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1. General characteristics of CLL 

Chronic lymphocytic leukemia (CLL) is a hematological malignancy characterized by 

the presence of mature clonal B lymphocytes that accumulate in the blood, bone 

marrow and other lymphoid tissues. The World Health Organization (WHO) 

classification of hematological malignancies describes CLL as a leukemic, 

lymphocytic lymphoma, being only distinguishable from small lymphocytic 

lymphoma (SLL) by its leukemic appearance.1,2 

1.1. Epidemiology 

CLL is the most common leukemia in the Western World, accounting for 

approximately 11% of all hematologic neoplasms and 40% of all adult leukemias. 

The incidence is about 3 per 100,000 inhabitants in Europe and North American 

while is rare among Asian or African people.3-7 CLL is mainly a disease of the elderly 

with a median age around 70 years. The incidence also varies with sex, being males 

affected more often than females (1.7-1).8-12 The prevalence of CLL is likely to 

increase further due to the demographic changes in society in the forthcoming 

decades. Moreover, the proportion of younger patients with early stage CLL and 

minimal symptoms seems to increase due to more frequent blood testing.13,14 

1.2. Etiology 

The etiology of CLL remains unknown. The basis for geographical differences of 

incidence is still elusive and may reflect a combination of genetic and environmental 

factors.15 CLL can occur as a sporadic event but there is strong evidence that a 

genetic component contributes as a family history of CLL or other lymphoid 

malignancies is stated a risk factor.16-27 

1.3. Diagnosis and clinical aspects 

The international working group of CLL (iwCLL) has provided precise guidelines 

about the diagnosis and management of CLL. The diagnosis of CLL is defined by 

the presence of ≥5x109/L B lymphocytes in peripheral blood for at least three 

months. The clonality of the circulating B-lymphocytes needs to be confirmed by 

flow cytometry.1,13 The immunophenotype of CLL distinguishes it from other B 

hematological malignancies by the expression of B cell markers such as CD19, 

CD23, and weak CD20, along with CD5, a T cell antigen, and low expression levels 

of surface membrane immunoglobulin (sIg).28 
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The CLL malignant cells found in the blood smear are characteristically small and 

mature lymphocytes with a narrow border of cytoplasm and a dense nucleus lacking 

discernible nucleoli and having partially aggregated chromatin. Large atypical cells, 

cleaved cells, or prolymphocytic cells, which may be up to 55% of the blood 

lymphocytes could also be observed.29 Grumprecht nuclear shadows, or smudge 

cells, found as cell debris, are other characteristic morphologic features in CLL. 

Despite the homogeneous morphological and immunological phenotype, the clinical 

presentation of CLL at diagnosis is variable: patients with CLL are generally 

diagnosed with an asymptomatic disease by blood tests performed during a routine 

physical exam; however, others patients showed symptoms such as fatigue, fever, 

lymphadenopathy, hepatomegaly, splenomegaly, bone marrow failure, recurrent 

infections and/or weight loss.30,31 

CLL could be preceded by an asymptomatic condition termed monoclonal B-cell 

lymphocytosis (MBL), in which CLL-like cells are found in the peripheral blood of 

otherwise healthy individuals with a count of <5x109/L clonal B lymphocytes.32,33 

Progression to frank CLL occurs in ~1–2% of individuals with high-count MBL 

(>0.5x109/L monoclonal B cells) per year, probably as a result of progressive 

accumulation of genetic and epigenetic lesions as well as environmental factors.34-36 

In addition, CLL can rarely transform into clonally related or unrelated diffuse large B 

cell lymphoma (Richter’s transformation), Hodgkin lymphoma or interdigitating 

dendritic cell sarcoma (2–10% cases).37,38 

1.4. Prognostic factors 

The natural course of CLL is highly heterogeneous. Whereas some patients suffer 

from aggressive disease with early need for treatment and significantly shorter 

overall survival, inferior to 2-3 years, others have indolent disease without any need 

of treatment at all and identical survival to their CLL free counterparts of the same 

age.39 Therefore, there has been always a huge interest in defining prognostic 

markers for patient management. A brief enumeration of them and their implication 

in prognosis is detailed below (Table 1). 
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Table 1. Classical and new prognostic factors in patients with CLL 

Prognostic factor Predict poor prognosis 

Clinical     

  Binet stage Advanced clinical stage 

  Rai stage Advanced clinical stage 

  Lymphocytes morphology Atypical and presence of prolymphocytes (>10%) 

  LDT Short (<6 months with 30x109 lymphocytes/L) 

  Bone marrow infiltration Diffuse pattern 

Biological     

Serum     

  LDH High levels 

  β2M High levels 

  TK1 High levels 

Genetic     

  IGHV mutational status Unmutated 

  IGHV rearrangements VH3-21 

  Cytogenetic alterations 17p-/11q- 

  
 

High % of altered cells 

  Karyotype Complex 

  Somatic mutations TP53, ATM, SF3B1, NOTCH1, BIRC3 mutated 

  
 

High number of mutated driver genes 

Protein     

  ZAP70 High expression (≥30%) 

  CD38 High expression (≥20%) 

  CD49d High expression (≥30%) 

Other     

  MRD Positive 

  miRNA Overexpression of miRNA-155 

LDT: Lymphocyte doubling time; LDH: Lactate dehydrogenase; β2M: β2-microglobulin; TK1: Thymidine kinase 1;   

IGHV: Immunoglobulin heavy-chain variable region; MRD: Minimal residual disease; miRNA: microRNA 

 

 Clinical markers 

Clinical staging systems for CLL were developed by Rai and Binet around 40 years 

ago and remain widely used in clinical practice.40,41 They are based on physical 

examination and blood counts, being inexpensive and easy to apply. Both staging 

systems are still the most common and validated prognostic factors in the patients 

with CLL. However, there is considerable variation in terms of outcome within each 

clinical stage, and these systems do not fully reflect the high variability of CLL and 

do not predict survival and response to therapy, particularly in low-risk patients. 

Therefore, additional clinical factors are more commonly considered in predicting 

individual patient prognosis and stratifying patient risk: i) lymphocytes morphology in 

peripheral blood -atypical morphology of CLL cells, a high number of pro-

lymphocytes are linked to a poor prognosis-;42,43ii) blood lymphocyte doubling time 
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(LDT) -short LDT less than 6 months when lymphocyte counts above 30x109/L-

;1,44,45 iii) bone marrow infiltration degree -diffuse pattern of infiltration is associated 

with a poor outcome-.46-48 

 Biological markers 

Over the last ten years, several biological markers such as serum markers, 

immunoglobulin heavy-chain variable region (IGHV) mutation status, cytogenetic 

abnormalities or expression of specific proteins on CLL cells have become important 

prognostic factors.49-52 They are available in routine clinical practice and may even 

guide treatment decisions. Recently, the improvements in the Next-Generation 

Sequencing (NGS) technologies have revealed novel genomic markers with 

important prognostic value. 

 Serum markers 

Most available serum markers providing useful prognostic information in CLL are: 

lactate dehydrogenase (LDH), β2-microglobulin (β2M), thymidine kinase 1 (TK1) 

and soluble CD23. A high level of them was found in CLL patients with a more 

aggressive disease.53-65 Despite these inputs into CLL prognostication, the genetic 

and protein biomarkers advent has shifted the focus to factors providing more 

disease-specific information regarding survival and treatment response. 

 Genetic markers 

 IGHV mutation status 

The somatic hypermutation of the variable region of the IGHV has become one of 

the most important molecular parameters to define the outcome in CLL patients. 

Based on the cutoff value of 98% sequence identity with the corresponding germline 

IGHV, two different subsets of CLL can be identified: IGHV-mutated CLL and IGHV-

unmutated CLL.66,67 IGHV somatic mutations occur in approximately half of the 

cases and usually present with non-progressive disease. By contrast, unmutated 

IGHV patients have a more aggressive disease with a shorter time to first treatment 

(TFT) and overall survival (OS) and correlate with other poor prognostic features. 

Furthermore, irrespective of mutation status, some heavy-chain variable regions 

have been associated with specific clinical outcomes like the rearrangement IGHV3-

21 linked to a poor prognosis.68-70 Moreover, IGHV4-39 gene usage has been 

recently reported to predispose to increased risk or Richter’s transformation.71 
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 Cytogenetic alterations 

The most common cytogenetic abnormalities which can be used as prognostic 

factors are deletions of the long arm of chromosome 13 (13q-), long arm of 

chromosome 11 (11q-) and short arm of chromosome 17 (17p-) as well as trisomy 

12 (+12). These cytogenetic abnormalities can be assessed by interphase 

fluorescence in situ hybridization (FISH) allowing to stratify CLL patients into five 

prognostic categories with different survival times: patients with 17p- have the worst 

prognosis, followed by 11q-, trisomy 12 and normal diploid karyotype, whereas 

patients with 13q- have the best prognosis.72 This model has been widely confirmed 

by other studies.73-78 

Moreover, recent studies have described that the percentage of cells with a 

cytogenetic alteration defined by FISH has a prognostic value in CLL.79 This fact 

was showed for the first time by our group in patients with 13q deletion as the sole 

aberration.78 More in detail, we demonstrated a significantly shorter OS and TFT in 

the group of patients with losses in 13q in 80% or more of cells as compared to 

those cases with less than 80% of 13q- cells. Later, three independent studies, 

using different cutoffs, corroborated that the percentage of cells displaying 13q 

deletion influences the outcome of CLL patients.80-82 Analogously to 13q deletion, a 

high percentage of cells with other cytogenetic alterations such as 11q-, 17p- or +12 

has a negative prognostic impact.83-86 

Conventional karyotype studies have recognized that patients with complex 

karyotype (defined by three or more alterations) have inferior prognosis as 

compared to those with diploid cytogenetics.87-92 However, conventional cytogenetic 

analysis of genomic aberrations by chromosome banding has turned out as not easy 

due to the low proliferation rate of the CLL cells. Recently, several publications have 

underscored the value of conventional cytogenetics using novel mitogens to 

stimulate the proliferation of CLL cells.93-95 

In addition, the high-throughput technologies such as array comparative genomic 

hybridization (aCGH) and high resolution single-nucleotide polymorphism (SNP) 

arrays have showed other genetic abnormalities which are present in a low 

proportion of CLL cases but also have prognostic impact.96-98 
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 Somatic mutations 

Additional information has come from the presence of mutations in genes, which 

could be also deleted in CLL such as TP53 and ATM, mapping on 17p13 and 

11q22, respectively: 

i) Disrupted TP53 function due to 17p deletion and/or TP53 gene mutation is an 

important predictor of chemorefractoriness and is associated with reduced 

survival.77,99-103 In fact, the only biomarker that currently changes the treatment 

strategy is the presence of TP53 abnormalities (17p-/TP53 mutations), being 

clinically important markers that should be assessed before every new treatment 

line.1,104-106 Luckily, a number of novel biological drugs such as B-cell receptor 

inhibitors have been developed and incorporated in the treatment of these patients 

with encouraging results.104,107 

ii) ATM mutations are associated with a decreased OS, with unfavorable features 

(unmutated IGHV and 11q-), and poor response to chemotherapy.108,109 Noteworthy 

is the fact that patients with biallelic inactivation of ATM (11q- and mutation in ATM) 

have a poorer outcome than those with a monoallelic ATM alteration.109 

With the advent of NGS, novel gene mutations were discovered in CLL patients. 

Among them, mutations which have shown an adverse prognostic impact include 

NOTCH1, SF3B1 and BIRC3 while the presence of MYD88 mutations has a 

favorable impact.71,110-118 More recent studies have also identified additional gene 

mutations that may confer a worse outcome in CLL (NKFBIE, EGR2, RPS15 and 

MED12), although they have been less studied.119-122 In a recent multicenter study 

conducted within the European Research Initiative on CLL (ERIC), sequencing of 

TP53, NOTCH1, SF3B1, BIRC3 and MYD88 was performed in a large patient 

series, revealing that, apart from TP53, SF3B1 mutations also remained as 

independent prognostic markers of shorter TFT in multivariate analysis, even among 

unmutated IGHV patients.123 Moreover, the mutational complexity can be informative 

as it dissects a specific prognosis for each combination of mutated drivers. In fact, 

the accumulative number of driver alterations (0 to ≥4) discriminated between 

patients with different clinical behavior.124 Specifically, multiple mutations (most often 

TP53+NOTCH1+ATM) conferred a significantly poorer outcome.125 

In addition, the enormous capacity of NGS can be also directed to detect mutations 

existing at very low subclonal levels. In CLL, subclonal populations are linked to 

poorer clinical outcome, implying that an active evolutionary process is the 



Introduction 

15 

underlying basis of aggressive disease.126,127 In particular, subclonal mutations in 

TP53 are of prognostic importance.128-131 

 Protein markers 

Extensive efforts have been made to find protein markers which can substitute IGHV 

mutation status as its analysis is laborious. Among them, CD38, zeta-chain-

associated protein (ZAP70) and CD49d stand out. CD38 and ZAP70 were firstly 

described as surrogate markers for IGHV, but this has been controversial.66,132 

However, further studies demonstrated that both are independently associated with 

poor outcome regardless of the mutational status.66,133-135 Nevertheless, the 

assessment of a prognostic statement has been difficult due to technical aspects 

like the choice of an optimal cutoff for the number of CD38 or ZAP70 positive cells 

determined by flow cytometry. Furthermore, CD38 expression of the leukemia clone 

may change during the course of the disease.136 In addition, CD49d has also been 

correlated with shorter survival times when expressed at high levels and has 

recently emerged as the strongest flow cytometry predictor for OS.137,138 

 Other markers 

The assessment of minimal residual disease (MRD) lately has become an important 

endpoint with prognostic impact as the achievement of lower levels of MRD in 

response to fludarabine with cyclophosphamide and rituximab (FCR) therapy was 

shown to be independently predictive for superior progression free and overall 

survival.139,140 MRD assessment is recommended in clinical trials using standardized 

protocols of either four-color flow cytometry or allele specific oligonucleotide PCR 

(one CLL cell in 10,000 leukocyte sensitivity),141 although evaluation of MRD is 

currently not recommended for routine clinical practice.1 Interestingly, the 

combination of several markers has permitted a lower detection limit and this could 

translate into better clinical outcome.142 In line with this, high-throughput sequencing 

can reliably detect disease below the levels that can be assessed by flow cytometry. 

It is likely therefore that sequencing, either by itself or in combination with flow 

cytometry, may prove to be a valuable resource to improve MRD detection.143 

Looking into the non-coding genome, the dysregulation of some microRNAs 

(miRNAs, miRs), such as miR-21, miR-29, mir-34a, mir-181b, miR-223, miR-155, 

has been suggested as prognostic markers.144-150 More recently, patients showing 

recurrent mutations in the 3ʹ UTR of NOTCH1 behaved similarly to patients with 

coding mutations in NOTCH1 in terms of the TFT and OS.124,151 
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 Prognostic models 

The management of CLL patients is currently undergoing improvements due to a 

high number of biological and, especially, genetic variables that add prognostic 

information to the classic clinical staging systems.40,41 The current challenge is to 

build a prognostic model that is clinically relevant, easily applicable, oriented to take 

therapeutic decisions and feasible in the clinical practice setting. With these goals, 

some attempts have been done and several comprehensive prognostic models 

combining clinical, biological, and genetic information have been proposed (Table 

2).110,152-156 

Table 2. Summary of prognostic models for CLL 

System Markers used Prognostic groups 

Rai (1975)40 

  

Hematological blood counts 
(lymphocytes, Hb, platelets), 
physical examination 
(lymphadenopathy, 
hepatomegaly, splenomegaly) 

Low risk stage 0: only lymphocytosis (>5,000 
monoclonal B-lymphocytes/µl) in peripheral blood 
and bone marrow 

Intermediate risk stage I: lymphocytosis and 
lymphadenopathy (≥1) 

Intermediate risk stage II: lymphocytosis, 
lymphadenopathy (≥1), and hepatomegaly or 
splenomegaly (≥1) 

High risk stage III: lymphocytosis together with 
anemia (Hb<11g/dl) 

High risk stage IV: lymphocytosis together with 
anemia (Hb<11g/dl) and/or thrombocytopenia 
(platelets <100,000/µl) 

Binet (1981)41 

  
Hematological blood counts (Hb, 
platelets), physical examination 
(lymph node regions) 

Stage A (low risk): <3 lymph node regions, Hb ≥10 
g/dl and platelets ≥100,000/µl 

Stage B (intermediate risk): ≥3 lymph node regions, 
Hb ≥10g/dl and platelets ≥100,000/µl 

Stage C (high risk): Hb<10g/dl and/or platelets 
<100,000/µl 

Döhner (2000)72 

  FISH cytogenetic alterations 

13q- (low risk) 

Normal karyotype (low risk) 

+12 (intermediate risk) 

11q- (high risk) 

17p- (high risk) 

Wierda (2007)152 

  

For OS: age (<50 years =score 1; 
50-65 years =score 2; >65 years 
=score 2), absolute lymphocyte 
count (20,000-50,000/µl =score 1; 
>50,000/µl =score 2), β2M (1-2 X 
upper limit of normal =score 1; >2 
x upper limit of normal =score 2), 
Rai stage (0-II =score 0; III-IV 
=score 1), sex (male =score 1), 
lymph node regions (>3 = score 
1) 

Low risk: score 1-3 

Intermediate risk: score 4-7 

High risk: score ≥8 
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Haferlach (2010)154 

  

For OS: age (≥65 years =score 
1), lymphocyte count (≥20,000 
leucocytes/µl = score 1), IGHV 
mutation status (unmutated 
=score 1), TP53 deletion (score 
2), IGH translocations (score 2), 
number of cytogenetic alterations 
(0 =score 0; 1 or 2=score 1; 3 
=score 2) 

Favorable risk =score 0-3 

Intermediate risk =score 4-5 

Unfavorable risk> score 5 

Rossi (2013)71 

  
FISH cytogenetic alterations, 
gene mutations 

Very low risk: 13q- only 

Low risk: +12 or a normal FISH 

Intermediate risk: NOTCH1 mutations and/or SF3B1 
mutations and/or 11q- 

High risk TP53 and/or BIRC3 abnormalities 

Pflug (2014)156 

  

Sex (male =score 1), TK (>10u/l 
=score 2), β2M (1.7-3.5 mg/dl 
=score 1; >3.5 mg/dl =score 2), 
IGHV mutation status (unmutated 
=score 1), ECOG (>0 =score 1), 
FISH aberrations (11q- =score 1; 
17p- =score 6), age (>60 years 
=score 1) 

Low risk: score =0-2 

Intermediate risk: score =3-5 

High risk: score =6-10 

Very high risk: score =11-14 

IPI Project (2016)157 

  

TP53 status (17p- and/or TP53 
mutation =score 4), IGHV 
mutational status (unmutated 
=score 2), β2M (>3.5 mg/l =score 
2), clinical stage (Binet B-C or Rai 
I-IV =score 1), age (>65 years 
=score 1) 

Low risk: score =0-1 (watch-and-wait approach) 

Intermediate risk: score =2-3 (do not treat except 
when the patient is symptomatic) 

High risk: score =4-6 (treat except when the patient 
is asymptomatic) 

Very high risk: score =7-10 (treat in experimental 
protocol or with non-cytotoxic drugs if possible (no 
chemotherapy or chemoimmunotherapy) 

Hb: hemoglobin; ECOG: Eastern Cooperative Oncology Group 

The inclusion of mutational data together with the cytogenetic model has allowed the 

proposal of an integrated prognostic model, improving discrimination of low- and 

high-risk patients and substantially enhancing the capacity to predict survival, 

compared with the possibilities of the cytogenetic model alone. The model proposed 

by Rossi et al.71 adds significantly to the ‘Döhner’ model,72 due to the coexistence of 

poor-risk gene mutations in low-risk groups defined solely on the basis of FISH. 

According to this model, high-risk CLLs are those with TP53 and/or BIRC3 disrupted 

(Table 2). Subsequent studies have confirmed the utility of such a model, although 

with partially discordant results, which may be related to differences in the design 
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and analysis of the studies.111,123 Further comprehensive prospective multi-institution 

NGS studies of larger cohorts of patients will allow us the integration of the newly 

discovered genetic lesions into a comprehensive prognostic model to improve 

patient prognostication and facilitate introduction of testing into general practice. 

So far, none of these models has gained wide international acceptance. Therefore, 

recently an international consortium of researchers has recently created 

international prognostic index (CLL-IPI) using information from prospective, 

randomized trials. The study included a very large cohort of treatment-naïve patients 

with a median follow-up of 80 months, randomly divided into training (n=2,308), 

internal (n=2,308) and two external (n=845, Mayo Clinic; n=416, SCALE 

(Scandinavian population-based case-control study) validation datasets. The CLL-

IPI, developed based on the analysis of 27 prognostic factors, could serve as a 

reliable and easily applicable method of risk stratification for CLL patients. Five 

independent predictors for OS were identified: age, clinical stage, TP53 status, 

IGHV mutation status and β2M level. Adding all these factors together results in a 

prognostic score ranging from 0-10, with four different risk groups with different 

treatment recommendations (Table 2).157 

1.5. Therapy strategies 

CLL is still an incurable disease, but various treatment approaches are used to 

control symptoms and prolong survival of patients. CLL treatment has come a long 

way since the advent of monotherapy with alkylating agents such as chlorambucil 

with or without prednisone, purine analogues such as fludarabine and pentostatin, 

followed by the combination of fludarabine with cyclophosphamide (FC) and later on 

rituximab (FCR), until the newer anti-CD20 monoclonal antibodies (obinutuzumab or 

ofatumumab), B-cell receptor (BCR) signaling kinase inhibitors (ibrutinib, idelalisib), 

BCL2 antagonist such as Venetoclax/ABT-199, and chimeric antigen receptor T 

(CART) cell therapy.51 

Risk stratification is useful to decide a particular treatment approach (Figure 1).158 

Fortunately, most CLL patients (~85-90%) do not need to be treated at diagnosis, 

being mostly asymptomatic.49 Instead, treatment is initiated only in cases with 

“active disease” as defined by the iwCLL criteria.1,13 The criteria include evidence of 

progressive bone marrow failure, bulky disease, non-responsive autoimmune 

anemia and/or thrombocytopenia, constitutional symptoms, and progressive 

lymphocytosis. 
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Figure 1: Treatment algorithm for first-line therapy of CLL.13 FCR: fludarabine, cyclophosphamide and 
rituximab, BR: bendamustine plus rituximab; R: rituximab; allo-HSCT: allogeneic hematopoietic stem cell 
transplantation; Clb: chlorambucil. 

 

For asymptomatic patients, watchful waiting is still the treatment of choice, since 

these patients show no survival benefit from an early initiation of treatment.159-161 By 

contrast, for patients who need to be treated, the main parameters currently 

influencing the choice of treatment are their physical condition and the genetic 

status of TP53.13 Thus, CLL patients can be classified as follows: 

i) “Go go” group (CLL patients with a good physical condition): FCR is now 

considered the gold standard,162-164 achieving an overall response rate of >90%. 

Recently, long-term results of the FCR regimen showed prolonged and sustained 

remissions in IGHV-mutated CLL patients.165,166 This represents the first time in the 

history of CLL that a non-transplant therapeutic option has resulted in sustained 

disease-free intervals and raises the possibility of a cure for a subset of patients with 

generally good-risk disease and excellent response to therapy. However, FCR is too 

toxic for elderly and the combination of bendamustine with rituximab has proven 

quite effective, with limited toxicity among elderly patients.167-170 Similarly, patients 

with TP53 aberrations (17p- and/or TP53 mutation) do not have an optimal benefit 

from FCR. Therefore, it is recommended that patients with TP53 deletion/mutation 
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will be treated with novel BCR inhibitors (ibrutinib, idelalisib) and rituximab.171,172 An 

allogeneic stem cell transplantation (allo-HSCT) should be offered and discussed at 

the first or second relapse.107,173,174 

ii) “Slow go” group (those with borderline impaired physical conditions): as FCR is 

too toxic for elderly and fragile patients who constitute a large fraction of CLL cases, 

it is recommended the combination of chlorambucil with an anti-CD20 monoclonal 

antibody (obinutuzumab or ofatumumab better than rituximab) as the first line 

treatment.175-178 The presence of TP53 abnormalities also influences and the optimal 

treatments are either ibrutinib or anti-CD52 (alemtuzumab). However, in such cases 

allo-HSCT is not an option. 

In the last decade, there has been a dramatic change in the number of agents 

available with very exciting developments for CLL treatment. Recently, a number of 

new agents have shown promising clinical activity and some have been approved 

for the treatment of CLL.179-181 Of note, acalabrutinib, a BCR inhibitor, seem to 

improve the safety and efficacy of first-generation BTK inhibitors.182 In addition, 

venetoclax, a small molecular inhibitor of the BCL2 protein, recently received Food 

and Drug Administration (FDA) approval for the treatment of CLLs with 17p deletion 

previously treated with at least one prior therapy.183,184 Finally, CLL cellular therapy 

also took a big step forward with the successful application of CART-cells therapy 

allowing us to reach remarkable durability of the negative MRD remissions in a 

subset of CLL patients.185 

2. Biological abnormalities of CLL 

2.1. Cytogenetic alterations 

While CLL is not associated with a specific genetic aberration, more than 80% of 

CLL patients carry cytogenetically detectable recurrent chromosomal abnormalities 

at diagnosis,72 being trisomy 12 the most common recurrent ones as well as 

deletions of 13q, 11q and 17p. FISH is the current method of choice in clinical 

setting using a specific probe set. 

 13q14 deletion 

This is the most frequent chromosomal aberration detected in CLL affecting around 

43-55% of patients and entailing a group of patients with good prognosis.72,75,78 With 

regard to the biologic basis underlying 13q deletions, miR-15a and miR16-1, located 

in the minimal deleted region (MDR), have been described to exhibit a tumoral 
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suppressor function in CLL by targeting the BCL2 oncogene. Besides these 

miRNAs, other genes located in 13q, such as DLEU7, could cooperate in the 

tumoral suppressor activity. 

Deletions at this chromosome are not homogeneous and neither is the prognosis for 

this subgroup of patients. There are several factors which should be taken into 

account: 

i) The size of the deletion varies being proposed two types of deletion: 13q- type I or 

short deletions no comprising RB1 locus; and 13q- type II or large deletions 

including the RB1 locus which has been associated with a more aggressive clinical 

course.186,187 

ii) The number of deleted 13q alleles can be different: monoallelic deletion is present 

in most cases but the presence of biallelic losses has been described in nearly 30% 

of 13q- CLL patients. Their clinical impact is controversial: whereas some authors 

suggest that biallelic 13q- represents a more aggressive abnormality, most of 

studies revealed that it does not seem to entail a worse clinical outcome.73,80-82,188-190 

iii) The size of the abnormal clone detected by FISH has been reported to have a 

clinical impact, as patients with a higher percentage of 13q- cells (isolated deletion) 

showed shorter TFT and OS. The optimal cutoff point that defines a poorer outcome 

for 13q deletion differs between studies.78-82,190 Subsequent molecular studies have 

provided biological evidences underlying the clinical heterogeneity related to the 

size of the abnormal 13q- clone, such as a distinct gene expression profile leading 

to decreased apoptosis and increased proliferation in CLLs with a high number of 

13q losses.191 

 11q deletion 

Deletion of the long arm of chromosome 11 is detected in 9–18% of CLL patients 

and is associated with poor outcome.72,75,78 The deletion is exclusively monoallelic 

and the MDR includes 11q22.3-q23.1 harboring ATM. Mutations in ATM are 

observed in approximately 30% of cases with 11q-.108 Patients with biallelic ATM 

alterations (deletion and mutation) have worse outcome than those with ATM 

mutations in one allele or wild-type ATM.192 11q deletion could also include BIRC3, 

which is more frequently mutated in fludarabine-resistant CLL patients. Of note, 

when BIRC3 and ATM appear mutated together, ATM mutation remains the most 

important marker of poor outcome in del(11q) CLL.193 As 13q deletion group, 11q- 

patients can exhibit variable clinical outcomes.84 
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 Trisomy 12 

Trisomy 12 is detected in around 15% of CLL patients and often appears as the 

unique cytogenetic alteration (40-60% of cases with +12).72,75,78 Its pathogenesis has 

been difficult to understand as the whole chromosome is affected, instead of a small 

critical region. Nonetheless, RNA and protein expression analysis have suggested a 

gene dosage effect associated with the upregulation of genes mapped in 

chromosome 12, like CD4 or MDM2.194,195 The presence of +12 is considered as an 

intermediate prognostic marker although it corresponds with a clinical 

heterogeneous entity.72 NOTCH1 mutations have been detected in around 30% of 

+12 CLL cases and are strongly associated with worse prognosis allowing us to 

define the prognosis of this group.117,118,196 By contrast, trisomy 12 can occur 

together with trisomies 18 and 19 entailing a subgroup of patients with a favorable 

complex karyotype.197 

 17p deletion 

Deletion of 17p is found in approximately 2–7% of CLL patients at diagnosis,72,75,78 

although higher occurrences (~40%) have been reported in patients with advance or 

relapsed disease.198 The extent of the 17p13 deletion is invariably associated with 

loss of TP53, representing the cytogenetic alteration with the worst impact in 

prognosis for CLL. Moreover, most of cases with 17p- also carry TP53 mutations on 

the second allele (80-90%),77 whereas a low frequency of TP53 mutations were 

detected in patients without 17p-, suggesting the idea of a selective pressure for 

cells carrying biallelic inactivation of TP53.77 Of note, both TP53 deletion and/or 

mutation are strong predictors of poor survival and FCR refractoriness in CLL77,103,199 

and represent the only biomarker which changes the treatment strategy.13 As other 

cytogenetic abnormalities, a high percentage of 17p deleted cells has been 

associated with a worse outcome.83 

 Other cytogenetic abnormalities 

Other recurrent genomic aberrations have been described in lower proportion of 

CLL patients. These include deletions of 3p, 6p, 6q, 8p, 10q and 15q, as well as 

gains of 2p, 3q, trisomy 18 and trisomy 19.200-203 Of note, integrative analysis of copy 

number variations and somatic mutations revealed that some of these genomic 

alterations involve genes that could be mutated in CLL.124 

Translocations are rare in CLL. It is noteworthy to mention those in which IGH or 

MYC are involved, as well as the 13q14 region.204-209 
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2.2. Transcriptomic landscape 

The comparison of global gene expression profile (GEP) analysis of B CLL cells 

compared with normal B cells demonstrated that CLL shows a homogeneous gene 

expression profile differing from other lymphoid cancers.210,211 However, despite 

sharing a common signature, unmutated IGHV CLLs had a distinct GEP compared 

with mutated IGHV CLLs in more than 100 genes. Among these, the overexpression 

of genes encoding ZAP70, lipoprotein lipase (LPL), BCL-7A, dystrophin and gravin 

were observed in the unmutated cases, while the mutated cases over-express 

Wnt3, CTLA-4, NRIP1 nuclear receptor gene, ADAM29 and the transcription factor 

TCF7.212 ZAP70 appeared to be one of the most significant.211 Subsequently, the 

correlation of ZAP70 expression with the mutational status of the IGHV genes was 

assessed in larger series of CLL patients, where ZAP70 was mostly found 

expressed in unmutated CLL.213 Further clinical studies revealed that ZAP70 was 

also an independent prognostic marker.214 Another relevant finding derived from 

expression arrays was the discovery of ROR1 as one of the most CLL-specific 

surface antigens.215 

Microarray expression profiling of CLL has been used to define the patterns of gene 

expression related to different chromosomal abnormalities96,191,216-218 or even 

mutational status of new drivers such as NOTCH1.219,220 

Recently, RNA-sequencing (RNA-seq) technology has been widely adopted as an 

attractive alternative to microarray-based methods to study global gene 

expression.221 More in detail, RNA-seq analysis have shown that transposable 

elements are globally downregulated in CLL cells whereas genes involved in 

metabolic pathways showed higher expression. By contrast, genes related to 

spliceosome, proteasome, and ribosome were among the most downregulated in 

CLL.222 

2.3. MicroRNAs 

MiRNAs are non-coding RNAs that have the capacity for simultaneous regulation of 

genes through direct targeting of UTR.223-225 MiRNAs are important for biological 

processes, including proliferation, apoptosis, development, and cellular 

differentiation226 and can function as either oncogenes or tumor suppressors.224 
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Figure 2: Role of the main miRNAs in CLL pathogenesis. Red arrows mean downregulation whereas green 
arrows mean upregulation of the miRNAs. Downregulation of miR-15/16, miR-29, miR-181 and miR-34 results in 
overexpression of gene targets. By contrast, overexpression of miR-155 and miR-17/92 causes inhibition of their 
targets. Genes in light orange circles represent validated targets for select miRNAs. 

 

The first description of a miRNA associated to cancer was reported in CLL: miR-

15a/16-1, located in 13q14.3, are either deleted or downregulated in 68% of CLL 

patients227 and target the antiapoptotic BCL2, leading to its upregulation and 

inhibiting apoptosis.228 Downregulation of miR-29 and miR-181b in aggressive CLL 

contributes to the overexpression of TCL1.144 Activation of the TCL1 oncogene is a 

central initiating event in the pathogenesis of aggressive CLL with functions of a 

coactivator of PI3K/AKT signaling, and high TCL1 expression correlates with 

aggressive phenotype.229,230 By contrast, overexpression of miR-155, which 

represents a biomarker for the risk of progression,149 targets SHIP1 by reducing its 

expression and interfering with the BCR induced pathways.150 Similarly, miR-17/92 

has also an oncogenic function in CLL inhibiting the expression of the tumor 

suppressor PTEN and the proapototic protein Bim.231 MiR-34 family has been also 

implicated in CLL as its expression can be induced by TP53. A low expression of 

miR-34a has been associated with chemotherapy-refractory regardless of 17p-

/TP53 mutation.145,232 Several genes such as E2F or BCL2 have been 

experimentally validated as miR-34 direct targets.233 Therefore, the role of miRNAs 

in CLL pathogenesis is clear, being mainly involved in the regulation of 

proliferation/anti-apoptotic signals (Figure 2).234,235 
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A link between miRNAs and exosomes has been recently reported in CLL. 

Expression of exosome miR-150 and miR-155 was elevated in CLL cells compared 

with normal B cells and further increased in response to BCR activation, indicating 

that the BCR signaling is involved in CLL exosome secretion.236 Another contribution 

to CLL could be the development of miRNA-based therapeutic approaches. In vivo 

studies demonstrated that miR-181b can be effective reducing leukemic cell 

expansion and increasing mice survival.237 Moreover, a synergic effect of miR-181b 

with fludarabine was observed in human primary CLL cells,238 providing an 

additional evidence for a potential role of miR-181b as a therapeutic agent in CLL. 

However, it remains to be seen if cellular or exosome miRNAs can be used in 

clinical practice to track CLL as well as the possibilities of miRNA-based therapies. 

2.4. Pathways significantly affected by mutated genes 

Genomic studies performed by NGS have provided a detailed genetic landscape of 

CLL.124,126,127,220,239-242 These studies demonstrated a highly genetic heterogeneity 

with a small number of significantly recurrent mutated genes and a relatively larger 

number of rarely mutated genes.125 Comparing the largest recent CLL cohorts, 

common mutations were identified in 29 CLL drivers (Figure 3), although there is a 

marked variability in the frequency of mutations most probably due to the different 

clinical characteristics of both cohorts.124,127 Landau et al. analyzed matched 

pretreatment samples from patients who required initial treatment and noted 

mutations in SF3B1 (21%), ATM (15%), TP53 (7%), NOTCH1 (6%) or BIRC3 

(4%).127 The other study performed by Puente et al. assessed patients with early 

stage CLL and identified NOTCH1 (13%), ATM (11%), BIRC3 (9%), and SF3B1(8%) 

as the most frequent mutated genes.124 
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Figure 3: List of CLL mutated driver genes with their corresponding frequency from Puente et al.124 (blue) 
and Landau et al.127 (red) studies. Genes are labeled with different colors according to the biological pathways 
involved (Notch signaling: orange; RNA metabolism: green; B-cell signaling: red; DNA damage, apoptosis and cell 
cycle: blue; Genome/chromatin structure: purple). 

 

Globally, these mutations can be grouped in main signaling pathways: NOTCH1 

signaling, RNA metabolism, B-cell signaling, genome/chromatin structure, DNA-

damage response, apoptosis and cell cycle. Therefore, the assignment of the 

identified target genes to signaling networks revealed a set of commonly disrupted 

pathways in CLL (Figure 4).124,127 
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Figure 4: Signaling pathways commonly affected by mutations in patients with CLL (modified from Puente 
et al.124)  

 

 Notch signaling 

Several genes encoding proteins than control the Notch signaling pathway have 

emerged as recurrently mutated in CLL. NOTCH1 mutations occur in around 12% of 

CLL patients at diagnosis,111,115,118,123,220,239 with a higher frequency in fludarabine-

refractory CLL115 and in advanced disease such as Richter’s syndrome.37,117 

NOTCH1 mutated patients frequently belong to IGHV-unmutated subgroup and 

display trisomy 12.243 Some studies suggested that NOTCH1 mutated cases exhibit 

adverse prognostic features with shorter TFT and OS but its role as an independent 

prognostic marker is still controversial.111,115,123,124,239,243 The mutations mostly affect 

the functional PEST domain (C-terminal region, exon 34) of NOTCH1, and are 

mainly represented by frameshift or nonsense events, with the most frequent 

mutation being c.7544_7545delCT deletion (approximately 80–95% of all 

mutations). This pattern of mutations disrupts the PEST domain of the protein, 

generating a truncated protein and leading to the accumulation of a stable and 

active NOTCH1 isoform, which causes a constitutive activation of the NOTCH1 

pathway.220 Recently, recurrent non-coding mutations in the 3’UTR region of 

NOTCH1 have been reported in 3% of CLL cases, leading to similar functional 

deregulation.124 



Introduction 

28 

Mutations in additional genes of the Notch pathway have been described, although 

observed in lower frequencies. Among them, inactivating mutations of FBXW7, that 

encode an E3 ligase targeting NOTCH1 for ubiquitination and degradation, lead to 

NOTCH1 stabilization by the inability of the FBXW7 mutants to bind NOTCH1 PEST 

domain.244 FBXW7 may also regulate MYC protein stability245 and is mutated in 

approximately 2% of CLL patients.111,124,127MED12 mutations (<2%)120 and SPEN 

mutations (~1%)124 potentially also lead to an increase in Notch signaling.246,247 All 

these genetic alterations result in an independent enhanced NOTCH1 signaling, 

whose consequences are not yet completely known. Up to now, NOTCH1 signaling 

has been shown to interfere with BCR signaling and could affect B-cell 

differentiation.248 

Targeting Notch signaling has emerged as a promising therapeutic strategy for CLL. 

In this line, ex vivo studies have revealed that γ-secretase inhibitor PF-03084014 

inhibits the constitutive Notch activation and induces selective apoptosis in CLL cells 

carrying NOTCH1 mutations.249 In addition, the presence of NOTCH1 mutations has 

been associated with a relative resistance to anti-CD20 immunotherapy comparing 

the effectiveness of the FC regimen vs. the FCR regimen.250 NOTCH1 mutations 

have been reported recently to be associated with low CD20 levels in CLL and 

responsible of a dysregulation of histone deacetylases (HDAC)-mediated epigenetic 

repression of CD20 expression.251 Therefore, drugs interfering with the NOTCH1 

pathway and/or inhibiting HDACs might have a role to increase CD20 expression in 

vivo, thus overcoming the relative resistance of NOTCH1-mutated CLL to rituximab-

containing therapies. 

 RNA metabolism 

SF3B1 is mutated in approximately 10% of CLL patients at diagnosis,111,220,240,242 

with a higher frequency (17%) in patients with fludarabine-refractory disease. SF3B1 

mutations are more common in unmutated IGHV and 11q- CLLs.111,123,242,252 Several 

studies have demonstrated that SF3B1 mutated patients have shorter OS and TFT 

compared with SF3B1 wild-type patients,111,123,240,242 being an independent 

prognostic marker in some cohorts.111,123 

Most mutations are missense mutations localized within the HEAT domain repeats, 

indicating a gain of function, being K700E the most frequent mutation 

(approximately 50% of all mutations).253 In various cellular contexts, SF3B1 

mutations are associated with abnormal splice events.254 In CLL, SF3B1 mutation 

induces subtle but broad changes in the splicing of transcripts involved across 
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multiple CLL-associated pathways including RNA splicing, DNA damage, Notch 

signaling, telomere maintenance, cell proliferation, apoptosis and metabolism.255,256 

In addition to SF3B1, other genes involved in splicing as well as RNA processing 

and transport are mutated in CLL at low frequencies. Among them, DDX3X, mutated 

in 2.5% CLL and recently associated with poor outcome,257 is involved in many 

steps of RNA metabolism.258 In addition, XPO1 participates to the nucleo-

cytoplasmic export of proteins and RNA259 and its mutations are present in around 

3.4% of CLLs.111 Mutations in RPS15 (1-4%) which play also a role during RNA 

processing and export have been recently described.121,127 Assuming that all these 

lesions affect the same pathway, they account for up to ~30% of patients with CLL, 

suggesting that the dysregulation of RNA processing may represent a common 

mechanism in CLL pathogenesis.252 Based on this, new drugs such as SF3B1 

inhibitors (Spliceosome inhibitor spliceostatin A, SSA)260 or XPO1 inhibitors261 are 

currently being assessed in order to target this pathway. 

 B-cell signaling: BCR/TLR and NF-kB pathway 

A heterogeneous set of genetic lesions associated with CLL seems to activate 

positive regulators or disrupt negative regulators of pathways such as BCR, TLR 

and NF-kB pathways.262 

BCR signaling has long been recognized as a major player in CLL development, 

based on structural restrictions of the BCR, and BCR-dependent survival and growth 

of the malignant B cells.263-265 Genes encoding for components of the BCR signaling 

machinery are not usually targeted by somatic mutations in unselected CLL. 

However, the introduction of BCR inhibitors such as ibrutinib has disclosed the 

acquisition of previously unexpected drug resistant mutations in BTK or 

PLCG2.266,267 These resistant subclones have been detected before ibrutinib therapy 

when evaluating single cells at high throughput using the droplet-digital amplification 

technology.268 Interestingly, a hotspot mutation in IKZF3 (p.L162R, <2%) has been 

reported. This transcription factor plays an important role in B-cell differentiation, 

proliferation and maturation.124,127 Mutations in genes involved in BCR downstream 

pathways such as MAPK signaling have been reported: EGR2 (2-3%) and BRAF (2-

3%).119 

MYD88, a crucial adaptor of intracellular signaling downstream of TLR complex, is 

mutated in around 4% of CLL cases,112,124,126,127,220,240,242 being L265P the most 

frequent mutation. MYD88 missense mutations are gain-of-function mutations that 

result in the constitutive activation of the NF-kB and others signaling pathways.269 
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Despite NF-kB upregulation, these mutations confer favorable outcome in CLL 

patients as they are associated with good characteristics such as mutated IGHV or 

low expression of CD38 and ZAP-70.112 Other genes (TLR2, IRAK1/4 or TRAF6) of 

the TLR pathway leading to potential activation of NF-kB signaling have been 

reported to be mutated in CLL.124 

The NF-kB pathway is known to be continuously activated in CLL cells through the 

BCR and TLR receptors and downstream signaling cascades.270 BIRC3 gene, which 

is a negative regulatory element of non-canonical NF-kB signaling, is mutated in 2-

9% of CLL.114,124 These mutations cause the truncation of the RING domain, leading 

to a constitutive non-canonical NF-kB activation. From a clinical standpoint, BIRC3 

mutations identify a genetic subgroup of cases characterized by poor risk disease.114 

Similarly, frequent inactivating mutations of another negative regulator of NF-kB, 

NFKBIE, have been reported in advanced stage CLL.122 Moreover, mutations in 

other genes of the NF-kB core complex such as NFKB2, TNFAIP3, IKBR and REL 

have been identified in CLL patients.122 

 DNA-damage response, apoptosis and cell cycle 

TP53 codes for a central regulator of the DNA-damage response pathway or, 

alternatively, apoptosis if the DNA damage cannot be repaired. TP53 abnormalities 

can be mutations (mainly from exon 4 to 11, with a frequency of 5-10%), deletions 

(17p-) or a combination of both, and are associated with poor responses to DNA-

damaging chemotherapeutic regimens, consistent with their dominant- negative 

function. In fact, their presence directs the choice of the therapy and is associated 

with dismal prognosis.77,99,101-103,232 More recently, subclonal TP53 mutations were 

also shown to be associated with poor prognosis, and therefore they should be 

tested for with highly sensitive methods in routine clinical settings.105,128,129,131 

As for TP53, the ATM gene is inactivated in CLL by both deletion and/or somatic 

mutations, which result in impaired DNA damage response. ATM mutations have 

been described in approximately 12% of CLL patients at diagnosis109 and 30% of 

patients with 11q deletion.108,109 Similarly to cases with TP53 disruption, ATM-

disrupted CLLs are associated with genomic instability, the acquisition of additional 

genetic lesions and poor response to chemotherapy.271 

Other genes involved in DNA damage response are SAMHD1 (mutated in 3-4% of 

CLLs)272 and POT1 (mutated in around 5%), whose mutations have an impact on 

DNA structure affecting telomere maintenance.241 
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Apart from the role of TP53 and ATM in apoptosis and/or cell cycle, other genes that 

can be mutated and deregulate these essential pathways are PTPN11, KRAS, 

NRAS and CCND2 for cell cycle and BAX for apoptosis, all mutated in less than 5% 

of CLL patients.124,127 

 Genome/chromatin structure 

A large number of mutated genes are involved in genome and chromatin 

structure,124 being CHD2 the most frequent mutated genes (6%), mainly in IGHV-

mutated CLL patients.273 CHD2 mutants show altered nuclear distribution, and its 

DNA-binding domain exhibits defective association with active chromatin.273 Other 

genes mutated at lower frequencies (<5%) are ZMYM3, SETD2, MLL2 and ASXL1. 

Together with ASXL1, TET2, which is rarely mutated in B-linage lymphoid 

malignancies (~2%),274-276 is also detected and associated with an increased risk of 

hematologic disorders including CLL.277-279 The mechanism underlying the 

participation of TET2 mutations to B-cell transformation will have to be determined. 

TET2 encodes for a protein involved in converting 5-methylcytosine to 5-

hydroxymethylcytosine, an important step in DNA demethylation. Mutations in TET2 

block the DNA demethylation.280 

2.5. Epigenetic basis 

The development of genome-wide technologies provided an unbiased picture of the 

epigenetic make-up of CLL.281-284 Initial studies highlighted that the DNA methylation 

status in CLL is remarkably stable over time,285 revealing differential methylation of a 

few known CLL prognostic genes between the IGHV-mutated and IGHV-unmutated 

CLL subgroups.281,285 CLL epigenome is characterized by widespread 

hypomethylation of DNA in genes and enhancer loci, combined with local 

hypermethylation.282 Of note, it has been shown that high levels of intra-sample 

methylation heterogeneity correlate with high-risk genetic lesions, CLL clonal 

evolution and poor prognosis.283,284 

2.6. Clonal evolution 

Clonal evolution is characterized by the acquisition of new genetic aberrations 

during the course of the disease, and is a key point for CLL development and 

relapse. FISH and conventional G-banding cytogenetics (CGC) have been useful 

complementary methods for studying clonal evolution in CLL samples, describing a 

wide range of clonal evolution frequencies (10-45%) and being the most frequently 
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acquired abnormalities 17p- and 11q-.76,200,286-290 However, these methods can only 

detect a relatively small number of genetic alterations, whereas NGS can quantify 

thousands of somatic mutations per sample, and track subclones. 

Whole-genome sequencing (WGS) showed different temporal patterns of 

repopulation after therapy that deviate from a stable equilibrium among 

subpopulations, to marked shifts in which one minor subclone replaced the 

dominant clone entirely over time.291 In particular, whole-exome sequencing (WES) 

data on matched samples collected at the time of first progression and relapse of 

FCR therapy have revealed marked clonal evolution with large clonal shifts between 

pre-treatment and relapse samples in the majority of cases (~95%).127 By contrast, 

the absence of an intervening therapy was largely associated with stable subclonal 

composition over time.292 Nevertheless, the impossibility of applying this 

methodology in large cohorts of patients still leaves much to be elucidated. 

Moreover, through NGS-based studies, a temporal order of clonal and subclonal 

mutations corresponding to earlier and later events, respectively, has been 

suggested. Thus, 13q deletion, mutations of MYD88 and trisomy 12 were identified 

as consistently clonal while mutations in ATM, TP53 or RAS were identified as 

subclonal genetic alterations.126,127 These studies also demonstrated that genetic 

features of subclonal populations are linked to poorer clinical outcome, implying that 

an active evolutionary process is the underlying basis of aggressive disease.126,127 

3. Applications of high-throughput technologies for CLL 

study 

3.1. Gene expression arrays 

Microarrays emerged as powerful tools to increase the potential of standard 

methods through genome-wide biological studies. GEP using genome-wide high-

density microarrays is a powerful approach to measure the gene expression 

changes by comparing the expression levels of genes from two groups of patients. 

This can be mainly used for the identification of genes that could be involved in 

pathological processes or gene expression patterns that define disease subtypes or 

may represent disease stages. 

A gene expression microarray is typically a slide that contains thousands of oligo 

probes fixed in an orderly manner at specific locations. These probes are organized 

in probe sets, consisting of a collection of probes designed to interrogate a specific 
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sequence and a single gene can be targeted by more than one probe set. These 

probes act as targets for sample RNA binding. By this way, any mRNA sequence in 

the sample can hybridize to specific probes on the microarray by its complementary 

sequence. The amount of RNA bound to a probe set is proportional to the initial 

amount of mRNA present in the sample.293,294 

Many different analytic platforms are available. In this thesis, gene expression 

studies were carried out using GeneChip Human Exon 1.0 ST array (Affymetrix, 

Santa Clara, CA, USA) (see Results: Chapter 3). This microarray contains 

5,362,207 oligonucleotide features with over 1.4 million probe sets to interrogate 

over one million exons from human genes. Briefly, total mRNA is converted to 

double-stranded cDNA by reverse transcription, and then to cRNA by in vitro 

transcription. Then, this cRNA is converted to cDNA by reverse transcription and 

finally, single-stranded cDNA is labeled with biotin. This labeled cDNA is then 

randomly fragmented, and hybridized onto the array. The array is then washed, 

stained with streptavidin-phycoerythrin conjugate, and scanned. Raw gene 

expression data are digitally captured and pre-processed before extracting any 

biological information. These pre-processing steps include background correction, 

summarization and normalization, to remove systematic variation between chips and 

allow data to be compared from one array to another (group comparisons). After 

normalization, data are typically reported as expression ratios, where positive values 

represent over-expressed genes and negative values under-expressed genes. 

As for other cancers, expression microarrays have contributed to the molecular 

characterization of CLL, describing gene signatures for the different molecular 

subtypes of CLL and identifying individual genes or pathways related to the clinical 

and biological evolution of the disease (See Introduction: Section 2.2).210,211,218,295,296 

The most clinically relevant result derived from the application of this technology 

was the identification of ZAP70 expression levels as a prognostic marker132,211 or 

ROR1 as one of CLL-specific surface antigen.215 

 miRNA expression arrays 

The rapid advancement of miRNA research experienced a rapid growth in 

methodology associated with miRNA profiling analysis. Diverse techniques are 

available for studying miRNA expression profiling.297,298 Similarly to gene expression 

arrays, miRNA expression arrays contain probes that interrogate the mature miRNA 

and precursor-miRNA (pre-miRNA). The workflow is simpler than gene expression 

arrays, following three main steps: poly-A tailing of total RNA (including miRNAs), a 
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reaction of ligation to label polyA-tailed RNA with biotin, and its hybridization onto 

the array (Figure 5). As a result, miRNAs of the sample can hybridize to specific 

probes on the microarray by its complementary sequence. 

 

Figure 5: Schematic overview of the steps involved in an Affymetrix miRNA expression array experiment 
(taken from User guide FlashTagTM Biotin HSR RNA Labeling kit for Affymetrix® GeneChip® miRNA Arrays). 

 

The discovery of miRNAs has broadened our understanding of the mechanisms that 

regulate gene expression with the addition of an entirely novel level of gene 

expression control. In CLL, miRNA expression profiling can distinguish normal B 

cells from malignant CLL cells, as well as aggressive and indolent CLLs which 

exhibit a different miRNA profile.299,300 The interaction between miRNAs, target 

genes, and pathways in CLL is clearly complex (Figure 2, see Introduction: Section 

2.3) and miRNAs remain one of the most exciting new avenues for CLL research. 

Among the available platforms of miRNA expression microarrays, the Gene Chip 

Micro 3.0 Array (Affymetrix, Inc, Santa Clara, CA, USA) provides for universal 

miRNA coverage (100% miRBase v17 coverage (www.mirbase.org). In this thesis, 

miRNA expression profiling was performed using this array (see Results: Chapter 

1). Specifically, this microarray contains a total probe set of 19,724 for detecting 

1,733 mature human miRNAs and 1,658 human pre-miRNAs. 

http://www.mirbase.org/
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3.2. Next-Generation Sequencing 

NGS technologies, also known as massive parallel sequencing, have the ability to 

perform millions of sequencing reactions in parallel, generating millions of 

sequencing reads in one single experiment. Therefore, NGS offers much greater 

throughput and sensitivity than previous techniques such as Sanger 

sequencing.301,302 NGS platforms have been typically represented by Genome 

Analyzer/HiSeq 2000/MiSeq from Illumina (http://www.illumina.com), and GS FLX 

Titanium/GS Junior from Roche (http://sequencing.roche.com/), SOLiD/Ion Torrent 

PGM from Life Sciences (www.appliedbiosystems.com).303-305 

NGS allows a few to thousands of genes or genomic regions to be analyzed in many 

samples, if properly barcoded, in a relatively efficient and effective manner. NGS 

technologies enable the analysis of complete cancer genomes, exomes, or targeted 

sequencing of a panel of genes in one sequencing run.306 

 Whole genome and exome sequencing 

WGS offers genomic coverage of all sequenciable regions in the genome, however 

usually with depth of coverage (defined as the number of reads per region) of only 

approximately 30x, being mutations with low allelic frequencies difficult to be 

detected. To focus on protein-coding sequences, WES is based on a target capture 

method to enrich the sequences of the coding regions of the genome, rendering 

superior depth of coverage compared to WGS (80-100x). 

Nowadays, many large-scale sequencing efforts have used the Illumina sequencing 

technique (Illumina, San Diego, CA). In this thesis (see Results: Chapter 4), WES 

experiments were performed following TruSeq Exome Enrichment protocol (20,794 

genes; 201,121 exons) (Figure 6).307 

http://www.illumina.com/
http://www.454.com/
http://www.appliedbiosystems.com/
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Figure 6: Schematic representation of the WES workflow by Illumina (adapted from 
https://www.illumina.com/index-d.html). The TruSeq Exome workflow includes four main steps (library 
preparation, exome capture, clusters generation and sequencing, and data analysis): 1) The library preparation 
begins with DNA mechanically fragmentation, preparation of DNA fragments for ligation to the indexed adapters (P5 
and P7: adaptors; SP: sequencing primer). 2) The exome enrichment consists in the capture of coding regions by 
hybridization to biotinylated probes, and then isolated by magnetic pull-down. 3) Cluster generation and sequencing 
is based on the library loading into a flow cell where each fragment is amplified through bridge amplification and 
sequenced by synthesis technology. 4) Data analysis: the sequence data generated from the sequencer are 
analyzed using a pipeline of bioinformatics analysis. 

 

WGS and WES have enabled the thorough exploration of the mutational landscape 

of CLL. WGS and WES data are now available for an extended patient series, 

comprising more than 800 published CLL exomes or genomes, revealing a vast 

genetic inter- and intra- heterogeneity in CLL patients.124,126,127,220,239,240,242,291,308,309 

These studies further uncovered a number of novel frequent somatic mutations and 

showed the most commonly mutated genes (SF3B1, ATM, TP53, NOTCH1…) in 

CLL patients. Compared with other cancers, CLL is a disease with a relatively low 

genomic complexity, with a mutation rate of only 0.8/Mb, similar to other 

hematological malignancies like acute leukemias, but lower than that of solid 

cancers, such as melanoma (mutation rate of 15/Mb).310 Indeed, the average 

numbers of somatic mutations affecting protein-coding genes and copy-number 

alterations in CLL are around 25 and 2 per sample, respectively.124,127 

https://www.illumina.com/index-d.html
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 Targeted sequencing 

The enormous capacity of NGS can be also directed to selected genomic regions. 

With targeted sequencing, the regions of interest are isolated and sequenced. Such 

targeted analysis can include the exome (see Figure 6), specific genes of interest or 

targets within genes (custom content). Recent developments in custom targeted 

sequencing approaches are significantly impacting medical research, as it enables 

increased coverage than WES (>1000x) to be reached, allowing the detection of 

subclonal mutations. These NGS strategies facilitate for multiplexing of many 

samples which reduces cost. 

Targeted enrichment methods fall broadly into two categories: (1) capture-based 

target enrichment in which specific regions of interest are capture by hybridization to 

biotinylated probes, and isolated by magnetic pull-down; (recommended for a panel 

of many genes or even whole exome); (2) amplicon generation which involves the 

amplification and purification of regions of interest using highly multiplexed oligo sets 

(recommended for a panel of few genes).311 In this thesis (see Results: Chapter 2 

and 3), the amplicon-based deep sequencing workflow was followed using 

Roche/454 FLX platform (Figure 7). The 454 platform is based on pyrosequencing in 

which the incorporation of nucleotides complementary to the template strand 

triggers an enzymatic cascade, which in turn produces a chemiluminescent 

signal.312,313 
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Figure 7: Workflow of amplicon-based NGS by 454 system (modified from Mardis et al.301). 1) Amplicon 
library: each amplicon is PCR-amplified by using specific oligonucleotide primer pairs, which include “A” and “B” 
454-adaptor sequences, a “key” sequence of 4 nucleotides “TCAG”, multiplex identifiers (MIDs) and the template 
specific primer sequence. 2) Emulsion PCR (emPCR): pooled amplicons are clonally amplified in droplet emulsions. 
3) Sequencing: isolated DNA-carrying beads are loaded into individual wells on a plate and surrounded by the 
enzymes required for the pyrosequencing. 4) Data analysis: all data generated during the sequencing run, on the 
454 Sequencing System (GS FLX or GS Junior) are automatically processed for image processing and amplicon 
pipeline data analysis. 

 

Targeted NGS is particularly suitable to be used in the clinical setting, as it may 

allow the concurrent evaluation of the most prognostically relevant genes for CLL. 

So far, different groups have used this approach based on a custom set of genes in 

CLL, being TP53, NOTCH1 and SF3B1 assessed commonly in all gene 

panels.129,314-317 The efforts to design a gene panel that could be widely used for CLL 
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prognostication and, more importantly, treatment-effect prediction, are still on-going. 

The importance of subclonal lesions has been further elucidated in recent studies by 

ultra-deep targeted NGS.128,129,131 These studies clearly documented the clinical 

significance of TP53-mutated microclones and their clonal evolution in CLL. 

Moreover, the targeted approach has been used to identify mutations in genes 

involved in a particular pathway that could be relevant for CLL 

pathogenesis.122,318,319 

 

In summary, despite the increasing knowledge of the mechanisms involved in the 

pathogenesis of CLL, driven by advancing technology in recent years, there are still 

questions to be resolved for a comprehensive understanding of CLL and its vast 

heterogeneity. Nowadays, the prognostic utility of the hierarchical Döhner 

classification is widely used and has allowed us to identify different subgroups of 

CLL patients based on the cytogenetic alteration. The application of high-throughput 

genomic technologies will enable us to gain knowledge in the biological 

heterogeneity within these well-defined subgroups of CLL patients. Moreover, the 

assessment of clinico-biological characteristics using large cohorts of patients will 

allow us to identify new variables with potential prognostic value in order to improve 

CLL prognostication accuracy. Finally, the dynamics of genetic changes in CLL 

patients have not been extensively studied during disease evolution without therapy 

pressure, and thereby longitudinal studies applying WES could be valuable for a 

better understanding of the molecular mechanisms of clonal evolution and for 

predicting clinical progression. 
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Chronic lymphocytic leukemia is a heterogeneous disease with a highly variable 

clinical outcome. The course of patients ranges from very indolent with a nearly 

normal life expectancy to rapidly progressive leading to early death. Large-scale 

NGS analyses have revealed clear evidence of the genetic heterogeneity across 

samples potentially driving the variable clinical course of this disease. In this line, 

the use of high-throughput molecular analytical techniques could contribute to a 

better knowledge of molecular basis of the clinical heterogeneity in CLL. 

Considerable efforts have been directed towards the identification of prognostic 

factors that can be used in clinical practice for a better patient management. 

Recurrent cytogenetic alterations have an established role in outcome prediction 

allowing us to stratify CLL patients in subgroups according to a specific 

chromosomal abnormality defined by FISH. However, clinical differences have been 

observed even within these well-defined subgroups. In particular, several studies 

have reported that 13q-, traditionally associated with a favorable prognosis, entails a 

heterogeneous group with different outcome depending on the percentage of cells 

displaying this aberration. However, the molecular mechanisms underlying the 

clinical heterogeneity are not fully understood. As 13q deleted region includes 

miRNAs, the evaluation of miRNA expression profile could provide new biological 

evidence of the clinical variability observed in this subgroup of CLL patients. 

Furthermore, taking into account that the quantification of the number of cells with a 

genetic abnormality has a prognostic value, it would be interesting to assess the 

impact of the number of cells with other cytogenetic alterations, such as 11q 

deletion, in order to improve CLL prognostication accuracy. 11q- usually implies the 

loss of ATM which is involved in the repair of damaged DNA and its deficiency 

causes genomic instability. Thus, the clinical heterogeneity observed within this 

subgroup of CLL patients could be a reflex of its genetic heterogeneity. 

The advent of NGS has been transformative for understanding the molecular 

underpinnings of blood malignancies with the discovery of novel mutated genes, 

some of them commonly affected among different hematological malignancies. 

Moreover, little is known about how gene mutations can influence gene expression. 

Therefore, an integrative analysis of transcriptomic networks as well as the 

mutational status could be highly useful for CLL study, specifically in target genes 

playing a role in other hematological neoplasms. 

NGS technologies have also described marked clonal changes at genetic level 

during the course of the disease. In fact, clonal evolution is considered as a hallmark 

of progression and relapse in CLL. The acquisition of driver mutations accompanied 
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by selectively neutral passenger changes may be essential to understand the 

transformation from diagnosis to later more aggressive stages. However, the key 

genetic events that likely fuel the clonal evolution during the clinical progression 

prior any therapy are still largely unknown. 

Therefore, I hypothesize that the combination of different transcriptomic and 

genomic high-throughput molecular techniques such as expression arrays and NGS 

will allow us to gain insight into miRNA expression deregulation and mutational 

status within CLL subgroups. The integration of these molecular studies can better 

explain the biological evidence underlying the clinical heterogeneity and disease 

evolution in CLL patients. 
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General aim 

To improve understanding of the molecular basis of clinical heterogeneity in CLL 

patients displaying different cytogenetic alterations as well as the molecular 

mechanisms that could be involved in disease evolution of CLL patients, through a 

combined analysis of the genome and transcriptome of B clonal lymphocytes. 

 

Specific aims 

1. To define the miRNA expression profile of B clonal lymphocytes by miRNA 

microarrays in CLL patients with 13q deletion according to the percentage of cells 

displaying this aberration, in order to characterize the biological mechanisms 

responsible for the clinical heterogeneity observed in this subgroup of patients. 

 

2. To assess the clinico-biological characteristics and outcome of CLL patients with 

11q deletion, analyzing whether the percentage of losses in 11q can have an impact 

on the overall survival and time to the first therapy. 

 

3. To characterize the mutational status of ATM, TP53, NOTCH1, SF3B1, MYD88, 

FBXW7, XPO1 and BIRC3 in CLL patients with 11q deletion by Next-Generation 

Sequencing (NGS), in order to gain insights into the genetic mechanisms underlying 

the different clinical course in this subgroup of patients. 

 

4. To evaluate the role of TET2 in CLL analyzing its expression level and the 

presence of variations by the combination of expression microarrays and Next-

Generation Sequencing in B clonal lymphocytes from CLL patients. 

 

5. To analyze the clonal evolution during the clinical progression in CLL, identifying 

the genetic changes by whole-exome sequencing in a longitudinal study. 
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This section includes the experimental work performed on this thesis, including 

Material and Methods, Results and Discussion. This section has been divided into 

four chapters: 

 

Chapter 1. M Hernández-Sánchez, AE Rodríguez-Vicente, JA Hernández, E 

Lumbreras, ME Sarasquete, AA Martín, R Benito, C Vicente-Gutiérrez, C Robledo, 

N de las Heras, JN Rodríguez, M Alcoceba, A García de Coca, C Aguilar, M 

González, JM Hernández-Rivas. MiRNA expression profile of chronic 

lymphocytic leukemia patients with 13q deletion. Leuk Res. 2016 Jul;46:30-6. 

doi: 10.1016/j.leukres.2016.04.008. Pubmed PMID: 27111859. 

 

Chapter 2. JA Hernández*, M Hernández-Sánchez*, AE Rodríguez-Vicente, V 

Grossmann, R Collado, C Heras, A Puiggros, AA Martín, N Puig, R Benito, C 

Robledo, J Delgado, T González, JA Queizán, J Galende, I de la Fuente, G Martín-

Núñez, JM Alonso, P Abrisqueta, E Luño, I Marugán, I González-Gascón, F Bosch, 

A Kohlmann, M González, B Espinet, JM Hernández-Rivas, Grupo Cooperativo 

Español de Citogenética Hematológica (GCECGH) and Grupo Español de 

Leucemia Linfática Crónica (GELLC). A Low Frequency of Losses in 11q 

Chromosome Is Associated with Better Outcome and Lower Rate of Genomic 

Mutations in Patients with Chronic Lymphocytic Leukemia. PLoS One. 2015 

Dec 2;10(11):e0143073. doi: 10.1371/journal.pone.0143073. PMID: 26630574. 

*These authors contributed equally to this work. 

 

Chapter 3. M Hernández-Sánchez, AE Rodríguez, A Kohlmann, R Benito, JL 

García, A Risueño, E Fermiñán, J de las Rivas, M González, JM Hernández-Rivas. 

TET2 overexpression in chronic lymphocytic leukemia is unrelated to the 

presence of TET2 variations. Biomed Res Int. 2014;2014:814294. doi: 

10.1155/2014/814294. PMID: 24693539. 

 

Chapter 4. M Hernández-Sánchez, AE Rodríguez, M Abáigar, D Tamborero, R 

Benito, M Quijada, AA Martín, A García de Coca, N López-Bigas, JM Hernández-

Rivas. Analysis of clonal evolution in chronic lymphocytic leukemia from 

diagnosis to symptomatic disease using whole-exome sequencing. Manuscript 

in preparation. 
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All of them have been developed to accomplish the general aim of this work and 

give the title to this doctoral dissertation: Analysis of the molecular heterogeneity 

and disease evolution in chronic lymphocytic leukemia by combining high-

throughput genomic and transcriptomic technologies. 

A General Discussion, with additional data and which comprises all research, is 

addressed in a separate section of this thesis. 

In addition, supplementary data corresponding to each of the above chapters are 

collected at the end of the thesis. 
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CLL is a heterogeneous disease with marked variability in the clinical course. 

Several molecular studies have suggested that this clinical heterogeneity is a clear 

reflex of a marked biological diversity.320 No single genetic mutation or abnormality 

responsible for CLL development has been identified. Considering the molecular 

heterogeneity of CLL, high-throughput technologies such as expression arrays and 

NGS are powerful tools for the global analysis of genetic alterations in CLL, rather 

than the study of single targets. The combination of these technologies has allowed 

us to improve our understanding of the molecular mechanisms that could be 

involved in its pathogenesis and disease evolution, as well as to discover the 

biological evidence yielding the clinical heterogeneity of CLL. Moreover, the 

identification of new molecular markers with potential prognostic and therapeutic 

significance will have an important effect on the clinical management of the disease. 

Cytogenetic abnormalities have been widely studied in CLL.321-325 For more than 15 

years the Döhner hierarchical classification based on FISH has been the gold 

standard for the genetic characterization and assessment of prognosis for CLL 

patients, in which patients with 17p- had by far the worst prognosis, followed by 

those with 11q-,+12, and normal karyotypes, whereas patients with 13q- as the sole 

abnormality had the longest estimated survival time.72 This prognostic model has 

been validated by several groups.73-75,78,216,326-332 Moreover, recent studies have 

reported that it is prognostically important not only the cytogenetic alteration per se, 

but also the percentage of cells carrying it.78-86 The biologic diversity which underlies 

the clinical heterogeneity within the well-defined subgroups of CLL patients 

according to Döhner’s model has been further explored by the first two studies of 

this thesis. 

In the first study, we focused on the subgroup of patients with 13q-, based on 

previous results obtained by our group. Although 13q- as the sole chromosomal 

abnormality has been traditionally associated with good prognosis,72 we have 

previously demonstrated that the number of malignant cells carrying this genetic 

lesion strongly correlates with the disease outcome, establishing two prognostic 

subgroups according to the percentage of cells with 13q-: the patients with a high 

proportion (>80%) of 13q- cells, 13q-H, had both a shorter OS and TFT than those 

of patients with 13q-deleted cells. These results regarding the relationship between 

the number of 13q- cells and the outcome have been corroborated by other 

independent groups.79-82 A further molecular characterization of both subgroups of 

patients by gene expression profiling was carried out, showing that several 

pathways were deregulated leading to an imbalance between the proliferative and 
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apoptotic signals that could explain the poor outcome described in 13q-H patients.191 

As a next step towards gaining insight into the molecular mechanisms responsible 

for the different outcome within 13q- CLL patients, here we assessed their miRNA 

expression profile using a specific high density miRNAs microarray with more than 

1700 mature human miRNA. 

First, we observed that the miRNA expression profiles differ between 13q- CLL 

subgroups according to the percentage of cells carrying this chromosomal 

aberration. MiRNA expression profiling has been previously used to identify 

signatures in CLL,296,299,333-335 although not all of them have been performed in 

isolated B lymphocytes as it was carried out in our study. In addition, examining the 

expression levels of these miRNAs in more detail, we identified miR-143 as the 

second most significantly downregulated miRNA, after miR-181, in 13q-H CLL 

patients. Interestingly, downregulation of miR-143 has been reported in unmutated 

IGHV CLL patients.336 Specifically, the infraexpression of miR-143 could increase 

cell proliferation by different kinases (KRAS, PLK1 and MAPK family)337 and 

decrease apoptosis by a higher activation of two known antiapoptotic genes (BCL2 

and MDM2).338,339 Other important miRNAs (miR- 223, miR-29c and miR-181), 

whose downregulation has been related to high-risk cytogenetic subgroups of CLL 

patients,146,296 were also downregulated in 13q-H. By contrast, we identified that 

miR-155, whose overexpression has been related to poor prognosis,149 was 

upregulated in 13q-H, showing the largest number of targets. In addition, the 

upregulation of miR-155, which could be related to enhanced BCR activation,191 

could lead to a greater cell survival by SOCS1,340 and by INPP5D, a negative 

regulator of phosphatidylinositol 3-kinase (PI3K)-AKT signaling, as well as a 

decrease in apoptosis by the inhibition of two proapoptotic targets (FOXO3a and 

TP53INP1).341,342 In this study, we also observed that higher levels of miR-155 

expression correlated with worse outcomes in CLL patients: 13q-H had a higher 

expression level of miR-155 than 13q-L, and this subgroup showed stronger 

expression than did CLL patients with normal FISH. Recently, miR-155 has been 

described as a new prognostic marker.149 

Therefore, miRNA deregulation can affect important validated target genes involved 

in apoptosis and proliferation that could lead to decreased apoptosis and increased 

proliferation in 13q-H patients. These results are in line with our previous study in 

which gene expression profile was evaluated,191 and are also consistent with the 

poor outcome observed in the CLL patients with a high load of 13q- cells.78 

Therefore, we have demonstrated that the clinical heterogeneity within 13q- CLL 
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patients is clearly related to a biological heterogeneity in terms of deregulation of 

transcriptomic networks. These studies raise the question whether there is also a 

heterogeneous mutational background within CLL patients with 13q-. In this line, 

NGS studies have shown that cellular processes such as apoptosis or proliferation 

are affected by mutated CLL drivers.124,127 Furthermore, the co-occurrence of 13q- 

with other driver mutations such as TP53, BIRC3, NOTCH1 or SF3B1 might confer 

a more aggressive phenotype.123 Thus, with the emergence of NGS technology, we 

will be close to know if there are significant differences about gene mutations 

between both subgroups of 13q deletion according to the percentage of 13q- cells. It 

will be necessary to analyze large series as the expected genetic instability and the 

mutational rate of CLL patients with 13q- as sole abnormality are relatively low.124,127 

In the second study, we focused on the heterogeneity observed within the group of 

CLL patients carrying 11q deletion. This chromosomal alteration is frequent in CLL 

patients and is traditionally associated with poor prognosis.72,322 Analogously to 

other chromosomal alterations,78-83,86 we observed clinical differences within CLL 

patients according to the percentage of 11q- cells. Specifically, a threshold of 40% 

of 11q deleted cells was established as the optimal one for showing significant 

differences in terms of TFT and OS in this subgroup. More in detail, patients with 

<40% of losses in 11q (11q-L) showed a longer TFT and OS compared with patients 

with ≥40% 11q- cells (11q-H). Therefore, we identified a subgroup of patients, 11q-

L, with a better outcome within a group of patients, 11q-, traditionally associated with 

poor prognosis. It is noteworthy to mention that these results were also in line with 

other two independent studies,84,85 although the optimal threshold to classify patients 

was different. No significant differences in terms of OS were observed in one of 

these studies, probably due to limited number of patients in their series.84 Recently, 

a retrospective large cohort confirmed a statically significant association between 

TFT and the percentage of abnormal nuclei for all cytogenetic alterations assessed 

by routinely by FISH, except 11q deletion.79 Comprehensive prospective multi-

institution studies of larger cohorts of CLL patients should be performed in order to 

better evaluate their impact and to establish the optimal cut-off point to stratify 

patient risk. 

In CLL, 11q deletion is mostly monoallelic and encompasses ATM gene.343 More 

than one third of 11q- CLL patients carry mutations in the remaining ATM allele.192 

Similarly to cases with TP53 disruption, ATM gene is involved in the repair of 

damaged DNA344 and its deficiency causes genomic instability and allows the 

accumulation of additional genetic mutations during disease course.271 In this 
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context, high-throughput sequencing technologies helped us to evaluate whether the 

clinical differences within the 11q- subgroup could be related to genomic instability 

and genetic heterogeneity. Thus, we analyzed the mutational status of a panel of the 

most recurrently mutated genes (ATM, BIRC3, FBXW7, MYD88, NOTCH1, SF3B1, 

TP53 and XPO1) in a subset of CLL patients with 11q- by an amplicon-based NGS 

approach. Recently, NGS technologies have enabled the thorough exploration of the 

mutational landscape of CLL discovering a highly comprehensive list of frequently 

mutated genes,124,126,127,220,239,240,242,291 which contains the genes included in our 

study. Although the incidence of ATM mutations was similar in both subgroups (11q-

L and 11q-H), considering all the analyzed genes, we observed that fewer patients 

with a low number of 11q losses had gene mutations compared with the subgroup of 

patients with a high number of 11q- cells. To our knowledge, this is the first study 

showing which biological differences can underlie the clinical heterogeneity within 

11q- CLL patients based on the number of losses in 11q. Furthermore, TP53, 

NOTCH1 or SF3B1 mutations, which have been associated with poor 

outcome,71,111,115,118,345 were more frequent in 11q-H CLL patients. 

Based on the first two studies of this thesis deciphering the heterogeneity in CLL, 

the percentage of cells with a cytogenetic alteration allows us to distinguish 

subgroups of CLL patients showing different clinical outcome within the well-

established subgroups with the same chromosomal alteration according to FISH 

prognostic model.78-86,191 Therefore, as the quantification of the number of cells with 

a genetic abnormality has a prognostic value, we suggest that the hierarchical 

model proposed by Döhner could be improved by integrating the percentage of cells 

with a cytogenetic alteration defined by FISH.  

CLL is a highly genetically heterogeneous disease, and then, high-throughput 

technologies are powerful tools to analyze it, rather than the study of single targets. 

Here, we have shown the biological diversity yielding the clinical heterogeneity in 

CLL, even within well-established groups of patients with a specific cytogenetic 

alteration. This supports the need to integrate genome-wide approaches. Moreover, 

the value of gene expression profiling is widely accepted in the study of CLL, and 

the emergence of the NGS techniques has enabled a more thorough 

characterization of CLL genome by revealing somatic mutations in previously 

unknown genes in CLL. Thus, in the third study, we combined gene expression 

arrays and NGS to analyze in depth TET2, a gene with a role widely reported in 

other hematological malignancies.274,275 In contrast to myeloid malignancies,346 we 

observed a significant overexpression of TET2 in B lymphocytes of CLL patients 
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compared with healthy donors. Recent sequencing data in larger cohort of patients 

have revealed a very low frequency of TET2 mutations in CLL (~2%),124,127 as well 

as in B-lineage derived lymphoid malignancies (2-6%).277,347 By contrast, TET2 

mutations were more frequent in T-cell lymphomas (15-33%)348-351 or myeloid 

malignancies (13-37%).346,352-356 In our study, targeted deep sequencing did not 

show any TET2 mutations in CLL patients, but this could be due to the limited 

number of patients. 

Noteworthy is the fact that the enormous capacity of NGS based on the strategy of 

targeted deep sequencing allowed us the analysis of particularly long genes without 

known hot-spots regions such as TET2 or ATM sequenced in our studies. In the 

case of ATM gene with a potential clinical impact in CLL, its size of 62 coding exons 

has hampered its routine analysis up to that point.357 Moreover, the coverage of 

sequencing reads reached by the targeted approach allowed us to identify subclonal 

mutations at low frequencies of the cells. The clinical impact of subclonal mutations 

has been recently reported128-131 and the presence of aggressive subclonal 

mutations has been linked with clonal evolution and poorer outcome.126 

CLL is a valuable model to study clonal evolution due to a high prevalence, initially 

slow progression and the easy availability of samples. Clonal evolution still 

represents a central feature of tumor progression and relapse, in which evolutionary 

advantageous driver lesions are accompanied by selectively neutral passenger 

changes.358,359 Recent large-scale sequencing studies have uncovered the vast 

intratumoral genetic heterogeneity that likely fuels clonal evolution and can 

contribute to the variable clinical course of CLL patients.126,127 WGS suggested 

different temporal patterns of repopulation after therapy291 and, more in detail, 

further longitudinal WES studies revealed marked clonal evolution with large clonal 

shifts between pre-treatment and FCR relapse samples in the majority of CLL 

patients.127 

In the last part of this thesis, we focused on characterizing the genetic events and 

clonal evolution during the clinical progression prior any therapy in CLL by FISH and 

WES using paired longitudinal samples taken from CLL patients both at diagnosis 

and at clinical progression. Moreover, we also assessed a control group analyzing 

two tumoral paired samples from patients with a stable disease with a median of 

follow-up almost 11 years. Despite the limitation of the number of patients, our 

results showed that CLL patients with progression had a higher intra-tumoral 

heterogeneity than cases without progression. Therefore, we confirmed the 

presence of subclones within a CLL patient, which could shape tumor evolution 
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through different mechanisms.126,127,291,360 In fact, we observed either acquired 

mutations or with a significantly increased allele frequency that could be involved in 

disease evolution in CLL patients with clinical progression. Interestingly, driver 

mutations in TP53, BIRC3 and CARD11 were reported as potential candidates to be 

involved in disease evolution since they were detected exclusively as acquired or 

with a significant increase of its allele frequency in patients with clinical progression. 

Previous studies also suggested clonal evolution as a key feature for CLL 

progression,292,361 although this fact is more common in CLL relapse under pressure 

of therapy.127,182 

NGS approaches help us define the evolutionary trajectories through CLL course. 

Mainly, two common patterns of clonal evolution have been suggested in CLL 

patients: a) linear evolution in which one dominant clone acquires driver events over 

time, and b) branched evolution in which several tumoral subclones coexist and 

evolve over time.126,257,288,291,362,363 In our study, we applied exome sequencing; 

therefore, we were limited in detecting subclonal mutations because of its coverage. 

Further targeted deep sequencing will allow us to better define the dynamics of 

mutated clones as well as to determine the presence of these mutations in very 

small subclones at diagnosis. We detected five acquired driver mutations according 

to WES data, all of them in patients with an active disease. However, it is worthy to 

mention that it has been reported that the majority of driver mutations could be 

already present at initial stages of the disease, often as small subclones.361 Thus, it 

could be of great interest the analysis of these alleged acquired mutations with ultra-

high sensitive NGS techniques. 

Given the progress in this field, we anticipate that NGS will become an effective 

approach to systematically monitor disease progression and also prospectively, 

directing future clinical trials and therapeutic decisions. Further longitudinal studies 

with larger cohorts will allow us to define which mutations are essential to be 

monitored from diagnosis in order to predict clinical progression. Moreover, the 

integrative analysis of coding and non-coding mutations,124,361 transcriptomic 

networks,222 methylation levels,283 and chromatin accessibility364 will allow us to gain 

insight into the key events that can take place from an early CLL leading up to the 

need for treatment. 

Noteworthy is the fact that all the results obtained in this thesis were analyzed in B 

lymphocytes. However, the cellular origin of this disease is still debated since it has 

been recently suggested that CLL pathogenesis may start on a previous 

maturational cell stage of B lymphocytes. In fact, xenotransplantation studies 
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reported that hematopoietic stem cells (HSCs) from CLL patients were able to 

reproduce CLL phenotype in murine models365 and it has been addressed that CLL 

mutations could also appear in HSC.119 Therefore, as chromosomal abnormalities 

and gene mutations are important events in CLL pathogenesis, it would be also 

interesting to define which events take place earlier in hematopoiesis or which ones 

appear in mature B cells in order to establish a hierarchical model of the appearance 

of genomic alterations in this disease. The knowledge of the cell stage in which CLL 

is originated will allow us to achieve a better understanding about this disease. 

Additional unanswered questions are about how different drivers cooperate and 

whether there are differences on cellular fitness that account for the clinical 

heterogeneity observed between CLL patients, even those with the same 

cytogenetic alteration. Understanding how multiple mutations interact and promote 

the outgrowth of increasingly fit cells as well as the different evolutionary trajectories 

will provide the clues of which mechanisms promote the onset of the disease, as 

well as the progression and the evolution into more aggressive variants. In this line, 

models applying genomic engineering will serve as valuable tools to study the 

effects of CLL mutations on cellular fitness. With the development of improved site-

specific genome engineering methods such as clustered regularly interspaced short 

palindromic repeats (CRISPR)/Cas9 technology,366 we will be able to generate in 

vitro and in vivo models harboring the same genetic alterations described in CLL 

patients. CRISPR/Cas9, which relies on two key components—the bacteria-derived 

Cas9 nuclease, and a short guide RNA (sgRNA),367 has been discovered as a rapid, 

efficient and highly powerful tool for manipulating genomic sequences in order to 

mimic the somatic mutations observed in patients.368-370 Hence, with the creation of 

these disease models, we will be able of measuring the effects of both individual 

and multiple alterations on B cell biology and clonal competition in an in vitro and in 

vivo B cell-based cellular context. In a similar fashion, it would be interesting to edit 

CD34+ cells to evaluate the impact of events in cells of early B cell lineage, recently 

suggested as affected in CLL.119,365 

In summary, the research carried out during the development of this thesis through 

a combined analysis of the genome and transcriptome of B lymphocytes has 

improved our knowledge of the complex biology underlying the heterogeneity of CLL 

as well as the molecular events involved in its evolution. Clinical analysis suggested 

that the quantification of the number of cells with a genetic abnormality should be 

included in the study of the prognostic factors of CLL. The integration of clinical and 

biological data has shed light into the heterogeneity within well-defined subgroups of 
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CLL patients, through the identification of deregulated miRNAs and targets and 

mutated genes which could be further explored as potential therapeutic targets in 

the future. Finally, genetic changes underlying CLL disease progression were 

characterized, suggesting the importance of monitoring tumoral clones by the use of 

NGS in CLL patients. 
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1. CLL patients with 13q deletion as the sole abnormality showed a distinct miRNA 

expression profile depending on the number of cells carrying 13q-. Thus, clonal 

B lymphocytes from CLL patients with a high number of 13q losses showed 

infraexpression of miR-143 and overexpression of miR-155, which can lead to 

lower apoptosis and higher proliferation rates. These results provide new 

insights into the transcriptomic networks underlying the different clinical course 

of 13q- CLL patients and improve our understanding about the clinical poorer 

outcome of CLL patients with a high load of 13q- cells 

 

2. CLL patients carrying 11q deletion are a heterogeneous group and the number 

of cells displaying this aberration is related to the outcome. CLL patients with a 

low frequency of 11q losses (<40%) are characterized by both a longer overall 

survival and time to first therapy than cases with a high load of 11q- cells. 

 

3. Fewer patients with a low number of 11q losses displayed gene mutations 

compared with the subgroup of patients with a high number of 11q- cells. Thus, 

clinical differences within the 11q- subgroup could be due to a genetic 

heterogeneity in terms of the mutational background. 

 

4. An integrative analysis of gene expression arrays and Next-Generation 

Sequencing revealed an overexpression of TET2 gene in clonal B lymphocytes 

of CLL patients but lack of somatic mutations in the coding regions of this gene, 

suggesting that TET2 gene could be a novel candidate involved in CLL. These 

data bring biological rationale for further investigations on TET2 deregulation in 

CLL. 

 

5. Whole-exome sequencing from paired longitudinal CLL samples prior any 

therapy showed a higher intra-tumoral heterogeneity in CLL patients with an 

active progressive disease than that of cases with a clinical stable CLL. The 

disease evolution is accompanied by new appearance or selection of driver 

mutations such as mutations of TP53, BIRC3 and CARD11, highlighting clonal 

evolution as a key feature for CLL progression. 
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Supplementary Methods 

miRNA expression profile using high density microarrays 

A procedure for manual extraction of total RNA containing miRNA was carried out using a guanidinium-

based buffer, which comes with the RNeasy isolation KitR® (Qiagen, Valencia, CA, USA). All total RNAs 

were of high quality according to their RIN score [1] determined with an Agilent 2100 Bioanalyzer (Agilent 

Technologies, Inc., Palo Alto, CA, USA). 

The Gene Chip Micro 3.0 Array (Affymetrix, Inc, Santa Clara, CA, USA), which provides for 100% miRBase 

v17 coverage (www.mirbase.org) by a one-color approach, was used for universal miRNA coverage [2]. 

The microarray contains a total probe set of 19,724 for detecting 1733 mature human miRNAs and 1658 

human pre-miRNAs. RNA labeling and microarray hybridization were carried out following the 

manufacturer’s protocols for the GeneChip platform by Affymetrix. Hybridized Affymetrix arrays were 

scanned with an Affymetrix Gene-Chip 3000 scanner. The scanned images were processed using the 

AGCC (Affymetrix GeneChip Command Console) software. 

Quantification of miRNA expression levels  

10 ng of total RNA was reverse-transcribed using a microRNA reverse transcription kit (Applied 

Biosystems) and a specific reverse transcription stem-loop primer. The TaqMan MicroRNA Assays for U43 

RNA (RNU43, Applied Biosystems) was used to normalize the relative abundance of miRNA using the 

2−ΔCt method. All reactions were performed in duplicate. The expression of each miRNA relative to RNU43 

was determined using the ΔΔcycle threshold (Ct) method and differences of expression levels of the 

selected miRNAs between the distinct groups were then determined by the Mann-Whitney U test 

calculated in SPSS v19.0. Values of P<0.05 were considered to be statistically significant.  

Gene-specific semi-quantitative PCR 

Semi-quantitative SYBRgreen PCR was done in triplicate with SYBR® Green PCR Master Mix (Applied 

Biosystems) using the IQ5 Multicolor Real-Time PCR Detection System (Bio-Rad). Expression data for 

selected genes were validated in a subset of CLL patients (n=26). Primers were designed based on the 

probe-sets used by Affymetrix to synthesize the GeneChip Primer sequences (Supplementary Table 2). 

The ABL1 gene was used as the internal control and the expression data were analyzed by the 

comparative Ct method. The data were not normally distributed, so non-parametric tests were used. 

Expression levels of the selected genes in both groups (13q-H and 13q-L) were analyzed using the Mann-

Whitney U test with a two-tailed value of P<0.05 for statistical significance. 

SUPPLEMENTARY MATERIAL 
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Supplementary Data 

Supplementary Table 1. Main clinical and biological features of all CLL patients included in the study. 

Feature Category CLL patients 

Median age, years (range)  70 (46-89) 

Gender Male 60% 

Binet stage 

A 88% 

B 12% 

C 0% 

White blood cells /mL (range)  16260 (8300-369000) 

Lymphocytes /mL (range)  9300 (5400-355000) 

Hemoglobin g/dL (range)  13.9 (10-18) 

Platelet count /mL (range)  182500 (73000-408000) 

IGHV Unmutated 30% 

LDH High 0% 

β2 microglobulin High 12% 

FISH abnormality 

13q deletion   

≥80% of losses 37% 

<80% of losses 34% 

Normal 29% 

 

 

 

 

Supplementary Table 2. Sequences of primers used for SYBR Green detection. 

Primer designation Sequence (5´-3´) 

ABL1  

   Forward GCCCTAGCTTTACGCTCATCAC 

   Reverse GCTGTAAGAACCGCATAAAACGAT 

BCL2  

   Forward CCCATCAATCTTCAGCACTC 

   Reverse CTGGGAATCGATCTGGAAAT 

PLK1  

   Forward TGCACCGAAACCGAGTTATT 

   Reverse TTGGTTGCCAGTCCAAAATC 

INPP5D  

   Forward GGTGACCCATCTGCAATACC 

   Reverse GGGTGGAGACACGACACTTT 

SOCS1  

   Forward TGGTAGCACACAACCAGGTG 

   Reverse AGGAGGAAGAGGAGGAAGGTT 
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Supplementary Table 3. MiRNAs differentially expressed between B lymphocytes from 13q-H and 13q-L 

CLL patients at P<0.05. Overexpression and underexpression refers to 13q-H relative to 13q-L CLL 

patients. 

miRNAs overexpressed in 
13q-H CLL patients 

P 
 miRNAs underexpressed in 

13q-H CLL patients 
P 

miR-513c 6.1E-04  miR-4782-5p 7.3E-05 

miR-4686 1.6E-03  miR-3668 2.4E-04 

miR-515-3p 1.9E-03  miR-19b-1-star 2.9E-03 

miR-3529 8.8E-03  miR-181a 5.7E-03 

miR-574-3p 8.9E-03  miR-143 7.1E-03 

miR-4804-3p 1.0E-02  miR-181b 9.1E-03 

miR-585 1.1E-02  miR-130a 1.0E-02 

miR-3922-5p 1.1E-02  miR-323-3p 1.2E-02 

miR-138-2-star 1.2E-02  miR-223 1.6E-02 

miR-4501 1.3E-02  miR-4425 1.6E-02 

miR-1293 1.4E-02  miR-760 1.6E-02 

miR-891a 1.5E-02  miR-4714-5p 2.0E-02 

miR-423-3p 1.6E-02  miR-523 2.0E-02 

miR-629 1.7E-02  miR-145 2.1E-02 

miR-4475 2.0E-02  miR-151-3p 2.1E-02 

miR-4666-3p 2.0E-02  miR-542-5p 2.2E-02 

miR-4445 2.2E-02  miR-675 2.2E-02 

miR-124-star 2.5E-02  miR-4441 2.3E-02 

miR-499a-5p 2.5E-02  miR-151b 2.3E-02 

miR-362-3p 2.6E-02  miR-1233 2.5E-02 

miR-466 2.7E-02  miR-3621 2.5E-02 

miR-4252 3.0E-02  miR-100 2.6E-02 

miR-4669 3.0E-02  miR-876-3p 2.6E-02 

miR-4793-5p 3.0E-02  miR-503 2.6E-02 

miR-155 3.1E-02  miR-4503 2.9E-02 

miR-1296 3.4E-02  miR-1298 2.9E-02 

miR-1183 3.4E-02  miR-3647-3p 3.0E-02 

miR-4659a-5p 3.7E-02  miR-4293 3.2E-02 

miR-133b 3.7E-02  miR-1283 3.2E-02 

miR-2278 3.8E-02  miR-492 3.6E-02 

miR-4748 3.8E-02  miR-922 3.7E-02 

miR-616 3.8E-02  miR-199a-5p 4.3E-02 

miR-3689c 3.8E-02  miR-3180 4.6E-02 

miR-4781-5p 4.1E-02  miR-3687 4.7E-02 

miR-1257 4.2E-02  miR-1909 4.8E-02 

miR-4304 4.2E-02    

miR-302d 4.6E-02    

miR-521 4.6E-02    

miR-4709-5p 4.7E-02    

miR-23b 4.8E-02  

miR-1270 4.9E-02  
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Supplementary Table 4. miRNAs and their experimentally validated targets that are significantly 

deregulated in 13q-H CLL patients.  

By applying an integrated miRNA-mRNA analysis, mRNA targets with an experimental observation of the 

miRNA-gene interaction were identified for the list of miRNAs deregulated in 13q-H CLL patients. 

Downregulation or upregulation refers to 13q-H relative to13q-L CLL patients. 

miRNA: microRNA 

miRNA Experimentally validated targets 

Downregulated  

miR-181a 
AICDA, BCL2, CD69, CDKN1B, CDX2, ESR1, GATA6, GRIA2, HOXA11, KRAS, NLK, NOTCH4, PLAG1, 
TCL1A, TIMP3, TRA, VSNL1 

miR-143 BCL2, DNMT3A, FNDC3B, KRAS, MAPK12, MAPK7, MDM2, PLK1, PRC1, TOP2A 

miR-130a ATG2B, CSF1, DICER1, HOXA5, MAFB, MEOX2, TAC1, ZPFM2 

miR-223 CNTN4, IRS1, LMO2, MEF2C, NFIA, RHOB, Scn3A, STMN1, VIM 

miR-145 

ABRACL, ACBD3, AHNAK, C11orf58, CBFB, CCDC25, CCNA2, CDK4, CES1, CLINT1, DDR1, DFFA, 
DTD1, EIF4E, EIF4BP2, F11R, FBXO28, FLI1, FSCN1, IGF1R, IRS1, KLF5, KRT7, LAMP2, MAPK7, MDFI, 
MDM2, MMP1, MUC1, MYC, NDUFA4, PADI1, PARP8, PPP3CA, RASA1, ROBO4, RTKN, SPTB, 

SWAP70, TPM3, UNG, USP46, VASN 

miR-675 RB1 

miR-100 FGF16, FGFR3, IGF1R, MTOR, PLK1, RPTOR 

miR-503 CCND1 

miR-199a-5p ALOX5AP, DYRK1A, ETS1, HIF1A, LAMC2, SET, SIRT1 

miR-3687 BDNF 

Upregulated  

miR-515-3p BCL11B, BCOR, BTG1 

miR-499a-5p SOX6 

miR-362-3p BDNF, MAP2K2, MAPK1 

miR-155 

ABHD16A, AGTR1, AICDA, AMIGO2, ANKFY1, ARFIP1, ARFIP2, ARL10, ARL5B, ATG3, ATP6V1C1, 
BACH1, BET1, BRPF3, CBFB, CCND1, CD47, CDK5RAP3, CEBPB, CHAF1A, CLDN1, CSF1R, CTLA4, 

CTNNB1, CUL4B, CUX1, CYP51A1, CYR61, DCAF7, DHX40, DNAJB1, DNAJC19, DPP7, DSG2, ETS1, 
F2, FADD, FADS1, FAR1, FGF7, FMNL2, FOXO3, GNA13, HSD17B12, HSDL1, IKBKE, IL13RA1, INPP5D, 
JARID2, LCLAT1, LDOC1, LPL, LY6K, MAF, MARC1, MATR3, MECP2, MEIS1, MET, METTL7A, MOSPD2, 

MPZL1, MSI2, MYB, MYD88, MYO10, NARS, NT5E, PDE3A, PDLIM5, PHC2, PICALM, PKN2, PLXND1, 
PODXL, POLE3, POLE4, PPL, PPP5C, PRAF2, PRKCI, PTPRJ, RAB23, RAB34, RAB5C, RAB6A, RAI14, 
RCN2, RCOR1, RHEB, RHOA, RIPK1, SATB1, SCAMP1, SDCBP, SH3BP4, SLA, SLC30A1, SMAD1, 

SMAD2, NAP29, SOCS1, SIPI1, SYNE2, SYPL1, TAB2, TACSTD2, TBCA, TCF7L2, TM6SF1, 
TNFRSF10A, TP53INP1, TRAM1, TRIM32, TRIP13, TXNDC12, TXNRD1, UBE2J1, UFL1, VAMP3, 
WDFY1, WEE1 

miR-133b 
BCL2L2, CASP9, CDC42, CDK13, CPNE3, CTGF, FSCN1, HCN2, HCN4, IGF1R, KCNE1, KCNH2, 

KCNQ1, KLF15, KRT7, MCL1, NELFA, NFATC4, PITX3, PKM, PTBP2, PTPRK, RB1CC1, RHOA, RUNX2, 
SRF, STK3 

miR-302d 

ADAM9, ANKRD13B, ANKRD533, APP, ARHGEF3, BAZ1A, C12orf23, C9orf78, CCND1, CCND2, CD24, 

CD44, CD46, CD83, CDK11A/CDK11B, CDK19, CDKN1A, CENPF, CFL2, CMTM4, CNOT6, CYB5R4, 
DKK1, ERBB4, ESR1, FAM13B, FITM2, FYCO1, GBAS, GBP3, GLTP, GPSM2, HERPUD1, HSPA14, 
INSIG2, KDM1B, KIAA1919, KIF23, KLF13, KLH12, LATS2, LEFTY1, LMNB1, LUC7L2, MARCH4,MBNL2, 

MED28, MICA, MKRN1, MYBL1, NIN, NR4A2, NUPL1, PACRGL, PBK, PCGF5, PDIK1L, PHC2, PRC1, 
PRKACB, RECK, RELA, RNF149, RPIA, SEPT2, SLC25A23, SLC35F6, STK4, STX11, TBC1D2, TEX30, 
TFAP4, TMEM14A, TMEM9B, TNFAIP1, TP63, TRPS1, TTC8, TUSC2, UBXN1, USP12, VEGFA, VPS26A, 

ZHX1, ZNF226 

miR-521 ERCC8 

miR-23b 
ATAT1, C21orf33, CXCL12, FBXO32, HES1, IL6R, LMNB1, MDH2, MET, NOTCH1, PLAU, POU4F2, 
SEPT3, SMAD3, SMAD4, SMAD5, TRIM63, TRPS1 
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Supplementary Table 5. The most important deregulated functions that could be deregulated by 

infraexpression of miR-143 and overexpression of miR-155 in 13q-H patients. The gene targets marked in 

bold were confirmed by semi-quantitative PCR. 

Pathway* Genes** miRNA P-value*** 

Decreased apoptosis BCL2, MDM2, FOXO3a, TP53INP1  miR-143; miR-155 0.007; 0.031 

Increased proliferation KRAS miR-143 0.007 

Altered cell cycle PLK1, PRC1, and TOP2A miR-143 0.007 

Increased cell survival SOCS1 miR-155 0.031 

Increased PI3K-AKT signaling INPP5D miR-155 0.031 
 

*These pathways are deregulated in 13q-H patients by the overexpression and downregulation of miR-155 and miR-143, respectively, 
based on the references 30-32, 35-37 and 39. 

**Genes represents the experimentally validated targets identified using Ingenuity Pathway Analysis (IPA Ingenuity Systems; 
http://www.ingenuity.com) basing on experimental observations. 
***P-value refers to the deregulation of each miRNA comparing 13q-H vs 13q-L. 

 

Supplementary Table 6. Top differentially expressed miRNAs between B lymphocytes from low-risk CLL 

patients and healthy donors at FDR<0.01. 

Top 50 miRNAs with increased expression in low-risk 
CLL patients compared with healthy donors 

 
Top 50 miRNAs with decreased expression in low-risk 

CLL patients compared with healthy donors 

miRNAs overexpressed in CLL Fold Change  miRNAs underexpressed in CLL Fold Change 

miR-1295 70.33  miR-432 0.03 

miR-21 38.51  miR-181a 0.08 

miR-34a 32.09  miR-181c 0.09 

miR-29b 20.38  miR-3150b-3p 0.11 

miR-148a 16.24  miR-1909 0.12 

miR-192 14.83  miR-4634 0.12 

miR-660 13.91  miR-193b 0.13 

miR-146b-5p 12.82  miR-4532 0.14 

miR-195 10.40  miR-4739 0.15 

miR-140-5p 10.11  miR-650 0.15 

miR-19b 9.72  miR-181b 0.15 

miR-29c 9.29  miR-3663-3p 0.16 

miR-28-5p 8.78  miR-370 0.18 

miR-223 7.71  miR-4689 0.19 

miR-4524-star 7.55  miR-3195 0.19 

miR-532-5p 7.30  miR-4534 0.21 

miR-362-5p 7.22  miR-1469 0.22 

miR-30e 7.12  miR-3188 0.22 

miR-18a 6.80  miR-4492 0.22 

miR-30b 6.40  miR-1231 0.23 

miR-4454 6.31  miR-4281 0.23 

miR-128 6.04  miR-4788 0.23 

miR-19a 6.01  miR-4270 0.23 

miR-194 5.94  miR-3180-3p 0.24 

miR-500a-star 5.93  miR-193b-star 0.24 

miR-27a 5.92  miR-663 0.24 

miR-27b 5.46  miR-1225-5p 0.25 

miR-1271 5.41  miR-3911 0.25 

miR-502-3p 5.29  miR-939 0.25 

miR-106b 5.14  miR-4463 0.25 
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miR-3128 4.97  miR-193a-5p 0.26 

miR-26b 4.86  miR-762 0.26 

miR-335 4.57  miR-4707-5p 0.26 

miR-30e-star 4.56  miR-4665-5p 0.26 

miR-501-3p 4.31  miR-4763-3p 0.26 

miR-29a 4.22  miR-4298 0.26 

let-7f 4.22  miR-3135b 0.26 

miR-628-3p 4.15  miR-1207-5p 0.27 

miR-18b 4.02  miR-4669 0.27 

miR-30a 4.01  miR-3197 0.27 

miR-17-star 3.94  miR-4745-5p 0.27 

miR-30c 3.83  miR-4687-3p 0.27 

miR-7-1-star 3.67  miR-4488 0.27 

miR-20a 3.49  miR-134 0.27 

miR-24 3.22  miR-1224-5p 0.28 

miR-155 3.21  miR-4530 0.28 

miR-500a 3.13  miR-1915 0.28 

let-7g 3.07  miR-4695-5p 0.28 

miR-93-star 3.06  miR-3177-3p 0.28 

miR-345 2.99  miR-371b-5p 0.28 

 

 

 
 

 

Supplementary Figure 1. 

 

Supplementary Figure 1. Quantitative RT-PCR validation for miR-143 and miR-155 in an 

independent group of 13q- CLL patients with respect to percentage losses of 13q. 

MiR-143 was found to be significantly downregulated in B lymphocytes from 13q-H vs. 13q-L CLL patients, 

whereas miR-155 was upregulated in B cells from 13q-H vs 13q-L CLL patients. Relative expression of 

miR-143 (expressed in arbitrary units) was evaluated by individual TaqMan miRNA assays performed in 

duplicate and normalized with respect to RNU43 (2
−dCt

) in 18 CLL patients (10 13q-H and 8 13q-L). Box 

plots indicate the median value (horizontal line) and the 25
th
–75

th
 percentile range (box). Whiskers show 

the maximum and minimum values. P-values were determined by the Mann-Whitney U test. 
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Supplementary Figure 2. 

 

Supplementary Figure 2. Gene expression levels of target genes significantly deregulated in 13q-H 

CLL patients.  

Box plot of the expression levels of four genes with significantly different expression between 13q-H and 

13q-L patients, assessed by semi-quantitative PCR analysis. Box plots show the relative upregulation of 

BCL2 and PLK1 and the downregulation of INPP5D and SOCS1 in patients with a high number of 13q- 

cells compared with CLL patients with lower percentages of losses in 13q. The thick line inside the box plot 

indicates the median expression levels and the box shows the 25th and 75th percentiles, while the 

whiskers show the maximum and minimum values. Outliers (extreme values falling out of the main 

distribution) are represented by open circles. Statistical significance was determined using the Mann-

Whitney U test (P<0.05). 
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Supplementary Figure 3. 

 

Supplementary Figure 3. Expression level of miR-15a (grey) and miR-16 (black) in 13q- CLL 

patients, determined by miRNA microarray. 

The subgroup of patients with biallelic 13q losses (CLL 11, 12, 13, 14 and 27), which are marked with an 

asterisk, shows a significant decrease in the expression of miR-15a and miR-16 compared with the 

patients with monoallelic losses. This is less clear in miR-16 due to the design of the array: miR-15a 

expression can be specifically analyzed by a probeset (hsa-miR-15a_st, grey). However, the hsa-miR-

16_st probeset (black), which measures miR-16-1 expression, is not specific to this miRNA, but can also 

detect miR-16-2 expression. Notably, the three patients with more than 80% of cells with biallelic 13q14 

deletion, indicated with an asterisk, showed a greater decrease of miRNA-15a expression. 
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Supplementary Methods 

Next-generation sequencing (NGS) analysis 

Genomic DNA was extracted from CLL fixed cells from peripheral blood of 25 11q- CLL patients using a 

QIAamp DNA Mini Kit (Qiagen, Valencia, CA, USA), following the manufacturer’s protocol. Due to the large 

quantity of DNA required for this study, 100-ng inputs of samples were amplified with the REPLI-g Midi Kit 

(Qiagen, Valencia, CA, USA) [1]. To ensure good quality, amplified DNA was quantified using a 

standardized PicoGreen fluorescence assay (LifeTechnologies, Carlsbad, CA, USA). The integrity of the 

DNA was visually inspected on a 1% agarose gel. 

NGS was performed using 454 Titanium Amplicon chemistry (Roche Applied Science, Penzberg, 

Germany) [2] to investigate the ATM, TP53, NOTCH1, SF3B1, MYD88, FBXW7, XPO1 and BIRC3 

mutations. The eight candidate genes were screened for mutations as follows: 62 ATM coding exons 

(Transcript-ID ENST00000278616) represented by 65 amplicons; exons 4-10 of TP53 (8 amplicons, 

Transcript-ID ENST00000269305); the C-terminal PEST domain (exons 33-34) of NOTCH1 (7 amplicons, 

Transcript-ID ENST00000277541); in exons 10-16 of SF3B1 (7 amplicons, Transcript-ID 

ENST00000335508); exons 4 and 5 of MYD88 (2 amplicons, Transcript-ID ENST00000396334); exons 8-

12 of FBXW7 (5 amplicons, Transcript-ID ENST00000281708); exons 14 and 15 of XPO1 (2 amplicons, 

Transcript-ID ENST00000401558); and exons 2-9 of BIRC3 (11 amplicons, Transcript-ID 

ENST00000263464). Information about primer sequences is shown in S5 Table. The oligonucleotide 

design was performed as part of the IRON-II network. 

A total of 96 amplicon preparations across 25 samples (2400 individual PCR reactions) were processed 

using the FastStart High Fidelity PCR System kit (Roche Applied Science). The PCR conditions are 

described in S6 Table. After all 25 samples had been prepared in 96-well plates, each PCR product was 

individually purified using Agencourt AMPure XP beads (Beckman Coulter, Krefeld, Germany) and 

checked by electrophoresis on 1.2% agarose gels.  

SUPPLEMENTARY MATERIAL 
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A single patient-specific ATM library was generated for each patient, pooling a specific volume for each of 

the 65 ATM amplicons. Subsequent 454 emulsion PCR and amplicon sequencing were performed with the 

Genome Sequencer FLX System instrument (Roche Applied Science), following the manufacturer’s 

recommendations [3,4]. 

Libraries of TP53, NOTCH1, SF3B1, MYD88, FBXW7 and XPO1 genes were separately generated, 

pooling 31 amplicons for 3 patients. Furthermore, libraries of BIRC3 gene were generated pooling 11 

amplicons for 8 patients. In these cases, subsequent Agencourt AMPure XP bead purification was needed 

to remove short fragments. Sequencing runs of these genes were carried out on a Genome Sequencer 

Junior System instrument (Roche Applied Science). 

All sequencing data were generated using the GS FLX and Junior Sequencer Instrument software version 

2.7 (Roche Applied Science). Sequence alignment and variant detection were performed using the GS 

Amplicon Variant Analyzer software version 2.7 (Roche Applied Science). The results were further 

processed and visualized using the Sequence Pilot software version 3.5.2 (JSI Medical System, 

Kippenheim, Germany) [5]. To detect variants, filters were set to display sequence variants occurring in 

more than 2% of bidirectional reads per amplicon in at least one patient. S7 Table shows the median 

number of reads generated for each gene, allowing variants to be identified down to a detection limit of 2% 

[4]. 

All variants were first compared with published single nucleotide polymorphism data 

(http://www.ncbi.nlm.nih.gov/projects/SNP/). Mutations within introns were not scored. Mutations in coding 

regions were compared with previously described mutations in the COSMIC database 

(http://cancer.sanger.ac.uk/cancergenome/projects/cosmic/)[6]. In addition, all missense, frameshift and 

nonsense mutations were resequenced on unamplified DNA to rule out artifacts arising from whole-

genome amplification. For ATM, mutations were defined as pathogenic if they were “truncating” due to a 

sequence alteration that was predicted to terminate the protein prematurely, or “non-truncating” if they 

were missense and predicted to be damaging by the SIFT algorithm [7]. 
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Supplementary Data 

Table A. Characteristics of the series of 197 CLL patients with 11q deletion. 

Characteristic 
Number of patients 
(n = 197) 

% 

Age, years 
Median 
Range 

 
65 
28-97 

 

Gender 
Male 
Female 

 
151 
46 

 
77 
23 

Binet clinical stage 
A 
B 
C 

 
121 
58 
18 

 
61 
30 
9 

Lymphadenopathy 
No 
Yes* 

 
62 
135 

 
32 
68 

Splenomegaly (n = 192) 
No 
Yes 

 
147 
45 

 
77 
23 

Hepatomegaly (n = 192) 
No 
Yes 

 
174 
18 

 
91 
9 

Lymphocyte count (>20,000/µL) (n = 192) 
Yes 
No 

 
89 
103 

 
46 
54 

Serum LDH (n = 187) 
Normal  
High 

 
133 
54 

 
71 
29 

Serum β2 microglobulin (n = 170) 
Normal 
High 

 
116 
54 

 
68 
32 

IGHV mutational status (n = 56) 
Unmutated (<2%) 
Mutated (≥2%) 

 
37 
19 

 
66 
34 

CD38 expression (n = 131) 
Negative (<30%) 
Positive (≥30%) 

 
59 
72 

 
45 
55 

ZAP-70 expression (n = 79) 
Negative (<20%) 
Positive (≥20%) 

 
35 
44 

 
44 
56 

FISH alterations in addition 
11q- only 
11q- and other(s) 
       13q- 
       +12 
       17p- 

 
82 
115 
108 
14 
6 

 
42 
58 
55 
7 
3 

First therapy 
Yes 
No 

 
151 
46 

 
77 
23 

Median TFT** (months) 25  

Survival 
Yes 
No 

 
131 
60 

 
69.5 
30.5 

Median OS (months) 106  
 

* ≥2 territories (extended lymphadenopathy): 75 patients (38.1 %). **TFT: Time to first therapy. ***OS: Overall 
survival. 
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Figure A. A. Time to first therapy (TFT) and B. Overall survival (OS) of the global series of 197 

CLL patients with 11q deletion.  

 

          A              B 

 

 
 

 

 

 

 

Figure B.  A. Time to first therapy (TFT) and B. Overall survival (OS) of patients with CLL and 11q 

deletion and a percentage of FISH losses <40%, 41-59% or ≥60%.  

           A              B 
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Figure C. Kaplan-Meier plots of time to first therapy (TFT) (A) and overall survival (OS) (B) from 

diagnosis for 11q- CLL patients sequenced for NOTCH1 and TP53, respectively. 
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