,k) = 0 = 0 =
VX<k, k> = 2<ka, k> = <ka, k> =0= (ka)p c (kp)l — TpQ

We also need to check that Vxk is independent of the representative X € X. Let
X'~ X. Then KQ(F) = VX/k = Vx+akk = ka + aka = VX/( + alk = ka =
K (X).

Using this map we can define the second fundamental form tensor in the quotient
space:

Definition B.4.1 (Second fundamental form tensor on T ,2/k). The second funda-
mental form tensor in the quotient space T,$2/k is the map:

K®:T,Q/k xT,Q/k — R
KAX.Y) = 7HKX).Y)=(VxkY).

Proposition B.4.2. K% is symmetric, i.e. K¢(X,Y) = K%Y, X),¥X,Y € T,Q/k, and
hence the map K% is self-adjoint with respect to ~y*%.

Proof. Given X,,Y, € T,(2, extend them as vector fields X, Y tangent to {2 in a neigh-
bourhood of p in Q. Using X((k,Y)) =0 and Y ((k, X)) =0, it follows

KYX,Y) = (Vxk,Y)=—(k VxY)
= —(k, VyX) + (k, [X,Y])
= (Vyk, X) = K*Y,X),

where we used [X, Y], € T,Q2, since both X, and Y, are tangent to Q. ]

Let us build now a basis B of vectors of T,$2, with the property that the first vector
of the basis is the null direction k,. To obtain the rest of vectors, we consider the
intersection S of another spacelike hypersurface > with 2, i.e. S =QNX. Under these
conditions T,Q = (k,) ®T,(2NX) = (k,) D T,S. In addition k|s € F((TS)*). Choose
m — 2 linearly independent additional spacelike vectors {Xi, ..., Xm_2} which form a
basis B’ of T,S C T,2. Itis clear that B = {k} U B’ is a basis of T,.

The elements of B” are in T,Q2. We can take its equivalence classes, and obtain a
set of quotient vectors B’ = {X4, ..., Xm—2}, whose cardinal equals the dimension of
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B. Geometry of null hypersurfaces

T,Q/k. Moreover they are linearly independent. Indeed if a linear combination a*Xa
vanishes, then there is a° € R such that aA_XA = a’k. But {k, X4} is a basis, so all
coefficients a* and a® must be zero. Thus B’ is a basis of T,Q/k.

We next define the concept of mean null curvature, also called null expansion:

Definition B.4.3 (Null expansion). Let (M, g) be an m-dimensional spacetime and
Q C M an embedded null hypersurface. ¥p € T,2, we can consider the basis B =
Xy, ..., Xm_o} of T,Q/k. Let K : T,Q/kxT,Q/k —s R be the second fundamental

form tensor. The null expansion is the scalar
Ok = trace,n(K?) = (v9)*F K5,

where K3s = K4(Xa, X), and (v)AB is the inverse of vi5 = ¥*(Xa, X5).

M

KAX,Y) = (Vxk,Y)
YHX,Y) = (X,Y)

Figure B.1: A null hypersurface 2 embedded in a spacetime M. The tangent vector
field k to the null generators of € is unique up to reparametrization, and every tangent
vector X to the hypersurface is orthogonal to k. A canonical equivalence relation
between vectors tangent to {2 can be defined, and a quotient bundle can be constructed.
The quotient metric ¥ and second fundamental form tensor K are independent of
the chosen representatives of the equivalence classes. The level sets of a function
s : Q — R satisfying k(s) = 1 define a foliation {S} along Q.

For any smooth nowhere zero function f : 2 — R, the vector field k = fkis
also a degeneration vector. Denote by K%, and KQ; the corresponding Weingarten
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endomorphisms and K3 and K-/? the associated second fundamental forms. Then

K%(X) = Vxk = Vx(fk) = X(F)k + fVxk = FVxk = fVxk = K2 (X). (B.4)
From here we conclude

0 = (v)°(KD)as = (7)Y (K%(Xa), X6)
= (Y)PYUFK(Xa), XB) = F(v*)*P(KiD) a = bk.

Remark B.4.4. Notice that, as a consequence of (B.4]), the Weingarten endomorphism
K*, depends only on the value of the vector field k on p.

B.5 Evolution equations on €2. Ricatti and Raychaud-
huri equation

Definition B.5.1 (Null generator of Q2). Let (M, g) be a spacetime of dimension m
and Q C M an embedded null hypersurface. A null generator of (2 is any of the integral
curves of the degeneration direction < k >.

On each null generator a(s) we consider the Weingarten map at p = a(s), along the
vector o/
KQ(S) = KQar(S). (85)

As already mentioned, there is no natural connection on (T€2), and even more so
on the quotient bundle I'(T/k). However it is possible to give a natural definition
of directional derivative along the null generators of Q for tensor fields on I'(T2/k).
For any smooth function f : 2 — R the derivative of f along a(s) can be defined
as f' = w. For convenience the notation ' := k(f) is also often used. The
derivative of X € '(T2) along k is naturally defined as X’ := V,X. This vector field is
tangent to Q because, as shown after (B.3)), Vxk € [(T) and [X, k] is also tangent
to Q2. For the derivative of the class we simply put

(X) =X

We need to check that this operation is well-defined, i.e. that it does not depend on the
representative. To this purpose we consider X ~ Y/, i.e., there is a function A : 2 — R
so that Y = X + Ak. Given that Vk is proportional to k, then

(Y) = V(X + Xk) = Vi X + k(AN k + AV ik =
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B. Geometry of null hypersurfaces

A fundamental property of any covariant derivative is the Leibniz rule with respect to
contraction. More specifically, if w is any one-form and X, Yare vector fields then

Vy[w(X)] = (Vyw)X + w(VyX).

Such a rule can be used to define the directional derivative we are seeking. For the
specific case of the Weingarten map we define (K%' by

(K2Y(X) = [K(X)] — KX, X e [(TQ/k).

Differential equations of the form 2 = A(x)y? + B(x)y + C(x) are called Ricatti
equations. Such equations make sense not only for real functions, but also for endo-
morphisms. As we next see, the Weingarten map K** satisfies a Ricatti equation:

Theorem B.5.2 (Ricatti equation for the Weingarten map). Consider 2 a null hy-
persurface embedded in a spacetime (M, g) of dimension m. Let k be a degeneration
vector of Q, Qy the function that satisfies Vk = Qxk, and a(s) the corresponding null
generators of Q. Then the family of Weingarten maps K* = K*(s) obeys the equation

(K + (K%)? + R — QcK? =0, (B.6)

where ' denotes the directional derivative along a(s), and (K*)? = K o K (compo-
sition of endomorphisms), with

(Y) = Y, differentiation of a vector field in T (TQ/k),
(K)'(X) = [K¥X)] — K%X"), definition of endomorphism b/,
R(X) = R(X, o)/, with R the curvature tensor on M. (B.7)

Proof. The first step is to check that (B.7)) is well defined. Assume Y = X 4+ X\k. Then

R(Y) = R(Y, k)k = R(X + Ak, k)k = R(X, k)k + A\R(k, k)k =
= R(X, k)k = R(X),

where linearity and the antisymmetric properties of the curvature tensor have been used.

Consider now any vector X, € T,2, and extend it along a making it invariant under
the flux generated by k as in (B:2]). The defining property is

VX = Vxk, (B.8)

and will be used several times below without further notice. The definition of curvature
tensor implies

R(X, k)k - vakk - VkVXk - V[Xk]k - X(Qk)k + kakX - Vkka, (Bg)
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where in the last equality both (B.8)) and Vk = Qxk have been used. Notice that each
term in equation (B.9)) is in T,%. In fact, this equation can be rewritten as

X" = X(Qu)k + QX' — R(X, o).

Finally,
(K (X) = (Vxk) = K*(ViX) = (ViX) — K} (Vxk) =
=X — KYKUX)) = QX — R(X, &) — (K?)2(X) =
= QK2 (X) = R(X) = (K*)*(X).
Given that X, is arbitrary, this proves (B.4)). ]

Our next aim is to find the expression in components of (B.6). Let B, = {k,, (X1),.
-, (Xm—2)p} be a basis for T,Q and define functions (K*)t, by

K2(Xa) = (K", X,
From the definition of second fundamental form tensor,
(KQ)AB = 'YQ(KQ(YA)vYB)
= (KD X1, Xg]
= (K" (XL Xg)
= (KQ)LA(’YQ)LB
= (K5,

which is simply the statement in components that the second fundamental form is
obtained from K*? by lowering indices with 2. Extend now every X, in B, along a(s)

as in (B.2). Then

ViXa=Vx,k = KQ(YA) = (KQ)LAYL-
The endomorphism (K*?)" acting on the elements of the basis reads
(KD (Xa) = [(K?)]°aXe
(KX = K(X))
((K?)%4Xe) — K(X})
= (K9))Xs+ (KY)E,(Xe) — K2(X,),  (B.10)

g

(%)

and the term (**) vanishes because
(**) = (KQ)BAVkXB - KQ(VkXA)
= (KDEL(KD s XL — KY((KD)E X))
(KQ)BA(KQ)LBXL o (KQ)LA(KQ)TLXT —0.
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B. Geometry of null hypersurfaces

Since (K%)B, are functions, (B-IQ) is simply

dKQB_
(KD)%x

(K (Xa) = (K2 Xs =

The endomorphism (K*)? in components is
(K?)?(Xa) = [(K?)?]%4X 6 = (K?)°A(K?)%s X,
and we define R®, by means of
R(X,) = RB,X5.
Putting things together, the Ricatti equation becomes
0 = [(KY' 4 (K2)?+ R — QK (Xa) =

(4 (k)% (K8, + RS, - Qu(K®)E,) R,
that is to say

—d('j;)BA + (K2)° (KB + RE, — Qu(KH)E, = 0. (B.11)

It is also necessary to obtain (v%5)":

d(’YQ)AB

ds o' ()[(v)as] = Vily?(Xa, X5)]

= Vi(Xa, Xg) = (ViXa, Xg) + (Xa, ViXp)

= (Vx,k, Xg) + (Xa, Vx k)

YHVxk, X) + 71 (Xa, Vxpk) = (K?)ag + (K)sa
2(KM) ag = 2(K%) ag,

where the symmetry of (K*)ag, and (K*)ag = (K*?)ag have been used. Hence

d(’YQ)AB

28 = 2(KT)ss. (B.12)

Combining (BI1)) and (B12), the derivative of (K*)ag along k = ’(s) is computed
to be

k(K%)ag) = k((K?)"s(v")14)

= (Qu(K?)'g = (K®)?a(K?)"s = R g)(v")a + 2(K?) (K?) 1A
Qu(K)ag + (K as(K%)°5 — Ras, (B.13)
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where Rag := Riem?(Xa, k, X5, k).

Our next aim is to compute the derivative of the null expansion 8. To this purpose
we use
k((r)4%) = —2(K)*%, (B.14)

which is an immediate consequence of (B-12)). Combining (B.13) and (B.14),
k(0x) = k((v*)"®(KD)ag) =

= —2(KD"®(Kag + (7)) P (Qu(K)ag + (K9 as(K?)°5 — Rag)
lek — (KQ)AB(KQ)AB — (’YQ)ABRAB. (815)

For every p € Q and given a positive function ¢ : Q — R, the basis B, = {ky, (Xa)p}
can be extended to a basis of T,M by adding the unique future null vector £, orthogonal
to each X, and satisfying (k,, £,) = —¢@(p). In the basis {Xa, k, £}, the contravariant
version of the metric g of M reads

1 1
9" = (¥ BXAa @ Xg — —k®@L— =L@ k. (B.16)
2 2
Therefore
1 1
(Y)*PRag = (97 + ak ® 4L+ ae ® k)(Riem?(-, k, -, k)) = Ric9(k, k),
and (B.15) becomes the Raychaudhuri equation in standard form, namely
k(6k) = Qbk — (K as(K)"® — Ric(k, k). (B.17)
This equation can also be expressed as
1
k(6x) = Qubi — 5(ek)2 — (MM as(MHAB — RicI(k, k), (B.18)

where M4 1= (K%)ag — 30k (7%) ag is the trace-free part of (K)s. Note finally that

(B11) and (BI8) yield

k((M)%g) = (Q = 8)(M*) g — R + %Ricg(ky k)85 (B.19)

B.6 Flow of surfaces along 2. Evolution equations

A remarkable property of the geometry of a null hypersurface €2 is that, given any point
p € €2 and any embedded spacelike surface S, in €2 containing p, the induced metric
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vs,(X,Y) of S, and the second fundamental form K’S‘p(X, Y) = (Vxk,Y) of S, along
the null normal k|, satisfy

YHX,Y) = (X +ak,Y +Bk) = (X,Y) =vs,(X,Y),
and
KAX,Y) =42 (KH(X),Y) =74*(Vxk,Y) = (Vxk,Y) = K§ (X, Y),

where X,Y € T,5,. In other words, the induced metric and the extrinsic geometry
along k of any embedded spacelike surface in €2 depends only on p and not on the
details of how S, is embedded in Q. For this reason we use from now on K* or K¥,
and ¥ or s = -y indistinctly.

Let s : 2 — R be a function satisfying k(s) = 1. The level sets of this function
determine a foliation {Ss} of spacelike surfaces in Q2. The choice of future null normal
£ transverse to Sg and satisfying (k,£) = — is unique. Let us consider on each S the
tensor K[(X, Y) =(VxLY), its trace 6,, and the connection one-form

(X)) = %ka,zy (B.20)

The values of s, determine completely the normal connection V+ and viceversa. Indeed,
the normal connection is completely defined when both the values of Vxk and V£
are given for any X € I'(TSs). Moreover, since k is null, it necessarily follows that
(Vxk, k),=0 and hence Vxk must be a multiple of k. Using now (k,£), = —p, we
directly have from the definition of s;(.X)

Vixk = —s5(X)k.

An analogous reasoning for £ yields
X
S I

Note that the connection one-form s, plays the role of the Christoffel symbols of the
connection.

Unlike K%, 8, and %, the tensors K*, 6, and s, are not intrinsic properties of the null
hypersurface €2, i.e. their values depend on how the spacelike surface Ss is embedded in
(2. The next task is to compute the derivatives of these tensors along k. Let us begin
with the extrinsic curvature K4g:

k(Khg) = k({(Vx.L Xg)) = (ViVx,L Xi) + (Vx,L, ViXg).
Using now that [k, Xa] = 0 and R(k, Xa)l = ViV x,£ — Vx,V L we obtain
k(K%8) = (Vx, Vil + R(k, Xa)l, Xg) + (Vx.L V. k). (B.21)
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From the definition of s, and Khg, Vx.k = —(s2)sk + (K¥)EgX ., which inserted into

(B.21)) gives
k(Kag) = (Vx,Vil, Xg) — Riem?(Xa, k, X, £) — (5)8(Vx,L, k) + (K)" 5(K*)La.
Since (k,£) = —¢, then
(Vb k) = =0 a—(Vx,k, ) = =0 4 — ©(5) A,
and consequently
k(Kag) = (Vx, Vil Xg) — Riem?(Xa, k, X, £) + (s2)50.a + ©(s0)a(s0) 8

+H(K) 5K La. (B.22)

We next work out the term (Vx,V(£, Xg). To compute V£ we simply note that
(k,Vil) =V (k,£) —(Vik,£) = —k(®) + @Qx so that, combined with (B.20]) and the
fact that £ is null,

Vil = (% — Qk) L— ()X, (B.23)
and then
(Vx,Vil, Xg) = <va ((@ - k) {— w(sg)LXL) ,XB>
= (M- 0) Ko — (050 X0 Xe) — (0Xa((5)")X0. Xa)
—(Vx. XL, Xz)). (B.24)

Denoting by V> the induced connection on each S, we have
(Vx, X1, Xg) = (V3, X1, Xg) = T5.Vpe.
where ['?, are the Christoffel symbols of «ys. This allows us to rewrite (B:24)) as

it xe) = (-0} Koo - patse - oVi(s0e (829

Inserting (B.29) into (B.22)) finally yields

he) = (M2 - Qu) Kh + (KN 6(KOa ~ Riem (X . Xe.
+o((se)alse)s — Valse)s). (B.26)

which is the evolution equation for the null second fundamental form along Z£.
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We next compute the derivative of 9, along k. This follows directly from (B.14]) and
[B.26):
k(6r) = k(v**K3p)
k
= (K E(Ksa + (M) - Q) S Riem (X, K X,
+o(Isel3 = Va(s)™). (B.27)

Expression g in (B-16) can be used to compute the third term in the above expression
as

1 1
Y*BRiem9 (X4, k, X5, ) = (g7 + a/< ® L+ 52 ® k)(Riem?(-, k, -, £)) =

= Ric?(k,£) — %Riemg(k,ﬁ, k,2),

and (B.27]) becomes
k(6,) = (% - k> 6, — (KM)"B(KY ag — Ric9(k, £) + %Riemg(k,ﬂ, k,£)
+o(|sel3 = V()™ (B.28)

Solving for Riem9(k, £, k, £) in the contracted Gauss identity (A30Q), which relates the
ambient scalar curvature Scal? and the induced scalar curvature Scal®, and substituting

in (B.28)) finally yields

k(@g) = <% — k) 9[ + Eing(k, Z) — Gng — gSCEﬂS + (p(|5¢|§ — V/IX(SZ)A). (829)

The last evolution equation we compute is the derivative along k of the one-form s;:

—k(¢p)

((0) = k (51Tx,k0) = S )4 L (T, &)+ (Vo V18))(B:30)

Using ViV x,k = Vx,Vik+ R(k, Xa)k in the second derivative term, and the geodesic
relation Vi k = Qk, implies

<VkVXAk,£> = —(p(Qk),A + (ka(Sg)A + R(Z, k, k,XA). (B31)

Using again expression (B.23]),

(Vx.k, VL) = (@ - k) o(se)a — @(s2)" Kfa- (B.32)
Inserting (B31]) and (B32) into (B3Q) gives
k((sp)a) = —(Q)a+ %R(é, k. k,Xa) — () K} 4. (B.33)
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As before, the curvature term in this expansion can be rewritten in terms of the Einstein
tensor. To do so, we use the Codazzi equation (A26]), with n = k

Riem9(Y, X, Z, k) = (VyRK)(X, 2), k) — (VxK)(Y, 2), k). (B.34)

We need to compute the derivative of the second fundamental form vector. We first
decompose K in the null basis {k,£} as K = %(Kek + Kk£). From the definition of

the covariant derivative V in (&.23)), where V" is replaced by the connection V*° of Sq,
and using that (K, k) = KX, we have

(VXK. 2), k) = (VxK(Y, Z), k) — KK(V3Y, Z) — KK(Y,V3Z).  (B.35)

Working out the first term, we obtain

(VxK(Y, 2), k) = <vx (—é(K‘f(Y,Z)k+Kk(Y,Z)e)),k>

= <VX (—%(Kk(Y, Z)e)) ,k>

_ %@KW 2)+ X(K(Y,2)) = 2KV, Z){Vxt. )

= X(KK(Y, 2)) + KXY, Z)s(X), (B.36)

where we used (Vx£, k) = —X (@) — @si(X). Inserting (B.36]) into (B3] and using
(VxK)(Y, Z) := X(KK(Y, Z)) — KK(V3Y, Z) — KK(Y, V3.Z), it follows

(VxRK)(Y, Z), k) = (VxK)(Y, Z) + KXY, Z)s(X),
so that (B.34]) becomes

Riem?(Y, X, Z, k) = (VyK)(X,Z)— (VxK(Y,Z)+ KK(X, Z)s(Y)
—KX(Y, Z)s(X),

or, in index notation
Riem9(Xa, X, Xc, k) = VaKge — VaKhc + Kic(s)a — K (s0) 5. (B.37)

Taking the trace we obtain
1
Ein?(Xa, k) + aRiemg(/, Kok, Xa) = V(K= (6).a+ K5 (s2)" — 0k(se)a, (B.38)

and solving for sRiem?(/, k, k, Xa) and substituting it in (B.33) gives the final form for
the evolution equation of s,

k((Sg)A) = _(Qk)A — (Sg)Aek + Vf(Kk)LA — (Gk),A — Eing(XA, k) (839)
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We finally compute the Lie derivative £4ms,. Let us choose a system of coordinates
{x ..., x"} on each Sg, such that the volume form gets the usual form

ns, = \/dety(s)dx' ... dx".

Using now the Jacobi identity for the derivative of the determinant of a uniparametric
family of matrices, that says that

dA(s)

% det A(s) = det A(s)tr (Al(S)T) ,

and considering as well relation (B.12]), we obtain

d

5 dety(s) = dety(s)tr (v () 0:v(s)s) = detv(s)y™!(5)"P2K g = 2dety(s)6x.
(B.40)

We finally conclude, using (B.4Q)

d
£Lims, = g\/detfy(s)dx1 cdX" = 2dety(s)8kdx ... dx" = 6;ms,.

1
2+/dety(s)

(B.41)
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Geometry of convex bodies. The support function

This appendix is devoted to the study of the relation of the geometry of a convex body
in R” with the geometry of the standard sphere. Using the Gauss map as the link
that connects both geometries, and studying some of the main properties of convex
functions and in particular using the so-called support function of a convex body, we will
be able to rewrite the first and second fundamental form of the convex body in terms of
the support function and geometric objects naturally defined on the sphere. The main
reference for this appendix is Schneider [94].

C.1 Mapping a convex body onto the unit sphere

Let C" be the set of convex bodies (non-empty, compact, convex subsets) of R". A set
A C R" is convex if together with any two points x, y it contains the segment [x, y],
that istosay, (1 —A)x+ Xy € Afor x,y € A, 0 < X < 1. Let us now introduce some
differentiability assumptions. A convex body C € C" is said to be of class CX, for some
k € N, if 0C (the boundary of C) is a regular submanifold of R” k-times continuously
differentiable. C is of class C* if it is of class C* for each k € N. C is of class C! if and
only if it has a unique tangent plane at each boundary point. The following theorem
will be proved at the end of this appendix and requires the use of the support function
of C, hc : R” — R (and in particular the support function of 8C, h: 0C — R, defined
in terms of the previous) which will be defined later. The theorem states the following:

Theorem C.1.1. Let C € C" be of class C?>. Consider yag and Kag the first and
second fundamental form of OC as an embedded hypersurface of R", and h: 0C — R
the support function of 0C. Then yag and Kag can be rewritten in terms of h as
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follows:

Kas = VaVgh+ Gash,
Yae = (GHMKiaKus,

where Gag denotes the pullback of the standard metric of the unit sphere onto OC via
de Gauss map, and V its corresponding Levi-Civita connection.

Remark C.1.2. Throughout this appendix we will use for tensors the index notation
(e.g. Kag) and the alternative notation K(X,Y') indistinctly.

Recall that for an embedded manifold N in M, p € N, and an orthogonal vector field
n along N, the Weingarten map W, : T,N — T,N is defined as the endomorphism

W(X) = (Vxn)'.

Let C € C" be of class C2. For p € 8C, let v(p) be the outward unit normal vector of
OC at p. In this particular case where 1 := v has constant norm (|v| = 1), we have

W,(X) = (Vxv)" = V. (C.1)

Consider the embedding ¢ of the abstract sphere S"~! in R". Since C € C" is of
class C?, the map v : 8C — ¢(S""1), that assigns to each p € 8C the unique point
d(u) € ¢(S"1) with u € S"~1 so that the vector v(p) and the one defined by the origin
and ¢(u) are parallel in the standard way in the Euclidean space, is well-defined and is in
fact of class C!. This is called spherical image map or Gauss map of OC. Observe that
in this context v will be used both to denote the unit normal to OC and to denote the
map going from OC to the embedded unit sphere. In spite of this duality no confusion
arises since the situation will be clear by the context. The map v induces another map
ve : 0C — S"1 to the abstract sphere. We will refer to v¢ as the abstract Gauss map,
and it is defined by vc(p) = u, or equivalently v = ¢ o v¢.

As in Chapter [, given two points p; and p, of R”, we denote by 7,,-,,, the map that
transports parallely a vector from T, R" to T,,R". The differential dv of the Gauss map
v is the Weingarten map W, when the vectors of Ty, $(S" ) and T,0C are identified
by parallel transport. In other words, the Weingarten map W, acting on X at p € 0C
can also be expressed in the following way

W, (X)|, = %(U)%p(d’/p(x))-

The equivalence of this expression with (CJ) is direct in Cartesian coordinates {x*},
where (Va ,v)® = dv®(8,4). The second fundamental form of 8C at p is defined in
terms of the Weingarten map as

Kp(X,Y) = Wu(X). Y) p, (C.2)
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C. Geometry of convex bodies. The support function

with X, Y € T,aC.

In local coordinates, we can describe the constructions above as follows. Let U C R"!
be an open set, and X : U — O0C C R”" a local parametrization of class C? of a
neighbourhood of p on 8C, where p = X(y) with y € U. Then N =vo X : U —
d(S"™1) C R is a local parametrization of a neighbourhood of ¢(u) on ¢(S"1), and
is a map of class C! (see Figure [CT]). Therefore

dNy = dv, o dX, = W,|, = dv, = dN, o dX . (C.3)

Consider a basis {ea} of T,U. Let us define X4 := dX(ea) and Ny := dN(ea). From

([C3) we have
WP(XA) = 7Eb(u)ep/\lA-

For the sake of simplicity we will simply write W,(Xa) = Na when it is clear from the
context. The second fundamental form and the metric of OC read respectively

Kag = K(Xa Xg) = W,(Xa), Xg) = (Na, Xg).
Yaz = (Xa, Xp).

Since W, |, is an endomorphism on T,0C, W,(Xa) can be expressed in terms of
functions WULA defined on OC and the basis X4, namely

W, (Xa) = W5 XL
For this reason
Kag = <WIJ(XA)1XB> = <WL/LAXL1XB> = WVLA’YLB.

which is just the rewriting of (C2]) in components.

The following assumption, stronger that C¥, will also be important. We say that C
is of class C¥ (for k > 2) if C is of class CX and the Gauss map v : 8C — ¢(S" 1) is
a diffeomorphism (of class C?, and hence Ck~1). This is equivalent to the assumption
that its differential, the Weingarten map W,, is everywhere of maximal rank, and thus
to the assumption that all the principal curvatures (the eigenvalues of the Weingarten
map at a point) are non-zero.

Let C be of class C2. Then the map v has an inverse v~ ! of class C*:
vlop(S") — ac,
which is known as the inverse Gauss map. Using its differential

dv=t: Td,(u)d)(Sn_l) — T,,@C,
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C.1. Mapping a convex body onto the unit sphere

=2

UCR" %

N=voX Touyd(S"1)

Me(u)

¢(8") CR”

Figure C.1: Schematic figure representing the construction above, where a local
parametrization of the boundary of a convex body C and of the embedded sphere
d(S"™1) is given, as well as the Gauss map v that maps diffeomorphically a neigh-
bourhood of p € 8C to a neighbourhood of ¢(u) € ¢(S™1). U C R" is an open
set, X : U — 8C C R" is a local parametrization of class C? of a neighbourhood of
p e dC, withp=X(y)andy € U. N:U — ¢(S"!) € R" is a local parametriza-
tion of a neighbourhood of ¢(u) on ¢(S"1), and is a map of class Ct. The map
v:9C — ¢(S"™1) C R" is the Gauss map of OC. The image of p by v is ¢(u), so that
the respective outer unit normals m, and mg,) are parallel in the standard way in R".

we can define the reverse Weingarten map endomorphism B acting on vectors of
T¢(u)¢(S”_l) as
. —1
By (V) = Tpmsguydv ™ | (v),

from where Byuy(Na) = Tpsuy AV o) (Na) = Tomspu)Xa. For the sake of simplicity
and for the same reasons as before we will simply write

B(Na) = Xa.
The reverse second fundamental form B of OC is defined in terms of this map as
B(v,w) = (B(v),w), v, w € Tyud(S"1).
Applying this tensor on vectors of the basis { N4} we obtain

B(Na, Ng) = (B(Na), Ng) = (Xa, Ng) = K(Xg, Xa) = K(Xa, Xg),
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C. Geometry of convex bodies. The support function

where in the last equality the symmetry of the second fundamental form has been used.
Since Ny = dv(Xa), it follows
K =v*(B).

Consider the spherical metric Gag = (Na, Ng) and the functions BLA defined by
Xa = B(Ny) = BN,

Then
Bag = (B(Na), Ng) = (Xa, Ng) = (B"4N., Ng) = B" 1.5,

which means that the spherical metric raises and lowers the indices of the reverse
Weingarten map.

C.2 Convex functions. The support function

There is an interesting relation between convex sets and convex functions. Let us first
define what a convex function is:

Definition C.2.1 (Convex function). A function f : R"” — R is convex if
FI(1=X)x+Ay) < (1= N)F(x) + Af(y),
forall x,y e R"and 0 < XA < 1.
The following theorems are general analytic results of convex functions and can be
found for instance in [94]:

Theorem C.2.2. Let f : R" — R be a convex function. Consider x € R". If f has
partial derivatives (of first order) at x, then f is differentiable at x.

Theorem C.2.3. Let f : R" — R be a convex function. Consider x € R". Then there
exists

(x4 Au) = f(x)
f! = | :
(o) i= Jim =5
We call f'(x, -) the semidirectional derivative function of f at x.

Remark C.2.4. The difference between semidirectional and the more standard direc-
tional derivative is that in the later A — 0 without restriction while in the former the
limit is one sided A — 0.

A function f : R" — R is called positively homogeneous if
f(Ax) = A (x),
for all A > 0 and all x € R”, and f is called subadditive if
fix+y) < f(x)+f(y)
for all x,y € R".
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C.2. Convex functions. The support function

Definition C.2.5 (Sublinear function). A sublinear function is a function that is posi-
tively homogeneous and subadditive. Every sublinear function is clearly convex.

The following result clarifies the relation between the semidirectional derivative func-
tions of the convex functions and sublinear functions:

Lemma C.2.6. Let f : R" — R be convex, and x € R". Then the semidirectional

derivative function
f'(x;9):R" =R

is sublinear.

Proof. Let u € R"\ {0}. Consider A, 7 > 0. We may write

f(x+TAu) —f(x) Af(x—i-T)\u) — f(x)
T n A

When we take the limit 7 — 0™, we obtain
f'(x;  u) = Xf'(x; u).

Using the convexity of f, for u,v € R” we have

fix+71(u+v))=f (%(X+2TLI) + %(X+2TV)> < %f(x+2'ru) + %f(x+27v).

Hence
f —f f 2 —f f 2 —f
i FOHTE V) = F0) | Fler2mu) = £ | F(x+27v) = F(x).
T—0F T T—0F 2T T—0F 2T

that is to say, f'(x;u+v) < f'(x;u) + f'(x; v).
O

The following lemma shows that the semidirectional derivative function of a sublinear
function is always upper bounded by the function itself:

Lemma C.2.7. Let f : R" — R be sublinear. Let x € R". Then f'(x;-) < f.

Proof. For u € R" and 7 > 0, the sublinearity of f yields
f(x+7u) < f(x)+71f(v),

which is equivalent to
f(x+'rL7/-) — f(x) < Fu).

Taking the limit when 7 — 0T, we obtain f'(x; u) < f(u). ]
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A convex body can be described by real functions. One of them is the so-called
support function. As we will see, the support function combined with the geometry of
the standard sphere will determine the first and second fundamental forms of a convex
body. Let us first introduce the definition of support function:

Definition C.2.8 (Support function). Let C be a convex body. The support function
h(C,-) = hc of C is:

h(C,u) =sup{{x,u) : x € C} forall ueR"

Remark C.2.9. The support function is a convex function. In fact it is sublinear, because
it is both positively homogeneous

he(au) = sup{(x,au) : x € C} = asup{(x,u) : x € C} = ahc(u), a >0,
and subadditive, since

he(u+v) = sup{(x,u+v):xeC} <sup{(x,u):xe C}+sup{(x,v):xeC}
= hc(u) + he(v).

For a convex body C (which recall is by definition compact), the supremum in the
definition of h(C, u) is attained and finite for each w.

The support function allows us to describe the geometry of a convex body in R” (see
Figure [C2)). Given any vector u € R"\ {0}, there is just one plane orthogonal to u
which makes contact with C for the first time and that leaves the body C on the side
where u does not point. This plane is the support plane, denoted by H(C, u), and is
defined as

H(C,u) ={xeR": (x,u) = h(C,u)}.

This plane separates the Euclidean space in two halfspaces. The one where the convex
body C lies is the supporting halfspace and will be denoted by H~(C, u). This halfspace
is defined as

H (C,u) ={xeR": (x,u) <h(C,u)}.

The intersection set of the support plane and the convex body will be denoted by F(C, u)
and called support set of C. Namely
F(C,u) :=H(C,u)ncC.

As described above, the support function specifies the position of the support planes,
which determine the corresponding supporting halfspaces, and consequently the convex
body, since such an object is always the intersection of all the supporting halfspaces.

The intuitive meaning of the support function is simple. Indeed for a unit vector
m € ¢(S"1), the number h(C, m) is the signed distance of the support plane to C
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C.2. Convex functions. The support function

Figure C.2: Schematic figure representing the support function hc of the convex set
C not necessarily of class C? evaluated on a unit vector m. By definition, hc(m) =
sup{(x,m) : x € C} = sup{xy : x € C}, where x,, is the signed distance from
the origin O to the projection of x onto the line r, generated by m. In this case,
the supremum is attained at the points x* € AC (it is not necessarily unique), and
F(C,m) = H(C,m)N C = {x* € 0C}. The signed distance x7, is defined by x} =
(x*, m) for any x* € F(C, m) and coincides with hc(m). The support plane H(C, m) is
the first plane orthogonal to m that touches C. We denote by H~(C, m) the halfspace
defined by the support plane and that contains C.

with outer normal vector m from the origin; the distance is negative if and only if m
points into the open halfspace containing the origin. Let us prove this. Let r,, be the
line generated by m and containing the origin, and let us denote by x,, := (x, m), i.e.
the signed distance from the origin to the projection of x onto r,,,. The signed distance
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C. Geometry of convex bodies. The support function

Xm Will be > 0 if and only if m points out of the supporting halfspace H=(C, m), and
Xm < 0 when the vector m points in the direction of H=(C, m). Then

hc(m) = sup{(x, m) : x € C} = sup{x,, : x € C}.

This supremum will always be attained by the points x* € C N H(C,m) = F(C, m),
which are always contained in 0C. Thus,

he(m) =sup{x, : x € C} =x,, = (x",m), x" € F(C,m)CoC.

From x* € H(C,m) N C, it follows that x! = (x*, m) is the signed distance from the
tangent plane H(C, m) to C to the origin, as we wanted to prove.

The support function has the following properties:

Proposition C.2.10. For C € C" and u € R" \ {0}, the following properties hold

(i) h(C,-) ={(z,-) if and only if C = {z},
(i) h(C+t,u) = h(C,u)+ (t,u) fort € R",
(iii) h(AC,-) = Mh(C,) for A\ > 0 and h(—C, u) = h(C, —u),

(iv) hc < h, ifand only if C C L.

Proof. The first three properties are direct consequence of the definition of support
function. For property (iv), assume first that C C L. Then for any u € R”,

he(u) = sup{(x,u) : x € C} <sup{(x,u) : xe L} = h(u),

since the set where the second supremum is taken is larger than for the first one.
Conversely assume that C is not included in L. Consider the sets C\L and 9L, and
note that OC\L is non-empty since C is not contained in L. Define the function
d(-,0L) : 9C\L — R, which gives the euclidean distance of a point p € OC\L to OL.
This function attains its maximum at some (possibly non-unique) point p* € 9C\L.
Let ¢* € OL satisfy d(p*, g*) = d(p*,0L) and consider the vector g*p*, and the unit
vector m* = %. By construction, p* is a contact point of C with H(C, m*), i.e.
hc(m*) = (p*, m*). It also holds h,(m*) = (g*, m*) since g* belongs to the set of
contact points of H(L, m*) with L. Multiplying the relation p* = g* + g*p* by m*, we
obtain

hc(m*) = h(m*) + (g*p*, m*y = h.(m*) + {|g*p*|m*, m*) = h,(m") + |g*p*|,

where |g*p*| > 0. Thus, hc(m*) > h.(m*). [
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A m
C p’
H(C, m*)
; q*p*
R" P
i q
H(L, m*)
4 .
im
H L
@)

Figure C.3: Relation between the support functions of the convex sets C and L when C
is not included in L. The function d(-,0L) : 0C\L — R attains its maximum at a point
p* € OC\L and g* € OL satisfies d(p*, g*) = d(p*,0L). The unit vector m* = I%I
define the support planes H(C, m*) and H(L, m*), which first touch C at p* and L at
g*, not being these points necessarily unique. The support functions satisfy in this case

h(_‘(m*) > hL(m*)

Since the points x* always lie on 0C, it makes sense to define the support function of
a closed, convex and connected hypersurface S C R” which is the boundary of a convex
body C of class C?r, i.e. where S = OC. In this case S is of class C! and diffeomorphic
to the unit sphere and given a unit direction m, the tangent plane H(C, m) to S touches
the hypersurface in a single point x*, i.e. F(C, m) = {x*} (see Figure[C4)). In this case
m is also the outer unit normal of S at x* (as well as the unit normal to the tangent
plane H(C, m)). We have

hc(m) = sup{(x,m) : x € C} = (x*, m).

By homogeneity, the support function h¢ is fully determined when it is defined on each
unit direction. Since in the present case S"~! and AC are diffeomorphic, we can naturally
define a function h on 0C as

h:=hcov.

This function h: S — R will be called the support function of S and can be explicitly
computed by

h(p) = (hc o v)(p) = hc(m) = sup{(x, m) : x € C} = (x(p), m(p)). (C.4)
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where m(p) is the unit normal at p pointing towards the exterior of S and x(p) is the
position vector of the point p € S.

s Im
.

Figure C.4: Schematic figure representing the support function h¢ of the convex set C
of class C? evaluated on a unit vector m. By definition, hc(m) = sup{(x, m) : x € C} =
sup{xy, : x € C}, where x,, is the signed distance from the origin O to the projection of
x onto the line r,, generated by m. When C is of class C2, the supremum is attained
at a unique point x* € 0C, and {x*} = F(C, m) = H(C, m) N C. The signed distance
x* is defined by x* = (x*, m) = hc(m).

C.3 Geometry of Euclidean hypersurfaces in terms of
the support function

The following result is necessary for the proof of Theorem [C 1.1l It shows that the set
of sublinear functions is a subset of the support functions of convex bodies. The proof
is somewhat delicate and can be found in [94].

Theorem C.3.1. /ff : R" — R is a sublinear function, then there is a unique convex
body C € C" with support function f.
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h(p) = (x(p), m(p))

Figure C.5: Definition of the support function h of a convex surface S. This function
at a point p € S measures the signed distance of the tangent plane 7,S to the origin
of coordinates. Equivalently h(p) is the product of the position vector x(p) with the
outer unit normal m(p) to S. The support function describes the geometry of a convex
body in the euclidean space.

The semidirectional derivatives of support functions are closely related to the support
function of the corresponding support sets. This is the content of the following theorem:

Theorem C.3.2. For C € C" and u € R"\ {0},
h-(u;x) = h(F(C,u);x) for xeR" (C.5)

Proof. Applying Lemma [C2.6] we obtain that hi-(u;-) is sublinear. Hence using Theo-
rem [C3.3] h-(u;-) is the support function of a convex body C’ that satisfies C' C C
because hz(u;-) < hc (see Lemma and item (iv) in Proposition [C2.10Q). Let
y € C'. By the definition of support function, (y, u) < h(C, u). Let us next show the
reverse inequality. Since y € C’, we can apply items (i) and (iv) to the sets {y} and
C’ to find that their respective support functions satisfy (y,-) < h-(u;-). Evaluating
at —u we obtain (y, —u) < hi-(u; —u) = —h(C, u), where in the last equality we have
used the definition of semidirectional derivative and the homogeneity properties of the
support function, namely

(s —u) = Jim. he(u + >\(—>\U)) — he(u) A“I%L(l - A)hcg\u) — he(u) _

—h(C, u).

Therefore (y, u) = h(C, u) and hence y € F(C, u). We conclude C' C F(C, u).

For the reverse inclusion we consider y € F(C, u). From the definition of F(C, u),
it follows (y, u) = h(C, u), and since y € C, we have (y,v) < h(C,v) for all v € R",
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where we have used the definition of support function. Choosing v = v+ Ax (A > 0,
x € R") we get

h(C,u+Xx) > (y,u+xx) = (y, u)y + Xy, x) = h(C, u) + Xy, x),

and then

h(C, u+ Xx) — h(C,u
) < ME0 20 = HC)
Taking the limit A — 0" we conclude (y, x) < hi-(u;x). In other words, the support
function of the set {y} is less than or equal to the support function of C’, so from item
(i) in Proposition [C2.10Q] it necessarily follows that y € C’. This proves F(C,u) C C’
and hence F(C, u) = C’ and the equality (CH). ]

In the following theorem, we will prove that when the support function h¢ is differen-
tiable at v € R”, then its gradient at this point exists and is given by the unique contact
point x of the hyperplane H(C, u) orthogonal to v with the convex body C.

Theorem C.3.3. Let C € C" and u € R"\{0}. The support function hc is differentiable
at u if and only if the support set F(C, u) contains only one point x. In this case,

x = gradhc(u).

Proof. The support function is a convex function and consequently the semidirectional
derivative function h’C(u;) exists. To show differentiability, it is hence sufficient by
Theorem to prove that the partial derivatives exist. Fixing an orthonormal basis
€1, ..., e, and expressed in terms of semidirectional derivatives, this happens if and only

he(u;ea) = —h-(u;—ea) VA=1,..., n.

We can rewrite the above condition by using formula (C3]) as
h(F(C,u),ea) = —h(F(C,u),—es) VA=1,..., n. (C.6)

Condition ([C@l) describes the situation where the unique support plane H(F(C, u), ea)
orthogonal to e, and tangent to F(C, u) lies at the opposite signed distance from
the origin than the plane H(F(C, u), —es) orthogonal to —es and also tangent to
F(C,u). This can only happen if the two tangent planes coincide (H(F(C, u),ea) =
H(F(C, u), —ea)) and the set F(C, u) is contained within it, i.e. if and only if

F(C,u) C H(F(C, u), ea),

This must happen for every A =1,..., n, which means that F(C, u) is included in n
different hyperplanes, each one perpendicular to one of the vectors e, in the orthonormal
basis {ea}. Thus, these hyperplanes are pairwise orthogonal, and given that F(C, u) is
included in all of them, it must be F(C, u) = {x} for some x in the boundary of C.
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By property (i) in Proposition [C2.10, the support function of a single point {x} is
(x,-). Then
(x,v) =h(F(C,u),v) =h-(u;v) forall veR"

In particular

In other words, x = grad hc(u). O

Remark C.3.4. Note that {x} = F(C, u) is the unique contact point of H(C, u) with
C. In particular x lies in the boundary of C.

Let us now consider the relation between Theorem and the construction at the
beginning of this appendix where we introduced the Gauss map v of the boundary of
a convex body C. Let us assume that C € CJQF. Then the map v has an inverse v—!
of class C!. The support function hc can be rewritten in terms of v~!. Recall that
vt ¢(S"t) — AC, and when we consider m € ¢(S"1), then v=1(m) € 8C is the
point whose outer unit normal coincides with m. For this reason given p € 9C, there
exists m € ¢(S"71) so that v=1(m) = x(p), where x(p) is the position vector of p, and
since m is the outer unit vector of C at p, then (C4]) can be expressed as

he(m) = (v (m), m).

Note that since v~! is of class C!, then hc¢ is differentiable on ¢(S"~!) and by homo-
geneity on R”\ {0}. Given u € R"\ {0}, the unit vector m = oy lies in ¢(S"1), and
there is a point p € OC satisfying “_1(\_54) = x(p), so we finally obtain

1 (ﬁ) — x(p) = grad he(u), u€R"\ {0}, (C.7)

The following definition extends to all Euclidean space in a natural way the reverse

Gauss map v~ 1:

Definition C.3.5. For u € R"\ {0}, let v=1(u) € AC the unique point of dC at which
u is an outward normal vector. From (CZ) this map can be written explicitly as

v1:R"\ {0} — aC
u — v=1(u) = grad he(u)

Remark C.3.6. With this definition, =1 is a positively homogeneous function of de-
gree zero. Note that the restriction to the embedded unit sphere F’d)(gn—l) =yt
$(S" ') — 9C is the reverse Gauss map. Its differential dv=" : Typ(S" 1) — T,0C
is used to construct the reverse Weingarten endomorphism B when the two tangent

planes Ty,)@(S" 1) and T,0C are identified.
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So far we have studied the maps that link the geometry of convex bodies with the
geometry of the sphere. Besides we have analyzed the main properties of the support
function of a convex body, but we have not yet related both of them. The next Theorem
will provide the relation between the reverse second fundamental form and the
support function of a convex body C (see Figure [C.6]). Before stating the result, we
need the following analytic Lemmas:

Lemma C.3.7. Let f : R” — R be an homogeneous function of degree one. Then

aAan(X)XA =0. (C8)

Proof. The function f satisfies the relation f(Ax) = Af(x). If we differentiate with
respect to A and evaluate at A = 1 we recover Euler’'s Theorem

Oaf (x)x* = f(x). (C.9)
Differentiating with respect to x&:
OgOAT (X)X + Oaf (x)0px" = Opf(X).

Since 9px” = "5, relation (C8) follows immediately.
]

Lemma C.3.8. Let f : R” — R be a homogeneous function of degree one and x &€
R™\ {0}. Then
1
(Hessgnf)x(a, b) = M(HessRnf)ﬁ(TX%ﬁa, 7;_>|§jb), a,beR"
Proof. We use the form (Hess f)|(v, w) = (V,grad f, w)| for the Hessian of f. Note
that the Hessian of f becomes zero when is contracted with any direction parallel to x
because
(Hess ) |x(x, -) = (Vigradf, ),

and using Euclidean coordinates

of

ngradf = V(XAaXA) (ﬁ

BXB) = XA(aAGBf)GXB =0,
from Lemma [C3.7] It only remains to evaluate the Hessian of f at x along vectors
perpendicular to x.

Let us consider the map 6 : R\ {0} — ¢(S""!) C R” defined by 6(x) = ng- Note
that when it is restricted to S"(|x|), i.e. the (n — 1)-sphere of radius |x|, then it is
precisely the Gauss map of this surface. Using the homogeneity of f, we have

F(x) = X (i) — X|(F 0 8)(x).

x|
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An immediate computation gives Oa(|x|) = and
96°(x) 9 [x“\ 0“4 x™&X€
ox7 "B (W) =T RE (19
which yields
06 (x)
(Oaf)(x) = BA(IXI(foe)(X))—H("O@)(X)HXIZ ( (X)) =54
xA xA  of
= W(f 0 0)(x) + W(Q(X)) — (gradfle(), Q(X»M = 3A0()).
(C.11)

where we used (gradf|g(x), 0(x)) = f(8(x)) (see (C9)) in the last equality. In vector
notation, (C.II)) states that gradf|, = Tp(x)—x (gradf\e(x)). If we restrict gradf to
S™1(|x]), we can write

T(gradf|gn_1(|x|)) = gradf|gn_1,

where (TZ)|ox) := Tx—a(x)(Z|x) for any vector field Z along S"~*(|x|). The two spheres
S"1(|x|) and S"~! are diffeomorphic by 6, so we can apply Lemma 21l in Chapter [,
to obtain

7:<_>9(X) ((Vagradf|§n71(|x|)) |X) = (Vde(a)gradﬂgn—l) |9(X). (C12)

Moreover,

1
d9| (a) ‘ ’ X—>9(x)a

as a consequence of ([CIQ) and the orthogonality of a and x. Substituting in ([C12))
gives

1

Teso0) ((Vagradflsea) x) = X]

(vﬁae(x)a(grad flgn )) |9(x) .

We finally use the obvious fact (v, w)|, = (TpqV, Tp—qW)|q for any p,q € R" and
v,w € T,R" to conclude

(Hessof)|x(a, b) = (Vagradf, b)|x = (Tesa) ((Vagradflseiqxp) Ix) » Temsac b) loco

1
= M<V7;%<X)a(9radf!snfl).7}—>9(x)b>|e(x)

1
- m(HeSSR"f)e(x)(’fHe(x)a- Teso)b),

as claimed.
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Rn

’Tual—z‘ (myb)

¢(s"H)

T u (mya)

[u]

Figure C.6: The Hessian of the support function hc on R” corresponding to a convex
body C can be expressed in terms of the reverse Weingarten map B, which is an endo-
morphism acting on vectors tangent to the embedded unit sphere ¢(S"~1), and providing
extrinsic curvature information of the convex body. For any point v € R” and for any
a,beT,R" themapm, : T,R" — T,S"!(|u|) projects any vector on T,R" to the plane
T.S"1(Ju|) tangent to the embedded (n—1)-sphere S"~1(|u|) of radius |u|. The Hessian
of hc satisfies the relation (Hessgnhc),(a, b) = i(B(IHTZ‘(WUa)), T,Hﬁ(wub)).

lul

We are ready to state the relation between the Hessian of the support function and
the reverse Weingarten map:

Theorem C.3.9. Let C € C" and u € R"\ {0}. Then

1
(Hessgnhe)u(a, b) = m(B(f,_ﬁ(wua)), 7Z,_>ﬁ(7rub)), (C.13)
for all a, b € R", where T, is the orthogonal projection onto the orthogonal plane to u
(as a vector) and that contains u (as a point).

Proof. Let u € R"\ {0} be a unit vector (Ju| = 1) and {ey, ..., e,} an orthonormal
basis of vectors of R™ with e, = u. We write (x!, ..., x") for the corresponding Cartesian
coordinates. Observe that in these coordinates v = (0, ..., 1).

From Lemma [C3.7] we know that 9,9zhc(x)x* = 0, which evaluated at x = u gives

0 = 040shc(u)u™ = Bg0yhc(u) forall B=1,..., n.
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Then
n n—1
(Hesspohc)u(a, b) = > 0a0shc(u)a”b® = Y 840shc(u)ab? (C.14)
AB=1 A B=1

We also know that v=1(u) = grad he(u) (see Definition [C3.8]). The differential of v—1
can be represented by the matrix

010:hc ... 010,hc
dF = : . :
010,hc ... 0,0,hc

so that 9a0shc(u) = (dv=1|,(en), eg). Restrictingto A, B=1,..., n—1 we have

0a0shc(u) = (dv=tu(en), es) = (v u(ea), es) = (Bu(mu(ea)), mu(es)).

where in the last equality we have used that eq € T, ¢(S" 1) for A=1,..., n—1 and
consequently eq = m,(ea). Hence

n—1

nz aAGBhC(U)aAbB = Z <Bu(7ru(eA))v Wu(eB»aAbB = <Bu(7rua)r 7rub>- (C15)

A,B=1 A,B=1

Combining (C14]) and (CIH) gives
(Hessgnhe)u(a, b) = (By(m,a), m,b) Vu € ¢(S™1).

We can extend this formula to all u € R\ {0} by using Lemma[C3.8 and the fact that
hc is homogeneous of degree one:

1
(HeSSR”hC)u(ay b) - m(HeSSR"hc)ﬁ(%ﬁﬁ a, ﬂﬁﬁ b)
1
= m<8(nﬁﬁ(ﬂua)). Tos e (4b)),
which is (C13). ]

We have all the ingredients to find the expression for the second fundamental form of
the boundary O0C of the convex body C in terms of the support function h associated to
AC. In order to do so, let us consider u € S, {ua} a basis of T,S"™ ! and Na = do(ua)
(recall that ¢ is the embedding of the abstract sphere into R"). Applying Theorem
we obtain

(Hessgohc)guy(Na, Ng) = (B(mpu)(Na)), Tow)(Ne)) = (B(Na), Ni)
= (Xa Ng) = (Xa, W(Xg)) = K(Xa, Xg). (C.16)
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This last result determines the second fundamental form of OC in terms of the Hessian
of its support function with respect to the euclidean metric. In Proposition [A.2.1] in
Appendix [Al we have proved that if if ¢ : N — M is an embedding of N in M, and
f M — R is a smooth function, the following identity relating the ambient Hessian to
the induced Hessian holds,

Hessy f(dp(X), dp(Y)) = Hessy(f o ¢)(X,Y) + (gradf, K(X, Y)),

where X,Y € I'(TN). We apply this result in our present context where M = R" N =
S 1, f = hc, and ¢ is the embedding of the abstract sphere into R”. We get

(Hessgrhe)lp(uy(Na, Ng) = Hessgo1(he o @)]u(ua, ug) + (grad he, K(Na, Ng))lw)-
(C.17)
Let us compute now the last term of this expression. The sphere is totally umbilical
and in fact

Klowy(Na, Ng) = Koy (Na, Ng)d(u) = (Na, Ng)d(u) = G(ua, ug)d(u),

where recall § is the metric of the abstract standard sphere. Using that hc is homoge-
neous of degree one, we obtain

(grad he, K(Na, NeDlowy = G(Ua, us)Vwyhclopw = d(ua, ug)hc(d(u))

after applying Euler's Theorem (C9)). As a consequence ([CI7]) becomes
(Hessrnhe) gy (Na, Ng) = Hessga1(he o ¢)y(ua, ug) + G(ua, ug)(he o )(u),
which in combination with (C16]) gives
K(Xa, Xg) = Hessgo-1(hc o @), (ua, ug) + G(ua, ug)(hc o ¢)(u). (C.18)

The second fundamental form K is naturally defined on 0C, whereas the right-hand
side of the above inequality is defined on the abstract sphere. We want to find the
expression for the equality where every tensor and function is defined on 8C. To do so,
we recall that dvc(X,) = ua. This implies

Hess(sn1,4)(hc © @)u(ua, us) = Hessgn1 g (hc o @)u(dvc(Xa), dvc(Xg))
ve (Hessignr 4 (he © 9)) 15(Xa, Xa)
= Hessac.uy () (We(he © §))lp(Xa, Xg).
Recalling now that v (hc o ¢)(p) = hc o pove(p) = h(p), where h: 0C — R" is the
support function of C, and writing the pullback vZ(§) of the spherical metric still as

G (no confusion arises since both are defined on different manifolds), expression (C.18))
finally becomes

Kp(XAy XB) = HeSS(aC@)mp(XA, XB) + C?(XA, XB)h(p),
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which expressed in index notation gives the expression stated in Theorem at the
beginning of the appendix, namely

Kag = VaVgh + Gagh. (C.19)

All objects in this expression are defined on the hypersurface OC (OC has been endowed
with the spherical metric § via vc, and V is the connection defined by such metric).
The metric v of OC can also be expressed in terms of the spherical geometry as

Yag = (Xa, Xg) = (Xa, Xg) = (B(Na), B(Ng)) = (G )" BLaBus.
which upon using Kag = Bag, can be written as
Yag = (67 "MKLaKue. (C.20)

This completes the proof of Theorem [C 1.1l

C.4 The support function of the sphere

In Subsection .4.1] of Chapter 4 we need the support function of the compact ball
B(c,Ry) = {x € R": |[x — c| < Ry} of radius Ry and center ¢ € R”. In this particular
case 8C = S" (¢, Ry), i.e. the (n — 1)-sphere of radius Ry centered on c. Given any
point p of the sphere, the position vector can be written as

x(p) = ¢+ Rom(p),

for some unit vector m(p). It also happens that the exterior unit normal vector at p is
m(p). Then

h(p) = (x(p), m(p)) = (c + Rom(p), m(p)) = Ro + (¢, m(p)). (C.21)
Restricting ourselves to R3, ¢ = (¢*, ¢”, ¢?), and formula (C21)) reduces to
h(p) = Ro + c*n(p) + c¢"m”(p) + c*m*(p).

The components of the vector m(p) decompose in terms of the usual spherical coordi-
nates as
m* =sinfcosp, m’ =sinfBsing, m° = cosb,

which are the three linear independent spherical harmonics solution to the equation
Ngf = =2f.

Remark C.4.1. The support function of a sphere whose center lies at the origin of
coordinates is the constant function defined by the radius of the sphere.
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