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ver a lógica por outros ângulos e sair dos lugares comuns, por me fazer
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Resumen, introducción y contribuiciones de la
tesis

Resumen

Esta tesis es una investigación sobre los conceptos principales ocurriendo
en los teoremas tipo-Lindström, esto es, el concepto de sistema lógico y el
concepto de expresividad. Lindström, entre otros resultados similares, carac-
terizó la lógica de primer orden como siendo máximamente expresiva entre
las lógicas que tienen compacidad y la propriedad de Löwenheim-Skolem.
Para tal, él teńıa que dar una definición precisa de qué es una lógica y qué
es una relación de expresividad. Tales resultados suelen ser usados para ex-
traer conclusiones fuertes sobre la naturaleza de la lógica y, espećıficamente,
de la lógica de primer orden. No obstante, con la excepción de una dis-
cusión inicial en el libro sobre lógicas modelo-teóricas editado por Barwise
y Feferman, hay pocas discusiones conceptuales de estos resultados de car-
acterización en la literatura. Espećıficamente, nos parece problemática la
falta de justificación de por qué cierto concepto de sistema lógico y cierto
concepto de expresividad fueran elegidos. Nuestro propósito es de contribuir
a esta discusión y también proponer un criterio de expresividad más amplio,
por medio de traducciones entre lógicas.

Palabras-clave: Teoremas tipo-Lindström, sistemas lógicos, nociones de
expresividad, traducciones entre lógicas.

Introducción

Esta tesis nació de una mezcla de espanto y extrañeza con respecto al teo-
rema de Lindström. En ĺıneas generales, el teorema dice que si una lógica
L es por lo menos tan expresiva que la lógica de primer orden FOL y tiene
las propriedades P1, P2, ..., entonces L es tan expresiva cuanto FOL. Ese
teorema es, por lo tanto, una caracterización de FOL respecto a sus exten-
siones, en términos de expresividad y P1, P2, .... Aśı, ese resultado presupone
una definición general de lógica y de expresividad. Además, también es nece-
saria una justificación de por que P1, P2, ... son las propriedades correctas
para caracterizar una lógica en términos de expresividad.

En la presentación original de su teorema e sus variantes, Lindström de-
fine una “lógica de primer-orden generalizada” como una colección de clases
de estructuras modelo-teóricas cerradas bajo algunas operaciones [Lin69], es-
tas clases de estructuras que forman una lógica deben ser entendidas como
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una colección de clases de modelos de cada formula en la lógica. Una relación
de expresividad que emerge de esta definición es sencillamente una inclusión
entre clases de estructuras.

Una vez que esas definiciones fueran dadas “solamente por una cuestión
de generalidad” sin más explicación, uno inmediatamente empieza a cues-
tionar qué exactamente está siendo demostrado con esta caracterización.
Dos cuestiones principales naturalmente son:

• Por qué esa definición de lógica?

• Por qué esa definición de expresividad relativa?

Posteriormente, el proprio Lindström sintió necesidad de ofrecer más
explicaciones para sus resultados y publico un art́ıculo de exposición [Lin74],
en donde él definió más cuidadosamente el concepto de una lógica abstracta,
dando algunos axiomas, y también diciendo expĺıcitamente la noción de
expresividad a ser usada. Por aquél tiempo, algunas cŕıticas y mejoras
hechas por Barwise estaban ya circulando y fueran publicadas también en
1974 [Bar74]. Aśı que nuestra extrañeza no es de todo aislada. También
podemos verla en la presentación del dicho teorema por Chang y Keisler
[CK90, p. 130] (en donde la definición 2.5.1 es una versión formal de la
dada anteriormente para una lógica de primer orden generalizada)

Debeŕıa ser enfatizado que lógicas en el sentido de la Definición
2.5.1 tratan de la misma clase de modelos que la lógica de primer
orden, y solamente las sentencias y la relación de satisfacción
puede ser diferente. Esto es una restricción significativa que
deja una grande laguna en el teorema de Lindström. Hay mu-
chos ejemplos de lógicas en un sentido generalizado que estudian
modelos con estructura adicional y por lo tanto no encajan en
ese marco. Estas incluyen lógicas modales, lógicas de la progra-
mación y lógicas para modelos con topoloǵıas y medidas. La
lógica sentencial y la lógica ω como descritas en este libro no
son ejemplos de lógicas abstractas en el sentido de 2.5.1, porque
ellas también tratan de diferentes clases de modelos respecto a
la lógica de primer orden.1

En particular, la noción referida de lógica era tan ajena a nosotros que
decidimos buscar de donde ha venido. También hemos querido investigar la

1Traducción nuestra.
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elección de una espećıfica noción de expresividad, que aparece en el teorema
de Lindström y en los varios resultados de caracterización por expresivi-
dad que vinieran después. Aśı, esta tesis está organizada como se sigue: el
caṕıtulo 2 trata del concepto de sistema lógico, el caṕıtulo 3 expone difer-
entes conceptos de expresividad adecuados a cada tipo general de sistema
lógico. En el último caṕıtulo exponemos y discutimos los diversos resultados
de caracterización de la lógica de primer orden y algunos de sus fragmentos.
En el apéndice una exposición detallada del teorema de Lindström es dada.

La literatura sobre el concepto de sistema lógico es escasa, espećıficamente,
solo conocemos un libro dedicado a la cuestión, i.e. [Gab94]. Es una
colección de 15 art́ıculos sobre el tema de qué es un sistema lógico. Ex-
cepto aquellos en donde solamente una definición rápida de una “lógica” es
dada, no hay muchos más trabajos en la literatura. De todos modos, el
dicho libro da una buena perspectiva de la noción de lógica, no obstante lo
vemos como muy fragmentado, como solamente una colección de las visiones
de cada autor sobre la cuestión. Dado esto, decidimos dedicar el caṕıtulo
2 a este tema, y intentamos dar un imagen más coherente, naturalmente
manteniendo [Gab94] como un gúıa.

En el caṕıtulo 2 repasamos los oŕıgenes de la visión general de lógica y los
separamos en tres perspectivas amplias: una abstracta (i.e. Tarskiana), una
prueba-teórica y una modelo-teórica (con semántica Tarskiana). También
hay una perspectiva general interesante que surgió de la teoŕıa de las catego-
rias, que da una noción de sistema lógico indexada por una asignatura. Esta
clase de sistemas es construida “nativamente” con en propósito de comparar
lógicas. Desafortunadamente, ese tópico está fuera del alcance de esta tesis
y el lector es referido a [Mes89] y [MGDT07].2

Las semánticas juego-teóricas fueran propuestas como capaces de dar
una interpretación mas adecuada para los cuantificadores, respecto a las
semánticas Tarskianas [Hin88]. Esta semántica se a convertido en un marco
muy rico para la definición de lógicas (un ejemplo notable es dado en [HS89]).
No obstante, las lógicas extráıdas de las semánticas juego-teóricas también
están ausentes en esta tesis.

Veremos que la visión modelo-teórica de la lógica empieza a arraigarse
ya tarde en el siglo XX, cerca de los años 1960, a pesar de que los métodos
modelo-teóricos ya estuviesen disponibles por algunas décadas. Vemos que

2El lector también es referido a [Cal00], done se puede encontrar definiciones de sis-
temas de consecuencia, sistemas lógicos y de lógicas. Un sistema lógico es definido como
cualquier estructura matemática de la cual un sistema de consecuencia puede ser extráıdo,
y es vinculado a una asignatura. Finalmente una lógica es definida como una familia de
sistemas lógicos. Para cada uno de ellos, se define también sus respectivos morfismos.
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una mudanza importante en la concepción de lógica fue debida al trabajo
de Mostowski con los cuantificadores generalizados [Mos57]. De ah́ı vino la
noción utilizada en la prueba de Lindström. Aśı, el caṕıtulo presenta un
panorama razonablemente amplio sobre el concepto de sistema lógico y su
evolución.

En el caṕıtulo 3 revisamos la noción de expresividad utilizada en la
prueba de Lindström. La siguiente clasificación de la expresividad rela-
tiva entre lógicas será ofrecida. Para lógicas modelo-teóricas, tenemos dos
marcos: expresividad uni-clase y expresividad multi-clase. El criterio de
expresividad preciso utilizado por Lindström (referido aqúı como 4EC) es
definido dentro del primer marco. Aqúı 4EC puede ser visto como involu-
crando traducciones de formulas de lógicas modelo-teóricas definidas dentro
de una misma clase de estructuras (de ah́ı el nombre uni-clase). También
analizamos algunos criterios más amplios en este marco (4PC y 4RPC). Es-
tos últimos aún no sirven para capturar la expresividad relativa respecto a
lógicas definidas en clases de estructuras diferentes, una necesidad subya-
cente en la cita de Chang y Keisler arriba. Para obtener tal capacidad, uno
tiene que moverse hacia un marco más amplio, permitiendo traducciones de
formulas y también traducciones de estructuras: el marco multi-clase.

Dos criterios formales en el marco multi-clase son analizados (4gv y
expressivenessg). Argumentamos que ambos no son adecuados. Entonces
proponemos que moverse para un marco aún más amplio no solamente nos
liberaŕıa de los problemas inherentes al marco multi-clase, pero también nos
daŕıa un abordaje de la expresividad para las lógicas Tarskianas y prueba-
teóricas. Este marco solamente permite traducciones entre formulas que
preservan la relación de consecuencia o teoremicidad/validez (en el aso que
uno toma una lógica como un conjunto de fórmulas). Llamamos ese marco
“expresividad traduccional”.

Que se sepa, en la literatura hay solamente un criterio de expresividad
en este marco. El criterio es dado en [MDT09]. Mostraremos que él es
aún inadecuado, una vez que cuenta como relaciones de expresividad casos
que intuitivamente no lo son. Analizamos la literatura sobre traducciones
entre lógicas y presentamos dos clasificaciones que fueran dadas en [Mor16]
y [Fre10]. En la secuencia, propondremos algunos criterios de adecuación
para expresividad y un criterio formal (expressivenessgg) para expresivi-
dad traduccional es dado. Argumentamos que expressivenessgg satisface
los criterios de adecuación. Algunas traducciones bien conocidas son pre-
sentadas y argumentamos que aquellas que satisfacen expressivenessgg son
razonablemente dichas inducir una relación de expresividad entre las lógicas
involucradas.
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En el caṕıtulo 4, algunas caracterizaciones de lógicas hechas con respecto
a expresividad son discutidas. El trabajo masivo hecho en este ámbito es
para lógicas modelo-teóricas y usando 4EC . En la primera sección, algunos
trabajos de caracterización usando 4EC son presentados. Comenzamos con
el trabajo pionero de Mostowski, caracterizando FOL, seguido por Lind-
ström y Tharp. Recientemente, un nuevo impulso fue dado para caracter-
izaciones de fragmentos of FOL. Presentaremos el trabajo de de Rijke y
van Benthem et al. sobre teoremas tipo-Linström para lógicas modales y
para los fragmentos de n-variables de FOL. La sección termina con una
discusión sobre esas caracterizaciones.

La última sección del caṕıtulo no es más que un prospecto para inves-
tigación. Ella consiste en sugerir una caracterización de lógicas utilizando
una noción de expresividad definida en el marco traduccional. De hecho,
ya en [MDT09] una tal caracterización es ofrecida: la lógica proposicional
de cláusulas Horn es máximamente expresiva entre las lógicas compactas.
No obstante, el criterio de expresividad traduccional utilizado es inadecuado
(como mostramos en el caṕıtulo 3). A pesar de ello, esta proposición ejem-
plifica el tipo de caracterización general que nosotros planteamos.

Contribuciones de esta tesis

Caṕıtulo 2

Como hemos dicho, la literatura sobre el concepto de sistema lógico es escasa
y el principal libro sobre la cuestión [Gab94], a pesar de ser muy bueno,
tiene el problema de ser muy fragmentado. No obstante, el proprio Gabbay
da una interesante perspectiva evolucionária de la lógica en [Gab14]. El
problema de ese trabajo es que está influenciado quizás demasiado por las
demandas de la ciencia de la computación e inteligencia artificial. Además,
no sabemos de una presentación razonablemente coherente sobre las diversas
propuestas, especialmente en lo que se trata de la discusión del nacimiento
de las concepciones de lógica abstracta y lógicas modelo-teóricas. Hemos
dividido el caṕıtulo en los tres campos usuales: lógicas abstractas, prueba-
teóricas y modelo-teóricas, el propósito fue fornecer una perspectiva mas
coherente de los tres marcos.

Caṕıtulo 3

La literatura está llena de comparaciones de lógicas en términos de sub-
lógica, fuerza, inmersiones, interpretaciones, simulaciones, etc. Se necesita
urgentemente una limpieza y padronización de las nociones involucradas,
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de modo a evitar paradojas (como en la sección 3.4.0.1) y posibilitar la
comparación de resultados.

Una contribución del caṕıtulo 3 es un paso hacia la elucidación de la
noción de expresividad entre lógicas. Proponemos que todas estas rela-
ciones de sub-lógica, fuerza, etc. sean tratadas como relaciones de expre-
sividad siempre que sean basadas en la siguiente intuición: una lógica L2
es por lo menos tan expresiva cuanto L1, si para toda formula en L1 existe
una fórmula en L2 con el mismo significado. Entonces proponemos que la
expresividad relativa entre lógicas puede ser capturada formalmente en tres
marcos: uni-clase, multi-clase y expresividad traduccional.

Esa organización debe situar mejor y elucidar los varios resultados de ex-
presividad y discusiones relacionadas en la literatura. Por ejemplo, ello clar-
ifica la discusión de Shapiro en [Sha91]. Utilizando los conceptos definidos
aqúı, podemos decir que el autor esta argumentando que mismo en el marco
estricto de expresividad uni-clase, existen criterios formales distintos y con-
flictivos (e.g. 4EC y 4PC), ninguno de ellos siendo caminos reales para
expresividad. Esto no parece ser algo ampliamente conocido, y cuya igno-
rancia puede ser engañadora, e.g. al tratar resultados usando 4PC como
si fuesen equivalentes a resultados usando 4EC (esto aparentemente ocure
en [AFFM11]). Como una segunda contribución, mostramos que algunos
criterios de expresividad multi-clase son inadecuados. Otra contribución es
la propuesta de criterios de adecuación para expresividad y de un criterio
formal para el marco de expresividad traduccional.

Caṕıtulo 4

El libro principal de caracterizaciones en términos de expresividad para ex-
tensiones de FOL es [BF85]. Todos los trabajos seminales de Mostowski,
Lindström y Tharp son expuestos y extendidos en dicho libro. No ob-
stante, muchas de las ideas y consideraciones conceptuales encontradas en
los art́ıculos originales y relacionados, son omitidas alĺı. Además, hay una
nueva tendencia de caracterizaciones de fragmentos de FOL que no está
presente en ese libro.

En [dA13] encontramos una presentación detallada del teorema de Lin-
ström y del nuevo teorema modal tipo-Lindström de van Benthem [vB07].
Sin embargo, no hay una presentación detallada del método de Ehrenfeucht-
Fräısé para caracterizar la equivalencia elemental, y hay algunos errores en
la presentación de las formulas φnU,~as usadas en dicho método. Además, no
conocemos una presentación sencilla de los primeros resultados de caracter-
ización de FOL que también exponga los nuevos trabajos hechos respecto
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a sus fragmentos. Aśı que la principal contribución del caṕıtulo 4 es dar
una breve presentación de tales resultados, intentando traer de vuelta las
consideraciones conceptuales que son tan importante para ellos.

Apéndice

Finalmente, nos parece que los resultados de Linström son aún bastante de-
sconocidos. Ellos ya aparecen en algunos manuales de lógica, como [CK90],
[EFT96] y [Hed04]. La presentación de Ebbinghaus et al. nos parece la
mejor, visto que es dada paso a paso y de una forma clara. A pesar de ello,
su presentación de la caracterización de la equivalencia elemental es muy
deficiente. Esa noción es fundamental para los resultados de Lindström, y
sin una conocimiento claro de ella, el lector no entenderá de que van estos re-
sultados. Aśı que la contribución del apéndice es una presentación completa
de los teoremas de Lindström (siguiendo las lineas de [EFT96]), incluyendo
una explicación paso a paso dos juegos de Ehrenfeucht-Fräısé y su rol en la
caracterización de la equivalencia elemental.
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Abstract

This thesis is an investigation of the main concepts appearing in the
Lindström-type characterization results, that is, the concept of a logical
system and the concept of expressiveness. Lindström, among other similar
results, characterized first-order logic as being maximally expressive among
the logics having compactness and the Löwenheim-Skolem property. For
that matter, he needed to give a precise definition of what counts as a logic,
and what is an expressiveness relation. Such results are often used to draw
bold conclusions regarding the nature of logic, and specially, of first-order
logic. However, with the exception of an initial discussion in the hand-
book on model-theoretic logics, edited by Barwise and Feferman, there are
few conceptual discussions of such characterization results in the literature.
Specifically, we found problematic the lack of justification as to why a given
concept of logical system and a given concept of relative expressiveness were
chosen. Our aim is to contribute to this discussion and also propose a wider
criterion for expressiveness based on translations between logics.

Keywords: Lindström-type theorems, logical systems, notions of ex-
pressiveness, translations between logics.
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Chapter 1

Introduction

This thesis grew out of a mixture of astonishment and a certain uneasiness
as regards the Lindström theorem. In general lines the theorem says that
if a logic L is at least as expressive as first-order logic (FOL) and has
properties P1, P2, ..., then it is as expressive as FOL. This theorem is, thus,
a characterization of FOL among its extensions, in terms of expressiveness
and P1, P2, .... This characterization thus presupposes a general definition of
logic and a definition of expressiveness. Besides, one also needs a justification
as whether P1, P2, ... are the right properties to characterize a logic in terms
of expressiveness.

In the original presentation of his theorem and its variants, Lindström
defines a “generalized first-order logic” as a collection of classes of model-
theoretic structures closed under some operations [Lin69], these classes of
structures that form a logic are to be understood as a collection of classes of
models of each formula in the logic. An expressiveness relation thus issued
from this definition is simply an inclusion of classes of structures.

As these definitions were given “just for the sake of generality” without
further explanation, one immediately starts to wonder what exactly is being
proven by this characterization. The two main issues naturally are:

• Why this definition of logic?

• Why this definition of relative expressiveness?

Later, Lindström himself felt the need to offer further justification for his
results and published an expository paper [Lin74], where he defined more
carefully the concept of an abstract logic, giving it some general axioms,
and the notion of expressiveness to be used. By that time, some critics and

1
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improvements by Barwise were already circulating and were published also
in 1974 [Bar74]. Thus, our uneasiness is by no means isolated. We can also
see it in Chang and Keisler’s presentation of the referred theorem [CK90, p.
130] (where the definition 2.5.1 is a formal version of the one given above of
a generalized first-order logic):

It should be emphasized that logics in the sense of Definition
2.5.1 deal with the same class of models as first order logic, and
only the sentences and satisfaction relation may be different.
This is a significant restriction which leaves a large loophole in
Lindström’s theorem. There are many examples of logics in a
generalized sense which study models with additional structure
and thus do not fit within our framework. These include modal
logics, programming logics, and logics for models with topologies
and measures. Sentential logic and ω-logic as described in this
book are not examples of abstract logics in the sense of 2.5.1,
because they also deal with different classes of models than first-
order logic.

In particular, the referred definition of logic was so alien to us that
we decided to look where it came from. We also wanted to investigate the
choice of the particular notion of expressiveness, appearing in the Lindström
theorem and in the various similar expressiveness characterization results
that came afterwards. Thus this thesis is organized as follows: chapter 2
deals with the concept of logical system, chapter 3 exposes different concepts
of expressiveness adequate to each general kind of logical system. In the
last chapter we expose and discuss the diverse expressive characterizations
of first-order logic and some of its fragments. In the appendix a detailed
presentation of the Lindström theorem is given.

The literature on what is a logical system is by no means extensive,
specifically, we know of just one book dedicated to the subject, i.e. [Gab94].
It is a collection of fifteen papers on the issue of what is a logical system.
Apart from those where a only quick definition of a “logic” is given, there
are no much more works in the literature. Anyway, the referred book gives a
good picture of the notion of logic, but we see it as too fragmented, as simply
a collection of each author’s view of the subject. Given this, we decided to
dedicate chapter 2 to this issue, and tried to give a more coherent picture
while naturally keeping [Gab94] as the main guide.

In chapter 2 we revise the sources of the general notion of a logic and
separate them in three general views: an abstract (a.k.a. Tarskian) view,
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a proof-theoretical view and a model-theoretical view (with Tarskian se-
mantics). There is also another interesting general view that grew out of
category theory, giving a signature indexed notion of a logical system. This
view is “natively” constructed with comparisons of logics in mind. Unfor-
tunately, it is out of the scope of this thesis and the reader is referred to
[Mes89] and [MGDT07].1

The game-theoretic semantics have been proposed as a more adequate
interpretation for quantifiers than Tarskian semantics [Hin88]. This seman-
tics has turned into a rich framework for defining logics (a notable example
is given in [HS89]). Nevertheless the logics issuing from game-theoretic se-
mantics are also absent in this thesis.

We shall see that the model-theoretical view of logic starts to settle
rather late in the XX century, around the 1960s, despite the model-theoretic
methods being available then already for some decades. We see that a main
change in the conception of logic was due to the work of Mostowski in
generalized quantifiers [Mos57]. From this view came the notion used in
Lindström’s proof. Thus the chapter presents a reasonably wide panorama
on the concept of logical system and its evolution.

In chapter 3 we revise the notion of expressiveness used in Lindström’s
proof. We shall offer a following classification of relative expressiveness be-
tween logics. For model-theoretic logics, we have two frameworks of expres-
siveness: single-class and multi-class expressiveness. The precise criterion
for expressiveness used by Lindström (referred to here as 4EC) is defined
within the first framework. Here 4EC can be seen as involving transla-
tions of formulas of model-theoretic logics defined within the same class
of structures (hence the name “single-class”). We also analyse some wider
criteria in this framework (4PC and 4RPC). These later still fall short of
giving an account of expressiveness for logics defined within different classes
of structures, a need underlying Chang and Keisler’s quotation above. To
obtain such means, we have to move to the wider framework, allowing be-
sides translations of formulas, also translations of structures: the multi-class
framework.

Two formal criteria in the multi-class framework are analysed (4gv and
expressivenessg). We argue that they are not adequate and it is proposed
that moving to a still wider framework might not only free us from the

1The reader is also referred to [Cal00]. There one can find definitions of consequence
systems, logic systems and of logic. A logic system is defined as any mathematical structure
from which a consequence system can be extracted, and is attached to a signature. Finally
a logic is defined a family of logic systems. For each of these, there are also their respective
morphisms.
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problems inherent in the multi-class framework, but also give an account of
expressiveness for Tarskian and proof-theoretic logics. This framework only
allows translations between formulas that preserve the consequence relation
or theoremhood/validity (in case one takes a logic as a set of formulas). We
call this framework “translational expressiveness”.

To the best of our knowledge, in the literature there is only one criterion
for expressiveness in this framework. The criterion is given in [MDT09].
We will show that it is still inadequate, as it overgenerates. We analyse the
literature on translations between logics and present two classifications that
were given in [Mor16] and [Fre10]. In the sequence, we propose some ade-
quacy criteria for expressiveness and a formal criterion (expressivenessgg)
for translational expressiveness. We argue that expressivenessgg satisfies
the adequacy criteria. Some well-known translations are presented and we
argue that the ones satisfying expressivenessgg are reasonably said to in-
duce an expressiveness relation between the logics involved.

In chapter 4 some characterizations of logics made with respect to ex-
pressiveness are discussed. The massive work done in this respect is for
model-theoretic logics, and using 4EC . In the first section some characteri-
zation works with respect to 4EC are presented. We begin with Mostowki’s
pioneer work for characterizing FOL, followed by Lindström and Tharp. Re-
cently a new impulse was given to characterizations of fragments of FOL.
We will present de Rijke and van Benthem et al.’s work on Lindström theo-
rems for modal logics, and the finite-variable fragment of FOL. The section
ends with a discussion of these characterizations.

The last section of the chapter is no more than a prospect for investiga-
tion. It consists in suggesting a characterization of logics using a notion of
expressiveness defined in the translational framework. As a matter of fact,
already in [MDT09] such a characterization is offered: propositional horn
clause logic is maximally expressive among compact logics. Nevertheless,
the criterion of translational expressiveness used is inadequate (as we show
in chapter 3). Despite this, this proposition exemplifies the sort of general
characterization result we envisage.

1.1 Contributions of this thesis

Chapter 2

As we said, the literature on what is a logical system is scarce, and the main
book on the subject [Gab94], otherwise very good, has a problem of being too
fragmented. Nevertheless, Gabbay himself gives an interesting evolutionary
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view of logic in [Gab14]. The problem of this work is that it is influenced
perhaps too much by the demands of computer science and AI. Moreover, we
do not know of a reasonably coherent presentation of the diverse proposals,
specially as regards the discussion on the rising up of abstract logics and
model-theoretic logics. Our contribution is the compilation, organization
and discussion of the diverse proposals for the concept of logical system.
We divided the chapter in the three usual fields of abstract, proof-theoretic
and model-theoretic logics, the aim was to provide a more coherent picture
of these three frameworks.

Chapter 3

The literature is filled with comparisons of logics in terms of sub-logic,
strength, embeddings, interpretations, simulations, etc. It needs urgently
a clean-up and standardization of the involved notions, in order to avoid
paradoxes (as in section 3.4.0.1) and to allow the comparison of results.

One contribution of chapter 3 is a step towards the elucidation of the
notion of expressiveness between logics. We propose that all these rela-
tions of sub-logic, strength, etc. be treated as expressiveness relations as
long as they are based in the following intuition: a logic L2 is at least as
expressive as L1 if for every L1-formula, there is an L2-formula with the
same meaning. Then we propose that relative expressiveness between logics
can be captured formally in three frameworks: single-class, multi-class and
translational expressiveness.

This organization shall better situate and elucidate the various expres-
siveness results and related discussions appearing in the literature. For ex-
ample, it clarifies Shapiro’s discussion [Sha91]. Using the concepts defined
here, we can say that the author is arguing to the effect that even in the
strict framework of single-class expressiveness, there can be defined different
and conflicting criteria (e.g. 4EC and 4PC), none of them being royal roads
to expressiveness. This seems not to be something widely known and whose
ignorance may be misleading, e.g. in treating 4PC-results as it were 4EC-
results (this apparently occurs in [AFFM11]). As a second contribution,
we show that some criteria for multi-class expressiveness are inadequate.
Another contribution is the proposal of adequacy criteria for expressiveness
and a formal criterion in the framework of translational expressiveness.
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Chapter 4

The handbook for characterizations in terms of expressiveness for exten-
sions of FOL is [BF85]. All the seminal works of Mostowski, Tharp and
Lindström are exposed and expanded in this book. Nevertheless, many of
the insights and conceptual considerations found in the original and related
papers are omitted in it. Besides, there is a new trend of characterizing
fragments of FOL that is not contained there.

In [dA13] we find a detailed presentation of Lindström theorem and of
Van Benthem’s [vB07] new modal Lindström theorem. Nevertheless, some
of the examples given for the formulas φnU,~as used to characterize elementary
equivalence are incorrect. Besides, we do not know of a simple presentation
of the early characterization theorems of FOL that exposes also the new
works done with respect to its fragments. Thus the main contribution of
chapter 4 is to give a brief presentation of these results, trying to bring back
the conceptual considerations that are so important for them.

Appendix

Finally, we found the Lindström results are still quite unknown. It al-
ready appears in some logic manuals such as [CK90], [EFT96] and [Hed04].
Ebbinghaus et al.’s presentation of the Lindström’s theorem is the one we
find more valuable, it is given in a step by step and illuminating fashion.
Nevertheless, their presentation of the characterization of elementary equiv-
alence is very deficient. This notion is fundamental for Lindström theorem,
and without a clear grasp of it, the reader will not get “the point” of the
theorem. Therefore the contribution of the appendix is a full presentation of
the Lindström theorem (along the lines of [EFT96]) including a step-by-step
explanation of the Ehrenfeucht-Fräısé games and its role in the characteri-
zation of elementary equivalence.
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Conclusions and prospects
for future work

Let us summarise what we have seen in this thesis. In chapter 2 the concept
of logical system was revised, we presented the first steps towards a general
definition of a logic by Hertz and its subsequent seminal generalization made
by Tarski. It is interesting to see that even Tarski’s general conception of a
logic required in the beginnings that the consequence relation were defined
by a set of rules of inference. Afterwards, as the role of model-theoretic
logics came more and more to the front scene, this condition was lifted.
Still, there remained some other conditions that are nowadays considered
too restrictive, namely, the finiteness condition and the explosion condition.
Moreover, the monotonicity condition now is often lifted, the transitivity
has been restricted and even the reflexivity was questioned. So one cannot
help feeling that whatever formal system goes as a logic. We saw that
application areas are influencing the researches view on what is a logic. It
has been stated by Gabbay, for example, that the consequence relation is
not even the most important thing in a logic system, as the mechanisms of
update and withdrawal of information would have a more important role.

Still, the transference-based and property-based approaches to logical
consequence remain marking their distinction on sufficiently expressive sys-
tems where they cannot be matched. In these cases, the supporters of the
property-based approach (model-theoretic logics) will advocate its priority,
given some general set-theoretic criteria for the logicality of their systems;
and the supporters of the transference-based approach (proof-theoretic log-
ics) will reject the set-theoretic logicality arguments and stick to their own
measures of logicality.

205
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Now by its own nature, the early characterization theorems by Mostowski
had initially to blur this distinction in order to reach the conclusion that
some systems, more expressive than FOL, cannot be defined by (the usual)
transference-based approach to logical consequence. The same goes with
respect to Lindström great advances on the early expressiveness characteri-
zation results of FOL.

Lindström’s results characterize FOL among its expressive extensions,
that is, among the logics defined within the same model-theoretic structures
as FOL, and with respect to a specific notion of expressiveness. On chapter
3 we investigated the many ways two logics can be compared in terms of
expressiveness in the three frameworks: single-class, multi-class and trans-
lational expressiveness. We saw for example that even in the framework of
single-class expressiveness used in the Lindström’s proofs, there can be dis-
tinct criteria 4EC ,4PC and 4RPC . For example we saw that the logics LQ0

and LA are equally expressive according to 4PC , but incomparable with
respect to 4EC , while weak-second order logic L2w is more expressive than
both according to 4EC , and equally expressive according to 4RPC .

As diverse as the 4EC ,4PC and 4RPC are, they still require logics to
be defined within the same class of structures, so we investigated possible
extensions. We concluded that a broader criterion must be formulated in the
wider framework of multi-class expressiveness. There we found two criteria
4gv and expressivenesg and we argued that they are not good measures
of expressiveness in the multi-class framework. We proposed to lift to an
even more abstract measure of expressiveness, in order to avoid some of
the problems the former criteria had and allow a greater range of logics for
comparison. The later framework was called translational expressiveness. A
criterion of translational expressiveness was analysed and we saw it is not
adequate. Then some adequacy criteria for expressiveness were presented
and discussed, and a formal criterion complying with them was given.

In the final chapter we presented many expressiveness characterization
results done with respect to 4EC , beginning with Mostowski, passing by
Lindström’s seminal work and ending with the recent investigations with
respect to fragments of first-order logic. In the sequence there was a discus-
sion of the properties appearing in the characterization, e.g. Compactness,
Löwenheim-Skolem, Completeness, and Tarski’s Union Property. We saw
that the more important the properties appearing in characterizations are,
the more relevant the final result is. The importance of the referred proper-
ties naturally depend on the sense given to “logic”, we distinguished main
two senses: as a theory of deduction, as an instrument for characterizing
structures of interest. We concluded that the properties appearing in main



207

expressiveness characterization results are not usually considered relevant
for the sense of logic assumed in these characterizations.

We end the chapter by an speculation whether far-reaching expressive-
characterization results could be obtained using an expressiveness criterion
in the broad framework of translational expressiveness. A work in this di-
rection was made already by Mossakowski et al., but their concept of ex-
pressiveness is not reasonable. Thus the investigation on characterizations
using translational expressiveness is an exciting prospect for future work,
and there are already some recent works which can be seen in this light (see
below).

As for the research agenda, there is a strong need for the development
of a notion of structure-preserving translation beyond propositional logics.
There is some work on this area developed with category-theoretic methods
in [MGDT07], our plan is to see what can be done following their path.

Other important theme for work is to test further the material adequacy
of our criterion of translational expressiveness, seeing how it behaves with
respect to the translations between logics in the literature. Specifically, one
important issue is to investigate further whether our condition on preser-
vation of connectives is adequate. An interesting test is Statman’s [Sta79]
translation of IPL into its implication fragment IPL�{→}. Since it is not
defined inductively through the formation of formulas, it would not comply
with our condition. Nevertheless, it also seems to preserve reasonably the
meaning of the IPL-connectives into IPL�{→}: the translation maps molec-
ular formulas into propositional variables and regulates the behaviour of the
variables with implicational axioms.1 We suspected that this translation
could be transformed so as to be defined inductively on formulas, and in the
final stage of this work we learned this is indeed the case, by an interesting
result due to Haeusler [Hae15].

He generalized Statman’s result so that any logic that can be formulated
within a general framework of introduction and elimination rules, and has
the sub-formula property, can be translated into the implicational fragment
of minimal logic. The translation works the same way as Statman’s, by
formulating the inference rules by means of implicational axioms containing
variables with indices. The difference is that Herman’s translation is defined
inductively on formulas and is more regular. It uses one auxiliary mapping in
order to give the implicational axioms for each operator in the source logic,
thus it is a general-recursive translation. If this is as it seems, we would have

1E.g. conjunctions φ∧ψ are mapped to implications containing xφ∧ψ, among formulas
of the sort xφ → (xψ → xφ∧ψ), xφ∧ψ → xφ, etc.
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a nice characterization using translational expressiveness in terms of the sub-
formula property. Many other similar translations appeared recently in the
literature, e.g. [Jeř17] and [AA17]. Therefore, there are many interesting
research prospects.
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6.1 Lindström Theorems

Initial Remarks

In this section the two so-called Lindström theorems will be presented:

1. Let LI refer to the first-order logic. If a logical system L is more
expressive than LI , then or it lacks the compactness theorem, or it
lacks the Löwenheim-Skolem theorem.

2. If a logical system L is more expressive than LI , then or it lacks
the Löwenheim-Skolem theorem or its set of logical validities is not
recursively enumerable.
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The whole presentation is closely related to that of [EFT96], the differ-
ences may appear in the arrangement of the definitions, lemmas and theo-
rems, and in the few gaps that were filled here and there. The main change
is that we find the chapter on the algebraic characterization of elementary
equivalence not clear at all, so we present the notion of m-isomorphism be-
tween structures by another method, the Ehrenfeucht Games. For this, we
take as a basis the presentation in [EF99].

6.1.1 Ehrenfeucht Games

A characterization of elementary equivalence will be studied on the basis of
the so-called Ehrenfeucht Games. The rules of this game rests on the notion
of a partial isomorphism between two τ -structures U : (A,RA1 , R

A
2 , ...) and

B : (B,RB1 , R
B
2 , ...), with R1, R2, ... ∈ τ . Unless explicitly stated, the symbol

set τ will be relational, for reasons that will soon become clear.

Definition 6.1.1.0.1 (Partial isomorphism). Let U and B be τ -structures.
From now on, we denote the domains of such structures A and B, respec-
tively, and, for a function p, dom(p) and rng(p) refers to the domain of
f and the range of f , respectively. Let p be a map with dom(p) ⊆ A
and rng(p) ⊆ B. In the text, the map p will be identified with its graph
{(a, p(a)) | a ∈ dom(p)}. Then p is said to be a partial isomorphism from
U to B if

• p is injective,

• for n-ary R ∈ τ and all a1, ..., an ∈ dom(p), RAa1, ..., an iff RBp(a1), ..., p(an).

q ⊇ p means that q is an extension of p.

Observe that if p 6= 0 is a map with dom(p) ⊆ A and rng(p) ⊆ B, then p
is a partial isomorphism from U to B iff the substructures induced by dom(p)
and rng(p) in U and B are isomorphic, i.e. p : [dom(p)]U ∼= [rng(p)]B.

Let ~an = 〈a0, ..., an−1〉 ∈ A and ~bn = 〈b0, ..., bn−1〉 ∈ B, then the follow-
ing statements are equivalent

1. The clauses p(ai) = bi for i = 0, ..., n − 1 and p(cA) = cB for c ∈ τ
define a map which is a partial isomorphism from U to B;

2. For all atomic φ(v0, ..., vn−1): U � φ[~an] iff B � φ[~bn];

3. For all quantifier-free φ(v0, ..., vn−1): U � φ[~an] iff B � φ[~bn].
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The verification of 1→ 2 follows by the definition of partial isomorphism.
For the direction 2→ 1, we define for a0, ..., an−1 and b0, ..., bn−1 the function
p(ai) = bi. Since U � vi = vj [~an] iff ai = aj and B � vi = vj [~bn] iff bi = bj ,

one easily verifies that p if well defined: if bi 6= bj , then B 6� vi = vj [~bn] and
(by 2), U 6� vi = vj [~an], thus ai 6= aj . By a very similar argument, one sees
that p is injective.

Also, p is a partial isomorphism, since by hypothesis, for any atomic
formula U � φ[a0, ..., an−1] iff B � φ[b0, ..., bn−1]. The verification of 2 → 3
is a simple induction on the degree of the quantifier-free formulas.

The existence of a partial isomorphism in general does not preserve the
validity of formulas with quantifiers, let see an example. Let τ = {<} and
let p be a function from (R, <) to (Z, <), with dom(p) = {2, 3} such that
p(2) = 3, p(3) = 4. p is a partial isomorphism and, by the observation above,
for any quantifier free formula φ(v0, v1), (R, <) � φ[2, 3] iff (Z, <) � φ[3, 4].

But, this does not hold for a formula with even one quantifier, since

(R, <) � ∃v2(v0 < v2 ∧ v2 < v1)[2, 3]

but it is not the case that

(Z, <) � ∃v2(v0 < v2 ∧ v2 < v1)[3, 4]

For another example, consider the following graphs U = ({a1, a2, a3}, EA)
and B = ({b1, b2, b3, b4}, EB), with the edge relation EA and EB as follows.

a2

a1 a3

U

b1

b2

b3

b4
B

The function

p : A→ B

a1 7→ b1

is a partial isomorphism between U and B. Note that p can be extended to
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q subsequently, to q′:

q′ : A→ B

a1 7→ b1

a2 7→ b2

a3 7→ b3

Thus, if φ is a quantifier-free formula, by the result above,

U � φ[a1, a2, a3]⇔ B � φ[q′(a1), q
′(a2), q

′(a3)].

Besides, we have that both U and B satisfies some quantified sentences such
as

∀x1∃x2x3(x1 6= x2 6= x3 ∧ E(x1, x2) ∧ E(x1, x3)).

Nevertheless,

B � ∃y(y 6= x1 6= x2 6= x3)[q
′(a1), q

′(a2), q
′(a3)], (6.1)

but

U 6� ∃y(y 6= x1 6= x2 6= x3)[a1, a2, a3].

(1) is the case because there’s an element bi ∈ B such that

B � (y 6= x1 6= x2 6= x3)[bi, q
′(a1), q

′(a2), q
′(a3)].

So if the function q′ could be extended in order to have this bi in its range,
U would also satisfy this sentence. But this can not be so, since |A| = 3.

We see that the preservation of satisfability of quantified formulas through
partial isomorphisms depends on whether these partial isomorphisms can
be extended in certain ways. This is the basic idea under the characteri-
zation of the relation of ≡m (m-equivalence) between structures U and B:
U ≡m B holds iff there are partial isomorphisms from U to B that can be
extended m times, adding one element at each step. Let ~as = 〈a0, ..., as−1〉
for 〈a0, ..., as−1〉 ∈ As be a sequence of elements of the domain of U, and
similarly for ~bs, hereafter we will use ~as 7→ ~bs meaning that there is a func-
tion p such that p(ai) = bi for (i = 1, .., s) is a partial isomorphism from
U to B. Now we are ready to study the m-equivalence relation from a
game-theoretical point of view.
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The Ehrenfeucht game Gm(U,~as,B,~bs) for τ -structures U and B, ~as ∈
As, ~bs ∈ Bs and n ∈ N consists of two players, the Spoiler and the Duplica-
tor. Each player make m moves during the play, and take alternate turns.
The Spoiler plays first, and, once he chose an element from a structure,
the Duplicator has to chose an element from the other structure. After m
rounds, a sequence of elements e1, ..., em, e

′
1, ..., e

′
m of A and B, respectively,

will have been chosen. The Duplicator wins if ~as, e1, ..., em 7→ ~bs, e
′
1, ..., e

′
m is

a partial isomorphism from U to B, and if m = 0, it is required that ~as 7→ ~bs
be a partial isomorphism from U to B (henceforth, this will be abbreviated
as ~as 7→ ~bs ∈ Part(U,B)).

The sequences of elements ~as and ~bs in a game Gm(U,~as,B,~bs) can be
understood as a game that starts with some links ~as 7→ ~bs between some
elements of U and B already given.

The intuitive idea of this game is that the role of the Spoiler is to show
that the two structures U and B are as different as possible, and the role of
the Duplicator is to show that U and B are as similar as possible. The Spoiler
starts playing, and the Duplicator duplicates his moves such that his chosen
elements satisfies the same properties as the Spoiler’s chosen elements. As
an example, consider again the example given before.

a2

a1 a3

U

b1

b2

b3

b4
BS1 D1

S2

D2 S3

D3 S4

In the picture above, the Spoiler choices will be marked red and the
Duplicator’s will be marked blue, and will be labelled as Si or Di if they were
chosen in the i-th round by the Spoiler or Duplicator. Thus, the Duplicator’s
task is to preserve the edge relation between the chosen elements.

The mapping of elements a1, a2, a3 7→ b1, b2, b3 made by the Dupli-
cator forms the function q′ given above. As we know that the function
q′ ∈ Part(U,B), it follows that the Duplicator wins G3(U,B). Notice that,
Duplicator can not win the four-round game G4(U,B), since a choice of
Spoiler of the node b4 could not be matched by Duplicator. That the Dupli-
cator wins G3(U,B) means that considering only 3 elements, the structures
U and B are isomorphic.

It is important to notice that the Duplicator wins a given game on n
rounds if and only if he has a winning strategy, that is, he wins no matter
what choices are made by the Spoiler, thus there is no place for chance here.
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The same goes for the Spoiler, and exactly one player has a winning strat-
egy for some game Gn(C,D). Considering the above example, Duplicator
has a winning strategy for G3(U,B) but Spoiler has a winning strategy for
G4(U,B).

Let’s see another example.

a1

a2 a3

C

c1

c2 c3

c4

D

S1

D1

S2 D2

In the above 2-round game, the Duplicator wins, since no matter which
choices of elements from the Spoiler, he can match them, since, if the Spoiler
chooses two elements with an edge between them, the Duplicator can reply
with elements with an edge between them, or, like in the game illustrated
above, the Duplicator was also able to choose two elements with no edge
between them.

Looking at the natural continuation of the above game, one could think
that the Duplicator would win the 3-round game, since any given node
chosen by the Spoiler could be matched. Nevertheless, this apparent win
depend on the previous choices by the Spoiler, and this does not configure
a legitimate win, since Duplicator has not a winning strategy for it. We can
see easily this by the other possible 3-round game in which Spoiler wins:

a1

a2 a3

C

c1

c2 c3

c4

D
S1 D1

S2

D2

S3D3

In this game, Duplicator loses since a2, a3, a1 7→ c2, c3, c4 is not a partial
isomorphism between C and D, since the chosen elements disagree on the
edge relation E in each structure: (a3, a1) 6∈ EC but (c3, c4) ∈ ED.

We state some facts about the Ehrenfeucht game that follow easily from
its definition. For a ∈ A, we abbreviate asa as 〈a0, ..., as−1, a〉.

Remarks 6.1.1.0.2. Let U and B be τ -structures, ~as ∈ As, ~bs ∈ Bs and
m ≥ 0.

1. The Duplicator wins G0(U,~as,B,~bs) iff ~as 7→ ~bs ∈ Part(U,B);
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2. For m > 0 the following are equivalent:

(a) The Duplicator wins Gm(U,~as,B,~bs);

(b) for all a ∈ A there is some b ∈ B such that the Duplicator wins
Gm−1(U,~asa,B,~bsb)
for all b ∈ B there is some a ∈ A such that the Duplicator wins
Gm−1(U,~asa,B,~bsb);

3. If the Duplicator wins Gm(U,~as,B,~bs) and n < m, then Gn(U,~as,B,~bs).

Let τ be a finite symbol set, and U,B be τ -structures. Let ~as =
〈a0, ..., as−1〉 ∈ As andm > 0. We will now present a formula φmU,~as(v0, ..., vs−1)
that describes the game-theoretic properties of ~as in any game Gm(U,~as, ...).
That means that, φm~as(v0, ..., vs−1) will be defined in such a way that for any

B and ~bs = 〈b0, ..., bs−1〉 ∈ Bs,

B � φmU,~as [
~bs] iff the Duplicator wins Gm(U,~as,B,~bs).

Definition 6.1.1.0.3. Let Lτs be the set of all L-formulas on the vocabulary
τ that has at most s free variables.

Definition 6.1.1.0.4. We define the following set Φs as

Φs= {φ | φ ∈ Lτs and φ is atomic or negated atomic, with free variables
among v0, ..., vs−1}.

Example 6.1.1.0.5. For a symbol set τ = P,Q,R with, respectively, unary,
binary and ternary relation symbols, for s ≥ 0 we would have the following
sequence of sets for:1

Φ0 = 0 (since the set is relational and there is no constants to form atomic
sentences);

Φ1 = {P (v0),¬P (v0)};

Φ2 = Φ1∪{P (v1),¬P (v1), Q(v0, v0), Q(v0, v1), ..., Q(v1, v1),¬Q(v0, v0), ...,¬Q(v1, v1)};

Φ3 = Φ2∪{P (v2),¬P (v2), Q(v0, v0), ...,¬Q(v2, v2), R(v0, v0, v0), ...,¬R(v2, v2, v2)};

[...]

1This example has been based on [Edgar Almeida- Master’s thesis on the first Lind-
strom theorem, Campinas, 2013].
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For every finite symbol set τ and every natural number n, we see that
the set Φn is finite.

From the set Φs, a τ -structure U and a sequence ~as of elements of U, we
can consider the subset of formulas of Φs that are satisfied by ~as in U:

Γ~ass = {φ | φ ∈ Φs and U � φ[~as]}.

Since Φs is finite,
∧

Γs is a first order formula. We now define the
sentence that define the game-theoretic properties of ~as in U.

Definition 6.1.1.0.6. We define the first-order τ -formula φnU,~as recursively
as

φ0U,~as is the formula
∧

Γ~ass ;

φn+1
U,~as

is the formula (∀vs
∨
a∈A
{φnU,~asa}) ∧ (

∧
a∈A
{∃vsφnU,~asa}).

EXAMPLE

Let’s illustrate the construction of the above formulas in an infinite struc-
ture. For the symbol set τ of the preceding example, consider the structure
N = (N, PN, QN, RN), where for n,m, o ∈ N, n ∈ PN iff n is a prime number;
(m,n) ∈ QN iff m divides n; and (m,n, o) ∈ RN iff m is between n and o.

Let I be a variable assignment for N, such that, for vi it assigns the ith

number in the natural sequence of N, so that I(v0) = 0, I(v1 = 1), ....
With Ia0,...,anv0,...,vn we denote the assignment that is equal to I except that

it assigns the variables v0, ..., vn to the elements a0, ..., an of the domain,
e.g. NI3,1v0,v1 � Q(v1, v0) iff (1, 3) ∈ QN . Due to the coincidence lemma in
model theory, the assignment function is usually omitted and the notation is
abbreviated as N � Q(v1, v0)[1, 3]. We will use the longer notation in some
places to avoid confusion in the assignment of free variables.

Let s = 2 and ~as = 〈1, 3〉. We have that

NI3,1v0,v1 � P (v0)

NI3,1v0,v1 � ¬P (v1)

NI3,1v0,v1 � ¬Q(v0, v1)

NI3,1v0,v1 � Q(v0, v0)

NI3,1v0,v1 � Q(v1, v0)

NI3,1v0,v1 � Q(v1, v1)
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Then,

Γ
〈1,3〉
2 = {P (v0),¬P (v1), Q(v0, v0), Q(v1, v0),¬Q(v0, v1), Q(v1, v1)}, and

φ0N,〈1,3〉 is the formula
∧

Γ
(1,3)
2 .

φ1N,〈1,3〉 = (∀v0
∨
a∈N
{φ0N,〈1,3,a〉}) ∧ (

∧
a∈N
{∃v0φ0N,〈1,3,a〉}).

Suppose a = 4, then

NI3,1,4v0,v1,v2 � ¬R(v0, v0, v0) (6.2)

NI3,1,4v0,v1,v2 � R(v0, v1, v2) (6.3)

[...] (6.4)

Thus,

φ0N,〈1,3,4〉 is
∧

Γ
〈1,3,4〉
3 where,

Γ
〈1,3,4〉
3 = Γ

〈1,3〉
2 ∪{¬P (v2), ...,¬R(v0, v0, v0), R(v0, v1, v2), ...,¬R(v2, v2, v2)},

for (¬)R(vi, vj , vw) with i, j, w ≤ 2 such that NI3,1,4v0,v1,v2 � (¬)R(vi, vj , vw).

For every a ∈ N, we will have in Γ
〈1,3,a〉
3 formulas such as ¬R(v0, v0, v0),

¬R(v1, v1, v1), ¬R(v2, v2, v2). And, depending on the number a, we may
have some formula ψ in Φ3 such that NI3,1,av0,v1,v2 � ψ , as is the case in (3)
above.

Therefore, turning back to the main example, φ1N,〈1,3〉 is the formula:

(∀v0
∨
{φ0N,〈1,3,0〉, φ

0
N,〈1,3,1〉, φ

0
N,〈1,3,2〉, φ

0
N,〈1,3,3〉, ...})∧ (6.5)∧

{∃v0(φ0N,〈1,3,0〉),∃v0(φ
0
N,〈1,3,1〉), ∃v0(φ

0
N,〈1,3,2〉), ∃v0(φ

0
N,〈1,3,3〉), ...} (6.6)

Since the set of formulas in Φ3 is finite, there will be only k formulas
such that, φ1N,〈1,3,n〉 6= φ1N,〈1,3,m〉, for natural numbers k, n,m (the sets in

the formulas 4 and 5 are infinite multisets, but finite sets). Therefore, the
disjunctions and conjunctions in (5) and (6) are finite and thus, φ1N,〈1,3〉 is a
first-order formula.

Using the same example above, in the case there is no pre-defined se-
quence ~as of elements of N (i.e., when s = 0), the formula φ0N = 0 and the
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formula φ1N is

(∀v0
∨
{φ0N,〈0〉, φ

0
N,〈1〉, φ

0
N,〈2〉, φ

0
N,〈3〉, ...})∧∧

{∃v0(φ0N,〈0〉),∃v0(φ
0
N,〈1〉), ∃v0(φ

0
N,〈2〉),∃v0(φ

0
N,〈3〉), ...}

Where, for example, φ0N,〈0〉 = ¬P (v0), φ
0
N,〈1〉 = ¬P (v0) and φ0N,〈3〉 =

P (v0). Then,

φ1N = ∀v0(¬P (v0) ∨ P (v0)) ∧ ∃v0¬P (v0) ∧ ∃v0P (v0).

Theorem 6.1.1.0.7. For a finite symbol set τ , and a τ -structure U, the set
{φnU,~as |~as ∈ A

s} is finite.

Proof. By induction on n. Let n = 0. As we have seen in the example
above, for a finite τ , we have a finite Φs (the set of atomic or negated
atomic τ -formulas with free variables among v0, ..., vs−1), and thus the set
Γ~ass = {φ |φ ∈ Φs and U � φ[~as]} is finite. Thus

∧
Γ~ass = φ0U,~as is finite.

To see that {φ0U,~as |~as ∈ As} is finite, observe that, since Φs will always
be finite, there is some k such that there is at most k sequences ~as and ~a′s
of elements of A, such that φ0U,~as 6= φ0U,~a′s

are pairwise distinct. Therefore,

{φ0U,~as |~as ∈ A
s} is finite.

Suppose the theorem holds for n.

⇒ Let a ∈ A, ~asa ∈ As+1, so by the induction hypothesis,

⇒ ∆′ = {φnU,~asa |~asa ∈ A
s+1} is finite,

⇒ therefore, ∀vs(
∨
a∈A
{φnU,~asa}) is finite,

⇒ also
∧
a∈A
{∃vsφnU,~asa} is finite;

⇒ then, φn+1
U,as= ∀vs(

∨
a∈A
{φnU,~asa}) ∧ (

∧
a∈A
{∃vsφnU,~asa}) is finite.

⇒ to see that {φn+1
U,as | a

s ∈ As} is finite one uses an argument similar to
the one used in the proof for n = 0.

Theorem 6.1.1.0.8. For a finite and relational τ , a τ -structure U, ~as ∈ As
and n ∈ N, φnU,~as has at most s free variables.
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Proof. By induction on n. For n = 0, it follows from definition, since φ0U,~as =∧
Γ~ass and

∧
Γ~ass by definition has at most s free variables. Supposing the

theorem holds for n, for every a ∈ A, by the definition of φnU,~asa it follows that

it has the variable vs free. By definition of φn+1
U,~as

, this variable is bounded,

thus φn+1
U,~as

has at most s free variables.

Theorem 6.1.1.0.9. With the same conditions as the above theorem, for
every n ∈ N, U � φnU,~as [~as]

Proof. By induction on n. For n = 0 the result follows immediately by the
definition. Suppose the theorem holds for n, then U � φnU,~as [~as].

By the induction hypothesis, we get (i) that U � φnU,~asa[~asa] for every
a ∈ A. Then, it holds that U �

∨
a∈A

φnU,~asa[~asa], since we have proven above

that this disjunction is finite. Then, by introduction of universal quantifier
U � ∀vs

∨
a∈A

φnU,~asa[~as].

Also, U � ∃vs(φnU,~asa)[~as] and, since this holds for every a ∈ A (by i),
U �

∧
a∈A
{∃vs(φnU,~asa)}[~as], since this conjunction is finite, as we have proven

above.

Definition 6.1.1.0.10. The quantifier rank of a formula φ or qr(φ) is the
number of nested quantifiers a given formula has. It is defined inductively
as follows:

• if φ is an atomic formula, then qr(φ) = 0;

• if ¬φ is a formula, then qr(¬φ) = qr(φ);

• if φ and ψ are formulas, then qr(φ ∨ ψ) = max(qr(φ), qr(ψ));

• if ∃vsφ is a formula, then qr(∃vsφ) = qr(φ) + 1.

Theorem 6.1.1.0.11. For every n ∈ N, qr(φnU,~as) = n.

Proof. By induction on n. For n = 0 the result is immediate. We have that
φn+1
U,~as

= (∀vs
∨
a∈A
{φnU,~asa}) ∧ (

∧
a∈A
{∃vsφnU,~asa}). By the induction hypothesis,

qr(φnU,~asa) = n. Therefore, qr(φn+1
U,~as

) = n+ 1.
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Now we connect the above results with the Ehrenfeucht Games presented
above.

Theorem 6.1.1.0.12. Ehrenfeucht Theorem. For a finite relational τ and
τ -structures U and B, sequences ~as ∈ As and ~bs ∈ Bs and n ∈ N, the fol-
lowing are equivalent:

1. Duplicator wins Gn(U,~as,B,~bs);

2. For every L(τ)-formula ψ(v0, ..., vs−1) with quantifier rank ≤ n, U �
φ[~as] iff B � φ[~bs];

3. B � φnU,~as [
~bs].

Proof. 1↔ 3
By induction on n. For n = 0: Duplicator wins G0(U,~as,B,~bs) iff ~as 7→ ~bs
is a partial isomorphism from U to B (by the definition of Ehrenfeucht
games) iff for every quantifier free sentence φ(~vs), U � φ[~as] ⇔ B � φ[~bs]

(by Remark 3). Then, B �
∧

ΓU,~as
0 [~bs] (ΓU,~as

0 is the set of sentences from Φs

that are satisfied by U with ~as).

Inductive step:

1. Duplicator wins Gn+1(U,~as,B,~bs) iff

2. (i) for every a ∈ A, there’s a b ∈ B such that Duplicator wins
Gn(U,~asa,B,~bsb);
(ii) for every b′ ∈ B, there’s some a′ ∈ A such that Duplicator wins
Gn(U,~asa

′,B,~bsb
′) (by Remark 3) iff

3. B � φnU,~asa[
~bs, b] (induction hypothesis)

4. B � ∀vs
∨
a∈A
{φnU,~asa}[~bs] (by (2.ii))

5. B �
∧
a∈A
{∃vs(φnU,~asa)}[~bs] (by (2.i))

6. B � (∀vs
∨
a∈A
{φnU,~asa} ∧

∧
a∈A
{∃vs(φnU,~asa)})[~bs]

7. B � φn+1
U,~as

[~bs]

1→ 2
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1. For n = 0 it follows by definition by Remark 3 and by definition of
partial isomorphism;

2. Suppose Duplicator wins Gn+1(U,~as,B,~bs);

3. (i) for every a ∈ A, there’s a b ∈ B such that Duplicator wins
Gn(U,~asa,B,~bsb); (ii) for every b′ ∈ B, there’s some a′ ∈ A such
that Duplicator wins Gn(U,~asa

′,B,~bsb
′) (by Remark 3);

4. let ψ(v0, ..., vs−1) (or simply ψ(~vs)) be a formula with quantifier rank
≤ n+ 1;

5. ψ(~vs) = ¬ψ1(~vs), ψ(~vs) = ψ1(~vs) ∨ ψ2(~vs) or ψ(~vs) = ∃yψ1(~vs);

(a) Suppose ψ(~vs) = ∃yψ1(~vs);

(b) Then, qr(ψ1(~vs, y)) ≤ n;

(c) Then, (by (2.i) and (2.ii)) the induction hypothesis gives: U �
ψ1(~vs, y)[~as, a] iff U � ψ1(~vs, y)[~bs, b];

(d) By (c), it follows that U � ∃yψ1(~vs)[~as] iff U � ∃yψ1(~vs)[~bs];

6. For the cases when ψ(~vs) = ¬ψ1(~vs) or ψ(~vs) = ψ1(~vs) ∨ ψ2(~vs), one
considers a sub-formula ψn of ψ(~vs) such that any sub-formula of ψn
has quantifier rank ≤ n;

7. Then, the proof will go as in the above case.

2→ 3

1. By theorem 3.9.

Definition 6.1.1.0.13. U ≡m B

For two structures U and B and m ∈ N we write U ≡m B if U and B
satisfy the same first-order sentences of quantifier rank ≤ m.

The following is a corollary of the Ehrenfeucht theorem:

Corollary 6.1.1.0.14. For two structures U and B and m ≥ 0 the following
are equivalent:
(a) The Duplicator wins Gm(U,B),
(b) B � φmU ,
(c) U ≡m B.
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Definition 6.1.1.0.15. Given structures U and B, for s ≥ 0 let ~as ∈ As,
~bs ∈ Bs and m ∈ N, then we define Wm(U,B) as the set of winning positions
for the Duplicator:

Wm(U,B) = {~as 7→ ~bs | the Duplicator wins Gm(U,~as,B,~bs)}.

By the definition of Ehrenfeucht game, the sequence (Wn(U,B))n≤m has
the back and forth properties listed bellow:

Definition 6.1.1.0.16. Two structures U and B are said to be m-isomorphic
( in symbols, U ∼=m B), if there is a sequence (Ij)j≤m of partial isomorphisms
such that:

(a) Every Ij is a nonempty set of partial isomorphisms from U to B;
(b) ( forth property) For every j < m, p ∈ Ij+1 and a ∈ A, there is a q ∈ Ij
such that q ⊇ p and a ∈ dom(q).
(c) ( back property) For every j < m, p ∈ Ij+1 and b ∈ B, there is a q ∈ Ij
such that q ⊇ p and b ∈ rng(q).

If a sequence (Ij)j≤m has these three properties, we say that U and B
are m-isomorphic via (Ij)j≤m or, in symbols, (Ij)j≤m : U ∼=m B.

Now we link the above definition of m-isomorphism with the other con-
cepts formerly defined.

Theorem 6.1.1.0.17. For structures U and B, for s ≥ 0 let ~as ∈ As,
~bs ∈ Bs and m ∈ N, the following are equivalent:

1. The Duplicator wins Gm(U,~as,B,~bs);

2. ~as 7→ ~bs ∈Wm(U,B) and (Wj(U,B))j≤m : U ∼=m B;

3. There is a sequence (Ij)j≤m with ~as 7→ ~bs ∈ Im, such that
(Ij)j≤m : U ∼=m B;

4. B � φmU,~as [
~bs];

5. ~as satisfies in U the same formulas of quantifier rank ≤ m as ~bs in B.

Proof. (2 → 3): As (Wj(U,B))j≤m is a sequence of partial isomorphisms
that configures winning positions for the Duplicator in each game from 0
to m, then, by the definition of winning strategy for the Duplicator, the
sequence have the back and forth property. So, it is the same as a sequence
(Ij)j≤m : U ∼=m B.

(1↔ 2): By definition.
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(3 → 1): Suppose (Ij)j≤m : U ∼=m B, and ~as 7→ ~bs ∈ Im. It is easy
to describe a winning strategy for the Duplicator based on this sequence.
Without loss of generality, let it be that on the ith-move the Spoiler chooses
and element ai of A, then ai is in the domain of some partial isomorphism
p ∈ In (by the forth property), then, the Duplicator answers with the bi ∈ B
such that p(ai) = bi.

(1↔ 4↔ 5) by the previous theorem.

Analogous to the previous theorem, now we have a corollary for s = 0,
the equivalence of items iii and iv are known as the Fräıssé’s Theorem.

Corollary 6.1.1.0.18. For structures U and B and m ≥ 0, the following
are equivalent:
(i) The Duplicator wins Gm(U,B)
(ii) (Wj(U,B))j≤m : U ∼=m B
(iii) U ∼=m B
(iv) U ≡m B
(v) B � φmU .

Definition 6.1.1.0.19 (Partially isomorphic structures). U and B are said
to be partially isomorphic (written as U ∼=p B) iff there is a non-empty
set I of partial isomorphisms from U to B that satisfy the back and forth
properties.

The following theorem about partially isomorphic sentences play an im-
portant role in the proof of Lindström’s Theorem to follow. It is an abstract
version of Cantor’s theorem that any two countable dense orderings without
endpoints are isomorphic.

Theorem 6.1.1.0.20. If U ∼=p B and U and B are at most countable, then
U ∼= B.

Proof. (idea of the proof)
From the fact that both domains are countable, one can construct a sequence
(pn)n∈N of partial isomorphisms from U to B and obtain a function p that
is an isomorphism from U to B by p =

⋃
n∈N

pn.

6.1.2 Lindström’s Theorems

Having the required tool at hand, we can enter the proper terrain of the
theorems. As the theorems talk about logical systems being more or less
expressive than others, one has to define exactly what is meant by these
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concepts. A curious thing is that Lindström did not bother to define care-
fully what he meant by logical system, or, avoiding troublesome conceptual
analyses, he straightforwardly defined logical systems as collection of ele-
mentary classes of structures. As for relative expressiveness, he used the
definition that a system A is at least as expressive as another B if every
class of structures that is elementary in B is also elementary in A.

Afterwards, others (e.g. Barwise [Bar74], and Ebbinghaus et al [EFT96])
have tried to fill the gap and presented more detailed definitions of logical
systems, giving axioms and structural restrictions that a candidate for a
logical system must comply. Below, we will recall the definition of (abstract)
logical system and expressiveness, state and prove Lindström’s theorems,
cited just below to refresh the memory:

• Any logical system L that is more expressive than first-order logic (LI)
lacks either the compactness or the Löwenheim-Skolem theorem.

• Any logical system L that is more expressive than LI either lacks
Löwenheim-Skolem theorem or the set of its validities is not recursively
enumerable, that is, there can be no completeness theorem for it.

6.1.2.1 Abstract Logical Systems

In the original definition of Lindström [Lin69], the term used is “general-
ized first-order logic”, and it is defined as a sequence of a set of formulas
and a binary relation on the class of appropriate structures and the class
of formulas, i.e. a satisfability relation. He then defines the notion of a
elementary class of structures, i.e. the class of structures that are models of
a given sentence. This class of structures is then required to satisfy certain
properties, such as being closed under isomorphism, etc.

Barwise [Bar74, p. 259] criticizes Lindström approach because Lind-
ström directly deals with classes of structures, and not with sentences that
define them, therefore avoiding any kind of syntactic consideration. He says
[ibid ]:

We find this approach unsatisfying on two grounds. In the
first place, it seems contrary to the very spirit of model the-
ory where the primary object of study is the relationship between
syntactic objects and the structures they define. Secondly, it
fails to make explicit that the closure conditions on the classes
of structures (like the formation of indexed unions and its in-
verse) arise out of natural syntactic considerations, considera-
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tions which seem implicit in the very idea of a model-theoretic
language.

The presentation of Lindström theorems in [EFT96] adheres to Barwise’s
suggestion, and some syntactic content of logical systems are taken into
account. As we have said in the beginning, we will basically follow that
excellent book, filling the gaps we find not clear, modifying the manner and
order of presentation of some items whenever we find it more illuminating
for the non-expert reader.

Definition 6.1.2.1.1 (Abstract Logical System). An abstract logical sys-
tem L is composed by a function L and a binary relation �L. L associates
with a given symbol set τ a set L(τ) of τ -sentences of L. The function L
and the relation �L are required to satisfy:

1. If τ0 ⊆ τ1 then L(τ0) ⊆ L(τ1);

2. If U �L φ, then, for some τ , U is a τ -structure and φ ∈ L(τ) (that
is, the relation �L holds only for structures and sentences of the same
type);

3. (Isomorphism property) If U �L φ and U ∼= B, then B �L φ;

4. (Reduct property) If τ0 ⊂ τ1, φ ∈ L(τ0), and U is an τ1-structure,
then

U �L φ iff U�τ0 �L φ

(U�τ0 is the restriction of the structure U to the symbol set τ0).

Attached to this definition of abstract logic is the model-theoretic defi-
nition of the meaning of L(τ)-sentences:

Definition 6.1.2.1.2. If φ ∈ L(τ) and L, then the meaning of φ is given
by:

ModτL(φ) = {U | U is a τ -structure and U �L φ}.

From the definition of the meaning of sentences follows the definition
of relative expressiveness between logical systems: a logical system L′ is at
least as expressive as L iff for every sentence of L there is a sentence of L′
with the same meaning.
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Definition 6.1.2.1.3 (Relative Expressiveness). Let L, L′ be logical sys-
tems:

• Let τ be a symbol set, φ ∈ L(τ), ψ ∈ L′(τ). φ and ψ are said to be
logically equivalent iff ModτL(φ) = ModτL′(ψ).

• L′ is at least as expressive as L (in symbols L ≤ L′) iff for every
L(τ)-sentence φ, there is an L′(τ)-sentence ψ such that ψ and φ are
logically equivalent.

• L and L′ are equally strong (in symbols L ∼ L′) iff L ≤ L′ and L′ ≤ L.

Now some criteria on the logical systems will be stated in order to restrict
them to what we will call regular logical systems.

Definition 6.1.2.1.4. Boole(L), or L is able to express the propositional
Boolean connectives iff

1. Given a τ and φ ∈ L(τ), there is a χ ∈ L(τ) such that for every
τ -structure U, U �L φ iff U 6�L χ.

2. Given a τ and φ, ψ ∈ L(τ), there is a χ ∈ L(τ) such that for every
τ -structure U, U �L χ iff U �L φ or U �L ψ.

In the course of the proofs bellow, for some abstract logical system L, if
Boole(L) holds, ¬φ and φ ∨ ψ are to stand for the formulas χ in (1) and
(2) respectively.

Definition 6.1.2.1.5. Rel(L), or L permits relativization iff

for φ ∈ L(τ) and unary U , there’s a ψ ∈ L(τ ∪ {U}) such that

(U, UA) �L ψ iff [UA]U �L φ

Where [UA]U is the substructure of U with domain UA. If Rel(L), then
we refer to such ψ as φU .

In case there are function symbols in τ , [UA]U will not be defined if UA

is not τ -closed. It is important then to assure that τ is relational. This is
done by the following property.

For a symbol set τ , one obtains the relational version τ r of τ by replac-
ing each n-ary function symbol by an n + 1-ary relation symbol, and each
constant by an unary predicate. The τ r-structure Ur is obtained by U by
interpreting each new n+1-ary relation symbol by the graph of the function
in U and each new unary predicate will contain only the element of A that
corresponds to the constant being substituted.
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Definition 6.1.2.1.6. Repl(L), or L permits replacement of function sym-
bols and constants by relation symbols iff

If τ is a symbol set, and τ r is the relational version of τ , then
for any φ ∈ L(τ), there’s a ψ ∈ L(τ r) such that

U � φ iff Ur � ψ.

Thus, if Repl(L) for any τ , we may assume that τ is relational when
dealing with L-sentences.

Definition 6.1.2.1.7 (Regular Logical System). A logical system L is said
to be regular if it is the case that Boole(L), Repl(L) and Rel(L).

Other properties of logical systems that have a crucial role in the follow-
ing characterization theorems are given below.

LöSko(L), or the Löwenheim-Skolem theorem holds for L:

If φ ∈ L(τ) is satisfiable, then there is a model of φ whose domain
is at most countable.

Compact(L), or the compacteness theorem holds for L:

A set of formulas Φ ⊂ L(τ) has a model if every finite subset of
Φ has a model.

6.1.2.2 Compact logical systems

We will now prove a theorem for compact logical systems that give a good
insight on the role of compactness in the meaning of sentences in these: if
Compact(L) holds, then the meaning of any L(τ)-sentence depends only
on finitely many symbols from τ . We assume that L is at least as expressive
as LI , the first-order logic, i.e. LI ≤ L. Then, since for every first-order
sentence φ there’s a logically equivalent ψ in L, we will refer to this last
sentence as φ∗, in the following theorems, and move back and forth from
φ and φ∗ referring to a first order sentence, and its logically equivalent
counterpart φ∗ in L.

Theorem 6.1.2.2.1. Let it be that Compact(L) and ψ ∈ L(τ). Then there
is a finite τ0 ⊆ τ such that for all τ -structures U and B

if U�τ0 ∼= B�τ0, then (U �L ψ iff B �L ψ)
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Proof. Let Φ be the following set of τ ∪ {U, V, f}-sentences, for unary rela-
tions U, V and unary function f . Φ is intended to describe the isomorphism
between two τ -structures U and B:

∃xU(x); ∃xV (x);
∀x(U(x)→ ∃y(V (y) ∧ f(x) = y));
∀xy(U(x) ∧ U(y) ∧ f(x) = f(y)→ x = y);
∀xy(U(x) ∧ U(y) ∧ f(x) 6= f(y)→ x 6= y);
∀x(V (x)→ ∃y(U(y) ∧ f(y) = x)) and, for every n-ary R ∈ τ ,
∀x1, ..., xn(U(x1) ∧ ... ∧ U(xn)→ (R(x1, ..., xn)↔ R(f(x1), ..., f(xn)))).

Let Φ∗ be the set of L sentences logically equivalent with the LI sentences
of Φ (remember that LI ≤ L), and let (U, UA, V A, fA) be a model of Φ∗.
Then, UA, V A are non-empty and fA is an isomorphism from [UA]U to [V A]U.
Then

⇒ [UA]U ∼= [V A]U;

⇒ and, for any ψ ∈ L(τ), [UA]U �L ψ iff [V A]U �L ψ, by the isomorphism
property;

⇒ thus, (U, UA, V A, fA) �L ψU iff (U, UA, V A, fA) �L ψV , by Rel(L);

⇒ then (U, UA, V A, fA) �L ψU ↔ ψV , by Boole(L);

⇒ therefore, Φ∗ �L ψU ↔ ψV ;

⇒ then, for some finite Φ∗0 ⊆ Φ∗, Φ∗0 �L ψ
U ↔ ψV , by Compact(L).

Let τ0 be the symbol set of the sentences in Φ∗0.

⇒ Suppose that U�τ0
π∼= B�τ0.

Let τ1 = τ ∪ {U, V, f}, being the symbols U, V, f, the same as above.
By the isomorphism property, we may assume that the domains of U and
B are disjoint, so A ∩ B = 0. We define now a τ1 structure C as follows:
C = A ∪B, UC = A, V C = B, RCi = RAi ∪RBi , for every Ri ∈ τ , and fC is
any function such that fC�A = π.

⇒ thus, by construction, C �L Φ∗0, and then C �L ψU ↔ ψV ;

⇒ then, [UC ]C �L ψ iff [V C ]C �L ψ by Boole(L) and Rel(L);

⇒ then, [UC ]C�τ �L ψ iff [V C ]C�τ �L ψ by the reduct property;
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⇒ as [UC ]C�τ = U and [V C ]C�τ = B,

⇒ it follows that U �L ψ iff B �L ψ.

6.1.2.3 Lindstrom’s First theorem

Theorem 6.1.2.3.1. If L is a regular logic that extends LI , but such that
there’s a τ -sentence ψ that is not logically equivalent to any LI-sentence,
then, there are τ -structures U and B s.t. for every n ∈ N , and for every
finite τ0 ⊆ τ and such that

U�τ0 ∼=n B�τ0, U �L ψ and B �L ¬ψ.

let φ =
∨
{φnU�τ0 |U is a τ -structure and U �L ψ}

⇒ as τ0 is finite, φ is a first-order sentence, by theorem-6.1.1.0.7;

⇒ by hypothesis, ψ is not logically equivalent with φ, therefore, it is
neither so with φ∗;

⇒ then, there is a τ -structure B such that B �L φ∗ and B �L ¬ψ;

⇒ thus, it is also the case that B � φ;

⇒ by the definition of φ it follows that there is a τ -structure U such that
U �L ψ and B � φnU�τ0 ;

⇒ by the Corollary-3.16 of Ehrenfeucht theorem, U�τ0 ∼=n B�τ0.

This is the main lemma for the Lindström theorem:

Lemma 6.1.2.3.2 (Main Lemma). If L is a regular logical system such that
LöSko(L), LI ≤ L, and for some τ there is an L(τ)-sentence ψ not logically
equivalent to any first order sentence, then one of the following holds:

(a) There are τ -structures U and B such that, for every finite τ0 ⊆ τ ,
U�τ0 ∼= B�τ0, U �L ψ and B `L ¬ψ.

(b) For a unary relation symbol W and some specific symbol set τ+, such
that τ ∪ {W} ⊂ τ+, there is an L(τ+)-sentence χ∗ such that

(i) In every model D of χ∗, WD is finite and nonempty;
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(ii) (Remark-5) For every n ∈ N, there’s a model D of χ∗ such that
|WD| = n.

Theorem 6.1.2.3.3 (Lindström’s First Theorem). If L is a regular logical
system such that LI ≤ L and there’s a L(τ)-sentence ψ that is not logi-
cally equivalent to any first order sentence, then either Compact(L) fails
or LöSko(L) fails.

Proof. Let L be as in the hypothesis of the theorem. Suppose Compact(L)
and LöSko(L) holds.

Suppose (a) of Main Lemma holds.

⇒ Then there are τ -structures U and B such that, for every finite τ0 ⊆ τ ,
U�τ0 ∼= B�τ0, U �L ψ and B `L ¬ψ.

⇒ By theorem-6.1.2.2.1, there’s a finite τ0 ⊆ τ , such that if U�τ0 ∼= B�τ0,
then (U �L ψ iff B �L ψ).

⇒ Therefore, we get a contradiction that a structure B satisfies both ψ
and ¬ψ.

Then, (b) must be the case.

⇒ Consider the following set of sentences:

Σ = {χ∗} ∪ {∃x1...xn
∧

1≤i<j≤n
xi 6= xj ∧W (xi) | n ∈ N}

⇒ By (b.ii) of the Main Lemma, every finite subset of Σ have a model. By
Compact(L), Σ has a model M. But WM is infinite, contradicting
(b.i) of Main Lemma.

Therefore, our initial assumption is false, and either Compact(L) fails
or LöSko(L) fails.

Now we proceed to the proof of main lemma. The basic idea is to
formulate the following statement from theorem-6.1.2.3.1 in the language
of L:

U�τ0 ∼=n B�τ0, U �L ψ and B �L ¬ψ. (6.7)

To do so, we will describe by a conjunction χ of first-order sentences
saying exactly what that theorem says, and whenever a structure is a model
of φ, the assertions of the main lemma will be verified. In this formulation,
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the terminology of partial isomorphisms (In)n≤m of the last section will be
used. Choose U, B, τ0 and (In)n≤m such that (In)n≤m : U�τ0 ∼=m B�τ0,
U �L ψ and B �L ¬ψ. By the isomorphism property, we may assume that
A and B are disjoint.

A structure C will be defined which contains the structures U and B and
which allows to describe the m-isomorphism property (In)n≤m : U�τ0 ∼=m

B�τ0, and this will be accomplished by including the partial isomorphisms
from In as elements of the domain of C.

For this task, we will need new relation symbols to describe completely
the theorem 6.1.2.3.1. Let τ+ = τ ∪ {U, V,W,P,<, I,G, f, c} where, c is
a constant symbol, f is a unary function symbol, U, V,W,P are unary re-
lations, <, I are binary relations and G is a ternary relation. C is a τ+

structure, its relation and function symbols are interpreted as:

(a) C = A ∪B ∪ {0, ...,m} ∪
⋃
n≤m

In;

(b) UC = A and [UC ]C�τ = U;

(c) V C = B and [V C ]C�τ = B; remember tha (b) and (c) are possible since
A ∩B = 0 and τ is relational;

(d) WC = {0, ...,m}, <C is the natural ordering on WC , cC = m and
f�WC is the predecessor function on WC , i.e. f(n+ 1) = n;

(e) PC =
⋃
n≤m

In;

(f) IC = {(n, p) | n ≤ m and p ∈ In};

(g) GC = {(p, a, b) | p ∈ PC , a ∈ dom(p) and p(a) = b}.

6.1.2.3.4 The sentence χ - encoding theorem 6.1.2.3.1 in FOL

Then, C satisfies the following set of τ+-sentences whose conjunction is
named χ.

For a partial isomorphism p ∈ P , Gpxy describes the graph of the function p
from the τ0-substructure induced on UC to the τ0-substructure induced
on V C .

(i) ∀p(Pp→ ∀xy(Gpxy → (Ux ∧ V y)));

(ii) ∀p(Pp→ ∀xx′yy′((Gpxy ∧Gpx′y′)→ (x = x′ ↔ y = y′)));
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(iii) For every n-ary R ∈ τ0:
∀p(Pp → ∀x1...xny1...yn((Gpx1y1 ∧ ... ∧ Gpxnyn) → (Rx1...xn ↔
Ry1...yn))).

The following are the axioms to assure that < is a total ordering and that
WC is its field:

(iv) ∃xy(x < y), ∀x¬(x < x),∀xyz((x < y ∧ y < z)→ x < z);

(v) ∀xy(∃u(x < u∨u < x)∧∃v(y < v∨ v < y)→ (x < y∨x = y∨ y < x));

(vi) ∀x(Wx↔ (x = c ∨ ∃y(y < x ∨ x < y))) ∧ ∀x(Wx→ (x < c ∨ x = c)).

If x is in the field of <, then Ix = {p |Pp ∧ Ixp} is a non-empty set:

(vii) ∀x(Wx→ ∃p(Pp ∧ Ixp)).

f is the predecessor function:

(viii) ∀x(∃y(y < x)→ (fx < x ∧ ¬∃z(fx < z ∧ z < x)))

The axioms bellow describe the back and forth properties of sequence
(In)n≤m:

(ix) ∀xpu((fx < x ∧ Ixp ∧ Uu) → ∃qv(Ifxq ∧ Gquv ∧ ∀x′y′(Gpx′y′ →
Gqx′y′)) (the forth property);

(x) ∀xpv((fx < x∧Ixp∧V v)→ ∃qu(Ifxq∧Gquv∧∀x′y′(Gpx′y′ → Gqx′y′))
(the back property).

And now a sentence that express that U �L ψ and B �L ¬ψ, remembering
that UC = A and V C = B:

(xi) ∃xUx ∧ ∃yV y ∧ ψU ∧ ¬ψV .

Remark 6.1.2.3.5. Observe that, for any n ∈ N, there is a model C of χ
in which the field WC of <C has exactly n+ 1 elements. This is guaranteed
by theorem-6.1.2.3.1, since, if the hypothesis of the theorem holds, for every
n ∈ N there are structures U and B such that for every finite τ0, U�τ0 ∼=n

B�τ0.

Lemma 6.1.2.3.6. If some τ+ structure D is a model of χ, in which the
field WD of <D is infinite, then the U -part and V -part of D are domains of
substructures U = [UD]D�τ and B = [V D]D�τ such that,
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U �L ψ, B �L ¬ψ and U�τ0 ∼=p B�τ0. 2

Proof. D is a model of χ, then UD 6= ∅ and V D 6= ∅ and, since τ is relational,
UD and V D are domains of τ -substructures of D. By (xi), we have that
D �L ψU and D �L ¬ψV , therefore, by Rel(L) and the reduct property,
[UD]D�τ �L ψ and [V D]D�τ �L ¬ψ, that is,

U �L ψ and B �L ¬ψ

Every p ∈ PD is a partial isomorphism from U�τ0 to B�τ0, once D
satisfies (i),(ii),(iii). Given that WD is infinite and cD is the greatest element
of <D (by (vi)), <D has an infinite descending chain

... <D (ffc)D <D (fc)D <D cD.

Let us abbreviate f0c as c, fc as f1c, ffc as f2c and successively fnc
for n ∈ N. Now we will extract from the set of partial isomorphisms PD a
subset I: the set of p ∈ PD such that there is some predecessor k of cD such
that p is in Ik:

I = {p | there is an n with ID(fnc)Dp}.

Now, by the partial isomorphisms in I, one can conclude that I : U�τ0 ∼=p

B�τ0.
This is so, because the set I is non empty (by (vii)) and because I

satisfies the back and forth property, since (ix,x) are satisfied. For example,
given that (vii) is satisfied, for some (fnc)D in WD, there is a p such that
ID(fnc)Dp, therefore, p ∈ I, and for some a ∈ A, (by viii) there is a q with
ID(fn+1c)Dq that extends p such that a ∈ dom(q), and, by definition of I,
q ∈ I.

Lemma 6.1.2.3.7. Assume that LöSko(L). Then one of the following
conditions (a) or (b) bellow holds:

(a) There are τ -structures U and B such that

U �L ψ, B �L ¬ψ and U�τ0 ∼= B�τ0;

(b) In all models D of χ, the field WD of <D is finite.

2For partially isomorphic structures, see Definition-6.1.1.0.19.
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Proof. The proof will be rather straightforward, and will show that ¬(b)→
(a).

Suppose that there is some model D of χ such that the field WD of <D

is infinite. Then by the lemma-6.1.2.3.6,

U �L ψ, B �L ¬ψ and U�τ0 ∼=p B�τ0.

Now, since LöSko(L), we may assume that D is countable. Therefore, by
theorem-6.1.1.0.20, we have that there is an isomorphism between U�τ0 and
B�τ0, so part (a) is satisfied.

6.1.2.4 Lindström’s Second Theorem

The second Lindström theorem deals with a more restricted class of logical
systems, called effective logical systems. If τ is a decidable symbol set, then

Definition 6.1.2.4.1. L is an effective logical system iff for every decidable
τ , L(τ) is a decidable set, and, for every φ ∈ L(τ) there is a finite τ0 such
that φ ∈ L(τ0).

Besides this,

Definition 6.1.2.4.2. A logical system L is an effectively regular logical
system, iff Boole(L), Rel(L) and Repl(L), and all this properties are ef-
fective:

• in the case of Boole(L), it is effective iff for every φ ∈ L(τ) there is a
computable function to generate a ψ ∈ L(τ) such that U � φ iff U 6� ψ.
The same goes for disjunction.

• in the case of Rel and Repl also there must be computable functions to
generate the relativized formulas and to obtain relational symbol sets,
respectively.

Also, for effective logical systems L and L′, L′ is effectively as express-
ible as L (L ≤eff L′) iff for every decidable τ there is a computable func-
tion * that associates every φ ∈ L(τ) a φ∗ ∈ L′(τ) such that ModτL(φ) =
ModτL′(φ

∗). The same goes when L and L′ are effectively equally strong
(L ∼eff L′).

In the following proof, we need the Trahtenbrot’s theorem

Theorem 6.1.2.4.3 (Trahtenbrot’s Theorem). The set of finitely valid first
order sentences is non-enumerable.3

3A first-order τ -sentence is finitely valid if every finite τ -structure satisfies it.
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Now we are ready to state and prove the sought theorem.

Theorem 6.1.2.4.4 (Lindström’s Second Theorem). Let L be an effective
regular logical system such that (LI ≤eff L). Then, if LöSko(L), and the
set of valid sentences of L is enumerable, then LI ∼eff L.

Proof. Let L satisfy the hypothesis of the theorem. Then we have to prove
that L ≤eff LI , that is, for a decidable τ , for every sentence ψ ∈ L(τ) there’s
an effective procedure to obtain a logically equivalent φ ∈ LI(τ). The proof
is divided in two parts, first we prove that L ≤ LI for every decidable sym-
bol set τ and then we give the effective procedure, so that L ≤eff LI .

L ≤ LI for every decidable τ (+)

The proof is by absurd. Suppose, for a decidable τ , there is a ψ ∈ L(τ)
such that ψ is not logically equivalent to any first order sentence. Since L
is an effective system, by definition-6.1 above, we can consider only a finite
τ0 ⊆ τ such that ψ ∈ L(τ0).

Then, since τ0 is finite and LöSko(L), lemma-6.1.2.3.2 applies. Suppose
(a) of lemma-6.1.2.3.2 holds, then there are τ0 structures U and B such that
U �L ψ, B �L ¬ψ and U ∼= B, which contradicts the isomorphism property.

Therefore, (b.i) and (b.ii) of lemma-6.1.2.3.2 must hold. Then, there is
a L(τ+)-sentence χ∗, for τ+ = τ ∪ {U, V,W,P,<, I,G, f, c}) such that for
every model C of χ∗, WC is finite.

To go ahead, one needs first to prove the following statement:

φ is finitely valid iff �L χ∗ → (φ∗)W . (†)

Proof. (⇒) Suppose φ is finitely valid LI(τ)-sentence. Let C a τ+ structure
that is a model of χ∗, then by the conclusion above and (b.i) of lemma-
6.1.2.3.2, [WD]C�τ is a finite substructure of C, therefore, by the hypothesis,
[WD]C�τ �L φ∗, since φ∗ is logically equivalent with φ. Therefore C is a
model of (φ∗)W , by the reduct property and Rel(L).

(⇐) Suppose �L χ∗ → (φ∗)W . Let D be a finite τ -structure. By the
isomorphism property, we can assume that the domain D of D is {0, ....,m−
1}. Expand D to a τ+-structure D+ that is a model of χ and that WD+

=
{0, ...,m − 1} (by b.ii of lemma-6.1.2.3.2). Recall that τ ∩ {U, V,W,P,<
, I,G, f, c} = ∅, therefore [WD+

]D
+�τ = D. Since by construction D+ �L χ∗,

by hypothesis it follows that D+ �L (φ∗)W , therefore, [WD+
]D

+
�L φ∗, since

φ∗ ∈ L(τ), by the reduct property, [WD+
]D

+�τ � φ∗, so D �L φ∗, and finally
D � φ.
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Now, given the enumeration of L-valid sentences α1, α2, α3, ..., check for
each i ∈ N whether αi has the form χ∗ → (φ∗)W , such that φ is a first-order
sentence. If for some i this is the case, put φ on the list ΦFV .

By (†), every sentence in ΦFV is finitely valid, and this procedure yields
an enumeration of ΦFV , contradicting Trahtenbrot’s Theorem. Therefore,
it is false that there is an L-sentence that is not logically equivalent to any
first-order sentence and (+) is proved.

Now we must prove that
L ≤eff LI .

Now one must supply an effective procedure which associates with every
L(τ) sentence γ a sentence φ ∈ LI(τ) with the same models.

Let α1, α2, ..., be an enumeration of the set of valid L(τ)-sentences and
* a computable function that assigns for every φ ∈ LI(τ) a sentence φ∗ ∈
L(τ) with the same models (the existence of this function is granted by the
hypothesis that LI ≤eff L).

Take a sentence γ ∈ L(τ). Start listing the valid L(τ)-sentences α1, α2, ...,
and for every i ∈ N, check whether αi has the form γ ↔ φ∗, where φ is a
first-order sentence. If for some i this is the case, then φ is the sought first-
order sentence logically equivalent with γ. That for every γ there is such an
αi is granted by (+).
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[GM05] Marta Garćıa-Matos. Abstract Model Theory without negation.
PhD thesis, Faculty of Science, University of Helsinki, 2005.
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in mathematical logic, 1879-1931, Source books in the history
of the sciences. Harvard University Press, 1967.

[LS58] J. Loś and R. Suszko. Remarks on sentential logics. Indaga-
tiones Mathematicae (Proceedings), 61:177 – 183, 1958.

[Luk70] J. Lukasiewicz. On the intuitionistic theory of deduction. In
L. Borkowski, editor, Jan Lukasiewicz: Selected works, Studies
in logic and the foundations of mathematics, pages 325–340.
North-Holland Pub. Co., 1970.

[MA14] Maria Manzano and Enrique Alonso. Completeness: from gödel
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111–133. Birkhäuser Basel, Basel, 2007.

[MM82] E. P. Martin and R. K. Meyer. On the p-w problem. Journal
of Symbolic Logic, 47(4):869–887, 1982.

[MM92] R. K. Meyer and E. P. Martin. On establishing the converse.
Logique et Analyse, 139-140:207–222, 1992.

[Mor16] Angela P. R. Moreira. Sobre traduções entre lógicas: relações
entre traduções conservativas e traduções contextuais abstratas.
PhD thesis, Instituto de Filosofia e Ciencias Humanas, UNI-
CAMP, Campinas, 2016.

[Mos57] A. Mostowski. On a generalization of quantifiers. Funtamenta
Matematicae, 44(2), 1957.

[Mos68] A. Mostowski. Craig’s interpolation theorem in some extended
systems of logic. In B. van Rootselaar and Frits Staal, editor,
Logic, Methodology and Philosophy of Science Iii, pages 87–103.
Amsterdam, North-Holland Pub. Co., 1968.
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