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Universidad de Salamanca

MEMORIA PARA OPTAR AL T́ITULO DE DOCTOR

Alberto Eduardo Soria Marina

PhD Thesis, 2017





D. Marc Mars Lloret, Profesor Titular de la Universidad de Salamanca

CERTIFICA:

Que el trabajo de investigación que se recoge en la siguiente memoria

titulado “The null Penrose inequality and the shell version in Minkowski”, presentada

por D. Alberto Eduardo Soria Marina para optar al t́ıtulo de doctor, ha sido realizada

en su totalidad bajo su dirección y autoriza su presentación.

Salamanca, 29 de mayo de 2017.

D. Marc Mars Lloret

Profesor Titular de Universidad

Universidad de Salamanca





The null Penrose inequality and the
shell version in Minkowski

Alberto Eduardo Soria Marina

2017





A mis padres Tomás y Elvira.

A mi hermana Lorena.





”
Wir müssen wissen

—wir werden wissen“.

David Hilbert





Agradecimientos
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1
Introduction

The theory of General Relativity (GR) was developed by Einstein and completed in

1915 and it is, so far, the most accurate theory to describe gravitational physics. It

generalizes the Special theory of Relativity, published in 1905. Einstein understood that

in presence of gravitational fields, the spacetime is a four dimensional differentiable

manifold endowed with a metric tensor of signature (1, 3) solving the so-called Einstein

field equations of General Relativity, which are fundamental to study the gravitational

interaction. Einstein’s theory makes remarkable statements concerning the structure of

space and time and the nature of the gravitational field. The theory uses complex and

powerful mathematical tools.

The influence of Riemann’s ideas was essential for the foundation of GR. Minkowski’s

and Ricci’s work endowed Einstein’s special and general theory of relativity with a solid

geometrical structure, and contributed to set the pillars of both theories. In 1906 Ein-

stein published the Equivalence Principle and from 1907 to 1911 Einstein’s work was

directed to the obtention of a field law for gravitation. With the help of Grossmann for

a better understanding of the arising mathematical difficulties, Einstein’s main achieve-

ment in the period going from 1912 to 1914 was the Principle of General Covariance.

After a long and difficult process, including a final race with Hilbert, Einstein published

his famous field equations of gravity in his article
”
Die Feldgleichungen der Gravitation“

(“The field equations of Gravitation”) the 25th of November of 1915 in the Prussian

Academy of Sciences [31].

GR theory can be applied to numerous areas of physics. Among others, it allows us

to study the evolution of the universe as a whole. The theory can also be used to study

the behaviour of highly energetic, compact astronomical objects such as quasars and

compact X-ray sources. It is also the best theory to study the gravitational collapse of

a massive object and it predicts accurately the behaviour of moving bodies in strong

gravitational fields. Einstein’s theory also predicted in 1916 the existence of gravitational

waves, ripples of the distorted spacetime traveling at the speed of light and caused by
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massive accelerating objects. A major confirmation of the theory has been the recent

detection of gravitational waves by the observatory LIGO on the 14th of September

2015 [62]. Other GR predictions have also been found to be in excellent agreement

with experiments and observations. It is also believed that General Relativity will play a

capital role in the future development of a quantum theory of gravitation.

The subject of this thesis is the so-called Penrose inequality conjecture. In order to

describe the general context in which it arises we start with some general remarks on

gravitational collapse.

To study the process of collapse, the spacetime is often divided in two well differen-

tiated regions, the interior of the massive body and its exterior. The (exterior) metric

generated by the isolated massive object is modeled by a so called asymptotically flat

vacuum solution (a precise definition will be given in Chapter 2). Asymptotically flat

(AF) spacetimes require restrictions “far away” from the sources, specifically the metric

and a finite number of its derivatives are assumed to approach the Minkowski values

at an appropriate rate in the far away region. The limit can be taken along null direc-

tions (null infinity) or spacelike directions (spacelike infinity). As a consequence, several

notions of asymptotic flatness exist.

In 1939 Oppenheimer, Snyder, and Volkoff [81, 82] studied for the first time a par-

ticular a process of gravitational collapse under the assumption of spherical symmetry.

This led eventually to the concepts of “white dwarfs”, “neutron stars” (both as stellar

remnants), and of “black holes” (solutions of the vacuum field equations), as possible

outcomes of such collapsing process. When a massive star exhausts its nuclear fuel, it

leaves behind a small, dense remnant core. If the core mass is greater that two to three

solar masses it is believed to enter the stage of continual gravitational collapse without

any final equilibrium state. The radius shrinks and the star reaches higher densities.

One of the most important problems that the General Relativity attempts to solve is

to predict and to explain the final state of such an object. This is a central question in

relativistic astrophysics and gravitation theory today.

The discovery of the Schwarzschild vacuum solution to the Einstein field equations in

1915, combined with the work of Oppenheimer, Snyder, and Volkoff on gravitational

collapse, allows one to understand the whole process of collapse of a spherically sym-

metric non-rotating star and the consequent “formation” of a Schwarzshild black hole

and a singularity. In 1915 Karl Schwarzschild solved the Einstein vacuum field equa-

tions for an uncharged spherically symmetric non-rotating single mass. The work was

published in 1916 with the title
”
Über das Gravitationsfeld eines Massenpunktes nach

der Einsteinschen Theorie“ (“On the Gravitational Field of a Point-Mass, according to

Einstein’s Theory”). Concerning Oppenheimer, Snyder, and Volkoff’s work, the amount

of mass that determines if the final state of collapse is a neutron star or a black hole is

known as the Tolman-Oppenheimer-Volkoff (TOV) limit. It is estimated to be around

two to three solar masses.
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1. Introduction

The natural philosopher and geologist John Michell speculated in 1783 about the

existence of massive bodies generating such a strong gravitational field that not even

light could escape, and Laplace published the same idea in his masterpiece “Exposition

du Système du Monde” (“The system of the world”) in 1796. However, Einstein’s

General Relativity proved the theoretical existence of black holes for the first time. In

1964, the journalist Ann Ewing wrote an article about this topic titled “’Black holes’

in space”. Three years later Wheeler popularized the term “black hole”. Nowadays,

existence of black holes is accepted by most of astronomers. In fact it is widely believed

that most of the galaxies have a supermassive black hole in their center.

Black holes are an important outcome of gravitational collapse. Another, and in fact

an even more generic one is the existence of singularities. Indeed, there exist theorems

in GR asserting that under quite general circumstances when the collapse has gone past

a certain point the formation of a singularity is inevitable (see for instance [44, 98]). The

concept of singularity in GR is not trivial since, by definition, a singularity cannot be part

of the manifold. The natural idea that some physical or geometrical quantity must blow

up at the singularity turns out to be inadequate as there exist spacetimes with regular

(or even vanishing) curvature invariants which are nevertheless singular. To avoid this

difficulty, the most commonly accepted way to define singularities is by using spacetime

curves as pointers to them. The curves represent real or hypothetical particles that are

travelling across the spacetime and suddenly disappear in a finite time (this may happen

both to the future or to the past of the trajectory). The basic definition of singularity

is the existence of incomplete and inextendible non-necessarily geodesic curves in the

spacetime. For this definition to make sense it is necessary that the spacetime itself is

assumed to be inextendible. The incomplete curves are usually assumed to have a causal

character, although spacelike curves can be also used to define singularities. However,

all singularity theorems intend to prove the geodesic incompleteness of the spacetime,

which is a stronger condition.

The theory of singularities was mostly developed in the 60s. The first singularity

theorem was published by Penrose in 1965 [83], who proved null geodesic incompleteness

under fairly general initial conditions describing states of collapse. This was signaled by

the presence of a closed trapped surface. The use of such surfaces helped to prove many

other important singularity theorems, including the most important one due to Hawking

and Penrose in 1970 [45]. These theorems are remarkable since they can be applied

to cosmological situations, to star or galaxy collapse and to collision of gravitational

waves.

A fundamental issue is whether singularities and black holes always come together

when gravitational collapse occurs. More specifically, in a gravitational collapse setup,

one possibility is that an event horizon starts developing at a sufficiently early phase

such that the collapsing star and the eventual singularity gets hidden inside the event

horizon. In this case not even light can escape and reach a far-away observer in the
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exterior region. The spacetime contains a non empty “region of no escape”, which is

causally disconnected from future null infinity. A spacetime satisfying this property is

called a black hole. The singularity theorems of Hawking and Penrose do not state that

a shielded singularity forms necessarily as a consequence of gravitational collapse. On

the other hand, if the formation of the event horizon gets delayed sufficiently (or does

not form at all) during the collapse, the result is a naked singularity, and radiation from

the singularity could escape to infinity. This might happen for instance if the formation

of the singularity at the center of the collapsing spherical star lies to the causal past of

the instant when the star surface enters its Schwarzschild radius.

Naked singularities have been found to be possible, e.g. in the collapse of spherically

symmetric inhomogeneous dust, depending on the nature of the initial data. However it

is widely believed that the symmetry assumption plays an important role for the existence

of such models. The outcome of collapse is crucial to the problem of asymptotic

predictability. The difference between the two types of singularities is very significant. In

a spacetime that develops a naked singularity, there would be a total loss of predictability

in the future of the singular point. In the case of the shielded singularity, predictability

would be preserved at least in the spacetime region outside the horizon. This issue

has great importance for black hole astrophysics and for the theory of black holes. The

validity of many theorems on black hole dynamics depends on the assumption of absence

of naked singularities.

The conjecture that states that, generically, the singularities of gravitational collapse

are contained in black holes was first proposed by Penrose in 1969 and is known as

the weak cosmic censorship conjecture [84]. In physical terms, the main idea behind

this conjecture is that any observer that is sufficiently far away from a collapsing object

will neither encounter any singularities nor effects coming from them. In other words,

the weak cosmic censorship conjectures that distant observers can live out their lives

free from the effects of any catastrophic events happening in the collapsing area of

spacetime. Consequently, if singularities arise, they cannot be seen from infinity. As

already mentioned, the outcome of the collapse is not always a black hole and a naked

singularity can occur in some situations. However the most important question is the

genericity and stability of such naked singularities arising from initial regular data. The

weak cosmic censorship would hold in case the initial data subspace giving rise to naked

singularities has zero measure in a suitable sense. In other words, the weak cosmic

censorship allows naked singularities, as long as they are not generic. Another related

conjecture, called strong cosmic censorship conjecture, also formulated by Penrose in

1979 [86], states that, generically, timelike singularities never occur, so that even an

observer who falls into a black hole will never “see” the singularity.

So far no version of weak cosmic censorship has been proved in full generality. One

of the main problems is that the event horizon is a feature that depends on the whole

future behaviour of the solution of the field equations over an infinite period of time.
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1. Introduction

Any proof of the weak cosmic censorship requires a much deeper knowledge of general

global properties of the Einstein equations than we have today. One possible way to

approach the problem is to study the stability of particularly relevant spacetimes.

The idea is that proving the (non-linear) stability of either singularity-free or black hole

spacetimes would provide us with a large class of spacetimes with the same properties,

which in turn would give support to the weak cosmic censorship conjecture. The global

non-linear stability problem is formulated from initial data on a spacelike hypersurface

which is a small perturbation of a spacelike slice of the spacetime under consideration.

The initial data set contains the geometric information of the initial spacelike hyper-

surface and its initial content of matter. The fundamental existence result is due to

Choquet-Bruhat [17] and asserts that for a suitable matter model (including vacuum),

each initial data set has a unique maximal, globally hyperbolic Cauchy development

(intuitively, the maximal part of the spacetime uniquely determined by the prescribed

initial data).

The only non-linear stability result known so far is the Christodoulou and Kleinerman

global stability of the Minkowski spacetime [18]. The initial spacelike slice is a constant

time hyperplane in Minkowski space. Christodoulou and Kleinerman proved that for

small but non-linear perturbations of this Minkowski data, the Cauchy development has

qualitative behaviour similar to Minkowski spacetime. In particular, the causal past of

future null infinity is the whole spacetime. This means that all spacetimes arising from

this perturbed data do not collapse nor form black holes, and consequently the weak

cosmic censorship conjecture holds for all of them.

The problem of stability of explicit black hole spacetimes is a formidable problem and

it is natural to consider linear perturbations first, i.e. the study of the convergence

or divergence of the evolution of scalar, vector and tensor fields in those black hole

spacetimes. If the fields do not decay at infinity, non-linear effects are expected to

enhance this and we can expect that the solution is not (non-linearly) stable. On the

other hand, linear stability would support the validity of the weak cosmic censorship

conjecture.

In the four dimensional case, the perturbation analysis of the Schwarzschild metric

was initiated by Regge and Wheeler [90]. Later on, Vishveshwara [105] proved linear

stability to axial (“odd parity”) perturbations in 1970. Shortly afterwards, Price [88,

89] gave a partial result concerning the stability of the Schwarzschild black hole, with

precise information about the decay properties of the perturbations. The work of Zerilli

[113] and Moncrief [79] also contributed to determine the modal (i.e. in terms of its

decomposition in spherical harmonics) linear stability of gravitational perturbations for

the Schwarzshild black hole. The study of black hole non-modal stability was initiated by

Kay and Wald [56], giving a proof of the boundedness of perturbations at asymptotically

late times of the Schwarzshild black hole. This area of research has been very active

in the last decade or so, with the culminating breakthrough of Dafermos-Holzegel-
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Rodnianski [25] in 2016, in which the linear stability was fully proven. Very recently,

Hung, Keller and Wang [53] have found an alternative, complementary and simpler

proof for the linear stability of the Schwarzshild black hole.

The stability of a Kerr black hole is much more difficult to prove. Whiting [112]

proved in 1989 the modal stability for the Kerr black hole using the Teukolsky equation.

An analogue theorem to the one proved by Kay and Wald, applicable to a large class

of backgrounds (including the slow rotating Kerr black hole) was proved by Dafermos

and Rodniansky [27]. The same authors also provided in [26] the essential elements for

the proof of decay of solutions of the scalar wave equation in general subextremal Kerr

backgrounds. This finally allowed Dafermos, Rodnianski and Shlapentokh-Rothman [28]

to prove in 2014 the linear stability for scalar fields on such backgrounds. Extremal black

holes have also been object of study because they lie at the boundary between black

holes and naked singularities and hence are believed to be good indicators to test the

weak cosmic censorship. In [2, 4], Aretakis exhibited instability properties of a general

class of extremal black holes (including the Kerr extremal black hole) with respect to

scalar perturbations. These instabilities are determined by local properties of extremal

horizons and hence do not depend on global aspects of the spacetime. On the other

hand, Dain and Gentile de Austria [30] found a positive definite and conserved energy

for axially symmetric linear gravitational perturbations of the extreme Kerr black hole,

which gives support to its linear stability against axial perturbations. The existence of

such a conserved quantity does not contradict Aretakis instability because the former

is only defined in the black hole exterior region and does not involve any transverse

derivative at the horizon.

So far, the tests of stability of black holes to general, linear perturbations have provided

support to the weak cosmic censorship. However, there have also been attempts to

disprove Penrose’s conjecture. The setup that Penrose used to test the validity of

the conjecture was a shell of null dust moving inwards at the speed of light in a flat

spacetime. Penrose devised this construction as a potential counterexample to weak

cosmic censorship. Several attempts to find counterexamples using time symmetric

initial data have also been considered. The two following properties are crucial in order

to put forward the counterexamples. The first is that if weak cosmic censorship holds,

then every trapped surface must lie in the black hole region (a trapped surface S is a

compact, two dimensional surface satisfying that the convergence of both the outgoing

and ingoing null geodesics normal to S is everywhere negative). The second is that if

the weak cosmic censorship holds, and if the matter satisfies the null energy condition

(i.e. if T (k, k) ≥ 0 for all null k), then the area of the event horizon of a black hole
cannot decrease with time.

As we will see with detail in the Chapter 2, the weak cosmic censorship conjecture

together with additional physically reasonable assumptions imply the inequality that is

the core of this thesis: the Penrose inequality. This inequality involves the concept of
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1. Introduction

total mass/energy of the spacetime, and the area of surfaces related to quasi-local black

holes. The total energy is defined in terms of integrals in the corresponding asymptotic

region, where the metric is close to Minkowski, and its definition depends on the chosen

infinity, spatial or null. In any case, both energies are defined as components of two

respective vectors: the ADM energy-momentum vector where the integral is taken at

spatial infinity, and the Bondi energy-momentum vector where the integral is taken at

null infinity. Both transform as Lorentz vectors under suitable transformations, and

their Lorentz lengths are called masses (ADM mass and Bondi mass respectively). The

ADM mass is a conserved quantity upon evolution and the Bondi mass is monotonically

decreasing in advanced time. More information about such energy-momentum vectors

can be found e.g. in [106]. These different masses give rise to different versions of the

Penrose inequality.

In this thesis, we will mainly focus our attention in the so-called null Penrose inequality,

which as its name indicates, is related to the Bondi energy-momentum vector of the

spacetime. However in this introduction, and for the sake of completeness we also

discuss briefly its “spacelike version”. In 1973, Penrose [85] came to the conclusion

that the ADM mass of an asymptotically flat spacetime should be at least the mass

of the black holes that it contains, if the energy density is non-negative everywhere.

Penrose’s heuristic argument (partly based in the assumption of weak cosmic censorship

and that will be exposed in the next chapter in full detail) drove him to formulate the

following so-called Penrose inequality conjecture (precise definitions will be given later):

Conjecture 1.0.1 (The Penrose inequality for the ADM mass in asymptotically flat

spacetimes). Let (M,g) be a four dimensional spacetime satisfying the DEC (dominant

energy condition), admitting an asymptotically flat spacelike hypersurface (Σ, γ,K).

Assume that Σ contains a closed (compact and without boundary) WOTS (weakly

outer trapped surface) S. Then

MADM ≥
√
|Smin(S)|
16π

,

whereMADM is the ADM mass of the spacetime, and Smin(S) the minimal area enclosure
of S (i.e. the outermost of all surfaces in Σ that enclose S and have less or equal area

than any other surface enclosing S). Moreover, if the inequality becomes equality,

(Σ, γ,K) can be isometrically embedded in the Schwarzschild spacetime.

Although the heuristic argument by Penrose was originally formulated in a four di-

mensional context, the Penrose inequality for the ADM mass in asymptotically flat

spacetimes can also be formulated in arbitrary dimensions. The form of the inequality

in a (n + 1)-dimensional spacetime is

MADM ≥
1

2

( |Smin(S)|
ωn−1

) n−2
n−1

,
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where ωn−1 is the area of the unit (n − 1)-sphere. Studying the Penrose inequality is
an interesting problem because its validity would provide a strengthening of the positive

mass theorem, and in the context of gravitational collapse it would give indirect support

to the validity of weak cosmic censorship.

We next describe briefly the main results known concerning the validity of the Penrose

inequality. More information and references can be found for instance in [69].

Malec and Ó Murchadha [68] proved the so called Penrose inequality in spherical

symmetry. They studied three-dimensional spherically symmetric asymptotically flat

spacelike hypersurfaces Σ, satisfying the dominant energy condition. Moreover, the

hypersurfaces were assumed to be maximal, i.e. with second fundamental form of

vanishing trace. In this setup they proved that

EADM ≥
√
|S|
16π

,

where EADM is the ADM energy of Σ, and S is the outermost trapped surface whose

exterior does not contain any other trapped surface. This inequality is weaker than

the Penrose inequality since it involves the ADM energy instead of the mass. In 1996

Hayward [47] proved the inequality in full generality, i.e. for non-maximal hypersurfaces,

using properties that he obtained in [46] of the so-called Misner-Sharp quasi-local en-

ergy [78], which coincides with the Hawking energy when particularized to spherical

symmetry.

The Riemannian Penrose inequality is formulated in asymptotically flat Riemannian

three manifolds with non-negative scalar curvature and states that the area of the

outermost minimal surface S (i.e. the minimal surface that encloses any other minimal

surface in Σ) is bounded by the ADM mass by

MADM ≥
√
|S|
16π

. (1.1)

This version of the inequality corresponds to the case where the hypersurface Σ is

time-symmetric (i.e. with vanishing second fundamental form) because in this setup

the dominant energy condition transforms into the condition of non-negative scalar

curvature and Smin(S) is necessarily the outermost minimal surface. The Riemann
Penrose inequality for three dimensional hypersurfaces was proved by Huisken & Ilmanen

[52] for a connected S, and by Bray [12] for arbitrary S. Bray and Lee [14] proved the

conjecture for hypersurfaces with dimension at most seven. The Riemannian Penrose

inequality has also been proven in arbitrary dimension for graphs in the Euclidean space

[57, 50]. Given the importance of the breakthroughs of Huisken & Ilmanen and Bray

we describe very briefly the main ideas in their proofs.

The method used by Huisken and Ilmanen [52] to prove the inequality is based on an

earlier heuristic argument due to Geroch [33] and improved later on by Jang & Wald

8



1. Introduction

[55], which uses the monotonicity of the Hawking energy under inverse mean curvature

flow. Moreover, the Hawking energy tends to EADM when the flow approaches large

spheres at infinity. If the initial surface ∂Σ is minimal, an immediate combination of

these properties yields the Penrose inequality. The complication is that in general the

inverse mean curvature flow develops singularities. This issue was handled by Huisken

and Ilmanen by putting forward a weak formulation of the inverse mean curvature flow

and proving both existence of this generalized flow and that all the necessary mono-

tonicity and asymptotic requirements are satisfied. The method also allowed Huisken

and Ilmanen to prove the rigidity part of the Penrose inequality.

Bray [12] proved the Riemannian Penrose inequality in full generality in 2001. His

method was based on the existence of a conformal flow of metrics on Σ, which interpo-

lates between the initial metric and the Schwarzschild metric. The crucial facts are that

the ADM mass of the metrics does not increase along the flow, and that the metric

outside the outermost minimal area enclosure of ∂Σ tends to the Schwarzschild metric

of mass at least

√
|∂Σ|
16π
. Bray’s method can be extended up to dimension seven (Bray

and Lee [14]), whereas Huisken and Ilmanen’s can only be applied to three-dimensional

manifolds. It should be emphasized that for the rigidity part Bray and Lee had to assume

that the manifold is spin (which holds automatically in three-dimensions).

The Penrose inequality for asymptotically hyperbolic manifolds has also attracted con-

siderable attention. Asymptotically hyperbolic Riemannian manifolds arise as slices of

asymptotically flat vacuum spacetimes, and whose second fundamental form is propor-

tional to its metric (umbilical initial data). Such slices cannot reach spatial infinity, and

they are usually called asymptotically hyperbolic or hyperboloidal. In fact, they approach

null infinity. Asymptotically hyperbolic manifolds also arise as time-symmetric hyper-

surfaces in spacetimes solving the vacuum field equations with negative cosmological

constant.

The Penrose inequality is different in each context. In the umbilical case, where the

second fundamental form is a constant λ times the metric, the surface S of interest

is the outermost surface with mean curvature HS = 2|λ|. In the time-symmetric and
Λ < 0 case, the surface to consider is outermost minimal. In both cases the scalar

curvature of the hypersurface satisfies Scalγ > −6λ2, where in the time-symmetric case
λ is defined by Λ = −3λ2. The appropriate asymptotic behaviour of the hypersurface
and the definition of mass (see e.g. [22]) are more difficult than in the euclidean case.

When the boundary at infinity has spherical topology, the definition of mass was first

given in [107], and the Penrose inequality reads

M ≥
√
|S|
16π

+
λ2

2
(1− ǫ)

( |S|
4π

) 3
2

, (1.2)

where M is the mass of the asymptotically hyperbolic manifold, and ǫ = 0, 1 depending

on whether we are in the time-symmetric case, or in the umbilical case.

9



Several authors have worked on this problem. In [80] Neves showed that in the

umbilical version of (1.2), the inverse mean curvature flow along the hyperboloid does

not have the necessary convergence properties. More specifically, the method requires

that the limit along the flow of the Hawking energy is not larger than the total mass

M of the manifold, and Neves showed that this cannot be guaranteed in general.

A method to prove the validity of the non-time symmetric Penrose inequality in the AF

case was put forward by Bray and Khuri in [13], where the inverse mean curvature flow

was used in combination with the generalized Jang equation to get a system of PDEs

which, provided existence of solutions with suitable boundary and asymptotic behaviour

holds, would imply the Penrose conjecture for a single black hole. Using an analo-

gous reasoning, Ye Sle Cha, Khuri and Sakovich [16] showed that the problem in the

asymptotically hyperboloidal case could be reduced to the asymptotically flat one pro-

vided a suitably modified system of PDE also admits solutions. In [29], Dahl, Gicquaud

and Sakovich proved the validity of Penrose-type inequalities in arbitrary dimension for

asymptotically hyperbolic graphs over the hyperbolic space Hn with a minimal horizon

Γ, and whose scalar curvature satisfies Scal ≥ −n(n − 1). In the particular case where
Γ ⊂ Hn is star-shaped and mean convex, the time symmetric version of the Penrose
inequality (1.2) has been proved by Lopes de Lima and Girão [65]. The same authors

have also proved in [64] the umbilical version of (1.2) in the graph case where the

horizon Γ satisfies suitable restrictions.

After this brief description of the known results in the spacelike case, we next discuss

the null Penrose inequality, which is the main topic of this thesis. This inequality involves

spacetimes that admit a null hypersurface Ω extending smoothly to past null infinity.

The precise form for the Penrose conjecture in this setting is

Conjecture 1.0.2 (The Penrose inequality for the Bondi mass in asymptotically

flat spacetimes). Let (M,g) be a four dimensional spacetime, asymptotically flat at

null infinity, satisfying the dominant energy condition, and admitting a null hypersurface

Ω that extends smoothly to past null infinity. Assume that Ω has an embedded closed

weakly outer trapped surface S. Then

MB ≥
√
|S|
16π

, (1.3)

where MB is the Bondi mass of the spacetime determined by the cut of Ω with past null

infinity. Moreover, the inequality becomes equality if and only if Ω is isometric (intrin-

sically and extrinsically) to a spherically symmetric null hypersurface in a Schwarzshild

spacetime.

As already mentioned, the original construction that led Penrose to formulate his

inequality in 1973 was a collapsing shell of null dust in the Minkowski spacetime which,

after passing, leaves two well defined regions separated by the null hypersurface along

10



1. Introduction

which the shell propagates. The inner region is isometric to the Minkowski spacetime

while the exterior region is no longer flat. Once a cross section S of Ω is selected, the

matter content of the shell can be adjusted so that S becomes a WOTS with respect

to the outer geometry . The crucial advantage of the construction is that the inequality

(1.3) can be rewritten solely in terms of the inner geometry (details of the construction

will be given in the following chapter). Specifically, the equivalent form of (1.3) in

arbitrary dimension in terms of the Minkowski geometry reads

∫

S

θℓηS ≥ (n − 1)(ωn−1)
1
n−1 |S| n−2n−1 , (1.4)

where θℓ is the outer null expansion of S, and ωn−1 is the area of the (n − 1)-sphere.
We will refer to inequality (1.4) as the shell Penrose inequality.

A proof of the general null Penrose inequality (1.3) was claimed by Ludvigsen & Vickers

[67]. However, a gap was found by Bergqvist [8] who, at the same time, substantially

streamlined the argument. Ludvigsen & Vickers and Bergqvist’s argument was based

on two facts. The first one was the existence of a quasi-local object defined on surfaces

which enjoyed monotonicity properties along past directed null geodesic foliations. This

functional was introduced by Bergqvist [8] and we refer to it as Bergqvist mass in this

thesis (also in [69, 74]) The second fact was a suitable upper bound for the area of the

weakly outer trapped surface S0. Establishing this bound involved that the geodesic

null foliation {Sr} of Ω starting at S0 satisfied two additional properties. The first one
was that the future null expansion θk of Sr along the future null generator k tangent

to Ω admits an expansion of the form

θk =
−2
r
+O

(
1

r 3

)
, (1.5)

i.e. with vanishing coefficient in the term r−2. The second one was that the rescaled
metric r−2γ(r) (where γ(r) is the induced metric of Sr) approaches a round metric
on the sphere when r → +∞. The main result by Ludvigsen & Vickers is that under
these circumstances the Penrose inequality (1.3) follows. Ludvigsen & Vickers took

for granted that a geodesic foliation {Sr} satisfying these two properties always exists.
Bergqvist noted that under the assumption (1.5) it was not at all clear that the condition

that the metric r−2γ(r) approaches a round sphere needs to be satisfied. This was the
gap in the original paper [67]. Despite this, the ideas of Ludvigsen & Vickers and

specially Bergqvist have been a relevant source of inspiration for this thesis, as it will

become clear later.

Concerning successful proofs of the null Penrose inequality in particular situations,

the only case fully addressed is when the null hypersurface Ω is shear-free in a vacuum

spacetime. This result was proved by Sauter [93], in his Ph.D. thesis. More recently,

Tafel [99] has proved the null Penrose inequality for a cross section of the event horizon
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in black hole spacetimes under asymptotic conditions to the future weaker than station-

arity. Finally, Alexakis [1] has proved the null Penrose inequality for vacuum spacetimes

that are small but non-linear perturbations of Schwarzshild.

Concerning the shell Penrose inequality (1.4), the first case that was solved involved

surfaces S lying on a constant time hyperplane {t = t0}, and was proved by Gibbons in
[36, 37], who showed that the inequality reduces to the classic Minkowski inequality (see

e.g. [10]) between the total mean curvature and the area of convex surfaces in Euclidean

space. The second case refers to surfaces S contained in the past null cone of a point

and leads to a non-trivial inequality for functions on the sphere [85, 5]. In spacetime

dimension four, its validity was proved by Tod [101] using the Sobolev inequality in R4.

In fact, the four dimensional spherical case can also be viewed as a particular case of

a Penrose inequality for spacetimes admitting shear-free null hypersurfaces extending

from the trapped surface to past null infinity proved by Sauter [93].

Regarding the general case (i.e. when the surface S does not lie necessarily in a

hyperplane), Gibbons claimed [37] to have a general proof. However, the argument

contains a serious gap. His strategy in [37] was to project S along the time translation

Killing vector of the Minkowski spacetime onto a constant time hyperplane. The main

idea was to rewrite the shell Penrose inequality in terms of the geometry of the projected

surface as a hypersurface of the Euclidean space. Gibbons computed an (erroneous)

expression for the mean curvature of the projected surface. This gap was noticed for

the first time by Mars in [69].

In spacetime dimension four, Wang [108] has proved the inequality for surfaces lying

on a spacelike hyperboloid of Minkowski with the properties of being mean convex and

star-shaped. Recently Brendle and Wang [15] have proved the inequality for another

large class of surfaces, namely those lying on a timelike cylinder over a convex surface.

These cylinders are called convex static timelike hypersurfaces in [15]. In fact, the case

analyzed by the authors refers to a generalization of inequality (1.4) conjectured for the

Schwarzschild spacetime, but the argument applies to the Minkowski situation as well.

The main idea behind their result consists again in performing a projection of S along

the time translation ξ onto a constant time hyperplane Σt0. By relating the geometry

of S to the geometry of the projected surface S on Σt0, inequality (1.4) becomes

a consequence of the standard Minkowski inequality in Euclidean space provided S is

convex.

In the remaining of this Introduction, we will give a general idea of the structure of

the thesis and will describe its main results.

In Chapter 2 we describe the heuristic argument by Penrose to support his conjec-

ture and present the calculations involved in the derivation of the shell version of the

inequality. In addition we give the main definitions used throughout this thesis. The

standard heuristic argument is formulated for AF spacetimes, so we start by introducing

12



1. Introduction

this concept and the associated notion of energy-momentum four vector. As already

mentioned, the Penrose inequality can be considered as a strengthening of the Positive

mass theorem, which we state in Theorem 2.3.2. At this point, and after defining the

concept of black hole and stating the weak cosmic censorship conjecture, we have the

necessary ingredients to describe in detail Penrose’s heuristic argument. We start with

the original formulation in terms of the ADM mass and then describe the modifications

that are required for the null case. In the second part of Chapter 2 we justify the rela-

tion between the null Penrose inequality (1.3) and its shell version (1.4) in Minkowski

by using the theory of shells of general character introduced by Mars [71] and that we

also summarize in the second part of Chapter 2.

As already mentioned, Gibbons [37] attempted the projection of spacelike surfaces

in Minkowski onto a constant time hyperplane in order to rewrite and prove the shell

Penrose inequality in terms of the projected geometry. Although the computations were

wrong, the idea is nevertheless worth exploring. In fact the natural setup to do this is

the class of spacetimes which admit both a timelike Killing along which one can project

and also geometrically privileged spacelike hypersurfaces onto which one can project.

Since the shell Penrose inequality can in principle be formulated for shells propagating

in other backgrounds than Minkowski (e.g. in the Schwarzshild spacetime, or others)

this more general setup may also have applications for the Penrose inequality.

Chapter 3 begins by recalling the concept of staticity, and studies in detail the pro-

jection of embedded spacelike surfaces along the static Killing field onto constant time

hypersurfaces. Projections of this sort in the Minkowski spacetime have also been stud-

ied in connection to a new definition of quasi-local mass by Wang and Yau [109, 110].

Partial results in the general static case have also appeared in [13]. However, to the

best of our knowledge, no systematic or exhaustive account of the relation between all

the intrinsic and extrinsic geometric properties of S and its projection S has appeared in

the literature, neither in the Minkowski nor in the general static case. We devote most

of Chapter 3 to this task. With this machinery at hand we can describe why Gibbons

argument is erroneous. This is also discussed in full detail in Chapter 3, which we con-

clude by giving an alternative proof of Brendle and Wang’s main result [15] mentioned

before. In fact our proof of this result was simultaneous and independent of Brendle and

Wang’s, and used the projection identities described in Chapter 3, which were published

in [75].

Chapter 4 is devoted to the study of the projection of the surface S along its past null

cone Ω onto constant time hyperplanes in the Minkowski background. This projection

was used for the first time in [74] to tackle the shell Penrose inequality, and allows

us to rewrite the original shell Penrose inequality in terms of the time height function

τ = t|S − t0 and the geometry of a convex Euclidean surface, specifically the one
obtained by intersecting the past null cone Ω of S with a constant time hyperplane

{t = t0}. This alternative form of the shell Penrose inequality is given in Theorem
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4.3.5. A powerful Sobolev type inequality on the sphere due to Beckner [7] allows us

to prove the validity of this inequality in the case when the surface S lies in the past

null cone of a point (Theorem 4.4.4). This generalizes to arbitrary dimension the result

by Tod [101] in spacetime dimension four and shows that a conjecture put forward by

this author regarding the optimal form of the inequality is in fact true. The geometry

of convex, compact hypersurfaces in Euclidean space can be fully described in terms of

a single function h on the unit sphere. This function is called the “support function”

and plays an important role in this thesis. In spacetime dimension four, the support

function was already used in [103] in a related but different context. One of our main

results is Theorem 4.4.2, where we write down the Penrose inequality in Minkowski

as an inequality involving two smooth functions on the n-dimensional sphere. Inspired

by the argument by Ludvigsen & Vickers [67] and Bergqvist [8], we are able to prove

(Theorem 4.5.3) the validity of this inequality in four spacetime dimensions for a large

class of surfaces which can be explicitly characterized and which contains an open set

of surfaces. However, when applied to surfaces lying on the past null cone of a point,

the only case covered by this theorem is when S is a round sphere. Thus, the cases

covered by Theorem 4.4.4 and by Theorem 4.5.3 are essentially complementary, which

indicates that any attempt of proving the shell Penrose inequality in Minkowski in the

general case will probably require a combination of both methods.

In Chapter 5 we consider the (n + 2)-dimensional Minkowski spacetime, with n ≥ 2,
and three different surfaces: the initial surface S embedded in the null hypersurface

Ω, the euclidean surface Ŝ0, obtained as the intersection of the past null cone Ω of S

and the constant time hyperplane {t = t0}, and the euclidean surface S, which is the
projection of S along the time translation ξ onto the constant time hyperplane Σt0.

Brendle and Wang’s main result in [15] (Theorem 3.3.7 in this thesis) showed that

the convexity of S was sufficient for the validity of the shell Penrose inequality for S.

The convexity of S can also be codified in the geometry of Ŝ0 and in the time height

function τ of S, which measures the “distance” that separates S from the constant

time hyperplane {t = t0}. This codification is made in Theorem 5.3.1, where we obtain
an explicit differential inequality for τ and the geometry of Ŝ0 which implies the validity

of the shell Penrose inequality for S. This requires analyzing the geometry of S as a

graph over Ŝ0. Most of our work consists in relating the induced metric and second

fundamental forms of S to those of Ŝ0. This is a calculation purely in Euclidean space

which had not been considered before. This chapter is concluded with two examples in

order to give an idea of the range of applicability of the result.

Chapter 6 is devoted to studying the Hawking energy along null hypersurfaces. The

Hawking energy is known to approach the total energy of the spacetime when the

surfaces approach round spheres both in the asymptotically flat [41, 52] and asymptot-

ically hyperboloidal case [80]. The same is true for surfaces along null hypersurfaces

[6, 87]. However, understanding the behaviour of the Hawking energy at infinity when

the condition of round spheres is not imposed is much more subtle. The aim of Chapter
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6 is to carry out such an analysis for surfaces embedded in a asymptotically flat null

hypersurface. This problem is interesting for several reasons. First of all, it is relevant

in order to help clarifying the physical meaning of the Hawking energy, which is related

to an energy in some circumstances but not in others. From a more practical point

of view, the Hawking energy has become a very valuable tool for various problems in

geometric analysis. The underlying reason is that the Hawking energy enjoys interesting

monotonicity properties for specific flows of surfaces. In order to become truly useful,

this monotonicity needs to be complemented with a good behaviour of the Hawking

energy at infinity, so that its asymptotic value can be related to the ADM (or Bondi)

energies of the spacetime. Whenever the flow can be proved to approach large round

spheres, the results above suffice, but often this is not the case and understanding the

behaviour of the Hawking energy at infinity under general circumstances becomes a

useful piece of information.

Studying the limit of the Hawking energy along flows in null hypersurfaces is particularly

interesting because it allows for a very neat description of spacelike surfaces embedded

in the null hypersurfaces as graphs with respect to a background foliation that can

be chosen conveniently. We exploit this fact in order to obtain an explicit and simple

expression for the limit of the Hawking energy at infinity for a very general flow of

spacelike surfaces (see Theorem 6.6.2 in Chapter 6). In addition to this theorem we

also find an interesting covariance property of the integrand in (7.57) under changes of

background foliation. This is part of the content of Theorems 6.5.5, 6.5.6, and 6.6.1

in Chapter 6.

Chapter 7 is devoted to the use of flows of general character along null hypersurfaces in

AF spacetimes satisfying the dominant energy condition with the purpose of addressing

the null Penrose inequality. Motivated by Ludvigsen & Vickers and Bergqvist ideas

[67, 8], in the first part of the chapter we consider the setup where (1.5) is kept

and we relax the condition of approaching large spheres. Geodesic foliations with this

property are named Geodesic Asymptotically Bondi in this work (or GAB for short). A

motivation for this name will be given later. GAB foliations turn out to always exist

and be (geometrically) unique given any cross section S0 in a past asymptotically flat

null hypersurface. Our main result in this setting is a Penrose-type inequality which

relates the area of any weakly outer trapped surface S0 and the limit at infinity of

the Hawking energy along the GAB foliation associated to S0. This is the content of

Theorem 7.3.8. In combination with the study of the limit of the Hawking energy along

general foliations of asymptotically flat null hypersurfaces Ω carried out in Chapter 6

(and published in [76]), this theorem provides an interesting Penrose-type inequality with

potentially useful applications. This theorem immediately extends Ludvigsen & Vickers

and Bergqvist result because when the flow approaches large spheres one automatically

has that the limit of the Hawking energy along the flow is the Bondi energy of the cut

at I − defined by Ω and measured by the observer defined by the flow.
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The second method we analyze is complementary to the previous one. Here we

relax condition (1.5) and keep the assumption that the flow of surfaces along the null

hypersurfaces approaches round spheres. In this context, one of our main achievements

is Theorem 7.5.5, where we find two sufficient conditions that imply the validity of the

null Penrose inequality. The method that has allowed us to obtain these conditions has

been called Renormalized Area Method (a motivation for this name will be given later),

and uses monotonic properties and limits of a suitable functional on spacelike surfaces

which we introduce.

In this chapter we also study applications of the two methods. The Renormalized

Area Method is applied to two particular but relevant cases, namely the case when Ω

is shear-free and vacuum (where, as mentioned, the null Penrose inequality is known to

hold by other methods [93]) and the case of null shells propagating in the Minkowski

spacetime. The latter will allow us in particular to provide a link between the analysis

here and the one in Chapter 4. Concerning the application of Theorem 7.3.8 to the

Minkowski setting, we derive a shell Penrose type inequality (Theorem 7.8.2) valid for

any closed spacelike surface in Minkowski for which its outer past null cone extends

smoothly to past null infinity.

Some known results that are needed in this thesis are presented in three different

Appendices. Appendix A is devoted to the study of the geometric relations between an

embedded non degenerate pseudo-Riemannian manifold N in an ambient one M. In this

Appendix we find the relation between the second fundamental form vectors of more

than two successively embedded manifolds, as well as the equation relating the Hessian

of N and M. We also state and prove the Gauss, Ricci and Codazzi identities.

We devote Appendix B to study the geometry of null hypersurfaces Ω. We start

by introducing the standard quotient structure that allows to define a positive definite

metric and a second fundamental form. We then devote most of the appendix to derive

the evolution equations of various geometric quantities associated to Ω and to foliations

of Ω.

Appendix C is devoted to the study of the relation of the geometry of a convex

body C in Rn with the geometry of the standard sphere. In particular we define the

support function and present its main properties. Our main objective is to find explicit

expressions for the first and second fundamental forms of C in terms of the support

function and the geometry of the standard sphere. This is relevant for Chapter 4 in

order to find an alternative form of the shell Penrose inequality.

To summarize, in this thesis we have studied the null Penrose inequality in detail.

We have been able to prove the inequality in some cases and give a full proof of a

Penrose type inequality. The general methods presented here open up new possibilities

to address the problem. In fact, a recent approach by Roesch [92] uses as a key tool

the main result of [76] corresponding in this thesis to Theorem 6.6.2 in Chapter 6.
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Exploiting the limit of the Hawking energy along Ω Roesch is able to prove the null

Penrose inequality provided Ω admits a geodesic foliation satisfying certain restrictions.
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2
Fundamentals for the Penrose inequality

2.1 Basic Definitions

All manifolds in this thesis will be smooth and Hausdorff. Let (M,g) be anm-dimensional

oriented pseudo-Riemannian manifold of arbitrary signature. Tensors in M carry Greek

indices and we denote by ∇ the Levi-Civita covariant derivative of M. Our sign con-
vention for the curvature tensor is

R(X, Y )Z := ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z,

where X, Y, Z are vector fields on M. The Riemann tensor Riemg of (M,g) is defined

in terms of the curvature tensor by Riemg(X, Y, Z, T ) := g(T,R(Z, T )Y ). Contracting

the first and third indices of Riemg, we obtain the Ricci curvature tensor Ricg(X, Y ) =

trg (Riem
g(·, X, ·, Y )), and its trace is the scalar curvature Scalg. The Einstein tensor

Eing of (M,g) reads

Eing = Ricg − 1
2
Scalgg.

Embedded submanifolds will play a relevant role in this work, and we devote Appendix

A to describe their geometry. The basic objects are as follows: let N be an n-dimensional

submanifold embedded in (M,g) with non-degenerate first fundamental form γ. The

Gauss formula (cf. Appendix A) relates the ambient connection ∇ with the induced
connection ∇N by the formula

∇XY = ∇NXY + (∇XY )⊥, (2.1)

for any vector fields X, Y tangent to N, where ’⊥’ is the operator that gives the or-
thogonal component to N of a vector. The second term of the right-hand side of (2.1)

defines the so called second fundamental form vector.
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2.1. Basic Definitions

Definition 2.1.1 (Second fundamental form vector). The second fundamental form

vector of N as an embedded manifold in M is the (2, 1)-tensor

~K(X, Y ) = −(∇XY )⊥. (2.2)

The second fundamental form vector is by construction, orthogonal to N (see Figure

2.1). In Appendix A we show that ~K is also symmetric in X, Y .

N

M

p

X

Y

∇XY

∇NXY

~K(X, Y )

−~K(X, Y )

Figure 2.1: Schematic representation of the Gauss formula. The difference between the

induced connection ∇N on a non-degenerate embedded manifold N and the ambient
connection ∇ of a pseudo-Riemannian manifold M is the second fundamental form
vector of N, namely ∇XY = ∇NXY − ~K(X, Y ).

Definition 2.1.2 (Mean curvature vector). The trace ~H of the second fundamental

form vector with respect to the induced metric on N is the mean curvature vector, i.e.

~H := trN ~K.

Let us consider a normal vector field ν to N, i.e. a vector ν satisfying ν(p) ∈ TpN⊥
∀p ∈ N.

Definition 2.1.3 (Second fundamental form tensor along ν). The second fundamen-

tal form tensor along ν is defined as

Kν(X, Y ) ≡ 〈ν, ~K(X, Y )〉g = −〈ν,∇XY 〉g = 〈∇Xν, Y 〉g, with X, Y ∈ Γ(TN).

20



2. Fundamentals for the Penrose inequality

The second fundamental form tensor is symmetric, i.e. Kν(X, Y ) = Kν(Y,X), as a

consequence of the symmetry of ~K.

Definition 2.1.4 (Expansion along ν). The expansion of N along ν, denoted by θν, is

the function

θν = trN(K
ν).

Definition 2.1.5 (Volume element). The volume element ηM of (M,g) is the m-form

(ηM)α1...αn =
√
| det g|ǫα1...αn

in any coordinate chart of the associated oriented atlas, where ǫα1...αn is the Levi-Civita

symbol and det g is the determinant of g in this chart.

Everything we have said is so far valid in any signature. To define the notion of

spacetime we need the concept of time orientability and time-orientation:

Definition 2.1.6. A Lorentzian manifold (M,g) is time-orientable if and only if there

exists a vector field u ∈ X(M) which is timelike everywhere on M. In this case a

time-orientation is a choice of a timelike vector field u which is declared to be future

directed.

Definition 2.1.7 (Spacetime). A spacetime (M,g) is an m-dimensional Lorentzian

manifold, connected and orientable, endowed with a time orientation.

The metric g satisfies the Einstein field equations, which take the form

Eing + Λg = χT, χ =
8πG

c4
,

where G is the Newton gravitational constant, c is the speed of light in vacuum, T is

the energy-momentum tensor of all non-gravitational fields and Λ is the cosmological

constant.

The energy conditions are usually defined in terms of the energy-momentum tensor

T . We may express them in terms of the Einstein tensor Eing because in our setting the

cosmological constant Λ vanishes. By defining the energy conditions directly in terms of

Eing we can forget altogether about the Einstein field equations so that all our results

become applicable to the geometric theory of gravity. The energy conditions we use

are

Definition 2.1.8. Let (M,g) be a spacetime. Then

• (M,g) satisfies the null energy condition (NEC) if the Einstein tensor Eing
satisfies Eing(k, k) ≥ 0 for any null vector k ∈ X(M).
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2.2. Asymptotically flat spacetimes

• (M,g) satisfies the dominant energy condition (DEC) if the Einstein tensor Eing
satisfies that −EingµνXν |p is a future directed causal vector for any future directed
causal vector X ∈ X(M) and all p ∈ M (or equivalently when EingµνXµY ν ≥ 0 for
all future causal vectors)

Remark 2.1.9. Note that the NEC is obviously weaker than the DEC.

In physical terms the DEC means that any observer measures a positive energy density

for the field and the energy flows at a speed no larger than c .

Let S be a compact, embedded, oriented, codimension-two surface in anm-dimensional

spacetime (M,g). The mean curvature vector ~H of S plays an important role since the

surface S can be classified according to its causal character. Since the surface has codi-

mension two, we can consider a future oriented null basis {k, ℓ} of vectors normal to S
and normalized so that 〈k, ℓ〉 = −2. In this case the mean curvature vector decomposes
as

~H = −1
2
(θℓk + θkℓ) .

Definition 2.1.10. A closed surface is a:

• Future trapped surface if θk < 0 and θℓ < 0. Or equivalently, if ~H is timelike
and future directed.

• Weakly future trapped surface if θk ≤ 0 and θℓ ≤ 0. Or equivalently, if ~H is
causal and future directed.

• Marginally future trapped surface if either, θk = 0 and θℓ ≤ 0 everywhere, or,
θk ≤ 0 and θℓ = 0 everywhere. Equivalently, if ~H is future directed and either
proportional to k or proportional to ℓ everywhere.

In spacetime dimension four, the Hawking energy is a functional acting on closed

spacelike surfaces S with spherical topology and reads

Definition 2.1.11 (Hawking energy). The Hawking energy of S is defined by

mH(S) =

√
|S|
16π

(
1− 1

16π

∫

S

~H2ηS

)
, (2.3)

where ~H is the mean curvature of S and |S| is the area of S.

2.2 Asymptotically flat spacetimes

The notion of asymptotically flat (AF) spacetime is suitable to describe isolated objects.

There are two different types of AF spacetimes depending on the infinity considered.

We start with asymptotic flatness at spatial infinity.
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2. Fundamentals for the Penrose inequality

Definition 2.2.1. An asymptotically flat end of a spacelike hypersurface Σ with first

fundamental form g and second fundamental form K is a subset Σ∞0 ⊂ Σ which is dif-
feomorphic to R3\BR, where BR is an open ball of radius R. Moreover, in the Cartesian
coordinates {x i} induced by the diffeomorphism, the following decay conditions hold

Scalg = O(r−4), ∇Σb (Kb
a − (trgK)δba) = O(r−4), (2.4)

where r = |x | =
√
xaxbδab, Scal

g is the scalar curvature of g and ∇Σ is the Levi-Civita
connection on Σ.

Definition 2.2.2 (AF spacelike hypersurface). A spacelike hypersurface Σ with first

fundamental form g and second fundamental form K, possibly with boundary, is asymp-

totically flat if Σ = K ∪ Σ∞, where K is a compact set and Σ∞ = ⋃
i

Σ∞i is a finite

union of asymptotically flat ends Σ∞i .

Definition 2.2.3 (AF spacetime at spatial infinity). A spacetime is asymptotically

flat at spatial infinity if it admits an AF spacelike hypersurface.

We next characterize AF spacetimes at null infinity. This requires using basic notions

of causality . Let p and q be two different points in the spacetime M. We say that

• p chronologically precedes q (denoted by p << q) if there exists a future-directed

timelike curve from p to q.

• p strictly causally precedes q (denoted by p < q) if there exists a future-directed

causal curve from p to q.

• p causally precedes q (denoted by p ≤ q) if p strictly causally precedes q or p = q.

These notions allow one to define the chronological future and past and the causal

future and past of a point:

• The chronological future of p, denoted by I+(p), is the set of all points q in M
such that p chronologically precedes q: I+(p) = {q ∈ M : p << q}.

• The chronological past of p, denoted by I−(p), is the set of all points q in M such
that q chronologically precedes p: I−(p) = {q ∈ M : q << p}.

• The causal future of p, denoted by J+(p), is the set of all points q in M such
that p causally precedes q: J+(p) = {q ∈ M : p ≤ q}.

• The causal past of p, denoted by J−(p), is the set of all points q in M such that
q causally precedes p: J−(p) = {q ∈ M : q ≤ p}.
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In order to define the concept of asymptotically flat spacetime at null infinity, we

consider a compactification of the spacetime (see e.g. [106] for definitions), where

spatial infinity will be denoted by i0, and the hypersurfaces representing past and future

null infinity will be denoted by I − and I + respectively.

Definition 2.2.4 (AF spacetime at null infinity). A spacetime (M,g) is said to be

asymptotically flat at null infinity if there exits a manifoldM with boundary, with smooth

metric g, and a conformal isometry of M onto the interior of M with conformal factor

Ω. By defining I as the boundary of M, the following conditions are required:

(i) I can be written as the disjoint union of two pieces I + and I −, such that
I + ∩ J−[int(M)] = ∅ and I − ∩ J+[int(M)] = ∅.

(ii) Ω can be extended to a C∞ function on all of M. On I + and I − we have Ω = 0
and dΩ 6= 0.

(iii) I + and I − each have the topology S2 × R.

(iv) There exists a smooth function f defined on M, with f > 0 on M∪I +∪I − and
satisfying ∇α(f 4nα) = 0 on I + ∪ I − (where ∇α is the connection associated
with g), the vector field f −1nα is complete on I + ∪I −.

Both types of asymptoticity are combined in the following definition:

Definition 2.2.5 (AF spacetime). A spacetime (M,g) is said to be asymptotically flat

if is is AF at null infinity and it admits an AF spacelike hypersurface

2.3 The ADM and Bondi energy-momentum four vec-

tors in AF spacetimes

The concept of energy in General Relativity is a delicate issue. In particular there is

no notion of energy density of the gravitational field, However, there exists a useful

notion of the total energy of an isolated system which is described by the total energy-

momentum four-vector P . This vector is defined in an abstract Minkowski spacetime

with metric η. The time component of this vector is the energy E of the spacetime, and

the rest of the components define an spacelike three-momentum p. Its Minkowskian

length is the total mass of the spacetime.

In an AF spacetime, two different types of energy-momentum four vector can be

defined depending the infinity that we are considering. The ADM (Arnowitt, Deser,

Misner) four-momentum PADM = (EADM, pADM) is associated to spacetimes that are

AF at spatial infinity i0, and the Bondi energy-momentum four-vector PB = (EB, pB)

24



2. Fundamentals for the Penrose inequality

is measured at a cut S∞ of null infinity I , where S∞ is a spacelike cross section of the
null hypersurface I . The Bondi four-momentum depends on the cut and approaches

the ADM four-momentum at i0 under suitable conditions [114].

The expression for the total energy-momentum PADM is given in terms of the geometry

of an AF hypersurface (Σ, g,K) and was put forward by Arnowitt, Deser and Misner in

1962 [3]:

Definition 2.3.1. Consider a spacelike hypersurface (Σ, g,K) with a selected asymp-

totically flat end Σ∞0 . Then, the ADM energy-momentum PADM associated to Σ
∞
0 is

the spacetime vector with components

PADM0 = EADM = lim
r→∞

1

16π

∫

Sr

(∂bgab − ∂agbb)maηS,

PADMa = pADMa = lim
r→∞

1

8π

∫

Sr

(Kab − gabtrgK)mbηS,

where {xa} are the Cartesian coordinates induced by the diffeomorphism which defines
the asymptotically flat end, Sr is the surface at constant r , m

a is the outward unit

normal of Sr and ηS its volume form. EADM is called the ADM energy and pADM the

ADM spatial momentum vector.

The notion of ADM mass (the Minkowskian length of PADM) is independent of the

choice of coordinates as long as the decay conditions (2.4) are satisfied. One of the

most important theorems concerning the ADM energy-momentum is the Positive mass

theorem (PMT) by Schoen and Yau [95].

Theorem 2.3.2 (Positive mass theorem (PMT), Schoen & Yau, 1981). Let (Σ, g,K)

be an asymptotically flat spacelike hypersurface without boundary and satisfying the

DEC. Then the total ADM energy-momentum PADM is a future directed causal vector.

Furthermore, PADM = 0 if and only if Σ is a slice of the Minkowski spacetime.

The PMT was proved by Schoen and Yau for manifolds of dimension less or equal

than seven, and by Witten [111] for spin manifolds of arbitrary dimension using spinor

techniques.

Concerning the Bondi energy, the first definition was given in coordinates and was

introduced by Bondi, van der Burg and Metzner in 1962 [9]. Later Geroch and Winicour

[35] gave an alternative form in terms of asymptotic time translations, i.e. vector fields

that tend to a Killing vector near infinity and satisfy ∇αξα = 0. Specifically, let {Sα}
be a one-parameter family of topological spheres, which in the associated compactified

spacetime approach a cross section S∞ of I −. Then, the quantity

EξB = − lim
Sα→S∞

1

8π

∫

Sα

ǫαβγδ∇γξδ (2.5)
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2.4. Black holes and the weak cosmic censorship conjecture

is independent of how Sα approaches S∞. We refer to E
ξ
B as the energy measured by

the observer ξ. Formula (2.5) reduces to the Komar mass in stationary spacetimes.

In practice, there is a very effective way to compute the Bondi energy of a spacetime

admitting a null hypersurface Ω that extends smoothly to null infinity, and is based on

the use of the Hawking mass functional mH (see Definition 2.3 in Chapter 2) evaluated

on flows {Ss} approaching large spheres along Ω. Specifically

EuB = lim
s→∞

mH(Ss),

where u is the observer determined by the foliation {Ss} (for more information, see
Chapter 6). This is actually the method used in this thesis to compute the Bondi

energy. As in the ADM case, the Bondi energy is the time component of an energy-

momentum four vector PB, i.e. E
u
B = −η(PB, u), where η the Minkowski metric in the

abstract space where the observer u is defined. In analogy with the ADM case, the

Bondi mass MB is the Lorentzian length of PB.

The ADM energy represents the total energy available in the spacetime, whereas the

Bondi energy is interpreted as the energy remaining in the spacetime at the “retarded

time” given by the cross section S∞ of I +, after emission of gravitational radiation.

There is also a theorem of positivity of the Bondi energy (Horowitz and Perry 1982

[49]; Schoen and Yau 1982 [96]; Ludvigsen & Vickers 1982 [66]; Reula and Tod 1984

[91]).

2.4 Black holes and the weak cosmic censorship con-

jecture

The heuristic argument put forward by Penrose to formulate the Penrose inequality

conjecture is based on the weak cosmic censorship conjecture. As already mentioned

in the Introduction, this conjecture states roughly that singularities are always hidden

within a black hole.

A spacetime (M,g) is a black hole if it is asymptotically flat at null infinity and

if there are events causally disconnected from the asymptotic region, i.e. no causal

curves starting at the event in question ever reach the asymptotic region. The black

hole region B of the spacetime is defined by

B = M \ I−(I +),

where the chronological past I− is considered in the conformally completed spacetime.
The event horizon H of the black hole is defined to be the boundary of B in M

H = ∂B.
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2. Fundamentals for the Penrose inequality

The event horizon H is the topological boundary of the black hole region. H is a
(Lipschitz) null hypersurface ruled by future inextendible null geodesics [44].

A more precise statement of the weak cosmic censorship conjecture is as follows:

Weak cosmic censorship conjecture: Let (Σ, g,K;ψ) be an asymptotically flat

initial data set of the Einstein field equations with suitable matter (where ψ represents

the matter fields). Then, generically, its maximal Cauchy evolution is asymptotically

flat at future null infinity, with complete I +.

The notions of suitable and generic are kept deliberately vague since their precise

meaning will here to be adjusted to the actual theorem one can eventually prove. How-

ever, roughly speaking, suitable matter should mean that the initial value formulation for

the coupled Einstein-matter field equations is well posed and the stress-energy tensor

satisfies suitable energy conditions. The genericity condition should mean that initial

configurations leading to naked singularities have empty interior in a suitable topology

in the space of initial data sets.

2.5 The Penrose inequality conjecture. Heuristics

This section is devoted to describe the heuristics behind the Penrose inequality. In

the following section we will concentrate on the study of hypersurfaces and shells in

spacetimes, with the aim of writing down the shell Penrose inequality.

The Penrose inequality conjecture is a strengthening of the positive energy theorem

when black holes are present. In spacetimes satisfying the null energy condition (NEC),

i.e. spacetimes where Eing(k, k) ≥ 0 for all null vectors k , the event horizon satisfies
the area theorem, which essentially says that in such spacetimes the area of the cross

sections of the event horizon grows with time [42, 43, 20]. The precise formulation of

the area theorem reads as follows:

Theorem 2.5.1 (Black hole area theorem [20]). Let (M,g) be a black hole spacetime

satisfying the NEC. Let Σ1 and Σ2 be achronal hypersurfaces (no timelike curve

intersects them twice), and spacelike and define HΣa := H ∩Σa (a = 1, 2) sections of
the event horizon. If HΣ1 lies in the past of HΣ2, then |HΣ1| ≤ |HΣ2|.

In physical terms, it is expected that any black hole spacetime must settle down to

an asymptotic stationary state in the distant future. All matter fields (except electro-

magnetic ones or, perhaps, other fields with globally conserved charges) are expected

to be radiated away or fall into the black hole region. The asymptotic spacetime is then

expected to be electrovacuum and stationary. The black hole uniqueness theorem (see

e.g. [19, 48]) can be applied to conclude that the exterior region of the asymptotic

black hole is isometric to the exterior region of a Kerr-Newman black hole.
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2.5. The Penrose inequality conjecture. Heuristics

Let us recall a few known properties of the Kerr-Newman black hole spacetime

(M,gm,a,q). The metric is described by three parameters m, a and q (mass, angu-

lar momentum parameter and charge) satisfying

m ≥
√
a2 + q2.

When a = q = 0, we have the Kruskal spacetime. All sections S of the event horizon

H are isometric to each other and have area

|S| = 8πm
(
m +

√
m2 − a2 − q2

)
− 4πq2 ≤ 16πm2.

As already mentioned, the paradigm described above can be rephrased by saying that

for any dynamic black hole spacetime, there exist m, a, q ∈ R satisfying
√
a2 + q2 ≤

m 6= 0 such that the exterior region of the black hole approaches (in a suitable sense)
the spacetime (M,gm,a,q) when t → +∞.
The Bondi-mass MB := (E

2
B − ~P 2B)

1
2 decreases to the future and its limit at i0 is

the ADM mass MADM := (E
2
ADM − ~P 2ADM)

1
2 . This property physically means that the

gravitational radiation can only extract energy from the spacetime. Moreover the Bondi

mass of the Kerr-Newman spacetime is m. Using these facts, Penrose obtained the

following chain of inequalities:

|HΣ| ≤ |HΣ∞| ≤ 16πm2 ≤ 16πM2B ≤ 16πM2ADM,

where the first inequality is a consequence of the area theorem, the second is a property

of the Kerr-Newman spacetime, and the two last ones are consequences of the properties

of the total energy-momentum in an asymptotically flat spacetime.

The resulting inequality |HΣ| ≤ 16πM2ADM involves no future asymptotic properties,
but still involves the event horizon, which is a global concept in the spacetime. A

priori one does not know if the event horizon exists or where it lies. The second main

observation of Penrose was that the paradigm of gravitational collapse also implied an

inequality “local in time” as follows.

Strong gravitational fields can be detected by weakly future trapped surfaces. Con-

sider an AF spacetime (M,g) satisfying the DEC. Assume that the spacetime contains

a weakly future trapped surface S embedded in an asymptotically flat spacelike hyper-

surface Σ with one end. Under these hypotheses it follows [83, 40] (see also [98] for a

nice review) that the spacetime (M,g) has a singularity (in the sense that there is an

inextendible, incomplete causal geodesic and the spacetime itself is inextendible). Under

weak cosmic censorship, this singularity is shielded from infinity by an event horizon and

M is necessarily a black hole. A fundamental property of the black hole spacetimes is

that any weakly future trapped surface S is necessarily contained in the black hole region

[106, 21]. Consider the spacelike hypersurface Σ that contains S. This hypersurface
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S
S0

HΣ

H Σ
(M,g)

B

Figure 2.2: When the spacetime (M,g) satisfies the dominant energy condition and

contains a weakly outer trapped surface S, it necessarily contains a singularity. Under

the weak cosmic censorship the singularity must lie in a black hole region B, and (M,g)
is a black hole. The surface S must lie in B. The surface S0 that minimizes area among
all those surfaces in a spacelike hypersurfaces Σ enclosing S satisfies |S0| ≤ |HΣ| (where
HΣ is the intersection of the event horizon with Σ) and does not have to lie necessarily
within B. Under the standard paradigm of gravitational collapse (including weak cosmic
censorship) the Penrose inequalities |S0| ≤ 16πM2B ≤ 16πM2ADM follow.

S

S0

HΣ

H

Σ

i0

I +Kerr

m

MB

MADM

Figure 2.3: Equivalent representation to Figure 2.2, where the standard paradigm of

gravitational collapse is represented. The spacetime becomes asymptotically stationary

as time goes to infinity and it is therefore expected to tend to Kerr-Newman. The

area of the cross sections HΣ of the event horizon H grows with time, and in the
limit |HΣ∞| ≤ 16πm2, with m the mass of the Kerr-Newman spacetime. The relation
between the masses m ≤ MB ≤ MADM implies |HΣ| ≤ 16πM2B ≤ 16πM2ADM, and since
S0 minimizes area among all those surfaces in the spacelike hypersurfaces Σ enclosing S

(in particular |S0| ≤ |HΣ|), the Penrose inequalities |S0| ≤ 16πM2B ≤ 16πM2ADM follow.
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intersects the event horizon in a cross section HΣ. If the area |S| were smaller than the
area of HΣ, we would have

|S| ≤ |HΣ| ≤ 16πM2B ≤ 16πM2ADM, (2.6)

i.e. |S| ≤ 16πM2ADM, which already involves only the geometry of the spacelike hyper-
surface Σ. Although HΣ encloses S, it is not necessarily true that |S| ≤ |HΣ|, because
from the fact that H ∩Σ encloses S does not follow that its area is necessarily larger.
This problem can be avoided by considering the minimal area enclosure of S, i.e. the

outermost of all surfaces which enclose S and have less or equal area than any other

surface enclosing S. The minimal area enclosure of S always exists provided the di-

mension of the spacetime is n ≤ 8 and S bounds an exterior domain. We will denote
by Smin(S) the minimal surface enclosure of S. The spacelike cut H ∩ Σ of the event
horizon also encloses S, so we have |Smin(S)| ≤ |H ∩Σ|. From (2.6), it follows

MADM ≥
√
|Smin(S)|
16π

,

and considering the supremum among all weakly outer trapped surfaces, we finally obtain

MADM ≥ sup
√
|Smin(S)|
16π

.

Defining S0, we arrive at the two inequalities

|S0| ≤ 16πM2B and |S0| ≤ 16πM2ADM. (2.7)

These inequalities do not require to know anything about the future of the spacetime.

Inequalities (2.7) are called Penrose inequalities and are the main theme of this work

(variations of these inequalities are also sometimes considered, while keeping the name

of Penrose inequalities). Proving them would give strong indirect support to the general

paradigm of gravitational collapse and would also be a strengthening of the positive

energy theorem. In this thesis we concentrate on the so-called null Penrose inequality.

For this case, assume that (M,g) admits a null hypersurface Ω containing a weakly

future trapped surface S and extending smoothly all the way to past null infinity I −.
In this case, any spacelike surface S′ lying to the past of S along Ω satisfies |S| ≤ |S′|.
The Bondi energy EB(Ω) and mass MB(Ω) of Ω can be defined. Following the above

reasoning, under weak cosmic censorship (M,g) must be necessarily a black hole and S

must be completely contained in the black hole region, and this necessarily implies that

the intersection HΩ of the event horizon H with Ω must lie completely in the causal
past of S. This implies |HΩ| ≥ |S|, i.e. the area S is smaller than the area of the
section of the event horizon lying on Ω. Thus, we can work with S and there is no need

to take the minimal area enclosure as in the spacelike case above. Applying the same

reasoning as above, it follows

|S| ≤ |HΩ| ≤ |HΩ∞| ≤ 16πm2.
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S
(M,g)

HΩ

H

Ω

B

Figure 2.4: Analogous case to Figure 2.2, where now the hypersurface Ω is null and

contains a weakly future trapped surface S. Following the same argument as in Figure

2.2, S lies within the black hole region B under the standard paradigm of gravitational
collapse. Since |S| ≤ |HΩ|, there is no need to consider the minimal area enclosure
of S as in the spacelike case in Figure 2.2. In these circumstances the paradigm of

gravitational collapse implies the null Penrose inequality |S| ≤ 16πE2B(Ω).

The mass m of the Kerr-Newman spacetime satisfies m ≤ MADM. The spacetime

(M,g) is determined from the initial data on Ω and on I −. Now we use the fact that
the spacetime (M,g) can be changed without modifying the data on Ω (in particular

without changing the Bondi mass MB(Ω)). We are free to impose the condition that

there is no incoming radiation at I −. In this case, the Bondi mass MB(Ω) defined by

the cut of the hypersurface Ω and past null infinity equals the total ADM mass and we

can conclude

|S| ≤ 16πM2B(Ω) ≤ 16πE2B(Ω).
The inequality |S| ≤ 16πE2B(Ω) is the so called null Penrose inequality and involves only
the geometry along Ω.

2.6 Hypersurfaces and shells

A particular but very interesting case of the null Penrose inequality is the original con-

struction used by Penrose [85] in 1973, which consisted of a shell of collapsing dust

moving inwards in the Minkowski spacetime. The shell separates the spacetime into

two components. The interior one has a Minkowski metric and the outer part is no

longer flat. The two components are joined by a null hypersurface. One of the main
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S

HΩ

H

Ω

i0

I +

I −

Kerr

m

MB(Ω)

MADM

Figure 2.5: Analogous representation as in Figure 2.3 in the case where Ω is null.

The area of the cross sections HΩ of the event horizon H grows with time, and in
the limit |HΩ∞| ≤ 16πm2, with m the mass of the Kerr-Newman spacetime. Since
m ≤ MADM and HΩ lies in the causal past of S, then |S| ≤ |HΩ| ≤ 16πM2ADM. We
are allowed to change the spacetime to the future of Ω by assuming that there is no

incoming gravitational radiation at I −, and hence MADM = MB(Ω), which implies the

null Penrose inequality |S| ≤ 16πE2B(Ω).

aims in this chapter is to recover the particular expression that Penrose found for his

inequality in this shell setup. To that purpose we find it convenient to study in a more

general setting the geometry of embedded hypersurfaces of arbitrary causal character

that will separate two different spacetimes matched across their boundaries. This ge-

ometry is relevant because it determines the expression that the energy-momentum

tensor of the shell concentrated on the hypersurface has, as well as the corresponding

shell field equations (see [71]). This will allow us to particularize to the case when the

interior spacetime is Minkowski and the exterior is a non-flat spacetime generated by

the incoming null shell of dust as in Penrose’s construction, and will allow us to rewrite

the original null Penrose inequality as a geometric inequality for surfaces embedded in

the Minkowski spacetime. The exposition here is based on the results by Mars presented

in [70].

Let Φ : Ω → M be the embedding of a hypersurface Ω of arbitrary causal character

into the spacetime. In order to describe the intrinsic and extrinsic geometry of Ω, is is

convenient to introduce an additional structure, namely a spacetime vector field along
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Ω which is transverse to Ω everywhere. Such vector field, called rigging, was first

introduced by Schouten [97]:

Definition 2.6.1. (Schouten [97]) A rigging ℓ is a smooth section ℓ ∈ Γ(TΩM) satisfying
ℓ|p /∈ TpΩ for all p ∈ Ω.

We can define the scalar ℓ(2) = g(ℓ, ℓ) and the one-form ℓ := g(ℓ, ·). Consider a basis
{ea} tangent to Ω. Pulling ℓ back to Ω, we obtain a one form ℓa = g(ℓ, ea). We denote
by γ the pullback on Ω of the ambient metric g. Note that γ is degenerate whenever

Ω is a null hypersurface. However, the square matrix

A ≡
(
γab ℓa
ℓb ℓ(2)

)
(2.8)

always has Lorentzian signature at every point p ∈ Ω (because this is simply the matrix
representation of the ambient metric g in the basis {ea, ℓ}). This suggested the following
definition [71] where everything refers to Ω as an abstract manifold, not embedded in

any ambient spacetime:

Definition 2.6.2. A smooth three-dimensional manifold Ω, a symmetric tensor γab, a

one-form ℓa and a scalar ℓ
(2) define a hypersurface metric data set provided the square

matrix A has Lorentzian signature at every point p ∈ Ω.

In this case the inverse of A exists and a symmetric tensor P ab, a vector na and a

scalar n(2) can be defined by means of

A
−1 :=

(
P ab na

nb n(2)

)
. (2.9)

In [71] Mars also introduced the following definition:

Definition 2.6.3 (Hypersurface data). A five-tuple {Ω, γab, ℓa, ℓ(2), Yab} where {Ω, γab,
ℓa, ℓ

(2)} is hypersurface metric data and Yab is a symmetric tensor is called hypersurface
data.

This abstract definition makes sense insofar it can be connected to the intrinsic and

extrinsic geometry of Ω when this is embedded in a spacetime. The following definition

summarizes this connection:

Definition 2.6.4 (Embedding of hypersurface data). Let {Ω, γab, ℓa, ℓ(2), Yab} be hy-
persurface data. This data is embedded in a spacetime (M,g) if there exists an

embedding Φ : Ω→ M and a choice of rigging ℓ such that, with ℓ := g(ℓ, ·),

Φ∗(g) = γ, Φ∗(g(ℓ, ·))a ≡ ℓa, g(ℓ, ℓ) = ℓ(2),
1

2
Φ∗ (£ℓg) = Y.
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There is a natural way of defining a connection on the hypersurface Ω. Given two

vectors X, Y ∈ X(Ω) we define

∇XY := (∇XY )||ℓ,
K(X, Y ) := −(∇XY )⊥ℓ,

where ||ℓ denotes the tangent component to Ω, and ⊥ℓ the parallel component to ℓ in
the direct sum decomposition TpM = TpΩ⊕ < ℓp >. It is immediate to check [72] that

∇ defines a torsion-free covariant derivative on Ω and that K(X, Y ) is a symmetric
tensor. As shown in [72], the Christoffel symbols Γ

a

bc associated to ∇ are defined by

∇eaeb = −Kabℓ+ Γ
c

baec .

In any coordinate basis of Ω, Γ
c

ab takes the following explicit form

Γ
c

ab =
1

2
P cd(∂aγbd + ∂bγad − ∂dγab) + nc

(
−Yab +

1

2
(∂alb + ∂bla)

)
.

Note that this expression makes sense even when Ω is not embedded. Thus the con-

nection ∇ exists already at the abstract hypersurface data level.
When the hypersurface data is embedded in the spacetime (M,g), we can consider

the scalar ρℓ and the one-form Ja on Ω defined as

ρℓ := −Eing(n, ℓ), Ja := −Eing(n, ea).

The scalar ρℓ is called [71] the “energy along ℓ” and Ja the “energy flux”. Both depend

on the choice of the rigging. The definition of matter-hypersurface data was also put

forward in [71]:

Definition 2.6.5 (Embedded matter-hypersurface data). A 7-tuple {Ω,γab,ℓa,ℓ(2), Yab,
ρℓ, Ja} defines embedded matter-hypersurface data provided the hypersurface data
{Ω, γab, ℓa, ℓ(2), Yab} is embedded with embedding Φ and rigging ℓ, and the scalar ρℓ and
one-form Ja on Ω satisfy

ρℓ = −Φ∗(Eing(ℓ, n)), J = −Φ∗(Eing(·, n)),

with n being the vector normal to Ω satisfying g(n, ℓ) = 1.

With these notions at hand one can define the notion of shell. Shells arise naturally

in the matching theory of two spacetimes. Consider two different spacetimes (M±, g±)
with diffeomorphic boundaries ∂M±. Let Ω be diffeomorphic to ∂M+ (or ∂M−), and
Φ± : Ω → M± be embeddings such that Φ±(Ω) = ∂M±. The map Φ+ ◦ (Φ−)−1 es-
tablishes a diffeomorphism between ∂M+ and ∂M−. The two spacetimes can be joined
accross the boundaries to produce a spacetime with continuous metric provided addi-

tional conditions are satisfied. Clarke and Dray [24] studied the case of the boundaries
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2. Fundamentals for the Penrose inequality

with constant signature case (including null), and they set the necessary and sufficient

conditions to match both spacetimes. These conditions are that the induced first fun-

damental form on Ω from both embeddings Φ± coincide. In [72] the arguments were
extended to the case of arbitrary causal character. However, in the case when the

boundary has null points, it turns out that the equality of the first fundamental form

is a necessary condition but it fails in general to be also sufficient. The necessary and

sufficient conditions were given in [73]. With the notation introduced above we can

state this theorem as follows:

Theorem 2.6.6 ([24], [72], [73]). Consider two (m+1)-dimensional spacetimes (M±, g±)
with boundaries ∂M±. They can be matched across their boundaries to produce a space-
time (M,g) with continuous metric (in a suitable differentiable atlas) if and only if:

• There exists hypersurface metric data {Ω, γab, ℓa, ℓ(2)} which can be embedded
both in (M+, g+) and in (M−, g−) with respective embedding and riggings Φ±

and ℓ±. Moreover, the embeddings satisfy Φ±(Ω) = ∂Ω±.

• The rigging vectors ℓ± point, respectively, inside and outside of M±.

When the requirements of this theorem are translated into hypersurface data level, it

is necessary to consider two hypersurface data {Ω, γab, ℓa, ℓ(2), Y ±ab} which differ at most
on the transverse tensor Y ±ab , i.e. such that they define the same hypersurface metric
data. The first case that was studied was the non-null one. In this setting and when

[Kab] ≡ K+ab − K−ab = 0, there is a subatlas of the matched spacetime (M,g) where
the metric g is C1 [11, 54]. The Riemann tensor of (M,g) may be discontinuous at

Ω but it is otherwise regular everywhere. In physical terms this means that there is no

matter-energy or gravitational field concentrated on the matching hypersurface. On

the other hand, if [Kab] 6= 0, the Riemann tensor has a Dirac delta function supported
on Ω when it is considered as a tensor distribution in (M,g) (see [61, 100, 34, 72, 60]).

The interpretation of this phenomena is that there is a layer of energy and momentum

concentrated on the hypersurface Ω (a “shell” of matter-energy). The Dirac delta part

of the Einstein tensor (still in the nowhere null case) reads in this case

Eingµν = τabeµa e
ν
bδΩ, with τab = −([Kab]− [K]γab), δΩ : Dirac delta on (Ω, γ),

where the Dirac delta distribution is defined by integration with the volume form of the

induced metric on the shell. The (distributional) conservation equations divgEin
g = 0

imply

(K+ab +K
−
ab)τ

ab = 2[Eingµνn
µnν], ∇bτba = [Ja],

which are the Israel field equations for the shell [54, 58, 59]. These field equations

were extended to the null case by Barrabès and Israel [5] by taking limits where the

spacelike/timelike matching hypersurface becomes null.
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In the spacelike case, the Israel equations can also be derived from the usual constraint

equations

2ρ := 2Eingαβn
αnβ|Ω = Scalγ −KabKab +K2, K := γabKab,

−Ja := Eingαβe
α
a n

β|Ω = Db(Kb
a −Kδba),

where D is the Levi-Civita covariant derivative of (Ω, γ) and Scalγ its curvature scalar,

nα the unit normal used to define Kab and e
α
a is the push-forward to M of the coor-

dinate vector ∂a in Ω. The Israel equations follow by simply taking the difference of

both equations at each side of the matching hypersurface, and using the fact that the

induced metric and the corresponding Levi-Civita connection do not jump across the

shell. Exploiting a similar procedure Mars obtained the shell equations for matching

hypersurfaces of arbitrary causal character in [71] by taking differences of the con-

straint equations on two hypersurface data of the form ({Ω, γab, ℓa, ℓ(2), Y ±ab}). With
this approach there is no need to introduce spacetime distributions nor specific atlas,

and it is conceptually simpler. The method does not require either the existence of

the spacetime (although our presentation here has been restricted for simplicity to the

embedded case from the outset, see Definition 2.6.5), so we prefer to use this more

general framework to obtain the expression of the shell Penrose inequality.

A disadvantage of the connection ∇ described above is that it depends on the extrinsic
curvature of Ω via Yab. In [71] a new connection was introduced that depends only on

the metric hypersurface data. Its explicit definition is

Γ̊cab =
1

2
P cd(∂aγbd + ∂bγad − ∂dγab) +

1

2
nc(∂alb + ∂bla).

This connection is called metric hypersurface connection. It is torsion-free and it relates

to the induced connection Γ
c

ab by

Γ
c

ab = Γ̊
c
ab − naYbc .

In terms of the embedded matter hypersurface data {Ω, γab, ℓa, ℓ(2), Yab, ρℓ, Ja}, the
constraint field equations are expressed as [71]

ρℓ =
1

2
˚Riem

c

bcdP
bd +

1

2
ℓa ˚Riem

a

bcdP
bdnc + ∇̊((P bdnc − P bcnd)Ybc)

+
1

2
n(2)P bdP ac(YbcYda − YbdYca)

+
1

2
(P bdnc − P bcnd)

[
ℓ(2)∇̊dUbc + (Ubc + n(2)Ybc)∂dℓ(2) + 2Ybc(Fdf − Ydf )nf

]
,

(2.10)
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2. Fundamentals for the Penrose inequality

Jc = ℓa ˚Riem
a

bcdn
bnd − ∇̊f

[
(n(2)P bd − nbnd)(δfdYbc − δfcYbd)

]

− (P bd − ℓ(2)nbnd)(∇̊dUbc − ∇̊cUbd)
− (n(2)P bd − nbnd)×[

1

2
(Ubc + n

(2)Ybc)∂dℓ
(2) − 1

2
(Ubd + n

(2)Ybd)∂cℓ
(2) + (YbcFdf − YbdFcf )nf

]

− (P bdnf − P bf nd)YbdUcf − P bdnf (UbcFdf − UbdFcf ), (2.11)

where ˚Riemabcd is the Riemann tensor of the connection ∇̊, F := 1
2
dℓℓℓ and the tensor

Uab is defined as

Uab :=
1

2
(£nγab + ℓa∂bn

(2) + ℓb∂an
(2)). (2.12)

Assume we are given two embedded matter-hypersurface data {Ω,γab,ℓa,ℓ(2),Y ±ab ,ρ±ℓ ,
J±a } and let us define Vab := Y +ab − Y −ab . Define also the jump in the “energy density”
and in the “energy flux” as [ρℓ] := ρ

+
ℓ − ρ−ℓ and [Ja] := J+a − J−a . These jumps, when

computed using (2.10) and (2.11) involve naturally a two contravariant tensor τ(V )ab

defined as

τ(V )ab = (naP bc+nbP ac)ndVcd−(n(2)P acP bd+P abncnd)Vcd+(n(2)P ab−nanb)P cdVcd .
(2.13)

Thus, hypersurface data admits a natural linear map from symmetric two-covariant

tensors into symmetric two-contravariant tensors. For the sake of simplicity, we will use

τab instead of τ(V )ab when no confusion arises.

The tensor τ(V )ab has the symmetries of an energy-momentum tensor and recovers

the standard definition of the energy-momentum tensor on the shell in the case where

there are no null points. When two spacetimes are matched across null hypersurfaces,

τ(V )ab also recovers the definition for the energy-momentum tensor put forward by

Barrabès and Israel (see (31) in [5]). In the particular case where the matching hy-

persurface has a general causal character, the tensor τabeµa e
ν
b agrees with the Dirac

delta part of the Einstein tensor of the matched spacetime (M,g) obtained in [72] (see

expression (71) in that paper). These considerations lead to the following definition

[71]:

Definition 2.6.7 (Shell). A shell is a pair of matter-hypersurface data of the form

{Ω, γab, ℓa, ℓ(2), Y ±ab , ρ±ℓ , J±a }. The energy-momentum tensor on the shell is the symmet-
ric 2-covariant tensor τ(V )ab defined above, where Vab := Y

+
ab − Y −ab .

The shell field equations are the following pair of partial differential equations [71] :

Definition 2.6.8 (Shell field equations). Consider the shell {Ω, γab, ℓa, ℓ(2), Y ±ab , ρ±ℓ , J±a }.
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

The shell field equations are the pair of partial differential equations

∇̊a(τablb) + τablb
(
1

2
n(2)∂aℓ

(2) + Facn
c

)
− 1
2
τab(Y +ab + Y

−
ab) = [ρℓ], (2.14)

∇̊bτba + τba
(
1

2
n(2)∂bℓ

(2) + Fbcn
c

)
+ τbcℓcUba = [Ja]. (2.15)

2.7 Penrose construction in Minkowski. The shell Pen-

rose inequality

Penrose’s original setup to test the validity of cosmic censorship used a shell of matter

propagating in a flat spacetime at the speed of light. The shell is assumed to have the

topology S2 × R and the matter within the shell is made of null dust (the particles are
massless and all pressures vanish). In order to have a flat metric inside the shell, it is

necessary that no point in the interior lies in the causal future of the shell. In other

words, if a Minkowskian time t is chosen inside the shell, the null hypersurface Ω must

not develop self-intersections to the past of some t = t0. Thus, the setup requires that

the null hypersurface has one cross section St0 ≡ Ω ∩ {t = t0} which is convex as an
euclidean surface of the hyperplane {t = t0}. This property is then true for all t ≤ t0,
which means that the null hypersurface Ω extends to past null infinity smoothly without

developing caustics. On the other hand Ω will become singular to the future at the first

focal point of the incoming null geodesics. The collapsing dust may emit gravitational

waves which alter the metric of the spacetime outside the shell, so when the shell has

passed the metric is no longer flat.

Let k be the future directed null tangent to Ω normalized by k(t) = 1. Consider any

closed, spacelike surface S embedded in Ω and let ℓ be its future null normal satisfying

〈k, ℓ〉 = −2. The energy momentum of the spacetime is a distribution supported on Ω
which reads Tαβ = 8πρkαkβδ, where ρ is the energy density of the shell and the Dirac

δ is defined with respect to the volume form induced by the normal k to Ω. The null

expansion θℓ jumps across Ω, and this jump can be determined using the Raychaudhuri

equation and some properties of the Dirac delta δ, see e.g. [69]. However we compute

this jump using the formulation presented above.

For an arbitrary spacelike surface embedded in Ω, its expansion along k coincides

with the null expansion of the hypersurface. This means that the expansion does not

depend on how the surface is embedded in the null hypersurface and only depends on

the point where this expansion is considered (see Appendix B). We will prove later that

θk = −trP (£nγ), i.e. that θk depends only on the metric hypersurface data of Ω. As

a consequence, the incoming null expansion θk is continuous across the shell. On St0,

the null expansion θk coincides with the mean curvature of St0 as a surface in Euclidean

space with respect to the inner normal and it is therefore non positive (because St0
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2. Fundamentals for the Penrose inequality

is convex) and not everywhere zero (since St0 is closed). The Raychaudhuri equation

then implies that θk ≤ 0 everywhere on Ω to the past of St0. Then, after the shell has
passed, a spacelike surface S ⊂ Ω is marginally outer trapped (i.e. θ+ℓ = 0) if and only
if it is marginally future trapped (θ+ℓ = 0 and θk ≤ 0).
Consider a general asymptotically flat four dimensional spacetime (M,g) admitting a

null shell Ω extending smoothly to past null infinity I −, and satisfying the DEC (we will
return to the Minkowski spacetime later). Let us assume that there exists a compact

cross section S satisfying θ+ℓ = 0 (i.e. S is a MOTS after the shell has passed). We

do not assume yet that the shell is made of any specific type of matter (we will later

prove that in the case of shells of null dust, given any cross section S ⊂ Ω the shell can
always be chosen so that S is a MOTS with respect to the outer geometry). Using the

standard heuristic argument described in Section 2.5, it follows

E+B ≥
√
|H ∩Ω|
16π

≥
√
|S|
16π

, (2.16)

where E+B is the Bondi energy of past null infinity at the cut defined by Ω in the exterior

spacetime. The main idea of Penrose’s construction for shells is that this inequality can

be expressed fully in terms of the interior geometry by using the shell properties. For

instance, knowing the Bondi energy of the interior spacetime and its jump across the

shell, then E+B will be fully determined. As mentioned before, the Bondi energy can be

computed using limits at infinity of the Hawking energy along a suitable foliation.

Select a nowhere zero null vector field k tangent to Ω. The level sets of the function

λ : Ω → R solution of the equation k(λ) = −1 with initial value λ|S0 = 0 define
a foliation of surfaces {Sλ}, along Ω with Sλ0 = {p ∈ Ω : λ(p) = λ0}. In adapted
coordinates k = −∂λ. Assume that {Sλ} tends to large spheres (a precise definition will
be given in Chapter 6). Let M+H (Sλ) be the Hawking mass of Sλ as a surface embedded

in the outer spacetime. Since {Sλ} tends to large spheres, the limit of M+H (Sλ) is the
Bondi energy E+B of the cut defined by the hypersurface Ω and past null infinity (see

[87, 6] and Chapter 6). Likewise M−H (Sλ) tends to the Bondi energy E
−
B of the interior

spacetime. Hence

lim
λ→∞
[MH(Sλ)] = [EB]. (2.17)

It is clear that in order to compute the left-hand side we need to evaluate the jump

of the Hawking energy across the leaves of the foliation Sλ of Ω. From (2.3) we have

[MH(Sλ)] = −
1

16π

√
|Sλ|
16π

∫

Sλ

[ ~H2]ηSλ, (2.18)

where [ ~H2] = ( ~H+)2 − ( ~H−)2. Consider the null vector ℓ orthogonal to each Sλ and
normalized by g(k, ℓ) = −2 and choose this vector field along Ω as rigging vector.
Decomposing ~H in the null basis {k, ℓ} one has ~H = −1

2
θℓk − 1

2
θkℓ, and hence

[ ~H2] = [−θkθℓ].
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The first fundamental form γab of Ω and the choice of the rigging ℓ determine the

matrix A given in (2.8), and hence the vector field n is also uniquely determined. Since

n is normal to Ω and it satisfies g(n, ℓ) = 1, it is clear that n = −1
2
k . Fix any leaf Sλ

of the foliation, and consider its second fundamental form Kn along n. We first show

that the scalar θk = −2θn = −2(γ̃−1)ABKn
AB does not jump across the hypersurface Ω.

More precisely, we want to prove that θk = −trP (£nγ) which only depends on metric

hypersurface data. Given that in this case n(2) = 0, (2.12) becomes Uab =
1
2
£nγab. We

prove first that U(X, Y ) = Kn(X, Y ), where X, Y are any vector fields tangent to Sλ.

To this purpose it is necessary to evaluate Uab at X, Y . We can extend X and Y along

n so that [n,X] = [n, Y ] = 0. Then

£n(γ(X, Y )) = ∇n(〈X, Y 〉) = 〈∇nX, Y 〉+ 〈X,∇nY 〉 = 〈∇Xn, Y 〉+ 〈X,∇Y n〉
= 2Kn(X, Y ).

Besides

£n(γ(X, Y )) = (£nγ)(X, Y ) + γ(£nX, Y ) + γ(X,£nY ) = (£nγ)(X, Y ),

and we conclude (£nγ)(X, Y ) = 2K
n(X, Y ), which implies UAB = K

n
AB. The following

step is to prove that trPU = trγ̃K
n, so it is necessary to compute P ab. In this setting

where the rigging is null and satisfies g(k, ℓ) = −2, we have that ℓ(2) = 〈ℓ, ℓ〉 = 0.
Consider the basis {ea} = {k,XA}|p tangent to Ω so that {XA} are tangent to Sλ ⊂ Ω.
In this case ℓ0 = 〈ℓ, k〉 = −2 and ℓA = 〈ℓ, XA〉 = 0 (we will simply write ℓa = (−2, 0, 0)
in the corresponding dual basis). Denoting by γ̃AB = 〈XA, XB〉 the metric of Sλ, then
the first fundamental form γab of the null hypersurface Ω reads

γab ≡
(
0 0

0 γ̃AB

)
.

Since we know ℓa, ℓ
(2) and γab, the corresponding tensors P

ab, na and n(2) can be

computed by inverting the matrix A given in (2.8). The result is

P ab :=

(
0 0

0 (γ̃−1)AB

)
, na =

(
−1
2
, 0, 0

)
, n(2) = 0.

It becomes now clear that

θk = −2θn = −2(γ̃−1)ABKn
AB = −2P abUab = −2trPU = −trP (£nγ).

This shows that θk does not jump across the shell and we simply write θk := θ
+
k = θ

−
k

from now on. Consequently

[ ~H2] = −θk [θℓ].

For later use we show that Uabn
b = 0. Indeed, let T be any vector tangent to Ω and

compute

2Uabn
aT b = (£nγ)(n, T ) = n(γ(n, T ))− γ(£nn, T )− γ(n,£nT ) = 0,
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where we used γ(n, ·) ≡ 0, and [n, n] = 0.
A fundamental step in the shell construction is to study the relation between [θℓ] and

the energy-momentum tensor of the shell. This requires studying the transverse tensor

Y . In our construction the embedding Φ : Ω → M and the transverse null vector ℓ

that plays the role of the rigging are given, and consequently the symmetric tensor Y

is uniquely defined. In order to compute it, consider X, Y tangent vectors to the cross

section Sλ ⊂ Ω, and define the function Qk by ∇kk = Qkk (recall that k is autoparallel,
being null and hypersurface orthogonal). Then

Y (k, k) =
1

2
(∇αℓβ +∇βℓα)kαkβ = 〈∇kℓ, k〉 = −〈ℓ,∇kk〉 = −〈ℓ,Qkk〉 = 2Qk .

In addition

Y (k,X) =
1

2
(∇αℓβ +∇βℓα)kαXβ =

1

2
(〈∇kℓ, X〉+ 〈∇Xℓ, k〉)

=
1

2
(−〈ℓ,∇kX〉 − 〈ℓ,∇Xk〉) = −2sℓ(X),

where sℓ(X) :=
1
2
〈∇Xk, ℓ〉 is the connection one-form of Sλ (see Appendix B) (note

that we have used the property [X, k ] = 0). Finally

Y (X, Y ) =
1

2
(∇αℓβ +∇βℓα)XαY β =

1

2
(〈∇Xℓ, Y 〉+ 〈∇Y ℓ, X〉) = Kℓ(X, Y ),

where Kℓ(X, Y ) = 〈∇Xℓ, Y 〉 is the second fundamental form along ℓ of Sλ (see Appendix
B). In summary, the tensor Y has the form, in matrix notation

Yab ≡
(
2Qk −2(sℓ)A
−2(sℓ)B Kℓ

AB

)
.

This together with the value of P ab, na and n(2) given in (2.9) fully determines the shell

energy-momentum acting on the tensor Y . In this null case (2.13) takes the form

τ(Y ) = XY ⊗ n + n ⊗XY +QY P,

where QY := Y (n, n), and XY := P (Y (n, ·), ·)− 1
2
(trPY )n. Observe that if

[QY ] = 0, P ([Y ](n, ·), ·) = 0, (2.19)

then the energy momentum tensor on the shell will be of the form

τ([Y ]) = −[trPY ]n ⊗ n, (2.20)

i.e. it will correspond to the energy momentum tensor of null dust. Note that trPY =

P abYab = P
ABYAB = (γ̃

−1)ABKℓ
AB = θℓ, so an alternative form of (2.20) is

τ([Y ]) = −[θℓ]n ⊗ n. (2.21)
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If we choose the jump so that

[Yab] = Y
+
ab − Y −ab = −(8πρ)γab,

with ρ : Ω → R, then conditions (2.19) are automatically satisfied and we are in the
case of null dust. Substituting Vab = [Yab] = −(8πρ)γab in (2.13) it follows

τ([Y ])ab = (16πρ)nanb (2.22)

after using that

(P · [Y ])ac = P ab[Ybc ] ≡
(
0 0

0 (γ̃−1)AB

)
·
(
0 0

0 −(8πρ)γ̃BC

)
=

(
0 0

0 −(8πρ)δAC

)
.

From (2.21) and (2.22) it follows that the jump of transverse null expansion θℓ is directly

related to the energy density ρ of the null dust:

[θℓ] = θ
+
ℓ − θ−ℓ = −16πρ. (2.23)

Substituting this in (2.18), we find

[MH(Sλ)] = −
√
|Sλ|
16π

∫

Sλ

θkρηSλ. (2.24)

To compute the limit of the right-hand side of (2.24) evaluated on this foliation, we

need to find the asymptotic expansions of θk , ηSλ and ρ at λ =∞. As we will show in
Chapter 6, the expansion of θk has the form

θk =
−2
λ
+
θ
(1)
k

λ2
+ o(λ−2). (2.25)

From equation (B.40) in Appendix B, the volume form admits the expression ηSλ =

(λ2+o(λ2))ηq̊, where ηq̊ is the volume form of the standard two-sphere. It just remains

to compute the asymptotic expansion of ρ. To do so, we need to know how ρ evolves

along the null direction k . This is equivalent to computing the expressions for the shell

field equations (2.14) and (2.15). Since we already know the expression for Uab, we just

need to calculate Fab. The simplest way to to this is by restricting to the case where the

basis {ea} = {k,XA} is a coordinate basis, i.e. there exist adapted coordinates {λ, xA}
such that k = −∂λ and XA = ∂xA. Given that the components of ℓa are constant, we
have

Fab =
1

2
(dℓℓℓ)ab =

1

2
(∂aℓb − ∂bℓa) = 0, (2.26)

which is of course independent of the choice of basis.

In order to write down the shell equations we need to make a choice of energy-

momentum tensor of the spacetime left after the shell has passed. The simplest case
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(and the corresponding to the original Penrose construction, too) is [ρℓ] = [Ja] = 0,

which we assume from now on. Inserting the expression (2.26) for Fab, the first term

in (2.14) becomes

∇̊a(τablb) = ∇̊a((16πρ)nanblb) = ∇̊a((16πρ)na) = 16π(n(ρ) + ρ∇̊ana)
= 16π(n(ρ) + ρθn).

The second term in (2.14) clearly vanishes, and for the third term we have

τab(Y +ab + Y
−
ab) = (16πρ)n

anb(2Y −ab − 8πργab) = (32πρ)Y −(n, n) = −(32πρ)Qn.

Consequently equation (2.14) turns into

n(ρ) + ρ(θn +Qn) = 0. (2.27)

For the second equation (2.15), the first term vanishes since

τba = τ
bcγca = 16πρn

b(ncγca) = 0.

The second term clearly vanishes and the third term also becomes zero since τbcUba =

(16πρ)nbncUba, because Uban
b = 0. So, the only shell equation for null dust is (2.27)

above.

Let us now return to the original Penrose construction where (M−, g−) is Minkowski.
Recall that a Minkowskian time t had been chosen, and consequently a unit Killing

vector ξ defined by ξ = −dt existed. Also, the null vector k was normalized so that
〈k, ξ〉 = −1. In this situation, the corresponding foliation {Sλ} automatically tends to
large spheres, and the particularization of formula (2.24) to this situation gives

lim
λ→∞
[MH(Sλ)] = EB, (2.28)

where we have used that the Bondi energy of the Minkowski spacetime is zero.

The normalization of k implies that the null geodesics along Ω generated by k are

affinely parametrized in the Minkowski spacetime. Indeed, by multiplying the geodesic

equation ∇kk = Qkk with ξ, one finds −Qk = 〈∇kk, ξ〉 = −〈k,∇kξ〉 = 0, where the
last equality follows because ξ is covariantly constant. The geodesics are also affinely

parametrized in the outer spacetime for null dust (which recall satisfies [Qn] = 0).

Hence equation (2.27) simplifies to

k(ρ) + ρθk = 0. (2.29)

This equation will be used to show that the integral of the energy density ρ on each

leaf Sλ of the foliation is independent of λ and in fact takes the value EB, and also to

43



2.7. Penrose construction in Minkowski. The shell Penrose inequality

determine the expression for the asymptotic expansion of ρ at λ = ∞. For the latter,
choose s0 > 0 and λ > s0. Since k = −∂λ, integrating (2.29) in [s0, λ] gives

ρ(λ) = ρ(s0) exp(

∫ λ

s=s0

θk(s)ds).

Substituting (2.25) it follows

ρ(λ) = ρ(s0) exp

(∫ λ

s=s0

−2
s
ds

)
exp

(∫ λ

s=s0

(
θ
(1)
k

s2
+ o(s−2)

)
ds

)

= ρ(s0)
s20
λ2
exp

(∫ λ

s=s0

(
θ
(1)
k

s2
+ o(s−2)

)
ds

)
. (2.30)

We next use the property that for every continuous function f ∈ o(s−2), there is
a constant C(s0) such that

∫ λ
s=s0

f (s)ds = C(s0) + o(λ
−1). To show this we write∫ λ

s=s0
f (s)ds as

∫ λ

s=s0

f (s)ds =

∫ ∞

s=s0

f (s)ds −
∫ ∞

λ

f (s)ds := C(s0)−
∫ ∞

λ

f (s)ds,

where both integrals extending to infinity are finite because a function f ∈ o(s−2)
is automatically integrable. It just remains to prove that

∫∞
λ
f (s)ds ∈ o(λ−1), i.e.

lim
λ→∞

λ
∫∞
λ
f (s)ds = 0. Applying the L’Hôpital rule gives

lim
λ→∞

λ

∫ ∞

λ

f (s)ds = lim
λ→∞

∫∞
λ
f (s)ds
1
λ

= lim
λ→∞

−f (λ)
− 1
λ2

= 0,

where the last equality follows from f ∈ o(λ−2). Applying the result to the exponential
in (2.30),

exp

(∫ λ

s=s0

(
θ
(1)
k

s2
+ o(s−2)

)
ds

)
= exp

(
−θ

(1)
k

λ
+
θ
(1)
k

s0
+ C(s0) + o(λ

−1)

)

= exp

(
C(s0) +

θ
(1)
k

s0

)

︸ ︷︷ ︸
:=α(s0)

exp

(
−θ

(1)
k

λ
+ o(λ−1)

)

= α(s0) (1 + o(1)) = α(s0) + o(1),

and we conclude

ρ =
ρ̂

λ2
+ o(λ−2)
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2. Fundamentals for the Penrose inequality

for some ρ̂ independent of λ. We can now substitute the expansions of θk , ηSλ and ρ

in the right-hand side of (2.24) to compute its limit. Since
√
|Sλ| =

√
4πλ+ o(λ), it

follows

lim
λ→∞

(
−
√
|Sλ|
16π

∫

Sλ

θkρηSλ

)

= lim
λ→∞

−1√
16π
(
√
4πλ+ o(λ))

∫

S2

(−2
λ
+ o(λ−1)

)(
ρ̂

λ2
+ o(λ−2)

)
(λ2 + o(λ2))ηq̊ =

=

∫

S2

ρ̂ηq̊.

We still need to relate this integral at infinity with integrals along {Sλ}. This is achieved
from the following two observations. First

lim
λ→∞

∫

Sλ

ρηSλ = lim
λ→∞

∫

S2

(
ρ̂

λ2
+ o(λ−2)

)
(λ2 + o(λ2))ηq̊ =

∫

S2

ρ̂ηq̊, (2.31)

and second,
∫
Sλ
ρηSλ is in fact a constant independent of λ because

k

(∫

Sλ

ρηSλ

)
=

∫

Sλ

k(ρ)ηSλ+

∫

Sλ

ρk(ηSλ) =

∫

Sλ

(−ρθk)ηSλ+
∫

Sλ

(ρθk)ηSλ = 0, (2.32)

where we have used (2.29) and the expression for the Lie derivative of a volume form

along k (see (B.41) in Appendix B). Putting together (2.28), (2.24), (2.31) and (2.32)

yields

EB = lim
λ→∞
[MH(Sλ)] = lim

λ→∞

(
−
√
|Sλ|
16π

∫

Sλ

θkρηSλ

)
=

∫

S2

ρ̂ηq̊ = lim
λ→∞

∫

Sλ

ρηSλ

=

∫

Sλ

ρηSλ ∀λ. (2.33)

So far, we have used the evolution equation (2.29), but we still have not fixed any

initial condition for ρ. It remains to show that the initial data for ρ can be chosen so

that the initial surface S is a MOTS in the exterior geometry. Indeed, from the jump

equation (2.23).

[θℓ]|S = (θ+ℓ )|S − (θ−ℓ )|S = −16πρ|S,
S will be a MOTS in the outer spacetime ((θ+ℓ )|S = 0) if and only if

ρ|S =
1

16π
(θ−ℓ )|S.

Combining with (2.33), we have
∫

S

θ−ℓ ηS = 16πEB,
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2.7. Penrose construction in Minkowski. The shell Penrose inequality

and the Penrose inequality (2.16) finally becomes

∫

S

θ−ℓ ηS ≥
√
16π|S|. (2.34)

This inequality has the remarkable property of making no reference to the exterior

geometry at all. Since the density ρ is freely specifiable, this inequality should hold for

any closed spacelike surfaces S in Minkowski spacetime for which the null hypersurface

Ω generated by past directed and outer null geodesics orthogonal to S remains reg-

ular everywhere. We emphasize that analogous shell Penrose inequalities (also called

Gibbons-Penrose inequalities in the literature) exist in arbitrary spacetime dimension.
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3
Projection along the Killing in static spacetimes

3.1 Introduction

After having explained in detail the Penrose inequality conjecture and introduced the

fundamental notions we will use, we start with the presentation of the original results

in this thesis.

In this chapter we approach the shell Penrose inequality by means of a vertical pro-

jection along the time translation Killing vector. As explained in the introduction, this

was the method proposed by Gibbons to address the problem. Although his implemen-

tation was wrong, the idea is nevertheless interesting and worth exploring. In view of

potential applications of the method in more general settings than in Minkowski, we

analyze in detail the projection of general codimension two spacelike surfaces embedded

in a static spacetime. The projection is performed along the static Killing and onto a

hypersurface orthogonal to this Killing. We study the relationship between the intrinsic

and extrinsic geometry of the original surface with the projected one. In particular,

we find explicit expressions for the relation between the induced metrics, the second

fundamental forms and the connection of the normal bundle between the two surfaces.

Definitions of these concepts and basic results concerning the geometry of embedded

submanifolds are summarized in Appendix A.

Although our main interest to find these geometric relations is with regard to the

shell Penrose inequality, the results are of independent interest. The computations are

performed in the static setup but, for the sake of generality we also give the expressions

in the case when the ambient manifold is of euclidean signature (and admits a hyper-

surface orthogonal nowhere zero Killing vector). The results in this chapter have been

published in [75].

In connection to the shell Penrose inequality, we first explain where and for which

reason the calculation by Gibbons fails. This is done in Subsection 3.3.1. In Subsection
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3.2. The metric determined by the Killing

3.3.2 we apply our result to give an independent proof of the theorem by Brendle and

Wang [15] mentioned in the introduction and which gives sufficient conditions for the

validity of the shell Penrose inequality in terms of the convexity of the projected surface.

As already stated, our proof of this theorem was obtained at about the same time as

Brendle and Wang and in a completely independent way.

3.2 The metric determined by the Killing

Throughout this thesis and unless otherwise stated, (M,g) denotes an (n + 2)-dimen-

sional spacetime. We always take n ≥ 2. On a manifold with metric γ, we denote by
γ(·, ·) the scalar product with this metric. When the scalar product is with respect to
the spacetime metric g we simply write 〈·, ·〉.
Definition 3.2.1 (Killing vector field). Let ξ be a vector field in a spacetime (M,g).

ξ is a Killing vector field if it satisfies the relation

£ξg = 0. (3.1)

This condition is equivalent to:

∇αξβ +∇βξα = 0. (3.2)

Definition 3.2.2 (Stationary spacetime). Let (M,g) be a spacetime admitting a Killing

vector field ξ. (M,g) is stationary if ξ is timelike.

Definition 3.2.3 (Static spacetime). A spacetime (M,g) is static if it is stationary, and

in addition there exists a spacelike hypersurface Σ which is orthogonal to the integral

curves of the corresponding Killing vector ξ through each point. Such ξ is called static.

By the Fröbenius theorem, a stationary spacetime with Killing vector ξ is static if and

only if

ξ[α∇βξγ] = 0. (3.3)

The following theorem is well-known. We include its proof for completeness.

Theorem 3.2.4. Let (M,g) be a spacetime that admits a static Killing vector field ξ

with the norm ξαξα = −V 2, and V a strictly positive function. Then there exists locally
in M a differentiable function t so that

ξα = −V 2∇αt,

and a coordinate system where the metric is expressed as

g = −V 2dt2 + hi jdx idx j ,

with hi j a positive definite metric.
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3. Projection along the Killing in static spacetimes

Remark 3.2.5. A function t is locally defined in M when it is defined in some (non-

empty) open neighbourhood U(p) around any point p.

Proof. We denote by ξ the one form obtained from ξ by lowering indices. By the

Poincaré lemma dt = ξ
−V 2 will have a local solution if and only if d(

ξ
−V 2 ) = 0, i.e. if

and only if

∇ν
( ξµ
−V 2

)
−∇µ

( ξν
−V 2

)
= 0,

or equivalently

V 2∇[µξν] + ξ[µ∇ν]V 2 = 0. (3.4)

Expanding ξ[µ∇νξα] = 0 and multiplying it by ξµ, we obtain

0 = 6ξµξ[µ∇νξα] = 2V 2∇[αξν] + 2ξνξµ∇αξµ − 2ξαξµ∇νξµ,

where we have used the Killing equation. Inserting ∇αV 2 = −2ξµ∇αξµ yields (3.4), as
required.

Let Σt be the level sets of t, and fix t0 = t(p) for any choice p ∈ M. Let {x i} be a
coordinate system in Σt0, and extend it off Σt0 by means of ξ(x

i) = 0. It is clear that

(t, x i) forms a system of coordinates in a neighbourhood of p. From ξ(x i) = 0 we have

that ξ is parallel to ∂t . Moreover, the conditions 〈ξ, ξ〉 = −V 2 and ξ = −V 2dt yield
that

ξ = ∂t ,

so that the metric of M locally reads

g = −V 2dt2 + hi jdx idx j ,

where hi j = 〈∂x i , ∂x j 〉, with (Σt , g|Σt = h) a Riemannian hypersurface. Obviously V and
hi j are independent of t because ξ = ∂t is a Killing vector.

3.3 Geometry of the intial surface in terms of the pro-

jected one

From now on we are in the setup of Theorem 3.2.4. Consider a codimension-two

spacelike surface S in M. Since all calculations are local we can assume without loss of

generality that S is embedded, and as before let t : M → R be defined by ξ = −V 2dt.
Choose any t0 ∈ R and let Σt0 = {t = t0}. The projection S of S onto Σt0 along
the orbits of ξ defines a codimension-two surface which again can be taken to be
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3.3. Geometry of the intial surface in terms of the projected one

embedded (after restricting S if necessary). Thus, we have a diffeomorphism π : S → S

defined by projection along ξ (see Figure 3.1). The induced metrics and covariant

derivative on S (resp. S) are denoted as γ and D (resp. γ and D). The function

τ := t|S − t0 and VS := V |S will play an important role in relating the geometry of
the two surfaces. Scalar functions on S will be transferred to S by means of π while

keeping their names. The precise meaning will follow from the context. Here and in the

following |Df |2γ = γABf,Af,B for any function f : S → R, and likewise |Df |2γ = γABf,Af,B.

S

S

M

ξ

Σt0

τ

ν

ν

u

X

X

Figure 3.1: The spacetime convex surface S is projected along the Killing ξ onto the

constant time hyperplane Σt0 = {t = t0} in the static spacetime M. S lies at a time
height distance τ from Σt0. The tangent vector X to S is projected orthogonally to

the tangent vector X. For the normals, the vector ν on S is Lie-dragged to S along ξ

and u is the normalized normal component of ξ to S.

For any vector field X ∈ X(S) we denote its projection dπ(X) ∈ X(S) as X. Given

any such vector X we extend it along the orbits of the Killing vector by Lie transport

along ξ, i.e. solving [ξ,X] = 0. Again we keep the same name for the extension. Note

that X is everywhere orthogonal to ξ. With these definitions it is straightforward that,

at any p ∈ S,
X|p = X(τ)ξ|p +X|p. (3.5)

As a consequence, the metrics γ and γ are related by

γ(X, Y )|p = 〈X(τ)ξ +X, Y (τ)ξ + Y 〉|p =
(
π∗(γ)− V 2S dτ ⊗ dτ |p

)
(X, Y )|p,

where we have used dπ|p(X) = X|π(p) and X(τ) = dτ(X). So, we conclude

γ = π⋆(γ)− V 2S dτ ⊗ dτ. (3.6)
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3. Projection along the Killing in static spacetimes

The inverse metrics are then related by

γ−1 = dπ(γ−1)− V 2S
W 2
grad γ(τ)⊗ grad γ(τ), W :=

√
1− V 2S |dτ |2γ, (3.7)

which has, as immediate consequences,

dπ(grad γ(τ)) =
1

W 2
grad γ(τ), |dτ |2γ =

|dτ |2γ
W 2

, W =
1√

1 + V 2S |dτ |2γ
. (3.8)

The bound 1− V 2S |dτ |2γ > 0 (necessary for W to be real) is a consequence of S being
spacelike everywhere. It is also immediate to show that the respective volume forms ηS
and ηS are related by

ηS = WηS. (3.9)

In order to study the relation between the extrinsic geometries of S and S it is useful to

choose a basis of the normal bundle of each surface. Concerning S, the natural choice

is {ν, V −1S ξ|S}, where ν is a unit normal of S as a hypersurface in Σt0. We denote
by K the second fundamental form of S along ν. Concerning S, the Lie constant

extension ν along the Killing ξ defines a spacelike and unit normal to S, still denoted by

ν. For the second vector, note that ξ|S is nowhere tangent to S and hence its normal
component ξ⊥ in the orthogonal decomposition TpM = TpS⊕NpS is nowhere zero and,
in fact, timelike. From ξ = −V 2dt we have, for any X ∈ TpS, 〈ξ|S, X〉 = −V 2S dτ(X)
which means that the tangential component of ξ|S is −V 2S grad γ(τ), or equivalently
ξ⊥ = ξ|S + V 2S grad γ(τ). Following [110] we denote by u the future directed unit vector
tangent to ξ⊥. Its explicit form is

u =
W

VS

(
ξ|S + V 2S grad γ(τ)

)
, (3.10)

as a consequence of u being unit and orthogonal to grad γ(τ) and the property 〈ξ, ξ〉 =
−V 2. We note that {ν, u} defines an orthonormal basis of the normal bundle of S.
The extrinsic geometry of S is encoded into its second fundamental form vector K and

the connection of the normal bundle α. For the basis above, this geometric information

is in turn given by the two symmetric tensors Ku := 〈K, u〉, Kν := 〈K, ν〉 and the one-
form αν(X) := 〈∇MX ν, u〉, X ∈ X(S). The following proposition relates these objects

with the geometry of the projected surface:

Proposition 3.3.1. With the notation above,

Kν = π∗(K)− VSν(V )|Sdτ ⊗ dτ, (3.11)

Ku =
1

W
(dVS ⊗ dτ + dτ ⊗ dVS + VSπ∗(Hess γ(τ)))

− V
2
S

W
dVS(grad γ(τ))dτ ⊗ dτ, W =

√
1− V 2S |dτ |2γ , (3.12)

αν =
1

W

(
VSπ

⋆(K(grad γ(τ), ·))− ν(V )|Sdτ
)
. (3.13)
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3.3. Geometry of the intial surface in terms of the projected one

Proof. Inserting (3.5) in the defining expression Kν(X, Y ) = 〈∇MX ν, Y 〉 gives, after
using X(τ) = dτ(X),

Kν(X, Y ) = dτ(Y )〈∇MX ν, ξ〉+ dτ(X)〈∇Mξ ν, Y 〉+ 〈∇MX ν, Y 〉. (3.14)

Now, 〈∇MX ν, ξ〉 = X(τ)〈∇Mξ ν, ξ〉 + 〈∇MX ν, ξ〉 = X(τ)〈∇Mξ ν, ξ〉, the second equality
following from Σt0 being totally geodesic. To elaborate this further, we note that

dξ = 2V −1dV ∧ ξ as a consequence of ξ = −V 2dt. Hence

∇Mν ξ =
1

2
dξ(ν, ·) = ν(V )|S

VS
ξ,

where in the first equality we used the Killing equations and in the second the orthog-

onality of ν and ξ. Raising indices and recalling that [ξ, ν] = 0 we conclude

∇Mξ ν = ∇Mν ξ =
ν(V )|S
VS

ξ,

and therefore

〈∇MX ν, ξ〉 = −VSν(V )|Sdτ(X). (3.15)

Using these expressions, the first term in (3.14) becomes −VSν(V )|S(dτ⊗dτ)(X, Y ),
while the second term vanishes. Finally, the last term gives the second fundamental

form of S and (3.11) follows (to our knowledge, this identity appeared for the first time

in [15]).

Concerning Ku, its symmetry properties allows us to write Ku(X, Y ) = 1
2
(〈∇MX u, Y 〉+

〈∇MY u,X〉), which after inserting (3.10) yields

Ku(X, Y ) =
W

2VS
(〈∇MX ξ, Y 〉+ 〈∇MY ξ,X〉+

+ 〈∇MX (V 2S grad γ(τ)), Y 〉+ 〈∇MY (V 2S grad γ(τ)), X〉). (3.16)

The Killing equations imply that the first two terms cancel each other. Now, the

tangential projection to S of a spacetime covariant derivative coincides with the intrinsic

covariant derivative on S. More precisely, for any vector fields X, Y, Z tangent to S we

have 〈X,∇YZ〉 = 〈X,DYZ〉γ. Thus, the third term in (3.16) becomes
〈
Y,∇X(V 2S gradγτ)

〉
= 2VSX(VS)

〈
Y, gradγτ

〉
+ V 2S

〈
Y,DXgradγτ

〉

= 2VS(dVS ⊗ dτ)(X, Y ) + V 2SHessγτ(X, Y ), (3.17)

where we used the definition of Hessian Hessγτ(X, Y ) =
〈
Y,DXgradγτ

〉
. The same

reasoning is valid for the fourth term. It follows immediately

Ku = W (dVS ⊗ dτ + dτ ⊗ dVS + VSHess γ(τ)) . (3.18)
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3. Projection along the Killing in static spacetimes

In order to rewrite this in terms of the projected geometry, we need to find the relation

between the Hessians of τ on each one of the surfaces. To that aim, recall that the

difference between connections D and D on a given manifold defines a type (1, 2) tensor

Z such that the following identity holds for any one-form ω (see e.g. [106]):

(Dω)(X, Y )− (Dω)(X, Y ) = −Z(ω, X, Y ). (3.19)

In our context, we can use π⋆(γ) on S and the corresponding connection D it defines.

Given the relation (3.6), a straightforward computation gives

Z(dτ, ·, ·) = −VS|dτ |2γ(dVS ⊗ dτ + dτ ⊗ dVS +
+VSπ

∗(Hess γ(τ))) + VSdVS(grad γ(τ))dτ ⊗ dτ.

Inserting this into (3.19) with ω = dτ and using (3.8) it follows

W 2Hess γ0(τ) = π∗(Hess γ(τ)) + VS|dτ |2γ(dτ ⊗ dVS + dVS ⊗ dτ)−
−VSdVS(grad γ(τ))dτ ⊗ dτ.

Combining this and (3.18) gives (3.12) at once.

It only remains to compute the connection 1-form αν(X) = 〈∇MX ν, u〉. Substituting
(3.10) one finds

αν(X) =
W

VS
〈∇MX ν, ξ + V 2S grad γ(τ)〉 =

=
W

VS
〈∇MX ν, ξ〉+WVSKν(grad γ(τ), X) =

= −Wν(V )|Sdτ(X) +WVSKν(grad γ(τ), X),

where in the last equality we used (3.15). Replacing (3.11) and using the first and

second relation in (3.8) and the definition of W , then

αν(X) = −Wν(V )|Sdτ(X) +
+WVS

(
π∗(K)(grad γ(τ), X)− VSν(V )|S|dτ |2γdτ(X)

)
=

= −Wν(V )|Sdτ(X) +
VS
W

(
K(grad γ(τ), dπ(X))− V ν(V )|S|dτ |2γdτ(X)

)
=

=
VS
W
K(grad γ(τ), dπ(X))−

(
W +

V 2S |dτ |2γ
W

)
ν(V )|Sdτ(X) =

=
1

W

(
VSK(grad γ(τ), dπ(X))− ν(V )|Sdτ(X)

)
,

as claimed.
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3.3. Geometry of the intial surface in terms of the projected one

Remark 3.3.2. Although we have assumed ξ to be timelike, all the calculations above

are similar when ξ is spacelike and nowhere zero. In particular the geometric relations

between S and its projection S in a purely Riemannian context where 〈ξ, ξ〉 = V 2 and
ξ = V 2dt are

γ = π⋆(γ) + V 2S dτ ⊗ dτ,
ηS = WηS W =

√
1 + V 2S |dτ |2γ,

Kν = π∗(K) + VSν(V )|Sdτ ⊗ dτ,

Ku = − 1
W
(dVS ⊗ dτ + dτ ⊗ dVS + VSπ∗(Hess γ(τ)))−

V 2S
W
dVS(grad γ(τ))dτ ⊗ dτ,

αν =
1

W

(
−VSπ⋆(K(grad γ(τ), ·)) + ν(V )|Sdτ

)
,

where this time the unit vector u reads

u =
W

VS

(
ξ|S − V 2S grad γ(τ)

)
.

Remark 3.3.3. Note that the expressions above contain all the information needed to

relate any geometric quantity on S with geometric information on its projection S.

For instance, the mean curvature vector of S can be related to the projected geometry

simply taking the trace in K = Kνν−Kuu with the metric γ−1 and using (3.6) together
with the results in Proposition 3.3.1. If we choose any other null basis {k, ℓ} of the
normal bundle normalized so that 〈k, ℓ〉 = −2, it must be necessarily of the form

k = f (−ν + u), ℓ = f −1(ν + u), (3.20)

where f : S → R \ {0} is smooth.

The null second fundamental forms Kk , Kℓ of S along the basis of null normals

{k, ℓ} can be obtained directly from Proposition 3.3.1 using the decomposition (3.20).
Namely, if we consider a linear combination ω = aν + bu of the vectors {ν, u} we have

Kω
AB = 〈∇XA(aν + bu), XB〉 = a〈∇XAν,XB〉+ b〈∇XAu,XB〉 = aKν

AB + bK
u
AB.

Hence using (3.20) and Proposition 3.3.1, we obtain

Kk
AB = f (Ku

AB −Kν
AB)

= f

(
1

W
(dVS ⊗ dτ + dτ ⊗ dVS) +

VS
W
π∗(Hess γ(τ))− π∗(K)

+

(
VSν(V )|S −

V 2S
W
dVS(grad γ(τ))

)
dτ ⊗ dτ

)
,
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3. Projection along the Killing in static spacetimes

and

Kℓ
AB = f −1(Ku

AB +K
ν
AB)

= f −1
(
1

W
(dVS ⊗ dτ + dτ ⊗ dVS) +

VS
W
π∗(Hess γ(τ)) + π

∗(K)

−
(
VSν(V )|S +

V 2S
W
dVS(grad γ(τ))

)
dτ ⊗ dτ

)
. (3.21)

We can now take the trace of (3.21) with the contravariant form of the metric γ to

obtain

f θℓ =
2

W
dVS(grad γ(τ)) + trγ

(
VS
W
π∗(Hess γ(τ)) + π

∗(K)

)

−
(
VSν(V )|S +

V 2S
W
dVS(grad γ(τ))

)
|dτ |2γ.

Using now the first and second relations in (3.8), and expression (3.7), we obtain

f θℓ =
2

W 3
dVS(grad γ(τ)) +

VS
W
(△γτ) +H +

V 3S
W 3
(Hess γ(τ))(grad γ(τ), grad γ(τ))

+
V 2S
W 2

K(grad γ(τ), grad γ(τ))−
VS
W 2

ν(V )|S|dτ |2γ −
V 2S
W 3

dVS(grad γ(τ))|dτ |2γ.

It is convenient to organize the terms in the following form:

f θℓ = H +
V 2S
W 2

(
K(grad γ(τ), grad γ(τ))−

ν(V )|S
VS

|dτ |2γ
)
+ Ξ,

where

Ξ =
2

W 3
dVS(grad γ(τ)) +

VS
W
(△γτ) +

V 3S
W 3
(Hess γ(τ))(grad γ(τ), grad γ(τ))

− V
2
S

W 3
dVS(grad γ(τ))|dτ |2γ. (3.22)

We next prove that Ξ is proportional to a divergence. We use here index notation for

convenience. We want to show that

Ξ =
1

VS
∇A
(
V 2S
W
∇Aτ

)
.

Expanding the right-hand side

1

VS
∇A
(
V 2S
W
∇Aτ

)
=
1

VS
∇A
(
V 2S
W

)
∇Aτ + VS

W
△γτ. (3.23)
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The expression W =
√
1− V 2S |dτ |2γ implies

∇AW =
1

W
(−VSVS,A|dτ |2γ − V 2S (∇A∇

L
τ)τ,L),

so that (3.23) becomes

VS
W
△γτ +

2

W
VS,Aτ

,A +
V 2S
W 3

VS,Aτ
,A|dτ |2γ +

V 3S
W 3
(∇A∇Bτ)τ ,Aτ ,B,

which is exactly (3.22) after using the definition of W .

In summary, we have obtained an expression for θℓ in terms of the geometry of the

projected surface:

θℓ =
1

f

(
H +

V 2S
W 2

(
K(grad γ(τ), grad γ(τ))−

ν(V )|S
VS

|dτ |2γ
)
+
1

VS
∇A
(
V 2S
W
∇Aτ

))
.

Observe that

〈k, ξ〉 = f 〈u − ν, ξ〉 = f 〈u, ξ〉 = f W

VS
〈ξ + V 2S grad γ(τ), ξ〉 =

f W

VS

(
−V 2S − V 4S |dτ |2γ

)

= −f VS
W
,

where we have used that ν is orthogonal to ξ, the definition of W and that

〈grad γ(τ), ξ〉 = 〈grad γ(τ), ξ⊥ − V 2S grad γ(τ)〉 = −V 2S |dτ |2γ.

Hence, if we normalize k so that 〈k, ξ〉 = −1, the value of f (that we will call in this
case f ⋆) becomes

f ⋆ =
W

VS
.

This value is special when computing the total null extrinsic curvature
∫
S
θℓηS, because

the divergence term of θℓ vanishes upon integration (recall the relation between volume

forms (3.9)). In other words, for f = f ⋆ the total null extrinsic curvature becomes

∫

S

θℓηS =

∫

S

(
HVS +

V 3S
W 2

(
K(grad γ(τ), grad γ(τ))−

ν(V )|S
VS

|dτ |2γ
))
ηS. (3.24)

Concerning the connection one-form, its behaviour under change of basis is not ten-

sorial (being a connection), so it is worth giving its explicit expression in the null ba-

sis {k, ℓ}. With the usual definition of connection one-form in this basis given by
s(X) := 1

2
〈∇MX k, ℓ〉 we have

s(X) =
1

2
〈∇MX k, ℓ〉 =

1

2
〈∇MX (−f ν + f u), f −1ν + f −1u〉 = −

X(f )

f
− αν(X),
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3. Projection along the Killing in static spacetimes

and hence

s = −df
f
+
1

W

(
ν(V )|Sdτ − VSπ⋆(K(grad γ(τ), ·))

)
.

The following lemma shows that the null expansions Kk and Kℓ of any spacelike

surface S in a strictly static spacetime are not independent to each other. In the case

of the Minkowski spacetime this result was proved in [37].

Lemma 3.3.4 (Relationship between null extrinsic curvatures). Let (M,g) be an

(n + 2)-dimensional static spacetime with static Killing vector ξ. Let S be a spacelike

surface in (M,g). With the notation above, we have

− 〈ξ, k〉Kℓ − 〈ξ, ℓ〉Kk − 2VS(dτ ⊗ dVS + dVS ⊗ dτ)− 2V 2SHessγτ = 0, (3.25)

where k and ℓ are a basis of null normal vectors to S satisfying 〈k, ℓ〉 = −2, and where
VS and τ are respectively, the restriction of V and t on S.

Proof. Since the relationship is local, it suffices to work on a suitably small neighbour-

hood Up of a point p ∈ S. We choose Up small enough so that ξα = −V 2∇αt on Up
and work on Up from now on. Decomposing ξ in tangential and normal components we

have (cf. (3.10))

ξ|S = −
1

2
〈ξ, k〉ℓ− 1

2
〈ξ, ℓ〉k − V 2S gradγτ. (3.26)

The Killing equation ∇αξβ +∇βξα = 0 implies, on Up, and for X, Y ∈ Γ(TS)

〈X,∇Y ξ〉+ 〈Y,∇Xξ〉 = 0. (3.27)

Let us work out the first term. Inserting the decomposition (3.26) and using the

definition of null extrinsic curvature it follows

〈X,∇Y ξ〉 = −
1

2
〈ξ, k〉Kℓ(X, Y )− 1

2
〈ξ, ℓ〉Kk(X, Y )−

〈
X,∇Y (V 2S gradγτ)

〉
. (3.28)

The third term of (3.28) is developed as in (3.17). Inserting this result into (3.28) we

conclude

〈X,∇Y ξ〉 = −1
2
〈ξ, k〉Kℓ(X, Y )− 1

2
〈ξ, ℓ〉Kk(X, Y )− 2VS(dτ ⊗ dVS)(X, Y )

−V 2SHessγτ(X, Y ),

which combined with (3.27) proves the Lemma.

Remark 3.3.5. If we choose a basis {XA} of the tangent space to S, the relation (3.25)
can be expressed in index notation as

−〈ξ, k〉Kℓ
AB − 〈ξ, ℓ〉Kk

AB −DA(V 2SDBτ)−DB(V 2SDAτ) = 0.
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3.3. Geometry of the intial surface in terms of the projected one

Corollary 3.3.6. Under the same assumptions as in the previous Lemma,

〈ξ, ℓ〉〈ξ, k〉 = V 2S (1 + V 2S |Dτ |2γ). (3.29)

Proof. Squaring (3.26) it follows

−V 2S = 〈ξ, ξ〉 = −〈ξ, k〉〈ξ, ℓ〉+ V 4S 〈gradγτ, gradγτ〉 = −〈ξ, k〉〈ξ, ℓ〉+ V 4S |Dτ |2γ.

The projection along the Killing was used by Gibbons [37] in Minkowski to address the

shell version of the Penrose inequality. However, his proof contained serious mistakes.

In the following section we analyze his procedure and correct the expressions. To this

purpose we will use all the machinery developed in the first part of the chapter.

3.3.1 A critical revision of Gibbons’ argument

In this subsection we discuss the gap in Gibbons’ attempt [37] to prove the general

inequality (1.4). Following the notation of the previous section, we will denote by S

the spacelike, spacetime convex surface involved in the inequality. However, in order

to stick to the notation used by Gibbons in [37] as much as possible, here the future

directed null normals are called k and L and satisfy the normalization 〈k, ξ〉 = −1 and
〈L, k〉 = −1.
The strategy in [37] was to project S along ξα onto a constant time hyperplane

orthogonal to ξα. The projected surface is denoted by S. The main idea was to rewrite

the shell Penrose inequality (1.4)
∫

S

ρηS ≥
n

4
(ωn)

1
n |S| n−1n (3.30)

in terms of the geometry of S as a hypersurface in Euclidean space, where 2ρ := ∇αLα
is the null expansion of L (hence ρ = 1

4
θℓ when compared with the normalization we

used in (3.3), since ℓ = 2L), and ηS is the area element of S.

Gibbons’ gap consists in his claim that
∫

S

ρηS =
1

4

∫

S

HηS. (3.31)

It is clear that (3.31) contradicts our result (3.24) that gives the value of the total

null expansion along L in a static spacetime. With the current normalization conditions

(V = 1), instead of (3.31) we find
∫

S

ρηS =

∫

S

1

4

(
H +

1

W 2
K(gradγτ, gradγτ)

)
ηS. (3.32)
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3. Projection along the Killing in static spacetimes

The expression (3.32) differs from (3.31) since K(gradγτ, gradγτ) 6= 0 in general.
Before discussing in detail the problem that led Gibbons to conclude (erroneously) that

expression (3.31) holds, let us briefly explain how Gibbons’ argument would have con-

tinued had (3.31) been valid. The area of S is not smaller than the area of S (because

of (3.9)) and hence inequality (3.30) would follow from (3.31) and the Minkowski-type

inequality
∫

S

HηS ≥ n(ωn)
1
n |S| n−1n (3.33)

that Trudinger [104] claimed to be applicable to general mean convex surfaces in Eu-

clidean space (i.e. surfaces with non-negative mean curvature). Notice that Gibbons

finds not only (3.31) but also (3.39) below from which H ≥ 0 follows from ρ ≥ 0.
The original Minkowski inequality (3.33) (for convex bodies) proves that “among

all convex bodies of given surface area the sphere has the smallest integral of mean

curvature”. Its proof can be found in [10] (see expression (4) in Section 56), and it can

also be derived from the Aleksandrov-Fenchel inequalities discussed in [104].

Trudinger gave an argument to show (3.33) using an elliptic method. However, Guan

and Li [39], showed this argument is incomplete and at present it is not known whether

inequality (3.33) holds for general mean convex bodies. In [39] a parabolic argument is

proposed which proves the inequality for mean convex starshaped domains in Euclidean

space (a starshaped domain is defined by the property that it contains a point x0 and

all segments between x0 and any other x in the domain).

Let us now go into the projection method used by Gibbons and see where it fails.

Gibbons first extends k to an ingoing null hypersurface N by solving the affinely

parametrized null geodesic ∇kk = 0 with initial data k on S. Similarly, L is extended to
a null vector field on the outgoing null hypersurface L passing through S and with tan-
gent vector L. These vector fields are then extended to a spacetime neighbourhood of S

by parallel transport along ξ (see Figure 3.2). With this extension, we have 〈k, ξ〉 = −1
everywhere. Defining β on this neighbourhood by β := −〈ξ, L〉, the following vector
field can be introduced:

ν̂ =
1√
2β
(L− βk). (3.34)

It follows immediately that ν̂ is everywhere normal to ξ. Moreover, this field is orthog-

onal to S and unit on this projected surface (in fact it agrees with the ν we introduced

in the previous section).

Gibbons used in [37] that the mean curvature H of the projected surface S can be

expressed as H = ∇αν̂α|S. This is one of the key problems in his argument, because
this expression is not generally satisfied. Let {XA} be a tangent basis for the projected
surface S, so that we can write

H = γABK ν̂
AB = γ

AB〈∇XA ν̂, XB〉.
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3.3. Geometry of the intial surface in terms of the projected one

S

Ŝ0

M1,3

k

L

k L

ξ

Σt0

N
L

S ν̂

ν̂

p

Figure 3.2: Two null hypersurfaces starting at S are represented. Gibbons’ construction

uses a null hypersurface N generated by the geodesic null vector field k , and a null
hypersurface L generated by the geodesic null vector L. k and L are extended to a
neighbourhood of S by Lie-dragging them along the Killing ξ. The product of k and

L is −1 when evaluated at points of S. The vector field ν̂ = 1√
2β
(L − βk), where

β := −〈ξ, L〉, when evaluated on S agrees with its outer unit normal on Σt0.

We want to relate this expression with ∇αν̂α|S. In order to do so, let B = {eα} be any
basis of vectors of the Minkowski spacetime defined on points of S. Then

∇αν̂α|S = ηαβ〈∇eα ν̂, eβ〉.

Choosing the basis B = {ξ|S, ν̂|S, XA}, the metric η is

ηαβ ≡



−1 0 0

0 1 0

0 0 γAB


 , (3.35)

so that inverting (3.35) we have

∇αν̂α|S = −〈∇ξν̂, ξ〉+ 〈∇ν̂ ν̂, ν̂〉+ γAB〈∇XA ν̂, XB〉. (3.36)

The vectors ξ and ν̂ are everywhere orthogonal and ξ is covariantly constant. Thus

〈∇ξν̂, ξ〉 = −〈ν̂,∇ξξ〉 = 0, and the (correct) expression for the mean curvature in
(3.36) is

H = ∇αν̂α|T̂ −
1

2
∇ν̂〈ν̂, ν̂〉|T̂ . (3.37)

Thus Gibbons ignored the term ∇ν̂〈ν̂, ν̂〉. This term vanishes whenever ν̂ has constant
norm. However, the extension of ν̂ is already fixed and, as we shall see later in an
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3. Projection along the Killing in static spacetimes

example, it does not keep the norm of ν̂ constant. Gibbons still makes a second

mistake when computing ∇αν̂α. The following expression is written down in [37]

H = ∇αν̂α = ∇α
(
1√
2β
Lα − β√

2β
kα
)
=
1√
2β
(∇αLα)−

β√
2β
(∇αkα), (3.38)

which implicitly assumes that the derivatives of β along k and L are zero. Using the

extension ∇LL = 0 and that ξ is covariantly constant it is immediate to check that
∇Lβ = 0. However as our example below will show, it is not true that ∇kβ = 0. In
summary, Gibbons finds the erroneous expression (cf. (5.11) in [37])

H =

√
2

β
ρ+

√
2βµ, (3.39)

where −2µ = θk . From here the argument is concluded by invoking the identity 2ρ −
2βµ−△γτ = 0 so that

∫

S

ρηS =

∫

S

(
β√
2β
H − βµ

)
ηS =

∫

S

(
β√
2β
H − ρ+ 1

2
△γτ

)
ηS

=

∫

S

(
β√
2β
H − ρ

)
ηS,

which leads to (3.31) by solving for
∫
S
ρηS and using ηS =

√
2βηS.

In contrast, the correct expression for H is, combining (3.37) and (3.38)

H =

√
2

β
ρ+

√
2β µ−∇k

(√
β

2

)
− 1
2
∇ν̂〈ν̂, ν̂〉

∣∣∣∣∣
S

, (3.40)

where we have already used ∇Lβ = 0. Expression (3.40) agrees with (3.39) only if
the last two terms cancel each other. Neither ∇ν̂〈ν̂, ν̂〉 nor the derivative of β along
k need to vanish on S. Even more, they need not, and in fact do not, cancel out in

general. It is possible to derive general expressions both for ∇kβ and for ∇ν̂〈ν̂, ν̂〉 on S
(or S) which show that such cancellations do not occur. Instead of doing so, we find it

more convenient to present an explicit example where the last two terms in (3.40) do

not cancel each other. For completeness, we also evaluate H, ρ and µ explicitly on this

example and show that (3.39) is not valid.

For the example, we use spherical coordinates {t, r, θ, φ} in Minkowski, and consider
the past null cone Ωp of the origin p {t = 0, r = 0}. The defining equation for Ωp is
t + r = 0, so the null tangent k satisfying 〈k, ∂t〉 = −1 is

k = ∂t − ∂r .

In intrinsic coordinates {r̂ , θ, φ} of Ω satisfying k = −∂r̂ the first fundamental form
is γ̂ = r̂ 2(dθ2 + sin2 θdφ2). Using the fundamental identity £k γ̂ = 2K

k (which we
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3.3. Geometry of the intial surface in terms of the projected one

prove explicitly in Appendix B), where Kk |q is the extrinsic null curvature along k of
any spacelike surface Sq embedded in the cone and that contains q ∈ Ωp, we find

Kk = −r̂ q̊, (3.41)

where q̊ is the standard metric on the sphere.

We consider an axially symmetric (with respect to the Killing vector ∂φ) spacelike

surface S embedded in Ωp. The embedding is then given by

F : (θ, φ)→ (−R(θ), R(θ), θ, φ),

where R is a smooth, positive function (satisfying suitable regularity properties at the

north and south poles, as usual). The induced metric γ on S is γ = R2q̊.

Let us first compute β = −〈ξ, L〉. Using formula (3.29) with the conditions 〈ξ, k〉 =
−1 and V = 1, and since ℓ = 2L, we have

β =
1

2
(1 + |Dτ |2γ),

where τ(θ, φ) = −R(θ). Explicitly

β =
R2 + (R′)2

2R2
,

where prime means derivative with respect to θ. We next compute ∇kβ. The analogous
decomposition to (3.26) in the basis {k, L} is

ξ = βk + L− gradγτ, (3.42)

so that

∇kβ = −〈∇kξ, L〉 − 〈ξ,∇kL〉 = −〈ξ,∇kL〉 = −〈ξ,∇ 1
β
(ξ−L+gradγτ)

L〉

=
−1
β
〈ξ,∇gradγτL〉,

where in the last equality we used ∇ξL = ∇LL = 0, which hold directly from the way
how L has been extended. Inserting again (3.42) in the right-hand side

∇kβ =
−1
β
〈L+ βk − gradγτ,∇gradγτL〉 = −〈k,∇gradγτL〉+

1

β
〈∇gradγτL, gradγτ〉

= sL(gradγτ) +
1

β
KL(gradγτ, gradγτ), (3.43)

where sL(X) := 〈∇Xk, L〉 with the present normalization. Given that

sL(X) = 〈∇Xk, L〉 = 〈∇Xk, ξ − βk + gradγτ〉 = 〈∇Xk, gradγτ〉 = Kk(X, gradγτ),
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3. Projection along the Killing in static spacetimes

(3.43) becomes

∇kβ = Kk(gradγτ, gradγτ) +
1

β
KL(gradγτ, gradγτ). (3.44)

We can use now the curvature equation (3.25), which in the present normalization is

KL + βKk − Hessγτ = 0, (3.45)

and (3.44) simplifies to

∇kβ =
1

β
Hessγτ(gradγτ, gradγτ) =

1

2β
γ
(
gradγ

(
|Dτ |2γ

)
, gradγτ

)
.

Inserting |Dτ |2γ = (R′)2

R2
, β = R2+(R′)2

2R2
and gradγτ =

−R′
R2
∂θ, we conclude

∇kβ =
2(R′)2(−RR′′ + (R′)2)

R3(R2 + (R′)2)
,

and the fourth term in the right hand-side of (3.40) is

−∇k
(√

β

2

)
=
−1
4

√
2

β
(∇kβ) =

(R′)2(R′′R − (R′)2)
R2(R2 + (R′)2)

3
2

. (3.46)

It remains to compute the last term of (3.40). We need to know the value of ∇ν̂〈ν̂, ν̂〉,
with ν̂ as in (3.34). Recall that the vector k has been extended from S by ∇kk = 0
and then by ∇ξk = 0. Thus k stays null in a whole spacetime neighbourhood of p. The
same reasoning applies to L. Thus

〈ν̂, ν̂〉 = 1
2β

(
〈L, L〉+ β2〈k, k〉 − 2β〈k, L〉

)
= −〈k, L〉, (3.47)

and we need to compute

∇ν̂〈k, L〉 = ∇ 1√
2β
L− β√

2β
k〈k, L〉 =

1√
2β
〈∇Lk, L〉 −

β√
2β
〈∇kL, k〉. (3.48)

Each term can be computed from (3.42) as follows

〈∇Lk, L〉 = 〈∇
ξ−βk+gradγτ

k, L〉 = 〈∇gradγτk, L〉 = 〈∇gradγτk, ξ − βk + gradγτ〉
= 〈∇gradγτk, gradγτ〉 = K

k(gradγτ, gradγτ),

〈∇kL, k〉 = 〈∇ 1
β
(ξ−L+gradγτ)

L, k〉 = 1
β
〈∇gradγτL, k〉 =

−1
β
〈∇gradγτk, L〉

=
−1
β
Kk(gradγτ, gradγτ),
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and (3.48) is finally

∇ν̂〈k, L〉 =
√
2

β
Kk(gradγτ, gradγτ) =

−2(R′)2
R2
√
R2 + (R′)2

,

where in the last equality we inserted Kk = −Rq̊ and gradγτ = −R′
R2
∂θ. In summary,

(3.47) becomes
−1
2
∇ν̂〈ν̂, ν̂〉

∣∣∣∣
r=R(θ)

=
−(R′)2

R2
√
R2 + (R′)2

, (3.49)

which is not only nonzero but also does not cancel with (3.46) in general.

For completeness we compute now the null expansions. Since µ is a property of Ωp,

it suffices to find the null expansion along k of the past null cone Ωp. Let q ∈ Ωp. We
know by (3.41) that Kk = −r̂ q̊, and since γq = r̂ 2q̊, it follows

µ(q) =
1

r̂(q)
.

To compute ρ, we will use the curvature equation (3.45), whose trace reads in this case

as

2ρ− 2βµ−△γτ = 0. (3.50)

The Laplacian of τ(θ, φ) = −R(θ) is

△γτ =
− cos θ
sin θ

R′

R2
− R

′′

R2
.

Since β = R2+(R′)2

2R2
and µ = 1

R
, equation (3.50) implies

ρ =
−RR′′ + R2 + (R′)2

2R3
− R′ cos θ

2R2 sin θ
.

Using the values above together with (3.46) and (3.49) and substituting them in (3.40),

we obtain

H|S =
1√

R2 + (R′)2

(
2R2 + 3(R′)2 − RR′′

R2 + (R′)2
− R

′

R

cos θ

sin θ

)
. (3.51)

On the other hand these expressions in the right-hand side of (3.39) gives

√
2

β
ρ+

√
2β µ

∣∣∣∣
S

=
1√

R2 + (R′)2

(
2R2 + 2(R′)2 − RR′′

R2
− R

′ cos θ

R sin θ

)
,

which is clearly different to the expression for H|S in (3.51). This proves that (3.39)
cannot be correct. If we instead perform the analogous substitution in (3.40) we find a

consistent expression.
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3.3.2 The projection along the Killing direction in Minkowski. Ap-

plications to the shell Penrose inequality.

Brendle and Wang have proved [15] a generalization of the shell Penrose inequality for

the Schwarzschild spacetime. In the particular case of the Mikowski spacetime, the

inequality holds for the class of surfaces whose projection along the Killing direction

onto a constant time hypersurface is convex.

In the following theorem we quote Brendle and Wang result [15] and give a proof which

in fact was obtained independently before their result was published. Our proof uses

the machinery developed at the beginning of the chapter (and published in [75]), which

allows us to express the shell Penrose inequality for the initial surface S in Minkowski

in terms of the projected geometry.

Theorem 3.3.7 (S. Brendle & M.T. Wang). Let (M1,n+1, η) be the (n+2)-dimen-

sional Minkowski spacetime with t a Minkowskian time defining a unit Killing ξξξ = −dt.
Let S be a closed, connected, orientable and spacetime convex surface in (M1,n+1, η)

with contravariant metric γ−1. Let π :M1,n+1 → Σt0 be the orthogonal projection onto
the hyperplane Σt0 = {t = t0} and define S = π(S). Denote by ηS its volume form

and by K its second fundamental form as a hypersurface of (n + 1)-Euclidean space

with respect to the outer unit normal. Then the shell Penrose inequality with respect

to ξ for S is equivalent to
∫

S

trdπ(γ−1)K ηS ≥ n(ωn)
1
n |S| n−1n , (3.52)

and holds if S is convex.

Proof. With the normalization we have been using up to now (〈k, ξ〉 = −1 and 〈k, ℓ〉 =
−2) the shell Penrose inequality for arbitrary dimension reads

∫

S

θℓηS ≥ n(ωn)
1
n |S| n−1n .

We can use now the expression (3.24) for the total null extrinsic curvature in static

spacetimes for f = f ⋆ (because k has been chosen to satisfy 〈k, ξ〉 = −1), and with
V = 1. This expression becomes in this case

∫

S

θℓηS =

∫

S

(
H +

1

W 2
K(gradγτ, gradγτ)

)
ηS =

∫

S

trdπ(γ−1)K ηS, (3.53)

and the shell Penrose inequality can be rewritten as (3.52).

To conclude, we see that if S is convex it follows K(gradγτ, gradγτ) ≥ 0, and that
implies ∫

S

θℓηS ≥
∫

S

HηS ≥ n(ωn)
1
n |S| n−1n ≥ n(ωn)

1
n |S| n−1n ,
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3.3. Geometry of the intial surface in terms of the projected one

where we have used the Minkowski inequality for convex surfaces in the Euclidean space

and |S| ≥ |S|.

Remark 3.3.8. By definition, a spacetime convex surface S embedded in a constant

time hyperplane Σt0 is a convex euclidean surface. When this happens, the vector ℓ

decomposes as ℓ = ξ+ ν and then θℓ = 〈 ~H, ξ+ ν〉 = 〈Hν, ξ+ ν〉 = H and consequently
∫

S

θℓηS =

∫

S

HηS,

and the shell Penrose inequality conjecture turns out to be in this case the Minkowski

inequality for convex surfaces in the Euclidean space, and hence a true inequality. This

result is also recovered in (3.53) by setting τ = 0. This particular case of the shell Pen-

rose inequality was first proved by Gibbons [37]. Note that this shell Penrose inequality

is with respect to the Killing orthogonal to the hyperplane Σt0.

Although Gibbons used an alternative proof, this case is immediately covered by The-

orem 3.3.7 . In fact, this theorem also implies the validity of the shell Penrose inequality

for S with respect to any other time translation, as we show next.

Theorem 3.3.9. Let S be a closed, connected and convex surface embedded in a

spacelike hyperplane Σ′t ′0
→֒ M1,3. Let ξ be any unit time translation (not necessarily

orthogonal to Σ′t ′0
). Then the Penrose inequality with respect to ξ holds for S.

Proof. Let ν ′ be the outward normal to S in Σ′t ′0
. Since a hyperplane is totally geodesic,

the second fundamental form vector of S is K = Kν′ν ′, where Kν′ is positive semidef-

inite. Choose any hyperplane Σt0 orthogonal to ξ and define S as the orthogonal

projection of S onto Σt0. To prove the theorem it suffices to show that S is convex,

i.e. that its second fundamental form K with respect to the unit outer normal ν in Σt0
is non-negative. From Proposition 3.3.1 in Chapter 3 (formula (3.11), with V = 1, as

we are in Minkowski) we have

Kν = π⋆(K),

where π : S → S is the projection along ξ, ν is the parallel extension along ξ of the

normal vector ν of S evaluated on S and Kν := 〈K, ν〉η. Thus, K is non-negative if and
only if 〈ν ′, ν〉η is non-negative. Now, both ν ′ and ν are normal to S, spacelike and unit.
Since they belong to a two-dimensional Lorentzian space, 〈ν ′, ν〉η vanishes nowhere,
and, hence, has constant sign. For the choice ξ = ξ′, i.e. the time translation normal
to Σ′t ′0

, we obviously have ν ′ = ν and the sign is positive. Since ξ can be obtained from

ξ′ by a smooth deformation, and ν also changes smoothly, it is impossible that the sign
of 〈ν ′, ν〉η changes from +1 to −1, and the theorem is proved.
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3. Projection along the Killing in static spacetimes

S′ := S

S

M1,3

ξ

ξ′

Σt0

Σ′t ′0

ν

ν

ν ′τ

Figure 3.3: Particular case of the projection along the Killing in Figure 3.1 where

S′ := S lies in a hyperplane orthogonal to a time translation ξ′ different from ξ. In this
case, if S′ is convex, S is also convex and S′ satisfies the shell Penrose inequality with
respect to ξ. The shell Penrose inequality with respect to ξ transforms in this context

in a Minkowski type inequality for euclidean surfaces and reads
∫
S′ H

′f ηS′ ≥
√
16π|S′|,

where H′ is the mean curvature of S′ as a surface of R3, and f = 〈ν ′, ξ〉 − 〈ξ′, ξ〉.

This theorem implies a Minkowski type inequality for S′ := S as a convex surface of
Euclidean space (see Figure 3.3). Indeed, the Killing vector ξ can be decomposed as

ξ =
√
1 + |v |2 ξ′ + v where v is a translation of Euclidean space (R3, gE) (identified

with the hyperplane Σ
′
t ′0
). With the definition of null vectors k = ξ′− ν ′ and ℓ = ξ′+ ν ′

on S′ and, given that the mean curvature vector of S′ is H′ν ′, where H′ is the mean
curvature of S′ →֒ R3, the Penrose inequality (2.34) with respect to ξ becomes

∫

S′
H′f ηS′ ≥

√
16π|S′|, (3.54)

where

f =
√
1 + |v |2 + gE(ν ′, v).

Obviously, when v = 0 we recover the standard Minkowski inequality. The validity of

this inequality suggests that it might be worth studying for which functions f Minkowski

type inequalities of the form (3.54) hold for arbitrary convex surfaces of Euclidean space.
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4
Projection along the past null cone ΩΩΩ in Minkowski

4.1 Introduction

In the previous chapter we have studied the projection in the Killing direction onto time

constant hyperplanes in static spacetimes. Another natural projection that turns out

to be useful for the Penrose inequality is to drag the surface along its outward past

null cone. This dragging will be studied in full detail in a subsequent chapter. Here we

concentrate in the Minkowski case. Most of the content of this chapter was published

in [74], where this projection was used for the first time to address the shell Penrose

inequality.

Specifically, we consider spacelike closed surfaces S in the Minkowski spacetime whose

past null cone Ω extends smoothly all the way to past null infinity. Our aim in this chapter

is to rewrite the shell Penrose inequality in Minkowski in terms of the geometry of the

surface Ŝ0 determined by the intersection of Ω with a constant time hyperplane {t = t0}
lying to the past of S. The solution to the evolution equations of the quotient metric

and second fundamental form (Ricatti equation) with which the null hypersurface Ω is

endowed allows us to rewrite the geometry of any cross section of Ω (in particular S) in

terms of the geometry of the euclidean surface Ŝ0, which turns out to be convex. The

fundamental results we need concerning the geometry of null hypersurfaces are explained

in Appendix B. The expression we find for the shell Penrose inequality (Theorem 4.3.5)

involves the time height function τ = t|S − t0 of S, that measures the “time distance”
that separates S from {t = t0}. In the case that the surface lies in the past null cone of a
point in Minkowski, the resulting inequality is proven to hold in arbitrary dimension. The

key tool that allows us to prove this result is a Sobolev type inequality on the sphere due

to Beckner [7]. Our result generalizes the validity for the shell Penrose inequality with

spherical symmetry achieved by Tod [101] in the four dimensional Minkowski spacetime.

As explained in detail in Appendix C, the geometry of a convex surface in Euclidean
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space can be fully encoded in terms of a single function. This function is called the

support function of the surface. This allows us to find an alternative expression for the

shell Penrose inequality in Minkowski which involves the support function h of Ŝ0 =

Ω ∩ {t = t0} and the above mentioned time height function τ , which is naturally
associated to the initial surface S. Both h and τ can be defined on the sphere using

suitable pullbacks. The new expression for the shell Penrose inequality in terms of h

and τ involves the inverse of matrices of size n× n. The special case n = 2 (spacetime
dimension four) is considered in Theorem 4.4.6, where the particular expression of the

inequality with the explicitly computed inverses is obtained.

The final part of the chapter makes use of flows of surfaces beginning at S and moving

along Ω with the purpose of addressing the shell Penrose inequality in Minkowski. Null

flows were already used by Ludvigsen & Vickers [67], whose idea was later improved by

Bergqvist [8]. Analyzing the monotonicity properties of what we call Bergqvist mass we

find an inequality between τ and h which is sufficient for the validity of the shell Penrose

inequality. In particular we find that the class of surfaces which satisfy the Penrose

inequality as a consequence of this method includes a non-empty open set. In contrast,

the set of surfaces covered when applying Ludvigsen & Vickers’ and Bergqvist’s method

[67, 8] to the Minkowski spacetime turns out to be of measure zero.

4.2 Notation and basic definitions

For the sake of clarity let us start this chapter with a brief summary of the geometry of

null hypersurfaces. Details can be found in Appendix B.

Let Ω be a null hypersurface of an (n + 2)-dimensional spacetime M, and k a future

directed vector field tangent to Ω which is nowhere zero and null. This vector field is

defined up to multiplication with a positive function F : Ω→ R+. It is well-known (see
e.g. [32]) that given any point p ∈ Ω, an equivalence relation can be defined on TpΩ by
means of X ∼ Y if and only if X−Y = ck with c ∈ R. The equivalence class of X ∈ TpΩ
is denoted by X and the quotient space by TpΩ/k . The set TΩ/k =

⋃
p∈Ω TpΩ/k , is

endowed naturally with the structure of a vector bundle over Ω (with fibers of dimension

n) which is called quotient bundle.

Given X, Y ∈ TpΩ/k , it follows that γΩ(X, Y ) := 〈X, Y 〉 is a positive definite metric on
this quotient space. The tensor KΩ(X, Y ) := 〈∇Xk, Y 〉 is well-defined (i.e. independent
of the representatives X, Y ∈ TpΩ of X, Y and of the extension of Y to a neighbourhood
of p). This tensor is symmetric and plays the role of a second fundamental form on Ω.

The Weingarten map, which we denote by KΩ, is the endomorphism obtained from KΩ

by raising one index with the inverse of γΩ. Finally, the trace of KΩ with respect to γΩ

is the null expansion θk of Ω. Under a rescaling k −→ Fk , these tensors transform as

KΩ −→ FKΩ,KΩ −→ FKΩ and θk −→ Fθk .
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4. Projection along the past null cone ΩΩΩ in Minkowski

A derivative of TΩ/k can be defined via (X)′ := ∇kX. Again this derivative is
well-defined (i.e. independent of the representative chosen in the definition). Note,

however, that it does depend on the choice of k . As usual, this derivative is extended

to tensors in TΩ/k with the Leibniz rule. An important property of null hypersurfaces

is that the quotient metric γΩ, the quotient extrinsic curvature KΩ and the ambient

geometry (M,g) are related by the following equations (see equations (B.6) and (B.12)

in Appendix B)

(γΩ)′ = 2KΩ,

(KΩ)′ +KΩ ◦KΩ +R −QkKΩ = 0, (Ricatti equation)

where KΩ ◦ KΩ is the composition of endomorphisms, R(X) := R(X, k)k and Qk is

defined by ∇kk = Qkk (the integrals curves of k are necessarily null geodesics but the
parameter along them need not be affine).

In order to transform this system of equations into a system of ODE for tensor

components, let us choose k to be affinely parametrized, i.e. satisfying ∇kk = 0.
Let us also select n vector fields XA (A,B,C = 1, · · · , n) tangent to Ω satisfying the
properties (i) [k,XA] = 0 and (ii) {k |p, XA|p} is a basis of TpΩ at one point p ∈ Ω.
Denote by αp(σ) an affinely parametrized null geodesic containing p and with tangent

vector k (for later convenience we do not fix yet the origin of the affine parameter σ).

Then {XA|αp(σ)} is a basis of Tαp(σ)Ω/k and the tensor coefficients γΩAB(σ), KΩAB(σ) of
γΩ|αp(σ) and KΩ|αp(σ) in this basis satisfy the ODE (see equations (B.11) and (B.12)
in Appendix B)

d(KΩ)AB
dσ

= −(KΩ)AC(KΩ)CB − RAB,
d(γΩ)AB
dσ

= 2(KΩ)AB, (4.1)

where RAB are defined by R(XB) = R
A
BXA and indices are lowered and raised with the

metric (γΩ)AB and its inverse (γ
Ω)AB.

4.3 Shell Penrose inequality in the Minkowski space-

time in terms of the geometry of convex surfaces

We will restrict in this chapter to the (n + 2)-dimensional Minkowski spacetime

(M1,n+1, η) (n ≥ 2). Choose a Minkowskian coordinate system (t, xα) and define
ξ = ∂t . Since this Killing vector is unit, we have V = 1 in the notation of the previous

chapter. The hyperplanes at constant t = t0 will be denoted by Σt0.

The main purpose of this section is to rewrite the shell Penrose inequality in terms of

the geometry of the projected euclidean surfaces obtained by intersecting the past null
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4.3. Shell Penrose inequality inM1,n+1M1,n+1M1,n+1 in terms of Euclidean geometry

cone of the original surface (provided it satisfies suitable conditions of regularity) with

a constant time hyperplane.

As already mentioned, the physical construction leading to the Penrose inequality

involves null hypersurfaces which extend smoothly all the way to past null infinity. We

introduce the following definition which captures this notion conveniently (recall that a

null hypersurface is maximally extended if it cannot be extended to a larger smooth null

hypersurface).

Definition 4.3.1 (Spacetime convex null hypersurface). Let Ω be a maximally ex-

tended null hypersurface in (M1,n+1, η). Ω is spacetime convex if there exists t0 ∈ R
for which the surface Ŝ0 = Ω∩Σt0 is closed (i.e. smooth, compact and without bound-
ary), connected and convex as a hypersurface of the euclidean geometry of Σt0, and

the null expansion of the future null generator k of Ω evaluated at Ŝ0 satisfies θk |Ŝ0 < 0
. Ω is called spacetime strictly convex if Ŝ0 is strictly convex, namely with positive

principal curvatures at every point.

Remark 4.3.2. Note that if the hypothesis θk |Ŝ0 < 0 is removed there would be two
possible choices of hypersurface Ω: the future null cone of Ŝ0 and the past null cone of

Ŝ0.

Remark 4.3.3. The idea of the definition is, obviously, that if the shape of the null

hypersurface at some instant of Minkowskian time is convex, then the past directed

outgoing null geodesics cannot develop caustics and hence the null hypersurface will

extend smoothly to past null infinity. It is also clear that if Ω∩Σt0 is closed and convex
for some t0, the same occurs for all t ≤ t0.

Given a spacetime convex null hypersurface Ω, we always normalize the tangent null

vector k uniquely by the condition 〈k, ξ〉 = −1. This vector field will also be normal
to any spacelike surface embedded in Ω. Since the Penrose inequality involves precisely

this type of surfaces the following definition is useful:

Definition 4.3.4 (Spacetime convex surface). A spacelike surface S embedded in

(M1,n+1, η) is called spacetime (strictly) convex if it can be embedded in a spacetime

(strictly) convex null hypersurface Ω of (M1,n+1, η).

It is intuitively obvious that a spacelike, closed and connected surface S can be embed-

ded at most in one spacetime convex null hypersurface Ω. Thus, for any such surface

we can define unambiguously a null basis {ℓ, k} of its normal bundle by the conditions
that k is tangent to the spacetime convex null hypersurface Ω containing S and the

normalization conditions 〈k, ξ〉 = −1, 〈ℓ, k〉 = −2. We refer to ℓ as the outgoing null
normal and to k as ingoing null normal. The Penrose inequality (1.4) involves the null

expansion θℓ with respect to the outer null normal. The idea we want to explore in this

chapter is how this inequality can be related to the geometry of a convex hypersurface
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4. Projection along the past null cone ΩΩΩ in Minkowski

of Euclidean space. The most natural convex surface arising in this setup is precisely the

surface Ŝ0 = Ω∩Σt0 (see Figure 4.1). On the other hand, any convex surface Ŝ0 →֒ Σt0
defines uniquely a spacetime convex null hypersurface Ω and, then, any spacelike sur-

face embedded in Ω is defined uniquely by the “time height” function over Σt0, namely

the function τ := t|S − t0. This function is defined on S. However, and similarly as in
the previous chapter, there is a canonical diffeomorphism φ : S → Ŝ0 defined by the

condition that φ(p) lies on the maximally extended null geodesic αp passing through

p and with tangent vector k |p. This diffeomorphism allows us to transfer geometric
information from S onto Ŝ0 and viceversa. In particular, we can define (φ

−1)⋆(τ). Since
no confusion will arise, we still denote this function by τ . The precise meaning will be

clear from the context.

Σt0

S

τ

k

l

Ŝ0

ξ

ν

Ω

(M1,n+1, η)

Figure 4.1: Schematic figure representing the construction above, where the spacetime

convex surface S is projected along Ω onto the constant time hyperplane Σt0 = {t =
t0}. The vectors on the normal bundle of S are normalized so that 〈k, ξ〉 = −1 and
〈ℓ, k〉 = −2. The vector field ν is unit, normal and pointing outside the surface Ŝ0
within the hyperplane Σt0.

The idea is thus to transform the Penrose inequality (1.4) into an inequality involving

the geometry of Ŝ0 as a hypersurface of Euclidean space (R
n+1, gE) and the time height

function τ . The result is given in the following theorem [74] :

Theorem 4.3.5 (Shell Penrose inequality in Minkowski in terms of Euclidean geom-

etry). Let (M1,n+1, η) be the Minkowski spacetime with a selected Minkowskian coor-

dinate system (t, xα), ξ = ∂t . Let (S, γ) be a spacetime convex surface in (M1,n+1, η)

and Ω the convex null hypersurface containing S. Consider the closed, convex surface
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Ŝ0 = Ω∩Σt0 as a hypersurface of Euclidean space (Rn+1, gE) and let γ0 be its induced
metric, ηŜ0 its volume form, K0 its second fundamental form with respect to the outer

unit normal and K0 the associated Weingarten map. Then the shell Penrose inequality

for S can be rewritten as
∫

Ŝ0

(
1 + [(Id − τ K0)−2]AC(γ−10 )CBτ,Aτ,B

)
tr
[
K0 ◦ (Id − τ K0)−1

]
∆[τ ]ηŜ0 >

> n(ωn)
1
n

(∫

Ŝ0

∆[τ ]ηŜ0

) n−1
n

, (4.2)

with ωn the area of the n-sphere, and where Id is the identity endomorphism, τ = t|S−t0
and ∆[τ ] := det(Id − τ K0).

Proof. Let us start by relating the integrals of θℓ and θk . Taking the trace of (3.25)

with respect to γ (and using VS = 1, 〈k, ξ〉 = −1) gives

θℓ − 〈ξ, l〉θk − 2△γτ = 0,

where△γ = DAD
A is the Laplacian of (S, γ). Corollary (3.3.6) gives −〈ξ, ℓ〉 = 1+|Dτ |2γ

and the equation above becomes

θℓ + (1 + |Dτ |2γ)θk − 2△γτ = 0. (4.3)

Integrating on S it follows
∫

S

θℓηS = −
∫

S

(1 + |Dτ |2γ)θkηS, (4.4)

which gives the desired relationship.

The second step is to use the Ricatti equations on Ω in order to relate θk on S with the

extrinsic geometry of Ŝ0. To that aim, we first note that the vector field k on Ω satisfies

∇kk = 0 (this is an immediate consequence of the fact that ξ is covariantly constant
and 〈ξ, k〉 = −1). Thus, the Ricatti equations on Ω take the form (4.1) provided we
have selected n vector fields {XA} tangent to Ω and satisfying the requirements that
(i) [k,XA] = 0 and (ii) {k |p, XA|p} is a basis of TpΩ,∀p ∈ Ω (more precisely {k,XA}
is a basis of the tangent space of Ω on suitable open subsets, however this abuse of

notation is standard and poses no complications). Without loss of generality we take

{XA} tangent to S. Equations (4.1) still admit the freedom of choosing the initial
value of the affine parameter σ on each one of the null geodesics ruling Ω. It turns out

to be convenient to select σ so that σ = 0 on Ŝ0. This determines σ uniquely as a

smooth function σ : Ω→ R which assigns to each point p ∈ Ω, the value of the affine
parameter of the geodesic starting on Ŝ0, with tangent vector k and passing through

p. Given that

k(t) = dt (k) = −〈ξ, k〉 = 1,
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4. Projection along the past null cone ΩΩΩ in Minkowski

and t|
Ŝ0
= t0, it follows that σ = t|Ω− t0. In particular σ|S = τ (this is the main reason

why this choice of the origin of the affine parameter σ is convenient).

A crucial property of the geometry of a null hypersurface Ω (see Appendix B) is that,

given any point p ∈ Ω and any embedded spacelike surface Sp in Ω passing through
p, the induced metric γSp of Sp and the second fundamental form Kk

Sp
of Sp along

the null normal k |p satisfy γSp(X, Y ) = γΩ(X, Y ) and Kk
Sp
(X, Y ) = KΩ(X, Y ), where

X, Y ∈ TpSp. In other words, the induced metric and the extrinsic geometry along k of
any embedded spacelike surface in Ω depends only on p and not on the details of how

Sp is embedded in Ω. Applying this result on Ŝ0 we have, for any point p̂ ∈ Ŝ0,

KΩ(XA, XB)|p̂ = Kk

Ŝ0
(X̂A, X̂B)|p̂, (4.5)

where X̂A|p̂ is defined by the properties (i) X̂A|p̂ ∈ XA|p̂ and (ii) X̂A|p̂ is tangent to
Ŝ0 at p̂ (it is immediate that these two properties define a unique X̂A). Now, the

Jordan-Brouwer separation theorem (see e.g. [63]) states that any connected, closed

hypersurface of Euclidean space separates Rn in two subsets, one with compact closure

(called interior) and one with non-compact closure (called exterior). Let ν be the

unit normal of Ŝ0 pointing towards the exterior, and denote by K0 the corresponding

second fundamental form and by K0 the associated Weingarten map. Let (K0)AB be

the components of K0 in the basis {X̂A}. Since Σt0 is totally geodesic and 〈k, ν〉|Ŝ0 =
−1 (which follows from the fact that k is ingoing, future directed, null and satisfies
〈k, ξ〉 = −1), we have

Kk

Ŝ0
(X̂A, X̂B)|p̂ = −(K0)AB|p̂. (4.6)

Expressions (4.5) and (4.6) provides us with initial data KΩAB|σ=0 = −(K0)AB for the
Ricatti equation (4.1), which in the Minkowski spacetime simplifies to

d(KΩ)AB
dσ

= −(KΩ)AC(KΩ)CB, (4.7)

d(γΩ)AB
dσ

= 2(KΩ)AB. (4.8)

It is a matter of straightforward computation to check that the solution to these equa-

tions with initial data KΩAB|σ=0 = −(K0)AB is

(KΩ)AB

∣∣∣
p
= − (K0)AC

∣∣
π(p)
[(Id − σ(p)K0|π(p))−1]CB, (4.9)

(γΩ)AB

∣∣∣
p
= (γ0)AC|π(p) [(Id − σ(p)K0|π(p))2]CB, (4.10)

where π(p) is defined as the unique point on Ŝ0 lying on the null geodesic αp. Now,

the null expansion θk is related to K
Ω by

θk = trγK
k = γAB〈∇XAk,XB〉 = γΩ(∇XAk,XB) = (γΩ)ABKΩAB = (KΩ)AA.
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Evaluating (4.9) on S (i.e. on σ = τ) and taking the trace we find θk |p = −(K0)AC[(Id−
τK0)

−1]CA|π(p), or equivalently

θk ◦ φ−1 = −tr
[
K0 ◦ (Id − τK0)−1

]
, (4.11)

where φ := π|S is the diffeomorphism between S and Ŝ0 introduced above. As we did in
the previous chapter and in order to simplify the notation, we will from now on suppress

all references to φ when transferring information from S to Ŝ0 via this diffeomorphism.

The remaining steps are to relate the volume forms of S and Ŝ0 and to determine

|Dτ |2γ (which appears in (4.4)). Both involve the metric γ on S. Evaluating (4.10) on
S and using γAB = γ

Ω
AB it follows

γAB = (γ0)AC[(Id − τK0)2]CB. (4.12)

By construction, γAB is positive definite, and hence invertible. Obviously this places

restrictions on the range of variation of τ (which clearly come from the fact that Ω

cannot be extended arbitrarily to the future as a smooth hypersurface). The precise

range of variation of τ will be discussed below. Since γ0 is positive definite, it follows

that Id − τK0 is also invertible and

(γ−1)AB = [(Id − τK0)−2]AC(γ−10 )CB, (4.13)

which implies, in particular,

|Dτ |2γ = [(Id − τK0)−2]AC(γ−10 )CBτ,Aτ,B. (4.14)

Taking determinants in (4.12) it follows that the volume forms of S and Ŝ0 are related

by

ηS = ∆[τ ]ηŜ0, (4.15)

where ∆[τ ] := det(Id − τ K0). Inserting (4.11), (4.14) and (4.15) into (4.4) we find
∫

S

θℓηS =

∫

Ŝ0

(
1 + [(Id − τ K0)−2]AC(γ−10 )CBτ,Aτ,B

)
tr
[
K0 ◦ (Id − τ K0)−1

]
∆[τ ]ηŜ0,

and the Penrose inequality (1.4) becomes (4.2), as claimed.

A natural question for Theorem 4.3.5 is what is the class of functions τ : Ŝ0 → R for
which inequality (4.2) is conjectured. By construction, this amounts to knowing which

is the range of variation of σ in Ω. Let {κ1, · · · , κn} be the eigenvalues of K0, i.e.
the principal curvatures of Ŝ0 as a hypersurface in Euclidean space. Ŝ0 being convex,

all these curvatures are non-negative, and at least one of them is different from zero

(because Ŝ0 is closed). The eigenvalues of the endomorphism Id − τK0 are obviously
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4. Projection along the past null cone ΩΩΩ in Minkowski

{1 − τκ1, · · · , 1 − τκn}. Hence, this endomorphism is invertible as long as τ satisfies
the bound

τ <
1

max
1≤A≤n

{κA}
. (4.16)

Thus, the Penrose inequality, as written in inequality (4.2), is conjectured to hold

for arbitrary smooth functions τ : Ŝ0 → R satisfying the pointwise bound (4.16).

Incidentally, this statement also means that the range of variation of σ on the null

geodesic within Ω passing through p̂ ∈ Ŝ0 is σ ∈
(
−∞, 1

max{κA|p̂}

)
.

4.4 The shell Penrose inequality in Minkowski in terms

of the support function

A remarkable property of convex hypersurfaces embedded in Euclidean space is that a

single function determines all of its geometric properties, both intrinsic and extrinsic, in

a very neat way. This function is called support function, and we have devoted Appendix

C to present its main properties. In the previous section we wrote the shell Penrose

inequality in terms of the geometry of convex euclidean surfaces. The next step is to

use the support function of this convex surfaces to obtain an alternative form of the

shell Penrose inequality. This expression is interesting because it takes the form of an

inequality for functions defined on the standard sphere.

The support function is defined as follows:

Definition 4.4.1 (Support function). Let Ŝ0 be a closed, convex and connected hyper-

surface embedded in the Euclidean space (Rn+1, gE). Let x(p) be the position vector

of p ∈ Ŝ0. The support function h : Ŝ0 → R is defined by h(p) = 〈x(p), ν(p)〉gE where
ν(p) is the unit normal at p pointing towards the exterior of Ŝ0.

Closed, convex and connected hypersurfaces in (Rn+1, gE) are always topologically

Sn. Moreover, if the surface is strictly convex the Gauss map ν : Ŝ0 → Sn is a

diffeomorphism. We will restrict ourselves to the strictly convex case from now on.

This entails no loss of generality for the Penrose inequality because any convex surface

Ŝ0 can be approximated by strictly convex surfaces (e.g. by mean curvature flow [51]).

Let us denote by q̊ the pull-back on Ŝ0 of the standard metric on the n-sphere and ∇̊
the corresponding connection. Then, the induced metric γ0 and second fundamental

form K0 of Ŝ0 →֒ Rn+1 can be written in terms of the support function as follows (see
formulas (C.19) and (C.20) in Appendix C):

(K0)AB = ∇̊A∇̊Bh + q̊ABh,
(γ0)AB = (q̊−1)CD(K0)AC(K0)BD. (4.17)
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Combining these expressions with Theorem 4.3.5 it becomes possible to rewrite the

shell Penrose inequality as an inequality on the sphere involving two smooth functions,

namely τ and h. In this section we obtain the explicit form of this inequality. To that

aim, it is convenient to introduce the endomorphism B obtained by raising one index

to K0 with the spherical metric q̊, i.e. B
A
B := (q̊

−1)AC(K0)CB. It is immediate from
(4.17) that B is the inverse endomorphism of the Weingarten map K0. Since Ŝ0 is

diffeomorphic to Sn via the Gauss map we can identify both manifolds and we can think

of q̊, h, B etc. as objects defined on Sn. This applies in particular to the function

τ : Ŝ0 → R. With this notation, we can now state and prove the following theorem,
which gives the shell Penrose inequality in terms of the support function.

Theorem 4.4.2 (Shell Penrose inequality in terms of the support function). Let

(S, γ) be a spacetime strictly convex surface in (M1,n+1, η). With the same notation as

in Theorem 4.3.5, let h be the support function of Ŝ0. Then the shell Penrose inequality

takes the form
∫

Sn

(
1 + [(B − τId)−2]AC(q̊−1)CBτ,Aτ,B

)
tr[(B − τId)−1] det(B − τId)ηq̊ >

> n(ωn)
1
n

(∫

Sn

det(B − τId)ηq̊
) n−1

n

, (4.18)

where q̊, ∇̊, ηq̊ are the standard metric, connection and volume form on Sn,

BAB := (q̊
−1)AC∇̊C∇̊Bh + δABh, (4.19)

h : Sn → R is the support function of Ŝ0 →֒ Rn+1 and τ : Sn → R is the time height
function of S.

Proof. From (4.17) it follows that B determines the metric γ0 via

(γ0)AB = B
C
AB

D
Bq̊CD, (4.20)

which implies

ηŜ0 = det(B)ηq̊.

Since B is the inverse of K0, we have

∆[τ ]ηŜ0 = det (Id − τK0)ηŜ0 = det (Id − τK0) det(B)ηq̊ = det (B − τId)ηq̊.
(4.21)

Similarly,

tr[K0 ◦ (Id − τK0)−1] = tr[B−1 ◦ (Id − τB−1)−1] = tr[(B − τId)−1]. (4.22)
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It only remains to calculate [(Id − τ K0)−2]AC(γ−10 )CB. From (4.20) and using again
the fact that B is the inverse of K0 we get

[(Id − τ K0)−2]AC(γ−10 )CB = [(Id − τ K0)−2]AC(K0)CD(K0)BF (q̊−1)DF =
= [(Id − τ K0)−2]AC(K0)CD(K0)DF (q̊−1)BF , (4.23)

where in the last equality we made use of the property that (K0)
B
F (q̊

−1)DF is symmetric
(this follows from (4.17), which states in particular that this tensor is the inverse of the

symmetric two-covariant tensor (K0)BD). Since (Id − τ K0)−1 ◦K0 = (B − τ Id)−1 it
follows

[(Id − τ K0)−2] ◦K0 ◦K0 = [(Id − τ K0)−1] ◦ (B − τ Id)−1 ◦K0
= (B − τ Id)−2, (4.24)

where in the second equality we have used the fact that (Id − τK0) and (B − τ Id)
commute. Using (4.24) in (4.23) yields

[(Id − τ K0)−2]AC(γ−10 )CB = [(B − τ Id)−2]AC(q̊−1)CB. (4.25)

Substituting (4.21), (4.22) and (4.25) into inequality (4.2) proves the theorem.

In the following section we discuss the validity of the shell Penrose inequality when

the incoming shell has spherical shape. Following [103] we refer to this situation as

the “spherical case” (note however that the incoming shell need not carry a spherically

symmetric matter distribution). In other words, we consider the case when the null

hypersurface Ω is the past null cone of a point in Minkowski spacetime and S is any

surface embedded in Ω. The explicit form of this inequality in spacetime dimension four

appeared already in [85] and led to an inequality for positive functions on the sphere.

This inequality turned out to be highly non-trivial. Tod in [101] was able to prove the

inequality by using suitable functions on R4 and using the Sobolev inequality. In this

section we show that the shell Penrose inequality for shells with spherical shape holds

in any spacetime dimension.

4.4.1 Spherically symmetric case

Let us restrict ourselves to the case when Ω is the past null cone of a point (see Figure

4.2). As a consequence of Theorem 4.4.2, the Penrose inequality transforms in this

case into an inequality for a single positive function on the sphere. Its validity will follow

as a simple consequence of the Beckner inequality [7] which bounds from above the Lq

norm of a function on the sphere in terms of its H2 norm. Specifically,
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4.4. The shell Penrose inequality in Minkowski and the support function

Theorem 4.4.3 (Beckner, 1993). Let F ∈ C1(Sn) and denote as before the standard
metric, volume form and connection of the n-dimensional unit sphere by q̊, ηq̊, ∇̊. Then

q − 2
n

∫

Sn

|∇̊F |2q̊ηq̊ +
∫

Sn

|F |2ηq̊ ≥ (ωn)1−
2
q

(∫

Sn

|F |qηq̊
) 2

q

, (4.26)

where 2 ≤ q <∞ if n = 1 or n = 2 and 2 ≤ q ≤ 2n
n−2 if n ≥ 3.

The following theorem [74] settles the inequality when Ω is the past null cone of a

point:

Theorem 4.4.4 (Shell Penrose inequality on a past null cone of a point). Consider

a point p ∈M1,n+1 (n > 2) and Ωp the past null cone of p. Let S be a closed spacelike

surface embedded in Ωp. Then the Penrose inequality for S reads

∫

Sn

(
r n−1 + r n−3|∇̊r |2q̊

)
ηq̊ ≥ (ωn)

1
n

(∫

Sn

r nηq̊

) n−1
n

, (4.27)

where r = t(p)−t|S. Moreover, this inequality holds true as a consequence of Beckner’s
theorem.

Proof. Select t0 = t(p) − 1. Then, the function τ is written in terms of r as τ =
t|S − t0 = t|S − t(p) + 1 = 1 − r and Ŝ0 = Ωp ∩ Σt0 is the n-dimensional unit
sphere embedded in the Euclidean space. This surface has support function h = 1,

which implies (K0)AB = ∇̊A∇̊Bh + q̊ABh = q̊AB (this simply states the well-known

property that the unit sphere has all principal curvatures equal to one). Then BAB =

(q̊−1)AC(K0)CB = δ
A
B and (B − τId) = (1− τ)Id = r Id , from which

1 + [(B− τId)−2]AC(q̊−1)CBτ,Aτ,B = 1 +
1

r 2
|∇̊r |2q̊,

det (B− τId) = r n,

tr[(B− τId)−1] = n

r
.

Substituting into (4.18) yields immediately (4.27). In order to show that this inequality

is a particular case of the Beckner inequality, we define q = 2n
n−1 which clearly satisfies

the bounds 2 ≤ q ≤ ∞ if n = 2 and 2 ≤ q ≤ 2n
n−2 if n ≥ 3. Introducing the function

F = r
n−1
2 , (4.27) becomes

(
2

n − 1

)2 ∫

Sn

|∇̊F |2q̊ηq̊ +
∫

Sn

F 2ηq̊ ≥ (ωn)1−
2
q

(∫

Sn

F qηq̊

) 2
q

. (4.28)

Since n ≥ 2, then q−2
n
= 2

n(n−1) ≤ ( 2n−1)2 and inequality (4.28) is a particular case of
(4.26).
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Remark 4.4.5. As mentioned above, the case n = 2 of this theorem was proved by Tod

in [101] using the Sobolev inequality in R4. In a later paper, Tod proved [102] that the

factor ( 2
n−1)

2 (i.e. 4 when n = 2) in front of the gradient in (4.28) could be improved

to 8/3 by using the Sobolev inequality of R6 applied to suitable functions. Tod also

conjectured that this factor could be improved to the value 1. We note that Beckner’s

inequality implies in particular the validity of this conjecture by Tod.

Σt0

S

τ

k l

Ŝ0 ≃ Sn

ξ

r

Ωp(M1,n+1, η)

p

Figure 4.2: When the spacetime convex surface S lies in the past null cone of a point

p ∈ M1,n+1, its projection along Ωp onto Σt0 is always an n-sphere. The Penrose

inequality transforms in this case into an inequality for a single positive function r .

4.4.2 Penrose inequality in terms of the support function in space-

time dimension four

The general expression for the Penrose inequality in terms of the support function as

written in Theorem 4.4.2 involves the inverse of the endomorphism B − τId , where
BAB = ∇̊A∇̊Bh + δABh (for notational simplicity in this section we will lower and raise
all indices with the spherical metric q̊ and its inverse). Hence, the explicit form of

the inequality in terms of the support function is rather involved. In this section we

restrict ourselves to spacetime dimension four, where the expressions simplify notably.

The reason is that, in this case, the endomorphism B acts on a two-dimensional vector

space where inverses are much simpler to calculate. In fact, we will exploit the fact that

any endomorphism A : V2 → V2 acting on a two-dimensional vector space V2 satisfies

the identity

A2 = tr(A)A− det(A)Id . (4.29)
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This identity is a direct consequence of the expression of the minimal polynomial in

terms of the eigenvalues of A and the fact that these eigenvalues can be expressed

in terms of the trace and determinant of the endomorphism (alternatively, (4.29) can

be proved by direct calculation in any basis). A simple consequence of (4.29) is that,

whenever A is invertible

A−1 = − 1

det(A)
A+

tr(A)

det(A)
Id . (4.30)

Taking traces in (4.29) and (4.30) yields, respectively,

det(A) =
1

2

[
tr(A)2 − tr(A2)

]
, (4.31)

tr(A−1) =
tr(A)

det(A)
. (4.32)

Squaring (4.30) and using (4.29) and (4.31) we get an expression for A−2 which reads:

A−2 = − tr(A)

[det(A)]2
A+

[
tr(A)2 + tr(A2)

]

2[det(A)]2
Id . (4.33)

Of particular interest below is the case when A is of the form A = A0 + f Id for some

scalar f . Inserting this respectively into (4.31) and (4.33) gives, after a straightforward

calculation,

det(A0 + f Id) =
1

2

[
tr(A0)

2 − tr(A20)
]
+ f tr(A0) + f

2, (4.34)

(A0 + f Id)
−2 = − tr(A0) + 2f

[det(A0 + f Id)]2︸ ︷︷ ︸
:=W2(A0,f )

A0

+
1
2
[tr(A0)

2 + tr(A20)] + 2f tr(A0) + f
2

[det(A0 + f Id)]2︸ ︷︷ ︸
:=W1(A0,f )

Id .

(4.35)

Having noticed these algebraic identities, we can now write down the specific form of the

shell Penrose inequality in terms of the support function in the case of four spacetime

dimensions [74].

Theorem 4.4.6. Let (S, γ) be a spacetime strictly convex surface in the Minkowski

spacetime (M1,3, η). With the same notation as in Theorem 4.4.2, the Penrose in-

equality can be written in the form

∫

S2

(
1 +W1|∇̊τ |2q̊ −W2(∇̊A∇̊Bh)∇̊Aτ∇̊Bτ

) (
△q̊h + 2(h − τ)

)
ηq̊ >

>

√
16π

∫

S2

(
(h − τ)2 + (△q̊h)(h − τ)−

1

2
(h△q̊h)

)
ηq̊, (4.36)
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where △q̊ is the Laplacian of the unit 2-sphere and

W1 :=
(h − τ)2 + 2(h − τ)△q̊h +

1
2

[
(△q̊h)

2 + (∇̊C∇̊Dh)(∇̊C∇̊Dh)
]

[
(h − τ)2 + (h − τ)△q̊h +

1
2
[(△q̊h)2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)]

]2 , (4.37)

W2 :=
△q̊h + 2(h − τ)[

(h − τ)2 + (h − τ)△q̊h +
1
2
[(△q̊h)2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)]

]2 . (4.38)

Proof. Define the endomorphism A0
A
B = ∇̊A∇̊Bh, so that

tr(A0) = △q̊h, tr(A0
2) = (∇̊A∇̊Bh)(∇̊A∇̊Bh), B − τId = A0 + (h − τ︸ ︷︷ ︸

:=f

)Id .

Applying identity (4.34) with f = h − τ gives

det(B − τId) = (h − τ)2 +△q̊h(h − τ) +
1

2

[
(△q̊h)

2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)
]
.(4.39)

Using (4.32) we have

tr[(B − τId)−1] det(B − τId) = tr(B − τId) = △q̊h + 2(h − τ). (4.40)

We still need to evaluate (B − τId)−2 from (4.35). Using the definitions of W1 :=
W1(A0, f ) and W2 := W2(A0, f ), we have

W1 := W1(A0, f ) =
1
2
[tr(A0)

2 + tr(A20)] + 2f tr(A0) + f
2

[det(A0 + f Id)]2

=
1
2

[
(△q̊h)

2 + (∇̊C∇̊Dh)(∇̊C∇̊Dh)
]
+ 2(h − τ)△q̊h + (h − τ)2[

(h − τ)2 + (h − τ)△q̊h +
1
2
[(△q̊h)2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)]

]2 ,

and

W2 := W2(A0, f ) =
tr(A0) + 2f

[det(A0 + f Id)]2

=
△q̊h + 2(h − τ)[

(h − τ)2 + (h − τ)△q̊h +
1
2
[(△q̊h)2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)]

]2 ,

in terms of which we can write

(B − τId)−2 = W1Id −W2A0. (4.41)

Substituting (4.39), (4.40) and (4.41) into the left-hand side of inequality (4.18) gives

the left-hand side of (4.36). In particular, we have obtained an explicit formula for the

integral of θℓ on S, namely
∫

S

θℓηS =

∫

S2

(
1 +W1|∇̊τ |2q̊ −W2(∇̊A∇̊Bh)∇̊Aτ∇̊Bτ

) (
△q̊h + 2(h − τ)

)
ηq̊. (4.42)
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For the right-hand side of (4.36) we need to calculate |S| =
∫
S2
det(B − τId)ηq̊. In

particular, we need to integrate (△q̊h)
2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh) on the sphere. We note

the following identity:

∇̊C[(∇̊Ch)(∇̊D∇̊Dh)]− ∇̊C[(∇̊Dh)(∇̊C∇̊Dh)] =
= (△q̊h)

2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh) +
(
∇̊Ch

) [
∇̊C∇̊D∇̊Dh − ∇̊D∇̊D∇̊Ch

]
=

= (△q̊h)
2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh) +

(
∇̊Ch

) [
∇̊C∇̊D∇̊Dh − ∇̊D∇̊C∇̊Dh

]
=

= (△q̊h)
2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh) +

(
∇̊Ch

) (
−q̊LC∇̊Lh

)
=

= (△q̊h)
2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)− |∇̊h|2q̊, (4.43)

where in the third equality we have used the definition of the Riemann tensor and the

fact that the sphere has constant curvature equal to one. Integrating (4.43) and using

the fact that the left-hand side of this expression is a divergence, it follows
∫

S2

(
(△q̊h)

2 − (∇̊C∇̊Dh)(∇̊C∇̊Dh)
)
ηq̊ =

∫

S2

|∇̊h|2q̊ηq̊ =
∫

S2

−(h△q̊h)ηq̊,

where in the last step we have integrated by parts. Summing up,

|S| =
∫

S2

(
(h − τ)2 + (△q̊h)(h − τ)−

1

2
h△q̊h

)
ηq̊, (4.44)

which inserted into the right-hand side of (4.18) gives the right-hand side of (4.36)

(recall that ω2 = 4π).

It is well-known that when the surface S lies in a hyperplane of the Minkowski space-

time, the Penrose inequality (1.4) becomes the classic Minkowski inequality for the total

mean curvature H of a surface in Euclidean space (this is a consequence of formula

(3.53) of the previous chapter, by setting τ = 0). In the case of 3 + 1 dimensions, the

Minkowski inequality reads (see Figure 4.3)
∫

S

HηS ≥
√
16π|S|. (4.45)

Using the theorem above we can obtain the explicit form of the Minkowski inequality

in terms of the support function.

Corollary 4.4.7 (Minkowski inequality in (R3, gE) in terms of the support function).

Let S be a spacetime strictly convex surface embedded in a constant time hyperplane

of the Minkowski spacetime (M1,3, η). Then, the Minkowski inequality (4.45) in terms

of the support function h of S takes the form

(∫

S2

hηq̊

)
>

√
4π

∫

S2

(
h2 +

1

2
h△q̊h

)
ηq̊. (4.46)
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S

M1,3

ξ

Σt0 ν

τ = 0
∫
S
HηS ≥

√
16π|S|

Figure 4.3: When the spacetime convex surface S lies in a constant time hyperplane

Σt0, the surface S is by definition convex. This is a particular case of the projection in

Figure 3.3, where the two Killings ξ and ξ′ are the same and Σt0 and Σ
′
t ′0
coincide. In

this situation f = 1 and the shell Penrose inequality with respect to ξ transforms into

a Minkowski inequality for euclidean surfaces
∫
S
HηS ≥

√
16π|S|, which is known to

hold in full generality (Minkowski theorem).

Proof. Without loss of generality choose t0 as the value of t on the hyperplane where

Ŝ0 lies. This choice implies τ = 0 and that h is the support function of Ŝ0. Since

∇̊Aτ = 0, inequality (4.36) reduces to (4.46).

Inequality (4.36) in terms of the support function is still formidable. However, it is

completely explicit in terms of two functions on the sphere. In the next section we

prove its validity for a subset of admissible functions {h, τ}. This subset has not-empty
interior (in any reasonable topology) so the class of surfaces where the inequality is

proved is rather large. The proof is inspired in the flow of surfaces put forward by

Ludvigsen & Vickers [67] in their attempt to prove the general Penrose inequality in

terms of the Bondi mass. However, Bergqvist [8] found a gap in the argument and

showed that the method provides a proof only under additional circumstances which

are, in principle, not straightforward to control directly in terms of the initial surface. In

our situation we have very explicit control of the whole flow of surfaces. This allows us,

on the one hand, to find sufficient conditions for the validity of the Penrose inequality

directly in terms of the geometry of the initial surface and, on the other, to prove the

inequality for a much larger class than the one covered by Bergqvist’s argument. In

Chapter 7 we study in detail the relationship between the argument here and the proof

in [8] and we conclude that the argument in this chapter admits a generalization to

general spacetimes with complete past null infinity.
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4.5 Dragging the surface along its past null cone

In their approach to the Penrose inequality, both Ludvigsen & Vickers [67] and Bergqvist

[8] used flows of surfaces along null hypersurfaces embedded in spacetimes satisfying the

dominant energy condition. These flows consist in dragging the initial surface S along

its outer directed past null cone along affinely parametrized null geodesics. The key

property that makes these flows useful is the existence of a monotonic quantity, often

called Bergqvist mass. In this section we use foliations moving along null hypersurfaces

at a suitable velocity in the Minkowski spacetime, and we exploit the monotonic prop-

erties of the Bergqvist mass along such flows to address the shell Penrose inequality in

Minkowski. This idea will be applied in Chapter 7 to more general spacetimes to tackle

the general version of the null Penrose inequality. We start by introducing the flow and

defining the Bergqvist mass in our context.

S0

Sλ

Ŝ0

M1,3

ξ

k ℓ

Σt0

Figure 4.4: The flow of surfaces {Sλ} moves along the null hypersurface Ω embedded in
M1,3 as λ increases. The collection {Sλ} is generated as the level sets of the function
λ : Ω → R, which solves k(λ) = −1. The starting surface of the flow is S = S0, k is
normalized so that 〈k, ξ〉 = −1, and ℓ satisfies 〈k, ℓ〉 = −2.

We put ourselves in the setting where S is a spacetime strictly convex surface in

the four-dimensional Minkowski spacetime (M1,3, η), Ω is the spacetime convex null

hypersurface where it sits and Ŝ0 = Ω∩Σt0 is closed. We have introduced in Section 4.3
a smooth function σ : Ω→ R which assigns to every point p ∈ Ω, the affine parameter
at p of the null geodesic tangent to the null vector k starting on S. By construction, σ

vanishes on Ŝ0 and takes the values σ|S = τ . Let us extend τ to a function τ : Ω→ R
by imposing k(τ) = 0 and introduce a new smooth function λ : Ω→ R by λ = τ − σ.
Geometrically, λ is just an affine parameter along the null geodesics ruling Ω (with this

parameter the tangent vector is −k and the geodesics start on S). It is immediate
to see that the level sets Sλ0 = {λ−1(λ0), λ0 ≥ 0} of this function define spacetime
convex surfaces embedded in Ω (see Figure 4.4). The collection of {Sλ}, λ ∈ [0,∞)
defines a flow starting at S = S0. Let us denote by γλ and ηSλ the induced metric and
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4. Projection along the past null cone ΩΩΩ in Minkowski

volume form of Sλ and by θℓ(λ) the outer null expansion of Sλ (with the normalization

〈ℓ, k〉 = −2, as before). Then, the Bergqvist mass is defined by

Mb(λ) :=
λ

2
− 1

16π

∫

Sλ

θℓ(λ)ηSλ. (4.47)

Bergqvist introduced this functional in [8] and proved its monotonicity by differentiating

Mb with respect to λ. We use this functional in this chapter in the Minkowski spacetime

and in Chapter 7 we exploit its properties in more general backgrounds. In this chapter

we give a different prove of the monotonicity of Mb tailored to the Minkowski setting.

We first need the following lemma:

Lemma 4.5.1. Let (M1,3, η) be the four dimensional Minkowski spacetime. Let S

be a two-dimensional spacelike surface embedded in it. Consider the time translation

ξ = −dt, where t is a Minkowskian time, and the null normals {k, ℓ} normalized so
that 〈k, ξ〉 = −1 and 〈k, ℓ〉 = −2. Then

(sℓ)A = τ
,BKk

BA, (4.48)

where sℓ(X) =
1
2
〈∇Xk, ℓ〉, and τ = t|S. In addition the following identity holds:

0 = ScalS +
(
Kk
ABK

kAB − θ2k
)
(1 + |Dτ |2γ) + 2

(
θk(sℓ)Aτ

,A − (sℓ)A(sℓ)A
)

+2DA

(
θkτ

,A − τ,BKkBA
)
. (4.49)

Proof. To find the expression that the one-form (sℓ)A has in Minkowski, we decompose

the Killing vector ξ into normal and tangential components to S as in (3.26). Solving

for ℓ and inserting into the definition of sℓ we have

sℓA =
1

2
〈∇XAk, ℓ〉 = 〈∇XAk, ξ −

(1 + |Dτ |2γ)
2

k + gradτ〉 = 〈∇XAk, ξ〉+ τ ,BKk
AB.

Now, from 〈k, ξ〉 = −1 we have 〈∇XAk, ξ〉 = −〈k,∇XAξ〉 = 0 because ξ is covariantly
constant and (4.48) follows.

For the second identity, we use the Gauss identity (equation (A.30) in Appendix A).

In the Minkowski spacetime, it reads

ScalS = −θkθℓ +Kk
ABK

ℓAB. (4.50)

This relation can be rewritten fully in terms of the geometry of Kk by exploiting the

curvature equation (3.25), that in the present case reads

Kℓ
AB + (1 + |Dτ |2γλ)K

k
AB − 2DADBτ = 0.

The result is that (4.50) becomes

0 = ScalS +
(
Kk
ABK

kAB − θ2k
)
(1 + |Dτ |2γ) + 2

(
(△γτ)θk − (DADBτ)KkAB

)
. (4.51)
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4.5. Dragging the surface along its past null cone

We want to convert all second derivatives into a divergence. Specifically we use

(△γτ)θk = DA
(
τ ,Aθk

)
−(τ ,A)DAθk and (DADBτ)KkAB = DA

(
τ,BK

kAB
)
−τ,BDAKkAB

to write

(△γτ)θk − (DADBτ)KkAB = τ,BDAK
kAB− τ ,ADAθk +DA

(
τ ,Aθk − τ,BKkBA

)
. (4.52)

The trace of the Codazzi identity (see equation (B.38) in Appendix B), simplifies in the

Minkowski spacetime to

DL(K
k)LA −DAθk + (sℓ)LKk

LA − θk(sℓ)A = 0.

Solving for DAθk and substituting in (4.52) one finds

(△γτ)θk−(DADBτ)KkAB = −(sℓ)A(sℓ)A+θk(sℓ)Aτ ,A+DA
(
τ ,Aθk − τ,BKkBA

)
, (4.53)

where we have used the relation between sℓ and K
k in (4.48). Inserting (4.53) into

(4.51) yields the result.

We can now establish the following result that proves the monotonicity of the Bergqvist

mass along the flow:

Theorem 4.5.2 (Bergqvist [8]). With the definitions above we have

dMb(λ)

dλ
=
1

8π

∫

Sλ

〈sλ, sλ〉γληSλ ≥ 0,

where sλ is the connection one-form of Sλ, defined as sλ(X) :=
1
2
〈∇Xk, ℓ〉γλ for any

vector field X tangent to Sλ.

Proof. We first rewrite the Bergqvist mass in terms of the null expansion θk . Integrating

(4.3) and using the Gauss theorem, the Bergqvist mass becomes

Mb(λ) :=
λ

2
+
1

16π

∫

Sλ

θk(λ)(1 + |Dτ |2γλ)ηSλ.

To compute the derivation of Mb we need the evolution equations for θk , γλ and ηSλ.

They are obtained in Appendix B (see formulas (B.14), (B.17) and (B.41) ) and read

d

dλ
θk(λ) = K

k
ABK

kAB,
d

dλ
γ(λ)AB = 2(Kk)AB, £−kηSλ = −θk(λ)ηSλ.

As a consequence dMb

dλ
takes the form

dMb

dλ
=
1

2
+
1

16π

∫

Sλ

((
Kk
ABK

kAB − θ2k
)
(1 + |Dτ |2γλ) + 2θk(sℓ)Aτ

,A
)
ηSλ,
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4. Projection along the past null cone ΩΩΩ in Minkowski

where we have used relation (4.48).

Note the similarity between the integrand in this expression and identity (4.49).

Integrating this identity the divergence term cancels out and the curvature scalar

term gives
∫
Sλ
ScalSληSλ = 8π by the Gauss-Bonnet theorem and we find

dMb(λ)
dλ

=
1
8π

∫
Sλ
〈sλ, sλ〉γληSλ as stated in the theorem.

The following result is the main one in this chapter. Using the monotonicity of the

Bergqvist mass, we obtain a class of surfaces for which the shell Penrose inequality

in Minkowski holds. This family of surfaces are determined in terms of the support

function h and the time-height function τ .

Theorem 4.5.3 (Class of surfaces where the shell Penrose inequality inM1,3M1,3M1,3 holds).

Let (S, γ) be a spacetime strictly convex surface in (M1,3, η). With the same assump-

tions and notation as in Theorem 4.4.6, let h be the support function of Ŝ0 as a

hypersurface of Euclidean space and τ = t|S − t0. If these two functions satisfy the
inequality

4π

∫

S2

(
(△q̊h)

2 + 2h△q̊h
)
ηq̊ > 4π

∫

S2

u2ηq̊ −
(∫

S2

uηq̊

)2
, (4.54)

where u := △q̊h + 2(h − τ), then the shell Penrose inequality (2.34) holds for S.

Proof. In analogy with the definition of Mb(λ) (4.47), we define a function D(λ) by

D(λ) :=

√
|Sλ|
16π

− λ
2
. (4.55)

With this definition, the shell Penrose inequality (1.4) for Sλ can be written in the form

Mb(λ) +D(λ) ≤ 0. (4.56)

Our aim is to prove Mb(λ = 0) + D(λ = 0) ≤ 0. Since Bergqvist’s Theorem 4.5.2
ensures that Mb(λ) is monotonically non-decreasing in λ, the idea of the proof is to

study the monotonicity properties of D(λ) together with the limiting behaviour of both

functions when λ → ∞ in order to see if sufficient conditions can be obtained so that
Mb(λ = 0) +D(λ = 0) ≤ 0 holds.
Let us start with the limit of Mb(λ) at infinity. We want to exploit the fact that we

obtained in (4.42) a general expression for the total integral of the outer null expansion

θl on any spacetime convex surface S, in particular for Sλ. We need to determine the

support and time height function of Sλ. Although it is not the only natural possibility,

a convenient choice is to fix one hyperplane Σt0 and project all surfaces Sλ along Ω

onto Σt0. This procedure has the advantage that Ŝ0 is the same surface for all Sλ
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4.5. Dragging the surface along its past null cone

and hence that the support function h is independent of λ. With this choice, the time

height function τλ of Sλ is

τλ = t|Sλ − t0 = σ|Sλ = τ − λ.

Inserting these functions in (4.42) we find

Mb(λ) =
−1
16π

∫

S2

[
△q̊h + 2(h − τ)

+ (△q̊h + 2(h − τ + λ))
(
W1(λ)|∇̊τ |2q̊ −W2(λ)(∇̊A∇̊Bh)∇̊Aτ∇̊Bτ

)]
ηq̊,

where W1(λ) and W2(λ) are obtained from (4.37)-(4.38) after substituting τ → τ −λ.
Since W1(λ) and W2(λ) vanish as λ

−2 when λ→∞ the limit of Mb(λ) is simply

lim
λ→∞

Mb(λ) =
−1
16π

∫

S2

(△q̊h + 2(h − τ))ηq̊. (4.57)

Regarding D(λ), we substitute τ → τ − λ in (4.44) to obtain

|Sλ| =
∫

S2

(
(h − τ + λ)2 +△q̊h

(
h

2
− τ + λ

))
ηq̊, (4.58)

so that

D(λ) =

√
1

16π

∫

S2

(
(h − τ + λ)2 +△q̊h

(
h

2
− τ + λ

))
ηq̊ −

λ

2
.

It is straightforward to check that the limit of this expression at infinity is

lim
λ→∞

D(λ) =
1

16π

∫

S2

(△q̊h + 2(h − τ))ηq̊,

which together with (4.57) implies limλ→∞(Mb(λ)+D(λ)) = 0. Since Mb(λ) is mono-

tonically non-decreasing, and Mb(λ) +D(λ) tends to zero at infinity, a sufficient con-

dition for the validity of Mb(λ = 0) + D(λ = 0) ≤ 0 is that D(λ) is monotonically
increasing. From the definition (4.55) it follows

dD(λ)

dλ
=

√
1

64π|Sλ|

(
d |Sλ|
dλ

−
√
16π|Sλ|

)
. (4.59)

It only remains to find under which conditions the right-hand side of (4.59) is non-

negative. Since d |Sλ|
dλ
≥ 0 (because θk ≤ 0 on Ω and dηSλ

dλ
= −θk(λ)ηSλ), this is

equivalent to

(
d |Sλ|
dλ

)2
− 16π|Sλ| ≥ 0. (4.60)
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4. Projection along the past null cone ΩΩΩ in Minkowski

Recalling expression (4.58) for the area of Sλ, it follows

d |Sλ|
dλ

=

∫

S2

(2(h − τ + λ) +△q̊h)ηq̊ = 8πλ+

∫

S2

uηq̊. (4.61)

On the other hand, using again expression (4.58) we have

16π|Sλ| = 16π

∫

S2

(
(h − τ)2 + λ2 + 2λ(h − τ) +△q̊h

(
h

2
− τ

)
+ λ△q̊h

)
ηq̊

= 64π2λ2 + 16π

(∫

S2

uηq̊

)
λ+ 16π

∫

S2

(
(h − τ)2 +△q̊h

(
h

2
− τ

))
.

(4.62)

Combining (4.61) and (4.62), it is clear that (4.60) is equivalent to

(∫

S2

uηq̊

)2
≥ 16π

∫

S2

(
(h − τ)2 +△q̊h

(
h

2
− τ

))
ηq̊. (4.63)

Since u = 2(h − τ) +△q̊h, squaring yields

(h − τ)2 = u2

4
− (△q̊h)

2

4
−△q̊h(h − τ),

so that the right hand-side of the inequality (4.63) becomes

(∫

S2

uηq̊

)2
≥ 16π

∫

S2

(
u2

4
− (△q̊h)

2

4
−△q̊h(h − τ) +△q̊h

(
h

2
− τ

))
ηq̊.

After simplification we obtain

(∫

S2

uηq̊

)2
≥ 4π

∫

S2

(
u2 − (△q̊h)

2 − 2h△q̊h
)
ηq̊,

which is precisely (4.54).

Theorem 4.5.3 gives a class of spacetime strictly convex surfaces in the Minkowski

spacetime for which the shell Penrose inequality holds. An important question regarding

this result is how large is the class of surfaces covered by the theorem. Since inequality

(4.54) is quadratic in h, u and its derivatives, a natural strategy is to expand these

functions in terms of spherical harmonics and to rewrite (4.54) as an inequality for the

coefficients of these expansions.

Let r ∈ N ∪ 0 and Ŷ rm (m = −r, · · · r) be 2r + 1 linearly independent eigenfunctions
of the spherical Laplacian with eigenvalue −r(r + 1), i.e. △q̊Ŷ

r
m = −r(r + 1)Ŷ rm.

Without loss of generality we assume that they form an orthonormal basis of L2(S2),
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4.5. Dragging the surface along its past null cone

i.e.
∫
S2
Ŷ ri Ŷ

s
j ηq̊ = δ

rsδi j . Any smooth function f on the sphere can be decomposed in

this basis as

f =

∞∑

r=0

ar · Ŷ r ,

where here and in the following we use the notation ar · Ŷ r :=
∑r

m=−r a
m
r Ŷ

r
m. Similarly

we write a2r :=
∑r

m=−r(a
m
r )
2. The following corollary identifies the class of surfaces

covered in Theorem 4.5.3 in terms of the spherical harmonic decompositions of h and

u.

Corollary 4.5.4. With the notation of Theorem 4.5.3, let us expand the functions h

and u in terms of spherical harmonics as

h =

∞∑

r=0

ar · Ŷ r , u =

∞∑

r=0

br · Ŷ r . (4.64)

If the coefficients satisfy the inequality

∞∑

r=2

a2r r(r + 1)(r − 1)(r + 2) >
∞∑

r=1

b2r , (4.65)

then the shell Penrose inequality holds for the spacetime convex surface S defined by

the support function h and the time height function τ = h − 1
2
△q̊h − u

2
.

Proof. The orthogonality relations of the spherical harmonics imply

∫

S2

(△q̊h)
2ηq̊ =

∞∑

r=0

a2r r
2(r + 1)2,

∫

S2

h△q̊hηq̊ = −
∞∑

r=0

r(r + 1)a2r ,

so that the left-hand side of (4.54) reads

4π

∫

S2

(
(△q̊h)

2 + 2h△q̊h
)
ηq̊ = 4π

∞∑

r=2

a2r r(r − 1)(r + 1)(r + 2). (4.66)

On the other hand, the spherical harmonic decomposition of u implies
∫
S2
uηq̊ =

√
4πb00

and

4π

∫

S2

u2ηq̊ −
(∫

S2

uηq̊

)2
= 4π

∞∑

r=0

b2r − (
√
4πb00)

2 = 4π

∞∑

r=1

b2r . (4.67)

Using (4.66) and (4.67), we obtain (4.65), as claimed (we note that (4.66) and (4.67)

imply that both sides in inequality (4.54) are non-negative, which will be used in the

following remark).
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Remark 4.5.5. In Theorem 4.5.3 we have shown that the Penrose inequality in the

spherical case holds as a consequence of the Beckner inequality (or as a consequence

of the Sobolev inequality in Rm in the case of four spacetime dimensions [101]). It is

interesting to see how does the spherical case fit into the class of functions covered in

Theorem 4.5.3. As we checked in Appendix C, the support function of a sphere is either

a constant (if the origin of Euclidean space coincides with the center of the sphere)

or a linear combination of r = 0, 1 spherical harmonics (when the sphere is displaced

from the origin). In either case, the left-hand side of (4.65) is identically vanishing, so

that the inequality can only hold if the right-hand side also vanishes (because the right-

hand side is in any case non-negative). This forces u = const. and hence τ = const.

too. We see that that the only “spherical case” included in Theorem 4.5.3 is when the

surface S itself is spherically symmetric, which is a trivial case. Thus, in some sense, the

cases covered by Beckner’s inequality (which is essentially analytic in nature) and the

cases covered by the geometric flow used in Theorem 4.5.3 are mutually exclusive. This

seems to indicate that any attempt of proving the shell Penrose inequality for spacetime

convex surfaces in the general case most likely needs some sort of combination of both

ingredients and almost surely a combination of analytic and geometric arguments.

Remark 4.5.6. The other case where the Penrose inequality in Minkowski was known to

hold involves surfaces lying in a constant time hyperplane. It is also natural to see how

this case fits into the class of surfaces covered by Theorem 4.5.3. In this situation we

have τ = 0 and hence u = △q̊h + 2h. Inserting this function in (4.54), this inequality

becomes

(∫

S2

hηq̊

)2
> 4π

∫

S2

(
h2 +

1

2
h△q̊h

)
ηq̊, (4.68)

which is exactly the Minkowski inequality for 2-dimensional euclidean surfaces in terms

of the support function (see formula (4.46)). Since the Minkowski inequality is true,

it follows that the class of surfaces covered by Theorem 4.5.3 includes the case of

convex surfaces lying on constant time hyperplanes (incidentally, it is immediate to

prove directly the validity of (4.68) by using the spherical harmonic decomposition

h =
∑∞

r=0 ar · Ŷ r).

We finish this section, and the chapter, with a particular case of Theorem 4.5.3 where

the inequality (4.54) can be interpreted nicely in terms of the geometry of the projected

surface Ŝ0 and of the height function τ of S. In Chapter 7 we will see that the set of

solutions covered by the following Corollary includes as a particular one the situation

covered by the original argument of Ludvigsen & Vickers and Bergqvist when applied to

the Minkowski spacetime. Since the corollary below restricts τ to depend on constants

(when h is already fixed) we conclude that the original method by Ludvigsen & Vickers
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and Bergqvist is very restrictive. This is to be compared with our Theorem 4.5.3 above

which includes the function τ (when h is already fixed).

Corollary 4.5.7. Let Ŝ0 be a strictly convex surface embedded in a hyperplane Σt0
and let Ω the spacetime convex null hypersurface containing Ŝ0. The shell Penrose

inequality holds for any surface S embedded in Ω and defined by a function τ = t|S− t0
of the form

τ = 2α
H(Ŝ0)

Scal(Ŝ0)
− β, (4.69)

where α ∈ [0, 1], β > 2 H(Ŝ0)

Scal(Ŝ0)
− 1

max
1≤A≤n

{κA} and H(Ŝ0), Scal(Ŝ0) are, respectively, the

mean curvature and scalar curvature of Ŝ0 as a hypersurface of Euclidean space.

Proof. First of all observe that if τ has the form (4.69) and satisfies the bound (4.16),

β must satisfy

τ = 2α
H(Ŝ0)

Scal(Ŝ0)
− β < 1

max
1≤A≤n

{κA}
⇐⇒ 2α H(Ŝ0)

Scal(Ŝ0)
− 1

max
1≤A≤n

{κA}
< β ∀α ∈ [0, 1],

which given the positivity of H(Ŝ0) and Scal(Ŝ0) is equivalent to β > 2
H(Ŝ0)

Scal(Ŝ0)
− 1
max
1≤A≤n

{κA} .

For surfaces in R3, the scalar curvature can be written as Scal(Ŝ0) = 2κ1κ2 where κ1
and κ2 are the principal curvatures of Ŝ0 (hence positive everywhere since Ŝ0 is strictly

convex). Since H = κ1 + κ2 it follows

τ = 2α
H(Ŝ0)

Scal(Ŝ0)
− β = α

(
1

κ1
+
1

κ2

)
− β = α tr(K0−1)− β = α tr(B)− β

= α (△q̊h + 2h)− β.

As a consequence, the function u = △q̊h + 2(h − τ) takes the form

u = (1− 2α) (△q̊h + 2h) + 2β,

which in terms of the coefficients in the expansion (4.64) implies

br = −(1− 2α)(r + 2)(r − 1)ar r > 1.

Inserting this into (4.65) we find that this inequality becomes

∞∑

r=2

a2r (r + 2)(r − 1)
[
r(r + 1)− (1− 2α)2(r + 2)(r − 1)

]
> 0.
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Since h is basically arbitrary (it is only restricted by the condition that it defines a strictly

convex surface) we need to impose that each term of the sum is non-negative. This is

achieved only if

(1− 2α)2 6 r(r + 1)

(r + 2)(r − 1) := Z(r), ∀r ≥ 2. (4.70)

Since the sequence Z(r) is decreasing and its limit is 1 we see that this inequality holds

if (1− 2α)2 6 1, which is equivalent to α ∈ [0, 1]. But α is restricted to this range by
hypothesis, so (4.70) holds true and the corollary follows.
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5
Normal graphs in Euclidean space. Applications to

the shell Penrose inequality

5.1 Introduction

In the previous two chapters we performed two natural projections of spacelike surfaces

in the Minkowski spacetime. In Chapter 3 we obtained explicit expressions for the

geometry of the initial surface S in terms of its projection along the Killing direction. In

Chapter 4, the solution to the Ricatti and the metric equation along the past null cone

of S was used to find the relation between the geometry of S and the geometry of the

convex surface corresponding to the intersection of the null cone with a constant time

hyperplane. The next natural step is the relate the geometries of the two projected

surfaces. This is the purpose of this chapter.

Let S be the vertical projection of the initial surface S onto the constant time hyper-

plane {t = t0}, and Ŝ0 the projection of S along its past null cone Ω onto the same
euclidean hyperplane. It is intuitively clear, and will be proven later, that S is uniquely

determined once we know Ŝ0 = Ω∩{t = t0} and the time height function τ = t|S− t0,
which describes how far S lies from {t = t0}. In this construction, S turns out to be
a graph over Ŝ0 within the euclidean space {t = t0}. For this reason, we devote the
first part of the chapter to compute the expressions that relate the geometry of a given

orientable hypersurface embedded in the arbitrary dimensional Euclidean space with an-

other hypersurface which is a graph over the former one. For the sake of completeness,

we also give the analogous relations when the manifolds are embedded in the arbitrary

Minkowski spacetime, and are strictly spacelike or timelike. These computations were

published in [75] and, when applied to the context above, provide the first and the

second fundamental forms of the vertical projection S in terms of the first and second

fundamental forms of Ŝ0 and the function τ .
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Recall that Brendle and Wang (Chapter 3, Theorem 3.3.7) found that the convexity

of the surface S was a sufficient condition for the validity of the shell Penrose inequality

in Minkowski. As a consequence of our results, we are able to rewrite this condition

explicitly as an inequality involving a tensor TAB defined on Ŝ0, and which involves the
geometry of Ŝ0 and the time-height function τ of S.

To conclude the chapter, we present two simple examples. In the first example S is a

graph over a cylinder (suitably truncated and closed) and in the second example S is a

graph over a sphere. In both cases the tensor TAB that codifies the convexity conditions
for the respective graphs is computed explicitly.

5.2 Geometry of normal graphs on hypersurfaces in the

Euclidean space

In this section, the ambient manifold is the (n+ 1)-Euclidean space (Rn+1, gE), n ≥ 2.
The flat connection is denoted by ∇ and the corresponding (global) parallel transport
by Tp1→p2 : Tp1Rn+1 −→ Tp2R

n+1, for any p1, p2 ∈ Rn+1. Obviously, in Cartesian
coordinates {xα}, (α = 1, . . . , n + 1) this map simply preserves the coefficients of any
vector V ∈ Tp1Rn+1 in the basis {∂xα}. {xα} will always refer to a Cartesian coordinate
system.

Consider two embedded submanifolds Ŝ0 and S in R
n+1 and assume there is diffeo-

morphism ψ : Ŝ0 −→ S. The following result relates the tangential covariant derivative

of vector fields along Ŝ0 (not necessarily tangent to Ŝ0) with the corresponding parallely

transported vector field on S (see Figure 5.1). This result will play an important role

below.

Lemma 5.2.1. Let Ŝ0, S and ψ as above. Let Z be a vector field along Ŝ0. Consider

X a vector field tangent to Ŝ0 and define T Z|ψ(p) := Tp→ψ(p)Zp ∀p ∈ Ŝ0. Then

Tp→ψ(p)(∇XZ|p) = (∇dψ(X)T Z)|ψ(p). (5.1)

Proof. The left-hand side of (5.1) is

Tp→ψ(p)(∇XZ|p) = Tp→ψ(p) (X(Zα)∂xα |p) = X(Zα)|p∂xα|ψ(p). (5.2)

On the other hand, on S we have T Z = Z∗α∂xα, where Z∗α = Zα ◦ ψ−1. Viewing Zα
as scalar functions we can also write Z∗α = (ψ−1)⋆(Zα). Its covariant derivative along
dψ|p(X) is

(∇dψ(X)T Z)|ψ(p) = ∇dψ(X) (Z∗α∂xα) |ψ(p) =
= dψ(X)((ψ−1)⋆(Zα))∂xα |ψ(p) =
= X(Zα)|p∂xα |ψ(p),
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

which is the same as (5.2).

p

Rn+1

ψ(p)

ψ
Zp

T Z|ψ(p)

X

X = dψ(X)Ŝ0

S

Tp→ψ(p)(∇XZ|p) = (∇dψ(X)T Z)|ψ(p)

Figure 5.1: Relation between tangential covariant derivatives of vector fields along Ŝ0
with the corresponding parallely transported vector field on S. Here Ŝ0 and S are

two embedded manifolds in Rn+1 diffeomorphically related by ψ. Z is the vector field

defined in a neighbourhood of p ∈ Ŝ0, and T Z the corresponding parallely transported
vector field defined near ψ(p) ∈ S. Xp is any tangent vector to Ŝ0 at p, and Xψ(p)

the pushforward of Xp by ψ. The covariant derivative of Z along Xp coincides with the

covariant derivative of T Z along Xψ(p) up to a translation.

Assume now that Ŝ0 is an orientable hypersurface and select a unit normal vector field

ν. Choose a smooth function σ : Ŝ0 −→ R and consider the set of points at signed
distance σ from each p ∈ Ŝ0 ⊂ Rn+1 along the normal ν(p). The congruence of normal
geodesics to Ŝ0 meets no focal points for distances σ satisfying the bounds

1 + σκA > 0 A = 1, · · · , n (5.3)

where {κA} are the principal curvatures of Ŝ0. Assuming this bound from now on, we
have that the map ψ′ : Ŝ0 → Rn+1 defined by

ψ′(p) = p + σ(p)ν(p),

(where we are obviously using the affine structure of Rn+1) is such that S := ψ′(Ŝ0) is
an embedded hypersurface of Euclidean space, and, in fact, a graph over Ŝ0 (see Figure

5.2). Our aim is to relate the induced metrics and second fundamental forms of Ŝ0 and

S.

It is clear that the restriction of ψ′ onto its image is a diffeomorphism between Ŝ0
and S, which will be denoted by ψ. Let X ∈ X(Ŝ0) be a vector field tangent to Ŝ0 and

define X := dψ(X), which is obviously tangent to S.
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5.2. Geometry of normal graphs on hypersurfaces in the Euclidean space

p

ψ(p)

ψ(p) = p + σ(p)ν(p)

Ŝ0

Sν

Rn+1

ν

ν̃

X

X̃

X

Figure 5.2: Particular case of diffeomorphism relating the surfaces Ŝ0 and S in Figure

5.1. In this case the set of points at signed distance σ(p) from p ∈ Ŝ0 ⊂ Rn+1 along
the normal ν(p) forms the embedded hypersurface S, which is in fact a graph over Ŝ0.

Any tangent vector field X to S and the normal ν can be parallely transported to Ŝ0
providing the vector fields X̃ and ν̃ respectively. This parallel transport allows one to

perform all computations in a single manifold.

For the purposes of this section, it is convenient to transport parallely X from ψ(p)

to p because this will allow us to perform all calculations in a single manifold. Thus,

let us define the vector field X̃ ∈ X(Ŝ0) as X̃|p := Tψ(p)→p(X|ψ(p)). The first aim is to
relate X̃ with X. Consider any curve c(s) in Ŝ0 passing through p ∈ Ŝ0 with tangent
vector X|p. From the definition of ψ, the curve c := ψ ◦ c has tangent vector X|ψ(p)
at ψ(p). The curves expressed in Cartesian coordinates are related by

cα = cα + σνα.

Differentiating this relation with respect to the parameter s of both curves, we have

dcα

ds
=
dcα

ds
+
dσ

ds
να + σ

dνα

ds
. (5.4)

In Cartesian coordinates,

dcα

ds
= (X

α ◦ ψ)(p), dcα

ds
= Xα(p),

dσ

ds
= X(σ), (∇Xν)α|p =

dνα

ds
.

Hence, relation (5.4) can be rewritten in a tensorial way as

Tψ(p)→p(X|ψ(p)) = (X +X(σ)ν + σ∇Xν)|p.
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

Recalling that the Weingarten map K0 : TpŜ0 −→ TpŜ0 is defined by K0(X) := ∇Xν
we conclude

X̃|p = (X + σ∇Xν +X(σ)ν)|p = (Id + σK0 + dσ ⊗ ν) (X))|p. (5.5)

From the geometric construction of S it is intuitively clear that the normal vector ν or-

thogonal to S must satisfy gE(ν̃|p, ν|p) 6= 0 for all p ∈ Ŝ0, where ν̃|p := Tψ(p)→p(ν|ψ(p)).
For a rigorous proof we use (5.5) as follows. Given that Tp→ψ(p) is an isometry, (5.5)
implies the following identity, valid for any X ∈ TpŜ0:

0 = gE(ν,X)|ψ(p) = gE(Tp→ψ(p)(ν̃), Tp→ψ(p)(X̃))|ψ(p) = gE(ν̃, X̃)|p
= gE(ν̃, (Id + σK0)(X))|p + dσ(X)gE(ν̃, ν)|p. (5.6)

Assume there is q ∈ Ŝ0 such that ν̃|q ∈ TqŜ0 (i.e. gE(ν̃, ν) = 0). Then gE(ν̃, (Id +
σK0)(X))|q = 0 for any X ∈ TqŜ0, which is a contradiction with the fact that the
bound (5.3) implies that the endomorphism Id + σK0 is invertible.

Let us choose the orientation of ν so that W := gE(ν̃, ν) > 0 on Ŝ0. Thus, we can

decompose ν̃ = W (ν − T ) on Ŝ0, where T ∈ X(Ŝ0) is a tangent vector field. From

equation (5.6) we have

0 = gE(W (ν − T ), (Id + σK0)(X))|p +W∇Xσ|p,

and consequently

gE(T, (Id + σK0)(X))|p = ∇Xσ|p. (5.7)

Using that the endomorphism Id + σK0 is self-adjoint, the vector

T = (Id + σK0)
−1(grad γ0(σ)) (5.8)

solves relation (5.7), where grad γ0(σ) is the gradient of σ with respect to the induced

metric γ0. For notational simplicity, define the invertible endomorphism C := (Id +

σK0) so that T = C
−1(grad γ0(σ)). The condition of ν being unit fixes W to satisfy

W 2(1 + γ0(T, T )) = 1, which, given our choice of normal in S, implies

W =
1√

1 + γ0(T, T )
. (5.9)

We are ready to prove our main result of this section, which relates the geometry of

the graph S with the geometry of its base Ŝ0.

Theorem 5.2.2. Consider the hypersurfaces Ŝ0, S of Euclidean space (R
n+1, gE) with

signed distance function σ and diffeomorphism ψ, as above. The respective induced
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5.2. Geometry of normal graphs on hypersurfaces in the Euclidean space

metrics γ0 and γ and second fundamental forms K0 and K with respect to the normals

ν and ν are related by

ψ⋆(γ) = γ0 + 2σK0 + σ
2K0 ◦K0 + dσ ⊗ dσ, (5.10)

1

W
ψ⋆(K) = K0 + σK0 ◦K0 + σDK0(·, T, ·) + dσ ⊗K0(T, ·) +

+K0(T, ·)⊗ dσ − Hess γ0(σ), (5.11)

where T and W are defined in (5.8)-(5.9), K0 ◦K0 is the trace of K0⊗K0 in the second
and third indices, D is the Levi-Civita derivative of γ0 and Hess γ0(σ) is the Hessian of

σ in this metric.

Remark 5.2.3. These expressions reduce to well-known results when either σ is constant

or when the base surface is a hyperplane.

Remark 5.2.4. It is interesting that in (5.11) the symmetry of K for any σ is equivalent

to the Codazzi identity DK0(X1, ·, X3) = DK0(X3, ·, X1) for Ŝ0. So, properties of
normal graphs can be used to derive curvature identities on the base hypersurface,

which usually would require different methods.

Proof. Let X, Y ∈ X(Ŝ0) be arbitrary tangent vector fields. We start with (5.10). With

the notation above, and using that the parallel transport is an isometry:

ψ⋆(γ)(X, Y )|ψ(p) = γ (dψ|p(X), dψ|p(Y )) = gE(X, Y )|ψ(p) = gE(X̃, Ỹ )|p
= gE(C(X),C(Y ))|p + dσ ⊗ dσ|p(X, Y )
= γ0((Id + σK0)(X), (Id + σK0)(Y ))|p + dσ ⊗ dσ|p(X, Y ),

where in the fourth equality we used (5.5). This establishes (5.10). To prove (5.11)

we first apply Lemma 5.2.1 to find the identity

gE(∇X ν̃, Ỹ )|p = gE
(
Tp→ψ(p)(∇X ν̃), Tp→ψ(p)(Ỹ )

)
|ψ(p)

= gE
(
∇Xν, Y

)
|ψ(p) = K(X, Y )|ψ(p) = ψ⋆(K)(X, Y )|p. (5.12)

To evaluate the left-hand side we recall the fundamental identity, ∇XY = DXY −
K0(X, Y )ν (cf. formula (A.12) in Appendix A), valid for any pair of tangential vector

fields. Given that gE(ν̃, Ỹ ) = 0, the left-hand side of (5.12) becomes

gE(∇X ν̃, Ỹ ) =
X(W )

W
gE(ν̃, Ỹ ) +WgE (∇X(ν − T ), dσ(Y )ν + C(Y ))

= Wγ0 (K0(X)−DXT,C(Y )) +WK0(X,T )dσ(Y ). (5.13)

The first term is immediately Wγ0(K0(X),C(Y )) = W (K0 + σK0 ◦ K0)(X, Y ). To
elaborate the second term, we use that the endomorphism C is symmetric with respect
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

to γ0, i.e. γ0(X1,C(X2)) = γ0(C(X1), X2). Thus,

−γ0(DXT,C(Y )) = −γ0((C ◦DXC−1)(grad γ0(σ)), Y )− γ0(DXgrad γ0(σ), Y )
= γ0((DXC)(T ), Y )− Hess γ0(σ)(X, Y )
= dσ(X)K0(T, Y ) + σDK0(X,T, Y )− Hess γ0(σ)(X, Y ),

where in the first equality we used (5.8) and in the second equality −C ◦ (DXC−1) =
(DXC) ◦ C−1 . Inserting this into (5.13) yields the result.

Remark 5.2.5. The Riemannian character of the ambient Euclidean space has only been

used when evaluating gE(ν, ν) and gE(ν, ν). With the same arguments as before, let

Ŝ0 be an embedded submanifold of the Minkowski spacetime (M1,n+1, η) with non-

degenerate induced metric γ0 and unit normal ν satisfying 〈ν, ν〉η = ǫ with ǫ = ±1. S
is constructed as before, where the orientation of the unit normal ν is selected so that

it satisfies 〈ν̃, ν〉η = ǫW , with W > 0. Under these conditions:

ψ⋆(γ) = γ0 + 2σK0 + σ
2K0 ◦K0 + ǫdσ ⊗ dσ, (5.14)

1

W
ψ⋆(K) = K0 + σK0 ◦K0 + σDK0(·, T, ·) + dσ ⊗K0(T, ·)+

+K0(T, ·)⊗ dσ − ǫHess γ0(σ), (5.15)

where all definitions are as before and the decomposition ν̃ = W (ν −T ) still holds, but
this time T reads T = ǫ(Id + σK0)

−1(grad γ0(σ)) and W is

W =
1√

1 + ǫγ0(T, T )
.

The condition 1 + ǫγ0(T, T ) > 0 is necessary for S to be of the same causal character

as Ŝ0.

5.3 Matching the two different projections

Let (M1,n+1, η) be the (n+2)-dimensional Minkowski spacetime (n ≥ 2), and consider
the same setting as in Section 4.3 of Chapter 4. Specifically, consider three different

surfaces: the initial spacetime convex surface S embedded in the null hypersurface Ω,

the euclidean surface Ŝ0 = Ω∩Σt0, and the euclidean surface S, which is the projection
of S along the Killing direction ξ onto the constant time hyperplane Σt0.

For any closed spacetime convex surface S, S must be embedded in Σt0 (otherwise

two different points of S with different time heights would project the same point onto

Σt0 which is impossible given that they lie on a smooth null hypersurface). We can

apply Theorem 5.2.2 to relate the geometry of Ŝ0 and S as follows: Theorem 3.3.7
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required the convexity of the projected surface S as the main condition for the validity

of the shell Penrose inequality for S. In the construction above and using the results of

Theorem 5.2.2, we can rewrite the second fundamental form of S in terms of the second

fundamental form of Ŝ0 and the signed function between the two euclidean surfaces,

which as we will see coincides with time height function τ of S up to a sign. This way

the convexity condition for S can be described by suitable conditions on the geometry

of the surface Ŝ0 and the time height that separates the surface S from the constant

time hyperplane Σt0. This underlying convexity condition of S can be translated to a

positive definite condition of a two-covariant tensor defined on the surface Ŝ0, as we

show next:

Σt0 = {t = t0}

(M1,n+1, η)

Ω

ξ S

Ŝ0
S

τ

τ
ν

q

k

k ℓ

ν

Figure 5.3: Schematic figure combining both projections: the spacetime convex surface

S is projected along Ω onto Σt0, with Ŝ0 = Ω ∩ Σt0. S is obtained by projecting S
along the Killing ξ. {k, ℓ} are normalized so that 〈k, ℓ〉η = −2.

Theorem 5.3.1 (Sufficient condition for the Penrose inequality in Minkowski in

terms of spacetime convex geometry). Let (M1,n+1, η) be the (n+2)-dimensional

Minkowski spacetime with t a Minkowskian time defining a unit Killing ξξξ = −dt. Let
S be a closed, connected, orientable and spacetime convex surface in (M1,n+1, η) and

Ω the convex null hypersurface containing S. Consider Ŝ0 := Ω∩Σt0 and let K0 be its
second fundamental form as an euclidean surface of Σt0 with respect to its outer unit

normal ν (see Figure 5.3), D the Levi-Civita connection of the metric γ0 of Ŝ0, and

grad γ0(τ) and Hess γ0(τ) the gradient and Hessian of τ in the metric γ0 respectively,

where τ := t|S − t0. If the tensor
T = K0−τK0◦K0−τDK0(·, T, ·)−dτ⊗K0(T, ·)−K0(T, ·)⊗dτ+Hess γ0(τ) (5.16)
is positive semidefinite, where T = −(Id − τK0)−1(grad γ0(τ)), then the Penrose in-
equality with respect to ξ holds for S.

Proof. Observe that in the euclidean hyperplane Σt0 we can obtain S as a graph over

Ŝ0 moving inwards along the inner normal to Ŝ0. Indeed, let ν and ν be the outer unit
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5. Applications of Euclidean normal graphs to the shell Penrose inequality

normals of Ŝ0 and S. Moving along geodesics tangent to k in the past null cone Ω

a time height τ with respect to Σt0 is equivalent to the projected trajectory moving

inwards the same signed distance τ (see Figure 5.3). Thus, we can apply Theorem

5.2.2 with σ = −τ and conclude that T = 1
W
ψ∗(K) with W > 0. The validity of the

Penrose inequality for S is then a consequence of Theorem 3.3.7.

Remark 5.3.2. The expression of T with an index notation is

TAB = K0AB − τK0ALK0LB − τT LDAK0BL − T L(τ,AK0BL + τ,BK0AL) +DADBτ,

where T L = −τM[(Id − τK0)−1]ML.

To get a flavour of the range of applicability of this result, let us consider a few exam-

ples. Consider a closed, axially symmetric convex surface Ŝ0 in a spacelike hyperplane

Σt0 of four-dimensional Minkowski spacetime M1,3, and assume that this surface is

a cylinder between two parallel planes z = z0 and z = z1 orthogonal to the axis of

symmetry. Let ρ0 be the radius of the cylinder (see Figure 5.4).

z-axis
Ŝ0

S

z = z1

z = z0

Rn+1

ρ0

τ

Figure 5.4: Particular case of the construction in Figure 5.3, where the projection Ŝ0
onto a constant time hyperplane Σt0 of the spacetime convex surface S embedded in

M1,3 along its past null cone Ω is a cylinder of radius ρ0 between the two parallel planes

z = z0 and z = z1 orthogonal to the axis of symmetry. For all those τ for which T
is positive semidefinite, i.e. those ones that make S ⊂ Rn+1 convex, the shell Penrose
inequality for S holds.
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5.3. Matching the two different projections

In cylindrical coordinates {ϕ, z}, the first and second fundamental form of the cylinder
read

γ0 = ρ
2
0dϕ

2 + dz2, K0 = ρ0dϕ
2.

It is immediate to see that

K0ALK0
L
B = δ

ϕ
Aδ

ϕ
B,

with δ the Kronecker delta. In addition, the coefficients of the metric tensor γ0 are

constant. This implies that the Christoffel symbols of the metric are zero, and con-

sequently DAK0BC = 0, because the coefficients of K0 are also constant. Inverting

(Id − τK0)AB = ρ0−τ
ρ0
δAϕδ

ϕ
B + δ

A
z δ

z
B, we find [(Id − τK0)−1]AB = ρ0

ρ0−τ δ
A
ϕδ

ϕ
B + δ

A
z δ

z
B, and

the following expression for the vector T is obtained:

T L = −τM[(Id − τK0)−1]ML =
−τ,ϕ

ρ0(ρ0 − τ)
δLϕ.

Thus we obtain T LK0AL =
−τ,ϕ
ρ0−τ δ

ϕ
A, and it follows

−T L(τ,AK0BL + τ,BK0AL) =
τ,ϕ

ρ0 − τ
(τ,Aδ

ϕ
B + τ,Bδ

ϕ
A).

Using all this information, in cylindrical coordinates {ϕ, z}, (5.16) becomes, in the
region z0 ≤ z ≤ z1,

TAB = (ρ0 − τ)δϕAδϕB + τ,AB +
τ,ϕ

ρ0 − τ
(τ,Aδ

ϕ
B + τ,Bδ

ϕ
A).

Assuming τ also axially symmetric, then T is positive semidefinite if and only if τ,zz ≥ 0.
So, any smooth axially symmetric surface S projecting to Ŝ0 along the past null cone and

for which τ fulfills τ,zz ≥ 0 on z ∈ [z0, z1], and is a constant τ1 on z ≥ z1 and a constant
τ0 on z ≤ z0 (although it is not the only possible way to define it, we consider such

a τ in order to obtain a compact projected surface S), satisfies the Penrose inequality

(with respect to the time translation orthogonal to the hyperplane Σt0).

Another simple example is obtained when Ŝ0 is a sphere of radius r0 in Σt0 (see Figure

5.5). In this case K0 =
1
r0
γ0, where γ0 is the metric of the two-sphere of radius r0.

Clearly

K0ALK0
L
B =

1

r 20
γ0,

and we also have DAK0BC = 0. Inverting (Id − τK0)AB = r0−τ
r0
δAB, is now immediate

[(Id − τK0)−1]AB = r0
r0−τ δ

A
B, and the expression for T is

T L = −τM[(Id − τK0)−1]ML =
−r0
r0 − τ

τ ,L.

The contraction T LK0AL =
−1
r0−τ τ,A yields

−T L(τ,AK0BL + τ,BK0AL) =
2τ,Aτ,B
r0 − τ

.
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z-axis

Ŝ0

S

r0

Rn+1

ρ

τ

Figure 5.5: Particular case of construction in Figure 5.3, where the projection Ŝ0 onto

a constant time hyperplane Σt0 of the spacetime convex surface S embedded inM1,3

along its past null cone Ω is a sphere of radius r0. As in Figure 5.4, for all those τ for

which T is positive semidefinite, i.e. those ones that make S ⊂ Rn+1 convex, the shell
Penrose inequality for S holds.

Using all the above information, in spherical coordinates {θ, ϕ} non-negativity of the
tensor T reads

TAB =
(
r0 − τ
r 20

)
γ0AB +DADBτ +

2

r0 − τ
τ,Aτ,B ≥ 0.

A direct computation gives that the Hessian of τ is DADBτ = τ,AB+sin θ cos θτ,θδ
ϕ
Aδ

ϕ
B−

cos θ
sin θ

τ,ϕ(δ
θ
Aδ

ϕ
B + δ

ϕ
Aδ

θ
B). In the case that S is axially symmetric, the conditions Tθθ ≥ 0

and Tϕϕ ≥ 0 are equivalent to (in spherical coordinates where τ(θ))

(r0 − τ)2 + (r0 − τ)τ,θθ + 2(τ,θ)2 ≥ 0, (r0 − τ) sin θ + cos θτ,θ ≥ 0. (5.17)

Let us solve these inequalities in the strictly convex case (i.e. with strict inequalities

in (5.17)). With the definition z(θ) := (r0 − τ(θ)) cos θ, the second inequality be-
comes immediately z,θ < 0, which can be inverted to define θ(z). With the definition

ρ(θ(z)) := (r0− τ(θ)) sin θ|θ(z), the first inequality becomes, ρ,zz < 0 as we show next.
Using the chain rule we have

ρ,zz =
d2ρ

dθ2

(
dθ

dz

)2
+
dρ

dθ

d2θ

dz2
. (5.18)
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From dθ
dz
= 1

z,θ
, we have d2θ

dz2
=
−z,θθ
(z,θ)3
, which inserted into (5.18), transforms this expres-

sion into

ρ,zz =
ρ,θθz,θ − ρ,θzθθ
(z,θ)3

.

Hence the condition ρ,zz < 0 is equivalent to ρθθzθ−ρθz,θθ > 0 after taking into account
that z,θ < 0. On the other hand, the definitions of ρ and z imply

ρ,θ = −τ,θ sin θ + (r0 − τ) cos θ,
ρ,θθ = −(τ,θθ + r0 − τ) sin θ − 2τ,θ cos θ,

and

z,θ = −τ,θ cos θ − (r0 − τ) sin θ,
z,θθ = −(τ,θθ + r0 − τ) cos θ + 2τ,θ sin θ.

The combination ρ,θθz,θ − ρ,θz,θθ is

ρ,θθz,θ − ρ,θz,θθ = (r0 − τ)2 + (r0 − τ)τ,θθ + 2(τ,θ)2 ≥ 0,

which implies that the first inequality in (5.17) is equivalent to ρ,zz ≤ 0 as claimed.
Note also that

ρ− zρ,z = ρ− ρ,θ
z

z,θ
= −(r0 − τ)

2

z,θ
> 0

as a consequence of their definitions. Conversely, let ρ(z) satisfy ρ,zz < 0 and ρ−zρ,z >
0. We want to define the function z(θ) by using the implicit function theorem in the

relation

cos θ = z(
√
z2 + ρ(z)2)−1|z=z(θ). (5.19)

This can be achieved by considering the function F (θ, z) = z(
√
z2 + ρ(z)2)−1 − cos θ

(note that (5.19) is equivalent to F (θ, z) = 0). It holds ∂F
∂z
= ρ(ρ−zρ,z )
(z2+ρ2)

√
z2+ρ2

> 0 from

the conditions ρ > 0 and ρ − zρ,z > 0 and the implicit function theorem can be used
to define z(θ). We can now construct a function τ(θ) be means of

τ = r0 −
√
z2 + ρ(z)2|z=z(θ).

Then the surface S defined by this time height over the sphere Ŝ0 projects onto a

convex euclidean surface S lying in the constant time hyperplane Σt0, and therefore

using Brendle and Wang’s Theorem 3.3.7, we prove that the constructed surface S

satisfies the shell Penrose inequality.

We note that the Penrose inequality for surfaces S lying in the past null cone of a

point in the Minkowski spacetime has been established in full generality in [101] (for

dimension 4) and in Chapter 4 of this thesis for any dimension. So, the second example

above does not extend in any way the class of surfaces for which the inequality holds.
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However, besides giving us an idea of the proportion of surfaces in the null cone case

covered by Theorem 3.3.7 in Chapter 3, it also provides a method to construct a wide

family of axially symmetric surfaces S for which the Penrose inequality holds. Indeed,

assume now that Ŝ0 is axially symmetric and consider axially symmetric functions τ

on Ŝ0 so that S is strictly convex. Let ez be the unit field tangent to the axis of

symmetry and eρ the unit field radially outward from the axis of symmetry. Define the

two functions on Ŝ0

z(p) := gE(x − τν, ez)|p, ρ(p) := gE(x − τν, eρ)|p, (5.20)

where x is the position vector of a point p on Ŝ0 with respect to an origin on the axis of

symmetry and ν the outward normal at p. The strict inequality T > 0 is equivalent to
(i) z being a coordinate on Ŝ0 away from points on the axis of symmetry and (ii) ρ(z)

satisfying ρ,zz < 0. Conversely, given any function ρ(z) satisfying ρ,zz < 0, if there are

two maps z, τ : S → R solving the algebraic equations (5.20) with ρ(p) := ρ(z(p)),

then the spacetime surface S defined by this time height function over Ŝ0 satisfies the

Penrose inequality. The algebraic equations will be solvable provided the parametric

surface {ρ(z), z , ϕ} in cylindrical coordinates is a normal graph over Ŝ0. It is obvious
that this is not always the case, so restrictions are necessary. In the spherical case

above, this restriction is precisely ρ− zρz > 0.

109





6
The Hawking energy along null AF hypersurfaces

6.1 Introduction

From this chapter onwards we move on from the Minkowski case and start analyzing

the null Penrose inequality in a general context. The main strategy we shall follow is a

generalization of the ideas in Chapter 4 where the surface was dragged along the past

null cone of the surface. As it will become clear in Chapter 7, the method requires

understanding in detail the limit of the Hawking energy along general flows by cross

sections of Ω.

Recall that the Hawking energy is a functional on surfaces which is known to approach

the Bondi energy along flows approaching large spheres. The main purpose of this

chapter is the study of the limit of the Hawking mass when this condition is relaxed. To

do that we study the geometric elements (metric, extrinsic curvatures and connection

one-form) on the leaves of general flows in terms of the geometric elements of a special

reference flow which we call background foliation. This allows us to analyze their

asymptotic behaviour at past null infinity. As a consequence, we obtain in Theorem

6.6.2 an expression for the limit of the Hawking mass along these general flows in terms

of the geometry of the background foliation. These results were published in [76].

In the final part of the chapter, we particularize to those flows along Ω which tend

to large spheres, and consider the one-to-one correspondence between their asymptotic

limit at past null infinity and the solutions of the large sphere equation. The solutions

of this equation are determined by three real parameters, which also determine a unique

four-vector observer u in an abstract Minkowski spacetime that is assigned to the flow.

It is well known that the limit of the Hawking energy along such flow is the Bondi energy

EuB associated to the observer u, i.e. the component along u of an energy-momentum

four vector PB. Our results allow us to give (Corollary 6.7.3) an explicit expression for

PB in terms of the background foliation that appears to be new.
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6.2 Preliminaries

In the previous chapter we were mainly working in the Minkowski spacetime. Let us

go back to a more general setting dealing with a time-oriented spacetime (M,g) of

dimension n + 2, n ≥ 2, admitting an embedded smooth, connected, null hypersurface
Ω. Let k be a smooth, nowhere zero, future directed null vector field tangent to Ω (i.e.

a null generator). Since the integral curves of k are geodesics, there exists Qk ∈ F(Ω)
such that ∇kk = Qkk . We make the assumption that there is an embedded spacelike
connected hypersurface S0 in Ω (with embedding Φ0) such that any integral curve of −k
intersects S0 precisely once. This implies the existence of a smooth map π : Ω −→ S0
(we identify S0 with its image, the meaning being clear from the context) which sends

p ∈ Ω to the intersection of the integral curve αkp of −k passing through p with S0.
The map π is clearly a submersion. We choose the parameter λ of the curve αkp so

that αkp(0) = p.

Given k and S0, a scalar function λ ∈ F(Ω) is defined by k(λ) = −1 and λ(p) = 0 for
all p ∈ S0. Let (λ−(p), λ+(p)) be the range of the function λ restricted to the curve αkp.
We also assume that the open interval (Λ− := supS0 λ−,Λ+ := infS0 λ+) is non-empty.
The function λ having nowhere zero gradient, the level sets Sλ1 = {λ = λ1} are either
empty or smooth embedded (not necessarily connected) hypersurfaces. The collection

{Sλ} is a foliation of Ω. For λ1 ∈ (Λ−,Λ+) the hypersurfaces Sλ1 are in fact connected
and diffeomorphic to S0.

At any p ∈ Ω let ℓ|p ∈ TpM be the unique null vector field satisfying 〈k, ℓ〉|p = −2 and
〈ℓ, X〉|p = 0 for any X ∈ TpSλ(p). Sλ is endowed with an induced metric γSλ, with two
null second fundamental forms Kk , Kℓ and with a normal bundle connection one-form

sℓ(X) :=
1
2
〈∇Xk, ℓ〉, X ∈ X(Sλ).

In order to obtain the limit of the Hawking energy as described in Section 6.1, we

need to relate the geometry of different spacelike surfaces embedded in Ω. Consider a

spacelike embedded hypersurface S in Ω with embedding Φ : S −→ Ω and let p ∈ S.
This hypersurface is uniquely defined by a diffeomorphism Ψ : S −→ Ψ(S) ⊂ S0
and a function F ∈ F(S) as follows. For all p ∈ S define F (p) = λ(Φ(p)) and

Ψ(p) = (π ◦ Φ)(p). Conversely, a function F ∈ F(S) with image in (λ−(p), λ+(p))
and a diffeomorphism Ψ as above defines an embedding (see Figure 6.1)

Φ : S −→ Ω
p −→ αkΨ(p)(λ = F (p)).

We want to relate the intrinsic and extrinsic geometry of S at p with the geometry

of the surface Sλ=F (p). Since this is all local we can assume Ψ(S) = S0, which makes

the presentation simpler. We extend F to a function on Ω defined by F (q) = F ((Ψ−1 ◦
π)(q)). We keep the same symbol for the extension. It is clear that k(F ) = 0. For
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S

S0

Sλ=F (p)

M

λ = F (p)
p

X

X ′

Figure 6.1: Embedding of the surface S in the past null cone Ω of S0. The flow {Sλ}
of surfaces along Ω defined as the level sets of the function λ : Ω → R satisfying
k(λ) = −1, and λ|S0 = 0. The “distance” along Ω from S0 to S is given by the graph

function F : S → R. For a point p ∈ S, and the surface Sλ=F (p) of the flow, we can
rewrite the tangent vectors, metric, second fundamental forms along k and ℓS, and the

connection one form sℓS of S in terms of the geometry of the leaf of the flow Sλ=F (p).

the extrinsic geometry of S (we again identify S with its image) we define at p ∈ S,
the null normal ℓS|p by the conditions 〈ℓS, k〉|p = −2 and 〈ℓS, X〉 = 0 for all X ∈ TpS.
The induced metric γS, the null second fundamental forms K

ℓS , Kk and the normal

connection one-form sℓS are defined similarly as before. The following proposition is

known (see e.g [93]) when the background foliation {Sλ} is affine (i.e. Qk = 0).

Although this is the situation we will require later, we include for the sake of generality

the non-affine case as well. Our proof also follows a somewhat different approach.

Proposition 6.2.1. Let p ∈ S, then the map
TF : TpSλ=F (p) −→ TpS

X −→ X ′ := X −X(F )k
is a well-defined isomorphism. The induced metric γS, null second fundamental forms

KℓS , Kk and normal bundle connection sℓS of S are given by

γS|p(X ′, Y ′) =γ(X, Y ), (6.1)

Kk(X ′, Y ′)|p =Kk(X, Y ), (6.2)

sℓS(X
′)|p =sℓ(X)−Kk(X, gradF ) +X(F )Qk , (6.3)

KℓS(X ′, Y ′)|p =Kℓ(X, Y ) + |DF |2Kk(X, Y ) + 2X(F )sℓ(Y ) + 2Y (F )sℓ(X)

− 2X(F )Kk(Y, gradF )− 2Y (F )Kk(X, gradF )− 2HessF (X, Y )
+ 2QkX(F )Y (F ), (6.4)

113



6.2. Preliminaries

where γ,Kk , Kℓ, sℓ, grad, Hess and |DF |2 = 〈gradF, gradF 〉 refer to the surface
Sλ=F (p) and are evaluated at p.

The proof is based on the following simple identity that may be useful in other contexts.

Lemma 6.2.2. Let S be an embedded spacelike surface with embedding Ψ : S −→ M.

Select a pair of null normal vector fields {k, ℓ} along S satisfying 〈k, ℓ〉 = −2. For
any vector field ξ on a spacetime neighbourhood of S write its deformation tensor as

£ξg := aξ. Then

aξ(X, Y ) = −〈ξ, ℓ〉Kk(X, Y )− 〈ξ, k〉Kℓ(X, Y ) +
(
DXξ

‖) (Y ) +
(
DY ξ

‖) (X),

X, Y ∈ X(S), where D is the Levi-Civita covariant derivative of S, ξ‖ := Ψ⋆(ξ) and
ξ := g(ξ, ·).

Remark 6.2.3. Given ξ merely along S, this result can be applied to any extension of ξ

to a neighbourhood of S, the result being independent of the extension.

Proof. Decompose ξ in tangential and normal parts ξ = ξ⊥+ξ‖ and ξ⊥ in the null basis
{k, ℓ} as in (3.26), i.e., ξ = −1

2
〈ξ, ℓ〉k − 1

2
〈ξ, k〉ℓ+ ξ‖ so that

aξ(X, Y ) = 〈∇Xξ, Y 〉+ 〈∇Y ξ,X〉
= −〈ξ, ℓ〉Kk(X, Y )− 〈ξ, k〉Kℓ(X, Y ) + 〈∇Xξ‖, Y 〉+ 〈∇Y ξ‖, X〉
= −〈ξ, ℓ〉Kk(X, Y )− 〈ξ, k〉Kℓ(X, Y ) + 〈DXξ‖, Y 〉+ 〈DY ξ‖, X〉
= −〈ξ, ℓ〉Kk(X, Y )− 〈ξ, k〉Kℓ(X, Y ) + (DXξ

‖)(Y ) + (DY ξ
‖)(X).

Proof of Proposition 6.2.1. TF is well-defined provided X − X(F )k is tangent to S.
This follows because S is defined by λ− F = 0 (note that d(λ − F ) 6= 0 everywhere)
and LX−X(F )k(λ − F ) = −X(F ) − X(F )k(λ) = 0. TF is obviously injective, hence an
isomorphism. Properties (6.1) and (6.2) are well-known. Anyhow we also prove them

for completeness. First of all,

γS(X
′, Y ′) = 〈X −X(F )k, Y − Y (F )k〉 = 〈X, Y 〉 = γ(X, Y ),

and also

Kk(X ′, Y ′) = 〈∇X ′k, Y ′〉 = 〈∇X−X(F )kk, Y − Y (F )k〉
= 〈∇Xk −X(F )Qkk, Y − Y (F )k〉 = 〈∇Xk, Y 〉 = Kk(X, Y ).

These two identities recover the fact that the objects γ and Kk are intrinsic to Ω at p

and independent of the details of how S containing p is embedded in Ω.
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For the remaining parts of the proposition we note the decomposition

ℓS|p = ℓ+ |DF |2k − 2 gradF |p, p ∈ S,

which holds because the right-hand side is null:

〈ℓS, ℓS〉 = 〈ℓ+ |DF |2k − 2 gradF, ℓ+ |DF |2k − 2 gradF 〉
= −4|DF |2 − 4ℓ(F ) + 4|DF |2 = 0;

is orthogonal to X ′ = TF (X), for all X ∈ TpS :

〈ℓS, X ′〉 = 〈ℓ+ |DF |2k − 2 gradF,X −X(F )k〉 = 2X(F )− 2X(F ) + 2X(F )k(F ) = 0;

and clearly satisfies 〈ℓS, k〉 = −2.
To show (6.3) we compute

sℓS(X
′) = −1

2
〈∇X ′ℓS, k〉 =

1

2
〈∇X ′k, ℓS〉 =

1

2
〈∇Xk −X(F )∇kk, ℓS〉

= sℓ(X)−Kk(X, gradF ) +X(F )Qk .

For the null extrinsic curvature KℓS we use Lemma 6.2.2. First observe that the right-

hand side of (6.2) makes sense for all p ∈ Ω, so it defines an extension of ℓS which
remains null and satisfying 〈ℓS, k〉 = −2. Extend also Y ∈ TpSλ=F (p) to a neighbour-
hood under the condition that remains tangent to the foliation {Sλ}. This induces an
extension of Y ′ which remains orthogonal to ℓS. Note

[k, Y ′] = [k, Y ]− k(Y (F ))k = [k, Y ]− [k, Y ](F ) = ([k, Y ])′,

which shows that [k, Y ′] is tangent to S at p (and we used that [k, Y ]|p is tangent to
Sλ=F (p)). We apply Lemma 6.2.2 on the surface Sλ=F (p) and to the vector field ℓS.

Concerning the deformation tensor

〈∇XℓS, Y 〉 =〈∇X ′+X(F )kℓS, Y ′ + Y (F )k〉
=〈∇X ′ℓS, Y ′〉+X(F )〈∇kℓS, Y ′〉+ Y (F )〈∇X ′ℓS, k〉+X(F )Y (F )〈∇kℓS, k〉
=KℓS(X ′, Y ′)−X(F )〈∇kY ′, ℓS〉 − 2Y (F )sℓS(X ′)−X(F )Y (F )〈∇kk, ℓS〉
=KℓS(X ′, Y ′)−X(F )〈[k, Y ′] +∇Y ′k, ℓS〉 − 2Y (F )sℓS(X ′)
+ 2QkX(F )Y (F )

=KℓS(X ′, Y ′)− 2X(F )sℓS(Y ′)− 2Y (F )sℓS(X ′) + 2QkX(F )Y (F ),

where in the last equality we used that [k, Y ′]|p is tangent to S. Hence

aℓS(X, Y ) =2K
ℓS(X ′, Y ′)− 4X(F )sℓS(Y ′)− 4Y (F )sℓS(X ′) + 4QkX(F )Y (F )

=2KℓS(X ′, Y ′)− 4X(F )sℓ(Y )− 4Y (F )sℓ(X) + 4X(F )Kk(Y, gradF )

+ 4Y (F )Kk(X, gradF )− 4QkX(F )Y (F ) (6.5)
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after using (6.3) in the second equality. Now Lemma 6.2.2 gives

aℓS(X, Y ) = 2|DF |2Kk(X, Y ) + 2Kℓ(X, Y )− 4HessF (X, Y ). (6.6)

Solving for KℓS(X ′, Y ′) in (6.5) and (6.6) yields the result.

The following corollary is a consequence of how the null second fundamental forms

and the normal bundle connection transforms under a boost in {ℓS, k}.

Corollary 6.2.4. Let S as before and for all p ∈ S let k ′|p = α(p)k |p and ℓ′S|p = 1
α(p)

ℓS,

where α : S 7→ R is a smooth positive function extended to Ω by k(α) = 0. Then

sℓ′S(X
′),=sℓ(X)−Kk(X, gradF ) +X(F )Qk −

1

α
X(α), (6.7)

Kk ′(X ′, Y ′) =αKk(X, Y ), (6.8)

Kℓ′S(X ′, Y ′)|p =
1

α

(
Kℓ(X, Y ) + |DF |2Kk(X, Y ) + 2X(F )sℓ(Y ) + 2Y (F )sℓ(X)

−2HessF (X, Y )− 2X(F )Kk(Y, gradF )− 2Y (F )Kk(X, gradF )

+2QkX(F )Y (F )
)
. (6.9)

Proof. We first compute how sℓ transforms under change of ℓ:

sℓ′S(X
′) =

1

2
〈∇X ′k ′, ℓ′S〉 =

1

2
〈∇X ′(αk),

1

α
ℓS〉 =

1

2
〈X ′(α)k + α∇X ′k,

1

α
ℓS〉

=
−X ′(α)
α

+ sℓS(X
′).

Using relation (6.3) and X ′(α) = X(α)−X(F )k(α) = X(α) yields (6.7). The change
of Kk ′ under rescaling is very simple:

Kk ′(X ′, Y ′) = 〈∇X ′(αk), Y ′〉 = 〈X ′(α)k + α∇X ′k, Y ′〉 = αKk(X ′, Y ′),

which in combination with (6.2) gives (6.8).

An analogous reasoning gives Kℓ′S(X ′, Y ′) = 1
α
KℓS(X ′, Y ′), and (6.9) follows from

(6.4).

The trace of Kk and Kℓ on Sλ with the induced metric define the null expansions of Sλ
and are denoted respectively as θk and θℓ. The relationship between the null expansions

θk , θℓS of a graph S with the corresponding ones at the level set Sλ=F (p) follow from

Proposition 6.2.1.
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Corollary 6.2.5. Let S, k ′ and ℓ′S as in Corollary 6.2.4. The null expansions θk ′ and θℓ′

at p ∈ S and the null expansions θk , θℓ of Sλ=F (p) at p are related by

θk ′ = αθk , (6.10)

θℓ′
S
=
1

α

(
θℓ + |DF |2θk + 4sℓ(gradF )− 4Kk(gradF, gradF )− 2∆F + 2Qk |DF |2

)
,

(6.11)

where ∆F is the Laplacian of Sλ with the induced metric.

Another useful identity that will play a role later is the evolution equation for the

connection of the normal bundle. The proof of the following result is given in Appendix

B, formula (B.39):

Proposition 6.2.6. With the same notation as above, let X ∈ X(Ω) be a vector field

satisfying [k,X] = 0 and tangent to S. Then

k(sℓ(X)) = −X(Qk)− sℓ(X)θk + (divSrKk)(X)−DXθk − Eing(k,X), (6.12)

where Eing is the Einstein tensor of (M,g).

6.3 Null asymptotic flatness of ΩΩΩ and asymptotic be-

haviour

The previous section involved general properties of Ω of local nature and valid in any

spacetime dimension. We now impose global conditions and restrict to dimension four.

First of all we assume that Ω admits a global cross section S0 (i.e. a smooth embedded

spacelike surface intersected precisely once by every inextendible curve along the null

generators) of spherical topology S0. We also assume that for one (and hence any)

choice of affine null generator k (i.e. satisfying ∇kk = 0) the corresponding integral
curve starting at p ∈ S0 has maximal domain (−∞, λ+(p)), i.e. the null generators
are past complete. After possibly removing portions of Ω lying to the future of S0 we

can assume that Ω is foliated by the level sets {Sλ} of the function λ ∈ F(Ω) defined
by k(λ) = −1, λ|S0 = 0 and that all these level sets are diffeomorphic to S0 (so that
in particular Ω = S0 × (ρ,∞)). The function λ is called level set function of k . If
we change the selection of null affine generator k , the set of points to be removed

is different, but since we are only interested in the past of S0 this is irrelevant, and

we keep the same name Ω. A null hypersurface Ω satisfying these properties is called

extending to past null infinity, and as mentioned in Section 6.1, it generalizes the

concept of spacetime convex null hypersurface defined in Chapter 4 for hypersurfaces

in the Minkowski spacetime that also extend to past null infinity.
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In order to define asymptotic flatness along Ω we need to impose decay of various

objects at infinity. First note the existence of covariant tensor fields T on Ω completely

orthogonal to k (i.e. satisfying T (k, · · · ) = T (. . . , k) = 0). We call such tensors

transversal. An immediate example is the first fundamental form γ. The collection of

second fundamental forms Kk
Sλ
defines a transversal tensor denoted simply by Kk (this

is compatible with the notation already used in the previous section). A tensor field T

(not necessarily transversal) is called Lie constant if and only if £kT = 0.

A local basis {XA} for any cross section of X(Ω) extended by [k,XA] = 0 implies

(£kT )(XA1, · · · , XAq) = k(T (XA1, · · · , XAq)).

The following result shows the relation of transversal and Lie constant tensors with

collections of tensors just defined on the leaves of the foliation {Sλ} along Ω:

Lemma 6.3.1. A transversal tensor T on Ω is in one-to-one correspondence with a

smooth collection of covariant tensor fields {T (λ)} with each T (λ) defined on each
level set Sλ. If in addition T is Lie constant, then T is in one-to-one correspondence

with covariant tensors T̂ on a fixed leaf Sλ. Moreover, T (λ) are all diffeomorphically

related to each other and to T̂ .

Proof. Assume first that T (XA1, · · · , XAq) defined on Ω is transversal. Then for each
λ, and {Xλ

A1
, · · · , Xλ

Aq
} tangent to X(Sλ), we define the family {T (λ)} as

T (λ)(Xλ
A1
, · · · , Xλ

Aq
) := T |Sλ(Xλ

A1
, · · · , Xλ

Aq
) = T (Xλ

A1
, · · · , Xλ

Aq
).

Conversely, given a family {T (λ)}, with T (λ) defined on Sλ, we define the following
tensor T on Ω. For any p ∈ Ω, there is a unique λ⋆ so that p ∈ Sλ⋆. Each XAi ∈ TpΩ
can be decomposed as

XAi = X
λ⋆

Ai
+ αk, (6.13)

where Xλ⋆

Ai
∈ X(Sλ⋆). With the definition

Tp(XA1, · · · , XAq) := Tp(λ⋆)(Xλ⋆

A1
, · · · , Xλ⋆

Aq
),

T is transversal, and the first statement of the Lemma is proved. If in addition a

transversal T is also Lie constant, we have that

0 = (£kT )(XA1, · · · , XAq) = k(T (XA1, · · · , XAq)), (6.14)

provided XAi satisfy [k,XAi ] = 0. Thus T (XA1, · · · , XAq) is constant along k . For any
a priori chosen λ̂, let us define T̂ := T (λ̂). This defines T̂ on Sλ̂ uniquely.

Conversely given a fixed λ̂ and a covariant tensor T̂ on Sλ̂, we can build a tensor T

on Ω transverse and Lie constant. Given any p ∈ Ω, let π̂(p) be the unique point of Sλ̂

118



6. The Hawking energy along null AF hypersurfaces

lying in the geodesic that contains p and is tangent to k . Let XAi be vectors in TpΩ

and extend them as usual by [XAi , k ] = 0 along k . At π̂(p) we decompose them as

before, i.e.

XAi = X
λ̂
Ai
+ αk,

with X λ̂
Ai
tangent to Sλ̂.The tensor field

Tp(XA1, · · · , XAq) := T̂π̂(p)(X λ̂
A1
, · · · , X λ̂

Aq
) (6.15)

is transverse and Lie constant, as claimed. Observe that given an initial transversal

tensor T on Ω (not necessarily Lie constant), we can obtain an associated T̂ , and using

(6.15) we define another tensor that in general is not the same as the initial T . If T is

Lie constant, both tensors coincide due to property (6.14).

We conclude by showing that in the Lie constant case the tensors T (λ) are diffeo-

morphic to each other. Indeed take two different values λ1, λ2, and two different points

p1 ∈ Sλ1 and p2 ∈ Sλ2 so that they lie in the same geodesic tangent to kp1. From
(6.15),

Tp1(λ1)(X
λ1
A1
, · · · , Xλ1

Aq
) = Tp1(X

λ1
A1
, · · · , Xλ1

Aq
) = T̂π̂(p1)(X

λ̂
A1
, · · · , X λ̂

Aq
)

= T̂π̂(p2)=π̂(p1)(X
λ̂
A1
, · · · , X λ̂

Aq
) = Tp2(λ2)(X

λ2
A1
, · · · , Xλ2

Aq
),

and it is precisely in this sense that we say that T (λ1) and T (λ2) are diffeomorphically

related to each other.

Remark 6.3.2. Using the above lemma, with the collections Kℓ
Sλ
and sℓ(Sλ) we can

define the corresponding transversal tensors Kℓ and sℓ.

Definition 6.3.3. A transversal tensor field T is positive definite if and only if the

corresponding collection of tensors T (λ) is positive definite for all λ.

In the proof of Lemma 6.3.1 we have used vectors XA tangent to Ω (and not necessarily

tangent to the leaves Sλ of the foliation). For the sake of simplicity and in order to

avoid using the decomposition (6.13), we consider a local basis {XA} on S0 extended
uniquely to X(Ω) by [k,XA] = 0. With this extension {XA} defines a basis of each level
set Sλ. From now on {XA} will denote one basis constructed this way.
We shall say that a transversal tensor field T on Ω is T = O(1) if and only if TA1···Aq :=
T (XA1, · · · , XAq) is uniformly bounded. We write T = On(λ−q), q ∈ R, n ∈ N if and
only if

λqT = O(1), λq+1£kT = O(1), · · · , λq+n£k · · ·£k︸ ︷︷ ︸
n

T = O(1).
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6.3. Null asymptotic flatness of ΩΩΩ and asymptotic behaviour

We also write T = o(λ−q) if and only if limλ→∞ λ
qT (λ)A1···Aq = 0 and T = on(λ

−q) if
and only if λi+q(£k)

iT = o(1) for all i = 0, 1, · · · , n. Given a transversal tensor (field)
T the tensor £XAT is also transversal. We write T = o

X
n (λ

−q) if and only if

λq £XA1
· · ·£XAi︸ ︷︷ ︸
i

T = o(1) ∀i = 0, 1, · · · , n

It is clear that all these definitions are independent of the choice of {XA}.
Definition 6.3.4. Let (M,g) be a four-dimensional spacetime. A null hypersurface Ω

is past asymptotically flat if it extends to past null infinity and there exists a choice

of cross section S0 and null affine generator k with corresponding level set function λ

with the following properties:

(i) There exist two symmetric 2-covariant transversal and Lie constant tensor fields

q̂ and h such that γ̃ := γ − λ2q̂ − λh is γ̃ = o1(λ) ∩ oX2 (λ).

(ii) There exists a transversal, Lie constant one-form s
(1)
ℓ such that s̃ℓ := sℓ −

s
(1)
ℓ
λ
is

s̃ℓ = o1(λ
−1).

(iii) There exist Lie constant functions θ
(0)
ℓ and θ

(1)
ℓ such that θ̃ℓ := θℓ −

θ
(0)
ℓ

λ
− θ

(1)
ℓ

λ2
is

θ̃ℓ = o(λ
−2).

(iv) The scalar Riemg(XA, XB, XC, XD) along Ω is such that

lim
λ→∞

1

λ2
Riemg(XA, XB, XC, XD) <∞,

and its double trace satisfies 2Eing(k, ℓ)− Scalg − 1
2
Riemg(ℓ, k, ℓ, k) = o(λ−2).

We remark that several parts of this definition involve foliation dependent quantities.

However, the definition is intrinsic to the null hypersurface Ω because the definition

requires the existence of a foliation with the desired properties.

This definition of asymptotic flatness is weaker in many aspects than most existing

definitions. Compared, for instance, to the definition used in [23] we demand γ̃ =

o1(λ)∩oX2 (λ) instead of the stronger condition γ̃ = O(1)∩OX2 (1) and £k γ̃ = O1(λ
−2)

assumed there. We also emphasize that this definition is different to the global definition

of asymptotic flatness discussed in Chapter 2 in connection with the heuristics of the

Penrose inequality. The present definition only involves properties along Ω and makes

no assumptions on the future evolution of the spacetime where Ω is embedded. This

is in accordance with the spirit of the Penrose inequality where global assumptions are

only allowed at one instant of “time”.

Sometimes it will be convenient to supplement this definition with a stronger notion

where additional decay for some components of the Einstein tensor and for the remainder
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6. The Hawking energy along null AF hypersurfaces

tensor γ̃ is assumed. Specifically, we say that an asymptotically flat null hypersurface

Ω satisfies the energy flux decay condition if

Eing(k,XA)|Ω = o(λ−2), £k γ̃ = o
X
1 (1).

The name is motivated by the analogous role of density flux that the Einstein tensor

component Eing(k,XA) plays in the constraint equations for null hypersurfaces (see e.g.

[71]).

Let us consider a past asymptotically flat null hypersurface Ω with a choice of k and

level set function λ. The following proposition determines the asymptotic expansion of

Kk and provides an explicit expression for θ
(0)
ℓ .

Proposition 6.3.5. Let Ω be a past asymptotically flat null hypersurface with a choice

of affinely parametrized null generator k and corresponding level set function λ. Let

γ(λ)AB be the inverse of γ(λ). Then

γ(λ)AB =
1

λ2
q̂AB − 1

λ3
ĥAB + o(λ−3), (6.16)

Kk
AB = −q̂ABλ−

1

2
hAB + o(1), (6.17)

θℓ =
2Kq̂
λ
+
θ
(1)
ℓ

λ2
+ o(λ−2). (6.18)

q̂AB is the inverse of q̂AB, indices in hatted tensors are raised and lowered with these

metrics and Kq̂ is the Gauss curvature of q̂AB.

Proof. Expression (6.16) is an immediate consequence of item (i) in the definition of

asymptotic flatness, namely

γAB = q̂ABλ
2 + hABλ+ o1(λ) ∩ oX2 (λ). (6.19)

For expression (6.17) we use the evolution equation (B.12) in Appendix B. Inserting

(6.19) yields (6.17) immediately. Concerning the expansion for θℓ we invoke the Gauss

identity for (Sλ, γ(λ)) ((A.27) in Appendix A, with ϕ = 2), which says

RiemgABCD = Riem
γ(λ)
ABCD −

1

2
(Kk

BCK
ℓ
AD +K

k
ADK

ℓ
BC) +

1

2
(Kk

ACK
ℓ
BD +K

k
BDK

ℓ
AC). (6.20)

The decomposition (6.19) implies that Riem
γ(λ)
ABCD = λ2Riemq̂ABCD + O(λ) and given

that Kk
AB = −q̂ABλ+O(1), it follows from item (iv) in Definition 6.3.4 that Kℓ

AB is of

the form

Kℓ
AB = λK

ℓ
(0)AB + o(λ), (6.21)
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with Kℓ
(0) a transverse Lie constant symmetric tensor on Ω. The trace of the Gauss

identity (equation (A.30) in Appendix A, with ϕ = 2) is

2Eing(k, ℓ)− Scalg − 1
2
Riemg(ℓ, k, ℓ, k) = 2Kγ(λ) + θℓθk −Kk

ABK
ℓAB.

Now, Kγ(λ) = 1
λ2
Kq̂ + o(λ−2) and the decompositions (6.16)-(6.17), (6.21) and the

trace condition in item (iv) of Definition 6.3.4 imply

0 =
1

λ2

(
2Kq̂ − θ(0)ℓ

)
+ o(λ−2),

which, together with item (iii) in Definition 6.3.4 proves (6.18).

Remark 6.3.6. Note that the expansion for Kk only depends on item (i) in the definition

of asymptotic flatness. The expression for θ
(0)
ℓ depends on items (i), (iii) and (iv).

Remark 6.3.7. We can raise the index to the tensor Kk(λ) with the contravariant metric

γAB. Combining the asymptotic expansions (6.16) and (6.17) yields

Kk(λ)AB = −
1

λ
δAB +

1

2
ĥAB
1

λ2
+ o(λ−2), (6.22)

and taking trace

θk = −
2

λ
+
1

2
(trq̂ĥ)

1

λ2
+ o(λ−2) := −2

λ
+ θ

(1)
k

1

λ2
+ o(λ−2). (6.23)

It will be convenient to endow each level set {Sλ} with a covariant derivative inde-
pendent of λ. The natural choice is q̂ which is Lie constant, a metric on each Sλ and

gives the leading term of the asymptotic expansion of γ(λ). Denote by D̂ the covari-

ant derivative of q̂. In the following lemma we find the asymptotic expansion of the

difference tensor

DXY − D̂XY = Z(X, Y )
and apply it to relate the Laplacians on functions with respect to the metrics γ(λ) and

q̂. This will be needed later when relating two different foliations on Ω.

Lemma 6.3.8. The difference tensor Z admits the decomposition

ZCAB =
1

2
(D̂Aĥ

C
B + D̂Bĥ

C
A − D̂ChAB)

1

λ
+O(λ−2). (6.24)

Moreover, if F is a Lie constant function on Ω then

△γF = △q̂F
1

λ2
+
(
−ĥABD̂AD̂BF − (D̂AĥCA)F,C + (D̂Cθ

(1)
k )F,C

) 1
λ3
+ o(λ−3).

(6.25)
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Proof. We use the general formula for the difference tensor of Levi-Civita covariant

derivatives, see e.g. [106],

ZCAB =
1

2
γCD(D̂AγDB + D̂BγDA − D̂DγAB).

Given that D̂AγDB = (D̂AhDB)λ+O(1) and γ
CD = 1

λ2
q̂CD+O(λ−3), expression (6.24)

follows. For the Laplacian we use

△γF =γ
ABDADBF = γ

AB
(
D̂AD̂BF − ZCABD̂CF

)

=

(
1

λ2
q̂AB − 1

λ3
ĥAB + o(λ−3)

)
×

(
D̂AD̂BF −

1

2
(D̂Aĥ

C
B + D̂Bĥ

C
A − D̂ChAB)F,C

1

λ
+O(λ−2)

)

=
1

λ2
△q̂F +

(
−ĥABD̂AD̂BF − (D̂AĥCA)F,C +

1

2
D̂C(q̂ABhAB)F,C

)
1

λ3
+ o(λ−3),

which is (6.25) after recalling that trq̂ĥ = 2θ
(1)
k .

We conclude this section by showing that the leading term s
(1)
ℓ of sℓ is fully determined

in terms of the rest of objects whenever the energy flux decay condition is assumed.

Proposition 6.3.9. Let Ω be a past asymptotically flat null hypersurface with a choice

of affinely parametrized null generator k and corresponding level set function λ. Assume

that the energy flux decay condition holds. Then

s
(1)
ℓ A = D̂Aθ

(1)
k −

1

2
D̂Bĥ

B
A.

Proof. From item (ii) in Definition 6.3.4 and the decomposition (6.23) we have

£ksA =
s
(1)
ℓ A

λ2
+o(λ−2), θksℓA = −

2s
(1)
ℓ A

λ2
+o(λ−2) and D̂Aθk =

D̂Aθ
(1)
k

λ2
+o(λ−2).

Concerning the divergence of KkA
B in the metric γ(λ) we use that the leading term

in (6.22) is covariantly constant and then replace the D−covariant derivative by the
D̂-derivative and use ZAAB = O(λ

−1) to obtain

DBK
kB
C =

1

2λ2
DBĥ

B
C + o(λ

−2) =
1

2λ2
D̂Bĥ

B
C + o(λ

−2).

Thus, identity (6.12) (with Qk = 0) becomes

1

λ2

(
s
(1)
ℓ A +

1

2
D̂Bĥ

B
A − D̂Aθ(1)k

)
+ o(λ−2) = 0,

and the result follows.
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6.4. Background foliation approaching large spheres

6.4 Background foliation approaching large spheres

As discussed in Section 6.1, the Hawking energy has the interesting and well-known

property of approaching the Bondi energy when the surfaces approach large spheres

in a suitable sense. Our general limiting expressions for the Hawking energy will of

course have to recover this fact. To that aim, it is useful to restrict the choice of

affinely parametrized null generator k and corresponding level set function λ so that

the geometry of the level sets Sλ approaches, after rescaling, the standard metric of

unit radius on the sphere, denoted by q̊.

Definition 6.4.1. Let Ω be null and past asymptotically flat with a choice of affine

null generator k and level set function λ. The foliation {Sλ} is said to approach large
spheres if and only if the leading term q̂ in the expansion (6.19) of γ is the standard

metric of a unit two-sphere.

Our definition of approaching large spheres is equivalent to demanding that the

rescaled metric 1
λ2
γ(λ), has a limit q̊ when λ → ∞. In [93] the definition of ap-

proaching large spheres is defined more generally for exhaustions {Ss} of Ω with all
elements diffeomorphic to each other by demanding that the rescaled metric 4π|Ss |γs has
a limit when s →∞ and defines a metric q̊ of constant unit curvature. It is clear that
both definitions agree for the affine foliations {Sλ} that we are using in this chapter.
Our aim is to consider very general exhaustions {Sλ′} on Ω and obtain the limit of the
Hawking energy along them by referring all objects to an affine background foliation

approaching large spheres. It is important to note that, since all Riemannian metrics

on a manifold ≃ S2 are conformal to the standard metric q̊, there always exists a (non-
unique) choice of affine null generator k in an asymptotically flat Ω with corresponding

background foliation {Sλ} approaching large spheres (cf. Remark 6.5.2 below). Tensors
raised and lowered with the metric q̊AB and its inverse q̊

AB will have a circle on top, so

that for instance (6.26) reads

γ(λ)AB =
1

λ2
q̊AB − 1

λ3
h̊AB + o(λ−3). (6.26)

Note also that since q̊ has constant unit curvature, the null expansion θℓ has asymptotic

behaviour

θℓ =
2

λ
+
θ
(1)
ℓ

λ2
+ o(λ−2).

We will consider three types of foliations {Sλ′} and then combine them to obtain the
general case treated in Theorem 6.6.2. Given a null basis {k ′, ℓ′} orthogonal to a
section S in Ω and satisfying 〈k ′, ℓ′〉 = −2, the mean curvature ~H of S decomposes as
~H = −1

2
(θk ′ℓ

′ + θℓ′k
′) and the Hawking energy is

mH(S) =

√
|S|
16π

(
1 +

1

16π

∫

S

θk ′θℓ′ηS

)
, (6.27)
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so our aim will be to compute the limit of the areas |Sλ′| and of θk ′θℓ′ηSλ′ of the new
foliation {Sλ′} in terms of the background foliation geometry. The following section
deals with the case when {Sλ′} is any affine foliation (not necessarily approaching large
spheres).

6.5 Limit of the Hawking energy for affine foliations

In this section we assume that Ω is null and past asymptotically flat and endowed with a

foliation {Sλ} associated to an affinely parametrized null generator k and approaching
large spheres. By definition, an affine foliation in Ω is a foliation {Sλ′} by cross sections
defined by the function λ′ ∈ F(Ω) such that the (unique) null generator k ′ satisfying
k ′(λ′) = −1 is affinely parametrized. Thus, there exists a positive function φ ∈ F(Ω),
Lie constant along k such that k ′ = φk . Consequently, the level set functions λ and λ′

are necessarily related by λ = τ + φλ′ where τ ∈ F(Ω) is a Lie constant function. We
first consider the case when the two foliations {Sλ} and {Sλ′} have the same starting
surface, i.e. that Sλ′=0 = Sλ=0, which fixes τ = 0. The leaves of the new foliation are

defined as (see Figure 6.2)

Sλ′ = {p ∈ Ω : λ(p) = φ(p)λ′}.

Thus, each of the surfaces {Sλ′} can be described by a graph function

λ|Sλ′ = Fλ′ = φ|Sλ′λ′,

where here Fλ′ is a function on Sλ′, not its extension to Ω satisfying k(Fλ′) = 0.

Our strategy is to use the general expressions in Section 6.2 for the geometry of a

graph λ = F in a background foliation, insert the resulting expressions in (6.27) and

take the limit when λ′ →∞. We start with the following Proposition.

Proposition 6.5.1. Let Ω be a past asymptotically flat null hypersurface endowed with

an affinely parametrized background foliation {Sλ} with generator k and approaching
large spheres. Let φ > 0 be a Lie constant function and define the affine foliation {Sλ′}
as Sλ′ = {p ∈ Ω : λ(p) = φ(p)λ′}, where the graph functions read

λ|Sλ′ = Fλ′ := φ|Sλ′λ′.

Let k ′ = φk and ℓ′ be the null normal orthogonal to {Sλ′} satisfying 〈k ′, ℓ′〉 = −2. Then
the induced metric γ(λ′), volume form ηSλ′ , null expansions θk ′, θℓ′ and the connection
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S0

Sλ

Sλ′

M k ′ = φk

Figure 6.2: Representation of two different flows {Sλ} and {Sλ′} associated to different
parameters λ and λ′. Both flows have the same starting surface S0, and their velocities
are related by a Lie constant function φ as k ′ = φk .

of the normal bundle sℓ′ can be expressed in terms of the background geometry as

γ ′AB := γ
′(X ′A, X

′
B) = φ

2q̊ABλ
′2 + φhABλ

′ + o(λ′), (6.28)

ηSλ′ =
(
φ2λ′2 + φθ(1)k λ′ + o(λ′)

)
ηq̊, (6.29)

θk ′ =−
2

λ′
+
θ
(1)
k

φ

1

λ′2
+ o(λ′−2), (6.30)

θℓ′ =−
2

φ2
(△q̊ logφ− 1)

1

λ′
+

(
θ
(1)
ℓ

φ3
− 4h̊

ABφ,Aφ,B
φ5

+
θ
(1)
k |∇̊φ|2q̊
φ5

+
4q̊ABφ,A(sB)1

φ4

+
2h̊AB∇̊A∇̊Bφ

φ4
+
2∇̊Ah̊ACφ,C

φ4
− 2∇̊

Cθ
(1)
k φ,C
φ4

)
1

λ′2
+ o(λ′−2), (6.31)

sℓ′A = =

(
s
(1)
ℓ A

φ
− φ,Lh̊

L
A

2φ2

)
1

λ′
+ o(λ′−1), (6.32)

where X ′A := XA −XA(Fλ′)k .

Proof. As already mentioned k ′ is the generator of the foliation {Sλ′}. For any point
p ∈ Sλ′, the level set passing through p has λ = Fλ′(p) = φ(p)λ′. Thus (6.1) and the
background expansion (6.19) with q̂ → q̊ gives

γ ′AB|p = γAB|Sλ=φ(p)λ′ = q̊ABλ2 + hABλ+ γ̃|λ=φλ′,
which is (6.28). (6.29) follows by taking determinants and using the standard identity

det(M + sB) = (detM)(1 + s tr (M−1B) +O(s2)),

126



6. The Hawking energy along null AF hypersurfaces

valid for any invertible matrix M. For θk ′ we use the fact that θk is a property of Ω and

not of the surface embedded in Ω passing through that point, cf. Corollary 6.2.5. Thus

θk ′ = φθk |λ=φλ′ = −
2

λ′
+
θ
(1)
k

φ

1

λ′2
+ o(λ′−2),

as claimed in (6.30). To compute θℓ′ we use expression (6.11) with Qk = 0, α = φ and

graph function F = Fλ′ = φλ
′. As before, the right-hand side has to be evaluated at

λ = φλ′. We work out each term separately:

θℓ =
2

λ
+
θ
(1)
ℓ

λ2
+ o(λ−2) =

2

φ

1

λ′
+
θ
(1)
ℓ

φ2
1

λ′2
+ o(λ′−2),

θk |DFλ′ |2 = θkγAB∇AFλ′∇BFλ′

=

(
−2
φ

1

λ′
+
θ
(1)
k

φ2
1

λ′2
+ o(λ′−2)

)(
q̊AB

φ2
1

λ′2
− h̊

AB

φ3
1

λ′3
+O(λ′−4)

)
φ,Aφ,Bλ

′2

= −2|∇̊φ|
2
q̊

φ3
1

λ′
+

(
2h̊ABφ,Aφ,B

φ4
+
θ
(1)
k |∇̊φ|2q̊
φ4

)
1

λ′2
+ o(λ′−2).

For the Laplacian of Fλ′ we use (6.25) which gives, using ∇Fλ′ = (∇φ)λ′, Hessq̊Fλ′ =
(Hessq̊φ)λ

′ and △q̊Fλ′ = (△q̊φ)λ
′,

△γFλ′ =
△q̊φ

φ2
1

λ′
+

(
− h̊

AB∇̊A∇̊Bφ
φ3

− ∇̊Ah̊
CAφ,C
φ3

+
(∇̊Cθ(1)k )φ,C

φ3

)
1

λ′2
+ o(λ′−2).

For the term sℓ(gradFλ′)

sℓ(gradFλ′) = γ
ABsℓA∇BFλ′ =

(
q̊AB

φ2
1

λ′2
+ o(λ′−2)

)(
s
(1)
ℓ A

φ

1

λ′
+ o(λ′−1)

)
φ,Bλ

′

=
q̊ABs

(1)
ℓ Aφ,B
φ3

1

λ′2
+ o(λ′−2),

and finally Kk(gradFλ′, gradFλ′) is, inserting (6.16) and (6.17),

Kk(gradFλ′, gradFλ′) =γ
ABγCDKk

BDφ,Aφ,Bλ
′2 =

φ,Aφ,B
φ4λ′2

(
q̊AB − 1

φλ′
h̊AB + o(λ′−1)

)
×

(
q̊CD − 1

φλ′
h̊CD + o(λ′−1)

)(
−q̊BDφλ′ −

1

2
hBD + o(1)

)

=
−|∇̊φ|2q̊
φ3

1

λ′
+
3h̊LAφ,Aφ,L
2φ4

1

λ′2
+ o(λ′−2).

Putting things together leads to (6.31) after using
△q̊φ
φ
− |∇̊φ|2q̊

φ2
= △q̊ logφ.
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Finally, if we substitute in expression (6.7) the asymptotic expansion of item (ii) in

Definition 6.3.4, and the expansion of Kk of (6.22), we have

sℓ′A = −
φ,A
φ
+
s
(1)
ℓ A

φ

1

λ′
+
φ,A
φ
− φ,Lh̊

L
A

2φ2
1

λ′
+ o(λ′−1) =

(
s
(1)
ℓ A

φ
− φ,Lh̊

L
A

2φ2

)
1

λ′
+ o(λ′−1),

where the term in 1
λ′ is s

(1)
ℓ′ A.

Remark 6.5.2. The foliation {Sλ′} has limit metric limλ′→∞ γ′

λ′2 = φ
2q̊ := q̂. Using the

formula for the scalar curvature of a conformal metric it follows

Kq̂ =
1−△q̊ logφ

φ2
, (6.33)

so that the expansion of θℓ′ is θℓ′ =
2Kq̂
λ′ + o(λ

′−1) in agreement with Proposition
6.3.5. Note that the transformation law q̂ → φ2q̂′ for the leading term q̂ in the metric

γ(λ) under change of foliation k ′ = φk holds irrespectively of whether the background
foliation approaches large spheres or not. Since as mentioned above, any metric on

S2 is conformal to q̊, it follows that any asymptotically flat Ω admits a background

foliation approaching large spheres.

We can now evaluate the limit of the Hawking energy for the foliation {Sλ′} (we write
φ = 1

Ψ
for later convenience):

Theorem 6.5.3. Let Ω be a past asymptotically flat null hypersurface endowed with an

affinely parametrized background foliation {Sλ} with generator k and approaching large
spheres. Let Ψ > 0 be a Lie constant function and define the affine foliation {Sλ′} as
Sλ′ = {p ∈ Ω : λ(p) = 1

Ψ(p)
λ′}, where the graph functions read

λ|Sλ′ = Fλ′ :=
1

Ψ

∣∣∣
Sλ′
λ′.

The limit of the Hawking energy along the foliation {Sλ′} is, in terms of the background
geometry,

lim
λ′→∞

mH(Sλ′) =
1

8π
√
16π

(√∫

S2

1

Ψ2
ηq̊

)∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊(s(1)ℓ )

)
Ψηq̊.

(6.34)

Proof. Set φ = Ψ−1 so that we can use the expressions in Proposition 6.5.1. We
need to compute θk ′θℓ′ηSλ′ . Denoting by θ

(1)
ℓ′ the coefficient of the term

1
λ′2 in θℓ′ we

immediately find, from (6.29)-(6.31),

θk ′θℓ′ηSλ′ =

(
4(△q̊ logφ− 1) + (−2Kq̂θ(1)k φ− 2θ(1)ℓ′ φ2)

1

λ′
+ o(λ′−1)

)
ηq̊,
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and hence

1 +
1

16π

∫

Sλ′
θk ′θℓ′ηSλ′ = 1 +

1

16π

∫

S2

(
4(△q̊ logφ− 1) + (−2Kq̂θ(1)k φ− 2θ(1)ℓ′ φ2)

1

λ′

+o(λ′−1)
)
ηq̊ =

1

16πλ′

∫

S2

(−2Kq̂θ(1)k φ− 2θ(1)ℓ′ φ2)︸ ︷︷ ︸
I

ηq̊ + o(λ
′−1).

Concerning the area term

|Sλ′| =
∫

Sλ′
ηSλ′ =

(∫

S2

φ2ηq̊

)
λ′2 +O(λ′) =⇒

√
|Sλ′| = λ′

√∫

S2

φ2ηq̊ +O(1),

so that the limit of the Hawking energy is

lim
λ′→∞

mH(Sλ′) =
1

16π
√
16π

(√∫

S2

φ2ηq̊

)∫

S2

Iηq̊. (6.35)

We now compute I. Using the explicit form of Kq̂ and θ(1)ℓ′ it follows

I =2θ
(1)
k △q̊φ

φ2
−
4θ
(1)
k |∇̊φ|2q̊
φ3

− 2
φ
(θ
(1)
k + θ

(1)
ℓ ) +

8h̊ABφ,Aφ,B
φ3

− 8q̊
ABφ,As

(1)
ℓ B

φ2

− 4h̊
AB∇̊A∇̊Bφ
φ2

− 4∇̊Ah̊
ABφ,B
φ2

+
4∇̊Bθ(1)k φ,B

φ2

=∇̊A
(
− 4
φ2
h̊ABφ,B +

2θ
(1)
k ∇̊Aφ
φ2

+
8s
(1)
ℓ

A

φ

)
+
2∇̊Aθ(1)k φ,A

φ2
− 2
φ
(θ
(1)
k + θ

(1)
ℓ )

− 8
φ
divq̊(s

(1)
ℓ ) =

=∇̊A
(
− 4
φ2
h̊ABφ,B +

2θ
(1)
k ∇̊Aφ
φ2

+
8s
(1)
ℓ

A

φ
− 2
φ
∇̊Aθ(1)k

)

+
2

φ
△q̊θ

(1)
k −

2

φ
(θ
(1)
k + θ

(1)
ℓ )−

8

φ
divq̊(s

(1)
ℓ ),

and (6.35) becomes (6.34) after using the Gauss identity and φ = Ψ−1.

Remark 6.5.4. It is interesting that all terms involving derivatives of φ (or Ψ) combine

themselves into a divergence and drop out after integration. The behaviour of the limit

of the Hawking energy under change of affine foliation is hence much simpler than one

might have expected a priori.

Given a past asymptotically flat null hypersurface, there are many possible choices

of affine background foliations approaching large spheres. Any two such foliations are

related by λ = φλ′ with φ satisfying

△q̊ logφ+ φ
2 = 1, (6.36)
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so that the Gauss curvature (6.33) of q̂ is also one. In this case the limit of the Hawking

energy of the foliation {Sλ′} can be computed in two different ways, namely referring
{Sλ′} to the background foliation {Sλ} and using Theorem 6.5.3 or considering {Sλ′}
itself as a background foliation (so that the result would be (6.34) with Ψ = 1 and θ

(1)
k ,

θ
(1)
ℓ , s

(1)
ℓ all referred to the foliation {Sλ′}). It is clear that both results must agree.

This requires a kind of covariance property of the integral in (6.34). Remarkably, this

covariance occurs already at the level of the integrand, as we show next. All geometric

objects referred to the affine foliation {Sλ′} will carry a prime.
Theorem 6.5.5. Let Ω be a past asymptotically flat null hypersurface endowed with an

affinely parametrized background foliation {Sλ} with generator k and approaching large
spheres. Let φ > 0 be a Lie constant function and define the affine foliation {Sλ′} as
Sλ′ = {p ∈ Ω : λ(p) = φ(p)λ′}, where the graph functions read

λ|Sλ′ = Fλ′ := φ|Sλ′λ′,
with φ satisfying (6.36). Then
(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊ s(1)ℓ

) 1
φ
ηq̊ =

(
△q̊′θ

(1)
k ′ − (θ

(1)
k ′ + θ

(1)
ℓ′ )− 4divq̊′ s

(1)
ℓ′

)
ηq̊′.

As a consequence we have the necessary invariance of the limit of the Hawking energy

lim
λ′→∞

mH(Sλ′) =
−1
16π

∫

S2

(
θ
(1)
k ′ + θ

(1)
ℓ′

)
ηq̊′

=
1

16π

∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊ s(1)ℓ

) 1
φ
ηq̊.

Proof. The general expressions (6.28)-(6.31) give the explicit form of the geometric

objects of {Sλ′} in terms of the background foliation {Sλ}, namely

q̊′AB = φ
2q̊AB, θ

(1)
k ′ =

θ
(1)
k

φ
, θ

(1)
ℓ′ =

θ
(1)
ℓ

φ3
− 4h̊

ABφ,Aφ,B
φ5

+
θ
(1)
k |∇̊φ|2q̊
φ5

+
4q̊ABφ,A(sB)1

φ4

+
2h̊AB∇̊A∇̊Bφ

φ4
+
2∇̊Ah̊ACφ,C

φ4
− 2∇̊

Cθ
(1)
k φ,C
φ4

, s
(1)
ℓ′ A =

s
(1)
ℓ A

φ
− φ,Lh̊

L
A

2φ2
.

The Laplacian in two-dimensions is conformally covariant so that △q̊′θ
(1)
k ′ =

1
φ2
△q̊θ

(1)
k ′ ,

and hence

△q̊′θ
(1)
k ′ =

1

φ2
△q̊θ

(1)
k ′ =

△q̊θ
(1)
k

φ3
− θ

(1)
k △q̊φ

φ4
− 2∇̊

Aθ
(1)
k φ,C
φ4

+
2θ
(1)
k |∇̊φ|2q̊
φ5

.

The divergence of a one-form in two-dimensions is also conformally covariant divq̊′s
(1)
ℓ′ =

1
φ2
divq̊s

(1)
ℓ′ and

divq̊′s
(1)
ℓ′ =

∇̊As(1)ℓ A

φ3
− s

(1)
ℓ A∇̊Aφ
φ4

+
1

φ5
φ,Aφ,Lh̊

AL − 1

2φ4
h̊AL∇̊A∇̊Lφ−

1

2φ4
φL∇̊Ah̊LA.
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Putting things together many terms cancel out and we find

△q̊′θ
(1)
k ′ − (θ

(1)
k ′ + θ

(1)
ℓ′ )− 4divq̊′s

(1)
ℓ′ =

△q̊θ
(1)
k

φ3
− θ

(1)
k

φ3

(
△q̊φ

φ
−
|∇̊φ|2q̊
φ2

)

− θ
(1)
k

φ
− θ

(1)
ℓ

φ3
− 4
φ2
divq̊s

(1)
ℓ .

Using the large sphere equation (6.36)
△q̊φ
φ
− |∇̊φ|2q̊

φ2
= △q̊ logφ = 1− φ2 we find

△q̊′θ
(1)
k ′ − (θ

(1)
k ′ + θ

(1)
ℓ′ )− 4divq̊′s

(1)
ℓ′ =

(
△sθ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊s(1)ℓ

) 1
φ3
.

Since the volume forms are related by ηq̊′ = φ
2ηq̊, the result follows.

We have considered so far the limit of the Hawking energy for affine foliations with

fixed initial surface S0. The second step is to consider affine foliations with a different

initial surface. Let us fix an affine background foliation {Sλ} approaching large spheres
and, as usual, let k be the associated null generator k satisfying k(λ) = −1. Any affine
foliation with the same null generator is defined by the equation λ′ = const, where λ′

is any solution of k(λ′) = −1. Hence k(λ−λ′) = 0 and the function τ := λ−λ′ is Lie
constant. This function can be interpreted as the graph function of the initial surface

Sλ′=0 in the original foliation {Sλ′} (see Figure 6.3). If {Sλ′} starts at a larger initial
value λ′0 > 0, the graph function of Sλ′0 is given by an appropriate constant shift of τ ,
namely τ + λ′0. The following theorem gives the limit of the Hawking energy for the
foliation {Sλ′} and shows that the integrand is also covariant (in fact invariant) for this
change of foliation.

Theorem 6.5.6. Let Ω be a past asymptotically flat null hypersurface endowed with

an affinely parametrized background foliation {Sλ} with generator k and approaching
large spheres. Let τ be a Lie constant function and define the affine foliation {Sλ′} as
Sλ′ = {p ∈ Ω : λ(p) = τ(p) + λ′}, where the graph functions read

λ|Sλ′ = Fλ′ := τ |Sλ′ + λ′.

Then we have q̊′ = q̊,

θk ′ =
−2
λ′
+
θ
(1)
k + 2τ

λ′2
+ o(λ′−2), θℓ′ =

2

λ′
+
θ
(1)
ℓ − 2τ − 2△q̊τ

λ′2
+ o(λ′−2),

sℓ′A =
s
(1)
ℓ A + τ,A
λ′

+ o(λ′−1),

and
(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊s(1)ℓ

)
ηq̊ = (△q̊′θ

(1)
k ′ −(θ

(1)
k ′ +θ

(1)
ℓ′ )−4divq̊′s

(1)
ℓ′ )ηq̊′. (6.37)
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Moreover, the limits of the Hawking energies along the two foliations coincide and read

lim
λ→∞

mH(Sλ) = lim
λ′→∞

mH(Sλ′) =
−1
16π

∫

S2

(θ
(1)
k + θ

(1)
ℓ )ηq̊ =

−1
16π

∫

S2

(θ
(1)
k ′ + θ

(1)
ℓ′ )ηq̊′.

Proof. Changing parameters in the first fundamental form

γAB = q̊ABλ
2 + hABλ+ΨAB = q̊AB(τ + λ

′)2 +O(λ′) = q̊ABλ
′2 +O(λ′),

it follows q̊′ = q̊. Similarly, (6.23) gives

θk =
−2
λ
+
θ
(1)
k

λ2
+ o(λ−2) =

−2
τ + λ′

+
θ
(1)
k

(τ + λ′)2
+ o(λ′−2) =

−2
λ′
+
θ
(1)
k + 2τ

λ′2
+ o(λ′−2),

so that θ
(1)
k ′ = θ

(1)
k + 2τ . For θℓ′ we use (6.11) with α = 1, Qk = 0 and F = Fλ′. First

we change parameter in the expansion of the first terms in the right-hand side

θℓ =
2

λ
+
θ
(1)
ℓ

λ2
+ o(λ−2) =

2

τ + λ′
+

θ
(1)
ℓ

(τ + λ′)2
+ o(λ′−2) =

2

λ′
+
θ
(1)
ℓ − 2τ
λ′2

+ o(λ′−2).

Since DFλ′ = Dτ independent of λ and γ
AB = O(λ′−2), cf. (6.16), we have |DFλ′|2γ =

O(λ′−2) and the term θk |DFλ′|2γ = O(λ′−3). The same argument shows that sℓ(gradF ) =
O(λ′−3) and Kk(gradF, gradF ) = O(λ′−3). The Laplacian term can be computed, using
(6.25), as

△γFλ′ =
△q̊τ

λ2
+ o(λ−2) =

△q̊τ

λ′2
+ o(λ′−2).

Inserting also these into expression (6.11) yields

θℓ′ =
2

λ′
+
θ
(1)
ℓ − 2τ
λ′2

− 2△q̊τ

λ′2
+ o(λ′−2) =

2

λ′
+
θ
(1)
ℓ − 2τ − 2△q̊τ

λ′2
+ o(λ′−2),

as claimed. Note in particular that θ
(1)
ℓ′ = θ

(1)
ℓ − 2τ − 2△q̊τ . The expansion of the

connection one-form s
(1)
ℓ′ is obtained from (6.7) with α = 1 and Qk = 0. The term

−Kk(XA, gradFλ′) is −Kk(XA, gradFλ′) = −Kk(XA, grad τ) =
1
λ
τA + O(λ

−2) after
using (6.22). Given the expansion of sℓ in item (ii) of Definition 6.3.4 we conclude

sℓ′A =
s
(1)
ℓ A

λ
+
τ,A
λ
+ o(

1

λ
) =

s
(1)
ℓ A + τ,A

λ
+ o(

1

λ
) =

s
(1)
ℓ A + τ,A
λ′

+ o(
1

λ′
) =⇒

s
(1)
ℓ′ A = s

(1)
ℓ A + τ,A.

Inserting q̊′, θ(1)k ′ , θ
(1)
ℓ′ and s

(1)
ℓ′ in (△q̊′θ

(1)
k ′ − (θ

(1)
k ′ + θ

(1)
ℓ′ ) − 4divq′s

(1)
ℓ′ )ηq̊′ all terms in τ

cancel out and the invariance (6.37) is established. For the last statement we use the

fact that both foliations {Sλ} and {Sλ′} are affine foliations approaching large spheres.
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So, both can be taken as background foliations and in each case we can apply Theorem

6.5.3 with Ψ = 1. Using the Gauss identity, the equalities

lim
λ→∞

mH(Sλ) =
−1
16π

∫

S2

(θ
(1)
k + θ

(1)
ℓ )ηq̊ and lim

λ′→∞
mH(Sλ′) =

−1
16π

∫

S2

(θ
(1)
k ′ + θ

(1)
ℓ′ )ηq̊′

hold. Invoking the invariance (6.37) the remaining equality lim
λ→∞

mH(Sλ) = lim
λ′→∞

mH(Sλ′)

follows.

S0

S′0

Sλ

Sλ′

M

λ = τ + λ′

τ

Figure 6.3: Representation of two different flows {Sλ} and {Sλ′} associated to different
parameters λ and λ′. Both flows have the same velocity, but start on different surfaces
separated by a “distance” τ . More precisely, the starting surface S′0 of {Sλ′} corresponds
to the graph surface λ = τ . Extending τ to a Lie constant function on Ω one has

λ = τ + λ′ everywhere.

6.6 Limit of the Hawking energy for non-affine folia-

tions

Our aim in this chapter is to obtain the limit of the Hawking energy along very general

foliations {Sλ⋆}. In the previous section we dealt with the general case when the
foliations are affine. In order to go into more general settings we need to consider

vector fields k ′ not affinely parametrized. We will however assume that k ′ is nowhere
zero even at the limit at infinity. More specifically, we assume that there exists a function

λ′ ∈ F(Ω) satisfying k ′(λ′) = −1 and an affine background foliation (not necessarily
approaching large spheres) defined as the level sets of a function λ ∈ F(Ω) such that
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ξ := λ − λ′ decays at infinity in an appropriate way. In other words, the foliation
{Sλ′} is assumed to approach at infinity an affine foliation {Sλ} at an appropriate rate.
Conversely, given an affine background foliation and a function ξ ∈ F(Ω) satisfying
ξ = o1(1) we can define a function λ

′ := λ − ξ ∈ F(Ω). The level sets of this
function are smooth surfaces at least for points at large enough λ. This is because

dλ′(k) = k(λ − ξ) = −1 − k(ξ) 6= 0 given that k(ξ) decays at infinity. Thus, for λ
bigger than some (possible large) value ρ1, the level sets λ

′ = const define a foliation
{Sλ′}. Each surface on this foliation is transverse to k and hence spacelike. The null
generator k ′ satisfying k ′(λ′) = −1 is given by k ′ = 1

1+k(ξ)
k because

k ′(λ′) =
1

1 + k(ξ)
k(λ′) =

1

1 + k(ξ)
k(λ− ξ) = −1.

It is clear that the foliation {Sλ′} is not affine in general. Given a value λ′ large enough,
the surface Sλ′ is a graph on the background foliation {Sλ}, and in particular on S0.
The graph function λ|Sλ′ = Fλ′ is given by Fλ′(p) = λ′ + ξ(p) for all p ∈ Sλ′. As usual,
we extend the graph function to Ω by Lie dragging along k . Note that Fλ′ extended

this way is not λ′ + ξ, but both agree on Sλ′. Thus we can safely abuse notation and
write the graph simply as Fλ′ = λ

′ + ξ|Sλ′ . The following theorem gives the limit of the
Hawking energy for the foliation {Sλ′}.
Theorem 6.6.1. Let Ω be a past asymptotically flat null hypersurface endowed with an

affinely parametrized background foliation {Sλ} with generator k . Let ξ ∈ F(Ω) satisfy
ξ = o1(1) ∩ oX2 (1), and k(ξ) = oX1 (λ−1) . Define the foliation {Sλ′} as Sλ′ = {p ∈ Ω :
λ(p) = λ′ + ξ(p)}, where the graph functions read

λ|Sλ′ = Fλ′ := λ′ + ξ|Sλ′ . (6.38)

Then the null expansions and the connection one-form of {Sλ′} have, to leading orders,
the same form as for the background foliation, i.e.

θk ′ =
−2
λ′
+
θ
(1)
k

λ′2
+ o(λ′−2), θℓ′ =

2Kq̂
λ′
+
θ
(1)
ℓ

λ′2
+ o(λ′−2), sℓ′A =

(s
(1)
ℓ )A
λ′

+ o(λ′−1),

(6.39)

where all objects in the right-hand side refer to the background foliation. The limit of

the Hawking energy along {Sλ′} is the same as the limit along {Sλ} and reads

lim
λ→∞

mH(Sλ) = lim
λ′→∞

mH(Sλ′) =
−1

8π
√
16π

√
|Ŝ|
∫

Ŝ

(
Kq̂θ(1)k + θ(1)ℓ

)
ηq̂, (6.40)

where |Ŝ| is the area of (S0, q̂) and ηq̂ the corresponding volume form.

Proof. The asymptotic expansion for θk is obtained by simply changing the parameter

of the foliation λ = λ′ + ξ:

θk =
−2
λ
+
θ
(1)
k

λ2
+ o(λ−2) =

−2
λ′ + ξ

+
θ
(1)
k

(λ′ + ξ)2
+ o(λ′−2) =

−2
λ′
+
θ
(1)
k

λ′2
+ o(λ′−2),
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where ξ = o1(1) has been used in the last equality. Given that k
′ =

(
1

1+k(ξ)

)
k and

k(ξ) = o(λ−1), the null expansion along k ′ is

θk ′ =

(
1

1 + k(ξ)

)
θk =

−2
λ′
+
θ
(1)
k

λ′2
+ o(λ′−2),

which is the first expression in (6.39). We next compute θℓ′ from (6.11) with α =
1

1+k(ξ)
.

Changing parameters in the first term of the right hand side,

θℓ =
2Kq̂
λ′ + ξ

+
θ
(1)
ℓ

(λ′ + ξ)2
+o(λ′−2) =

2Kq̂
λ′
+
θ
(1)
ℓ − 2ξ
λ′2

+o(λ′−2) =
2Kq̂
λ′
+
θ
(1)
ℓ

λ′2
+o(λ′−2).

For the terms involving the graph function, it is immediate to check that |DFλ′|2γθk =
o(λ′−3), sℓ(gradFλ′) = o(λ′−3), Kk(gradFλ′, gradFλ′) = o(λ′−3). For the Laplacian
term (6.25) gives

△γFλ′ =
△q̂Fλ′

λ2
+ o(λ−2) =

△q̂Fλ′

λ′2
+ o(λ′−2) =

△q̂ξ

λ′2
+ o(λ′−2) = o(λ′−2),

because ξ = oX2 (1). Finally, k(ξ) = o(λ
′−1) implies 1

α
= 1 + k(ξ) = 1 + o(λ′−1) and

(6.11) is simply

θℓ′ = (1 + o(λ
′−1))

(
2Kq̂
λ′
+
θ
(1)
ℓ

λ′2
+ o(λ′−2)

)
=
2Kq̂
λ′
+
θ
(1)
ℓ

λ′2
+ o(λ′−2),

as stated in the theorem. The connection one-form sℓ′ is obtained from (6.7) with

Qk = 0 and α =
1

1+k(ξ)
. Given that α,A = o(λ′−1) (because k(ξ) = oX1 (λ

′−1)) and

sℓ(gradFλ′) = o(λ
′−2), we conclude

sℓ′A =
(s
(1)
ℓ )A
λ′

+ o(λ′−1).

We next compute the limit of the Hawking energy along {Sλ′}. The metric in Sλ′ is

γ(λ′)AB = q̂ABλ
2 + o(λ2) = q̂AB(λ

′ + ξ)2 + o(λ′2) = q̂ABλ
′2 + o(λ′2),

so that in particular the rescaled limit metric and corresponding volume forms remain

unchanged, q̂′ = q̂ and ηq̂′ = ηq̂. This, together with the expansions (6.39), already

implies that the limit of the Hawking energy along {Sλ′} and along {Sλ} are the same.
To obtain expression (6.40) we need the volume form of Sλ′. As with the metric γ(λ)

or with the null expansion θk it suffices to change parameter in the volume form ηSλ
which is given by (6.29) with φ = 1

ηSλ′ =
(
(λ′ + ξ)2 + θ(1)k (λ

′ + ξ) + o(λ′)
)
ηq̂ = (λ

′2 + θ(1)k λ′ + o(λ′))ηq̂.
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A straightforward computation shows that the product θk ′θℓ′ηSλ′ is

θk ′θℓ′ηSλ′ =

(
−4Kq̂ + (−2Kq̂θ(1)k − 2θ(1)ℓ )

1

λ′
+ o(λ′−1)

)
ηq̂,

so that, using Gauss-Bonnet
∫
Ŝ
Kq̂ηq̂ = 4π,

1 +
1

16π

∫

Sλ′
θk ′θℓ′ηSλ′ =

1

16π

∫

Ŝ

(−2Kq̂θ(1)k − 2θ(1)ℓ )ηq̂
1

λ′
+ o(λ′−1).

On the other hand |Sλ′| =
∫
Ŝ
(λ′2 + θ(1)k λ′ + o(λ′))ηq̂ = |Ŝ|λ′2 + o(λ′2) ⇒

√
|Sλ′| =√

|Ŝ|λ′ + o(λ′) and

mH(Sλ′) =
1√
16π

(√
|Ŝ|λ′ + o(λ′)

)(
1

16π

∫

Ŝ

(−2Kq̂θ(1)k − 2θ(1)ℓ )ηq̂
1

λ′
+ o(λ′−1)

)

=
−1

8π
√
16π

√
|Ŝ|
∫

Ŝ

(Kq̂θ(1)k + θ(1)ℓ )ηq̂ + o(1).

We are ready to obtain our main Theorem 6.6.2 by simply combining the previous

results. In fact, we state and prove a slightly more complete theorem that provides two

different expressions for the limit.

Theorem 6.6.2 (General Hawking energy limit). Let Ω be a past asymptotically flat

null hypersurface endowed with an affinely parametrized background foliation {Sλ} with
generator k that tends to large spheres. Define the foliation {Sλ∗} as Sλ∗ = {p ∈ Ω :
λ(p) = 1

Ψ(p)
λ⋆ + τ(p) + ξ(p)}, where the graph functions read

λ|Sλ⋆ = Fλ⋆ :=
1

Ψ

∣∣∣
Sλ⋆
λ⋆ + τ |Sλ⋆ + ξ|Sλ⋆ ,

with Ψ > 0, and τ being Lie constant functions on Ω and ξ = o1(1) ∩ oX2 (1) with
k(ξ) = oX1 (λ

−1). The limit of the Hawking energy along {Sλ⋆} is

lim
λ⋆→∞

mH(Sλ⋆) =
−1

8π
√
16π

(√∫

S2

ηq̂

)∫

S2

(
Kq̂θ(1)k⋆ + θ(1)ℓ⋆

)
ηq̂

=
1

8π
√
16π

(√∫

S2

1

Ψ2
ηq̊

)

×
∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊(s(1)ℓ )

)
Ψηq̊, (6.41)

where q̂, θ
(1)
k⋆ and θ

(1)
ℓ⋆ refer either to the foliation {Sλ⋆} or to the affine foliation {Sλ′′}

defined as Sλ′′ = {p ∈ Ω : λ(p) = 1
Ψ(p)

λ′′+τ(p)} and whose respective graph functions
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read λ|Sλ′′ = Fλ′′ := 1
Ψ

∣∣∣
Sλ′′
λ′′ + τ |Sλ′′ , and q̊, θ

(1)
k , θ

(1)
ℓ and s

(1)
ℓ refer to the background

foliation {Sλ}.

Proof. The strategy is to pass from the background foliation to {Sλ⋆} in three steps.
The geometric elements of each foliation use the same symbol as the foliation, so the

meaning of each quantity should be clear. Consider first a foliation defined by the level

sets of λ′ := λ− τ . Theorem 6.5.6 gives
(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊(s(1)ℓ )

)
ηq̊ =

(
△q̊′θ

(1)
k ′ − (θ

(1)
k ′ + θ

(1)
ℓ′ )− 4divq̊′(s

(1)
ℓ′ )
)
ηq̊′

Consider next the foliation defined by the level sets of λ′′, where λ′ = Ψ−1λ′′. Since
{Sλ′} is an affine foliation approaching large spheres, Theorem 6.5.3 implies the limit
of the Hawking energy is

lim
λ′′→∞

mH(Sλ′′) =
1

8π
√
16π

(√∫

S2

1

Ψ2
ηq̊′

)

×
∫

S2

(
△q̊′θ

(1)
k ′ − (θ

(1)
k ′ + θ

(1)
ℓ′ )− 4divq̊′(s

(1)
ℓ′ )
)
Ψηq̊′,

which, upon using (6.6) and ηq̊ = ηq̊′, implies

lim
λ′′→∞

mH(Sλ′′) =
1

8π
√
16π

(√∫

S2

1

Ψ2
ηq̊

)

×
∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊(s(1)ℓ )

)
Ψηq̊. (6.42)

Now, {Sλ′′} is affine but does not necessarily tend to large spheres. The final foliation
{Sλ⋆} is related to {Sλ′′} by λ′′ = λ⋆ + Ψξ. Since Ψξ satisfies the hypotheses of

Theorem 6.6.1 we conclude that the Hawking energy has the same limit along {Sλ′′}
and along {Sλ⋆}. In combination with (6.42) this proves the second equality in (6.41).
For the first equality we simply note that the rescaled limit metric of {Sλ′′} is q̂ = Ψ−2q̊
and apply again Theorem 6.6.1.

Remark 6.6.3. In this chapter we have considered null hypersurfaces extending to past

null infinity. Obviously similar results apply for asymptotically flat null hypersurfaces

extending to future null infinity. By repeating the arguments before, the following result

is obtained: consider a future directed affine null vector k̄ tangent to Ω and define

the function λ ∈ F(Ω) by k̄(λ) = 1 with λ = 0 on some initial cross section. The
level sets {Sλ} define a foliation which allows to construct a transversal future directed
null normal ℓ̄ satisfying 〈k̄ , ℓ̄〉 = −2. If the rescaled asymptotic metric of the foliation
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is spherical q̊, the expansions of the null second fundamental forms and connection

one-form take the form (note the change of signs with respect to the past null case)

θk̄ =
2

λ
+
θ
(1)

k̄

λ2
+ o(λ−2), θℓ̄ =

−2
λ
+
θ
(1)

ℓ̄

λ2
+ o(λ−2) sℓ̄A =

sℓ̄
(1)
A

λ
+ o(λ−1)

and the limit of the Hawking energy along {Sλ∗} (with the same definition as in Theorem
6.6.2) is

lim
λ∗→∞

mH(Sλ∗) =

=
1

8π
√
16π

(√∫

S2

1

Ψ2
ηq̊

)∫

S2

(
−△q̊θ

(1)

k̄
+ (θ

(1)

k̄
+ θ

(1)

ℓ̄
)− 4divq̊(s(1)ℓ̄ )

)
Ψηq̊.

6.7 The large sphere equation and the Bondi energy-

momentum

As mentioned in Section 6.1, the limit of the Hawking energy when the foliation ap-

proaches large spheres is the Bondi energy. In this section we want to recover this fact

from our general expressions. Recall first that the conformal group of the two-sphere

is defined as the set of diffeomorphisms Φ : (S2, q̊) 7→ (S2, q̊) satisfying Φ⋆(q̊) = Θ2q̊,
Θ ∈ F(S2,R+) (i.e. the set of conformal diffeomorphisms). We restrict ourselves to the
connected component of the identity of this group. It is well-known (see e.g. [87]) that

this group is isomorphic to the connected component of the identity of Lorentz group

of Minkowski space M1,3, and also isomorphic to the Möbius group of the Riemann

sphere

F : S2 7→ S2 (6.43)

z 7→ F (z) =
αz + β

γz + δ

(
α β

γ δ

)
∈ SL(2,C), (6.44)

where z ∈ C ∪ {∞} ≃ S2. In these coordinates, the standard metric on the sphere is
q̊ = 4

(1+zz)2
dzdz and the l = 1 spherical harmonics read

Y 11 =
z + z

1 + zz
, Y 12 =

z − z
i(1 + zz)

, Y 13 =
zz − 1
1 + zz

.

Remark 6.7.1. The notation used in this section for the spherical harmonics differs

from the one used in Section 4.5 in Chapter 4 because we do not consider here the

normalized version of such functions.

138



6. The Hawking energy along null AF hypersurfaces

For a vector a ∈ R3 we write a ·Y 1 :=∑3
i=1 a

iY 1i . These properties allow us to obtain

easily the general solution to the large sphere equation (6.36).

Proposition 6.7.2 (Solution of the large sphere equation). A smooth function φ :

S2 7→ R+ solves equation (6.36) if and only if there exists a = (a1, a2, a3) ∈ R3 such
that

Ψ :=
1

φ
=
√
1 + |a|2 + a · Y 1. (6.45)

Proof. In terms of Ψ := 1
φ
, equation (6.36) becomes

Ψ2 + (△q̊Ψ)Ψ− |∇̊Ψ|2q̊ = 1. (6.46)

We first show that (6.45) solves this equation. Applying a rotation to S2 we can

assume without loss of generality that a = (0, 0, c) and hence Ψ =
√
1 + c2 + cY 13 .

Thus △q̊Ψ = c△q̊Y
1
3 = −2cY 13 = −2Ψ+2

√
1 + c2, and |∇̊Ψ|2q̊ = (1+ zz)2∂zΨ∂zΨ =

4c2zz
(1+zz)2

= −(Ψ2 + 1− 2
√
1 + c2Ψ), and (6.46) holds after immediate cancellations.

To show the converse we recall that equation (6.36) is the statement that the Gauss

curvature Kφ2q̊ = 1. This means that there exist coordinates z ′ ∈ C ∪ {∞} where
φ2q̊ = 4dz ′dz ′

(1+z ′z ′)2 . We can assume without loss of generality that the map F (z) = z
′ is

orientation preserving. Since it is also an element of the conformal group, it must be

an element of the Möbius group (6.44). Performing the pull-back of q̊

φ2q̊ =
4|∂F
∂z
|2

(1 + |F |2)2
dzdz.

Thus φ = 1+|z |2
1+|F |2

∣∣∂F
∂z

∣∣. Since ∂F
∂z
= 1
(γz+δ)2

if follows

Ψ =
1

φ
=
|αz + β|2 + |γz + δ|2

(1 + |z |2) .

This function can be expanded in terms of l = 1 spherical harmonics as

Ψ =
|α|2 + |β|2 + |γ|2 + |δ|2

2
+ Re (αβ + γδ) Y 11 + Im (αβ + γδ) Y

1
2

+
|α|2 − |β|2 + |γ|2 − |δ|2

2
Y 13 .

It is straightforward to check that this expression is of the form Ψ =
√
1 + |a|2+ a · Y 1

with a ∈ R3. Indeed the vector a is

a = (a1, a2, a3) =

(
Re (αβ + γδ) , Im (αβ + γδ) ,

|α|2 − |β|2 + |γ|2 − |δ|2
2

)
, (6.47)
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and we need to prove

1 + |a|2 = (|α|
2 + |β|2 + |γ|2 + |δ|2)2

4
.

The associated complex matrix that determines F belongs to SL(2,C). Therefore,

αδ − βγ = 1 and in particular |αδ − βγ|2 = 1 which, when expanded becomes

2Re(αβγδ) = |α|2|δ|2 + |β|2|γ|2 − 1. (6.48)

Now

(a1)2 + (a2)2 = (Re (αβ + γδ))2 + (Im (αβ + γδ))2 = |αβ + γδ|2
= |α|2|β|2 + 2Re(αβγδ) + |γ|2|δ|2
= |α|2|β|2 + |γ|2|δ|2 + |α|2|δ|2 + |β|2|γ|2 − 1
= (|α|2 + |γ|2)(|β|2 + |δ|2)− 1,

after using (6.48) in the last but one equality. Thus

1 + |a|2 = (|α|2 + |γ|2)(|β|2 + |δ|2) + (|α|
2 − |β|2 + |γ|2 − |δ|2)2

4

=
(|α|2 + |β|2 + |γ|2 + |δ|2)2

4
,

as a consequence of the trivial identity AB + 1
4
(A− B)2 = 1

4
(A+ B)2.

The Bondi energy-momentum is a vector in an abstract Minkowski space. Let us recall

the construction for the sake of completeness and because of a subtlety that arises in

the case of past null hypersurfaces. In [87] t is shown that every Möbius transformation

corresponds to a unique restricted Lorentz transformation; conversely every restricted

Lorentz transformation corresponds to precisely two Möbius transformations, one being

the negative of the other. The Lorentz transformation x ′µ = Λ(F )µνx
ν associated to

the Möbius transformation F has the form (see page 17 in [87])

1

2




αᾱ+ ββ̄ + γγ̄ + δδ̄ αβ̄ + βᾱ+ γδ̄ + δγ̄ i(αβ̄ − βᾱ+ γδ̄ − δγ̄) αᾱ− ββ̄ + γγ̄ − δδ̄
αγ̄ + γᾱ+ βδ̄ + δβ̄ αδ̄ + δᾱ+ βγ̄ + γβ̄ i(αδ̄ − δᾱ+ γβ̄ − βγ̄) αγ̄ + γᾱ− βδ̄ − δβ̄
i(γᾱ− αγ̄ + δβ̄ − βδ̄) i(δᾱ− αδ̄ + γβ̄ − βγ̄) αδ̄ + δᾱ− βγ̄ − γβ̄ i(γᾱ− αγ̄ + βδ̄ − δβ̄)
αᾱ+ ββ̄ − γγ̄ − δδ̄ αβ̄ + βᾱ− γδ̄ − δγ̄ i(αβ̄ − βᾱ+ δγ̄ − γδ̄) αᾱ− ββ̄ − γγ̄ + δδ̄




To a background foliation {Sλ} of Ω approaching large spheres with asymptotic
rescaled metric q̊ one can assign an asymptotic inertial reference frame {t, x i} in an
(abstract) Minkowski spacetime. This is possible because given another such folia-

tion {Sλ′} with asymptotic rescaled metric φ2q̊, (with φ a solution of the large sphere
equation) one associates a Möbius transformation F (determined by the function φ),

140



6. The Hawking energy along null AF hypersurfaces

and to F one can associate a unique restricted Lorentz transformation Λ(F ). In turn

Λ(F ) defines a new asymptotic inertial reference frame {t ′, x ′i}. The inertial observer
associated to Λ(F ) is defined by the vector

u = ∂t ′.

The transition from φ to F is not unique because given a1, a2, a3 there are many

F (z) = αz+β
γz+δ

that give ai as in (6.47). However this freedom corresponds explicitly

to rotations in the spacial axes and hence do not change the new time direction ∂t ′.

All this construction makes sense because the Bondi energy EuB associated to a round

asymptotic metric q̊ corresponding to an asymptotic inertial observer u can be written

in the form (η is the Minkowski metric)

EuB = −η(PB, u),

where PB is independent of u. PB is the Bondi four-momentum. In Corollary 6.7.3

below we recover all these facts from our results on the limit of the Hawking energy.

To do that we need to identify ∂t ′ in terms of a
i . Using that xµ = Λ−1(F )µνx

′ν, where
Λ−1(F ) = ηΛt(F )η and η the matrix associated to the Minkowski metric, we have

u := ∂t ′ =
∂t

∂t ′
∂t +

3∑

i=1

∂x i

∂t ′
∂x i = Λ(F )

0
0∂t −

3∑

i=1

Λ(F )0i∂x i .

Comparing Λ0i(F ) in the above Lorentz transformation with the expression for a
i in

(6.47) it follows that in the case of future directed null hypersurfaces extending to

future null infinity,

u =
√
1 + |a|2∂t − ai∂x i .

The construction of Λ(F ) in [87] is performed with the unit sphere lying at the intersec-

tion of the hyperplane t = 1 and the future null cone of the origin (see Figure 6.4). It is

hence adapted to future directed null hypersurfaces extending to future null infinity. In

this chapter we have considered null hypersurfaces extending to past null infinity. This

case is obtained from the previous one by a time inversion, which has the effect that

the observer u is expressed for past directed null hypersurfaces extending to past null

infinity as

u =
√
1 + |a|2∂t + ai∂x i

in terms of the coefficients ai in the conformal factor φ.

We can now recover the result that the Hawking energy approaches the Bondi energy

for spherical foliations.
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t = cte

t ′ = cte

ξ
ξ′

p

p′

S2

S2

O

O′

F

M1,3 F (z) = αz+β
γz+δ

Figure 6.4: The intersection of the light cone of a point with two hyperplanes in

M1,3 define two two-spheres S2. In the Figure, two orthonormal basis associated to

the centers O and O′ of the spheres are represented. The null generators of the light
cone generate a conformal diffeomorphism F : S2 → S2 which induces a Lorentz trans-
formation Λ(F ) inM1,3. The function φ defined by the pullback of the spherical metric

F ∗(q̊) = φ2q̊ satisfies the large sphere equation, and is determined by three real num-
bers, which combined with the rotation parameters between the orthonormal frames in

O and O′ determine the complex numbers α, β, γ and δ (with αδ−βγ = 1) that define
the Möbius transformation F . The new asymptotic inertial frame {t ′, x ′i} defines with
respect to the initial inertial frame {t, x i} a unique Lorentz transformation Λ(F ).

Corollary 6.7.3. Let Ω be a past asymptotically flat null hypersurface endowed with

an affinely parametrized background foliation {Sλ} with generator k that tends to
large spheres. Consider another foliation associated to the parameter λ∗ so that λ =
φλ∗ + τ + ξ, as in Theorem 6.6.2, where φ > 0 satisfies the large sphere equation
(6.36). Let u ∈ M1,3 be the asymptotic inertial observer associated to this foliation.

Then

lim
λ∗→∞

mH(Sλ∗) = −η(PB, u) := EuB,

where η is the Minkowski metric and the Bondi four-momentum vector PB reads

EB := P
0
B :=

−1
16π

∫

S2

(θ
(1)
k + θ

(1)
ℓ )ηq̊, (6.49)

P iB :=
1

16π

∫

S2

(
−△q̊θ

(1)
k + (θ

(1)
k + θ

(1)
ℓ ) + 4divq̊ s

(1)
ℓ

)
Y 1i ηq̊, i ∈ {1, 2, 3}. (6.50)

If, in addition, the energy flux decay condition of Proposition 6.3.9 is satisfied, then the
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Bondi three-momentum simplifies to

P iB =
1

16π

∫

S2

(
△q̊θ

(1)
k + (θ

(1)
k + θ

(1)
ℓ )
)
Y 1i ηq̊, i ∈ {1, 2, 3}. (6.51)

Proof. We can use expression (6.41) with Ψ as in (6.45) so that

lim
λ∗→∞

mH(Sλ∗) =
1

16π

∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq s(1)ℓ

)
(6.52)

×
(
√
1 + |a|2 +

3∑

i=1

aiY 1i

)
ηq̊

=

( −1
16π

∫

S2

(θ
(1)
k + θ

(1)
ℓ )ηq̊

)√
1 + |a|2 +

+

3∑

i=1

(
1

16π

∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )− 4divq̊ s(1)ℓ

)
Y 1i ηq̊

)
ai

= −η(u, PB),

with u = (
√
1 + |a|2, a1, a2, a3) and P iB as given in the statement of the corollary.

When the energy flux decay condition holds, we have from Proposition 6.3.9 s
(1)
ℓ A =

∇̊Aθ(1)k − 1
2
∇̊Bh̊BA, and the integral (6.52) becomes

∫

S2

(
−3△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ ) + 2∇̊A∇̊Bh̊AB

)
Ψaηq̊,

where Ψa :=
√
1 + |a|2 + a · Y 1. Integrating by parts the last term and using that

Hessq̊Ψa = −(a · Y 1)q̊ = 1
2
(△q̊Ψa)q̊ yields

∫

S2

2∇̊A∇̊Bh̊ABΨηq̊ =
∫

S2

2θ
(1)
k △q̊Ψaηq̊ =

∫

S2

2(△q̊θ
(1)
k )Ψaηq̊,

where in the first equality we used trq̊h̊ = 2θ
(1)
k and in the second we performed another

integration by parts. Arguing as before, the expression (6.51) for P iB follows.

Remark 6.7.4. An analogous result can be obtained for the case of asymptotically flat

null hypersurfaces Ω approaching future null infinity. Using the general expression in

Remark 6.6.3 for the limit of the Hawking energy in this case and using the fact that

Ψa =
√
1 + |a|2 + a · Y corresponds now to the asymptotic observer with four velocity

u = (
√
1 + |a|2,−a1,−a2,−a3), the Bondi energy-momentum vector PB satisfying

limλ⋆→∞MH(Sλ⋆) = −η(u, PB) := EuB is

EB := P
0
B :=

1

16π

∫

S2

(θ
(1)

k̄
+ θ

(1)

ℓ̄
)ηq̊,

P iB :=
1

16π

∫

S2

(
−△q̊θ

(1)

k̄
+ (θ

(1)

k̄
+ θ

(1)

ℓ̄
)− 4divq̊ s(1)ℓ̄

)
Y 1i ηq̊.
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The energy flux decay condition in this case implies (i.e. the analogous on Proposition

6.3.9)

s
(1)

ℓ̄ A = −D̂Aθ(1)k̄ −
1

2
D̂Bĥ

B
A,

and the Bondi momentum simplifies to

P iB =
1

16π

∫

S2

(
△q̊θ

(1)

k̄
+ (θ

(1)

k̄
+ θ

(1)

ℓ̄
)
)
Y 1i ηq̊, i ∈ {1, 2, 3}.

Note that in this case

EuB := −η(u, PB) =
1

16π

∫

S2

(
△q̊θ

(1)

k̄
+ (θ

(1)

k̄
+ θ

(1)

ℓ̄
)
)
(u0 − u iY 1i )ηq̊. (6.53)

Remark 6.7.5. The relationship between the limit of the Hawking energy and the Bondi

four-momentum for foliations approaching large spheres has been investigated in [87]

and [6] (see also Definition 4.2 in [93]). As a useful check, it is convenient to see how

the results in this chapter fit with the results in [6]. The setup there involves so-called

null quasi-spherical coordinates which are adapted to a foliation by future outgoing null

hypersurfaces {Nz}, each of them foliated by codimension-two spacelike surfaces Sz,rB ,
where the parameter rB takes a value r0 at the initial surface. An explicit computation

shows that the parameter rB is not affine in general.

Each Sz,rB has induced metric isometric to the standard sphere of radius rB. In fact, the

null quasi-spherical coordinates {z, rB, θ, φ} are such that the surface {z = const, rB =
const} has induced metric r 2B(dθ2 + sin2 θdφ) := r 2Bq̊, which in particular selects the

diffeomorphism of SrB,z with the standard unit sphere (S
2, q̊). Under asymptotic condi-

tions along the null hypersurface involving the shear and its angular derivative, Bartnik

shows, among various other things, that the Bondi energy-momentum is well-defined

and agrees with the limit of the Hawking energy along the quasi-spherical foliation Sz,rB .

More precisely, defining the mass aspect function m = 1
2
rB

(
1− 1

4
~H2r 2B

)
of the sphere

Sz,rB so that mH(z, rB) =
1
4π

∫
S2z,rB

m ηq̊ (recall that ~H is the mean curvature vector of

the surface), Bartnik shows that limrB→∞m = m0 with m0 ∈ C∞(S2) and that, under
sufficient decay of suitable components of the Einstein tensor which include the energy

flux decay condition of this chapter,

EB = lim
rB→∞

1

4π

∫

S2

mηq̊ =
1

4π

∫

S2

m0ηq̊, (6.54)

P iB = lim
rB→∞

1

4π

∫

S2

mY 1i ηq̊ =
1

4π

∫

S2

m0Y
1
i ηq̊.

We have also found in Theorem 6.6.1 an expression for the limit of the Hawking energy

for non-affine foliations in terms of the geometry of an (affine) background foliation
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{Sλ}. Define a new affine parameter r := r0 + λ, such that it also becomes r0 when

evaluated at the initial surface. Let us define ξ as the difference between the parameter

r (that generates the affine foliation {Sr}) and Bartnik’s parameter rB, namely

r − rB = ξ. (6.55)

Assume that ξ satisfies the decay conditions of Theorem 6.6.1. Then we recover

Bartnik’s Bondi energy formula (6.54) from our expression (6.53), as we show next.

Recall that in this case the null hypersurface extends to future null infinity, and Bart-

nik’s future null basis {k̄B, ℓ̄B} is normalized so that 〈k̄B, ℓ̄B〉 = −2, being k̄B the future
null normal tangent to the hypersurface. Let {k̄ , ℓ̄} the null basis associated to the
background foliation {Sr}. The expansions associated to the background foliation read

θk̄ =
2

r − r0
+

θ
(1)

k̄

(r − r0)2
+ o((r − r0)−2), θℓ̄ =

−2
r − r0

+
θ
(1)

ℓ̄

(r − r0)2
+ o((r − r0)−2).

We showed in Theorem 6.6.1 that under the change of parameter (6.55), the expansions

associated to the Bartnik foliation preserve the form up to leading orders, that is to say

θk̄B =
2

rB − r0
+

θ
(1)

k̄

(rB − r0)2
+o((rB−r0)−2), θℓ̄B =

−2
rB − r0

+
θ
(1)

ℓ̄

(rB − r0)2
+o((rB−r0)−2),

or equivalently

θk̄B =
2

rB
+
θ
(1)

k̄
+ 2r0

r 2B
+ o(r−2B ), θℓ̄B =

−2
rB
+
θ
(1)

ℓ̄
− 2r0
r 2B

+ o(r−2B ).

The null quasi-spherical gauge has the key property that θk̄B − 2
rB
is automatically a

divergence on each SrB . Hence Bartnik finds that the null expansions have the form

θk̄B =
2

rB
− divb0

r 2B
+ o(r−2B ) θℓ̄B =

−2
rB
+
a

r 2B
+ o(r−2B ),

and proves after suitable computations that

m0 =
1

4
(divb0 + a).

In terms of our notation one finds

−divb0 = θ
(1)

k̄
+ 2r0,

a = θ
(1)

ℓ̄
− 2r0,
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6.7. The large sphere equation and the Bondi energy-momentum

and hence m0 =
1
4
(θ
(1)

ℓ̄
− θ(1)

k̄
− 4r0). We can now recover Bartnik’s result from (6.53)

because, with the shorthand Ψu := u0 − u iY 1i ,

EuB =
1

16π

∫

S2

(
△q̊θ

(1)

k̄
+ (θ

(1)

k̄
+ θ

(1)

ℓ̄
)
)
Ψuηq̊

=
1

16π

∫

S2

(
△q̊θ

(1)

k̄
+ (θ

(1)

k̄
+ θ

(1)

ℓ̄
)− (△q̊ + 2)(θ

(1)

k̄
+ 2r0)

)
Ψuηq̊

=
1

16π

∫

S2

(θ
(1)

ℓ̄
− θ(1)

k̄
− 4r0)Ψuηq̊ =

1

4π

∫

S2

m0Ψuηq̊,

where in the second expression we added zero in the form

0 =

∫

S2

(
−(△q̊ + 2)(θ

(1)

k̄
+ 2r0)

)
Ψuηq̊.

Note that this integral vanishes because θ
(1)

k̄
+ 2r0 is a divergence. So, the form EuB =

1
4π

∫
S2
m0ηq̊ obtained by Bartnik depends crucially on the assumption that the foliation

is quasi-spherical. For general foliations, the right expression for EuB is given by (6.53).
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7
On the Penrose inequality along null hypersurfaces

7.1 Introduction

We devote the last chapter of this thesis to study the main properties of general flows

along null hypersurfaces in a AF spacetimes satisfying the dominant energy condition

with the purpose of addressing the null version of the Penrose inequality. We prove this

inequality for a large class of surfaces. Moreover, a different geometric inequality in the

same spirit as the null Penrose inequality is proven in full generality. The results of this

chapter were published in [77].

The key tool that we use in this chapter is a functional on surfaces which bounds from

above the square root of the area of any weakly outer trapped surface. If the foliation

tends to large spheres, the limit of such functional is the Bondi energy measured by the

observer determined by the flow. The functional is not monotonic in general, but it can

be split into a monotonic part, which we defined as Bergqvist mass in Chapter 4, and

a term D which is a renormalization of the area of each leaf. The latter will play an

important role to find sufficient conditions for the validity of the null Penrose inequality.

Two main foliations are essential for the obtention of our results. We call the first

Geodesic Asymptotically Bondi (GAB) foliation. A GAB foliation is defined by the

condition that the first non-trivial coefficient of the asymptotic expansion of θk is con-

stant. We show that given any initial cross section S there exists a unique (up to

trivial reparametrization) GAB foliation starting at S. However, this foliation needs

not approach large spheres at infinity. Using GAB foliations we prove in full generality

(Theorem 7.3.8) that the square root of the area (with the usual factor) of a WOTS S

is bounded above by the limit of the Hawking energy along the GAB foliation associated

to S. This theorem recovers Ludvigsen & Vicker’s [67] and Bergqvist’s [8] results in

case that the GAB foliation tends to large spheres. Applications of the GAB foliations

to the Minkowski shell case are discussed in Section 7.8.
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The second family of foliations that we consider are geodesic foliations approaching

large spheres. The idea is to generalize the methods used in the Minkowski spacetime

in previous chapters to the general case. The functional D was introduced in Chapter 4

in the Minkowski case and we showed that monotonicity of D implied the shell Penrose

inequality. Here we show that the crucial property thatD must satisfy for the general null

Penrose inequality to hold is that it is bounded above by its limit at infinity. One way of

achieving this is imposing monotonicity on D. We refer to this method as Renormalized

Area Method. In this chapter we find two sufficient conditions in Theorem 7.5.5 under

which the Renormalized Area Method applies. Sections 7.7 and 7.8 are devoted to the

study of applicability of the method to the case where the null hypersurfaces Ω is shear-

free, and to the four dimensional Minkowski spacetime respectively. In the Minkowski

case both conditions determine the same class of surfaces already obtained in Chapter

4.

The chapter is concluded by showing yet another general inequality bounding the area

of a closed spacelike surface embedded in a past AF null hypersurface Ω in terms of an

asymptotic quantity intrinsic to Ω.

7.2 A functional on two-surfaces

In Chapter 4, the shell Penrose inequality was approached by using two functionals on

an affine foliation {Sλ} that tends to large spheres along a past null hypersurface Ω,
namely

Mb(λ) :=
λ

2
− 1

16π

∫

Sλ

θℓ(λ)ηSλ, (7.1)

that was defined as the Bergqvist mass and was monotonic (see Theorem 4.5.2 in

Chapter 4), and

D(λ) :=

√
|Sλ|
16π

− λ
2
,

that was defined in analogy with the definition of Mb. The shell Penrose inequality was

equivalent to prove (see formula (4.56))

Mb(λ = 0) +D(λ = 0) ≤ 0.

This expression suggests that a new functional defined by Mb(λ) + D(λ) may be of

interest on its own. In the sum, the terms in λ cancel out and we find an expression

that depends only on the surface S and on the choice of ℓ (because of the term θℓ in

(7.1) ). In this chapter a critical object is the functional

M(S, ℓ) :=

√
|S|
16π

− 1

16π

∫

S

θℓηS, (7.2)
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7. On the Penrose inequality along null hypersurfaces

We will analyze its properties and study whether it is a useful tool to approach the

Penrose inequality.

This quantity has geometric units of length so one may be tempted to assign to it

a physical interpretation of quasi-local mass of S. However, M(S, ℓ) is not truly a

quasi-local quantity on the surface because it depends on the choice of null normal ℓ,

which cannot be uniquely fixed a priori in the absence of additional geometric structure.

Note, however, that a weakly outer trapped surface S satisfies, by definition, θℓ ≤ 0
irrespectively of the scaling of ℓ, and hence

√
|S|
16π

≤ M(S, ℓ).

So, if M(S, ℓ) enjoyed good monotonicity properties under suitable flows and its value

on very large surfaces in an asymptotically flat context could be related to the total

mass of the spacetime, this object would be potentially useful to address the Penrose

inequality and play perhaps a similar role as the Hawking energy does in the time-

symmetric context. In this chapter we restrict ourselves to null flows because in this

case M(S, ℓ) does satisfy an interesting evolution equation. However, there are many

other possibilities that may well be worth exploring.

Since we deal with null flows we shall work on a null hypersurface Ω. Thus, let Ω

be a smooth, connected null hypersurface embedded in (M,g) and admitting a global

cross section S0 (i.e. a smooth embedded spacelike surface intersected precisely once by

every inextendible curve along the null generators of Ω). In this section we use the same

setting as in Section 6.2 of Chapter 6, and we consider foliations {Sλ} along Ω. We
want to investigate the derivative of M(Sλ, ℓ) with respect to λ. In order to maintain

the generality, we do not make any assumption on the null vector field ℓ orthogonal to

Sλ (other than being future directed and transverse to Ω). The null generators of Ω

do not have to be necessarily affinely parametrized, that is to say, it holds

∇kk = Qkk,

with Qk not necessarily zero. Given a smooth positive function ϕ : Ω 7→ R+, there is a
unique choice of null normal ℓ to Sλ (denoted by ℓ

ϕ) satisfying

〈k, ℓϕ〉 = −ϕ.

Obviously ℓϕ depends on the foliation {Sλ}, so it is not an intrinsic property of Ω. The
choice ϕ = 2 will be relevant later and we will denote ℓϕ=2 simply by ℓ from now on.

As before, sℓϕ is also a foliation dependent quantity. The evolution of M(Sλ, ℓ
ϕ) in this

general setting is given in the following lemma.

Lemma 7.2.1. Let Ω be a null hypersurface embedded in a spacetime (M4, g). Assume

that Ω has topology S × R with the null generator tangent to the R factor. Consider
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7.2. A functional on two-surfaces

a foliation {Sλ} of Ω by spacelike hypersurfaces, all diffeomorphic to S. Let k be the
future null generator satisfying k(λ) = −1 and ℓϕ the null normal to Sλ satisfying
〈k, ℓϕ〉 = −ϕ. Then

dM(Sλ, ℓ
ϕ)

dλ
=

1√
64π|Sλ|

∫

Sλ

(−θk)ηSλ +
1

16π

∫

Sλ

[
Eing(ℓ, k)− ϕ

2
ScalSλ

+ϕ
(
−divSλsℓϕ + |sℓϕ|2γSλ

)
+

(
1

ϕ
k(ϕ)−Qk

)
θℓϕ

]
ηSλ, (7.3)

where Qk is defined by ∇kk = Qkk , Eing is the Einstein tensor of (M4, g), ScalSλ the
curvature scalar of (Sλ, γSλ), and sℓϕ is the connection of the normal bundle of Sλ. If,

moreover, ϕ is constant and k is affine (Qk = 0) then

dM(Sλ, ℓ
ϕ)

dλ
=

1√
64π|Sλ|

∫

Sλ

(−θk)ηSλ −
ϕχ(Sλ)

8
+
1

16π

∫

Sλ

(
Eing(ℓϕ, k)

+ ϕ|sℓϕ|2γSλ
)
ηSλ, (7.4)

where χ(Sλ) is the Euler characteristic of Sλ.

Proof. We drop all reference to λ for simplicity. The volume form satisfies relation

(B.41) in Appendix B, so the derivative along −k of M(S, ℓϕ) is, using formula (B.29)
in Appendix B,

dM(S, ℓϕ)

dλ
=

1√
64π|S|

∫

S

(−θk)ηS +
1

16π

∫

S

[
Eing(ℓϕ, k)− ϕ

2
ScalγS

+ϕ
(
−divSsℓϕ + |sℓϕ|2γS

)
+

(
1

ϕ
k(ϕ)−Qk

)
θℓϕ

]
ηS.

This is precisely (7.3). When ϕ = const and Qk = 0, (7.4) follows directly from (7.3)

as a consequence of the Gauss-Bonnet theorem
∫
S
ScalγSηS = 4πχ(S).

Our purpose in deriving the general variation formula (7.3) is to show that indeed ϕ =

const andQk = 0 are the only clear situations leading to a (nearly) monotonic behaviour.

Indeed, the divergence term divSsℓϕ has no sign (unless identically zero) which strongly

suggests the choice ϕ = const. The term in θℓϕ, which again has no sign a priori,

suggest making the choice Qk = 0 (the seemingly more general condition of making ϕ

constant only within the leaves and Qk = ϕ
−1k(ϕ) is simply a reparametrization of the

previous one).

Under the dominant energy condition (DEC) on (M4, g), this lemma implies that if S

is connected and non-spherical, then M(Sλ, ℓ
ϕ) is monotonically increasing along any

affine flow for any past expanding (i.e. with θ−k ≥ 0) null hypersurface.
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7. On the Penrose inequality along null hypersurfaces

Let us assume that λ is from now on an affine parameter. For the Penrose inequality

in an asymptotically flat context, the spherical topology is the relevant one. In this

setting, M(Sλ, ℓ) is not always monotonic. However, under certain circumstances one

can relate its value on the initial surface and its asymptotic value at infinity. In fact,

obtaining such relations will be the main theme of this chapter. We first need to specify

our asymptotic conditions. We adopt here the same setting and definitions as in Section

6.3 in Chapter 6, where a detailed analysis of the limit of the Hawking energy along

null flows was obtained. We make the global assumption that Ω = S2 × R with the
affine null generator k tangent along the R-factor. Throughout this chapter we use

the notions transversal and Lie constant tensor, and asymptotic flatness, introduced in

Chapter 6.

Our next aim is to analyze the limit of M(S, ℓϕ) at infinity. From item (i) in Definition

6.3.4 in Chapter 6, it follows that the volume form ηSλ of each Sλ satisfies

ηSλ =
(
λ2 + θ

(1)
k λ+ o(λ)

)
ηq̂, (7.5)

where the Lie constant function θ
(1)
k is defined by the expansion

θk =
−2
λ
+
θ
(1)
k

λ2
+ o(λ−2). (7.6)

The expressions become simpler if we introduce the area radius at infinity as

R2q̂ :=
1

4π

∫

Ŝ

ηq̂,

where Ŝ represents the surface S endowed with the asymptotic metric q̂ along the

foliation {Sλ}. At this point we do not assume that the foliation approaches large
spheres. The area Sλ has the expansion

|Sλ| =
∫

Sλ

ηSλ =

∫

Ŝ

(
λ2 + θ

(1)
k λ+ o(λ)

)
ηq̂ = 4πR

2
q̂λ
2 +

(∫

Ŝ

θ
(1)
k ηq̂

)
λ+ o(λ),

and therefore
√
|Sλ| =

√
4πR2q̂ λ+

∫
Ŝ
θ
(1)
k ηq̂

2
√
4πR2q̂

+ o(1). (7.7)

We next compute the asymptotic behaviour of the second term in M(S, ℓϕ). Using

item (iii) in Definition 6.3.4 and noticing that θℓϕ =
ϕ
2
θℓ (because of the scaling relation

ℓϕ = ϕ
2
ℓ), it follows (we are assuming ϕ constant here and in what follows)

∫

Sλ

θℓϕ(λ)ηSλ =

∫

Ŝ

(
ϕKq̂
λ
+
ϕθ
(1)
ℓ

2λ2
+ o(λ2)

)(
λ2 + θ

(1)
k λ+ o(λ)

)
ηq̂

= 4πϕλ+

∫

Ŝ

(
ϕKq̂θ(1)k +

ϕ

2
θ
(1)
ℓ

)
ηq̂ + o(1). (7.8)
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Combining (7.7) and (7.8) into (7.2) gives

M(S, ℓϕ) =

(
Rq̂
2
− ϕ
4

)
λ+

1

16π

∫

Ŝ

(
θ
(1)
k

(
1

Rq̂
− ϕKq̂

)
− ϕ
2
θ
(1)
ℓ

)
ηq̂ + o(1).

This expression has a finite limit at infinity if and only if the scaling of ℓϕ is chosen so

that ϕ = 2Rq̂. This leads to the following definition:

Definition 7.2.2. Let Ω be a past asymptotically flat null hypersurface and {Sλ} the
foliation whose existence is assumed in Definition 6.3.4 in Chapter 6. The vector field

ℓ⋆ is defined to be null, orthogonal to each leaf Sλ and normalized by 〈k, ℓ⋆〉 = −2Rq̂.

Note that ℓ⋆ is defined by ϕ = 2Rq̂ so that its relation to the canonical ℓ is ℓ
⋆ = Rq̂ℓ.

With this choice,

lim
λ→∞

M(Sλ, ℓ
⋆) =

1

16π

∫

Ŝ

(
θ
(1)
k

(
1

Rq̂
− 2Rq̂Kq̂

)
− Rq̂θ(1)ℓ

)
ηq̂. (7.9)

It is useful to relate this limit to the corresponding limit of the Hawking energy along

{Sλ}. The limit of mH(Sλ) was investigated in detail in Chapter 6. In particular,

Theorem 6.6.1 in this chapter gives

lim
λ→∞

mH(Sλ) =
−Rq̂
16π

∫

Ŝ

(
Kq̂θ(1)k + θ(1)ℓ

)
ηq̂. (7.10)

Combining (7.9) and (7.10), the following proposition is proved:

Proposition 7.2.3. With the choice ℓ⋆ = Rq̂ℓ, the limits of M(Sλ, ℓ
⋆) and mH(Sλ) are

related by

lim
λ→∞

M(Sλ, ℓ
⋆) = lim

λ→∞
mH(Sλ) +

1

16π

∫

Ŝ

θ
(1)
k

(
1

Rq̂
− Rq̂Kq̂

)
ηq̂. (7.11)

Remark 7.2.4. There are two interesting cases where the limit of M(Sλ, ℓ
⋆) agrees with

the limit of the Hawking energy along the foliation. The first one occurs when q̂ has

positive constant curvature, in which case the area radius Rq̂ and the Gauss curvature

are related by Kq̂ = 1
R2
q̂

and the integrand in the second term of (7.11) vanishes. Recall

that such foliations are called “approaching to large spheres” because the geometry of

the leaves tends, after a suitable rescaling, to the round spherical metric. This situation

is particularly relevant because as already discussed in the previous chapter, then the

limit of the Hawking energy is the Bondi energy measured by the observer defined by

the foliation {Sλ}.
The other case corresponds to those foliations satisfying θ

(1)
k = constant. In this

case we have∫

Ŝ

θ
(1)
k

(
1

Rq̂
− Rq̂Kq̂

)
ηq̂ = θ

(1)
k

∫

Ŝ

(
1

Rq̂
− Rq̂Kq̂

)
ηq̂ = θ

(1)
k (4πRq̂ − 4πRq̂) = 0,

where in the second equality we have used the Gauss-Bonnet theorem. We devote the

next section to study in detail geodesic foliations with constant θ
(1)
k .
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7. On the Penrose inequality along null hypersurfaces

7.3 GAB foliations and a Penrose type inequality

As discussed in Section 7.1, Ludvigsen & Vickers [67] and Bergqvist [8] considered

the Penrose inequality for null hypersurfaces. A fundamental ingredient of their work

involved affine foliations for which θ
(1)
k vanishes identically. As we will see below, such

foliations are closely related to affine foliations with θ
(1)
k constant. We devote this

section to study such foliations. Our main result is a Penrose-type inequality valid in

full generality and which reduces to the Penrose inequality when the foliation approaches

large spheres. Besides its intrinsic interest, the general Penrose-type inequality helps

also putting the result of Ludvigsen & Vickers and Bergqvist into a broader perspective

and clarifies both its scope and its range of validity.

We first need a lemma showing that, no matter which affine foliation is taken, the

leading term θ
(1)
k is always strictly positive. This may seem to contradict the original

Ludvigsen & Vickers assumption (1.5), but this is not the case because λ = 0 corre-

sponds to a cross section on Ω, while the corresponding condition for r was not assumed

(and in fact does not hold) in (1.5).

Lemma 7.3.1. Let Ω be a past asymptotically flat null hypersurface with a choice of

affinely parametrized null generator k and corresponding level set function λ. Assume

that the spacetime satisfies the dominant energy condition, then θ
(1)
k > 0.

Proof. Let {Sλ} the affine foliation defined by λ and consider the function ρ(λ) =
θk |Sλλ2+2λ. Using the Raychaudhuri equation (B.18), which can be written as dθk(λ)dλ

=
θ2k
2
+W with W ≥ 0 under DEC, the derivative of ρ satisfies

ρ′(λ) = 2λθk + λ
2

(
1

2
θ2k +W

)
+ 2 ≥ (λθk + 2)

2

2
≥ 0.

Since ρ vanishes at λ = 0, it follows that 0 ≤ ρ(λ) ≤ lim
λ→∞

ρ(λ) = θ
(1)
k where the last

equality follows from the expansion (7.6). To show the strict inequality θ
(1)
k > 0 we

argue by contradiction. Assume that there is some null geodesic αp in Ω where θ
(1)
k = 0.

Then ρ(λ) necessarily vanishes on this curve and

θk |αp(λ)λ2 + 2λ = 0 =⇒ θk |αp(λ) =
−2
λ

=⇒ lim
λ→0+

θk |αp(λ) = −∞,

which is a contradiction to the smoothness of Ω at S0.

The following result deals with the existence of foliations with constant θ
(1)
k .

Lemma 7.3.2. Let Ω be a past asymptotically flat null hypersurface with a choice of

affinely parametrized null generator k and corresponding level set function λ. There

exists a Lie constant positive function f ∈ F(Ω) and a rescaling k ′ = f k such that the
term θ

(1)
k ′ in the asymptotic expansion of θk ′ is constant.
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7.3. GAB foliations and a Penrose type inequality

Proof. Let {Sλ′} be the foliation associated to k ′. Thus λ = f λ′ because k ′(λ′) = −1
and λ′|S0 = 0. We use again that the null expansion θk |p is a property of Ω at p ∈ Ω,
independent of the cross section passing through p. Thus, as in the previous chapter,

we can transform the expansion (7.6) under the change of foliation λ = f λ′ simply as

θk =
−2
f

1

λ′
+
θ
(1)
k

f 2
1

λ′2
+ o(λ′−2).

Using now k ′ = f k and the fact that θk scales as k ,

θk ′ =
−2
λ′
+
θ
(1)
k

f

1

λ′2
+ o(λ′−2). (7.12)

Since θ
(1)
k > 0, we can choose f =

θ
(1)
k

c
for any given constant c > 0. The foliation

{Sλ′} has θ(1)k ′ = c , as claimed.

Note that, by construction, the foliation {Sλ′} in this lemma is also an affine foliation.
Once θ

(1)
k is constant, it can be made zero by a constant shift of λ. Indeed, let λ be an

affine parameter and define λ = λ′ + λ0 with λ0 constant. The null generator k now
remains unchanged and

θk =
−2
λ
+
θ
(1)
k

λ2
+ o(λ−2) =

−2
λ′
+
θ
(1)
k + 2λ0
λ′2

++o(λ′−2).

Thus, the coefficient θ
(1)
k along an affine foliation can be made zero by a change of origin

if and only if it is constant. As mentioned above, Ludvigsen & Vickers and Bergqvist

considered foliations with vanishing θ
(1)
k . Such foliations arise naturally in the context

of conformal compactifications of null infinity and are related to the Bondi coordinates

near null infinity. This motivates the following definition.

Definition 7.3.3 (Geodesic asymptotically Bondi foliation associated to S0). Con-

sider a past asymptotically flat null hypersurface Ω with a choice of cross section S0.

A geodesic-affine foliation {Sλ} is called geodesic asymptotically Bondi (GAB) and
associated to S0 if and only if

(i) Sλ=0 = S0,

(ii) θ
(1)
k is constant.

In the following lemma we show that two GAB foliations associated to S0 are nec-

essarily related by a constant rescaling of parameter, λ = aλ′ with a ∈ R+. Thus,
the collection of surfaces {Sλ} remain unchanged, and GAB foliations associated to
a given S0 are geometrically unique. Obviously, when S0 changes, the corresponding

unique GAB foliation (which exists by Lemma 7.3.2) also changes.
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7. On the Penrose inequality along null hypersurfaces

Lemma 7.3.4 (Uniqueness of GABs). Let Ω be a past asymptotically flat null hyper-

surface and S0 a cross section. Two GAB foliations {Sλ} and {Sλ′} associated to S0
are related by λ = aλ′ for some positive constant a.

Proof. Let k and k ′ be the null generators of {Sλ} and {Sλ′}. Since both are affine,
there exists a Lie constant positive function f such that k ′ = f k . We have shown in

(7.12) that

θk ′ =
−2
λ′
+
θ
(1)
k

f

1

λ′2
+ o(λ′−2) =

−2
λ′
+
θ
(1)
k

′

λ′2
+ o(λ′−2).

By definition of GAB foliation, both θ
(1)
k and θ

(1)
k

′
are constant. Thus f is a positive

constant (say a) and the affine parameters are related by λ = f λ′ = aλ′.

The main result in the work by Ludvigsen & Vickers and Bergqvist can be formulated

in terms of GABs as follows.

Theorem 7.3.5 (Ludvigsen & Vickers [67], Bergqvist [8]). Let Ω be a past asymp-

totically flat null hypersurface Ω in a spacetime satisfying the DEC. Assume that Ω

admits a weakly outer trapped cross section S0. If Ω admits a GAB foliation {Sλ}
associated to S0 and approaching large spheres, then the Penrose inequality

EB ≥
√
|S0|
16π

holds, where EB is the Bondi energy associated to the observer at infinity defined by

the foliation {Sλ}.

As mentioned in Section 7.1, the possibility that the foliation can be chosen to ap-

proach large spheres was assumed implicitly in the work by Ludvigsen & Vickers. The

necessity to add this restriction explicitly was noticed by Bergqvist. Since GAB folia-

tions associated to a given S0 are unique, the condition of approaching large spheres

is indeed a strong additional assumption, that will only be satisfied in very special cir-

cumstances. It makes sense to study GAB foliations in detail dropping the assumption

of approaching large spheres. By doing this we will be able to obtain an interesting

Penrose-type inequality relating the area of S0, not to the Bondi energy, but to the

limit of the Hawking energy along the foliation. Since the Hawking energy approaches

the Bondi energy for asymptotically spherical foliations, our result will automatically in-

clude Theorem 7.3.5 as a corollary. In particular, this will help to clarify the role played

by the asymptotically spherical condition in Theorem 7.3.5.

We have shown in Proposition 7.2.3 (cf. Remark 7.2.4) that for GAB foliations, the

limit of the functionalM(S, ℓ⋆) is the same as the limit of the Hawking energy at infinity.

To obtain a Penrose-type inequality we need to relate the value of M(S, ℓ⋆) at the initial
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7.3. GAB foliations and a Penrose type inequality

surface with its asymptotic value. The functional M(Sλ, ℓ
⋆) is not monotonic, so this

cannot be done straight away. However, as we saw in Section 7.2, M(Sλ, ℓ
ϕ) can be

split in two terms one of which is automatically monotonic, so that we concentrate

in studying the non-monotonic term. In fact this splitting corresponds to the two

functionals Mb(λ) and D(λ) used in Section 7.1.

The only difference is that now ℓϕ is kept free. Thus, we introduce the following

functionals, which in the case ϕ = 2 reduce to Mb(λ) and D(λ) defined in Minkowski

in Section 7.2:

D(S, ℓϕ) :=

√
|S|
16π

− ϕ
4
λ,

Mb(S, ℓ
ϕ) :=

ϕ

4
λ− 1

16π

∫

S

θℓϕηS.

We obviously haveM(S, ℓϕ) = D(S, ℓϕ)+Mb(S, ℓ
ϕ). In Chapter 4 we studied conditions

under which D(λ) is monotonic. In this chapter we intend to investigate in detail the

properties of the functional D(S, ℓϕ). The computation in Lemma 7.2.1 implies that for

affine flows and ϕ = const (recall that the cross sections of Ω are topological spheres,

so that χ(S) = 2)

dD(Sλ, ℓ
ϕ)

dλ
=

1√
64π|Sλ|

∫

Sλ

(−θk)ηSλ −
ϕ

4
,

dMb(Sλ, ℓ
ϕ)

dλ
=
1

16π

∫

Sλ

(
Eing(ℓϕ, k) + ϕ|sℓϕ|2γSλ

)
ηSλ (≥ 0 under DEC).

Recall that the monotonicity of Mb(λ) in the Minkowski setting required using spe-

cific properties of flat space. This general expression for Mb(Sλ, ℓ
ϕ) shows that the

monotonicity is in fact a general property of spacetimes satisfying the DEC. A di-

rect consequence of Mb(S, ℓ
ϕ) being monotonically increasing is that its initial value is

bounded above by its value at infinity. From (7.8), this limit is given by

lim
λ→∞

Mb(Sλ, ℓ
ϕ) = − 1

16π

∫

Ŝ

ϕ

(
Kq̂θ(1)k +

1

2
θ
(1)
ℓ

)
ηq̂,

which is finite irrespectively of the choice of ℓϕ. On the other hand, D(Sλ, ℓ
ϕ) is not

necessarily monotonic and its limit at infinity is finite only for the choice ℓ⋆ = Rq̂ℓ and

given by (see (7.7))

lim
λ→∞

D(Sλ, ℓ
⋆) =

∫
Ŝ
θ
(1)
k ηq̂

16πRq̂
. (7.13)

To bound M(Sλ, ℓ
⋆) from above we need to find an upper bound for D(Sλ, ℓ

⋆). In fact,

we shall prove D(Sλ, ℓ
⋆) ≤ lim

λ→∞
D(Sλ, ℓ

⋆) provided the foliation {Sλ} is GAB. In the
following lemma we introduce a functional that turns out to be monotonic for GAB

foliations.

156



7. On the Penrose inequality along null hypersurfaces

Lemma 7.3.6. Let Ω be a past asymptotically flat null hypersurface with a choice of

affinely parametrized null generator k and corresponding level set function λ. Assume

that the spacetime satisfies the dominant energy condition. Consider the functional

F (Sλ) =
|Sλ|(

8πR2q̂λ+
∫
Ŝ
θ
(1)
k ηq̂

)2 .

If {Sλ} is the GAB foliation associated to S0, then F (Sλ) is monotonically increasing.

Proof. Writing F (Sλ) as

F (Sλ) =

∫

Sλ

ηSλ(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)2

and using £−kηSλ = −θkηSλ, the derivative of F (Sλ) is

d

dλ
F (Sλ) =

∫

Sλ




−16πR2q̂(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)3 +
−θk(

8πR2q̂λ+
∫
Ŝ
θ
(1)
k ηq̂

)2


ηSλ

=

∫

Sλ



−16πR2q̂ + (−θk)

(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)

(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)3


ηSλ. (7.14)

This derivative is non-negative provided

(−θk)
(
8πR2q̂λ+

∫

Ŝ

θ
(1)
k ηq̂

)
≥ 16πR2q̂ ⇐⇒ 1

−θk
− λ
2
≤ 1

16πR2q̂

∫

Ŝ

θ
(1)
k ηq̂. (7.15)

The Raychaudhuri equation (B.18) implies that the function 1
−θk −

λ
2
has non-negative

derivative (under DEC). Since its limit at infinity is
θ
(1)
k

4
it follows

1

−θk
− λ
2
≤ θ

(1)
k

4
, (7.16)

which holds true for any affine foliation. For GAB foliations we have, using
∫
Ŝ
ηq̂ =

4πR2q̂,

θ
(1)
k

4
=

1

16πR2q̂

∫

Ŝ

θ
(1)
k ηq̂,

and (7.16) is exactly (7.15).
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The monotonicity of the functional F (Sλ) is useful to establish an upper bound for

D(Sλ, ℓ
⋆), irrespectively of whether the foliation is GAB or not.

Lemma 7.3.7. Let {Sλ} be an affine foliation with leading term metric q̂. If the
functional F (Sλ) is monotonically increasing, then

D(Sλ, ℓ
⋆) ≤ lim

λ→∞
D(Sλ, ℓ

⋆). (7.17)

Proof. The monotonicity of the functional F (Sλ) along {Sλ} implies
F (Sλ) ≤ lim

λ→∞
F (Sλ). (7.18)

To compute this limit we use

|Sλ| =
∫

Sλ

ηSλ =

∫

Ŝ

(λ2 + θ
(1)
k λ+ o(λ))ηq̂ = 4πR

2
q̂λ
2 + o(λ),

which follows from (7.5) and
∫
Ŝ
ηq̂ = 4πR

2
q̂. Hence

lim
λ→∞

F (Sλ) = lim
λ→∞

|Sλ|(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)2 =
1

16πR2q̂

and (7.18) yields

|Sλ|(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)2 ≤
1

16πR2q̂
⇐⇒ |Sλ|

16π
≤
(
Rq̂
2
λ+

1

16πRq̂

∫

Ŝ

θ
(1)
k ηq̂

)2
.

(7.19)

From the definition of D(Sλ, ℓ
⋆) and using ϕ = 2Rq̂ we have

D(Sλ, ℓ
⋆) =

√
|Sλ|
16π

− Rq̂
2
λ ≤

∫
Ŝ
θ
(1)
k ηq̂

16πRq̂

after using (7.19). Since the right-hand side is the limit of D(Sλ, ℓ
⋆) at infinity (7.13),

we conclude (7.17).

We can now establish our main result concerning GAB foliations.

Theorem 7.3.8 (A Penrose type inequality for GAB foliations). Let Ω be a past

asymptotically flat null hypersurface and S0 a cross section. Assume that the spacetime

satisfies the dominant energy condition. Then, the area |S0| satisfies the bound
√
|S0|
16π

− 1

16π

∫

S0

θℓ⋆ηS0 ≤ lim
λ→∞

mH(Sλ), (7.20)

where the limit is taken along the GAB foliation {Sλ} associated to S0. In particular,
if S0 is a weakly outer trapped cross section, then√

|S0|
16π

≤ lim
λ→∞

mH(Sλ). (7.21)
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7. On the Penrose inequality along null hypersurfaces

Proof. From Lemmas 7.3.6 and 7.3.7, D(Sλ, ℓ
⋆) is bounded above by its limit at infinity.

The monotonicity of Mb(Sλ, ℓ
⋆) then implies

M(Sλ, ℓ
⋆) ≤ lim

λ→∞
M(Sλ, ℓ

⋆) = lim
λ→∞

mH(Sλ),

where the last equality follows from Proposition 7.2.3, since {Sλ} is GAB. In particular,
for λ = 0 we have (7.20). For the last statement we simply use that θℓ⋆ ≤ 0 for weakly
outer trapped surfaces.

Inequality (7.21) gives a completely general upper bound for the area of weakly outer

trapper surfaces S0 in terms of an energy-type quantity evaluated at infinity along the

outward past null hypersurface generated by S0, provided the latter stays regular all

the way to infinity. In combination to the general analysis of the limit of the Hawking

energy at infinity carried out in Chapter 6, this provides a Penrose-type inequality with

potentially interesting consequences. Obviously, this inequality will only correspond to

the Penrose inequality whenever the limit of the Hawking energy agrees with the Bondi

energy of the cut at infinity defined by Ω. As already mentioned, this is known to occur

for foliations approaching large spheres. When Ω admits a GAB foliation approaching

large spheres, then the limit of the Hawking energy along this foliation is the Bondi

energy EB associated to this observer at infinity, and the Penrose-type inequality in

Theorem 7.3.8 becomes the standard Penrose inequality, thus recovering the original

result by Ludvigsen & Vickers and Bergqvist quoted as Theorem 7.3.5.

7.4 On the inequality D(Sλ, ℓ) ≤ limλ→∞D(Sλ, ℓ)D(Sλ, ℓ) ≤ limλ→∞D(Sλ, ℓ)D(Sλ, ℓ) ≤ limλ→∞D(Sλ, ℓ)

The key ingredient that allowed us to prove the Penrose-type inequality (7.21) is

D(Sλ, ℓ
⋆) ≤ lim

λ→∞
D(Sλ, ℓ

⋆). In fact, the argument in the proof of Theorem 7.3.8

combined with Proposition 7.2.3 shows that any surface S0 satisfying the inequality

D(S0, ℓ
⋆) ≤ lim

λ→∞
D(Sλ, ℓ

⋆) =
1

16πRq̂

∫

Ŝ

θ
(1)
k ηq̂ (7.22)

along an affine foliation {Sλ} starting at S0, in a spacetime satisfying the dominant
energy condition, automatically satisfies the inequality

√
|S0|
16π

− 1

16π

∫

S0

θℓ⋆ηS0 ≤ lim
λ→∞

mH(Sλ) +
1

16π

∫

Ŝ

θ
(1)
k

(
1

Rq̂
− Rq̂Kq̂

)
ηq̂. (7.23)

This is the Penrose inequality provided S0 is a weakly outer trapped surface and the right

hand is the Bondi energy EB along {Sλ}. For this it is sufficient that {Sλ} approaches
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large spheres and this will be the case we will be interested from now on. However,

we postpone making the assumption that q̂ is the round metric until subsection 7.5

because Proposition 7.4.1 below (which holds for arbitrary affine foliations) may be of

independent interest.

In the previous section the validity of (7.22) followed from the monotonicity of F (Sλ)

along GAB foliations. As shown in Lemma 7.3.7 monotonicity of F (Sλ) is sufficient to

establish (7.22) for arbitrary affine foliations. Since the derivative of (7.14) is

d

dλ
F (Sλ) =

1
(
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)2

(
d

dλ
|Sλ| −

16πR2q̂|Sλ|
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

)
,

we have established:

Proposition 7.4.1. Let Ω be a past asymptotically flat null hypersurface in a spacetime

satisfying the dominant energy condition and {Sλ} an affine foliation. If

d

dλ
|Sλ| ≥

16πR2q̂|Sλ|
8πR2q̂λ+

∫
Ŝ
θ
(1)
k ηq̂

(7.24)

holds for all λ ≥ 0 then the inequality (7.23) holds. In particular if {Sλ} approaches
large spheres and (7.24) is satisfied, then the Penrose inequality EB ≥

√
|S0|
16π
holds,

where EB is the Bondi energy associated to the observer defined by {Sλ}.

Remark 7.4.2. Expanding the area as

|Sλ| = 4πR2q̂λ2 +
(∫

Ŝ

θ
(1)
k ηq̂

)
λ+ Θ̂, (7.25)

(7.24) becomes, after some cancellations,

(∫

Ŝ

θ
(1)
k ηq̂

)2
+

(
8πR2q̂λ+

∫

Ŝ

θ
(1)
k ηq̂

)
dΘ̂

dλ
≥ 16πR2q̂Θ̂. (7.26)

This alternative form of Proposition 7.4.1 will be used in Section 7.7 below.

GAB foliations have the property that (7.24) is always true. It is natural to ask whether

the constancy of θ
(1)
k can be relaxed and still obtain sufficiently general conditions under

which (7.24) holds. The issue, however, appears to be difficult. In the next subsection

we study the behaviour of the derivative of F (Sλ) near infinity and show that both cases

of F (Sλ) being monotonically increasing or monotonically decreasing near infinity are

possible.
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7. On the Penrose inequality along null hypersurfaces

7.4.1 On the monotonicity of F (Sλ)F (Sλ)F (Sλ) for large λλλ

A necessary condition for (7.14) to be non-negative for all λ is, of course, that its

leading term at infinity is non-negative. To determine the asymptotic behaviour at

infinity requires one extra term in the expansion of θk as compared to (7.6). To make

sure this is possible we need a slightly stronger definition of asymptotic flatness.

Definition 7.4.3 (Strong past asymptotic flatness). A null hypersurface Ω in a space-

time (M4, g) is strong past asymptotically flat if it is past asymptotically flat with (i)

in Definition 6.3.4 in Chapter 6 replaced by the stronger condition

(i)’ There exist symmetric 2-covariant transversal and Lie constant tensor fields q̂

(positive definite), h and Ψ0 such that γ̃ defined by γ = λ2q̂ + λh + Ψ0 + γ̃ is

γ̃ = o1(1) ∩ oX2 (1).

Remark 7.4.4. In strong asymptotically flat null hypersurfaces, all affine foliations {Sλ}
automatically satisfy item (i)’ in the definition. Also, there always exist affine folia-

tions {Sλ} for which the asymptotic metric q̂ is the round metric of unit radius on
S2 (see Chapter 6 for a proof of both facts in the context of asymptotically flat null

hypersurfaces, which carries over immediately to the strong asymptotically flat case).

A first consequence of strong asymptotic flatness is that the function Θ defined by

ηSλ = (λ
2 + θ

(1)
k λ+Θ)ηq̂ (7.27)

is of the form Θ = Θ0+Θ̃, with Θ0 Lie constant and Θ̃ = o1(1). A second consequence,

which follows from (B.12), is that θk admits the expansion

θk =
−2
λ
+
θ
(1)
k

λ2
+
θ
(2)
k

λ3
+ o(λ−3) (7.28)

with θ
(2)
k Lie constant. The following proposition relates Θ0 with θ

(1)
k and θ

(2)
k and

provides a universal bound for θ
(2)
k .

Proposition 7.4.5. Let Ω be a strong past asymptotically flat null hypersurface and

{Sλ} an affine foliation. Then

Θ0 := lim
λ→∞
Θ =

1

2

((
θ
(1)
k

)2
+ θ

(2)
k

)
. (7.29)

If in addition the spacetime satisfies the dominant energy condition then we will also

have

θ
(2)
k ≤ −

1

2

(
θ
(1)
k

)2
≤ 0. (7.30)
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Proof. Inserting (7.27) and (7.28) into the evolution equation

£−kηSλ = −θkηSλ (7.31)

gives

(2λ+ θ
(1)
k +

dΘ̃

dλ
)ηq̂ = −

(
−2
λ
+
θ
(1)
k

λ2
+
θ
(2)
k

λ3
+ o(λ−3)

)
(λ2 + θ

(1)
k λ+Θ0 + o(1))ηq̂

=

(
2λ+ θ

(1)
k +

(
2Θ0 −

(
θ
(1)
k

)2
− θ(2)k

)
1

λ
+ o(λ−1)

)
ηq̂.

Since dΘ̃
dλ
= o(λ−1) we conclude 2Θ0 −

(
θ
(1)
k

)2
− θ(2)k = 0, which proves (7.29). For

the universal bound (7.30), let us define Î(λ) =
ηSλ

(θ
(1)
k
+2λ)2

. Its Lie derivative is

£−k Î(λ) =
1

(θ
(1)
k + 2λ)

2

(
−θk −

4

θ
(1)
k + 2λ

)
ηSλ ≥ 0,

where in the last inequality we used (7.16) (here is where the DEC is used). Î(λ) has

limit at infinity 1
4
ηq̂. In combination with the fact that Î is monotonically increasing we

conclude

Î(λ) =
ηSλ

(θ
(1)
k + 2λ)

2
≤ 1
4
ηq̂.

Inserting (7.27), a direct computation gives
(
− 1
16

(
θ
(1)
k

)2
+
1

4
Θ0

)
1

λ2
+ o(λ−2) ≤ 0 =⇒ Θ0 ≤

1

4

(
θ
(1)
k

)2
,

which is simply (7.30) after using the explicit form of Θ0.

Let us now find the asymptotic expansion of the right hand side of (7.14). Plugging

the asymptotic expansion (7.28) gives, after a straightforward computation,

d

dλ
F (Sλ) =

1

(8πR2q̂)
3

((∫

Ŝ

θ
(1)
k ηq̂

)2
− 8πR2q̂

∫

Ŝ

(
θ
(1)
k

)2
ηq̂ − 8πR2q̂

∫

Ŝ

θ
(2)
k ηq̂

)
1

λ3

+ o(λ−3). (7.32)

The leading coefficient can be rewritten as F∞
(8πR2

q̂
)3
, where

F∞ = −4πR2q̂
∫

Ŝ

((
θ
(1)
k

)2
+ 2θ

(2)
k

)
ηq̂ +

[(∫

Ŝ

θ
(1)
k ηq̂

)2
− 4πR2q̂

∫

Ŝ

(
θ
(1)
k

)2
ηq̂

]
,
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which is a difference of positive quantities. Indeed, the first term is non-negative because

of (7.30), while the term in brackets is non-positive because
(∫

Ŝ

θ
(1)
k ηq̂

)2
≤ 4πR2q̂

∫

Ŝ

(
θ
(1)
k

)2
ηq̂

by the Hölder inequality. Depending on which term dominates, the functional F (Sλ) will

be increasing or decreasing near infinity. Non-negativity of the leading term (7.32) is

obviously a necessary condition for the hypothesis of Proposition 7.4.1 to hold. However,

even when (7.32) has the right sign, it is not at all obvious how to ensure that F (Sλ) is

monotonic for all λ when the foliation is, in addition, assumed to approach large spheres.

We have attempted (and failed) finding sufficient condition ensuring d2

dλ2
F (Sλ) ≤ 0, as

this would immediately imply that F (Sλ) is increasing (because F
′(Sλ)→ 0 at infinity).

Despite the lack of success so far, approaching the null Penrose inequality using the

monotonic functional F (Sλ) remains an interesting open problem, specially in view of

the fact that F (Sλ) is always monotonic for GAB foliations.

7.5 Renormalized area method for the Penrose inequa-

lity

Monotonicity of F (Sλ) along affine foliations approaching large spheres is an interesting

sufficient condition for the Penrose inequality along null hypersurfaces. However, as

discussed in the previous subsection, it appears to be difficult to find general situations

where F ′(Sλ) ≥ 0 can be guaranteed. In this section we consider an a priori different
setup which implies the validity of (7.22) and hence of the Penrose inequality whenever

the foliations also satisfies the restriction of approaching large spheres. Let us assume

from now on that q̂ is a round metric on the sphere. Without loss of generality we

can then assume that q̂ is a round metric of radius one, which we denote by q̊. Then

Rq̂ = 1 and ℓ
⋆ = ℓ. We want to investigate the condition

d

dλ
D(Sλ, ℓ

⋆) ≥ 0, (7.33)

which indeed implies the validity of (7.22) and hence the validity of the Penrose inequal-

ity.

Note that this condition has already been used in Section 4.5 of Chapter 4 in the

Minkowski context. The positive results obtained there suggest that studying (7.33)

in a general setup may be also useful to tackle the Penrose inequality for arbitrary

spacetimes. Indeed, under D′ ≥ 0, (7.22) holds, which in turn is sufficient for (7.23).
Applying this inequality in the Minkowski case for foliations approaching large spheres

we find √
|S0|
16π

− 1

16π

∫

S0

θℓηS0 ≤ 0
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after using that lim
λ→∞

mH(Sλ) = 0, because the Bondi energy of the Minkowski spacetime

is identically zero. This argument shows in just a few steps how the shell Penrose

inequality follows from D′(λ) ≥ 0.
Going back to the general setting, since |Sλ| diverges at infinity like 4πλ2, the func-
tional D(Sλ, ℓ) can be regarded as a renormalization of the area functional, in order to

make it bounded. We thus call the approach to the null Penrose inequality via (7.33)

the renormalized area method. It is interesting that this method is, in fact, a subcase

of the general setup involving monotonicity of F (Sλ).

Proposition 7.5.1. Let Ω be a strong past asymptotically flat null hypersurface and

{Sλ} an affine foliation approaching large spheres. Then
d

dλ
D(Sλ, ℓ) ≥ 0 =⇒ d

dλ
F (Sλ) ≥ 0.

Proof. Let L := 1
16π

∫
S2
θ
(1)
k ηq̊ > 0 be the limit of D(Sλ, ℓ) at infinity. Since |Sλ| =

16π
(
D(Sλ, ℓ) +

λ
2

)2
we can rewrite F (Sλ) as

F (Sλ) =
|Sλ|(

8πλ+
∫
S2
θ
(1)
k ηq̊

)2 =
(Dλ +

λ
2
)2

16π(L+ λ
2
)2
,

where Dλ is a short-hand for D(Sλ, ℓ). Let

f (λ) :=
√
16πF (Sλ) =

Dλ +
λ
2

L+ λ
2

so that

f ′(λ)

(
L+

λ

2

)
=
dDλ
dλ
+
1

2
(1− f (λ)). (7.34)

If dDλ
dλ
≥ 0 it follows Dλ ≤ lim

λ→∞
Dλ = L so that f (λ) =

Dλ+
λ
2

L+ λ
2

≤ 1 and we conclude from
(7.34) that f ′(λ) ≥ 0, which is is equivalent to F ′(Sλ) ≥ 0.

The derivative of D(Sλ, ℓ) is

d

dλ
D(Sλ, ℓ) =

1

2
√
16πSλ

(
d

dλ
|Sλ| −

√
16πSλ

)

=
1

2
√
16πSλ

(∫

Sλ

(−θk)ηSλ −
√
16πSλ

)
.

Given that θk < 0, the inequality
d
dλ
D(Sλ, ℓ) ≥ 0 can be equivalently written in a slightly

more convenient form as G(λ) ≥ 0, where

G(λ) :=

(∫

Sλ

(−θk)ηSλ
)2
− 16π|Sλ|.

We start by computing the limit of G(λ) at infinity.
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7. On the Penrose inequality along null hypersurfaces

Proposition 7.5.2. With the same assumptions as in Proposition 7.5.1,

lim
λ→∞

G(λ) = F∞ =

(∫

S2

θ
(1)
k ηq̊

)2
− 8π

∫

S2

(
θ
(1)
k

)2
ηq̊ − 8π

∫

S2

θ
(2)
k ηq̊. (7.35)

Proof. We have shown in Proposition 7.4.5 that

ηSλ =

(
λ2 + θ

(1)
k λ+

1

2

((
θ
(1)
k

)2
+ θ

(2)
k

)
+ o(1)

)
ηq̊. (7.36)

From expansion (7.6), we have θkηSλ = −2λ− θ(1)k + o(1), so that
(∫

Sλ

θkηSλ

)2
= 64π2λ2 + 16πλ

∫

S2

θ
(1)
k ηq̊ +

(∫

S2

θ
(1)
k ηq̊

)2
+ o(1).

Also form (7.36),

|Sλ| = 4πλ2 + λ
∫

S2

θ
(1)
k ηq̊ +

∫

S2

1

2

((
θ
(1)
k

)2
+ θ

(2)
k

)
ηq̊ + o(1).

Inserting both into G(λ) the divergent terms cancel out and we are left with (7.35).

Remark 7.5.3. The limit of G(λ) is directly related to the leading term in the asymptotic

expansion of F (Sλ) so that the inequality “at infinity” F∞ ≥ 0 is necessary for both
methods. Thus, for sufficiently large λ, the renormalized area method does not only

imply F ′(Sλ) ≥ 0, but it is in fact equivalent to it (possibly excluding the case F∞ = 0
where higher order terms dominate). However, we do not expect this to be true for all

λ, as it appears that D′(Sλ, ℓ) ≥ 0 should be a proper subset of F ′(Sλ) ≥ 0.

Assuming we are in the situation where lim
λ→∞

G(λ) ≥ 0, we can ensure G(λ) ≥ 0 by
the condition G ′(λ) ≤ 0. This derivative is, from the Raychaudhuri equation (B.18),

G ′(λ) = 2

(∫

Sλ

θkηSλ

)(
d

dλ

(∫

Sλ

θkηSλ

)
+ 8π

)

= 2

(∫

Sλ

θkηSλ

)(∫

Sλ

(
Ricg(k, k)− 1

2
θ2k +Π

k
ABΠ

kAB

)
ηSλ + 8π

)
,

with ΠkAB := K
k
AB − 1

2
θkγAB the trace-free part of K

k
AB. Since the first term is always

negative, G ′(λ) ≤ 0 is equivalent to H(λ) ≥ 0, where we have defined

H(λ) :=

∫

Sλ

(
Ricg(k, k)− 1

2
θk
2 +ΠkABΠ

kAB

)
ηSλ + 8π.

We proceed with the computation of the derivative of this function and of its limit at

infinity.
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Proposition 7.5.4. With the same assumptions as in Proposition 7.5.1, lim
λ→∞

H(λ) = 0

and the derivative of H(λ) is

H′(λ) =

∫

Sλ

(
−2θkRicg(k, k) + 2(Πk)ABRAB +

d

dλ
Ricg(k, k)

)
ηSλ, (7.37)

where RAB := Riem
g(XA, k, XB, k).

Proof. For the limit, we split H(λ) in three terms and show that each one tends to

zero. We start with
∫
Sλ
ΠkABΠ

kABηSλ. From equation (B.12) and the expansion (i) in

Definition 7.4.3 for the metric γ, it follows

Kk
AB = −q̊ABλ−

1

2
hAB + o(1), (7.38)

so that its trace-free part is ΠkAB = O(1). Since γ(λ)AB = λ
2q̊AB + o(λ), its inverse is

γ(λ)AB =
1

λ2
q̊AB + o(λ−2) (7.39)

and ΠkABΠ
kAB = O(λ−4) so that

∫

Sλ

(
ΠkABΠ

kAB
)
ηSλ

λ→∞−→ 0

as a consequence of ηSλ = λ
2ηq̊+O(λ). Concerning the term in Ric

g(k, k), we note that

inserting the expansion (7.6) into the Raychaudhuri equation (B.18) yields ΠkABΠ
kAB +

Ricg(k, k) = O(λ−4) which implies Ricg(k, k) = O(λ−4) and again
∫
Sλ
Ricg(k, k)ηSλ

λ→∞−→
0. Finally, θ2kηSλ = (4 + o(1))ηq̊ from which

∫

Sλ

(
−1
2
θk
2

)
ηSλ + 8π

λ→∞−→ 0.

We next compute the derivative of H(λ). Using now equation (B.19) in Appendix B,

we obtain
d

dλ

(
Πk

A

BΠ
kB

A

)
= 2θktr((Π

k)2) + 2RABΠkAB.

Using this together with (7.31) and the Raychaudhuri equation, the derivative (7.37)

is obtained after a number of cancellations.

We can combine the previous computations to find a set of sufficient conditions under

which the renormalized area method applies.

Theorem 7.5.5 (Sufficient conditions for the renormalized area method). Let Ω be

a strong past asymptotically flat null hypersurface and {Sλ} an affine foliation approach-
ing large spheres. Assume that the spacetime satisfies the dominant energy condition.

If the two conditions
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7. On the Penrose inequality along null hypersurfaces

(i)

(∫

S2

θ
(1)
k ηq̊

)2
− 8π

∫

S2

(
θ
(1)
k

)2
ηq̊ − 8π

∫

S2

θ
(2)
k ηq̊ ≥ 0,

(ii)

∫

Sλ

(
−2θkRicg(k, k) + 2(Πk)ABRAB +

d

dλ
Ricg(k, k)

)
ηSλ ≤ 0, ∀λ ≥ 0

hold, then √
|S0|
16π

− 1

16π

∫

S0

θℓ ηS0 ≤ EB, (7.40)

where EB is the Bondi energy associated to the foliation {Sλ}. In particular, if S0 is a
weakly outer trapped surface then the Penrose inequality EB ≥

√
|S0|
16π
holds.

Proof. From (ii) we have H′(λ) ≤ 0 which implies H(λ) ≥ 0, as this function tends to
zero at infinity. Hence G ′(λ) ≤ 0. From (i) and Proposition 7.5.2 we have lim

λ→∞
G(λ) ≥ 0

and we conclude G(λ) ≥ 0, or equivalently D′(Sλ, ℓ) ≥ 0. The theorem follows from
(7.23) using the fact that {Sλ} approaches large spheres.

It is remarkable that H′(λ) only involves curvature terms. This makes checking the
validity of H′(λ) ≥ 0 feasible, at least in some cases. In the next two sections we
explore the validity of conditions (i) and (ii) in two simple, but relevant situations.

7.6 Shear-free vacuum case

In this section we consider whether the functional M(Sλ, ℓ) can be used to prove the

Penrose inequality in the case of shear-free null hypersurfaces Ω (i.e. satisfying Kk =
1
2
θkγ) embedded in a vacuum spacetime. The Penrose inequality in this setup was

proven by Sauter [93] in full generality exploiting properties of the Hawking energy. Our

interest in analyzing the shear-free case is to gain insight on the range of applicability

and limitations of the methods discussed above.

For instance, concerning the renormalized area method in subsection 7.5, the vacuum

and shear-free conditions immediately imply that H′(λ) = 0, so condition (ii) in The-
orem 7.5.5 is always satisfied. Thus H(λ) vanishes identically, which is equivalent to

G(λ) = const. The method works if and only if this constant is non-negative. It can

be computed from its limit at infinity in Proposition 7.5.2 as

G(λ) = lim
λ→∞

G(λ) =

(∫

S2

θ
(1)
k ηq̊

)2
− 8π

∫

S2

(
θ
(1)
k

)2
ηq̊ − 8π

∫

S2

θ
(2)
k ηq̊. (7.41)
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7.6. Shear-free vacuum case

In the shear-free vacuum case, the Raychaudhuri equation (B.18) is simply dθk
dλ
= −1

2
θ2k ,

which integrates to

θk = −
2

λ+ α
,

where α > 0 (because θk < 0 all along Ω) is a Lie constant function. Expanding near

infinity

θk = −
2

λ
+
2α

λ
− 2α

2

λ2
+O(λ−3) =⇒ θ

(1)
k = 2α, θ

(2)
k = −2α2,

which inserted into (7.41) yields

G(λ) = 4

((∫

S2

αηq̊

)2
− 4π

∫

S2

α2ηq̊

)
.

By the Hölder inequality this constant is always non-positive and vanishes only when

α = const (i.e. when {Sλ} is a GAB foliation). Except in this case (which corresponds
in the present setup to θk |S0 = const) we have G(λ) < 0 and D(Sλ, ℓ) is strictly
monotonically decreasing, which makes the renormalized area method method fail. In

fact, as discussed in Remark 7.5.3, the function F (Sλ) is also monotonically decreasing,

at least in a neighbourhood of infinity, so the approach discussed in Proposition 7.4.1

also fails in the present setup.

Despite all this, the method involving the functionalM(Sλ, ℓ) is capable of establishing

the Penrose inequality in the shear-free vacuum case. However, as we shall see next,

the argument is not based on the monotonicity of M(Sλ, ℓ) (which fails in general,

see below) but via an integration of (7.4), which in turn relies on the fact that all the

geometric information along Ω can be computed explicitly in the shear-free vacuum

case. From the shear-free condition and the expression for θk , the metric γSλ can be

obtained from (B.12)

dγSλ
dλ
= −2Kk = −θkγSλ =

2

λ+ α
γSλ ⇐⇒ γSλ = (λ+ α)

2q̊

where we used the fact that the foliation {Sλ} approaches large spheres. The volume
form is ηSλ = (λ+α)

2ηq̊. As shown in Lemma 7.2.1, the derivative ofMb(Sλ, ℓ) involves

the connection one-form sℓ. This object satisfies the following evolution equation along

an arbitrary foliation defined by a null generator k (see equation (B.39) in Appendix B)

k(sℓ(X)) = −X(Qk)− sℓ(X)θk + (divSrKk)(X)−DXθk − Eing(k,X),

where X is tangent to Sλ and satisfies [k,X] = 0. In the vacuum, affine and shear-free

case this equation becomes

dsℓ(X)

dλ
= − 2

λ+ α
sℓ(X) +

1

(λ+ α)2
X(α)
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7. On the Penrose inequality along null hypersurfaces

after using the explicit form of θk . This equation can be integrated to

sℓ =
1

(λ+ α)2
(λdα+ ω) , (7.42)

where ω is a Lie constant transversal one-form. In order to investigate the monotonicity

of the functional M(Sλ, ℓ) we need to evaluate (7.4) and in particular |sℓ|2γSληSλ. Using
(7.42) and the form of γSλ we have

|sℓ|2γSληSλ =
1

(λ+ α)4
|λdα+ ω|2q̊ηq̊,

and identity (7.4) simplifies to

dM(Sλ, ℓ)

dλ
=
1

8π

√
4π∫

S2
(λ+ α)2ηq̊

∫

S2

(λ+ α)ηq̊ −
1

2
+
1

8π

∫

S2

1

(λ+ α)4
|λdα+ ω|2q̊ηq̊.

We want to bound this expression from below. The Lie constant one-form ω can be

uniquely split into

ω = −βdα+ ω⊥, 〈ω⊥, dα〉q̊ = 0,

where β is a Lie constant function on Ω. Thus

dM(Sλ, ℓ)

dλ
=
1

2




∫
S2
(λ+ α)ηq̊√

4π
∫
S2
(λ+ α)2ηq̊

− 1


+ 1

8π

∫

S2

((λ− β)2|dα|2q̊ + |ω⊥|2q̊)
(λ+ α)4

ηq̊.

(7.43)

The Hölder inequality implies that the term in parenthesis is non-positive and strictly

negative unless α constant (which corresponds both to the GAB case and also to the

D′(Sλ, ℓ) ≥ 0 case in the present context). Since β may be positive and constant and ω⊥
is allowed to be zero, it follows that dM(Sλ,ℓ)

dλ
|λ=β may have either sign. This shows that

one cannot expect M(Sλ, ℓ) to be a monotonic functional on all cases. Nevertheless,

the right-hand side in (7.43) is an explicit function in λ that can be integrated explicitly

M(Sλ1, ℓ)−M(S0, ℓ) =


1
2



√∫

S2
(λ+ α)2ηq̊

4π
− λ




+
1

8π

∫

S2

[
−α2

4
− 1
3

(
β − α

2

)2
+ λ(β − α)− λ2

]
|dα|2q̊ − 1

3
|ω⊥|2q̊

(λ+ α)3
ηq̊



∣∣∣∣∣∣

λ1

λ=0

.

169



7.6. Shear-free vacuum case

Sending λ1 to infinity, evaluating at λ = 0 and using that the flow approaches large

spheres

EB = M(S0, ℓ)

+
1

8π

(∫

S2

αηq̊ −
√
4π

∫

S2

α2ηq̊ +

∫

S2

(
|dα|2q̊
4α

+
(β − α

2
)2|dα|2q̊ + |ω⊥|2q̊
3α3

)
ηq̊

)

=

√
|S0|
16π

− 1

16π

∫

S0

θℓηS0

+
1

8π

(∫

S2

(
α+

|dα|2q̊
4α

)
ηq̊ −

√
4π

∫

S2

α2ηq̊

︸ ︷︷ ︸
:=I1

+

∫

S2

(β − α
2
)2|dα|2q̊ + |ω⊥|2q̊
3α3

ηq̊
︸ ︷︷ ︸

:=I2

)
.

(7.44)

This identity is valid for any spacelike cross section S0 embedded in a shear-free and

vacuum Ω. We now use the Beckner inequality already used in Chapter 4 (formula

(4.26) ), which for q = 4 and n = 2 reads

∫

S2

(
F 2 + |dF |2q̊

)
ηq̊ ≥

√
4π

∫

S2

F 4ηq̊

with equality only for the constant functions. Writing F =
√
α it follows

∫

S2

(
α+

|dα|2q̊
4α

)
ηq̊ ≥

√
4π

∫

S2

α2ηq̊

and I1 is non-negative. The Penrose inequality in this case follows because I2 is mani-

festly non-negative and on a weakly outer trapped surface θℓ ≤ 0.
The proof by Sauter [93] of this inequality in the vacuum, shear-free case involved

computing the Hawking energy for a foliation {Ss} with the property θk(Ss) = 2
s
. This

is in general a different foliation to the one used before (they only agree when α is

constant). A fundamental step in Sauter’s argument was also the Beckner inequality.

Note also, that the Penrose inequality in the shear-free case involves not only the gap

given by the Beckner inequality, but a second gap given by I2. The stronger Penrose

inequality (7.44) is obviously sharp because if S0 is a MOTS (θℓ = 0) we have equality

in (7.44). It is an interesting question whether one can give a physical interpretation to

each of the two positive terms in (7.44). Note that

ω = α2sℓ|S0, α = − 2

θk |S0
, q̊ =

1

α2
γS0,

so that β and ω⊥ can be determined in terms of the data on S0 and both I1 and I2 can
be written fully in terms of the geometry of the initial surface.
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7. On the Penrose inequality along null hypersurfaces

7.7 Renormalized area method for the shell Penrose

inequality inM1,3M1,3M1,3

In Chapter 4 we studied the shell Penrose inequality

∫

S0

θℓηS0 ≥
√
16π|S0| (7.45)

by imposing the conditionD′(λ) ≥ 0. This corresponds to the renormalized area method
developed in this chapter in full generality. It is therefore convenient to apply the general

results to the specific case of Minkowski. By doing this we should (and will) recover

the results in Chapter 4. We will also see how the general tools developed here allow

us to derive the results in Minkowski in a much easier and efficient way. In addition

we analyze the size of the set of solutions obtained with the renormalized area method

in comparison with the ones obtained under the Ludvigsen & Vickers and Bergqvist

assumptions (existence of a GAB foliation that also tended to large spheres) in the

Minkowski spacetime, cf. Section 7.3. In Section 7.8 we study the GAB foliation in the

Minkowski setting.

The renormalized area method is particularly well-suited to the Minkowski spacetime.

Indeed, the curvature tensor vanishes identically in this spacetime, so from Proposition

7.5.4 we have that H(λ) is constant and hence zero, as its limit at infinity always van-

ishes. Thus, as in the shear-free case, G(λ) is constant and its sign can be decided

by its asymptotic value (7.35). We need to determine θ
(1)
k and θ

(2)
k . In the Minkowski

spacetime this is simple because RAB = 0 makes the Ricatti equation explicitly inte-

grable.

The solution to the Ricatti equation for Kk (4.7) and for the metric γ (4.8) has

already been obtained in Chapter 4, in (4.9) and (4.10) respectively. There the initial

data was given in terms of the geometry of the euclidean surface Ŝ0 obtained when

intersecting the past null cone of S0 with a constant time hyperplane {t = t0}. In this
chapter it is more convenient to express the solutions in terms of initial data defined on

the surface S0, specifically in terms of its second fundamental form Kk
0AB along k and

its metric, namely

(Kk)AB

∣∣∣
p
= (Kk

0 )
A
C

∣∣
π̃(p)
[(Id − λ(p)Kk0 |π̃(p))−1]CB, (7.46)

(γ)AB

∣∣∣
p
= (γ)AC|π̃(p) [(Id − λ(p)Kk0 |π̃(p))2]CB, (7.47)

where π̃(p) is the (unique) point on S0 lying on the null geodesic containing p and

tangent to k |p. Here Kk0 denotes the endomorphism with components (Kk
0 )
A
B and

Kk
0AB stands to the null second fundamental form of S0 along k . Taking the trace of

(7.46) we find θk |p = (Kk
0 )
A
C[(Id − λKk0 )−1]CA|π̃(p), which for the sake of simplicity we
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write simply as

θk(λ) = tr
[
Kk0 ◦

(
Id − λKk0

)−1]
, (7.48)

dropping all reference to the point p.

Let us expand (7.48) near infinity. In order to do so,

Kk0 ◦
(
Id − λKk0

)−1
=

((
Kk0
)−1 − λId

)−1
=
−1
λ

(
Id − 1

λ

(
Kk0
)−1
)−1

=
−Id
λ
+
−
(
Kk0
)−1

λ2
+
−
(
Kk0
)−2

λ3
+ . . . ,

where we have used the relation (Id − ǫA)−1 = Id + ǫA+ ǫ2A2+ . . ., for small ǫ. Then
the expansion of (7.48) becomes

θk =
−2
λ
+
−tr

(
(Kk0 )

−1)

λ2
+
−tr

(
(Kk0 )

−2)

λ3
+ o(λ−3). (7.49)

Thus,

θ
(1)
k = −tr

(
(Kk0 )

−1) , θ
(2)
k = −tr

(
(Kk0 )

−2) . (7.50)

We want to express the leading coefficients in the expansion (7.49) in terms of the

time height function τ0 of S0 and the support function h of the surface Ŝ0 obtained

as the intersection of the past null cone Ω with the constant time hyperplane Σt0.

We could use solution (7.46) to obtain an expression of Kk0 in terms of the second

fundamental form of Ŝ0. Replacing λ = τ0 in (7.46), using that K
k |
Ŝ0
= −(K0) and

solving for Kk0 we would obtain the desired expression. However we find more direct to

use the expression of Kk in terms of K0 computed in Chapter 4. In this case and since

Kk0 = −(K0) ◦ (Id − τ0K0)−1, we have

θ
(1)
k = −tr

(
(Kk0 )

−1) = tr
(
(K0)

−1 ◦ (Id − τ0K0)
)
.

We use now the relation B := (K0)
−1 that we saw in Chapter 4, where BAB =

(q̊−1)AC∇̊C∇̊Bh + δABh, with q̊ the spherical metric, ∇̊ the spherical connection and h
the support function of Ŝ0 (cf. (4.19) in Chapter 4 ). Hence

θ
(1)
k = tr (B − τ0Id) = △q̊h + 2(h − τ0) := u.

This function u is defined in exactly the same way as in Chapter 4.

As we already saw in Chapter 4, any 2× 2 matrix A satisfies

tr(A2) = tr(A)2 − 2 det(A),

172
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which applied to Kk0 gives θ
(2)
k = 2det

(
(Kk0 )

−1)− u2. Inserting this into (7.35) yields

F∞ = lim
λ→∞

G(λ) =

(∫

S2

uηq̊

)2
− 16π

∫

S2

(
det
(
(Kk0 )

−1))ηq̊. (7.51)

This expression can be related to the area of |S0| as follows. From the definition

q̊ = lim
λ→∞

γ(λ)

λ2
= lim

λ→∞

γ(Id − λKk0 )2
λ2

= γ(Kk0 )
2, (7.52)

we can relate the volume forms at S0 and “at infinity” by

ηS0 = det((K
k
0 )
−1)ηq̊, (7.53)

and (7.51) becomes

F∞ = lim
λ→∞

G(λ) =

(∫

S2

uηq̊

)2
− 16π|S0|.

Summarizing, in the Minkowski spacetime G(λ) = F∞ and F∞ ≥ 0 implies (cf. Theorem
7.5.5) the validity of (7.40), which is exactly (7.45) because the Bondi energy of the

Minkowski spacetime vanishes identically. We have thus proved that the shell Penrose

inequality in Minkowski holds provided
(∫

S2

uηq̊

)2
≥ 16π|S0|. (7.54)

The formula for the area of S0 in terms of h and τ0 is (cf. (4.44))

|S0| =
∫

S2

(
(h − τ0)2 + (△q̊h)(h − τ0)−

1

2
h△q̊h

)
ηq̊,

As it happened in Theorem 4.5.3 in Chapter 4, when we insert this last expression into

(7.54) and after some manipulations, (7.54) can be rewritten in the form

4π

∫

S2

(
(△q̊h)

2 + 2h△q̊h
)
ηq̊ ≥ 4π

∫

S2

u2ηq̊ −
(∫

S2

uηq̊

)2
.

This is precisely the sufficient condition for the shell Penrose inequality in Minkowski

obtained in Chapter 4. This is not surprising since the method in Chapter 4 also involved

a monotonicity condition for D(λ) =

√
|Sλ|
16π
− 1
2
λ. However, the general framework

developed here leads to the result in a much more efficient way. In fact, there is an

even more direct way of reaching this conclusion as a consequence of Proposition 7.4.1,

or rather of its rewriting in Remark 7.4.2. Indeed, from (7.47) and (7.53),

ηSλ = det
(
(Kk0 )

−1 − λId
)
ηq̊ =

(
λ2 + θ

(1)
k λ+ det

(
(Kk0 )

−1))ηq̊ =⇒

|Sλ| = 4πλ2 +
(∫

S2

θ
(1)
k ηq̊

)
λ+

∫

S2

det
(
(Kk0 )

−1)ηq̊, (7.55)
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where in the second equality we used the first expression in (7.50). Comparing with

(7.25) it follows that Θ̂ is Lie constant and takes the value Θ̂ = |S0|, so that the
necessary condition (7.26) becomes precisely (7.54).

In Corollary 4.5.7 of Chapter 4, we saw that among all the solutions that the renor-

malized area method gave in Minkowski, we could find a relatively small two-parameter

family of solutions of the form

τ0 = α(△q̊h + 2h)− β, (7.56)

with α ∈ [0, 1], β > 2 H(Ŝ0)

Scal(Ŝ0)
− 1
max
1≤A≤n

{κA} , where H(Ŝ0) and Scal(Ŝ0) are, respectively, the

mean curvature and scalar curvature of Ŝ0 as a hypersurface of the Euclidean hyperplane

{t = t0}. Bergqvist proves the validity of the Penrose inequality when he uses flows
that correspond in our case to GAB foliations, and that also tend to large spheres. As

θ
(1)
k = u = 2β, with constant β > 0, this corresponds, after solving for τ0 to

τ0 =
1

2
(△q̊h + 2h)− β,

which is clearly a subcase of the family of solutions defined by (7.56). This indicates that

the family of solutions obtained when applying the Bergqvist method to the Minkowski

spacetime is rather modest.

The following proposition summarizes the results for the shell Penrose inequality in

Minkowski obtained so far and shows, in addition, that in the Minkowski case mono-

tonicity of D(Sλ, ℓ) is in fact equivalent to the a priori more general conditions (7.22),

or F ′(Sλ) ≥ 0.

Proposition 7.7.1 (Equivalence of the monotonicity methods inM1,3M1,3M1,3). Let Ω be

a past asymptotically flat null hypersurface in M1,3 and {Sλ} an affine foliation ap-
proaching large spheres. The following conditions are equivalent:

(i)

(∫

S2

uηq̊

)2
≥ 16π|S0|,

(ii)
d

dλ
D(Sλ, ℓ) ≥ 0 (Renormalized area method),

(iii)
d

dλ
|Sλ| ≥

16π|Sλ|
8πλ+

∫
S2
uηq̊

(F ′(Sλ) ≥ 0 method),

(iv) D(Sλ, ℓ) ≤ lim
λ→∞

D(Sλ, ℓ),

where u = −tr
(
(Kk0 )

−1). The shell Penrose inequality for S0 holds if one (and hence
any) of these conditions holds.

174



7. On the Penrose inequality along null hypersurfaces

Proof. The implications (i i) =⇒ (i i i) and (i i) =⇒ (iv) are generally true. The equiv-
alence of (i) and (i i) is a consequence of G(λ) = F∞ and (7.51), as discussed above.
We have also seen before that (i i i) is equivalent to (i) as a consequence of Remark

7.4.2. It only remains to show that (iv) =⇒ (i i i). Expression (7.55) for the area |Sλ|
yields

d

dλ
|Sλ| ≥

16π|Sλ|
8πλ+

∫
S2
θ
(1)
k ηq̊

⇐⇒
(
8πλ+

∫

S2

θ
(1)
k ηq̊

)2
≥ 16π|Sλ|

⇐⇒
√
|Sλ|
16π

− λ
2
≤ 1

16π

∫

S2

θ
(1)
k ηq̊,

which establishes (iv)⇐⇒ (i i i).

7.8 GAB foliations in M1,3M1,3M1,3. Applications to the shell

Penrose inequality

In the previous section we studied the renormalized area method for the shell Penrose

inequality in Minkowski. In this section we investigate in the same setting the conse-

quences of the general Penrose-type inequality obtained in Theorem 7.3.8. To that

aim we need information on the limit of the Hawking energy along GAB foliations. In

Chapter 6 we have studied the limit of the Hawking energy at infinity for a large class of

foliations {Sλ} along asymptotically flat null hypersurfaces. The results we need from
that chapter can be summarized as follows:

Let {Sλ} be an affine background foliation approaching large spheres and define θ(1)k ,
θ
(1)
ℓ and s

(1)
ℓ as in Definition 6.3.4. Consider any other affine foliation {Sλ′} starting

on the same cross-section S0. The level-set functions λ and λ
′ are necessarily related

by λ = f λ′, with f > 0 and Lie constant on Ω. Then the limit of the Hawking energy
along {Sλ′} is (see Theorem 6.5.3 in Chapter 6)

lim
λ′→∞

mH(Sλ′) =
1

8π
√
16π

(√∫

S2

f 2ηq̊

)∫

S2

(
△q̊θ

(1)
k − (θ(1)k + θ(1)ℓ )

−4divq̊(s(1)ℓ )
) 1
f
ηq̊. (7.57)

In order to apply this result in the Minkowski context, we need to compute θ
(1)
k , θ

(1)
ℓ

and s
(1)
ℓ for the background foliation, which we fix exactly as in Chapter 4 as follows:

choose a Minkowskian coordinate system (t, x i) and define the unit Killing ξ = ∂t .

The null generator k of Ω is then uniquely selected by the condition 〈k, ξ〉 = −1 and
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{Sλ} is defined to be the level-set foliation of λ ∈ C∞(Ω,R) defined by λ|S0 = 0 and
k(λ) = −1. It is immediate to check that {Sλ} approaches large spheres.
The time-height function τλ of the level set Sλ with respect to the hyperplane {t = 0}
is defined to be

τλ := t|Sλ.

For simplicity and without loss of generality we have chosen the hyperplane {t = 0},
although any other Σt0 would have been valid. In particular τ0 = t|S0 and, in fact,
τλ|p = τ0|π(p) − λ as a consequence of our choice of normalization for k .

Lemma 7.8.1 (Asymptotic expansion at λ = +∞λ = +∞λ = +∞). Let Ω be a past asymptotically
flat null hypersurface in M1,3 and {Sλ} an affine foliation associated to a choice of
Minkowskian coordinate system {t, x i} as described above. Let ℓ be orthogonal to
{Sλ} and satisfying 〈ℓ, k〉 = −2. Then the following asymptotic expansions hold

θk =
−2
λ
+
u

λ2
+ o(λ−2), u = −tr

(
(Kk0 )

−1) (7.58)

θℓ =
2

λ
+
−u + 2△q̊τ0

λ2
+ o(λ−2), τ0 := t|S0 (7.59)

sℓA =
−∇̊Aτ0
λ

+ o(λ−1), (7.60)

where Kk0 is the second fundamental form of S0 along k .

Proof. In the previous section we already proved (7.58). For θℓ we exploit the identity

θℓ + (1 + |Dτ |2γ)θk − 2△γτ = 0, (7.61)

valid for any spacelike surface S in Minkowski whenever τ := t|S. This identity is a
simple consequence of the fact that ξ is a covariantly constant vector field and it has

been used several times in this thesis (see Chapter 3, Lemma 3.3.4 for a proof). We

apply this identity to Sλ and expand for large λ up to order λ
−2. In particular, we

can neglect all terms of order O(λ−3) or higher. Since τλ = τ0 − λ and γSλ has the
expansion (7.39), the gradient term is |Dτ |2γ = γ−1Sλ

AB
τ0,Aτ0,B = O(λ

−2) and the term
|Dτ |2γθk is O(λ−3) so that it can be ignored. Concerning the Laplacian term, since
∆γτ = ∆γτ0 we have, in local coordinates {λ, yA} adapted to the foliation {Sλ} (i.e.
such that k = −∂λ)

△γτλ =
1√
det(γ)

∂A

(√
det(γ)(γ−1)AB∂Bτ

)
△γτ0

=
1√
det(q̊)

∂A

(√
det(q̊)(q̊−1)ABτ0,B

) 1
λ2
+O(λ−3) = (△q̊τ0)

1

λ2
+O(λ−3),
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7. On the Penrose inequality along null hypersurfaces

where we have used γ(λ) = q̊λ2 + O(λ). Inserting θℓ =
2
λ
+

θ
(1)
ℓ

λ2
+ o(λ−2) and (7.58)

into (7.61) and keeping only the terms in λ−2 we obtain θ(1)ℓ + u − 2△q̊τ0 = 0, which

gives (7.59).

It only remains to compute s
(1)
ℓ in the expansion sℓ =

s
(1)
ℓ
λ
+ o(λ−1). Using formula

(4.48) in Chapter 4, the expansion (7.60) follows directly after taking into account

(7.39) and (7.38).

Lemma 7.8.1 allows us to compute the limit of the Hawking energy along very general

foliations by exploiting the results in Chapter 6. For affine foliations λ = f λ′ we simply
need to evaluate (7.57), which becomes

lim
λ′→∞

mH(Sλ′) =
1

8π
√
16π

(√∫

S2

f 2ηq̊

)∫

S2

△q̊(u + 2τ0)
1

f
ηq̊.

In particular, the GAB foliation associated to S0 has rescaling function f :=
θ
(1)
k

c
=

u
c
, c > 0 so that, along this GAB foliation,

lim
λ′→∞

mH(Sλ′) =
1

8π
√
16π

(√∫

S2

u2ηq̊

)∫

S2

△q̊(u + 2τ0)
1

u
ηq̊.

Thus, the particularization of Theorem 7.3.8 to the Minkowski setting reads

Theorem 7.8.2. Let Ω be a past asymptotically flat null hypersurface inM1,3 and S0
a spacelike cross section of Ω. Then the following inequality holds:

√
|S0|
16π

≤ 1

16π

∫

S0

θℓ⋆ηS0 +
1

8π
√
16π

(√∫

S2

u2ηq̊

)∫

S2

△q̊(u + 2τ0)
1

u
ηq̊, (7.62)

where u = −tr
(
(Kk0 )

−1), τ0 = t|S0 with t a Minkowskian time coordinate. The round
asymptotic metric q̊ is defined by (7.52) and {k, ℓ} are the future directed null normals
to S0 with k tangent to Ω and satisfying k(t) = 1 and 〈k, ℓ〉 = −2.

We can now rewrite the first term of the right-hand side of the inequality (7.62) in

terms of θℓ. To do so we need to relate the vector ℓ
⋆ = Rq̂ℓ

′ with vector ℓ, where ℓ′ is
the transverse vector to Ω orthogonal to each Sλ′ and satisfying 〈k ′, ℓ′〉 = −2. Since
k ′ = u

c
k , then ℓ′ = c

u
ℓ necessarily. Using now that λ = u

c
λ′, the expansion of the first

fundamental form of Ω can be expressed as

γ = q̊λ2 + o(λ2) = q̂(λ′)2 + o((λ′)2) = q̂
c2

u2
λ2 + o(λ2),
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which shows that

q̂ =
u2

c2
q̊,

and therefore ηq̂ =
u2

c2
ηq̊. This implies

Rq̂ =

√
1

4π

∫

S2

u2

c2
ηq̊.

We finally conclude

ℓ⋆ = Rq̂ℓ
′ = Rq̂

c

u
ℓ =

c

u

√
1

4π

∫

S2

u2

c2
ηq̊ℓ =

(√
1

4πu2

∫

S2

u2

)
ℓ,

and using in (7.62) that θFℓ|S0 = Fθℓ|S0 for any F : S0 → R, we obtain
√
|S0|
16π

≤ 1

16π

∫

S0

(√
1

4πu2

∫

S2

u2

)
θℓηS0

+
1

8π
√
16π

(√∫

S2

u2ηq̊

)∫

S2

△q̊(u + 2τ0)
1

u
ηq̊,

which, after factorizing the right-hand side, can be rewritten as

√
|S0|
16π

≤ 1

32π
√
π

(√∫

S2

u2ηq̊

)(∫

S0

1

u
θℓηS0 +

∫

S2

△q̊(u + 2τ0)
1

u
ηq̊

)
,

where u = −tr
(
(Kk0 )

−1) = △q̊h + 2(h − τ0) (note that we write u in two different
ways: in terms of the geometry of the surface S0 for the first term of the right-hand

side, and in terms of the spherical geometry for the second term).

7.9 An upper bound for the area of SλSλSλ along ΩΩΩ

We close the chapter returning to the general setup of asymptotically flat null hyper-

surfaces in spacetimes satisfying the dominant energy condition. We also return to

affine foliations not necessarily approaching large spheres. In this section we provide a

general upper bound for the area |Sλ| in terms of asymptotic quantities intrinsic to Ω.
We find an inequality which is weaker than the inequality D(Sλ, ℓ

⋆) ≤ lim
λ→∞

D(Sλ, ℓ
⋆),

the difference between both being a Hölder inequality term.

The general idea behind the inequality in the present section is the observation that

one possible method to approach the condition D(Sλ, ℓ
⋆) ≤ lim

λ→∞
D(Sλ, ℓ

⋆) it to obtain
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7. On the Penrose inequality along null hypersurfaces

an interpolating function P (λ) satisfying D(Sλ, ℓ
⋆) ≤ P (λ) ≤ lim

λ→∞
D(Sλ, ℓ

⋆). While

this is hard (as finding such a P (λ) would prove the Penrose inequality), we have been

able to find a P (λ) satisfying only the first inequality D(Sλ, ℓ
⋆) ≤ P (λ), from which a

general inequality bounding |S0| from above in terms of asymptotic quantities follows.
Proposition 7.9.1. Let Ω be a past asymptotically flat null hypersurface embedded in

a spacetime that satisfies the dominant energy condition, S0 a cross section and {Sλ}
an affine foliation starting at S0. Let θ

(1)
k be the asymptotic coefficient defined in (7.6)

and q̂ the asymptotic metric associated to {Sλ}. Then,

|Sλ| ≤
1

4

∫

Ŝ

(
θ
(1)
k + 2λ

)2
ηq̂, (7.63)

and in particular |S0| ≤ 1
4

∫
Ŝ
(θ
(1)
k )

2ηq̂.

Proof. Let us fix any λ0 > 0 and consider the volume form on Sλ (λ ≥ 0) defined by

η̂Sλ :=
1

(λ+ λ0)2
ηSλ.

Using the evolution equation £−kηSλ = −θkηSλ, the Lie derivative of η̂Sλ is

£−k η̂Sλ = −
(
θk +

2

λ+ λ0

)
η̂Sλ. (7.64)

Writing η̂Sλ = f̂ (λ)ηq̂, (7.64) becomes a differential equation for f̂ , which can be

integrated as

f̂ (λ) = f̂ (0)e
−
∫ λ
0

(
θk+

2
s+λ0

)
ds
.

The initial value f̂ (0) can be computed “at infinity” as a consequence of η̂Sλ −→ ηq̂
when λ→∞. Thus f̂ (0) = e

∫∞
0

(
θk+

2
s+λ0

)
ds
and therefore

f̂ (λ) = e
∫∞
λ

(
θk+

2
s+λ0

)
ds
.

We aim at finding an upper bound for f̂ (λ). We use inequality (7.16), which implies

θk +
2

λ+λ0
≤ −4

θ
(1)
k
+2λ
+ 2

λ+λ0
and then

∫ ∞

λ

(
θk +

2

s + λ0

)
ds ≤

∫ ∞

λ

(
−4

2s + θ
(1)
k

+
2

s + λ0

)
ds = log

(
2λ+ θ

(1)
k

2(λ+ λ0)

)2
.

Finally,

|Sλ| =
∫

Sλ

ηSλ =

∫

Ŝ

(λ+ λ0)
2f̂ (λ)ηq̂ =

∫

Ŝ

(λ+ λ0)
2e
∫∞
λ

(
θk+

2
s+λ0

)
ds
ηq̂

≤ (λ+ λ0)2
∫

Ŝ

e
log

(
2λ+θ

(1)
k

2(λ+λ0)

)2

ηq̂ =
1

4

∫

Ŝ

(θ
(1)
k + 2λ)

2ηq̂.
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Remark 7.9.2. The condition D(Sλ, ℓ
⋆) ≤ lim

λ→∞
D(Sλ, ℓ

⋆), namely

√
|Sλ|
16π

− Rq̂
2
λ ≤ 1

16πRq̂

∫

Ŝ

θ
(1)
k ηq̂,

is equivalent to

|Sλ| ≤
1

16πR2q̂

(∫

Ŝ

(θ
(1)
k + 2λ)ηq̂

)2
.

As mentioned above, this inequality is stronger than (7.63), the difference being a

Hölder inequality term. Indeed, a direct application of the Hölder inequality yields

|Sλ| ≤
1

16πR2q̂

(∫

Ŝ

(θ
(1)
k + 2λ)ηq̂

)2
≤ 1
4

∫

Ŝ

(θ
(1)
k + 2λ)

2ηq̂.
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8
Conclusions

In this thesis we have addressed the null Penrose inequality conjecture and we have

obtained several results that support both the validity of the general version of the

inequality and its respective shell version. Projections in static spacetimes, graphs over

hypersurfaces in the euclidean space and flows of surfaces along null hypersurfaces have

been the main tools that we have used to address the problem. The following list

summarizes the main results of this thesis.

1. Given a spacelike surface S embedded in a static spacetime, we have obtained

the expressions for its intrinsic and extrinsic geometry in terms of the geometry

of its projection along the Killing direction onto a constant time hyperplane. We

have also computed the analogous expressions when the projection is performed

in a purely Riemannian context.

2. We have analyzed in full detail the gap in Gibbons’ attempt [37] to prove the shell

Penrose inequality in the Minkowski spacetime by using the projection along the

Killing direction, and we have computed the correct expression for the total outer

null expansion
∫
S
θℓηS in terms of the geometry of the projected surface S. The

correct expression for the mean curvature H of S involving the null expansions of

the original surface S is also obtained.

3. We have proved the validity of the shell Penrose inequality in Minkowski for con-

vex surfaces embedded in a constant time hyperplane. This result was obtained

simultaneously and independently by Brendle and Wang [15].

4. We have obtained an expression for the shell Penrose inequality in the Minkowski

spacetime of any dimension in terms of the so called time-height function τ , which

describes how far the initial surface S lies from the constant time hyperplane, and

in terms of the euclidean geometry of the surface obtained by intersecting the past

null cone Ω of the initial surface S with a constant time hyperplane. This has
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been possible by formulating and solving the equations for the quotient second

fundamental form (Ricatti equation) and the metric of Ω in Minkowski, which

allow us to rewrite the geometry of the initial surface S in terms of its projection

along its past null cone.

5. With the previous result at hand, and since the geometry of convex bodies is fully

determined by the so-called support function h associated to the projection of

S along its past null cone, we have obtained an expression for the shell Penrose

inequality in Minkowski in terms of h and the time height function τ of S. Using

this form for the shell Penrose inequality, we have proved its validity in the partic-

ular case that the surfaces S lies in the past null cone of a point in the arbitrary

dimensional Minkowski spacetime.

6. The expression for the shell Penrose inequality in terms of the support function

involves the inverse of endomorphisms represented by matrices of size n×n. In the
particular case n = 2 (spacetime dimension four), we have computed explicitly

this inverse and have obtained an explicit expression for the shell inequality in

terms of the support function and the time height function.

7. In an euclidean context, and given an orientable hypersurface Ŝ0, we have studied

the geometry of a graph over Ŝ0, and we have obtained the expressions that relate

its first and second fundamental forms of the graph with those of the base and

the graph function. This result has allowed us to relate the two projections of

S in the Minkowski spacetime: the projection in the Killing direction S and the

projection Ŝ0 along the past null cone Ω onto a constant time hyperplane. This

has been applied to rewrite the convexity condition on S in terms of the geometry

of the convex surface Ŝ0 and the time-height function τ .

8. In a general spacetime that admits a null hypersurface Ω, we have obtained the

expressions for the metric, extrinsic null curvatures and connection one-form of

any cross section of Ω in terms of geometric elements defined on the leaves of a

background foliation associated to a given future null vector field k tangent to Ω.

9. We have obtained a formula that gives the limit of the Hawking mass along flows

of general character in a past asymptotically flat null hypersurface Ω in terms

of the geometry of an affinely parametrized background foliation that tends to

large spheres. The expression of the Bondi four momentum energy vector PB
associated to the background geometry has also been computed in terms of the

background geometry.

10. We have introduced the notion of GAB foliations along a null hypersurface Ω in an

AF spacetime satisfying the dominant energy condition, and we have obtained a

Penrose-type inequality for any cross section S of Ω which involves the limit of the

Hawking energy along such foliation. In the particular case when S is WOTS, the
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inequality takes the same form as the null Penrose inequality but with the Bondi

energy replaced by the limit of the Hawking energy along the GAB foliation. In

addition, if the GAB foliation tends to large spheres, our inequality becomes the

standard null Penrose inequality.

11. Combining the previous result with the expression for the limit of the Hawking

energy along general flows on a null hypersurface Ω, we have proved the validity

of a shell Penrose type inequality in the four dimensional Minkowski spacetime.

12. Finally, we have developed a method to address the null Penrose inequality in AF

spacetimes satisfying the dominant energy condition, and which is called renor-

malized area method. We have found two sufficient conditions for the method

to apply. In the particular case of the four dimensional Minkowski spacetime,

this method proves the validity of the shell Penrose inequality for the same class

of surfaces as in Chapter 4, which were obtained by exploiting properties of the

Minkowski spacetime. Thus the renormalized area method can be considered a

generalization of the approach in Chapter 4 to general spacetimes satisfying the

dominant energy condition.

The results in this thesis represent a substantial step forward in our understanding of

the null Penrose inequality. In fact, some of our results (definition of asymptotically flat

null hypersurface and general limit of the Hawking energy) have played a central role in

another very recent approach to the null Penrose inequality put forward by H. Roesch

[92].
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A
Geometry of non-degenerate submanifolds

In this appendix we compile elementary results on the relation between the geometry of

an ambient manifold and an embedded submanifold. Specifically, the relation between

the connections, the second fundamental forms, the Hessians and the curvature is given

explicitly.

A.1 Induced connection and second fundamental form

Let M and N be pseudo-Riemannian manifolds of dimension m and n respectively, with

m ≥ n. A differentiable map φ : N → M is called an immersion, if for any p ∈ N,

dφ : TpN −→ Tφ(p)M

is injective. If an immersion φ : N → M maps N homeomorphically onto its image φ(N)

in M, φ is called differentiable embedding. Any immersion is locally a differentiable

embedding.

Let N be an n-dimensional submanifold embedded in (M,g). The pullback of the

metric g on N gives a symmetric tensor γ called first fundamental form, that depending

on the nature of N, can be degenerate or not. When the pullback is positive definite,

we will say that N is spacelike. A submanifold will be called degenerate (respectively

non-degenerate) provided the first fundamental form has this property.

When N is non degenerate, we can define its Levi-Civita connection. The connection

of M (the ambient connection) will be denoted by ∇ and the connection on N (induced
connection) by ∇N. For any point p ∈ N, consider the tangent space TpN and choose
an orthonormal basis of vectors BN = {e1, . . . , en}. Since TpN ⊂ TpM, let us extend
BN to a basis B = {e1, . . . , en, un+1, . . . , um} of TpM. By using the Gram-Schmidt or-
thogonalization method we obtain an orthonormal basis B′ = {e1, . . . , en, en+1, . . . , em}
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of TpM, where

B
′
= {en+1, . . . , em} ⊂ (TpN)⊥ = {v ∈ TpM/〈v , x〉g = 0 ∀x ∈ TpN}.

We have that TpN ∩ (TpN)⊥ = ∅, since otherwise there would be a degenerate vector
for N, against hypothesis. Since the set of vectors of BN and B

′
form a basis of TpM,

we have that

TpM = TpN ⊕ (TpN)⊥. (A.1)

According to (A.1), we can write the orthogonal decomposition

∇XY = (∇XY )⊤ + (∇XY )⊥, (A.2)

where the operators ’⊤’ and ’⊥’ give the tangent part and orthogonal part to N of any
vector respectively.

The following proposition shows the relation between the ambient and the induced

connection.

Proposition A.1.1 (Induced connection). Let N be a non-degenerate n-dimensional

submanifold embedded in a pseudo-Riemannian m-dimensional manifold (M,g). Then

∇NXY = (∇XY )⊤, with X, Y ∈ X(N), (A.3)

where X(N) is the set of vector fields tangent to N, and ⊤ : TpM → TpN with p ∈ N
is the orthogonal projection.

Proof. Let us define the mapping ∇ : X(M)× X(M)→ X(M), by

∇(X, Y ) := ∇XY = (∇XY )⊤.

It is immediate to see that ∇ satisfies

(i) ∇f X+gYZ = f∇XZ + g∇YZ,

(ii) ∇X(Y + Z) = ∇XY +∇XZ,

(iii) ∇X(f Y ) = X(f )Y + f∇XY ,

where X, Y, Z ∈ X(N), and f , g : N → R are C∞. Hence ∇ is an affine connection.
To see that ∇ is the Levi-Civita connection of N, we check that it is torsion-free
(T∇(X, Y ) = ∇XY − ∇YX − [X, Y ] = 0) and metric (∇γ = 0). For the first, recall
that the ambient connection ∇ is torsion free

T∇(X, Y ) = ∇XY −∇YX − [X, Y ] = 0.
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Applying the operator ’⊤’ and using [X, Y ]⊤ = [X, Y ] the torsion-free property of ∇
follows immediately. For the second, we compute, for X, Y, Z ∈ X(N),

(∇Zγ)(X, Y ) = ∇Z (γ(X, Y ))− γ(∇ZX, Y )− γ(X,∇ZY )
= Z (γ(X, Y ))− γ((∇ZX)⊤, Y )− γ(X, (∇ZY )⊤)
= ∇Z(g(X, Y ))− g(∇ZX, Y )− g(X,∇ZY ) = (∇Zg)(X, Y ) = 0,

where in the last inequality we have used that ∇ is metric. Since the Levi-Civita
connection is the unique torsion-free and metric connection, it must be ∇ = ∇N.

From (A.3), (A.2) becomes

∇XY = ∇NXY + (∇XY )⊥. (A.4)

The second term of the right-hand side of (A.4) defines the so called second funda-

mental form vector, namely

Definition A.1.2 (Second fundamental form vector). The second fundamental form

vector of N as an embedded manifold in M is

~K(X, Y ) = −(∇XY )⊥. (A.5)

The second fundamental form vector is symmetric because

~K(X, Y ) = −(∇XY )⊥ = −(∇YX + [X, Y ])⊥ = −(∇YX)⊥ = ~K(Y,X),

where we have used that ’⊥’ is linear and [X, Y ] ∈ Γ(TN), since X, Y ∈ Γ(TN).
It is convenient to have the relation among several second fundamental forms when

we have more than two manifolds, and successive embeddings:

Proposition A.1.3 (Successive embeddings). Let S,Σ,M be three pseudo-Riemannian

manifolds, with S embedded in Σ and Σ embedded in M. Let g be the metric on M.

Assume that the metrics on S and Σ are induced by g. Let ~KS→Σ be the second
fundamental form vector of S as a submanifold embedded in Σ, ~KΣ→M the second fun-
damental form vector of Σ as a submanifold in M, and ~KS→M the second fundamental
form vector of S as a submanifold in M. Then

~KS→M(X, Y ) = ~KS→Σ(X, Y ) + ~KΣ→M(X, Y ) with X, Y ∈ Γ(TS). (A.6)

Proof. Given X, Y ∈ Γ(TS), and by the definition of second fundamental form, we have
S →֒ M : ∇MX Y = ∇SXY − ~KS→M(X, Y ), (A.7)

S →֒ Σ : ∇ΣXY = ∇SXY − ~KS→Σ(X, Y ), (A.8)

Σ →֒ M : ∇MX Y = ∇ΣXY − ~KΣ→M(X, Y ). (A.9)

Computing (A.7) − (A.8) − (A.9), we obtain −∇ΣXY = −∇ΣXY − ~KS→M(X, Y ) +
~KS→Σ(X, Y ) + ~KΣ→M(X, Y ), which is (A.6) after rearranging.
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Remark A.1.4. If the dimension of the embedded manifold is the same as the dimension

of the ambient manifold, then the second fundamental form vector is by definition

identically zero.

Remark A.1.5. The second fundamental form vector of S as a submanifold of Σ satisfies
~KS→Σ ∈ TpΣ ∩ (TpS)⊥, and on the other hand ~KΣ→M ∈ (TpΣ)⊥. The vector space
tangent toM splits in the direct sum TpM = TpS⊕(TpS)⊥. Likewise we split (TpS)⊥ =
[TpΣ∩(TpS)⊥]⊕(TpΣ)⊥. For the sake of simplicity let us call (TΣp S)⊥ = [TpΣ∩(TpS)⊥],
so that we have

(TpS)
⊥ = (TΣp S)

⊥ ⊕ (TpΣ)⊥.
Relation (A.6) corresponds in fact to the decomposition associated to this direct sum.

A.2 Induced Hessian

We want to find relations between objects defined on the ambient manifold and the

respective induced ones on the embedded submanifold. Let us compute the explicit

relation between the Hessian of any function defined on the ambient manifold and

the Hessian of the function obtained by restricting the original one to the embedded

manifold:

Proposition A.2.1 (Hessian relation in an embedding). Let N be an n-dimensional

submanifold embedded in a pseudo-Riemannian m-dimensional manifold M so that the

pullback of the metric on N is non-degenerate. Let φ be the embedding. Let f : M −→
R a smooth function defined on M. If we denote by Hess∇ the Hessian of the ambient
manifold M and Hess∇N the induced one on the submanifold N, we have

Hess∇f (dφ(X), dφ(Y )) = Hess∇N(f ◦ φ)(X, Y ) + 〈gradf , ~K(X, Y )〉,

where X, Y ∈ Γ(TN).

Proof. By definition, the Hessian is

Hessf (X, Y ) = X(Y (f ))− df (∇XY ).

In M and N we have the following relations

Hess∇f (dφ(X), dφ(Y )) = dφ(X) (dφ(Y )(f ))− df
(
∇dφ(X)dφ(Y )

)
, (A.10)

Hess∇N(f ◦ φ)(X, Y ) = X (Y (f ◦ φ))− d(f ◦ φ)(∇NXY ). (A.11)

In (A.4) and (A.5) we identified the vectors tangent to the abstract submanifold with

the tangent vectors to the embedded one. Adding explicitly the embedding φ, the Gauss

formula reads

∇dφ(X)dφ(Y ) = dφ(∇NXY )− ~K(X, Y ). (A.12)
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Therefore it follows

df
(
∇dφ(X)dφ(Y )

)
= df

(
dφ(∇NXY )− ~K(X, Y )

)
= d(f ◦φ)(∇NXY )−〈gradf , ~K(X, Y )〉.

(A.13)

Inserting (A.13) into (A.10) we have

Hess∇f (dφ(X), dφ(Y )) = dφ(X) (dφ(Y )(f ))− d(f ◦ φ)(∇NXY ) + 〈gradf , ~K(X, Y )〉.
(A.14)

Since X(f ◦ φ)|p = φ∗(X)f |φ(p), we finally obtain

dφ(X) (dφ(Y )(f )) = X (Y (f ◦ φ)) .

The two first terms of the right-hand side of (A.14) are precisely (A.11), which proves

the result.

A.3 Gauss, Ricci and Codazzi identities

The following aim is to relate the curvature of the ambient manifold M and the em-

bedded manifold N. In our notation the curvature tensor is defined as

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z, X, Y, Z ∈ Γ(TN).

Theorem A.3.1 (Gauss equation). Let N be an n-dimensional non-degenerate sub-

manifold in a pseudo-Riemannian m-dimensional manifold (M,g). Let R be the curva-

ture tensor of M and RN the curvature tensor of N. Then

〈R(X, Y )Z, T 〉 = 〈RN(X, Y )Z, T 〉 − 〈~K(Y, Z), ~K(X,T )〉+ 〈~K(X,Z), ~K(Y, T )〉,

where X, Y, Z, T ∈ Γ(TN).

Proof. Using ∇XY = ∇NXY − ~K(X, Y ), we compute

R(X, Y )Z = ∇X∇YZ −∇Y∇XZ −∇[X,Y ]Z =
∇X(∇NY Z − ~K(Y, Z))−∇Y (∇NXZ − ~K(X,Z))−∇N[X,Y ]Z + ~K([X, Y ], Z) =

∇NX∇NY Z − ~K(X,∇NY Z)−∇X ~K(Y, Z)−∇NY∇NXZ + ~K(Y,∇NXZ) +
∇Y ~K(X,Z)−∇N[X,Y ]Z + ~K([X, Y ], Z) =

RN(X, Y )Z − ~K(X,∇NY Z) + ~K(Y,∇NXZ) + ~K([X, Y ], Z)−∇X ~K(Y, Z) +
∇Y ~K(X,Z). (A.15)

Multiplying by a tangent vector T , and using that ~K is orthogonal to N we obtain

〈R(X, Y )Z, T 〉 = 〈RN(X, Y )Z, T 〉 − 〈∇X ~K(Y, Z), T 〉+ 〈∇Y ~K(X,Z), T 〉. (A.16)
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Using the orthogonality between ~K and T we have

〈∇X ~K(Y, Z), T 〉 = −〈~K(Y, Z),∇XT 〉 = 〈~K(Y, Z), ~K(X,T )〉. (A.17)

Likewise 〈∇Y ~K(X,Z), T 〉 = 〈~K(X,Z), ~K(Y, T )〉. Combining (A.17) in (A.16) gives the
result.

Given X ∈ Γ(TN) and η ∈ Γ((TN)⊥), the normal connection ∇⊥ of the embedding
is defined by

∇⊥Xη := (∇Xη)⊥ = ∇Xη − (∇Xη)⊤.
It defines a connection because it is linear in X, additive in η, and satisfies

∇⊥X(f η) = X(f )η + f∇⊥Xη.

The curvature tensor associated to the connection is denoted by R⊥ and is given, as
usual, by

R⊥(X, Y )η = ∇⊥X∇⊥Y η −∇⊥Y∇⊥Xη −∇⊥[X,Y ]η. X, Y ∈ Γ(TN), η ∈ Γ((TN)⊥). (A.18)

The following result gives a relation between the ambient curvature tensor and the

curvature tensor associated to the normal connection. The identity involves the so-

called Weingarten map defined as

Wη : TpN −→ TpN, Wη(X) = (∇Xη)⊤.

Theorem A.3.2 (Ricci equation). Let N be an n-dimensional non-degenerate subma-

nifold in a pseudo-Riemannian m-dimensional manifold (M,g). Let R be the Riemann

tensor of M and R⊥ the normal curvature of the embedding. Then

〈R(X, Y )η, ζ〉 = 〈R⊥(X, Y )η, ζ〉+ 〈[Wζ,Wη](X), Y 〉,

with [Wζ,Wη](X) := (WζWη − WηWζ)(X), and where X, Y ∈ Γ(TN), and η, ζ ∈
Γ((TN)⊥).

Proof. By definition,

R(X, Y )η = ∇X∇Y η −∇Y∇Xη −∇[X,Y ]η =
∇X(Wη(Y ) +∇⊥Y η)−∇Y (Wη(X) +∇⊥Xη)−Wη([X, Y ])−∇⊥[X,Y ]η =
∇NXWη(Y )− ~K(X,Wη(Y )) +W∇⊥

Y
η(X) +∇⊥X∇⊥Y η −∇NYWη(X) +

~K(Y,Wη(X))−W∇⊥
X
η(Y )−∇⊥Y∇⊥Xη −Wη([X, Y ])−∇⊥[X,Y ]η.

Using (A.18) and multiplying by the orthogonal vector ζ, all the terms tangent to N

cancel out and we obtain

〈R(X, Y )η, ζ〉 = 〈R⊥(X, Y )η, ζ〉 − 〈~K(X,Wη(Y )), ζ〉+ 〈~K(Y,Wη(X)), ζ〉. (A.19)
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Observe that

〈~K(X, Y ), η〉 = 〈−∇XY, η〉 = 〈Y,∇Xη〉 = 〈Wη(X), Y 〉. (A.20)

The symmetry of ~K implies that the operator Wη is self-adjoint, i.e.

〈Wη(X), Y 〉 = 〈X,Wη(Y )〉. (A.21)

A consequence of (A.20) and (A.21) is

〈~K(X,Wη(Y )), ζ〉 = 〈Wζ(X),Wη(Y )〉 = 〈WηWζ(X), Y 〉. (A.22)

The same reasoning applies to 〈~K(Y,Wη(X)), ζ〉. Inserting this and (A.22) in (A.19)
gives the result.

The last theorem of the appendix relates the ambient curvature tensor contracted

with three tangent vectors and one normal vector with the covariant derivatives of

the second fundamental form vector of the embedded submanifold. Since this result

requires the use of covariant derivatives of the second fundamental form vector, we

introduce the operator ∇̃ as

(∇̃X ~K)(Y, Z) := ∇X ~K(Y, Z)− ~K(∇NXY, Z)− ~K(Y,∇NXZ), X, Y, Z ∈ Γ(TN). (A.23)

Theorem A.3.3 (Codazzi equation). Let N be an n-dimensional non-degenerate sub-

manifold in a pseudo-Riemannianm-dimensional manifold (M,g). Let R be the Riemann

tensor of M. Then:

〈R(X, Y )Z, η〉 = 〈(∇̃Y ~K)(X,Z), η〉 − 〈(∇̃X ~K)(Y, Z), η〉,

where X, Y, Z ∈ Γ(TN) and η ∈ Γ((TN)⊥).

Proof. Recall expression (A.15) for R(X, Y )Z. If we multiply both sides by η, and use

that [X, Y ] = ∇XY −∇YX we obtain

〈R(X, Y )Z, η〉 = −〈~K(X,∇NY Z), η〉+ 〈~K(Y,∇NXZ), η〉+ 〈~K([X, Y ], Z), η〉 −
〈∇X ~K(Y, Z), η〉+ 〈∇Y ~K(X,Z), η〉 = 〈∇Y ~K(X,Z), η〉 − 〈~K(∇NY X,Z), η〉 −
〈~K(X,∇NY Z), η〉 −

(
〈∇X ~K(Y, Z), η〉 − 〈~K(∇NXY, Z), η〉 − 〈~K(Y,∇NXZ), η〉

)
=

〈(∇̃Y ~K)(X,Z), η〉 − 〈(∇̃X ~K)(Y, Z), η〉.
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The curvature identities above can also be written in terms of the Riemann tensor,

which is defined as

Riem(X, Y, Z, T ) = 〈R(Z, T )Y,X〉
The corresponding expressions for the identities are:

• Gauss equation:

Riemg(X, Y, Z, T ) = RiemN(X, Y, Z, T )− 〈~K(X,Z), ~K(Y, T )〉+ 〈~K(Y, Z), ~K(X,T )〉,
(A.24)

• Ricci equation:

Riemg(X, Y, η, ζ) = Riem⊥(X, Y, η, ζ) + 〈[Wη,Wζ](X), Y 〉, (A.25)

• Codazzi equation:

Riemg(X, Y, Z, η) = 〈(∇̃X ~K)(Y, Z), η〉 − 〈(∇̃Y ~K)(X,Z), η〉. (A.26)

We conclude this appendix by taking the double trace of the Gauss equation when

the ambient manifold M is Lorentzian and N is codimension-two and spacelike. This

calculation is easier in index notation. Let {XA} be a basis of N. The Gauss equation
is expressed in index notation as

RiemgABCD = Riem
N
ABCD − 〈~KAC, ~KBD〉+ 〈~KBC, ~KAD〉

For every p ∈ N, let us complete the basis {XA|p} to a basis of TpM with two null
vectors kp and ℓp orthogonal to N normalized as 〈k, ℓ〉 = −ϕ for a given positive
function ϕ : N → R. Decomposing ~K = − 1

ϕ
(Kkℓ+Kℓk) we have

RiemgABCD =Riem
N
ABCD −

1

ϕ
(Kk

BCK
ℓ
AD +K

k
ADK

ℓ
BC)

+
1

ϕ
(Kk

ACK
ℓ
BD +K

k
BDK

ℓ
AC) (A.27)

Taking the trace once on the first and third indices we obtain

γACRiemgABCD = Ric
N
BD −

1

ϕ
(KkA

BK
ℓ
AD +K

kC
DK

ℓ
BC) +

1

ϕ
(θkK

ℓ
BD + θℓK

k
BD).

Taking the trace again we find

γBDγACRiemgABCD = Scal
N − 2

ϕ
KkABKℓ

AB +
2

ϕ
θkθℓ. (A.28)
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In the basis {XA, k, ℓ}, the contravariant version of the metric g of M reads

g# = γABXA ⊗XB −
1

ϕ
k ⊗ ℓ− 1

ϕ
ℓ⊗ k.

A straightforward computation shows that

γBDγACRiemgABCD = Scal
g +
4

ϕ
Ricg(k, ℓ)− 2

ϕ2
Riemg(k, ℓ, k, ℓ). (A.29)

Inserting (A.29) into (A.28) finally yields

Scalg +
4

ϕ
Ricg(k, ℓ)− 2

ϕ2
Riemg(k, ℓ, k, ℓ) = ScalN +

2

ϕ
θkθℓ −

2

ϕ
Kk
ABK

ℓAB.

Using the definition of the Einstein tensor, the relation above also becomes

4

ϕ
Eing(k, ℓ)− Scalg − 2

ϕ2
Riemg(k, ℓ, k, ℓ) = ScalN +

2

ϕ
θkθℓ −

2

ϕ
Kk
ABK

ℓAB. (A.30)
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Geometry of null hypersurfaces

In this appendix we present a self-contained description of the geometry of null hyper-

surfaces (for a detailed work on null hypersurfaces see e.g. [32, 38]). In particular we

obtain the evolution equations along general flows by spacelike cross sections of the

geometric elements of the leaves.

B.1 Hypersurfaces and null geodesics

Definition B.1.1 (Null hypersurface). Let (M,g) be an m-dimensional spacetime. A

manifold Ω embedded in M is a null hypersurface when it has codimension one, and the

pullback of g on Ω is a degenerate tensor.

As we said before, the nature of this kind of submanifolds makes impossible to define a

unique second fundamental form vector, since in this case ∀p ∈ Ω, TpΩ∩ (TpΩ)⊥ 6= 0.
Any vector in this intersection is automatically lightlike and defines a degeneration

direction of the pullback of g.

Let us first see that on a null hypersurface Ω there is just one degenerate direc-

tion. Assume that there are two degenerate directions < ℓ1 > and < ℓ2 >, where

< v1, . . . , vk > denotes the minimal subspace generated by {v1, . . . , vk}. Without loss
of generality we can consider ℓ1 and ℓ2 to be future. Then ℓ1 + ℓ2 is a timelike vector

whose inner product with ℓ1 and ℓ2 is zero (since they are degenerate directions), but

this is impossible as the product of a timelike vector with a null vector can never be

zero. Let us call this unique degenerate direction k . The rest of the directions X ∈ TpΩ
satisfy 〈X,X〉 ≥ 0. If not, there would be a timelike direction X0 (〈X0, X0〉 < 0) sat-
isfying 〈k,X0〉 = 0, which cannot happen. Moreover, if X /∈< k > and X 6= 0, then
〈X,X〉 > 0, because otherwise, X would be lightlike and orthogonal to k , which can
only occur if X is parallel to k , against hypothesis.
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Let us next prove that (kp)
⊥ = TpΩ. Since kp ∈ TpΩ∩ (TpΩ)⊥ we have (kp)⊥ ⊃ TpΩ.

To prove the reverse inclusion, consider tp a timelike vector of TpM. Since < tp >

∩TpΩ = ∅, we have TpM =< tp > ⊕TpΩ. Then for Xp ∈ (kp)⊥, and decomposing
Xp = αtp + Yp for α ∈ R and Yp ∈ TpΩ, yields

0 = 〈kp, Xp〉 = 〈kp, αtp + Yp〉 = α〈kp, tp〉.

Since 〈kp, tp〉 6= 0, it follows necessarily that α = 0, and hence Xp ∈ TpΩ.
We can check the consistency of the previous results by analyzing the validity of the

Grassman identity, which reads

dim (TpΩ+ (TpΩ)
⊥) = dim TpΩ+ dim (TpΩ)

⊥ − dim [TpΩ ∩ (TpΩ)⊥]. (B.1)

Given that (W⊥)⊥ = W for any subspace of a vector space with metric g, we have

< kp >= [(kp)
⊥]⊥ = (TpΩ)

⊥ ∀p ∈ Ω,

so that dim TpΩ = m − 1, dim (TpΩ)⊥ = 1, and dim [TpΩ ∩ (TpΩ)⊥] = 1, and (B.1)
holds.

Proposition B.1.2 (Null geodesics). Let (M,g) be an m-dimensional spacetime. Con-

sider a null hypersurface Ω embedded in M. The integral curves of k are null geodesics

(and they are also called null generators of Ω).

Proof. It suffices to prove:

∇kk = λk.
Let us consider p ∈ Ω. We want to prove that ∇kk |p ∈ (TpΩ)⊥ =< kp >, or equiva-

lently 〈∇kk |p, X〉 = 0 ∀X ∈ TpΩ. To this purpose extend X ∈ TpΩ making it invariant
under the flux generated by k ,

[k,X] = ∇kX −∇Xk = 0. (B.2)

The system (B.2) always has a unique solution because in a suitable coordinate system

rectifying k , this equation becomes an ordinary differential equation of first order with

Xp as initial data. By construction, the extended vector X remains tangent to Ω, so

that 〈k,X〉 = 0 holds. Differentiating along k we obtain

∇k〈k,X〉 = 〈∇kk,X〉+ 〈k,∇kX〉 = 0.

Therefore:

〈∇kk,X〉 = −〈k,∇kX〉 = −〈k,∇Xk〉 = −
1

2
X〈k, k〉 = 0.
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B.2 Quotient structure on a null hypersurface

The difficulty that arises with null hypersurfaces is that they do not inherit a metric

from the ambient manifold. Hence it is not possible to raise and lower indices of tensor

fields on Ω. We cannot define a natural connection on Ω either. In order to address

this difficulty, it is useful to introduce the following equivalence relation in TpΩ:

For X, Y ∈ Γ(TΩ), we define

X ∼ Y ⇐⇒ X − Y = λk, with λ ∈ R.

This endows TpΩ with a quotient structure (see Figure B.1). The quotient vector

space, denoted by TpΩ/k , is the set of equivalence classes of each Xp ∈ TpΩ, denoted
by Xp, namely

TpΩ/k = {Xp : Xp ∈ TpΩ}.
The fiber bundle on Ω is the collection of all quotient spaces

TΩ/k =
⋃

p∈Ω
TpΩ/k.

The dimension of the fibers is m − 2. From now on and for the sake of simplicity, we
will simply write X instead of Xp.

B.3 Positive definite metric on TΩ/k

It is convenient to construct a metric on the quotient bundle. Define the map:

γΩ : TpΩ/k × TpΩ/k −→ R

γΩ(X, Y ) = 〈X, Y 〉.

The first thing to check is that the map is well defined, i.e., that it does not depend

on the chosen representatives: let X ′ ∼ X, and Y ′ ∼ Y . This means there exist two

real numbers α, β so that X ′ = X + αk , Y ′ = Y + βk . Then γΩ(X ′, Y ′) = 〈X ′, Y ′〉 =
〈X+αk, Y +βk〉 = 〈X, Y 〉+β〈X, k〉+α〈k, Y 〉+αβ〈k, k〉 = 〈X, Y 〉 = γΩ(X, Y ), where
we used (kp)

⊥ = TpΩ.

The next thing to see is that γΩ is in fact a metric. Consider X ∈ TpΩ/k , X 6= 0.
This means that X ∈ TpΩ is not parallel to kp, i.e. X is a spacelike direction. In other
words

γΩ(X,X) = 〈X,X〉 > 0,
which directly implies that γΩ is a metric.
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B.4 Second fundamental form on TΩ/kTΩ/kTΩ/k

We next define on TpΩ/k the Weingarten map (see for instance [32]), which will be

useful later to define the second fundamental form tensor. Consider the map

KΩ : TpΩ/k −→ TpΩ/k

KΩ(X) = ∇Xk. (B.3)

This definition is consistent because (∇Xk)p ∈ TpΩ. Indeed 〈k, k〉 = 0 ⇒ 0 =

∇X〈k, k〉 = 2〈∇Xk, k〉 ⇒ 〈∇Xk, k〉 = 0⇒ (∇Xk)p ∈ (kp)⊥ = TpΩ.
We also need to check that ∇Xk is independent of the representative X ∈ X. Let
X ′ ∼ X. Then KΩ(X ′) = ∇X ′k = ∇X+αkk = ∇Xk + α∇kk = ∇Xk + αλk = ∇Xk =
KΩ(X).

Using this map we can define the second fundamental form tensor in the quotient

space:

Definition B.4.1 (Second fundamental form tensor on TpΩ/k). The second funda-

mental form tensor in the quotient space TpΩ/k is the map:

KΩ : TpΩ/k × TpΩ/k −→ R

KΩ(X, Y ) = γΩ(KΩ(X), Y ) = 〈∇Xk, Y 〉.

Proposition B.4.2. KΩ is symmetric, i.e. KΩ(X, Y ) = KΩ(Y ,X),∀X, Y ∈ TpΩ/k , and
hence the map KΩ is self-adjoint with respect to γΩ.

Proof. Given Xp, Yp ∈ TpΩ, extend them as vector fields X, Y tangent to Ω in a neigh-
bourhood of p in Ω. Using X(〈k, Y 〉) = 0 and Y (〈k,X〉) = 0, it follows

KΩ(X, Y ) = 〈∇Xk, Y 〉 = −〈k,∇XY 〉
= −〈k,∇YX〉+ 〈k, [X, Y ]〉
= 〈∇Y k,X〉 = KΩ(Y ,X),

where we used [X, Y ]p ∈ TpΩ, since both Xp and Yp are tangent to Ω.

Let us build now a basis B of vectors of TpΩ, with the property that the first vector

of the basis is the null direction kp. To obtain the rest of vectors, we consider the

intersection S of another spacelike hypersurface Σ with Ω, i.e. S = Ω∩Σ. Under these
conditions TpΩ = 〈kp〉⊕Tp(Ω∩Σ) = 〈kp〉⊕TpS. In addition k |S ∈ Γ((TS)⊥). Choose
m − 2 linearly independent additional spacelike vectors {X1, . . . , Xm−2} which form a
basis B′ of TpS ⊂ TpΩ. It is clear that B = {k} ∪ B′ is a basis of TpΩ.
The elements of B′ are in TpΩ. We can take its equivalence classes, and obtain a
set of quotient vectors B′ = {X1, . . . , Xm−2}, whose cardinal equals the dimension of
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B. Geometry of null hypersurfaces

TpΩ/k . Moreover they are linearly independent. Indeed if a linear combination a
AXA

vanishes, then there is a0 ∈ R such that aAXA = a0k . But {k,XA} is a basis, so all
coefficients aA and a0 must be zero. Thus B′ is a basis of TpΩ/k .

We next define the concept of mean null curvature, also called null expansion:

Definition B.4.3 (Null expansion). Let (M,g) be an m-dimensional spacetime and

Ω ⊂ M an embedded null hypersurface. ∀p ∈ TpΩ, we can consider the basis B′ =
{X1, . . . , Xm−2} of TpΩ/k . Let KΩ : TpΩ/k×TpΩ/k −→ R be the second fundamental
form tensor. The null expansion is the scalar

θk = traceγΩ(K
Ω) = (γΩ)ABKΩAB,

where KΩAB := K
Ω(XA, XB), and (γ

Ω)AB is the inverse of γΩAB := γ
Ω(XA, XB).

Ss

M

k

Ω

KΩ(X, Y ) = 〈∇Xk, Y 〉
γΩ(X, Y ) = 〈X, Y 〉

X

Y

Figure B.1: A null hypersurface Ω embedded in a spacetime M. The tangent vector

field k to the null generators of Ω is unique up to reparametrization, and every tangent

vector X to the hypersurface is orthogonal to k . A canonical equivalence relation

between vectors tangent to Ω can be defined, and a quotient bundle can be constructed.

The quotient metric γΩ and second fundamental form tensor KΩ are independent of

the chosen representatives of the equivalence classes. The level sets of a function

s : Ω→ R satisfying k(s) = 1 define a foliation {Ss} along Ω.

For any smooth nowhere zero function f : Ω → R, the vector field k̃ = f k is

also a degeneration vector. Denote by KΩk and K
Ω
k̃
the corresponding Weingarten
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endomorphisms and KΩk and K
Ω

k̃
the associated second fundamental forms. Then

KΩ
k̃
(X) = ∇X k̃ = ∇X(f k) = X(f )k + f∇Xk = f∇Xk = f∇Xk = fKΩk(X). (B.4)

From here we conclude

θ
k̃
= (γΩ)AB(KΩ

k̃
)AB = (γ

Ω)ABγΩ(KΩ
k̃
(XA), XB)

= (γΩ)ABγΩ(fKΩk(XA), XB) = f (γ
Ω)AB(KΩk )AB = f θk .

Remark B.4.4. Notice that, as a consequence of (B.4), the Weingarten endomorphism

KΩk depends only on the value of the vector field k on p.

B.5 Evolution equations on ΩΩΩ. Ricatti and Raychaud-

huri equation

Definition B.5.1 (Null generator of ΩΩΩ). Let (M,g) be a spacetime of dimension m

and Ω ⊂ M an embedded null hypersurface. A null generator of Ω is any of the integral
curves of the degeneration direction < k >.

On each null generator α(s) we consider the Weingarten map at p = α(s), along the

vector α′

KΩ(s) := KΩα′(s). (B.5)

As already mentioned, there is no natural connection on Γ(TΩ), and even more so

on the quotient bundle Γ(TΩ/k). However it is possible to give a natural definition

of directional derivative along the null generators of Ω for tensor fields on Γ(TΩ/k).

For any smooth function f : Ω → R the derivative of f along α(s) can be defined
as f ′ := df (α(s))

ds
. For convenience the notation f ′ := k(f ) is also often used. The

derivative of X ∈ Γ(TΩ) along k is naturally defined as X ′ := ∇kX. This vector field is
tangent to Ω because, as shown after (B.3), ∇Xk ∈ Γ(TΩ) and [X, k ] is also tangent
to Ω. For the derivative of the class we simply put

(X)′ := X ′.

We need to check that this operation is well-defined, i.e. that it does not depend on the

representative. To this purpose we consider X ∼ Y , i.e., there is a function λ : Ω→ R
so that Y = X + λk . Given that ∇kk is proportional to k , then

(Y )′ = ∇k(X + λk) = ∇kX + k(λ)k + λ∇kk =
= ∇kX = X ′ = (X)′.
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A fundamental property of any covariant derivative is the Leibniz rule with respect to

contraction. More specifically, if ω is any one-form and X, Y are vector fields then

∇Y [ω(X)] = (∇Y ω)X + ω(∇YX).

Such a rule can be used to define the directional derivative we are seeking. For the

specific case of the Weingarten map we define (KΩ)′ by

(KΩ)′(X) := [KΩ(X)]′ −KΩ(X ′), X ∈ Γ(TΩ/k).

Differential equations of the form dy
dx
= A(x)y 2 + B(x)y + C(x) are called Ricatti

equations. Such equations make sense not only for real functions, but also for endo-

morphisms. As we next see, the Weingarten map KΩ satisfies a Ricatti equation:

Theorem B.5.2 (Ricatti equation for the Weingarten map). Consider Ω a null hy-

persurface embedded in a spacetime (M,g) of dimension m. Let k be a degeneration

vector of Ω, Qk the function that satisfies ∇kk = Qkk , and α(s) the corresponding null
generators of Ω. Then the family of Weingarten maps KΩ = KΩ(s) obeys the equation

(KΩ)′ + (KΩ)2 + R −QkKΩ = 0, (B.6)

where ′ denotes the directional derivative along α(s), and (KΩ)2 = KΩ ◦KΩ (compo-
sition of endomorphisms), with

(Y )′ := Y ′, differentiation of a vector field in Γ(TΩ/k),

(KΩ)′(X) := [KΩ(X)]′ −KΩ(X ′), definition of endomorphism b′,

R(X) := R(X,α′)α′, with R the curvature tensor on M. (B.7)

Proof. The first step is to check that (B.7) is well defined. Assume Y = X+λk . Then

R(Y ) = R(Y, k)k = R(X + λk, k)k = R(X, k)k + λR(k, k)k =

= R(X, k)k = R(X),

where linearity and the antisymmetric properties of the curvature tensor have been used.

Consider now any vector Xp ∈ TpΩ, and extend it along α making it invariant under
the flux generated by k as in (B.2). The defining property is

∇kX = ∇Xk, (B.8)

and will be used several times below without further notice. The definition of curvature

tensor implies

R(X, k)k = ∇X∇kk −∇k∇Xk −∇[X,k]k = X(Qk)k +Qk∇kX −∇k∇kX, (B.9)
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where in the last equality both (B.8) and ∇kk = Qkk have been used. Notice that each
term in equation (B.9) is in TpΩ. In fact, this equation can be rewritten as

X ′′ = X(Qk)k +QkX
′ − R(X,α′)α′.

Finally,

(KΩ)′(X) = (∇Xk)′ −KΩ(∇kX) = (∇kX)′ −KΩ(∇Xk) =
= X

′′ −KΩ(KΩ(X)) = QkX
′ − R(X,α′)α′ − (KΩ)2(X) =

= QkK
Ω(X)− R(X)− (KΩ)2(X).

Given that Xp is arbitrary, this proves (B.6).

Our next aim is to find the expression in components of (B.6). Let Bp = {kp, (X1)p,
. . . , (Xm−2)p} be a basis for TpΩ and define functions (KΩ)LA by

KΩ(XA) = (K
Ω)LAXL.

From the definition of second fundamental form tensor,

(KΩ)AB = γΩ(KΩ(XA), XB)

= γΩ[(KΩ)LAXL, XB]

= (KΩ)LAγ
Ω(XL, XB)

= (KΩ)LA(γ
Ω)LB

= (KΩ)AB,

which is simply the statement in components that the second fundamental form is

obtained from KΩ by lowering indices with γΩ. Extend now every XA in Bp along α(s)

as in (B.2). Then

∇kXA = ∇XAk = KΩ(XA) = (K
Ω)LAXL.

The endomorphism (KΩ)′ acting on the elements of the basis reads

(KΩ)′(XA) = [(KΩ)′]BAXB

= [KΩ(XA)]
′ −KΩ(X ′A)

= ((KΩ)BAXB)
′ −KΩ(X ′A)

= ((KΩ)BA)
′XB + (K

Ω)BA(XB)
′ −KΩ(X ′A)︸ ︷︷ ︸

(∗∗)

, (B.10)

and the term (**) vanishes because

(∗∗) = (KΩ)BA∇kXB −KΩ(∇kXA)
= (KΩ)BA(K

Ω)LBXL −KΩ((KΩ)LAXL)

= (KΩ)BA(K
Ω)LBXL − (KΩ)LA(KΩ)TLXT = 0.

202



B. Geometry of null hypersurfaces

Since (KΩ)BA are functions, (B.10) is simply

(KΩ)′(XA) = [(K
Ω)BA]

′XB =
d(KΩ)BA
ds

XB.

The endomorphism (KΩ)2 in components is

(KΩ)2(XA) = [(K
Ω)2]BAXB = (K

Ω)SA(K
Ω)BSXB,

and we define RBA by means of

R(XA) = R
B
AXB.

Putting things together, the Ricatti equation becomes

0 = [(KΩ)′ + (KΩ)2 + R −QkKΩ](XA) =

=
(d(KΩ)BA

ds
+ (KΩ)SA(K

Ω)BS + R
B
A −Qk(KΩ)BA

)
XB,

that is to say

d(KΩ)BA
ds

+ (KΩ)SA(K
Ω)BS + R

B
A −Qk(KΩ)BA = 0. (B.11)

It is also necessary to obtain (γΩAB)
′:

d(γΩ)AB
ds

= α′(s)[(γΩ)AB] = ∇k [γΩ(XA, XB)]

= ∇k〈XA, XB〉 = 〈∇kXA, XB〉+ 〈XA,∇kXB〉
= 〈∇XAk,XB〉+ 〈XA,∇XBk〉
= γΩ(∇XAk,XB) + γ

Ω(XA,∇XBk) = (KΩ)AB + (KΩ)BA
= 2(KΩ)AB = 2(K

Ω)AB,

where the symmetry of (KΩ)AB, and (K
Ω)AB = (K

Ω)AB have been used. Hence

d(γΩ)AB
ds

= 2(KΩ)AB. (B.12)

Combining (B.11) and (B.12), the derivative of (KΩ)AB along k = α
′(s) is computed

to be

k((KΩ)AB) = k((KΩ)LB(γ
Ω)LA)

= (Qk(K
Ω)LB − (KΩ)SB(KΩ)LS − RLB)(γΩ)LA + 2(KΩ)LB(KΩ)LA

= Qk(K
Ω)AB + (K

Ω)AS(K
Ω)SB − RAB, (B.13)
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where RAB := Riem
g(XA, k, XB, k).

Our next aim is to compute the derivative of the null expansion θk . To this purpose

we use

k((γΩ)AB) = −2(KΩ)AB, (B.14)

which is an immediate consequence of (B.12). Combining (B.13) and (B.14),

k(θk) = k((γΩ)AB(KΩ)AB) =

= −2(KΩ)AB(KΩ)AB + (γΩ)AB(Qk(KΩ)AB + (KΩ)AS(KΩ)SB − RAB)
= Qkθk − (KΩ)AB(KΩ)AB − (γΩ)ABRAB. (B.15)

For every p ∈ Ω and given a positive function ϕ : Ω→ R, the basis Bp = {kp, (XA)p}
can be extended to a basis of TpM by adding the unique future null vector ℓp orthogonal

to each XA and satisfying 〈kp, ℓp〉 = −ϕ(p). In the basis {XA, k, ℓ}, the contravariant
version of the metric g of M reads

g# = (γΩ)ABXA ⊗XB −
1

ϕ
k ⊗ ℓ− 1

ϕ
ℓ⊗ k. (B.16)

Therefore

(γΩ)ABRAB = (g
# +

1

ϕ
k ⊗ ℓ+ 1

ϕ
ℓ⊗ k)(Riemg(·, k, ·, k)) = Ricg(k, k),

and (B.15) becomes the Raychaudhuri equation in standard form, namely

k(θk) = Qkθk − (KΩ)AB(KΩ)AB − Ricg(k, k). (B.17)

This equation can also be expressed as

k(θk) = Qkθk −
1

2
(θk)

2 − (Πk)AB(Πk)AB − Ricg(k, k), (B.18)

where ΠkAB := (K
Ω)AB − 12θk(γΩ)AB is the trace-free part of (KΩ)AB. Note finally that

(B.11) and (B.18) yield

k((Πk)AB) = (Qk − θk)(Πk)AB − RAB +
1

2
Ricg(k, k)δδδAB. (B.19)

B.6 Flow of surfaces along ΩΩΩ. Evolution equations

A remarkable property of the geometry of a null hypersurface Ω is that, given any point

p ∈ Ω and any embedded spacelike surface Sp in Ω containing p, the induced metric
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γSp(X, Y ) of Sp and the second fundamental form Kk
Sp
(X, Y ) = 〈∇Xk, Y 〉 of Sp along

the null normal k |p satisfy

γΩ(X, Y ) = 〈X + αk, Y + βk〉 = 〈X, Y 〉 = γSp(X, Y ),

and

KΩ(X, Y ) = γΩ(KΩ(X), Y ) = γΩ(∇Xk, Y ) = 〈∇Xk, Y 〉 = Kk
Sp
(X, Y ),

where X, Y ∈ TpSp. In other words, the induced metric and the extrinsic geometry
along k of any embedded spacelike surface in Ω depends only on p and not on the

details of how Sp is embedded in Ω. For this reason we use from now on K
Ω or Kk ,

and γΩ or γS = γ indistinctly.

Let s : Ω → R be a function satisfying k(s) = 1. The level sets of this function
determine a foliation {Ss} of spacelike surfaces in Ω. The choice of future null normal
ℓ transverse to Ss and satisfying 〈k, ℓ〉 = −ϕ is unique. Let us consider on each Ss the
tensor Kℓ(X, Y ) = 〈∇Xℓ, Y 〉, its trace θℓ, and the connection one-form

sℓ(X) =
1

ϕ
〈∇Xk, ℓ〉. (B.20)

The values of sℓ determine completely the normal connection ∇⊥ and viceversa. Indeed,
the normal connection is completely defined when both the values of ∇⊥Xk and ∇⊥Xℓ
are given for any X ∈ Γ(TSs). Moreover, since k is null, it necessarily follows that
〈∇⊥Xk, k〉g=0 and hence ∇⊥Xk must be a multiple of k . Using now 〈k, ℓ〉g = −ϕ, we
directly have from the definition of sℓ(X)

∇⊥Xk = −sℓ(X)k.

An analogous reasoning for ℓ yields

∇⊥Xℓ =
(
X(ϕ)

ϕ
+ sℓ(X)

)
ℓ.

Note that the connection one-form sℓ plays the role of the Christoffel symbols of the

connection.

Unlike KΩ, θk and γ
Ω, the tensors Kℓ, θℓ and sℓ are not intrinsic properties of the null

hypersurface Ω, i.e. their values depend on how the spacelike surface Ss is embedded in

Ω. The next task is to compute the derivatives of these tensors along k . Let us begin

with the extrinsic curvature Kℓ
AB:

k(Kℓ
AB) = k(〈∇XAℓ, XB〉) = 〈∇k∇XAℓ, XB〉+ 〈∇XAℓ,∇kXB〉.

Using now that [k,XA] = 0 and R(k,XA)ℓ = ∇k∇XAℓ−∇XA∇kℓ we obtain

k(Kℓ
AB) = 〈∇XA∇kℓ+ R(k,XA)ℓ, XB〉+ 〈∇XAℓ,∇XBk〉. (B.21)
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From the definition of sℓ and K
k
AB, ∇XBk = −(sℓ)Bk + (Kk)LBXL, which inserted into

(B.21) gives

k(Kℓ
AB) = 〈∇XA∇kℓ, XB〉 − Riemg(XA, k, XB, ℓ)− (sℓ)B〈∇XAℓ, k〉+ (Kk)LB(K

ℓ)LA.

Since 〈k, ℓ〉 = −ϕ, then

〈∇XAℓ, k〉 = −ϕ,A − 〈∇XAk, ℓ〉 = −ϕ,A − ϕ(sℓ)A,

and consequently

k(Kℓ
AB) = 〈∇XA∇kℓ, XB〉 − Riemg(XA, k, XB, ℓ) + (sℓ)Bϕ,A + ϕ(sℓ)A(sℓ)B

+(Kk)LB(K
ℓ)LA. (B.22)

We next work out the term 〈∇XA∇kℓ, XB〉. To compute ∇kℓ we simply note that
〈k,∇kℓ〉 = ∇k〈k, ℓ〉− 〈∇kk, ℓ〉 = −k(ϕ)+ϕQk so that, combined with (B.20) and the
fact that ℓ is null,

∇kℓ =
(
k(ϕ)

ϕ
−Qk

)
ℓ− ϕ(sℓ)LXL, (B.23)

and then

〈∇XA∇kℓ, XB〉 =
〈
∇XA

((
k(ϕ)

ϕ
−Qk

)
ℓ− ϕ(sℓ)LXL

)
, XB

〉

=

(
k(ϕ)

ϕ
−Qk

)
Kℓ
AB − 〈ϕ,A(sℓ)LXL, XB〉 − 〈ϕXA((sℓ)L)XL, XB〉

−〈∇XAXL, XB〉). (B.24)

Denoting by ∇S the induced connection on each Ss , we have

〈∇XAXL, XB〉 = 〈∇SXAXL, XB〉 = Γ
D
ALγDB,

where ΓDAL are the Christoffel symbols of γS. This allows us to rewrite (B.24) as

〈∇XA∇kℓ, XB〉 =
(
k(ϕ)

ϕ
−Qk

)
Kℓ
AB − ϕ,A(sℓ)B − ϕ∇SA(sℓ)B. (B.25)

Inserting (B.25) into (B.22) finally yields

k(Kℓ
AB) =

(
k(ϕ)

ϕ
−Qk

)
Kℓ
AB + (K

k)LB(K
ℓ)LA − Riemg(XA, k, XB, ℓ)

+ϕ((sℓ)A(sℓ)B −∇SA(sℓ)B), (B.26)

which is the evolution equation for the null second fundamental form along ℓ.
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We next compute the derivative of θℓ along k . This follows directly from (B.14) and

(B.26):

k(θℓ) = k(γABKℓ
AB)

= −(Kk)AB(Kℓ)AB +

(
k(ϕ)

ϕ
−Qk

)
θℓ − γABRiemg(XA, k, XB, ℓ)

+ϕ(|sℓ|2γ −∇NA(sℓ)A). (B.27)

Expression g# in (B.16) can be used to compute the third term in the above expression

as

γABRiemg(XA, k, XB, ℓ) = (g# +
1

ϕ
k ⊗ ℓ+ 1

ϕ
ℓ⊗ k)(Riemg(·, k, ·, ℓ)) =

= Ricg(k, ℓ)− 1
ϕ
Riemg(k, ℓ, k, ℓ),

and (B.27) becomes

k(θℓ) =

(
k(ϕ)

ϕ
−Qk

)
θℓ − (Kk)AB(Kℓ)AB − Ricg(k, ℓ) +

1

ϕ
Riemg(k, ℓ, k, ℓ)

+ϕ(|sℓ|2γ −∇NA(sℓ)A). (B.28)

Solving for Riemg(k, ℓ, k, ℓ) in the contracted Gauss identity (A.30), which relates the

ambient scalar curvature Scalg and the induced scalar curvature ScalS, and substituting

in (B.28) finally yields

k(θℓ) =

(
k(ϕ)

ϕ
−Qk

)
θℓ + Ein

g(k, ℓ)− θkθℓ −
ϕ

2
ScalS + ϕ(|sℓ|2γ −∇NA(sℓ)A). (B.29)

The last evolution equation we compute is the derivative along k of the one-form sℓ:

k((sℓ)A) = k

(
1

ϕ
〈∇XAk, ℓ〉

)
=
−k(ϕ)
ϕ
(sℓ)A +

1

ϕ
(〈∇k∇XAk, ℓ〉+ 〈∇XAk,∇kℓ〉) .(B.30)

Using ∇k∇XAk = ∇XA∇kk+R(k,XA)k in the second derivative term, and the geodesic
relation ∇kk = Qkk , implies

〈∇k∇XAk, ℓ〉 = −ϕ(Qk),A + ϕQk(sℓ)A + R(ℓ, k, k, XA). (B.31)

Using again expression (B.23),

〈∇XAk,∇kℓ〉 =
(
k(ϕ)

ϕ
−Qk

)
ϕ(sℓ)A − ϕ(sℓ)LKk

LA. (B.32)

Inserting (B.31) and (B.32) into (B.30) gives

k((sℓ)A) = −(Qk)A +
1

ϕ
R(ℓ, k, k, XA)− (sℓ)LKk

LA. (B.33)

207



B.6. Flow of surfaces along ΩΩΩ. Evolution equations

As before, the curvature term in this expansion can be rewritten in terms of the Einstein

tensor. To do so, we use the Codazzi equation (A.26), with η = k

Riemg(Y,X,Z, k) = 〈(∇̃Y ~K)(X,Z), k〉 − 〈(∇̃X ~K)(Y, Z), k〉. (B.34)

We need to compute the derivative of the second fundamental form vector. We first

decompose ~K in the null basis {k, ℓ} as ~K = −1
ϕ
(Kℓk + Kkℓ). From the definition of

the covariant derivative ∇̃ in (A.23), where ∇N is replaced by the connection ∇S of Ss ,
and using that 〈~K, k〉 = Kk , we have

〈(∇̃X ~K)(Y, Z), k〉 = 〈∇X ~K(Y, Z), k〉 −Kk(∇SXY, Z)−Kk(Y,∇SXZ). (B.35)

Working out the first term, we obtain

〈∇X ~K(Y, Z), k〉 =
〈
∇X

(
− 1
ϕ
(Kℓ(Y, Z)k +Kk(Y, Z)ℓ)

)
, k

〉

=

〈
∇X

(
− 1
ϕ
(Kk(Y, Z)ℓ)

)
, k

〉

=
−X(ϕ)
ϕ

Kk(Y, Z) +X(Kk(Y, Z))− 1
ϕ
Kk(Y, Z)〈∇Xℓ, k〉

= X(Kk(Y, Z)) +Kk(Y, Z)sℓ(X), (B.36)

where we used 〈∇Xℓ, k〉 = −X(ϕ) − ϕsℓ(X). Inserting (B.36) into (B.35) and using
(∇XKk)(Y, Z) := X(Kk(Y, Z))−Kk(∇SXY, Z)−Kk(Y,∇SXZ), it follows

〈(∇̃X ~K)(Y, Z), k〉 = (∇XKk)(Y, Z) +Kk(Y, Z)sℓ(X),

so that (B.34) becomes

Riemg(Y,X,Z, k) = (∇YKk)(X,Z)− (∇XKk)(Y, Z) +Kk(X,Z)sℓ(Y )

−Kk(Y, Z)sℓ(X),

or, in index notation

Riemg(XA, XB, XC, k) = ∇SAKk
BC −∇SBKk

AC +K
k
BC(sℓ)A −Kk

AC(sℓ)B. (B.37)

Taking the trace we obtain

Eing(XA, k)+
1

ϕ
Riemg(l , k, k, XA) = ∇SL(Kk)LA− (θk),A+Kk

AL(sℓ)
L− θk(sℓ)A, (B.38)

and solving for 1
ϕ
Riemg(l , k, k, XA) and substituting it in (B.33) gives the final form for

the evolution equation of sℓ

k((sℓ)A) = −(Qk)A − (sℓ)Aθk +∇SL(Kk)LA − (θk),A − Eing(XA, k). (B.39)
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We finally compute the Lie derivative £kηSs . Let us choose a system of coordinates

{x1, . . . , xn} on each Ss , such that the volume form gets the usual form

ηSs =
√
det γ(s)dx1 . . . dxn.

Using now the Jacobi identity for the derivative of the determinant of a uniparametric

family of matrices, that says that

d

ds
detA(s) = detA(s)tr

(
A−1(s)

dA(s)

ds

)
,

and considering as well relation (B.12), we obtain

d

ds
det γ(s) = det γ(s)tr

(
γ−1(s)AL∂sγ(s)LB

)
= det γ(s)γ−1(s)AB2Kk

AB = 2det γ(s)θk .

(B.40)

We finally conclude, using (B.40)

£kηSs =
d

ds

√
det γ(s)dx1 . . . dxn =

1

2
√
det γ(s)

2 det γ(s)θkdx
1 . . . dxn = θkηSs .

(B.41)
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C
Geometry of convex bodies. The support function

This appendix is devoted to the study of the relation of the geometry of a convex body

in Rn with the geometry of the standard sphere. Using the Gauss map as the link

that connects both geometries, and studying some of the main properties of convex

functions and in particular using the so-called support function of a convex body, we will

be able to rewrite the first and second fundamental form of the convex body in terms of

the support function and geometric objects naturally defined on the sphere. The main

reference for this appendix is Schneider [94].

C.1 Mapping a convex body onto the unit sphere

Let Cn be the set of convex bodies (non-empty, compact, convex subsets) of Rn. A set
A ⊂ Rn is convex if together with any two points x, y it contains the segment [x, y ],
that is to say, (1− λ)x + λy ∈ A for x, y ∈ A, 0 ≤ λ ≤ 1. Let us now introduce some
differentiability assumptions. A convex body C ∈ Cn is said to be of class Ck , for some
k ∈ N, if ∂C (the boundary of C) is a regular submanifold of Rn k-times continuously
differentiable. C is of class C∞ if it is of class Ck for each k ∈ N. C is of class C1 if and
only if it has a unique tangent plane at each boundary point. The following theorem

will be proved at the end of this appendix and requires the use of the support function

of C, hC : R
n → R (and in particular the support function of ∂C, h : ∂C → R, defined

in terms of the previous) which will be defined later. The theorem states the following:

Theorem C.1.1. Let C ∈ Cn be of class C2. Consider γAB and KAB the first and
second fundamental form of ∂C as an embedded hypersurface of Rn, and h : ∂C → R
the support function of ∂C. Then γAB and KAB can be rewritten in terms of h as
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C.1. Mapping a convex body onto the unit sphere

follows:

KAB = ∇̊A∇̊Bh + q̊ABh,
γAB = (q̊−1)LMKLAKMB,

where q̊AB denotes the pullback of the standard metric of the unit sphere onto ∂C via

de Gauss map, and ∇̊ its corresponding Levi-Civita connection.

Remark C.1.2. Throughout this appendix we will use for tensors the index notation

(e.g. KAB) and the alternative notation K(X, Y ) indistinctly.

Recall that for an embedded manifold N in M, p ∈ N, and an orthogonal vector field
η along N, the Weingarten map Wη : TpN → TpN is defined as the endomorphism

Wη(X) = (∇Xη)⊤.

Let C ∈ Cn be of class C2. For p ∈ ∂C, let ν(p) be the outward unit normal vector of
∂C at p. In this particular case where η := ν has constant norm (|ν| = 1), we have

Wν(X) = (∇Xν)⊤ = ∇Xν. (C.1)

Consider the embedding φ of the abstract sphere Sn−1 in Rn. Since C ∈ Cn is of
class C2, the map ν : ∂C → φ(Sn−1), that assigns to each p ∈ ∂C the unique point
φ(u) ∈ φ(Sn−1) with u ∈ Sn−1 so that the vector ν(p) and the one defined by the origin
and φ(u) are parallel in the standard way in the Euclidean space, is well-defined and is in

fact of class C1. This is called spherical image map or Gauss map of ∂C. Observe that

in this context ν will be used both to denote the unit normal to ∂C and to denote the

map going from ∂C to the embedded unit sphere. In spite of this duality no confusion

arises since the situation will be clear by the context. The map ν induces another map

νC : ∂C → Sn−1 to the abstract sphere. We will refer to νC as the abstract Gauss map,
and it is defined by νC(p) = u, or equivalently ν = φ ◦ νC.
As in Chapter 5, given two points p1 and p2 of R

n, we denote by Tp1→p2 the map that
transports parallely a vector from Tp1R

n to Tp2R
n. The differential dν of the Gauss map

ν is the Weingarten map Wν when the vectors of Tφ(u)φ(S
n−1) and Tp∂C are identified

by parallel transport. In other words, the Weingarten map Wν acting on X at p ∈ ∂C
can also be expressed in the following way

Wν(X)|p = Tφ(u)→p(dνp(X)).

The equivalence of this expression with (C.1) is direct in Cartesian coordinates {xA},
where (∇∂

xA
ν)B = dνB(∂xA). The second fundamental form of ∂C at p is defined in

terms of the Weingarten map as

Kp(X, Y ) = 〈Wν(X), Y 〉|p, (C.2)
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with X, Y ∈ Tp∂C.
In local coordinates, we can describe the constructions above as follows. Let U ⊂ Rn−1
be an open set, and X : U → ∂C ⊂ Rn a local parametrization of class C2 of a
neighbourhood of p on ∂C, where p = X(y) with y ∈ U. Then N = ν ◦ X : U →
φ(Sn−1) ⊂ Rn is a local parametrization of a neighbourhood of φ(u) on φ(Sn−1), and
is a map of class C1 (see Figure C.1). Therefore

dNy = dνp ◦ dXy ⇒Wν |p ≡ dνp = dNy ◦ dX−1y . (C.3)

Consider a basis {eA} of TyU. Let us define XA := dX(eA) and NA := dN(eA). From
(C.3) we have

Wp(XA) = Tφ(u)→pNA.
For the sake of simplicity we will simply write Wp(XA) = NA when it is clear from the

context. The second fundamental form and the metric of ∂C read respectively

KAB = K(XA, XB) = 〈Wν(XA), XB〉 = 〈NA, XB〉,
γAB = 〈XA, XB〉.

Since Wν |p is an endomorphism on Tp∂C, Wν(XA) can be expressed in terms of

functions Wν
L
A defined on ∂C and the basis XA, namely

Wν(XA) =Wν
L
AXL.

For this reason

KAB = 〈Wν(XA), XB〉 = 〈Wν
L
AXL, XB〉 =Wν

L
AγLB,

which is just the rewriting of (C.2) in components.

The following assumption, stronger that Ck , will also be important. We say that C

is of class Ck+ (for k ≥ 2) if C is of class Ck and the Gauss map ν : ∂C → φ(Sn−1) is
a diffeomorphism (of class C1, and hence Ck−1). This is equivalent to the assumption
that its differential, the Weingarten map Wν, is everywhere of maximal rank, and thus

to the assumption that all the principal curvatures (the eigenvalues of the Weingarten

map at a point) are non-zero.

Let C be of class C2+. Then the map ν has an inverse ν
−1 of class C1:

ν−1 : φ(Sn−1)→ ∂C,

which is known as the inverse Gauss map. Using its differential

dν−1 : Tφ(u)φ(S
n−1)→ Tp∂C,
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y

eA
U ⊂ Rn

X

p

XA

Tp∂C

∂C

ν

φ(u)

NA

Tφ(u)φ(S
n−1)

φ(Sn−1) ⊂ Rn

N = ν ◦X

mp

mφ(u)

Figure C.1: Schematic figure representing the construction above, where a local

parametrization of the boundary of a convex body C and of the embedded sphere

φ(Sn−1) is given, as well as the Gauss map ν that maps diffeomorphically a neigh-
bourhood of p ∈ ∂C to a neighbourhood of φ(u) ∈ φ(Sn−1). U ⊂ Rn is an open
set, X : U → ∂C ⊂ Rn is a local parametrization of class C2 of a neighbourhood of
p ∈ ∂C, with p = X(y) and y ∈ U. N : U → φ(Sn−1) ⊂ Rn is a local parametriza-
tion of a neighbourhood of φ(u) on φ(Sn−1), and is a map of class C1. The map
ν : ∂C → φ(Sn−1) ⊂ Rn is the Gauss map of ∂C. The image of p by ν is φ(u), so that
the respective outer unit normals mp and mφ(u) are parallel in the standard way in R

n.

we can define the reverse Weingarten map endomorphism B acting on vectors of
Tφ(u)φ(S

n−1) as
Bφ(u)(v) := Tp→φ(u)dν−1|φ(u)(v),

from where Bφ(u)(NA) = Tp→φ(u)dν−1|φ(u)(NA) = Tp→φ(u)XA. For the sake of simplicity
and for the same reasons as before we will simply write

B(NA) = XA.

The reverse second fundamental form B of ∂C is defined in terms of this map as

B(v , w) = 〈B(v), w〉, v , w ∈ Tφ(u)φ(Sn−1).

Applying this tensor on vectors of the basis {NA} we obtain

B(NA, NB) = 〈B(NA), NB〉 = 〈XA, NB〉 = K(XB, XA) = K(XA, XB),
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where in the last equality the symmetry of the second fundamental form has been used.

Since NA = dν(XA), it follows

K = ν∗(B).

Consider the spherical metric q̊AB = 〈NA, NB〉 and the functions BLA defined by
XA = B(NA) = BLANL.

Then

BAB = 〈B(NA), NB〉 = 〈XA, NB〉 = 〈BLANL, NB〉 = BLAq̊LB,
which means that the spherical metric raises and lowers the indices of the reverse

Weingarten map.

C.2 Convex functions. The support function

There is an interesting relation between convex sets and convex functions. Let us first

define what a convex function is:

Definition C.2.1 (Convex function). A function f : Rn → R is convex if
f ((1− λ)x + λy) ≤ (1− λ)f (x) + λf (y),

for all x, y ∈ Rn and 0 ≤ λ ≤ 1.

The following theorems are general analytic results of convex functions and can be

found for instance in [94]:

Theorem C.2.2. Let f : Rn → R be a convex function. Consider x ∈ Rn. If f has
partial derivatives (of first order) at x , then f is differentiable at x .

Theorem C.2.3. Let f : Rn → R be a convex function. Consider x ∈ Rn. Then there
exists

f ′(x, u) := lim
λ→0+

f (x + λu)− f (x)
λ

.

We call f ′(x, ·) the semidirectional derivative function of f at x .
Remark C.2.4. The difference between semidirectional and the more standard direc-

tional derivative is that in the later λ → 0 without restriction while in the former the
limit is one sided λ→ 0+.

A function f : Rn → R is called positively homogeneous if
f (λx) = λf (x),

for all λ ≥ 0 and all x ∈ Rn, and f is called subadditive if
f (x + y) ≤ f (x) + f (y)

for all x, y ∈ Rn.
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Definition C.2.5 (Sublinear function). A sublinear function is a function that is posi-

tively homogeneous and subadditive. Every sublinear function is clearly convex.

The following result clarifies the relation between the semidirectional derivative func-

tions of the convex functions and sublinear functions:

Lemma C.2.6. Let f : Rn → R be convex, and x ∈ Rn. Then the semidirectional
derivative function

f ′(x ; ·) : Rn → R
is sublinear.

Proof. Let u ∈ Rn \ {0}. Consider λ, τ > 0. We may write

f (x + τλu)− f (x)
τ

= λ
f (x + τλu)− f (x)

τλ
.

When we take the limit τ → 0+, we obtain

f ′(x ;λu) = λf ′(x ; u).

Using the convexity of f , for u, v ∈ Rn we have

f (x + τ(u + v)) = f

(
1

2
(x + 2τu) +

1

2
(x + 2τv)

)
≤ 1
2
f (x + 2τu) +

1

2
f (x + 2τv).

Hence

lim
τ→0+

f (x + τ(u + v))− f (x)
τ

≤ lim
τ→0+

f (x + 2τu)− f (x)
2τ

+ lim
τ→0+

f (x + 2τv)− f (x)
2τ

,

that is to say, f ′(x ; u + v) ≤ f ′(x ; u) + f ′(x ; v).

The following lemma shows that the semidirectional derivative function of a sublinear

function is always upper bounded by the function itself:

Lemma C.2.7. Let f : Rn → R be sublinear. Let x ∈ Rn. Then f ′(x ; ·) ≤ f .

Proof. For u ∈ Rn and τ > 0, the sublinearity of f yields

f (x + τu) ≤ f (x) + τf (u),

which is equivalent to
f (x + τu)− f (x)

τ
≤ f (u).

Taking the limit when τ → 0+, we obtain f ′(x ; u) ≤ f (u).

216



C. Geometry of convex bodies. The support function

A convex body can be described by real functions. One of them is the so-called

support function. As we will see, the support function combined with the geometry of

the standard sphere will determine the first and second fundamental forms of a convex

body. Let us first introduce the definition of support function:

Definition C.2.8 (Support function). Let C be a convex body. The support function

h(C, ·) = hC of C is:

h(C, u) = sup{〈x, u〉 : x ∈ C} for all u ∈ Rn.

Remark C.2.9. The support function is a convex function. In fact it is sublinear, because

it is both positively homogeneous

hC(αu) = sup{〈x, αu〉 : x ∈ C} = α sup{〈x, u〉 : x ∈ C} = αhC(u), α ≥ 0,

and subadditive, since

hC(u + v) = sup{〈x, u + v〉 : x ∈ C} ≤ sup{〈x, u〉 : x ∈ C}+ sup{〈x, v〉 : x ∈ C}
= hC(u) + hC(v).

For a convex body C (which recall is by definition compact), the supremum in the

definition of h(C, u) is attained and finite for each u.

The support function allows us to describe the geometry of a convex body in Rn (see

Figure C.2). Given any vector u ∈ Rn \ {0}, there is just one plane orthogonal to u
which makes contact with C for the first time and that leaves the body C on the side

where u does not point. This plane is the support plane, denoted by H(C, u), and is

defined as

H(C, u) := {x ∈ Rn : 〈x, u〉 = h(C, u)}.
This plane separates the Euclidean space in two halfspaces. The one where the convex

body C lies is the supporting halfspace and will be denoted by H−(C, u). This halfspace
is defined as

H−(C, u) := {x ∈ Rn : 〈x, u〉 ≤ h(C, u)}.
The intersection set of the support plane and the convex body will be denoted by F (C, u)

and called support set of C. Namely

F (C, u) := H(C, u) ∩ C.

As described above, the support function specifies the position of the support planes,

which determine the corresponding supporting halfspaces, and consequently the convex

body, since such an object is always the intersection of all the supporting halfspaces.

The intuitive meaning of the support function is simple. Indeed for a unit vector

m ∈ φ(Sn−1), the number h(C,m) is the signed distance of the support plane to C
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Rn

O

H(C,m)

m

m

H−(C,m)

F (C,m)

C

x∗

x∗m = hC(m)

rm
x

xm

Figure C.2: Schematic figure representing the support function hC of the convex set

C not necessarily of class C2 evaluated on a unit vector m. By definition, hC(m) =

sup{〈x,m〉 : x ∈ C} = sup{xm : x ∈ C}, where xm is the signed distance from
the origin O to the projection of x onto the line rm generated by m. In this case,

the supremum is attained at the points x∗ ∈ ∂C (it is not necessarily unique), and

F (C,m) = H(C,m) ∩ C = {x∗ ∈ ∂C}. The signed distance x∗m is defined by x∗m :=
〈x∗, m〉 for any x∗ ∈ F (C,m) and coincides with hC(m). The support plane H(C,m) is
the first plane orthogonal to m that touches C. We denote by H−(C,m) the halfspace
defined by the support plane and that contains C.

with outer normal vector m from the origin; the distance is negative if and only if m

points into the open halfspace containing the origin. Let us prove this. Let rm be the

line generated by m and containing the origin, and let us denote by xm := 〈x,m〉, i.e.
the signed distance from the origin to the projection of x onto rm. The signed distance
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xm will be ≥ 0 if and only if m points out of the supporting halfspace H−(C,m), and
xm ≤ 0 when the vector m points in the direction of H−(C,m). Then

hC(m) = sup{〈x,m〉 : x ∈ C} = sup{xm : x ∈ C}.

This supremum will always be attained by the points x∗ ∈ C ∩ H(C,m) = F (C,m),

which are always contained in ∂C. Thus,

hC(m) = sup{xm : x ∈ C} = x∗m = 〈x∗, m〉, x∗ ∈ F (C,m) ⊂ ∂C.

From x∗ ∈ H(C,m) ∩ C, it follows that x∗m = 〈x∗, m〉 is the signed distance from the
tangent plane H(C,m) to C to the origin, as we wanted to prove.

The support function has the following properties:

Proposition C.2.10. For C ∈ Cn and u ∈ Rn \ {0}, the following properties hold

(i) h(C, ·) = 〈z, ·〉 if and only if C = {z},

(ii) h(C + t, u) = h(C, u) + 〈t, u〉 for t ∈ Rn,

(iii) h(λC, ·) = λh(C, ·) for λ ≥ 0 and h(−C, u) = h(C,−u),

(iv) hC ≤ hL if and only if C ⊂ L.

Proof. The first three properties are direct consequence of the definition of support

function. For property (iv), assume first that C ⊂ L. Then for any u ∈ Rn,

hC(u) = sup{〈x, u〉 : x ∈ C} ≤ sup{〈x, u〉 : x ∈ L} = hL(u),

since the set where the second supremum is taken is larger than for the first one.

Conversely assume that C is not included in L. Consider the sets ∂C\L and ∂L, and
note that ∂C\L is non-empty since C is not contained in L. Define the function
d(·, ∂L) : ∂C\L → R, which gives the euclidean distance of a point p ∈ ∂C\L to ∂L.
This function attains its maximum at some (possibly non-unique) point p∗ ∈ ∂C\L.
Let q∗ ∈ ∂L satisfy d(p∗, q∗) = d(p∗, ∂L) and consider the vector q∗p∗, and the unit
vector m∗ = q∗p∗

|q∗p∗| . By construction, p
∗ is a contact point of C with H(C,m∗), i.e.

hC(m
∗) = 〈p∗, m∗〉. It also holds hL(m∗) = 〈q∗, m∗〉 since q∗ belongs to the set of

contact points of H(L,m∗) with L. Multiplying the relation p∗ = q∗ + q∗p∗ by m∗, we
obtain

hC(m
∗) = hL(m

∗) + 〈q∗p∗, m∗〉 = hL(m∗) + 〈|q∗p∗|m∗, m∗〉 = hL(m∗) + |q∗p∗|,

where |q∗p∗| > 0. Thus, hC(m∗) > hL(m
∗).
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Rn

p∗

q∗

q∗p∗

H(C,m∗)

H(L,m∗)

C

L
m∗

m∗

O

Figure C.3: Relation between the support functions of the convex sets C and L when C

is not included in L. The function d(·, ∂L) : ∂C\L→ R attains its maximum at a point
p∗ ∈ ∂C\L and q∗ ∈ ∂L satisfies d(p∗, q∗) = d(p∗, ∂L). The unit vector m∗ = q∗p∗

|q∗p∗|
define the support planes H(C,m∗) and H(L,m∗), which first touch C at p∗ and L at
q∗, not being these points necessarily unique. The support functions satisfy in this case
hC(m

∗) > hL(m
∗).

Since the points x∗ always lie on ∂C, it makes sense to define the support function of
a closed, convex and connected hypersurface S ⊂ Rn which is the boundary of a convex
body C of class C2+, i.e. where S = ∂C. In this case S is of class C

1 and diffeomorphic

to the unit sphere and given a unit direction m, the tangent plane H(C,m) to S touches

the hypersurface in a single point x∗, i.e. F (C,m) = {x∗} (see Figure C.4). In this case
m is also the outer unit normal of S at x∗ (as well as the unit normal to the tangent
plane H(C,m)). We have

hC(m) = sup{〈x,m〉 : x ∈ C} = 〈x∗, m〉.

By homogeneity, the support function hC is fully determined when it is defined on each

unit direction. Since in the present case Sn−1 and ∂C are diffeomorphic, we can naturally
define a function h on ∂C as

h := hC ◦ ν.
This function h : S → R will be called the support function of S and can be explicitly
computed by

h(p) = (hC ◦ ν)(p) = hC(m) = sup{〈x,m〉 : x ∈ C} = 〈x(p), m(p)〉, (C.4)
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where m(p) is the unit normal at p pointing towards the exterior of S and x(p) is the

position vector of the point p ∈ S.

Rn

O

x x∗

xm

x∗m
m

m

H(C,m)

C

rm

Figure C.4: Schematic figure representing the support function hC of the convex set C

of class C2 evaluated on a unit vector m. By definition, hC(m) = sup{〈x,m〉 : x ∈ C} =
sup{xm : x ∈ C}, where xm is the signed distance from the origin O to the projection of
x onto the line rm generated by m. When C is of class C

2
+, the supremum is attained

at a unique point x∗ ∈ ∂C, and {x∗} = F (C,m) = H(C,m) ∩ C. The signed distance
x∗m is defined by x

∗
m := 〈x∗, m〉 = hC(m).

C.3 Geometry of Euclidean hypersurfaces in terms of

the support function

The following result is necessary for the proof of Theorem C.1.1. It shows that the set

of sublinear functions is a subset of the support functions of convex bodies. The proof

is somewhat delicate and can be found in [94].

Theorem C.3.1. If f : Rn → R is a sublinear function, then there is a unique convex
body C ∈ Cn with support function f .
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O

TpSh

px(p)

m(p)

Rn+1

S

h(p) = 〈x(p), m(p)〉

Figure C.5: Definition of the support function h of a convex surface S. This function

at a point p ∈ S measures the signed distance of the tangent plane TpS to the origin
of coordinates. Equivalently h(p) is the product of the position vector x(p) with the

outer unit normal m(p) to S. The support function describes the geometry of a convex

body in the euclidean space.

The semidirectional derivatives of support functions are closely related to the support

function of the corresponding support sets. This is the content of the following theorem:

Theorem C.3.2. For C ∈ Cn and u ∈ Rn \ {0},

h′C(u; x) = h(F (C, u); x) for x ∈ Rn. (C.5)

Proof. Applying Lemma C.2.6 we obtain that h′C(u; ·) is sublinear. Hence using Theo-
rem C.3.1, h′C(u; ·) is the support function of a convex body C ′ that satisfies C ′ ⊂ C

because h′C(u; ·) ≤ hC (see Lemma C.2.7 and item (iv) in Proposition C.2.10). Let

y ∈ C ′. By the definition of support function, 〈y , u〉 ≤ h(C, u). Let us next show the
reverse inequality. Since y ∈ C ′, we can apply items (i) and (iv) to the sets {y} and
C ′ to find that their respective support functions satisfy 〈y , ·〉 ≤ h′C(u; ·). Evaluating
at −u we obtain 〈y ,−u〉 ≤ h′C(u;−u) = −h(C, u), where in the last equality we have
used the definition of semidirectional derivative and the homogeneity properties of the

support function, namely

h′C(u;−u) = lim
λ→0+

hC(u + λ(−u))− hC(u)
λ

= lim
λ→0+

(1− λ)hC(u)− hC(u)
λ

= −h(C, u).

Therefore 〈y , u〉 = h(C, u) and hence y ∈ F (C, u). We conclude C ′ ⊂ F (C, u).
For the reverse inclusion we consider y ∈ F (C, u). From the definition of F (C, u),
it follows 〈y , u〉 = h(C, u), and since y ∈ C, we have 〈y , v〉 ≤ h(C, v) for all v ∈ Rn,
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C. Geometry of convex bodies. The support function

where we have used the definition of support function. Choosing v = u + λx (λ > 0,

x ∈ Rn) we get

h(C, u + λx) ≥ 〈y , u + λx〉 = 〈y , u〉+ λ〈y , x〉 = h(C, u) + λ〈y , x〉,

and then

〈y , x〉 ≤ h(C, u + λx)− h(C, u)
λ

.

Taking the limit λ → 0+ we conclude 〈y , x〉 ≤ h′C(u; x). In other words, the support
function of the set {y} is less than or equal to the support function of C ′, so from item
(i) in Proposition C.2.10 it necessarily follows that y ∈ C ′. This proves F (C, u) ⊂ C ′
and hence F (C, u) = C ′ and the equality (C.5).

In the following theorem, we will prove that when the support function hC is differen-

tiable at u ∈ Rn, then its gradient at this point exists and is given by the unique contact
point x of the hyperplane H(C, u) orthogonal to u with the convex body C.

Theorem C.3.3. Let C ∈ Cn and u ∈ Rn\{0}. The support function hC is differentiable
at u if and only if the support set F (C, u) contains only one point x . In this case,

x = grad hC(u).

Proof. The support function is a convex function and consequently the semidirectional

derivative function h′C(u; )̇ exists. To show differentiability, it is hence sufficient by
Theorem C.2.2 to prove that the partial derivatives exist. Fixing an orthonormal basis

e1, . . . , en and expressed in terms of semidirectional derivatives, this happens if and only

if

h′C(u; eA) = −h′C(u;−eA) ∀A = 1, . . . , n.
We can rewrite the above condition by using formula (C.5) as

h(F (C, u), eA) = −h(F (C, u),−eA) ∀A = 1, . . . , n. (C.6)

Condition (C.6) describes the situation where the unique support plane H(F (C, u), eA)

orthogonal to eA and tangent to F (C, u) lies at the opposite signed distance from

the origin than the plane H(F (C, u),−eA) orthogonal to −eA and also tangent to
F (C, u). This can only happen if the two tangent planes coincide (H(F (C, u), eA) =

H(F (C, u),−eA)) and the set F (C, u) is contained within it, i.e. if and only if

F (C, u) ⊂ H(F (C, u), eA),

This must happen for every A = 1, . . . , n, which means that F (C, u) is included in n

different hyperplanes, each one perpendicular to one of the vectors eA in the orthonormal

basis {eA}. Thus, these hyperplanes are pairwise orthogonal, and given that F (C, u) is
included in all of them, it must be F (C, u) = {x} for some x in the boundary of C.
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By property (i) in Proposition C.2.10, the support function of a single point {x} is
〈x, ·〉. Then

〈x, v〉 = h(F (C, u), v) = h′C(u; v) for all v ∈ Rn.
In particular

〈x, eA〉 = h′C(u; eA) = ∂AhC(u), for A = 1, · · · , n.
In other words, x = grad hC(u).

Remark C.3.4. Note that {x} = F (C, u) is the unique contact point of H(C, u) with

C. In particular x lies in the boundary of C.

Let us now consider the relation between Theorem C.3.3 and the construction at the

beginning of this appendix where we introduced the Gauss map ν of the boundary of

a convex body C. Let us assume that C ∈ C2+. Then the map ν has an inverse ν−1
of class C1. The support function hC can be rewritten in terms of ν

−1. Recall that
ν−1 : φ(Sn−1) → ∂C, and when we consider m ∈ φ(Sn−1), then ν−1(m) ∈ ∂C is the
point whose outer unit normal coincides with m. For this reason given p ∈ ∂C, there
exists m ∈ φ(Sn−1) so that ν−1(m) = x(p), where x(p) is the position vector of p, and
since m is the outer unit vector of ∂C at p, then (C.4) can be expressed as

hC(m) = 〈ν−1(m), m〉.

Note that since ν−1 is of class C1, then hC is differentiable on φ(S
n−1) and by homo-

geneity on Rn \ {0}. Given u ∈ Rn \ {0}, the unit vector m = u
|u| lies in φ(S

n−1), and

there is a point p ∈ ∂C satisfying ν−1( u|u|) = x(p), so we finally obtain

ν−1
(
u

|u|

)
= x(p) = grad hC(u), u ∈ Rn \ {0}. (C.7)

The following definition extends to all Euclidean space in a natural way the reverse

Gauss map ν−1:

Definition C.3.5. For u ∈ Rn \ {0}, let ν−1(u) ∈ ∂C the unique point of ∂C at which
u is an outward normal vector. From (C.7) this map can be written explicitly as

ν−1 : Rn \ {0} −→ ∂C

u −→ ν−1(u) = grad hC(u)

Remark C.3.6. With this definition, ν−1 is a positively homogeneous function of de-
gree zero. Note that the restriction to the embedded unit sphere ν−1|φ(Sn−1) = ν−1 :
φ(Sn−1) −→ ∂C is the reverse Gauss map. Its differential dν−1 : Tφ(u)φ(S

n−1)→ Tp∂C

is used to construct the reverse Weingarten endomorphism B when the two tangent
planes Tφ(u)φ(S

n−1) and Tp∂C are identified.
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So far we have studied the maps that link the geometry of convex bodies with the

geometry of the sphere. Besides we have analyzed the main properties of the support

function of a convex body, but we have not yet related both of them. The next Theorem

C.3.9 will provide the relation between the reverse second fundamental form and the

support function of a convex body C (see Figure C.6). Before stating the result, we

need the following analytic Lemmas:

Lemma C.3.7. Let f : Rn → R be an homogeneous function of degree one. Then

∂A∂Bf (x)x
A = 0. (C.8)

Proof. The function f satisfies the relation f (λx) = λf (x). If we differentiate with

respect to λ and evaluate at λ = 1 we recover Euler’s Theorem

∂Af (x)x
A = f (x). (C.9)

Differentiating with respect to xB:

∂B∂Af (x)x
A + ∂Af (x)∂Bx

A = ∂Bf (x).

Since ∂Bx
A = δAB, relation (C.8) follows immediately.

Lemma C.3.8. Let f : Rn → R be a homogeneous function of degree one and x ∈
Rn \ {0}. Then

(HessRnf )x(a, b) =
1

|x |(HessRnf )
x
|x |
(Tx→ x

|x |
a, Tx→ x

|x |
b), a, b ∈ Rn.

Proof. We use the form (Hess f )|x(v , w) = 〈∇vgrad f , w〉|x for the Hessian of f . Note
that the Hessian of f becomes zero when is contracted with any direction parallel to x

because

(Hess f )|x(x, ·) = 〈∇xgradf , ·〉,
and using Euclidean coordinates

∇xgradf = ∇(xA∂
xA
)

(
∂f

∂xB
∂xB

)
= xA(∂A∂Bf )∂xB = 0,

from Lemma C.3.7. It only remains to evaluate the Hessian of f at x along vectors

perpendicular to x .

Let us consider the map θ : Rn \ {0} → φ(Sn−1) ⊂ Rn defined by θ(x) = x
|x | . Note

that when it is restricted to Sn−1(|x |), i.e. the (n − 1)-sphere of radius |x |, then it is
precisely the Gauss map of this surface. Using the homogeneity of f , we have

f (x) = |x |f
(
x

|x |

)
= |x |(f ◦ θ)(x),
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An immediate computation gives ∂A(|x |) = xA

|x | and

∂θC(x)

∂xA
=

∂

∂xA

(
xC

|x |

)
=
δCA
|x | −

xAxC

|x |3 , (C.10)

which yields

(∂Af )(x) = ∂A (|x |(f ◦ θ)(x)) =
xA

|x |(f ◦ θ)(x) + |x |
n∑

C=1

∂f

∂xC
(θ(x))

∂θC(x)

∂xA

=
xA

|x |(f ◦ θ)(x) +
∂f

∂xA
(θ(x))− 〈gradf |θ(x), θ(x)〉

xA

|x | =
∂f

∂xA
(θ(x)),

(C.11)

where we used 〈gradf |θ(x), θ(x)〉 = f (θ(x)) (see (C.9)) in the last equality. In vector

notation, (C.11) states that gradf |x = Tθ(x)→x
(
gradf |θ(x)

)
. If we restrict gradf to

Sn−1(|x |), we can write
T (gradf |Sn−1(|x |)) = gradf |Sn−1,

where (T Z)|θ(x) := Tx→θ(x)(Z|x) for any vector field Z along Sn−1(|x |). The two spheres
Sn−1(|x |) and Sn−1 are diffeomorphic by θ, so we can apply Lemma 5.2.1 in Chapter 5,
to obtain

Tx→θ(x)
((
∇agradf |Sn−1(|x |)

)
|x
)
=
(
∇dθ(a)gradf |Sn−1

)
|θ(x). (C.12)

Moreover,

dθ|x(a) =
1

|x |Tx→θ(x)a.

as a consequence of (C.10) and the orthogonality of a and x . Substituting in (C.12)

gives

Tx→θ(x)
((
∇agradf |Sn−1(|x |)

)
|x
)
=
1

|x |
(
∇Tx→θ(x)a(gradf |Sn−1)

)
|θ(x).

We finally use the obvious fact 〈v , w〉|p = 〈Tp→qv , Tp→qw〉|q for any p, q ∈ Rn and
v , w ∈ TpRn, to conclude

(HessRnf )|x(a, b) = 〈∇agradf , b〉|x = 〈Tx→θ(x)
((
∇agradf |Sn−1(|x |)

)
|x
)
, Tx→θ(x)b〉|θ(x)

=
1

|x |〈∇Tx→θ(x)a(gradf |Sn−1), Tx→θ(x)b〉|θ(x)

=
1

|x |(HessRnf )θ(x)(Tx→θ(x)a, Tx→θ(x)b),

as claimed.
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u

φ(Sn−1)

u
|u|

a

b

πua

πub

Tu→ u
|u|
(πua)

Tu→ u
|u|
(πub)

Rn

πu

Figure C.6: The Hessian of the support function hC on R
n corresponding to a convex

body C can be expressed in terms of the reverse Weingarten map B, which is an endo-
morphism acting on vectors tangent to the embedded unit sphere φ(Sn−1), and providing
extrinsic curvature information of the convex body. For any point u ∈ Rn and for any
a, b ∈ TuRn, the map πu : TuRn → TuS

n−1(|u|) projects any vector on TuRn to the plane
TuS

n−1(|u|) tangent to the embedded (n−1)-sphere Sn−1(|u|) of radius |u|. The Hessian
of hC satisfies the relation (HessRnhC)u(a, b) =

1
|u|〈B(Tu→ u

|u|
(πua)), Tu→ u

|u|
(πub)〉.

We are ready to state the relation between the Hessian of the support function and

the reverse Weingarten map:

Theorem C.3.9. Let C ∈ Cn and u ∈ Rn \ {0}. Then

(HessRnhC)u(a, b) =
1

|u|〈B(Tu→
u
|u|
(πua)), Tu→ u

|u|
(πub)〉, (C.13)

for all a, b ∈ Rn, where πu is the orthogonal projection onto the orthogonal plane to u
(as a vector) and that contains u (as a point).

Proof. Let u ∈ Rn \ {0} be a unit vector (|u| = 1) and {e1, . . . , en} an orthonormal
basis of vectors of Rn with en = u. We write (x

1, ..., xn) for the corresponding Cartesian

coordinates. Observe that in these coordinates u ≡ (0, . . . , 1).
From Lemma C.3.7 we know that ∂A∂BhC(x)x

A = 0, which evaluated at x = u gives

0 = ∂A∂BhC(u)u
A = ∂B∂nhC(u) for all B = 1, . . . , n.
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Then

(HessRnhC)u(a, b) =

n∑

A,B=1

∂A∂BhC(u)a
AbB =

n−1∑

A,B=1

∂A∂BhC(u)a
AbB (C.14)

We also know that ν−1(u) = grad hC(u) (see Definition C.3.5). The differential of ν−1

can be represented by the matrix

dν−1 ≡



∂1∂1hC . . . ∂1∂nhC
...

. . .
...

∂1∂nhC . . . ∂n∂nhC




so that ∂A∂BhC(u) = 〈dν−1|u(eA), eB〉. Restricting to A,B = 1, . . . , n − 1 we have

∂A∂BhC(u) = 〈dν−1|u(eA), eB〉 = 〈dν−1|u(eA), eB〉 = 〈Bu(πu(eA)), πu(eB)〉,

where in the last equality we have used that eA ∈ Tuφ(Sn−1) for A = 1, . . . , n − 1 and
consequently eA = πu(eA). Hence

n−1∑

A,B=1

∂A∂BhC(u)a
AbB =

n−1∑

A,B=1

〈Bu(πu(eA)), πu(eB)〉aAbB = 〈Bu(πua), πub〉. (C.15)

Combining (C.14) and (C.15) gives

(HessRnhC)u(a, b) = 〈Bu(πua), πub〉 ∀u ∈ φ(Sn−1).

We can extend this formula to all u ∈ Rn \{0} by using Lemma C.3.8 and the fact that
hC is homogeneous of degree one:

(HessRnhC)u(a, b) =
1

|u|(HessRnhC)
u
|u|
(Tu→ u

|u|
a, Tu→ u

|u|
b)

=
1

|u|〈B(Tu→
u
|u|
(πua)), Tu→ u

|u|
(πub)〉,

which is (C.13).

We have all the ingredients to find the expression for the second fundamental form of

the boundary ∂C of the convex body C in terms of the support function h associated to

∂C. In order to do so, let us consider u ∈ Sn−1, {uA} a basis of TuSn−1 and NA = dφ(uA)
(recall that φ is the embedding of the abstract sphere into Rn). Applying Theorem C.3.9

we obtain

(HessRnhC)φ(u)(NA, NB) = 〈B(πφ(u)(NA)), πφ(u)(NB)〉 = 〈B(NA), NB〉
= 〈XA, NB〉 = 〈XA,W(XB)〉 = K(XA, XB). (C.16)
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This last result determines the second fundamental form of ∂C in terms of the Hessian

of its support function with respect to the euclidean metric. In Proposition A.2.1 in

Appendix A we have proved that if if φ : N → M is an embedding of N in M, and

f : M → R is a smooth function, the following identity relating the ambient Hessian to
the induced Hessian holds,

HessMf (dφ(X), dφ(Y )) = HessN(f ◦ φ)(X, Y ) + 〈gradf , ~K(X, Y )〉,

where X, Y ∈ Γ(TN). We apply this result in our present context where M = Rn,N =
Sn−1, f = hC, and φ is the embedding of the abstract sphere into R

n. We get

(HessRnhC)|φ(u)(NA, NB) = HessSn−1(hC ◦ φ)|u(uA, uB) + 〈grad hC, ~K(NA, NB)〉|φ(u).
(C.17)

Let us compute now the last term of this expression. The sphere is totally umbilical

and in fact

~K|φ(u)(NA, NB) = Kφ(u)(NA, NB)φ(u) = 〈NA, NB〉φ(u) = q̊(uA, uB)φ(u),

where recall q̊ is the metric of the abstract standard sphere. Using that hC is homoge-

neous of degree one, we obtain

〈grad hC, ~K(NA, NB)〉|φ(u) = q̊(uA, uB)∇φ(u)hC|φ(u) = q̊(uA, uB)hC(φ(u))

after applying Euler’s Theorem (C.9). As a consequence (C.17) becomes

(HessRnhC)φ(u)(NA, NB) = HessSn−1(hC ◦ φ)u(uA, uB) + q̊(uA, uB)(hC ◦ φ)(u),

which in combination with (C.16) gives

K(XA, XB) = HessSn−1(hC ◦ φ)u(uA, uB) + q̊(uA, uB)(hC ◦ φ)(u). (C.18)

The second fundamental form K is naturally defined on ∂C, whereas the right-hand

side of the above inequality is defined on the abstract sphere. We want to find the

expression for the equality where every tensor and function is defined on ∂C. To do so,

we recall that dνC(XA) = uA. This implies

Hess(Sn−1,q̊)(hC ◦ φ)u(uA, uB) = Hess(Sn−1,q̊)(hC ◦ φ)u(dνC(XA), dνC(XB))
= ν∗C

(
Hess(Sn−1,q̊)(hC ◦ φ)

)
|p(XA, XB)

= Hess(∂C,ν∗
C
(q̊))(ν

∗
C(hC ◦ φ))|p(XA, XB).

Recalling now that ν∗C(hC ◦ φ)(p) = hC ◦ φ ◦ νC(p) = h(p), where h : ∂C → Rn is the
support function of ∂C, and writing the pullback ν∗C(q̊) of the spherical metric still as
q̊ (no confusion arises since both are defined on different manifolds), expression (C.18)

finally becomes

Kp(XA, XB) = Hess(∂C,q̊)h|p(XA, XB) + q̊(XA, XB)h(p),
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which expressed in index notation gives the expression stated in Theorem C.1.1 at the

beginning of the appendix, namely

KAB = ∇̊A∇̊Bh + q̊ABh. (C.19)

All objects in this expression are defined on the hypersurface ∂C (∂C has been endowed

with the spherical metric q̊ via νC, and ∇̊ is the connection defined by such metric).
The metric γ of ∂C can also be expressed in terms of the spherical geometry as

γAB = 〈XA, XB〉 = 〈XA, XB〉 = 〈B(NA),B(NB)〉 = (q̊−1)LMBLABMB,

which upon using KAB = BAB, can be written as

γAB = (q̊
−1)LMKLAKMB. (C.20)

This completes the proof of Theorem C.1.1.

C.4 The support function of the sphere

In Subsection 4.4.1 of Chapter 4, we need the support function of the compact ball

B(c,R0) = {x ∈ Rn : |x − c | ≤ R0} of radius R0 and center c ∈ Rn. In this particular
case ∂C = Sn−1(c,R0), i.e. the (n − 1)-sphere of radius R0 centered on c . Given any
point p of the sphere, the position vector can be written as

x(p) = c + R0m(p),

for some unit vector m(p). It also happens that the exterior unit normal vector at p is

m(p). Then

h(p) = 〈x(p), m(p)〉 = 〈c + R0m(p), m(p)〉 = R0 + 〈c,m(p)〉. (C.21)

Restricting ourselves to R3, c = (cx , cy , cz), and formula (C.21) reduces to

h(p) = R0 + c
xmx(p) + cymy(p) + czmz(p).

The components of the vector m(p) decompose in terms of the usual spherical coordi-

nates as

mx = sin θ cosφ, my = sin θ sinφ, mz = cos θ,

which are the three linear independent spherical harmonics solution to the equation

△q̊f = −2f .
Remark C.4.1. The support function of a sphere whose center lies at the origin of

coordinates is the constant function defined by the radius of the sphere.
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[59] K. Lanczos, “Flächenhafte Verteilung der Materie in der Einsteinschen Gravita-

tionstheorie”, Annalen der Physik (Leipzig) 74, 518-540 (1924). 2.6

[60] P.G. LeFloch, C. Mardare, “Definition and weak stability of spacetimes with dis-

tributional curvature”, Portugaliae Mathematica 64, 535-573 (2007). 2.6
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