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What made Galileo point his telescope to the sky, 

Lavoisier develop new techniques to investigate matter, 

and Einstein spend sleepless nights wondering 

about the ultimate law of the Universe? 

 

Curiosity, yes, and a sense of beauty. 

  



 

  



 

ABBREVIATIONS 

6PGD: 6-phosphogluconate dehydrogenase 

AMC: 7-amino-4-methylcoumarin 

ARE: Antioxidant response element 

ATP: Adenosine triphosphate 

APN: Aminopeptidase N 

BSA: Bovine serum albumine 

CAT: Catalase 

cDNA: complementary DNA 

CO2: Carbon dioxide 

CSP-3: Caspase-3 

Ct: Threshold cycle 

Cul3: Culin 3 
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Cyt c: Cytochrome c 

DAPI: 4’,6-Diamidino-2-phenylindole 

DIV: Days in vitro 

DMEM: Dulbecco’s Modified Eagle Medium 

DNA: Deoxiribonucleic acid 

DNL: de novo lipogenesis 

DYm: Mitochondrial membrane potential 

ETC: Electron transport chain 

G6PD: Glucose-6-phosphate dehydrogenase 

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase 

GCLc: Glutamate cysteine ligase catalytic subunit 



 

GCLm: Glutamate cysteine ligase modifier subunit 

g-GC: Gamma glutamylcysteine 

g-GT: Gamma glutamyltranspeptidase 

GPx: Glutathione peroxidase 

GSH: Reduced glutathione 

GSSG: Glutathione disulphide 

GS: Glutathione synthetase 

HA: Hemagglutinin 

HDAC4: Histone deacetylase 4 

HIF-1a: Hypoxia-inducible factor 1a 

HO-1: Heme oxygenase 1 

KEAP1: Kelch like ECH associated protein 1 

KRPG: Krebs-Ringer phosphate buffer 

mCAT: Mitochondrial Catalase 

MEFs: Murine embryonic fibroblasts 

miRNA: Micro ribonucleic acid 

mRNA: Messenger ribonucleic acid 

mROS: Mitochondrial reactive oxygen species 

MRP1: Multidrug resistance-associated proteine 1 

NAPD+: Nicotinamide adenine dinucleotide phosphate oxidized form 

NADPH: Nicotinamide adenine dinucleotide phosphate reduced form 

NOX: NADPH oxidase 

NQO1: NADPH quinone dehydrogenase 1 

NRF1: Nuclear factor (erythroid-derived 2)-like 1 

NRF2: Nuclear factor (erythroid-derived 2)-like 2 



 

NRF2 PM: NRF2 phosphomimetic form 

NRF3: Nuclear factor (erythroid-derived 2)-like 3 

PBS: Phosphate buffer saline 

PCR: Polimerase chain reaction 

PPP: Pentose phosphate pathway 

Prx: Peroxiredoxin 

ROS: Reactive oxygen species 

RT-qPCR: Real time quantitative polimerase chain reaction 

S. E. M.: Standard error of the mean 

Ser: Serine 

SOD1 or Cu/ZnSOD: Superoxide dismutase 1 

SOD2 or MnSOD: Superoxide dismutase 2 

SOD3: Superoxide dismutase 3 

Thr: Threonine 

Trx: Thioredoxin 

TKT: Transketolase 

VDAC: Voltage-dependent anion channel 

WT or +/+: Wild type 
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1. REACTIVE OXYGEN SPECIES (ROS) 

The advent of oxygen into the Earth’s atmosphere was a crucial event that 

promoted the evolution of aerobic organisms, which are able to produce energy in 

a very efficient manner. One of the consequences of this improvement was the 

appearance of novel reactive molecules derived from oxygen, the reactive oxygen 

species (ROS) (Figure I). 

 

 

ROS include the superoxide (O2•-), hydrogen peroxide (H2O2) and hydroxyl 

radical (•OH). These species present higher chemical reactivity than oxygen and 

they are able to trigger both physiological and pathological processes. In general 

terms, under normal conditions, the level of cellular ROS is constant in a dynamic 

equilibrium, and this balance is modulated by cellular processes that produce ROS 

and eliminate them (Zhang et al., 2016). However, under certain circumstances, 

Figure I: Main mechanisms of cellular ROS production. Due to the high ROS 

reactivity, the interaction between different pathways is possible, in which the 

product of a reaction is used to generate new ROS. SOD: superoxide dismutase. 
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the rate of ROS production exceeds the ability of the antioxidant systems to 

eliminate them. This excess ROS, commonly called “oxidative stress”, results in 

the oxidation of proteins, nucleic acids and lipids (Poyton et al., 2009; Temple et 

al., 2005). Oxidative stress can trigger damage that can lead to the activation of 

autophagy of certain organelles, even leading to cell death (Brand, 2010). Indeed, 

in post-mortem brain samples of neurological diseases, there are signs of 

oxidative stress in neurons within the degenerating brain areas (Cannon and 

Greenamyre 2013; Federico et al., 2012). Thus, oxidative stress appears to be 

associated with the cause of neurodegenerative diseases. However, all clinical 

trials based on an antioxidant strategy performed so far in several 

neurodegenerative diseases were not conclusive (Halliwell 2013; Heyland et al., 

2013; Kamat et al., 2008; Snow et al., 2010), hence arguing against a pathological 

role of ROS. The reason is yet unknown, although has been suggested to be 

ascribed to the wrong design of the treatment with the antioxidants (Halliwell 

2013; Kamat et al., 2008). However, the option that ROS physiologically 

modulate survival pathways, hence antioxidant will be deleterious, has received 

none or very little attention. 

1.1.  Intracellular sources of ROS 

Various organelles within the cell can generate ROS physiologically. These 

include mitochondria, the endoplasmic reticulum and peroxisomes. In addition, 

various enzymes, including oxidases and oxygenases, generate ROS as part of 

their reaction cycles (Holmström and Finkel, 2014). Furthermore, ROS generation 

is species-, cell- and tissue-specific and also depends on the physiopatological 

state of the cells. For these reasons, defining the major intracellular source of ROS 

is complex. The best-characterized intracellular sources of ROS are described in 

the successive sections. 

1.1.1 Mitochondria 

From a quantitative perspective, mitochondria are the largest sources of 

ROS within most mammalian cells (Murphy, 2009). These organelles generate 

ATP in an oxygen-dependent manner, during which the flow of electrons 
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culminates at complex IV of the electron transport chain (ETC), with the 

reduction of oxygen to water. Throughout this process, 1-3% oxygen can also 

undergo a one-electron reduction to generate superoxide (Green et al., 2011; 

Murphy, 2009). Within the mitochondria eight sites of superoxide production 

have been identified (Figure II). The major sites of superoxide production are 

complexes I and III of the ETC (Brand, 2010). Superoxide is rapidly converted 

into hydrogen peroxide by superoxide dismutase 2 (SOD2 or MnSOD), located 

within the mitochondria. 

 

 

1.1.2 NADPH oxidases 

The family of the NADPH oxidases is another important intracellular 

source of ROS. NADPH oxidases, known as NOX enzymes, are multi-subunit 

enzymes which primary catalytic function is the generation of ROS (Belarbi et al., 

2017). The major source of ROS generation is a flavin- and haem-containing 

protein complex that transfer electrons from cytosolic NADPH to oxygen to 

Figure II: Superoxide production within the mitochondria. Mitochondria are the largest source of ROS in 

most of mammalian cell types. Complexes I and III are the major sites of superoxide production. Other 

contributors include metabolic enzymes in the mitochondrial matrix, such as OGDH (2-oxoglutarate 

dehydrogenase) and PDH (pyruvate dehydrogenase), and the mitochondrial membrane forms of GPDH 

(Glycerol 3-phosphate dehydrogenase) and the FQR (electron transfer flavoprotein-ubiquinone 

oxidoreductase, mitochondrial) system. Obtained from Holmström and Finkel, 2014. 
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purposely produce superoxide or hydrogen peroxide (Holmström and Finkel, 

2014). 

Seven members of the NOX family were described in humans, NOX1-5 and 

Duox1-2, which they differ for the specific ROS produced and for the sub-cellular 

localization. NOX1, -2, -3 and -5 and Duox1 and -2 are anchored to the plasma 

membrane and they release superoxide in the extracellular space, participating in 

processes like the innate immunity (NOX2) or in the control of the arterial 

pressure (NOX1) (Altenhöfer et al., 2012). NOX4 mainly produce hydrogen 

peroxide and is localized in the mitochondrial and endoplasmic reticulum 

membranes (Block et al., 2009; Petry et al., 2006). Therefore, depending on the 

cell state, the subcellular localization, the cell type and the specific NOXs 

isoforms expressed, NOX-derived ROS could participate differently in redox 

signaling (Lambeth and Neish, 2014). The distribution of NOXs in the brain 

shows that neurons express NOX1, -2 and -4, whereas astrocytes mostly NOX2, 

but also NOX1 and -4 (Belarbi et al., 2017; Nayernia and Jaquet, 2014). The 

majority of studies on the physiological roles of NOXs in the central nervous 

system have focused on their participation in the host defense. However, under 

basal conditions, NADPH oxidases produce small amounts of ROS, which the 

most probable function is redox signaling (Nayernia and Jaquet, 2014). 

1.1.3 Other intracellular sources of ROS 

In addition to mitochondria and the NOX family, there are a wide range of 

enzymes, such as xanthine oxidase, nitric oxide synthase, cyclooxygenases, 

cytochrome P450 enzymes and lipoxygenases, that are able to produce ROS 

(Holmström and Finkel, 2014). Furthermore, organelles like peroxisome and the 

endoplasmic reticulum can produce oxidants. The relative contribution of these 

additional sources of ROS varies according to cell type, but, in basal conditions, 

they are usually smaller compared to mitochondria or NOXs (Holmström and 

Finkel, 2014). 
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1.1.4 ROS production in the brain 

Within the central nervous system the production of ROS differs between 

the cell types. Neurons and astrocytes, the two most abundant cell types in the 

brain, present a differential pattern of mitochondrial ROS (mROS) production, 

with glial cells producing mROS severalfold faster than neurons (Lopez-Fabuel et 

al., 2016). However, the physiological role of this major mROS production by 

astrocytes is still elusive. These differences are explained by the different 

organization of the mitochondrial respiratory chain between the two cell types. 

Astrocytes present less complex I assembled in supercomplexes and more free 

complex I compared to neurons (Lopez-Fabuel et al., 2016). These data confirm 

the higher mROS production by free complex I, compared to the complex I 

assembled in supercomplexes, previously seen in liposomes (Maranzana et al., 

2013). Furthermore, this different assembly of complex I into supercomplexes 

between neuronal and glial cells could explain their bioenergetic differences. 

Neurons present a higher respiration rate compared with astrocytes (Lopez-Fabuel 

et al., 2016), which is consistent with the dependency of neural cells on oxidative 

phosphorylation for neurotransmission and survival (Almeida et al., 2001; 

Almeida et al., 2004; Herrero-Mendez et al. 2009) and with the glycolytic 

metabolism of astrocytes (García-Nogales et al., 2003; Herrero-Mendez et al., 

2009). 

1.2. Antioxidant systems in the central nervous system 

To maintain the redox homeostasis, and therefore to counteract the deleterious 

effects of excess ROS, brain cells have developed several enzymatic antioxidant 

systems (Figure III). Superoxide is rapidly inactivated and converted to hydrogen 

peroxide by superoxide dismutase (SOD). There are three isoform of this enzyme, 

depending on its localization: SOD1 or Cu/Zn-SOD (cytosolic), SOD2 or Mn-

SOD (mitochondrial) and SOD3 (extracellular). 

Considering its pro-oxidant properties and its role in cell signaling, the levels of 

hydrogen peroxide need to be tightly regulated, for which cells use different 

enzymatic systems that neutralize it to water. The most important are 

peroxiredoxins (Prxs), glutathione peroxidases (GPxs) and catalase. 
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Catalase is an haem-containing enzyme localized in the peroxisomes that converts 

hydrogen peroxide to water in a direct manner (Dringen et al., 2005). 

Peroxiredoxins are a family of peroxidases that contribute to the elimination of 

organic hydroperoxides and hydrogen peroxides (Circu and Aw, 2010). To do so, 

peroxiredoxins posess an active site containing cysteines able to oxidize 

themselves at sulphenic acid (Cys-SOH) and subsequently to condense with a 

cysteine localized in the C-terminal subunit to form a disulphide (D’Autréaux and 

Toledano, 2007). This disulphide is then reduced by the thioredoxin 

(Trx)/thioredoxin reductase (TrxR) system at the expense of an equivalent of 

NADPH to regenerate cysteine moieties of peroxiredoxin (Patenaude et al., 2005). 

Glutathione peroxidases (GPx) convert hydrogen peroxide to water at the expense 

of the tripeptide glutathione (GSH, g-glutamyl-cysteinyl-glicine) which become 

oxidized to its disulphide form GSSG (Flohé et al., 2011). GSH is then 

regenerated by glutathione reductase (GR), which transfers electrons from 

NADPH to GSSG (Dringen et al., 2005). Since it provides reducing equivalents 

for the regeneration of GSH, NADPH plays a pivotal role in the redox 

homeostasis of the brain, especially in neurons (Bouzier-Sore and Bolaños, 2015). 

These cells contains very low amounts of glutathione (Bolaños et al., 1995; 

Dringen et al., 1999), hence the recycling of GSH from GSSG is critical for their 

survival. Most of the cytosolic pool of NADPH is produced in the pentose 

phosphate pathway (PPP) (Wamelink et al., 2008), underlying the 

interconnections between the glucose metabolism and redox homeostasis within 

the central nervous system.  

Considering that the hydrogen peroxide concentration needs to be strictly 

regulated spatially and temporarily, mammalian cells express several isoforms of 

peroxiredoxins, thioredoxins and glutathione peroxidases in the cytosol, nucleus, 

endoplasmic reticulum and mitochondria (Hekimi et al., 2011; Marí et al., 2009; 

Perkins et al., 2015). 
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It is a remarkable fact that numerous antioxidant enzymes depend on GSH and 

other thiols as cofactors. Considering that glutathione is the most abundant 

mammalian thiol-containing antioxidant (Dringen, 2000), its importance in the 

redox homeostasis is crucial. For this reason, glutathione metabolism receives a 

detailed analysis in successive sections. 

Besides the enzymatic antioxidant systems, the brain contains ascorbic acid and 

vitamin E, which act as direct radical scavengers through their hydroxyl moieties. 

The ascorbate is especially abundant in neurons (Shimizu et al., 1960). 

Nevertheless, astrocytes possess more vitamin E, compared with neurons, which 

protects glial cells against mitochondrial oxidative damage (Heales et al., 1994). 

1.3. ROS functions in cellular signaling 

Traditionally ROS are considered as harmful and unregulated agents, with random 

intracellular targets. Indeed, due to their greater chemical reactivity, ROS oxidize 

Figure III: Main antioxidant systems within the cell. Superoxide is converted to hydrogen peroxide by 

superoxide dismutase (SOD). Hydrogen peroxide is neutralized to water by several enzymes, including 

catalase (CAT), peroxiredoxins (Prx) or glutathione peroxidase (GPx). The thioredoxin (Trx) / thioredoxin 

reductase (TrxR) system regenerates the reduced form of peroxiredoxin (Prxred). GR: glutathione reductase, 

GSH: glutathione reduced form, GSSG: glutathione disulphide form, NADP+: nicotinamide adenine 

dinucleotide phosphate oxidized form, NADPH: nicotinamide adenine dinucleotide phosphate reduced form. 
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lipids, DNA and proteins and this may lead to the accumulation of damaged 

biomolecules, and contribute to a range of pathologies. Although this nonspecific, 

random and damaging aspect of ROS biology persists, a growing body of 

evidence now suggests that ROS act as signaling molecules in several 

physiological processes (D’Autréaux and Toledano, 2007; Holmström and Finkel, 

2014; Wang and Hai, 2016). However, this view is not free from controversy. 

1.3.1 ROS chemistry sets target specificity 

The scepticism about the physiological functions of ROS as second 

messenger stems from the idea that they lack of the specificity required for 

signaling processes. While this might be true for hydroxyl radical, which has 

indiscriminate reactivity toward biomolecules (D’Autréaux and Toledano, 2007), 

superoxide and hydrogen peroxide have specific biological targets. This 

specificity comes from their chemical proprieties, which include reactivity, half-

life and lipid solubility (D’Autréaux and Toledano, 2007). 

The instability of superoxide and its inability to cross membranes make this ROS 

a poor signaling molecule (D’Autréaux and Toledano, 2007). In contrast to 

superoxide, the chemical characteristics of hydrogen peroxide make this ROS 

more suitable for signaling. First of all, hydrogen peroxide is able to cross 

membranes by diffusion or, more rapidly, transported by a specific aquaporin, the 

peroxiporin (Bienert et al., 2007). Moreover, its relative stability compared to 

other ROS (cellular half life ~1 ms, in vivo concentration ~10-7 M) supports its 

role in redox signaling (Giorgio et al., 2007). Last, but not less important, 

hydrogen peroxide is a poor oxidant and reacts mildly with [Fe-S] clusters, very 

slowly with glutathione and free cysteine (Cys) and methionine (Met), and it 

loosely binds metals. However, its reactivity towards Cys residues can 

significantly increase, depending on the protein environment (D’Autréaux and 

Toledano, 2007). In addition, the ability of Cys residues to cycle between 

different stable redox forms, makes them the ideal hydrogen peroxide target for 

redox signaling (Holmström and Finkel, 2014). It should to be noted that only the 

forms of Cys that can be reversibly oxidized operate in redox signaling. An 
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irreversible oxidation of Cys result in permanent protein damage that might lead 

to oxidative stress (Schieber and Chandel, 2014). 

Cysteines residues are not equally reactive, providing the basis for selectivity and 

specificity. Their reactivity is dictated by their solvent-exposed localization, 

ionization state and protein environment (D’Autréaux and Toledano, 2007). 

Depending on their pKa, Cys might exist as a thiolate anion (Cys-S-) at 

physiological pH and they are more susceptible to oxidation compared with the 

protonated cysteine thiol (Cys-SH) (Finkel, 2012). During redox signaling, 

hydrogen peroxide oxidizes the thiolate anion to the sulphenic form (Cys-SOH), 

causing allosteric changes within the protein that modulates its function 

(Holmström and Finkel, 2014) (Figure IV).  

 

 

Aside from the specificity and selectivity of ROS on their targets, the 

compartmentalization of ROS production within cells is an important determinant 

of whether damage or redox signaling occurs. In order to obtain an effective redox 

Figure IV: Reversible modulation of reactive Cys residues. Redox-sensitive target proteins present 

reactive Cys residues that could form thiolate anions (-S-) at physiological pH. Oxidation of this residue 

results in a sulphenic acid moiety (-SOH) that leads to a change in function of the target protein. The 

sulphenic acid form could form an intramolecular disulphide bond or conjugate with glutathione (GSH) to 

form an S-glutathionylated (-SSG) intermediate. Obtained from Holmström and Finkel, 2014. 
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signaling, the hydrogen peroxide-dependent oxidation of a given protein is likely 

to occur close to the source of hydrogen peroxide production (Schieber and 

Chandel, 2014). For example, mitochondria are very dynamic organelles that 

move to their targets, allowing mitochondrially generated hydrogen peroxide to 

activate specific pathways (Al-Mehdi et al., 2012). 

1.3.2 ROS modulate crucial pathways 

Reactive oxygen species, in particular hydrogen peroxide, are second 

messengers able to modulate pathways involved in nuclear transcription, cellular 

differentiation, cell death and ageing, among others. 

1.3.2.1. ROS modulate the HIF-1a pathway 

Mammalian cells possess several redox-sensitive transcription factors, 

which modulate the transcription of genes involved in different biological 

processes following a ROS-mediated activation. The family of the hypoxia-

inducible factors (HIFs) orchestrates the transcriptional response to hypoxia, 

promoting expression of erythropoietin to enhance red blood cell production, 

vascular endothelial growth factor to promote new blood vessel formation, and 

glycolytic enzymes to maintain ATP levels. Under normal oxygen conditions, 

prolyl hydroxylase domain protein 2 (PHD2) hydroxylates HIF-1a at two proline 

residues (Pro402 and Pro564), which targets the transcription factor for pVHL-

dependent proteasomal degradation (Kaelin and Ratcliffe, 2008). When oxygen 

levels decrease below 5%, PHD2 is inhibited, allowing the HIF-1a stabilization 

and its translocation to the nucleus where it forms a heterodimer with HIF-1b, 

which binds the hypoxia response elements (HRE) to initiate gene transcription. 

Early evidences that suggest that mROS modulate HIF-transcription activity came 

from the observations that cells depleted of mitochondrial DNA (rº cells) do not 

stabilize HIF-1a during hypoxia (Chandel et al., 1998). These rº cells lack a 

functional electron transport chain (ETC) and could not increase mROS under 

hypoxia. Wild type cells treated with ETC inhibitors phenocopied the rº cells 

(Chandel et al., 2000). The critical experiment that demonstrates that mROS, and 

not oxidative phosphorylation, stabilize HIF-1a under hypoxia was performed in 
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cells lacking the complex III subunit cytochrome b (Bell et al., 2007). These 

cytochrome b null cells cannot perform oxidative phosphorylation but can 

produce mROS and stabilize HIF-1a during hypoxia. 

1.3.2.2. ROS modulate the NRF2 pathway 

The transcriptional activity of the nuclear factor (erythroid-derived-2)-like 

2 (NRF2), the master regulator of the antioxidant response, is modulated similarly 

to HIF-1a. Under basal conditions, NRF2 is kept in the cytosol by associating 

with Kelch-like ECH-associated protein 1 (KEAP1) and the E3 ubiquitin ligase 

cullin 3 (CUL3), forming a complex that facilitates the ubiquitination and the 

subsequent proteasomal degradation of NRF2 (Kobayashi et al., 2004). Acting as 

a stress sensor, KEAP1 presents multiple thiols, which are direct targets of 

oxidants and electrophiles. Modifications of these thiols result in a conformational 

change of KEAP1 leading to the nuclear accumulation of NRF2 (Taguchi et al., 

2011). Once in the nucleus, NRF2 binds the antioxidant response element (ARE, 

5’-TGACnnnGC-3’) and promotes the transcription of a plethora of genes 

involved in the response to different cellular stresses (Taguchi et al., 2011). 

Considering the crucial role of this pathway in the redox homeostasis, NRF2 

receives a detailed analysis in successive sections. 

1.3.2.3. ROS modulate the cellular growth 

Hydrogen peroxide is required for activation of a number of cellular 

pathways involved in physiological and oncogenic cellular growth. The induction 

of cell proliferation by several growth factors (such as epidermal growth factor, 

platelet-derived growth factor, nerve growth factor and insulin) correlates with a 

transient increase of intracellular hydrogen peroxide, whereas antioxidant 

treatments prevent DNA synthesis (Finkel, 2000). Similarly, cellular 

transformation following the expression of activated oncogenes (such as Ras or 

overexpressed myc) is associated with increased intracellular hydrogen peroxide 

and is prevented by antioxidants (Giorgio M, et al., 2007). 

1.3.2.4. ROS modulate cellular differentiation 
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ROS are also essential for stem-cell differentiation. Scavenging ROS by 

overexpression of glutathione peroxidase retards differentiation of Drosophila 

multipotent hematopoietic progenitors, while increasing mROS by depletion of 

the mitochondrial complex I protein ND75 or deletion of SOD2 increased 

differentiation (Owusu-Ansah and Banerjee, 2009). Another evidence of the 

importance of redox signaling in stem-cell differentiation comes from the 

observation that in murine cardiomyocytes the arrest of the cell-cycle through 

activation of the DNA damage response, was subsequent of a mROS rise (Puente 

et al., 2014). This increase of mROS is consequent of a shift from glycolytic to 

oxidative metabolism, which occurs within the first week of the mouse life. 

Scavenging ROS by expressing a mitochondrial form of catalase (mCAT) 

specifically in cardiomyocites increases the undifferentiated cell number, 

confirming the critical role of mROS in cell differentiation (Puente et al., 2014). 

Another study shows that the increase of ROS early in neuronal development, due 

to a NRF2 decline, helps to establish a mildly oxidant environment, which is 

permissive for signaling pathways sensible to redox modulation involved in 

neuronal maturation, such as the Wnt pathway (Bell et al., 2015). 

1.3.2.5. ROS and aging 

In the middle of the past century, Denham Harman proposed the “Free radical 

theory of aging” as a molecular explanation why aging occurs (Harman, 1956). 

The theory proposes that free radicals, as by-product of oxidative metabolism, 

cause cumulative cellular damage resulting in overall loss of organismal fitness 

over time. However, longevity studies in multiple model organisms have not 

consistently demonstrated that antioxidants prevent aging. Early studies in 

Drosophila suggested that increasing SOD and catalase activity in the cytosol 

extend longevity (Orr and Sohal, 1994), although other investigators could not 

replicate these results (Mockett et al., 2010). Furthermore, careful measurements 

of ROS in Drosophila have not found any correlation between ROS levels and 

longevity (Schieber and Chandel, 2014). In mice, overexpression of SOD1 

together with catalase or SOD2, does not increase lifespan (Pérez et al., 2009). By 

contrast, the expression of mCAT, but not cytosolic or nuclear catalase, extends 

the longevity in mice (Schriner et al., 2005). The conventional interpretation is 
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that mCAT detoxifies mitochondrial matrix-generated hydrogen peroxide, 

preventing hydrogen peroxide-induced damage to mitochondria. An alternative 

explanation is that detoxification of matrix-generated hydrogen peroxide prevents 

leakage of hydrogen peroxide into the cytosol, interfering with normal ROS 

signaling pathways that prevent pathologies such as cancer, a major cause of 

death in laboratory mice (Schieber and Chandel, 2014). Studies carried out in 

several model organisms show that a mild increase of ROS could extend lifespan. 

In yeast, inhibition of target of rapamycin (mTOR) or caloric restriction extends 

chronological lifespan by increasing mROS (Mesquita et al., 2010; Pan et al., 

2011). In C. elegans, loss of mitochondrial SOD but not cytosolic SOD, extend 

lifetime (Schaar et al., 2015). The increased lifespan ROS-mediated has been 

found also in mammals. Mice heterozygous for mclk1, which is required for 

proper electron transport, show increased mROS (Lapointe et al., 2009). 

Furthermore, these mice present less oxidative damage to cytosolic proteins, 

supporting a model whereby elevated ROS levels are paradoxically protective 

through the induction of stress response pathways (Liu et al., 2005). 

ROS signaling is essential for homeostasis and adaption to stress. Hence, ROS 

concentration needs to be tightly regulated to maintain an optimal oxidative 

environment for cellular signaling which is ideal to maintain homeostasis. ROS 

levels below this range lead to a disruption on redox signaling and loss of 

homeostasis; by contrast, ROS level above the optimal range cause oxidative 

stress and aberrant cell signaling, that might results in pathologies such as cancer 

or neurodegenerative diseases (Figure V). 
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2. NRF2 PATHWAY 

During its life, every organism is challenged to fight against a variety of stressors, 

both endogenous (such as mROS) and exogenous (such as toxins), that disrupt 

cellular homeostasis. With the purpose to counteract these insults and survive, 

organisms evolved several mechanisms to maintain ROS homeostasis. One 

example is NRF2 or NFE2L2 (Nuclear factor erythroid-derived 2 like 2) pathway, 

which regulates more than 1% of the human genome encoding metabolic, 

detoxification, antioxidant and anti-inflammatory cytoprotective proteins 

(Malhotra et al., 2010). 

Figure V: ROS signaling. Depending on the ROS levels, redox signaling could be 

ideal to maintain homeostasis and to adapt to stress. ROS levels above the optimal 

range cause oxidative stress and aberrant cell signaling resulting in pathologies;, 

however, ROS levels below this optimal range lead to a disruption of redox signaling 

resulting in loss of homeostasis.  
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2.1. Structure and functions of NRF2 

NRF2 is encoded by the gene NFE2L2 and belongs to the family of basic leucine 

zipper (bZIP) transcription factors (Moi et al., 1994). In vertebrates, other 

members of the CNC-bZIP family include the nuclear factor erythroid-derived 2 

like 1 (NRF1) and the nuclear factor erythroid-derived 2 like 3 (NRF3) (Andrews 

et al., 1993; Chan et al., 1993; Kobayashi et al., 1999) In mammals, NRF1 and 

NRF2 are well known for their role in the transcriptional modulation of 

cytoprotective genes in response to stress (Biswas and Chan, 2010; Venugopal 

and Jaiswal, 1998), although NRF2 appears to be more potent in activating ARE-

regulated genes that NRF1 (Jaiswal, 2004). In contrast, NRF3 has been linked to 

differentiation, inflammation and carcinogenesis (Chevillard and Blank, 2011).  

2.1.1 Structure of NRF2 

The NRF2 protein in humans is 605 amino acids long and contains seven 

highly conserved regions known as NRF2-ECH homology (Neh) domains 

(Figure VI), where each fulfills distinct functions: 

• Neh2 contains two degrons, DLG and ETGE motifs, essential for 

the interaction with KEAP1 (Tong et al., 2006). 

• Neh4 and Neh5 are transcriptional activation domains that 

cooperatively bind to the co-activator cAMP-responsive element-

binding protein and facilitate NRF2 transcription (Xiang et al., 

2014). 

• Neh7 is involved in the NRF2 repression by linking up with the 

retinoic X receptor a (Wang et al., 2013). 

• Neh6 contains two further redox-independent degrons, DSGIS and 

DSAPGS, which are targeted for degradation by the E3 ubiquitin 

ligase b-TrCP (McMahon et al., 2004). 

• Neh1 mediates the dimerization with Maf (musculoaponeurotic 

fibrosarcoma oncogene homolog) necessary for the NRF2 

transactivation function (Motohashi et al., 2004). 
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• Neh3 interacts with the co-activator known as CHD6, which is 

critical for the transactivation of ARE-dependent genes (Namani et 

al., 2014). 

 

 

2.1.2 Functions of NRF2 

The NRF2 pathway modulates the transcription of a large number of genes 

involved in metabolism, detoxification, antioxidant defenses and anti-

inflammatory processes (Hayes and Dinkova-Kostova, 2014). Considering its role 

in the modulation of key genes involved in the antioxidant defenses, such as 

thioredoxines, peroxiredoxins and genes involved in the glutathione homeostasis, 

NRF2 is defined as the master regulator of the antioxidant response (Hayes and 

Dinkova-Kostova, 2014). Besides the up-regulation of the antioxidant defenses, it 

was recently reported that NRF2 modulates the redox environment repressing the 

expression of the ROS producer NOX2, while enhances the expression of NOX4 

(Kovac et al., 2015; Wei et al., 2016), although the mechanisms are still elusive. 

In addition to its importance in the redox and xenobiotic response, NRF2 

modulates the metabolism and the mitochondrial function (Esteras et al., 2016), 

up-regulating the transcription of enzymes such as the malic enzyme 1 (Wu et al., 

2011) or the Peroxisome Proliferator-Activated Receptor g (PPARg) (Pi et al., 

2010). Another important mechanism by which NRF2 can modulates metabolism 

Figure VI: NRF2 structure. NRF2 contains seven domains, called Neh, where each fulfils distinct 

functions. It should be noted that the Neh2 domain contains two motifs, DLG and ETGE, necessaries for the 

interaction with KEAP1. Between them there are seven lysine residues (K), which are required for the NRF2 

ubiquitination. 
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or mitochondrial function is by preventing the oxidative thiol modifications, 

through the expression of several antioxidant enzymes, that can modulate the 

function of proteins implicated in metabolic pathways. mROS can reversibly 

modify thiol groups present in several enzymes implicated in carbohydrates and 

lipid metabolism, regulating their activity (Hurd et al., 2007). Most of these 

enzymes are involved in fatty acid oxidation (carnitine acetyltransferase, very 

long chain acyl CoA dehydrogenase, propionyl-CoA carboxylase) and in the 

regulation of the pyruvate dehydrogenase, through the pyruvate dehydrogenase 

kinase 2 (Hurd et al., 2007). Furthermore, transcription of PPP-related genes are 

indirectly regulated by NRF2 through an epigenetic mechanism that involves the 

oxidation of Cys of a specific redox-sensitive histone deacetylase, HDAC4 (Singh 

et al., 2013). 

Besides the modulation of its target genes, NRF2 regulates itself, both directly 

and indirectly. The NFE2L2 gene contains two ARE-like sequences, which enable 

NRF2 to modestly auto up-regulates its own expression (Kwak et al., 2002). 

Moreover, KEAP1, the major NRF2 repressor, contains an ARE domain (Lee et 

al., 2007), creating a tight auto-regulatory loop necessary to avoid an aberrant 

activation of the NRF2 pathway, which could be lethal (Wakabayashi et al., 

2003). 

Furthermore, the role of the NRF2 pathway in cancer is dual: although the 

activation of cytoprotective genes can suppress carcinogenesis in the earliest 

stages (Hayes et al., 2010; Hu et al., 2010; Kensler and Wakabayashi, 2010), the 

aberrant up-regulation of its target genes cause chemotherapy resistance (Ohta et 

al., 2008; Shibata et al., 2017; Zhang et al., 2010) and a more favourable 

intracellular environment for the survival of tumour cells (DeNicola et al., 2011; 

Ohta et al., 2008; Singh et al., 2008). 

2.2. Regulation of the NRF2 pathway 

Considering the crucial role of NRF2 in maintaining the cellular homeostasis and 

how its aberrant activation might be lethal, the NRF2 pathway has to be very 

tightly regulated. The canonical regulation of the NRF2 pathway involves the 

complex formed by Kelch-like ECH-associated protein 1 (KEAP1), Cullin 3 
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(Cul3), an E3 ubiquitin ligase, and RING (really interesting new gen)-box protein 

1 (Rbx1). 

2.2.1 Models of NRF2-KEAP1 regulation 

Under basal conditions, NRF2 is constitutively expressed but its 

intracellular levels are kept low by the KEAP1-Cul3 complex, which degrades it 

rapidly, with a half-life of less than 20 minutes (Katoh et al., 2005). The 

homodimer KEAP1 binds NRF2 sequestering it in the cytoplasm, inhibiting its 

activation and its nuclear translocation (Kang et al., 2004). Moreover, KEAP1 

regulates the turnover of NRF2 interacting with the Cul3-Rbx1 complex, which 

ubiquitinates and targets the transcription factor for its degradation by the 26S 

proteasome (Itoh et al., 1999). This mechanism ensures low intracellular levels of 

NRF2 in unstressed conditions. Nevertheless, under stress conditions, NRF2 can 

rapidly accumulate in the nucleus where it up-regulates the expression of its target 

genes. The prevailing model by which KEAP1 regulates NRF2 is called the 

“Hinge and Latch model” (Tong et al., 2006). However, live cell imaging based 

on the Förster resonance energy transfer (FRET) system suggests a new model 

called “Cyclic sequential attachment and regeneration model of KEAP1-mediated 

degradation of NRF2” (Baird et al., 2013). De novo synthetized NRF2 binds to a 

single member of a free KEAP1 homodimer through its ETGE (high affinity) 

motif to form the open conformation. When the ETGE domain alone is bound to 

KEAP1, NRF2 is not ubiquitinated (McMahon et al., 2006). After a period in the 

open conformation, the cycle progresses to form the closed conformation through 

the binding of the low affinity motif DLG to the other member of the KEAP1 

homodimer. In the closed conformation, the Cul3-Rbx1 complex polyubiquinates 

seven lysines located between the ETGE and DLG motifs of NRF2, which is 

subsequently released for the proteasomal degradation (Figure VII A). The 

regenerated free KEAP1 dimer is then able to bind to a de novo synthetized NRF2 

to start a new cycle (Baird et al., 2013). In presence of inducers (i.e. compounds 

that modifies the reactive Cys of KEAP1, such as oxidants or electrophiles), 

Cys151, Cys273 and Cys288 are chemically modified resulting in a 

conformational change in the KEAP1-Cul3-NRF2 complex, blocking it in the 
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induced closed conformation and preventing the regeneration of free KEAP1. 

This allows the de novo synthetized NRF2 to translocate to the nucleus and to 

start the transcription of its target genes (Figure VII B). 

 

 

It was suggested that this induced closed conformation orientates the lysines 

moieties in a manner that they are no longer aligned with the Cul3-Rbx complex, 

thus the ubiquitination does not occurs (Baird et al., 2013). 

This model suggests that the KEAP1-NRF2 complex might exist in the open 

conformation, which is compatible with other types of regulation of the NRF2 

pathway, called non-canonical regulation of the NRF2 pathway. 

2.2.2 Non-canonical regulation of the NRF2 pathway 

In addition to the canonical regulation, the NRF2 pathway could be 

modulated through different mechanisms. Recent studies have identified 

numerous proteins with motifs that are very similar to the ETGE present in NRF2. 

Figure VII: Cyclic sequential attachment and regeneration model of KEAP1-mediated degradation of 

NRF2. A) In unstressed conditions, de novo synthetized NRF2 first interacts with one member of the KEAP1 

homodimer through its ETGE (high affinity) motif and forms the open conformation. Subsequently, the low 

affinity DLG motif binds the other KEAP1 member to form the close conformation, which allows the NRF2 

polyubiquitination and its proteasomal degradation. Free KEAP1 homodimer is regenerated, allowing the 

cycle to start again. B) Inducers (such as oxidants or electrophiles) block the cycle of KEAP1-mediated 

degradation of NRF2 by chemically modifying cysteine sensors of KEAP1 and disabling its substrate adaptor 

function, leading to accumulation of the protein complex in the closed conformation. As a result, NRF2 is not 

released for its degradation and KEAP1 is not regenerated. This allows the de novo synthesized NRF2 to 

accumulate, to translocate to the nucleus, to bind a small Maf protein and to initiate the transcription of its 

downstream target genes. Obtained from Dinkova-Kostova et al., 2016. 
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These proteins can compete with NRF2 for KEAP1 binding, thus stabilizing 

NRF2 (Hast et al., 2013). The most recognized positive regulator of NRF2 is 

SQSTM1/p62, an autophagosome cargo protein, which binds KEAP1 through its 

(E/S)TGE motif stabilizing NRF2 (Lau et al., 2010). Furthermore, the directly 

repression of the NRF2 activity is obtained by the phosphorylation of the Neh6 

domain mediated by the glycogen synthase kinase-3b (GSK-3b) (Chowdhry et al., 

2013; Rada et al., 2011; Rada et al., 2012). This phosphorylation of NRF2 leads 

to its recognition by an E3 ligase receptor, its subsequent ubiquitination and its 

proteasomal degradation. This regulation has been largely overlooked because 

GSK-3b is inhibited under conventional cell culture conditions (i.e. in medium 

containing 10% fetal bovine serum) by growth factor signaling (Hayes and 

Dinkova-Kostova, 2014). Nevertheless, NRF2 phosphorylation not only represses 

its activity. Active protein kinase Cd (PKCd) in astrocytes promotes, by 

phosphorylation, the stabilization of p35, a cyclin-dependent kinase-5 (Cdk5) co-

factor. Active p35/Cdk5 complex phosphorylates NRF2 at Thr395, Ser433 and 

Thr439 which is sufficient to promote the NRF2 nuclear translocation (Jimenez-

Blasco et al., 2015). 

2.2.3 The NRF2 pathway in the central nervous system 

The NRF2 pathway plays a crucial role maintaining the cellular homeostasis and 

in the pathogenesis of several diseases, hence it needs to be tightly regulated at 

different levels. This implies that, depending on the cell type, there are different 

patterns of the NRF2 modulation. In the brain, neurons and astrocytes express 

different activity of the NRF2 pathway (Bell et al., 2015; Jimenez-Blasco et al., 

2015). The transcription of antioxidant genes in neurons is repressed as a 

consequence of the continuous protein destabilization of NRF2 by the high levels 

of its repressors KEAP1 and Cul3 (Jimenez-Blasco et al., 2015). Furthermore, 

there is an epigenetic repression of the NRF2 promoter in neurons (Bell et al., 

2015), that maintains low levels of functional NRF2 pathway. Forcing the 

expression of NRF2 resulted in an impaired neuronal development (Bell et al., 

2015). 
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The extreme neuronal vulnerability to oxidative damage and the need to maintain 

low levels of NRF2 for their proper development, explain the neuronal reliance on 

astrocytic support to maintain the redox homeostasis (Bolaños, 2016). 

3. GLUTATHIONE IN THE BRAIN 

The tripeptide g-L-glutamyl-L-cysteinylglycine (glutathione or GSH) (Figure 

VIII) is the most abundant mammalian thiol-containing antioxidant (Dringen, 

2000). Its concentration varies in the range of 1–10 mM, depending on the cell 

type. The highest levels of glutathione are found in liver, spleen, kidney, lens, 

erythrocytes and leukocytes (Njålsson, 2005). Concentrations in brain are on the 

order of 1–3 mM (Dringen, 2000), however its distribution in brain cells is not 

uniform. In vivo measurement of intracellular levels of glutathione show that in 

neurons its concentration is estimated to be 2.5 mM, whereas astrocytes have a 

higher intracellular concentration estimated at 3.8 mM (Rice and Russo-Menna, 

1997). 

 

 

Most of the intracellular GSH is localized in the cytosol (80–85%), where it 

presents a half-life of 2-3 hours. The rest of the glutathione is present in the 

Figure VIII: Glutathione structure. The tripeptide glutathione consists of an unusual 

gamma peptide linkage between the carboxyl group of the glutamate side-chain and the 

amine group of the cysteine, and a usual peptide bond among cysteine and glycine. 

Adapted from Lash, 2006.  
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mitochondria (10–15%) and a small percentage in the endoplasmic reticulum, 

peroxisomes and nucleus (Lu, 2009; Meredith and Reed, 1982; Wu et al., 2004). 

The glutathione exists mainly in its reduced form (GSH); only about 1-5% is in 

the oxidized form as glutathione disulphide (GSSG) (Lu, 2009), or as mixed 

disulphide with xenobiotic (GSSX) or thiol-containing protein (GSSPr) (Njålsson, 

2005).  

3.1. Functions of glutathione 

Glutathione serves several crucial functions including antioxidant defense, 

detoxification of xenobiotics and/or their metabolites, modulation of redox 

signaling, regulation of cell cycle progression and cell death, storage of cysteine, 

among the others. 

The most important cellular function of GSH is the antioxidant defense, 

accomplished largely by GPx-catalyzed reactions, which reduce hydrogen 

peroxide and lipid peroxides as GSH is oxidized to GSSG. In turn, GSH is 

regenerated by glutathione reductase at the expenses of NADPH, forming a redox 

circle (Figure III) (Lu, 2009). Besides the antioxidant function, glutathione is 

involved in several crucial processes to maintain the cellular viability. The main 

functions of GSH are resumed in the Table I. 
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Main functions of glutathione 

• Antioxidant defense (Dringen, 2000) 

• Detoxification of electrophiles and xenobiotics (Lu, 2009; Meister, 1988) 

• Modulation of intracellular thiols (Kumar et al., 2011; Lu, 2009) 

• Post-translational modifications of proteins (Ballatori et al., 2009; Wu et al., 

2004) 

• Cysteine reservoir (Lu, 2009; Meister, 1988) 

• Modulation of cellular growth (Holmgren, 1981; Lu, 2009) 

• Modulation of cellular death (Anathy et al., 2009; Ballatori et al., 2009; Diaz-

Hernandez et al., 2005; Garcia-Ruiz and Fernández-Checa, 2007; Huang et al., 2008) 

Table I: Functions of glutathione. The main functions directly or indirectly modulated by the GSH are 

resumed in this table. 

 

3.2. Synthesis of glutathione 

The synthesis of glutathione from its constituent amino acid involves two ATP-

requiring enzymatic steps: formation of g-glutamylcysteine (g-GC) from 

glutamate and cysteine and formation of GSH from g-GC and glycine (Figure IX) 

(Lu, 2013). The first step of GSH biosynthesis is rate limiting and catalysed by g-

glutamylcysteine synthetase or glutamate-cysteine ligase (GCL), while the second 

step is catalysed by glutathione synthetase (GS).  
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GCL is an heterodimer composed of a heavy or catalytic (GCLC, ~73 kDa) and a 

light or modifier (GCLM, ~31 kDa) subunit, which are encoded by different genes 

in Drosophila, rodents and humans (Dalton et al., 2004; Gipp et al., 1992; Huang 

et al., 1993; Yan and Meister, 1990). GCLC exhibits all of the catalytic activity of 

the isolated enzyme and feedback inhibition by GSH (Seelig et al., 1984). GCLM 

is enzymatically inactive, however plays an important regulatory function by 

lowering the Km of GCL for glutamate and raising the Ki for GSH (Huang et al., 

1993a; Huang et al., 1993b). 

The GS is an homodimer and is not subject to feedback inhibition by GSH 

(Oppenheimer et al., 1979). Considering that g-GC, the product of GCL, is present 

exceedingly low concentrations when GS is present, GCL is considered rate 

limiting (Dalton et al., 2004). Supporting this evidence, the overexpression of GS 

failed to increase GSH levels, whereas overexpression of GCL does it (Grant et 

al., 1997). 

The structure of glutathione is unique (Figure VIII). The peptide bond linking 

glutamate and cysteine, formed in the first step catalized by GCL, is through the 

g-carboxyl group of glutamate rather than the conventional a-carboxyl group. 

This characteristic confers intracellular stability to GSH, considering that the only 

enzyme that can hydrolyses this unusual bond is the g-glutamyltranspeptidase (g-

GT), which is only present on the external surfaces of specific cell types (Meister 

and Anderson, 1983), such as astrocytes (Cambier et al., 2000). 

Figure IX: Glutathione synthesis. GSH is synthesized in the cytosol from its constituent amino acids 

by the sequential action of two ATP-requiring enzymes: g-glutamylcysteine synthetase (GCL) and 

glutathione synthetase (GS). 
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3.3. Regulation of glutathione biosynthesis 

The glutathione biosynthesis occurs in the cytoplasm and it is regulated by three 

major factors: a) the expression of the rate-limiting enzyme GCL, b) the 

availability of L-cysteine, and c) the nonallosteric feedback competitive inhibition 

(with glutamate) by GSH (Lu, 2013; Meister and Anderson, 1983; Richman and 

Meister, 1975). 

The expression of many genes involved in the GSH homeostasis is regulated by 

several transcription factors. Among all, NRF2 up-regulates the expression of 

genes involved in the supply of precursors (xc-), the biosynthesis (GCLC, GCLM 

and GS), the recycling (GR), the transport (MRP1), and the specific extracellular 

hydrolization (g-GT) of glutathione (Hayes and Dinkova-Kostova, 2014). The 

promoter region of these genes contains an ARE sequence, which allows NRF2 to 

increase their expression, both in basal and stressed conditions (Hayes and 

Dinkova-Kostova, 2014; Lee et al., 2004). 

Post-transcriptional regulation of GCL is mainly based on its mRNA stabilization 

and post-translational modifications. The directly phosphorylation of GCLC, 

mediated by protein kinase A (PKA), protein kinase C (PKC) or Ca2+-calmodulin 

kinase II (CAMK), decrease its activity (Sun et al., 1996). Furthermore, GCL 

could be inhibited by nitric oxide through nitrosylation (Griffith, 1999). Another 

post-translational modification of GCL is the cleavage mediated by caspase-3 

(Franklin et al., 2002), which regulates GSH biosynthesis during apoptosis. 

3.4. Astrocyte-neuron glutathione shuttle 

Oxidative stress is a hallmark of neurodegenerative diseases, stroke and traumatic 

brain injuries, highlighting the particularly susceptibility of the brain to oxidative 

damage (Dringen, 2000; Bélanger et al., 2011). Paradoxically, despite the fact that 

the greater part of the brain’s oxidative metabolism occurs in neurons and the 

neurotransmission unavoidably increases mROS, the neuronal antioxidant 

machinery is generally weak (Bolaños et al., 1995; Bolaños et al., 1996), dues to 

the continuous NRF2 degradation (Bell et al., 2015; Jimenez-Blasco, et al., 2015). 

In contrast, NRF2 is highly stable in neighbor astrocytes, which present a greater 
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antioxidant potential compared to neurons (Jimenez-Blasco et al., 2015). 

Accordingly, astrocytes are much more resistant than neurons to cellular damage 

induced by pro-oxidant compounds (Almeida et al., 2001; Bolaños et al., 1995; 

Dringen, 2000; Wilson, 1997). One reason for the higher vulnerability of neurons 

appears to be a lower glutathione content compared to astrocytes (Bolaños et al., 

1995; Dringen et al., 1999). 

Evidence is growing that especially between neurons and astrocytes, intensive 

metabolic and redox exchanges occur, both in vitro and in vivo (Bolaños, 2016; 

Fernandez‑Fernandez et al., 2012; Mächler et al., 2016; Pellerin and Magistretti, 

2012). In co-culture systems, astrocytes protect neighbour neurons from harmful 

doses of hydrogen peroxide, nitric oxide iron or hydroxydopamine (Bélanger and 

Magistretti, 2009; Dringen, 2000; Vargas and Johnson, 2009; Wilson, 1997), 

suggesting that neural cells are dependent upon the high antioxidant potential of 

astrocytes for their own defense against oxidative stress.  

To prevent competition, neurons and astrocytes display differential preference for 

extracellular GSH precursors. Neural cells rely on the presence of extracellular 

cysteine for GSH synthesis, since they cannot use cystine (Dringen et al., 1999; 

Kranich et al., 1996; Sagara et al., 1993), while the best extracellular precursor for 

the glutamate moiety of glutathione is glutamine (Kranich et al., 1996). In 

contrast, astrocytes prefer glutamate and cystine as extracellular GSH precursors 

(Dringen and Hamprecht, 1998; Kranich et al., 1996; Kranich et al., 1998). 

However, since neurons cannot use extracellular cystine, they depend for their 

glutathione synthesis on the supply of cysteine or a cysteine precursor from 

neighbour astrocytes (Dringen et al., 2000). The presence of astrocytes increases 

glutathione levels in co-cultured neurons (Bolaños et al., 1996; Dringen et al., 

1999), suggesting the existence of a GSH precursors supply from astrocytes to 

neurons (Dringen et al., 1997), called astrocyte-neuron glutathione shuttle 

(ANGS) (Figure X) (Bolaños, 2016). 
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Cultured astrocytes export about 10% of their intracellular GSH per hour 

(Dringen et al., 1997), which has continuously to be resynthesized from its 

precursors in order to maintain a constant cellular concentration. These data and 

the reported half life of about 5 hours for astroglial GSH (Devesa et al., 1993) 

indicate that the export of GSH is quantitatively the most important process 

consuming astrocytic glutathione. Indeed, treatments that increase the glutathione 

concentration in glial cells lead to an increase in the rate of cellular GSH export 

(Dringen et al., 2015). The GSH export from astrocytes is predominately 

mediated by multidrug resistance-associated protein 1 (MRP1) (Minich et al., 

2006). GSH that has been exported from astrocytes is a substrate of the g-glutamyl 

transpeptidase (g-GT) (Dringen et al., 1997). One product of this reaction is the 

dipeptide CysGly, which is cleaved by the neuronal aminopeptidase N (APN) 

(Dringen et al., 2001) to provide cysteine and glycine to neurons. 

Astrocytes are therefore necessary for maintaining neuronal GSH through the 

ANGS; however, they may not be sufficient. Knockdown of GCL in neurons 

triggers GSH depletion and neuronal death, both in vitro and in vivo (Chinta et al., 

2007; Diaz-Hernandez et al., 2005; Garrido et al., 2011). Hence, intact 

Figure X: Astrocyte-neuron glutathione shuttle (ANGS). Astrocytes export, through MRP1, up to 10% 

about their intracellular GSH per hour, which is cleaved into CysGly by the g-GT. The APN on the neuronal 

surface cleaves CysGly into cysteine and glycine, which are uptake by neurons. Meanwhile, astrocytes also 

export glutamine, which is uptake by neurons and converted to glutamate. Modified from 

Fernandez‑Fernandez et al., 2012. 
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biosynthetic enzymatic machinery for de novo synthesis of glutathione in neurons 

is necessary for their survival, even in presence of neighbour astrocytes. 

4. PENTOSE PHOSPHATE PATHWAY (PPP) 

The vast majority of glucose that enters in the cells is oxidized by glycolysis to 

provide ATP and metabolic intermediates. However, a percentage of glucose that 

varies from 5 to 30% in a tissue-dependent manner, is oxidized through the PPP to 

yield ribose-5-phosphate for nucleic acid synthesis and NADPH for redox 

homeostasis or biosynthetic processes (Riganti et al., 2012). The basal flux 

through the PPP reaches the maximal percentage in lipid- and steroid-synthetizing 

tissues (such as liver, white adipose tissue, lactating mammary glands, adrenal 

glands and gonads) and in erythrocytes. Nevertheless, the rate of PPP may widely 

vary. Cells exposed to oxidative stress increase the PPP activity in order to 

regenerate GSH and restore the redox homeostasis (Riganti et al., 2012). 

Moreover, PPP sustains glycolytic cancer cells to meet their anabolic demands 

and combat oxidative stress increasing their survival (Patra and Hay, 2014). 

The PPP can be divided into two branches: the oxidative and the non-oxidative 

phase (Figure XI) (Wamelink et al., 2008). 

The oxidative branch of the PPP starts with the dehydrogenation of glucose-6-

phosphate, catalysed by the rate limiting enzyme glucose-6-phosphate 

dehydrogenase (G6PD). The product 6-phosphogluconolactone is rapidly and 

irreversibly hydrolysed by the 6-phosphogluconolactonase to yield 6-

phosphogluconate. The lately is oxydatively decarboxylated by the 6-

phosphogluconate dehydrogenase (6PGD) to produce ribulose-5-phosphate and 

CO2. The effectiveness of the oxidative branch of the PPP is favored by the 

localization of G6PD and 6PGD next to the glucose transporters (Kletzien et al., 

1994). The net result of the oxidative phase of the PPP is the formation of one 

mole of ribulose-5-phosphate, two moles of NADPH and one mole of CO2 per 

mole of glucose-6-phosphate. 

In the non-oxidative branch of the PPP, ribulose-5-phosphate can be epimerized 

to xylulose-5-phosphate by ribulose-5-phosphate epimerase, or isomerized by the 
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ribulose-5-phosphate isomerase to ribose-5-phosphate and incorporated into 

nucleotides (Wamelink et al., 2008). Depending on the cellular requirements, the 

pentose phosphates generated in the non-oxidative branch could be transformed in 

the glycolytic intermediates glycealdehyde-3-phosphate and fructose-6-phosphate 

(Baquer et al., 1988), or can be recycled into glucose-6-phosphate and re-enter in 

the oxidative branch to generate more NADPH (Wamelink et al., 2008). 
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Figure XI: Pentose phosphate pathway. Abbreviations used: HK: hexokinase; G6PD: glucose-6-

phosphate dehydrogenase; 6PGL: 6-phosphoglucolactonase; 6PGD: 6-phosphogluconate dehydrogenase; 

RPI: ribulose-5-phosphate isomerase; RPE: ribulose-5-phosphate epimerase; R5P: ribose-5-phosphate; EPI: 

epimerase; X5P: xilulose-5-phosphate; TKT: transketolase; S7P: sedoheptulose-7-phosphate; GAP: 

glyceraldehyde-3-phosphate; TALDO: transaldolase; F6P: fructose-6-phosphate; E4P: erythrose-4-

phosphate; PGI: phosphoglucose isomerase; G6P: Glucose-6-phosphate. 
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4.1. Functions of the PPP in the brain 

The two major functions of the PPP are the production of NADPH and the 

synthesis of ribose-5-phosphate. Most of the cytosolic NADPH is produced by 

G6PD and 6PGD (Wamelink et al., 2008). This coenzyme plays a pivotal role in 

redox homeostasis, since it provides reduced equivalents for the GSH and 

thioredoxin regeneration (Stincone et al., 2015). Besides its importance in the 

antioxidant systems, NADPH is required as electron donor in many anabolic 

pathways, such as fatty acid oxidation, lipid and cholesterol synthesis (Dringen et 

al., 2007). Among the various NADPH-consuming processes in the adult brain, 

the regeneration of GSH is likely to be quantitatively the most important one, 

especially in neurons (Bouzier-Sore and Bolaños, 2015). These cells contains very 

low amounts of glutathione (Bolaños et al., 1995; Dringen et al., 1999), hence it 

regeneration is critical for their survival. Since NADPH is essential for this 

process, the re-cycling version of the PPP, which recovers a considerable 

proportion of glucose-6-phosphate, explains both the low glucose consumption 

and the efficient GSH regenerating activity of neurons compared to astrocytes 

(Bouzier-Sore and Bolaños, 2015). Metabolic switch from PPP to glycolysis 

overexpressing 6-phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 

(PFKFB3), cause neuronal death by nitrosative stress (Herrero-Mendez et al., 

2009), confirming the importance of the PPP in the redox homeostasis of neurons. 

In contrast, astrocytes express higher PPP-rate limiting enzyme G6PD, have 

higher basal PPP activity rate and a better capability to stimulate this pathway in 

response to oxidative stress, compared to neurons (Ben-Yoseph et al., 1996; 

García-Nogales et al., 1999; Herrero-Mendez et al., 2009). However, the 

production of NADPH by G6PD and 6PGD plays a dual role in the regulation of 

the redox homeostasis: on the one hand, these enzymes supply reducing 

equivalent for the glutathione regeneration, but on the other hand, they provide 

cytoplasmic substrate for ROS generation by NADPH-oxidases (Park et al., 

2005). 

The synthesis of ribose-5-phosphate, fundamental for dividing cells, occurs both 

in the oxidative and in the non-oxidative branch of PPP (Wamelink et al., 2008). 

With the exception of processes such as DNA repair (Brooks, 2002), proliferation 
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of stem cells (Baizabal et al., 2003) and the growth of brain tumors (Loreck et al., 

1987; Spence et al., 1997), low amounts of ribose-5-phosphate are required for 

the generation of nucleotides in the adult brain. Hence, synthesis of ribose-5-

phosphate does not appear to be a major function of the PPP in the central nervous 

system (Dringen et al., 2007). 

4.2. Regulation of the PPP 

The activity of the PPP varies in a tissue-specific manner. Moreover, the basal 

flux of PPP depends on the cell state. The activity of G6PD, the rate limiting 

enzyme of the PPP, is directly related to the NADPH/NADP+ ratio (Barcia-

Vieitez and Ramos-Martínez, 2014). Situations in which this ratio drops, boost the 

activity of the G6PD enzyme increasing the glucose flux through the PPP, with 

the aim to restore physiological values of the NADPH/NADP+ ratio (Stincone et 

al., 2015). 

Besides the post-translational regulation of the G6PD enzyme, there is a 

transcriptional regulation of several enzymes involved in the PPP. The rate 

limiting enzyme, G6PD, is transcriptionally induced upon oxidative stress and by 

the need for NADPH and PPP intermediates for anabolic reactions such as lipid 

and nucleotide synthesis (Stincone et al., 2015). A recent study suggests that the 

mRNA levels of the G6pd, 6Pgd and transketolase (Tkt) were indirectly regulated 

by NRF2 (Singh et al., 2013). The targeted deletion of the ARE sequence from 

these genes demonstrates that they are not directly regulated by NRF2 (Singh et 

al., 2013). The suggested indirect modulation of several PPP-related genes by 

NRF2, involves an epigenetic mechanism. Histone deacetylase 4 (HDAC4) is a 

redox-sensitive protein which nuclear localization depends on the reduced state of 

two cysteines, Cys-667 and Cys-669 (Ago et al., 2008). In its reduced state, 

HDAC4 accumulates in the nucleus, deacetylates chromatin causing its 

compaction and represses the transcription of two micro-RNAs, miR-1 and miR-

206. These two micro-RNAs target the newly synthesized G6pd, 6Pgd, Tkt and 

Hdac4 mRNA interfering with their ribosomic translation (Chen et al., 2010; 

Coda et al., 2015; Hak et al., 2006; Singh et al., 2013). Decreased antioxidant 

potential results in the oxidation of the Cys residues, nuclear exportation of 
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HDAC4 and increased transcription of miR-1 and miR-206, which in turn leads to 

lower levels of G6PD, 6PGD, TKT and HDAC4 itself (Singh et al., 2013) 

(Figure XII). Thioredoxin-1 (Trx-1) overexpression preserves the Cys moieties in 

their reduced state, maintaining HDAC4 in the nucleus repressing the 

transcription of miR-1 and miR-206 (Ago et al., 2008). Modulating the redox 

environment through the transcription of several antioxidant genes, among them 

Trx-1, NRF2 indirectly controls the HDAC4 subcellular localization. 

 

 

Figure XII: Epigenetic model of PPP-related genes modulation by a ROS-mediated mechanism. A 

mechanism involving ROS, HDAC4 and miRNAs modulates the expression of several PPP genes. A) With 

low ROS levels, the two Cys residues of HDAC4 are in their reduced state. HDAC4 could accumulate in 

the nucleus, deacetylates the chromatin causing its condensation and suppresses miR-1 and miR-206 gene 

expression, leading to an enhanced expression of metabolic genes. B) A ROS increase causes the Cys 

oxidation leading to nuclear export of HDAC4 and relaxation of chromatin, which leads to miR-1 and miR-

206 expression. Newly formed miRNAs target specific mRNAs (G6PD, 6PDG, TKT and HDAC4) leading 

to a decreased gene expression. Abbreviations used: HDAC4: histone deacetylase-4; G6PD: glucose-6-

phosphate dehydrogenase; 6PGD: 6-phosphogluconate dehydrogenase; TKT: transketolase. 
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1. HYPOTHESIS  

Reactive oxygen species (ROS) have been associated with oxidative stress 

conditions and to participate in the etiology of human pathologies, including 

neurodegenerative diseases. Whilst antioxidant treatments in in vitro and in vivo 

models of neurodegenerative diseases have shown neuronal protection, translation 

to human has not been conclusive (Halliwell 2013; Heyland et al., 2013; Kamat et 

al., 2008; Snow et al., 2010), which argues against the notion of a pathological 

role for ROS. 

Recent evidences from our laboratory show that, under basal conditions, 

astrocytes produce higher mitochondrial ROS (mROS) compared to neurons 

(Lopez-Fabuel et al., 2016). This seems to be paradoxical, considering that 

astrocytes express a robust antioxidant machinery, reliable to a major NRF2 

activity, compared to neurons (Jimenez-Blasco et al., 2015). Furthermore, 

astrocytes support neuronal antioxidant defenses by shutting glutathione (GSH) 

precursors. This shuttle is maintained by NRF2 activity in astrocytes. However, 

the factor(s) responsible for such a high NRF2 activity in astrocytes is unknown.  

In the view of the previously described premises, we hypothesize that endogenous 

mROS maintain active the NRF2 pathway in astrocytes. If so, mROS-NRF2 

pathway should contribute to neuronal survival. 
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2. OBJECTIVES 

To address the above-mentioned hypotheses, we planned the following objectives:  

 

1. To generate a mouse model able to down modulate endogenous mROS in 

astrocytes. 

 

2. To investigate whether endogenous mROS modulate the redox 

homeostasis in astrocytes. 

 

3. To investigate whether astrocytic mROS modulate neuronal redox 

homeostasis and survival. 

 

 



 

 

 

  



 

 

 



 

 
MATERIAL AND METHODS





 

 45 

1. ANIMALS 

1.1. +/mCAT mouse line generation 

To down-modulate endogenous mitochondrial ROS (mROS) abundance, a knock-

in mouse model harbouring a mitochondrial-tagged form of Catalase (mCAT) was 

generated (Genoway, France). 

The mCAT cDNA, generously supplied by J.A. Enríquez (CNIC, Madrid), 

contains the N-terminal mitochondrial-leading cDNA sequence of cytochrome c 

oxidase VIII (C8), followed by the full-length cDNA sequence of catalase and the 

cDNA sequence of the human influenza hemagglutinin (HA) (Scheme 1). 

 

 

The mCAT construct was inserted in the Rosa26 locus of C57Bl/6 embryonic 

stem cells by homologous recombination. The Rosa26 locus strategy has several 

advantages over random integration transgenesis: 

• Only one copy of the transgene is inserted in a defined locus 

• A reliable and predictable expression pattern of the transgene 

• The endogenous (cytosolic) catalase is kept intact. 

Furthermore, a floxed (loxP flanked) transcriptional STOP cassette was 

Scheme 1: mitochondrial catalase (mCAT) construction. C8: cytochrome c oxidase 

VIII; HA: human influenza hemagglutinin tag; pA: poly-A tail; mCAT: mitochondrial 

catalase. 
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incorporated between mCAT and the CAG promoter, in order to eventually obtain 

tissue- and time-specific expression of mCAT in vivo. This strategy allows the P1 

phage-derived Cre recombinase to site-specifically recombine DNA flanked by 

LoxP sites (5’-ATAACTTCGTATAATGTATGCTATACGAAGTTAT-3’) 

(Branda and Dymecki, 2004). 

Thus, the mouse line harbouring the floxed mCAT construct does not express 

mitochondrial catalase unless Cre recombinase is present. This can be obtained by 

crossbreeding the floxed mCAT mice with mice harbouring the Cre recombinase 

gene. 

To obtain ubiquitous constitutive mCAT expression, the floxed mCAT mice were 

crossbred with the human cytomegalovirus minimal promoter (CMV)-Cre 

recombinase mice under a C57Bl/6 genetic background (C57Bl/6+/mCAT, 

henceforth +/mCAT). (Scheme 2). +/mCAT was bred in heterozygosis. 

 

Animals were bred at the Animal Experimentation Facility of the University of 

Salamanca in cages (maximum 5 animals/cage) and a light-dark cycle was 

maintained for 12 hours. Humidity was between 45% and 65% and temperature 

Scheme 2: Strategy used to express ubiquitously the mCAT. pA: poly-A tail; 

mCAT: mitochondrial catalase; CAG: cytomegalovirus enhancer fused to chicken b-

actin promoter; CMV: cytomegalovirus. 
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between 20ºC and 25ºC. Animals were fed ad libitum with a standard solid diet 

(17% proteins, 3% lipids, 58.7% glucidic component, 4.3% cellulose, 5% 

minerals and 12% humidity) with free access to water. 

Gestational stage was controlled by limiting the cohabitation of female mice with 

males to one night. At 9:00 hours of the following day, mice that had the presence 

of spermatozoids in the vaginal smear accompanied by epithelial cells from the 

vagina (indicator of the successful copulation) were isolated. Under these 

conditions, gestational period of the mouse is assumed to be 19.5 days. 

All animal handlings and procedures are in agreement with the current and 

Spanish legislation (Law 6/2013) related to accommodation and experimental 

animals care. All the protocols performed in this thesis were approved by 

Bioethics Committee of the University of Salamanca. 

1.2. Tissue extraction 

Mice were anesthetized with CO2, euthanized by cervical dislocation and the 

brain, liver, heart and kidney were extracted within the following 5 min and 

processed to obtain a cytosolic and nuclear fractionation (see Section 7.3). 

1.3. DNA extraction 

DNA was extracted from tails (2-5 mm long) of newborn mice. Tails were 

incubated with 120 µl of TENS buffer (100 mM Tris, 5 mM EDTA, 200 mM 

NaCl, 0.2% SDS, pH 8) and 1.2 µl of Proteinase K (800 U/µl; Sigma-Aldrich) and 

left overnight at 55ºC for complete digestion. Subsequently, 410 µl of Phenol-

Chloroform-Isoamilic acid (PCI) mix (25:24:1) was added and centrifuged at 

13,000 rpm for 5 minutes. The aqueous phase was transferred to a new tube, to 

which an equal volume of isopropanol was added, kept at 4 ºC for at least 30 

minutes, and centrifuged at 13,000 rpm for 5 minutes at 4 ºC. Tubes were left to 

dry for no more than 5 minutes, and 50 µl of TE buffer solution (10 mM Tris-HCl, 

1 mM EDTA, pH 8) was added. Tubes were left 24 hours at room temperature, 

and DNA concentrations were measured using NanoDrop 2000 (Thermo Fisher). 
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1.4. Genotyping 

mCAT mice were genotyped by PCR. Forward (124540-BOL1) and reverse  

(124541-BOL1) oligonucleotides used were, respectively, 5’-

CTCCCAAAGTCGCTCTGAGTTGTTATCA-3’ and 5’-

CGATTTGTGGTGTATGTAACTAATCTGTCTGG-3’, which generated a 778 

bp band in the wild type allele and a 5949 bp band in the mCAT allele (due to the 

large size of this PCR product, the amplification will not occur). Hence, to detect 

the mCAT construction, a third oligonucleotide (0034-Kin-ROSA) was used, 5’-

GCAGTGAGAAGAGTACCACCATGAGTCC-3’, which generated a 245 bp 

band (Scheme 3). 

 

 

PCR conditions were: 5 minutes at 94°C, 35 cycles of 30 seconds at 94°C 

followed by 30 seconds at 65°C and 3 minutes at 60°C and a final step 8 minutes 

at 68°C. Final concentrations of PCR components were 0.5 mM dNTPs mix 

(Roche), 0.3 µM of primers (Sigma-Aldrich), 0.042 U/µl of Taq polymerase 

(Biotools) and 1X reaction buffer containing MgCl2. The total amount of DNA 

added was 30 ng. 

Scheme 3: +/mCAT identification strategy by PCR. Red lines illustrate the primers localization 
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1.5. Gel electrophoresis 

PCR products were run in a 2% (w/v) agarose gels (Sigma-Aldrich). Gels were 

pre-stained with MidoriGreen (1:20,000) and run in TAE buffer (200 µM Trizma-

Base, 100 mM Glacial Acetic Acid, 5 mM Na2EDTA·2H2O), using a 6X loading 

dye (10 mM Trizma-Base, 0.03% Bromophenol blue, 0.03% (v/v) Xylene 

cyanole, 60% (v/v) Glycerol, 60 mM Na2EDTA·2H2O, pH 7.6) for DNA input. 

Images were taken using Bio-Rad Chemidoc. 

2. CELL CULTURES 

2.1. Mouse embryonic fibroblasts (MEFs) immortalization  

MEFs were prepared from fetal +/mCAT mice (E13.5), using the wild type (WT 

or +/+) littermates as control. Embryos were processed individually, and the liver 

and brain tissue were disregarded. The carcass was mechanically disaggregated in 

0.25 g/ml of trypsin/1 mM EDTA and seeded in a 60 cm2 cell culture dish 

containing Dulbecco’s Modified Eagle’s Medium (DMEM, Sigma-Aldrich) 

supplemented with 10% v/v fetal bovine serum (FBS, GE Healthcare Life 

Sciences) and 25 mM D-glucose. Confluent cells were split 1:3 during 2 weeks, 

until the immortalization crisis occurred, which lasted for a further 2 weeks. 

During this period, medium was renewed every 3 days. One week after the 

immortalization crisis, single cell colonies were spotted, picked and grew. Cells 

were placed in a thermostatized cell-culture incubator at 37ºC (Thermo Forma 

310, Thermo Fisher) and 5% CO2 atmosphere. MEFs were frozen in a mixture of 

FBS and DMSO (9:1).  

2.2. Neurons in primary cultures 

Neurons in primary culture were obtained from fetal embryos of 15.5 days 

(E15.5) C57Bl/6 mice according to standard procedure (Almeida et al., 1998). In 

brief, pregnant mice were anesthetized with CO2, euthanized by cervical 

dislocation and the embryos were removed by hysterectomy. Embryos were 

transferred to a laminar flux cabin (TC48, Gelaire Flow Laboratories) in order to 

maintain the sterile conditions of the culture. Cerebral hemispheres were removed 
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using scissors, forceps and 70% ethanol impregnates handkerchiefs. The brain 

tissue was then placed in a polystyrene Petri plate containing the disintegration 

solution (EBSS (Eagle’s Basal Salt Solution): 116 mM NaCl, 5.4 mM KCl, 1.01 

mM NaH2PO4, 1.5 mM MgSO4, 26 mM NaHCO3, 4 mM glucose, 10 mg/ml 

phenol red, with 2.94 mg/ml BSA (Bovine Serum Albumin) and 20 µg/ml 

DNAse, pH 7.15) and very smoothly chopped with a scalpel. After this, it was 

placed in a tube and left for 4 minutes for sedimentation. The pellet was re-

suspended in trypsinization solution (EBSS; 50 µg/ml DNAse, 3.15 mg/ml BSA, 

10mg/ml trypsin, pH 7.15) and incubated at 37ºC for 15 minutes in a thermostatic 

bath. Trypsinization was stopped by adding FBS at a final concentration of 10 % 

v/v, and the tissue was centrifuged at 500 g for 5 minutes (Eppendorf 5702R, 

Eppendorf). The pellet was re-suspended in 12 ml of disintegration solution and 

triturated with a silicon-coated Pasteur pipette for 9 strokes. After letting the 

cellular solution stand for 4 minutes, the supernatant containing the dissociated 

cells was carefully removed and placed in a fresh tube. This process was repeated 

once more in order to increase yield. The supernatants were then centrifuged at 

500 g for 5 minutes. The cellular sediment was re-suspended in specific medium 

for neuronal growth (Neurobasal-A (Life Technologies) supplemented with 2% 

B27 MAO (Minus AntiOxidants, Life Technologies), 2 mM glutamine, 5.5 mM 

glucose, 0.22 mM pyruvate, 100 U/ml penicillin, 100 µg/ml streptomycin and 

0.25 µg/ml amphotericin B (Sigma Aldrich). 10 µl of the cellular suspension was 

diluted four times and mixed with an equal volume of trypan blue 0.4 % (Sigma-

Aldrich) for alive cellular counting using a Neubauer chamber (Zeiss) and a phase 

contrast microscope (CK30 model, Olympus). The cell suspension was diluted in 

culture medium and seeded at 200,000 cells/cm2 in plastic culture plates (Corning 

Incorporate), previously coated with poly-D-lysine (10 µg/ml; Sigma-Aldrich). 

Plates were placed in a thermostatized cell-culture incubator at 37ºC and 5% CO2 

atmosphere. The medium was renewed at DIV3 (days in vitro). Neurons were 

used for experiments at DIV7. 
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2.3. Astrocytes in primary culture 

Astrocytes in primary culture were obtained from +/mCAT newborn mice (from 0 

to 24 hours of age), using the WT littermates as control (Almeida et al., 1998). 

Animals were cleaned with 70% ethanol, decapitated and the whole brain was 

removed under a laminar flux cabin. Cerebellum and olfactory bulb were removed 

using forceps and cerebral hemispheres were cleaned from meninges and blood 

vessels. The tissue was then placed in a Petri dish with the disintegration solution. 

Every brain was processed individually. Cellular suspension was obtained as 

previously described for neurons. 

Individual cellular suspension was seeded in DMEM supplemented with 10% v/v 

FBS in a 75 cm2 culture flask. Cells were incubated in a thermostatic cell-culture 

incubator at 37 ºC and 5% CO2 atmosphere. Culture medium was renewed twice 

per week. To detach non-astrocytic cells, at DIV7 the flasks were shaken at 180 

rpm overnight. The supernatant was discarded, and the attached, astrocyte-

enriched cells, were reseeded at 100,000 cells/cm2 in DMEM supplemented with 

10% v/v FBS in different plate size. At DIV11 the medium was replaced with 

Neurobasal A supplemented with 2% B27 MAO, 2 mM glutamine, 5.5 mM 

glucose, 0.22 mM pyruvate. A glucose control was made at DIV13 with a 

glucometer (Glucocard G+ meter, Angelini) and the glucose concentration was 

adjusted to 5.5 mM. Astrocytes were used for experiments at DIV15. 

2.4. Astrocyte-neuronal co-culture 

To obtain astrocyte-neuronal co-culture, the cells were obtained as previously 

described. Neurons were seeded on plastic culture plates (Corning) previously 

coated with poly-D-lysine. At DIV8, astrocytes were re-seeded on semipermeable 

inserts (0.4 µm pore size, Corning). At DIV11 of astrocytes, corresponding at 

DIV3 for neurons, medium was renewed and the inserts were placed over the 

neurons. Cells were co-cultured and harvested at DIV7 of neurons, corresponding 

at DIV15 for astrocytes. 
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3. CELL TRANSFECTION 

Cells were transfected with the aim to overexpress cDNA (complementary DNA) 

24 or 96 hours before cell recollection. Transfection of cells with plasmid vectors 

was carried out using a final concentration of 1.6 µg/ml of DNA. 

To transfect MEFs, a previously described protocol (Boussif et al., 1995) with 

some variations was used. Thus, after incubation of the plasmid with 1 µM 

polyethylenimine (PEI, Sigma-Aldrich) for 10 min at room temperature, the 

mixture was added to the cells, which were incubated in OptiMEM medium 

(Invitrogen) for 1h. After washing with phosphate buffer saline (PBS, 136 mM 

NaCl, 2.7 mM KCl, 7.8 mM Na2HPO4·2H2O, 1.7 mM KH2PO4, pH 7.4) the cells 

were incubated in DMEM with 10% v/v FBS and 25 mM D-glucose. 

Astrocytes were transfected using the cationic reagent Lipofectamine LTX with 

Plus ReagentTM (Invitrogen), following manufacturer’s instructions. The protocol 

is based on the incubation of the plasmid DNA with Lipofectamine and the Plus 

Reagent in OptiMEM medium. The expression of the proteins encoded by the 

plasmid DNA was confirmed by immunoblotting. 

Plasmid vectors used (Table 1) were obtained following transformation of E. coli 

competent cells, strain DH-5α, by heat shock. Bacteria culture mediums (LB, LB-

agar and 2 x YT) were prepared with bactotriptone, yeast extract and agar from 

DIFCO Laboratories. Extraction and purification of the plasmids after the 

amplification in bacteria was performed using the Wizard plus Midipreps system 

(Promega). 
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4. ROS MEASUREMENTS 

4.1. Hydrogen peroxide 

The production of hydrogen peroxide (H2O2) in whole cells or in fresh isolated 

mitochondria was assessed using the Amplex RedTM dye (Life Technologies). In 

presence of horseradish peroxidase (HRP), the Amplex RedTM reagent reacts with 

hydrogen peroxide in a 1:1 stoichiometry to produce the red-fluorescent oxidation 

product, resorufin (lexc 538 nm; lem 604 nm), as indicated in the Scheme 4. 

 

Plasmid Protein Brand

pIRES2eGFP Invitrogen

pEGFP-C1-NRF2 PM NRF2 PM
Published by Jimenez-

Blasco et al. 2015

pIRES2eGFP-mitoCatalase mitoCatalase
Supplied from J. 

A.Enríquez (CNIC, 
Madrid)

pEGFP-C1 Invitrogen

Table 2: Plasmid vectors used. Name of the plasmid vector, protein encoded and 

origin are specified. NRF2 PM: Nuclear factor (erythroid-derived 2)-like 2 

phosphomimetic, published by Jimenez-Blasco et al. (Jimenez-Blasco,  et al., 

2015). 
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For the hydrogen peroxide measurement, cells or fresh isolated mitochondria were 

incubated with the Amplex RedTM dye (9.45 µM) in Krebs Ringer Phosphate 

Glucose Buffer (KRPG: 145 mM NaCl, 5.7 mM Na2HPO4, 4.86 mM KCl, 0.54 

mM CaCl2, 1.22 mM MgSO4, 5.5 mM glucose, pH 7.35) in presence of HRP (0.1 

U/ml). Luminescence was recorded for 2 hours at 30 minutes intervals using a 

Fluoroskan Ascent FL (Thermo Fisher) (lexc 538 nm; lem 604 nm). Hydrogen 

peroxide release rate was calculating extrapolating the slopes to those obtained 

from a hydrogen peroxide standard curve and the results were expressed as 

arbitrary unit (fold) between the control, to which is assigned the value of 1, and 

the sample condition. 

4.2. mROS 

mROS were measured using the fluorescent probe MitoSOXTM Red (Life 

Technologies). This probe is live-cell permeant and is rapidly and selectively 

targeted to the mitochondria. Once in the mitochondria, MitoSOXTM Red reagent 

is oxidized by mROS and it exhibits red fluorescence. The oxidation product 

becomes highly fluorescent upon binding to nucleic acids. Cells were incubated 

with 2 µM MitoSOXTM Red for 30 min at 37°C in a 5% CO2 atmosphere in 

Hank’s Balanced Salt Solution (HBSS) (134.2 mM NaCl, 5.26 mM KCl, 0.43 

mM KH2PO4, 4.09 mM NaHCO3, 0.33 mM Na2HPO4·2H2O, 5.44 mM glucose, 

20 mM HEPES (4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid), 4 mM 

Amplex Red Resorufin 

H2O2 H2O 

HRP 

Scheme 4: Amplex RedTM reaction. Amplex RedTM dye is oxidized by H2O2 in presence of the 

horseradish peroxidase, liberating the fluorescent molecule Resorufin. 
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CaCl2·2H2O, pH 7.4). Cells were then washed with PBS and trypsinized. 

MitoSOXTM red fluorescence was detected in channel FL3 in a FACScalibur (BD, 

Biosciences) flux cytometer equipped with a 15 mW argon ion laser tuned at 488 

nm and analysed using CellQuestTM PRO and Paint-a-GateTM PRO (BD, 

Biosciences) software. Results were expressed in arbitrary units. 

4.3. Extracellular superoxide 

The production of extracellular superoxide was measured following a previous 

published protocol (Li et al., 2016) with some modifications. This method is 

based on the reduction of the oxidized cytochrome C (Cyt C) to its reduced form 

by the superoxide. Reduced Cyt C absorbs light at l=550 nm and the value of 

absorbance is directly proportional to its concentration. To determine the 

extracellular superoxide production, intact astrocytes in a 96-well plate were 

washed twice with KRPG and incubated with 120 µM oxidized Cyt C (Sigma-

Aldrich), for 4 hours at 37°C. Thus, absorbance at 550 nm was recorded using a 

Fluoroskan Ascent FL (Thermo Fisher). Superoxide concentration was calculated 

using the extinction coefficient of the reduced form of Cyt C and normalized to 

the amount of proteins. Results are expressed as arbitrary unit (fold) between the 

control, to which is assigned the value of 1, and the sample condition. 

5. MITOCHONDRIAL MEMBRANE POTENTIAL 

MEASUREMENT 

The mitochondrial membrane potential (DY�) was assessed using the cyanine dye 

DiIC1(5) (1,1′,3,3,3′,3′-hexamethylindodicarbo-cyanine iodide) (Life 

Technologies). DiIC1(5) is a cationic probe that accumulates primarily in 

mitochondria with active membrane potentials, hence the fluorescence intensity is 

directly proportional to the DY�. Cells were incubated with DiIC1(5) dye (50 nM) 

in PBS at 37°C for 30 minutes in a bath with soft agitation. DY� intensity signal 

was detected in channel FL4 in a FACScalibur (BD, Biosciences) flux cytometer 

and analysed using CellQuestTM PRO and Paint-a-GateTM PRO (BD, Biosciences) 

software. Once analysed, cells were incubated for 15 minutes with the 
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mitochondrial uncoupler CCCP (carbonyl cyanide m-chlorophenyl hydrazone) (10 

mM) to define the depolarized value. Results were expressed in arbitrary units. 

6. PROTEIN EXTRACTION 

6.1. Total protein extraction 

To obtain total cell protein extracts, cells were washed with cold PBS and lysed in 

RIPA buffer (1% sodium dodecylsulphate, 10 mM ethylene diamine tetraacetic 

acid (EDTA), 1 % v/v Triton Tx-100, 150 mM NaCl, 10 mM Na2HPO4 , pH 7.0), 

supplemented with phosphatase (1 mM Na3VO4 , 50 mM NaF) and protease (100 

µM phenylmethylsulfonyl fluoride (PMSF), 50 µg/ml aprotinine, 50 µg/ml 

leupeptine, 50 µg/ml pepstatin, 50 µg/ml anti-papain, 50 µg/ml amastatin, 50 

µg/ml bestatin and 50 µg/ml soybean trypsin inhibitor) inhibitor cocktail, and 

boiled for 5 minutes. Extracts were then centrifuged at 13,000 g for 10 minutes 

and the supernatant transferred to a new tube. 

6.2. Cytosolic and nuclear fractionation in vitro 

To obtain cytosolic and nuclear fractions from cell cultures, a previously reported 

protocol (Zancai et al., 2005) was used, with some modifications. This method 

first uses a mildly aggressive solution (Cytosolic buffer) that fragmentises cellular 

membranes maintaining the integrity of the nuclei, which are lysed using a more 

aggressive solution (Nuclear buffer) to obtain nuclear proteins exclusively 

(Scheme 5). 
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Cells were washed with cold PBS containing 1 mM MgCl2, harvested with 

Cytosolic buffer (10 mM HEPES, 1.5 mM MgCl2, 10 mM KCl, 1 mM EDTA, 

NP-40 0.1%, v/v, 1.5 M sucrose and protease and phosphatase inhibitor cocktail, 

pH 7.9), triturated with a micropipette to promote cell lysis, left on ice for 30 

minutes and vortexed for 10 seconds. After checking the cell lysis under a light 

microscope, extracts were centrifuged at 830 g for 10 minutes and the cytosolic 

fraction (supernatant) was removed and boiled for 5 minutes. Lysis of the nuclei 

was performed by re-suspending the nuclear pellet in Nuclear buffer (50 mM 

HEPES, 1.5 mM MgCl2, 10 mM KCl mM, 0.5 mM NaCl, 1 mM EDTA, NP-40 

1%, v/v, and protease and phosphatase inhibitor cocktail, pH 7.9), triturated with a 

micropipette, left on ice for 1 hour, vortexed at maximum speed for 10 seconds, 

boiled for 5 minutes and sonicated for 5 minutes. 

Scheme 5: Cytosolic and nuclear fractionation in vitro. Cytosolic and nuclear fractions were obtained 

following a differential centrifugation protocol. 
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6.3. Cytosolic and nuclear fractionation ex vivo 

To obtain cytosolic and nuclear fractions from brain, liver, heart and kidney 

tissue, a previously reported protocol (Dimauro et al., 2012) was used. Fresh 

tissue (approximately 50 mg) was washed with cold PBS, minced on ice using 

sharp scissor and re-suspended in 500 µl of STM buffer (250 mM sucrose, 50 mM 

Tris-HCl, 5 mM MgCl2, protease and phosphatase inhibitor cocktail, pH 7.4) and 

homogenized for 1 minute on ice using a Teflon pestle attached to a Potter-

Elvehjem homogeniser set to 1,000 rpm. The homogenate was then inspected and 

if intact tissue was still evident, the homogenisation was repeated. The 

homogenate was decanted into a centrifuge tube and maintained on ice for 30 

minutes, vortexed at maximum speed for 15 seconds and then centrifuged at 800 g 

for 15 minutes. The pellet was labelled as P0 and kept on ice, the supernatant was 

labelled as S0 ad used for subsequent isolation of cytosolic fraction (Scheme 6).  

 

Scheme 6: Cytosolic and nuclear fractionation ex vivo. Cytosolic and nuclear fractions were obtained 

following a differential fractionation protocol. 



 

 59 

The pellet P0 (containing nuclei and debris) was re-suspended in 500 µl of STM 

buffer, vortexed at maximum speed for 15 seconds and then centrifuged at 500 g 

for 15 minutes. Subsequently the above step, the nuclear pellet was labelled as P1 

and kept on ice, while the supernatant S1 (containing cell debris) was discarded. 

To further increase the purity, P1 fraction was washed in 500 µl of STM buffer, 

vortexed at maximum speed for 15 seconds and then centrifuged at 1,000 g for 15 

minutes. The supernatant was discarded and the pellet was labelled as P2 and re-

suspended in 300 µl of NET buffer (20 mM HEPES, 1.5 mM MgCl2, 0.2 mM 

EDTA, 20% glycerol, 1% Triton-X-100, protease and phosphatase inhibitor 

cocktail, pH 7.9) using a pipette to triturate until homogeneous. Pellet P5 was 

vortexed at maximum speed for 15 seconds and incubated on ice for 30 minutes. 

This fraction containing the nuclei were lysed with 20 passages through a 

micropipette and sonicated for 5 minutes. The lysate was centrifuged at 9,000 g 

for 30 minutes and the resulting supernatant was the nuclear fraction. 

Cytosolic fraction was extracted from S0 by centrifugation at 800 g for 10 

minutes. The pellet was discarded and the supernatant S1 was centrifuged at 

11,000 g for 10 minutes. The pellet was discarded and the supernatant S2 

(containing cytosol and microsomal fraction) was precipitated in 500 µl of 100% 

cold acetone at -20ºC for at least 1 hour, followed by centrifugation at 11,000 g 

for 10 minutes. The supernatant was discarded and the pellet P3 was re-suspended 

in 300 µl of STM buffer and labelled as cytosolic fraction. 

6.4. Cytosolic and mitochondrial fractionation 

To obtain cytosolic and mitochondrial fractions from cell culture, a differential 

centrifugation protocol was used (Almeida et al., 1998). Cells grown in 145 cm2 

plates were collected in Mitochondria Isolation Buffer (MIB, 320 mM sucrose, 1 

mM potassium EDTA, 10 mM Tris-HCl and the protease and phosphatase 

inhibitor cocktail, pH 7.4). Cells were centrifuged at 600 g for 5 minutes and the 

pellet re-suspended in MIB. After a 18 stroke homogenization step in a Teflon 

pestle attached to a Potter-Elvehjem homogeniser, homogenate was centrifuged 

three times at 1,300 g for 10 minutes, keeping the supernatants in every step. The 

mitochondrial pellet resulted from the final centrifugation (at 17,000 g for 12 
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minutes) was re-suspended in RIPA buffer, and the supernatant, containing the 

cytosolic fraction, was kept on ice (Scheme 7). 

 

 

6.5. Protein concentration determination 

Protein concentration in samples was determined using the commercially 

available BCA (bicinchoninic acid) protein assay kit (Pierce). This method is 

based on the reduction of Cu2+ (blue) to Cu+ by the peptide bond. The amount of 

Cu2+ reduced is proportional to the amount of protein present in the solution. 

Next, two molecules of BCA chelate with each Cu+ ion, forming a purple-colored 

Scheme 7: Cytosolic and mitochondrial fractionation in vitro. Cytosolic and mitochondrial fraction were 

obtained following a differential fractionation protocol. 
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complex that strongly absorbs light at wavelength of 562 nm that was measured 

with a Multiskan Ascent (Thermo Electron Corp) spectrophotometer. Protein 

concentration was determined using a BSA standard curve. 

7. ELECTROPHORESIS AND PROTEIN 

IMMUNODETECTION (WESTERN BLOT) 

Extract of whole cells, cytosolic-, nuclear- and mitochondrial-fraction were 

obtained as previously described (see Section 6). Aliquots of the samples and a 

molecular weight marker (PageRulerTM Plus Prestained Protein Ladder, Thermo 

Scientific) were loaded in a sodium dodecyl sulfate (SDS) polyacrylamide gel 

(acrilamide/bisacrilamide 29/1; BioRad Laboratories S.A.) and subjected to 

vertical electrophoresis (MiniProtean, Bio-Rad). Proteins were transferred to 

nitrocellulose membranes (Hybond®, Amersham Biosciences), blocked with 5% 

w/v low-fat milk in TTBS (20 mM Tris, 500 mM NaCl, 0.1 % v/v Tween 20, pH 

7.5) for 1 hour at room temperature, and incubated with the primary antibody 

(Table 2) over night at 4ºC. As loading control b-Actin was used for whole cells, 

GAPDH for cytosolic fraction, Lamin-B for nuclear fraction and VDAC for 

mitochondrial fraction. 

The following day, membranes were washed 3 times with TTBS and incubated 

with the secondary antibody (Table 2), conjugated with the horseradish 

peroxidase (HRP), in 2% w/v BSA in TTBS for 1 hour at room temperature. 

Signal was detected with the enhanced chemiluminescence kit (Pierce, Thermo 

Scientific) by exposing membranes on a Fuji Medical X-Ray Film (Fujifilm). For 

quantification, auto radiographies were scanned and the bands were analyzed 

using image treatment software (NIH Image, Wayne Rasband, National Institutes 

of Health). Values were expressed as the target protein/loading control band 

intensities ratio. 
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Voltage-dependent anion channel 

(VDAC)

Primary antibodies

Secondary antibodies

Anti-Mouse IgG (H+L)-HRP 

Conjugate
BioRad

Rabbit PC548

Santa Cruz

Antibody Host Dilution Reference Brand

Anti-Rabbit IgG-HRP conjugate

Goat

Goat

1:10,000

1:10,000

170-6516

sc-2030

Calbiochem

Gliceraldehide 3-phosphate 

dehydrogenase (GAPDH)

Glucose-6-phosphate 

dehydrogenase (G6PD)

Glutamate cysteine ligase (Catalytic 

subunit, GCL)

Human influenza hemagglutinin 

(HA)-tag

Histone deacetylase 4 (HDAC4)

Lamin B

Nuclear factor (erythroid-derived-2)-

like 2 (Nrf2)

1:1,000

Mouse

Rabbit

Rabbit

Mouse

Rabbit

Mouse

Rabbit

1:40,000

1:1,000

1:1,000

1:10,000

1:1,000

4300

A9521

1:500

1:1,000

-Actin Mouse 1:30,000 A5441 Sigma

Cleaved Caspase-3 (Asp-175) Rabbit 1:1,000 9661 Cell Signaling

sc-22755

26183

2072

sc-374015

ab62352

Sigma

Santa Cruz

Thermo Scientific

Cell Signaling

Santa Cruz

Abcam

6-phosphogluconate dehydrogenase 

(6PGD)
Rabbit 1:2,000 ab129199 Abcam

Catalase Rabbit 1:1,000 PA5-23246 Thermo Scientific

Ambion

Table 3 Antibodies employed for Western Blot immunodetection. Dilutions used, references and suppliers 

are specified. 
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8. MITOCHONDRIA ISOLATION 

To obtain large quantities of isolated mitochondria in order to measure mCAT 

activity (see Section 9), a different centrifugation protocol was used (Acín-Pérez 

et al., 2008). Cells grown in 145 cm2 plates were washed with cold PBS, collected 

and centrifuged at 500 g for 5 minutes. The supernatant was discarded and the 

pellet was re-suspended in 1 ml of Buffer A (83 mM sucrose, 10 mM MOPS (3-

(N-morpholino)propanesulfonic acid, pH 7.2) and homogenized (10 strokes) in a 

Teflon pestle attached to a Potter-Elvehjem homogeniser. The same volume of 

Buffer B (250 mM sucrose, 30 mM MOPS, pH 7.2) was added to the sample and 

the homogenate was centrifuged at 1,000 g for 5 minutes to remove unbroken 

cells and nuclei. The pellet was discarded and the supernatant was centrifuged at 

12,000 g for 2 minutes. The supernatant was discarded and the pellet, which 

contains the mitochondrial fraction, was washed in 200 µl of Buffer C (320 mM 

sucrose, 1 mM EDTA, 10 mM Tris-HCl, pH 7.4) and centrifuged at 12,000 g for 

2 minutes. The supernatant was discarded and the pellet, containing the washed 

mitochondria, was re-suspended in 200 µl of Buffer D (1 M 6-aminohexanoic 

acid, 50 mM Bis-Tris HCl, pH 7.0) (Scheme 8). Protein concentration was 

determined using the BCA method, as previously described (see Section 6.5). 
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9. mCAT ACTIVITY MEASUREMENT 

mCAT activity was measured from isolated mitochondria according to a 

previously published protocol (Quintana-Cabrera and Bolaños 2013), with some 

modifications. The assay is based on the ability of mCAT to neutralize the 

exogenous hydrogen peroxide. Mitochondria were incubated with different 

hydrogen peroxide concentrations for different times; once the reactions were 

stopped, samples were incubated with a solution containing Fe2+, which is 

oxidized by hydrogen peroxide at Fe3+. The incubation solution also contains 

SCN-, which reacts with Fe3+ to form the orange complex FeSCN2+, which 

absorbs light at wavelength of 492 nm (Scheme 9). The value of the absorbance is 

directly proportional to the residual hydrogen peroxide concentration. 

Scheme 8: Isolation of mitochondria. Large quantities of mitochondria were isolated 

following a previously published protocol (Acín-Pérez et al. 2008) based on centrifugal 

differentiation. 



 

 65 

 

To determine the mCAT activity, 5 µg of mitochondria were incubated in a final 

volume of 50 µl of 0.1 M Phosphate Buffer (PB) pH 7.4 with 0, 25, 50 and 100 

µM hydrogen peroxide for 0, 5, 10, 15 and 20 minutes. Reactions were stopped 

using 37% HCl. Then, 3.2 mM (NH4)2Fe(SO4)2 (ammonium ferrous sulfate 

hexahydrate) and 180 mM KSCN (potassium thiocyanate) were added and the 

samples were incubated for 10 minutes at room temperature in the dark. The 

absorbance at 492 nm was measured using a Fluoroskan Ascent FL (Thermo 

Fisher) and the concentration of the residual hydrogen peroxide was calculated 

using a standard curve. 

Scheme 9: Evaluation of the mCAT activity. To determine the mCAT activity, a 

colorimetric assay based on the formation of the orange complex FeSCN2+ was used. 
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10.  IMMUNOCYTOCHEMISTRY 

Astrocytes were grown on glass coverslips. At DIV15 they were fixed with 4% 

paraformaldehyde (v/v) in PBS for 20 minutes and washed with PBS. 

Subsequently, astrocytes were incubated in 5% goat serum, 1% BSA PBS-Tx 

0.2% for 1 hour at room temperature. Afterwards, they were incubated with the 

primary antibody (Table 3) in 2% goat serum, 1% BSA, PBS-Tx 0.2% overnight 

at 4ºC. The following day astrocytes were washed with PBS-Tx 0.2% and 

incubated with the secondary antibody (Table 3) and the nuclear marker DAPI 

(Sigma, Ref D9542, 1/10,000) in 2% goat serum, 1% BSA, PBS-Tx 0.2% for 1 

hour at room temperature. Subsequently, glass coverslips were placed on a glass 

slide using SlowFade® (Molecular Probes) in order to avoid fluorescence loss. 

Confocal microscopy images were obtained using a spinning disk confocal 

microscopy Olympus IX81 and processed with Adobe Photoshop cs5.5 software. 

 

 

Goat 1:500 111-165-003 Jackson ImmunoResearch

Cy
TM

2-conjugated AffiniPure Goat 

Anti Rabbit IgG (H+L)
Goat 1:500 111-225-144 Jackson ImmunoResearch

Secondary antibodies

Cy
TM

2-conjugated AffiniPure Goat 

Anti Mouse IgG (H+L)
Goat 1:500

Cy
TM

3-conjugated AffiniPure Goat 

Anti Rabbit IgG (H+L)

115-225-003 Jackson ImmunoResearch

Human influenza hemagglutinin 

(HA)-tag
Mouse 1:100 2367 Cell Signaling

Nuclear factor (erythroid-derived-2)-

like 2 (Nrf2)
Rabbit 1:500 ab62352 Abcam

Antibody Host Dilution Reference Brand

Primary antibodies

Heat shock protein 60 (HSP60) Rabbit 1:500 ab46798 Abcam

Table 3: Antibodies employed for immunocytochemistry. Dilutions used, references and suppliers are 

specified. 
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11.  RNA PURIFICATION 

To obtain a total RNA fraction, the GeneluteTM Mammalian Total RNA kit 

(Sigma-Aldrich) was used. 

Cells were lysed with a solution of b-mercaptaethanol:Lysis Solution in 1:100 

proportion. The lysates were filtered through a Genelute Filtration Column and 

centrifuged at 16,000 g in order to eliminate cellular debris and discard the DNA. 

An equivalent 70% ethanol volume (prepared in DEPC (dyethyl pyrocarbonate) 

water RNase free) was added and the samples were vortexed. After that, the 

samples were passed to a Genelute Binding Column, which retains the RNA. The 

filtered was discarded and the column was washed with the Wash Solution 1. 

Once the RNA was separated, the column was treated with 100 U of DNAse I 

(Roche) for 15 minutes at room temperature in a buffer containing 400 mM Tris-

HCl, 100 mM NaCl, 60 mM MgCl2, 10 mM CaCl2, pH 7.9. To eliminate residual 

DNA, column was washed first with the Wash Solution 1 and then with the Wash 

Solution 2 Concentrate/ethanol. Finally, the total RNA was eluted with 50 µl of 

Elution Solution through a centrifugation at 16,000 g for 1 minute. 

To obtain a micro-RNA (miRNA) enriched fraction, the miRNeasy kit (Qiagen) 

was used. Cells were lysed with QIAzol Lysis reagent, homogenized by vortexing 

for 1 minute and left at room temperature for 5 minutes to promote the 

dissociation of nucleoprotein complexes. Subsequently, chloroform was added, 

the tube was vortexed for 15 seconds and left at room temperature for 3 minutes. 

After that, the tube was centrifuged at 12,000 g at 4ºC, The aqueous phase was 

transferred to a new tube and mixed with an equivalent 70% ethanol volume 

(prepared in DEPC water RNase free) and the tube was vortexed. The sample was 

then passed to an RNeasy Mini spin column, which retains the larger RNAs. The 

filtered containing the miRNA was passed to a new tube and mixed with 0.65 

volumes of 100% ethanol. The sample was passed to a RNeasy Mini spin column 

and the filtered was discarded. To eliminate residual impurities, the column was 

washed first with RWT buffer, then with RPE buffer and finally with 80% ethanol 

(prepared in DEPC water RNAse free). The spin column membrane was dried by 

centrifugation at 8,000 g for 2 minutes and the miRNA-enriched fraction was 
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eluted in 14 µl of RNAse free water through a centrifugation at 8,000 g for 1 

minute. 

Purified RNA concentration was measured using the UV-Vis Nanodrop 2000 

(Thermo Scientific). The absorbance ratio calculated between 260 and 280 nm 

(A260/A280), which determines the RNA purity, was 1.8 – 2. 

12.  REAL TIME QUANTITATIVE POLYMERASE CHAIN 

REACTION 

Real Time quantitative Polymerase Chain Reaction (RT-qPCR) was used to 

evaluate the relative gene expression. This method compares target genes versus a 

housekeeping gene (b-actin in this case) of constant expression in the samples 

studied, at the same time that relativizes this expression to a control condition. 

Concentration of primers for the RT-qPCR was optimized, calculating the 

efficiency for every pair of primers. Efficiencies in the range 90-110% were 

considered optimal conditions. To achieve this, serial RNA dilutions were 

incubated with different primers concentrations. In the Table 4 they are shown the 

concentrations and the sequences of the primers used, following their 

optimization, for the different mRNA. This step is necessary to compare the 

different gene expression using the comparative method of Ct (DDCt).  
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To perform the RT-qPCR the commercial kit Power Sybr Green RNA-to-Ct 1-

Step kit (Applied Biosystems) was used, following the manufacture’s protocol. 

This kit allows the reverse transcription of the mRNA to cDNA and the following 

PCR in a unique step. 100 ng of purified RNA in a final volume of 20 µl were 

used. Every determination was performed in triplicate using the thermocycler 

Mastercycler ep Realplex (Eppendorf). 

RT-qPCR conditions were: 30 minutes at 48ºC (reverse transcription step), 10 

minutes at 95ºC (DNA polymerase activation step), 40 cycles of 15 seconds at 

95ºC (denaturalization step) followed by 1 minute at 60ºC (annealing and 

elongation steps). 

The value obtained for every reaction was the Ct (threshold cycle), which 

represents the cycle number at which the fluorescence generated within a reaction 

crosses the fluorescence threshold, a fluorescent signal significantly above the 

background fluorescence. For every gene studied, including the housekeeping 

Gene Forward sequence 5'  3' Concentration (μM)

 5'-ATGCAGGCCAACCGTCTATT-3' 5'-TGTCTGACTCATGCAGGTCT-3'

Reverse sequence 5'  3'

0.4

0.3G6pd

 5'-AGAGTCATGAGCTGCCTGAC-3' 5'-CAACGTCACACTTCATGATG-3'-Actin

6pgd 5'-ATCTCCTACGCCCAAGGCTTTATG-3' 5'-AATTGAGGGTCCAGCCAAACTCAG-3' 0.3

0.4Prdx1

Trx1 0.4

5'-GTCAAACACTTCTCGACTTAC-3'

5'-CAAGTGATTGGCGCTTCTGT-3' 5'-TGTTCATGGGTCCCAATCCT-3'

5'-GGTGTGGACCTTGCAAAATG-3' 5'-GGCAGTCATCCACATCCACTT-3'

5'-GCAGGACATGGATTTGATTGA-3' 0.4Nrf2

Gclc 0.3

5'-TTCTAAGACCTGGAAGCCAC-3'

0.4Gpx2

0.4Ho-1

0.4Nqo1

5'-AGCACAGGGTGACAGAAGAG-3' 5'-GAGGGACTCTGGTCTTTGTG-3'

5'-GGGGACATGAACGTCATTCTCT-3'

5'-CGGGACTACAACCAGCTCAAT-3' 5'-TCCGAACTGGTTGCAAGGGAA-3'

 5'-GGCACAAGGACGTGCTCAAGT-3' 5'-TTTGTCCTCTCCCCCTTCTC-3'

Nox4 5'-TGCAGAGATATCCAGTCCTTCC-3' 5'-TCCCATCTGTTTGACTGAGG-3' 0.1

Nox1 5'-AAATTCCAGCGTGCCGACAA-3' 5'-AACCAGGCAAAGGCACCTGT-3' 0.1

Nox2 5'-ATGCAGGAAAGGAACAATGC-3' 5'-GTGCACAGCAAAGTGATTGG-3' 0.1

Table 4: Sequences and concentrations of primers used for the RT-qPCR. 6pgd: 6-phosphogluconate 

dehydrogenase; G6pd: Glucose-6-phoshate dehydrogenase; Gclc: Glutamate cysteine ligase, catalytic 

subunit; Gpx2: Glutathione peroxidase-2; Ho-1: Heme oxygenase-1; Nqo1: NAD(P)H dehydrogenase 

quinone-1; Nox1: NADPH-oxidase-1; Nox2: NADPH-oxidase-2; Nox4: NADPH-oxidase-4; Nrf2: Nuclear 

factor (erythroid-derived 2)-like 2; Prdx1: Peroxiredoxin-1; Trx1: Thioredoxin-1. 
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gene (b-actin), a Ct is obtained. DCt sample is the Ct value for any sample 

normalized to the endogenous housekeeping gene (b-actin). 

Comparative method of Ct (DDCt) relates the number of copies of mRNA between 

different conditions, which is obtained using the formula: 

2-[(Ct sample – Ct housekeeping gene) – (Ct control – Ct housekeeping gene)] 

Results are expressed as arbitrary unit (fold) between the control, to which is 

assigned the value of 1, and the sample condition. Expression levels equal to 1 

indicate no differences between the two conditions; lower levels to 1 indicate a 

decreased gene expression in the sample compared to the control condition; on the 

contrary, higher levels to 1 indicate an increased gene expression in the sample 

compared to the control. 

13.  miRNA EXPRESSION ANALYSIS 

All the following techniques have been performed at the ADN Sequencing service 

of NUCLEUS, University of Salamanca. 

13.1. miRNA reverse transcription 

To perform the miRNA reverse transcription, 50 ng of miRNA-enriched fraction 

was mixed with 0.1 µl of 100 nM dNTP, 0.14 µl of RNase inhibitor (20 U/ µl), 

0.67 µl of reverse transcriptase (50 U/ µl), 1 µl RT-Buffer 1X and 4.5 µl of primer 

pool (mixed to allow a final concentration of 0.05X for hsa-miR-1 and hsa-miR-

206 and 0.5X for mmu-miR-202-5p) in a final volume of 10 µl. All reagents were 

purchased from Applied Biosystems. Samples were incubated for 5 minutes on 

ice, 30 minutes at 16ºC, 30 minutes at 42ºC and finally 5 minutes at 85ºC. 

13.2. Pre-PCR amplification 

Before the expression analysis of miRNA, the cDNA was pre-amplified. To do so, 

pre-PCR amplification reaction was done at 5 µl containing 2.5 µl TaqMan 

PreAmp Master Mix (2X), 1.25 µl of pooled TaqMan assay mix (0.2X each 

assay) and 1.25 µl of cDNA. The pre-amplification PCR was performed at one 
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cycle 95ºC for 10 minutes, 10 cycles at 95ºC for 15 seconds followed by 4 

minutes at 60ºC. All reagents were purchased from Applied Biosystems. 

13.3. miRNA expression analysis using 48.48 dynamic array 

Relative miRNA expression was evaluated using a 48.48 dynamic array (Fluidigm 

Corporation). This method compares target miRNA versus a miRNA endogenous 

control (mmu-miR-202-5p in this case) of constant expression in the samples 

studied, at the same time that relativizes this expression to a control condition. 

miRNA expression analysis was carried out using the 48.48 dynamic array 

(Fluidigm Corporation) following the manufacturer’s protocol. Specifically, a 5 µl 

of sample mixture was prepared for each sample containing 2.5 µl TaqMan 

Universal Master Mix (No UNG) (Life Technologies), 0.25 µl of 20X GE Sample 

Loading Reagent (Fluidigm Corporation) and 2.25 µl of pre-amplified cDNA. 

Then, 5 µl of Assay mix was prepared with 2.5 µl of 20X TaqMan miRNA assay 

(Thermo Scientific) and 2.5 µl of 2X Assay Loading Reagent (Fluidigm 

Corporation). An integrated fluidic circuit (IFC) controller was used to prime the 

fluidic array (chip) with control line fluid and then with samples and assay mixes 

in the appropriate inlets. After loading, the chip was placed in the BioMark HD 

Instrument for PCR at 96.5ºC for 10 minutes, followed by 40 cycles at 96ºC for 

15 seconds and 60ºC for 1 minute. Different miRNA expression was calculated 

using the comparative method of Ct (DDCt), as previously described in Section 12. 

Data were analysed with Fluidigm Real-Time PCR Software (Fluidigm 

Corporation). TaqMan assays used were mmu-miR-202-5p, hsa-miR-1 and hsa-

miR-206 (Thermo Scientific). 

14.  GLUTATHIONE CONCENTRATION DETERMINATION 

To determinate the glutathione concentration, cells were washed with cold PBS 

and rapidly harvested with 1% w/v 5-sulfosalicylic acid with a cell scraper. An 

equal volume of 0.1 M NaOH was added to the same amount of cells for protein 

quantification. Cell lysates were centrifuged at 13,000 g for 5 minutes and the 

total glutathione concentration, which is the sum of reduced glutathione plus two-
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fold the oxidized (GSx = GSH + 2GSSG), was measured in the supernatant using 

a previously described protocol (Tietze 1969). The assay is based on the GSH 

(reduced glutathione) oxidation at expense of the DTNB (5,5'-dithiobis-(2-

nitrobenzoic acid) (Sigma-Aldrich) reduction to TNB (λmax=405 nm). The newly 

formed GSSG (oxidized glutathione) is regenerated to GSH through the 

enzymatic activity of the glutathione reductase, which need NADPH (H+) as a co-

factor. This is a cyclic reaction (Scheme 10), whose reaction rate is directly 

proportional to the GSx (total glutathione) concentration. 

 

 

This determination was realized in a 96-wells plate mixing 10 µl of the sample, 90 

µl of water and 100 µl of the buffer reaction (1 mM EDTA, 0.3 mM DTNB, 0.4 

mM NADPH, 1 U/ml glutathione reductase, prepared in 0.1 mM PB, pH 7.5). 

Increases of absorbance, following the reaction between GSH and DTNB, was 

measured using a Fluoroskan Ascent FL (Thermo Fisher) at 405 nm, every 15 

seconds during 2.5 minutes (10 iterations). 

GSx concentration was determined extrapolating the slopes to those obtained 

from a GSSG standard curve (0-50 µM) and the results were expressed as nmol 

GSx / mg protein. 

Scheme 10: GSx enzymatic determination. DTNB: 5,5'-dithiobis-(2-nitrobenzoic acid); 

GSH: reduced glutathione; NADP+: Nicotinamide Adenine Dinucleotide Phosphate; TNB: 5’-

thio-2-nitrobenzoic acid; GSSG: oxidized glutathione; NADPH: Nicotinamide Adenine 

Dinucleotide Phosphate, reduced form. 
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15.  CASPASE-3 ACTIVITY DETERMINATION 

To evaluate cellular apoptosis, the activity of the enzyme Caspase-3 (CSP-3) was 

chose as apoptotic marker. For this purpose, Caspase 3 Assay Kit, Fluorimetric 

(Sigma-Aldrich) was used following the manufacture’s protocol. This assay is 

based on the hydrolysis of the peptide substrate Ac-DEVD-AMC (acetyl-Asp-

Glu-Val-Asp-7-amino-4-methylcoumarin) by CSP-3, resulting in the release of 

the fluorescent AMC (7-amino-4-methylcoumarin) moiety (Scheme 11). 

 

The excitation and emission wavelengths of AMC are 360 nm and 460 nm, 

respectively. The concentration of the AMC released can be calculated from a 

standard curve determined with defined AMC solutions. 

Cells were lysed with a Lysis Buffer (50 mM HEPES, 5 mM CHAPS, 5 mM 

DTT, pH 7.4) for 20 minutes on ice. Successively, Assay Buffer containing the 

Ac-DEVD-AMC substrate (20 mM HEPES, 2 mM EDTA, 0.1% CHAPS, 5 mM 

DTT, 16 µM Ac-DEVD-AMC, pH 7.4) was added, the solution was mixed well 

by pipetting and 200 µl was transferred to a 96 wells plate. The fluorescence was 

recorded for 2 hours at 20 minutes intervals at 37 ºC using a Fluoroskan Ascent 

FL (Thermo Scientific) (λexc=360 nm, λem=460 nm). CSP-3 activity was 

determined as AMC release rate extrapolating the slopes to those obtained from a 

AMC standard curve and the results were expressed as arbitrary unit (fold) 

between the control, to which is assigned the value of 1, and the sample condition. 

16.  PENTOSE-PHOSPHATE PATHWAY (PPP) FLUX 

MEASUREMENT 

The PPP flux was measured in attached cells following a previously published 

protocol (Rodriguez-Rodriguez et al., 2013). This method determines the PPP 

Scheme 11: Caspase-3 activity determination. Ac-DEVD-AMC: acetyl-Asp-Glu-Val-Asp-7-amino-4-

methylcoumarin; Ac-DEVD: acetyl-Asp-Glu-Val-Asp; AMC: 7-amino-4-methylcoumarin. 
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flux by determining the difference of 14CO2 produced from D-[1-14C]-glucose, 

metabolized both in the tricarboxylic acid cycle and in the PPP, and the 14CO2 

produced from D-[6-14C]-glucose, metabolized only in the tricarboxylic acid 

cycle, in the reactions catalyzed by isocitrate dehydrogenase and α-ketoglutarate 

dehydrogenase (Scheme 12A and 12B). 
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Scheme 12A: Schematic representations of the fate of the radiolabeled carbons used for 

the PPP flux assessment. D-[1-14C]-glucose is decarboxylated in the reaction catalysed by 6-

phosphogluconate dehydrogenase. D-[6-14C]-glucose that enters PPP is transformed back into 

GAP or F6P in the non-oxidative branch of PPP. D-[6-14C]-glucose and D-[1-14C]-glucose 

can also enter glycolysis. After their transformation in DHAP and GAP they are 

indistinguishable. 
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To do so, cells were seeded in the bottom of 25 cm2 flasks. At DIV15 in culture, 

medium was replaced by 1.5 ml KRPG in presence of 0.5 µCi/ml of either D-[1-
14C]-glucose or D-[6-14C]-glucose. Before sealing the flask with a rubber cap, a 

1.5-ml Tube containing 0.8 ml of benzetonium hydroxide (Sigma-Aldrich) for 
14CO2 trapping was fixed inside the flask by holding it from the flask tab using a 

rib (Scheme 13).  

Scheme 12B: Schematic representations of the fate of the radiolabeled carbons used for 

the PPP flux assessment. Radiolabeled pyruvate, proceeding from D-[1-14C]-glucose or D-

[6-14C]-glucose enters TCA and is decarboxylated in the different turns of the cycle in the 

reactions catalysed by isocitrate dehydrogenase and a-ketoglutarate dehydrogenase. 
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In order to ensure an adequate O2 supply throughout incubation period, the 

atmosphere of the flasks was gassed with an O2:CO2  (95:1) mixture for 20 

seconds, before the flasks were sealed and incubated in a thermostatic orbital 

shaker for 90 minutes. After the incubation period, reaction was stopped by 

adding 0.15 ml of 20% w/v perchloric acid and flasks were incubated for another 

90 minutes to allow 14CO2 trapping by the benzetonium hydroxide. The tubes 

were placed in a vial containing Optiphase HiSafe III (PerkinElmer) scintillating 

liquid, vortexed at maximum speed for 20 seconds and left to equilibrate 

overnight. The following day, counts per minute was measured using a Tri-Carb 

4810 TR (PerkinElmer) liquid scintillating analyser and results were expressed as 

nmol of glucose turned into 14CO2 per hour and per mg protein. 

The efficiency of 14CO2 trappping by the benzetonium hydroxide was determined 

to be a 75% (Rodriguez-Rodriguez et al., 2013). Total µCi in the tube where then 

measured for calculating the percentage of 14CO2 trapped, which was taken in 

account for the calculations. 

Scheme 13: Schematic representation of the method for PPP 

flux determination in attached cells. 
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17. NADPH/NADP+ RATIO DETERMINATION 

To determine the concentration of the nucleotides NADPH and NADP+, the 

commercial kit NADP/NADPH Assay Kit (Colorimetric) (Abcam) was used. The 

enzymes in the system specifically recognize NADP and NADPH in an enzyme 

cycling reaction.  

Cells were trypsinized and centrifuged at 500 g for 5 minutes. The supernatant 

was discarded and the pellet was re-suspended in 500 µl of NADP/NADPH 

Extraction Buffer and kept on ice for 10 minutes. Samples were then vortexed for 

10 seconds and centrifuged at 14,000 rpm for 5 minutes to remove insoluble 

material. The extracted NADP/NADPH supernatant was transferred to a new tube, 

labelled as NADPt (total NADP, containing NADPH and NADP+) and kept on 

ice. To determine NADPH only, 200 µl of NADPt was separated into a new tube 

and heated at 60 ºC for 30 minutes to decompose NADP+. The samples containing 

only NADPH were then cooled on ice and centrifuged 1 minute at 14,000 rpm.  

The determination was realized in a 96-wells plate mixing 50 µl of the sample in 

presence of 100 µl of the buffer reaction (98 µl NADP Cycling Buffer, 2 µl 

NADP Cycling Enzyme) and incubated 5 minutes at room temperature to convert 

NADP+ to NADPH. Then, 10 µl of NADPH Developer was added to each well 

and incubated for 2 hours at room temperature. The absorbance at 450 nm was 

measured using a Fluoroskan Ascent FL (Thermo Fisher). 

NADPt and NADPH concentration was determined using a NADPH standard 

curve (0-100 pmol/well). NADP+ concentration was calculated from the formula 

NADPt – NADPH = NADP+ 

18.  de novo LIPOGENESIS FLUX MEASUREMENT 

To measure the flux of the de novo lipogenesis (DNL), a previously reported 

protocol (Tabernero et al., 1993) with some modifications was used. This method 

determines the DNL flux by determining the incorporation of 14C in the total 

lipidic fraction. To do so, astrocytes were seeded in 6 wells plate. At DIV15, 

medium was replaced by KRPG in the presence of 3 µCi/ml of D-[6-14C]-glucose 
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and cells were incubated in a thermostatic orbital shaker at 37ºC for 3 hours. After 

the incubation period, cells were washed twice with PBS, recollected and 

centrifuged at 500 g for 5 minutes. The supernatant was discarded and the pellet 

was re-suspended in 500 µl of a mixture chloroform/methanol (2:1, v/v) and 

incubated at -20ºC for 16 hours. Subsequently, 250 µl of 0.3% (w/v) NaCl 

saturated with chloroform were added, the samples were centrifuged at 1,500 g for 

15 minutes and the aqueous phase, containing the cellular hydro soluble 

components, was discarded. Later, this same process was repeated, this time using 

250 µl of 0.3% (w/v) NaCl saturated with chloroform and 180 µl of methanol. 

The resulting chloroformic phase was passed to a new tube. Every step was 

performed at 4ºC. An aliquot of 50 µl of the chloroformic phase containing the 

lipid fraction, was placed in a vial containing Optiphase HiSafe III (PerkinElmer) 

scintillating liquid, vortexed at maximum speed for 20 seconds and left to 

equilibrate overnight. The following day, counts per minute was measured using a 

Tri-Carb 4810 TR (PerkinElmer) liquid scintillating analyser and results were 

expressed as nmol of glucose incorporated in lipids per hour and per mg protein. 

19.  STATISTICAL ANALYSIS 

All measurements were carried out at least in three different culture preparations 

or animals, and the results were expressed as the mean values ± SEM (Standard 

Error of the Mean). For the comparison between two groups of values, the 

statistical analysis of the results was performed by the Student’s t test. The 

statistical analysis was performing using the SPSS software. In all cases, p<0.05 

was considered significant. 
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1. mCAT expression down-modulates endogenous mROS in 

MEFs 

Astrocytes, despite their major antioxidant defenses, produce higher 

mitochondrial reactive oxygen species (mROS) compared with neurons under 

basal conditions (Lopez-Fabuel et al., 2016). The vast majority of studies on 

ROS-mediated cell signalling have used a strategy based on increasing ROS, 

either by exogenous or endogenously-supplied ROS. However, this approach 

might mask the beneficial effects of mROS. In this work the alternative approach 

to down-modulate mROS abundance specifically is used. 

Several transgenic mouse models able to down-modulate mROS have been 

generated in the last decades. Nevertheless, every model presents a major 

disadvantage. The overexpression of mitochondrial superoxide dismutase 

(MnSOD) efficiently decrease the amount of superoxide, but it increases the 

concentration of hydrogen peroxide (Chen et al., 1998). Down-modulation of 

endogenous mitochondrial hydrogen peroxide has been achieved through the 

overexpression of peroxiredoxin-3 (Matsushima et al., 2006). The 

peroxiredoxin/thioredoxin complex is a very efficient system to convert hydrogen 

peroxide into water. However, to regenerate reduced peroxiredoxin, NADPH is 

required (Patenaude et al., 2005). The consumption of reducing equivalents will 

thus modify the NAPDH/NADP+ ratio, changing the redox state that could alter 

cellular metabolism. Recently, it was demonstrated that the expression of a 

mitochondrial form of the glutamate-cysteine ligase (mGCL) down-modulates 

mROS (Quintana-Cabrera et al., 2012). mGCL directs the biosynthesis of g-

glutamylcysteine (g-GC, the immediate glutathione precursor) to the 

mitochondria, where it efficiently detoxifies mROS acting as glutathione 

peroxidase-1 cofactor (Quintana-Cabrera et al., 2012). However, it consumes 

ATP, cysteine and glutamate, interfering in cellular metabolism. A clean manner 

to down-modulate mROS is the expression of a mitochondrial form of catalase 

(mCAT). A mCAT mouse model has been generated (Schriner et al., 2005). 

However, this mCAT model was generated by non site-directed insertion of the 
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construct, thus likely affecting the expression of other genes. Furthermore, this 

technique does not allow to control the number of copies inserted. 

Accordingly, we aimed to generate a new mCAT mouse by insertion of the 

construct in the Rosa26 locus of C57Bl/6 embryonic stem cells by homologous 

recombination. 

Preliminary studies were performed in immortalized MEFs transfected with the 

pIRES2eGFP-mCAT (henceforth mCAT) or the empty plasmid, in order to 

ascertain the correct expression of the construct. The data obtained show that cells 

transfected with mCAT express the HA tag (Figure 1A), and higher catalase 

abundance (Figure 1B) compared to MEFs transfected with the empty plasmid. 

 

 

Figure 1: HA occurrence and catalase abundance in transfected MEFs.  Immunoblot revealed that MEFs 

transfected with mCAT show increased abundance of catalase (A) and express the HA tag (B) compared to 

the empty plasmid. b-Actin was used as loading control. Data are expressed as mean ± S.E.M.; *p<0.05 

Student’s t-test; n=3 independent experiments. 



 

 85 

Next, with the aim to establish whether mCAT is able to detoxify hydrogen 

peroxide, the functionality of the enzyme was investigated. The catalytic activity 

of mCAT was assessed in isolated mitochondria in presence of different 

concentrations of exogenous hydrogen peroxide. As shown in Figure 2, 

mitochondria isolated from MEFs expressing mCAT neutralize exogenous 

hydrogen peroxide faster than cells transfected with the empty plasmid. Analyzing 

these results, it seems that mCAT is not able to down-modulate endogenous 

mROS, considering that in absence of exogenous hydrogen peroxide there are no 

differences between mitochondria expressing mCAT and the empty plasmid. 

However, the colorimetric method used to measure mCAT activity is not sensitive 

enough to detect endogenous mROS levels. 

 

 

The release rate of mROS in basal conditions was then assessed using the Amplex 

Red, a non-fluorescent probe that is selectively oxidized by extracellular hydrogen 

peroxide to the fluorescent molecule resorufin in presence of the horseradish 

peroxidase. This assay is very sensitive and allows to detect hydrogen peroxide in 

the picomolar range (Mishin et al., 2010; Mohanty et al., 1997). First, the 

hydrogen peroxide release rate was measured in mitochondria isolated from 

Figure 2: mCAT expression increases mitochondrial hydrogen peroxide detoxification in MEFs. 

Incubation of isolated mitochondria with different concentrations of exogenous hydrogen peroxide for 

different time period shows that mCAT expression increases significantly the rate of hydrogen peroxide 

neutralization at all concentration used. In the absence of exogenous hydrogen peroxide, there were no 

differences between mitochondria expressing mCAT and the empty plasmid. Data are expressed as mean ± 

S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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transfected MEFs. As shown in Figure 3, mitochondria that express mCAT 

produce lower hydrogen peroxide release rate compared to the empty plasmid. 

Considering that hydrogen peroxide diffuses through biological membranes (Han 

et al., 2003), its mitochondrial production may affect the rest of the cell. As 

illustrated in Figure 3, the expression of mCAT down-modulates hydrogen 

peroxide release rate from whole cells too. Hence, mCAT is functional and its 

expression in MEFs is sufficient to down-modulate endogenous levels of mROS.  

 

 

2. Endogenous mROS modulate NRF2 abundance and activity in 

immortalized MEFs 

The cellular abundance and the consequent nuclear translocation of NRF2 is 

mainly controlled by the complex formed by the redox sensitive protein KEAP1 

and Cul3, which binds and ubiquitinates NRF2 for its proteasomal degradation 

(Itoh et al., 1999). Oxidation of three Cys residues on KEAP1 causes a 

conformational change on the KEAP1-Cul3 complex that does not allow the 

Figure 3: mCAT expression down-modulates endogenous mROS and ROS levels in transfected MEFs. 

Mitochondria and intact MEFs expressing mCAT show a ~0.4 fold lower hydrogen peroxide release rate 

when compared to the empty plasmid. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 

independent experiments. 
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ubiquitination and recycling of the complex (Baird et al., 2013). In this situation, 

de novo synthesized NRF2 can accumulate and translocate to the nucleus, where it 

up-regulates the transcription of its target genes (Baird et al., 2013). 

With the aim to investigate whether endogenous mROS are sufficient to activate 

the NRF2 pathway, NRF2 protein abundance was measured by immunoblot. As 

shown in Figure 4A, MEFs expressing mCAT express lower NRF2 levels 

compared to the empty plasmid. 

Afterwards, we aimed to ascertain whether NRF2 down-modulation affected the 

expression of antioxidant genes by analyzing the mRNA levels of three of its 

target genes. Using b-actin as housekeeping gene, the expression of the 

glutamate-cysteine ligase catalytic subunit (Gclc), heme oxygenase 1 (Ho-1) and 

NADPH quinone dehydrogenase 1 (Nqo1) were measured by RT-qPCR. As 

shown in Figure 4B the levels of Gclc, Ho-1, and Nqo1 were 18%, 30% and 44% 

lower in MEFs transfected with mCAT compared to the empty plasmid, 

respectively. 

These results indicate that endogenous mROS modulate the NRF2 protein 

abundance and the transcription of some of its target genes in MEFs. 
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3. mCAT expression down-modulates physiological endogenous 

mROS in primary astrocytes 

In light of the preliminary data obtained in immortalized MEFs, primary 

astrocytes were transfected with mCAT in order to ascertain whether its 

expression down-modulates endogenous mROS in primary glial cells too. 

Figure 4: mROS modulate NRF2 abundance and its transcriptional activity in MEFs. (A) mCAT 

expression decreases NRF2 abundance in MEFs. b-Actin was used as loading control. (B) mRNA levels of 

Gclc, Ho-1 and Nqo1 were significantly decreased in MEFs expressing mCAT when compared to the empty 

plasmid. b-actin was used as housekeeping gene. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-

test; n=3 independent experiments. 
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Astrocytes transfected with mCAT show the HA tag, indicating the correct mCAT 

expression (Figure 5A). Considering that in primary astrocytes the efficiency of 

transfection is low (~30% of cells were transfected, compared to >70% MEFs 

transfected), cells expressing mCAT slightly decrease hydrogen peroxide release 

rate (~13%) compared to the empty plasmid (Figure 5B). Thus, the expression of 

mCAT down-modulates endogenous mROS levels in primary astrocytes. 

 

 

4. Generation of constitutive +/mCAT mouse 

Considering the preliminary results in transfected immortalized MEFs and 

primary astrocytes, we generated the Cre recombinase-inducible ROSA26-floxed 

knock-in mouse harboring the floxed-mCAT by homologous recombination. 

In order to express mCAT ubiquitously, mCATfloxed/+ mice were crossbred with 

(CMV)-Cre recombinase mice under a C57Bl/6 background, which yielded the 

C57Bl6+/mCAT mouse line (henceforth mCAT). The offspring was genotyped 

(Figure 6) and used to obtain +/mCAT immortalized MEFs and primary 

astrocytes. 

Figure 5: HA occurrence and ROS levels in transfected primary astrocytes. Primary astrocytes were 

transfected 24h before the experiments. (A) Immunoblot revealed that primary astrocytes transfected with 

mCAT express the HA tag. b-Actin was used as loading control. (B) Hydrogen peroxide production was 

lower in astrocytes expressing mCAT when compared to the empty plasmid. Data are expressed as mean ± 

S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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5. mCAT constitutive expression in MEFs down-modulates 

hydrogen peroxide release 

In order to confirm the correct expression and the sub-cellular localization of 

mCAT construct, the occurrence of HA tag was evaluated in MEFs by 

immunoblot. First of all, detection of the HA tag was performed in the whole 

extract obtained from immortalized MEFs (Figure 7A). The results confirm that 

+/mCAT MEFs express the HA tag, while WT (or +/+) do not. Next, 

mitochondrial localization of the mCAT was confirmed. After a sub-cellular 

fractionation, HA tag detection was carried out in the cytosolic and in the 

mitochondrial fractions of MEFs (Figure 7B). As expected, only mitochondrial 

fraction obtained from +/mCAT MEFs expresses the HA tag. 

The following step was to confirm that the constitutive expression of mCAT 

down-modulates endogenous ROS levels. Using the Amplex Red probe, hydrogen 

peroxide release rate from intact MEFs was measured. As shown in Figure 7C, 

+/mCAT MEFs released hydrogen peroxide 43% slower than WT. 

These results confirm that mCAT is correctly localized in the mitochondria of 

+/mCAT MEFs and its constitutive expression down-modulates endogenous 

release of ROS. 

Figure 6: Example of a PCR. The genotype of the mice was determined by PCR. Wild type mice present 

only one band at 729 bp, while for the mCAT animals an additional band at 245 bp was detected. As controls, 

DNA from the tail of progenitor mice was used. 
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6. mCAT constitutive expression in primary astrocytes 

In light of the previous results confirming the correct expression and activity of 

mCAT in MEFs, the occurrence of mCAT was confirmed in primary astrocytes. 

First, the expression of HA tag and the abundance of catalase were detected by 

immunoblot in whole cell extracts. As expected, +/mCAT astrocytes showed 

higher (~6 fold) catalase abundance compared to the WT (Figure 8A) and they 

expressed the HA tag (Figure 8B). Subsequently, the mitochondrial localization 

of mCAT was confirmed. After a subcellular fractionation, HA tag was detected 

in mitochondria isolated from +/mCAT astrocytes (Figure 8C). However, a slight 

Figure 7: Constitutive mCAT expression decreases endogenous ROS release in MEFs. Expression of HA 

tag in MEFs that constitutively express mCAT was assessed by immunoblot in (A) whole cells and (B) 

cytosolic and mitochondrial fractions. HA tag was detected only in the +/mCAT MEFs and localized only in 

the +/mCAT mitochondria. b-Actin was used as loading control for the whole cells extract; GAPDH was 

used as loading control for the cytosolic fraction; VDAC was used as loading control for the mitochondrial 

fraction. (C) Intact cells expressing constitutively mCAT showed a decreased hydrogen peroxide production 

when compared to WT. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent 

experiments. 
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band corresponding to the HA tag was detected also in the cytoplasmic 

compartment of +/mCAT astrocytes, likely reflecting the newly synthesized 

protein. 

 

 

Mitochondrial localization of mCAT in primary astrocytes was further confirmed 

by immunofluorescence by confocal microscopy. To do so, heat shock protein-60 

(HSP-60) was used as mitochondrial marker. As expected, +/mCAT astrocytes 

express the HA tag, which co-localizes with HSP-60 (Figure 9). In contrast, WT 

astrocytes did not express HA. 

Figure 8: HA occurrence and catalase abundance in primary astrocytes. Immunoblot revealed that 

primary +/mCAT astrocytes show increased levels of catalase when compared to WT (A) and expressed the 

HA tag (B). After a subcellular fractionation, mitochondrial localization of mCAT was evaluated detecting 

the HA tag by immunoblot (C). b-Actin was used as loading control of the whole cell extract; GAPDH was 

used as loading control of the cytosolic fraction; VDAC was used as loading control of the mitochondrial 

fraction. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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Altogether, these results confirm that mCAT is correctly expressed in the 

mitochondria of +/mCAT astrocytes. 

 

 

7. Constitutive expression of mCAT efficiently detoxifies 

hydrogen peroxide and down-modulates endogenous ROS in 

primary astrocytes 

The following step was to confirm the functionality of mCAT and to corroborate 

whether its constitutive expression is sufficient to down-modulate endogenous 

mROS in primary astrocytes. 

Catalytic activity of mCAT was measured in mitochondria isolated from WT and 

+/mCAT primary astrocytes incubated with different concentrations of exogenous 

hydrogen peroxide. The results shown in Figure 10 demonstrate that 

mitochondria expressing mCAT neutralize exogenous hydrogen peroxide faster 

than WT cells. In the firsts 5 minutes of the assay, mCAT neutralized half of the 

exogenous hydrogen peroxide. In addition, after 20 minutes, the totality of 

exogenous hydrogen peroxide was completely neutralized by mCAT at all 

Figure 9: HA tag co-localizes with mitochondria in +/mCAT astrocytes. Confocal microscopy images 

revealed that +/mCAT astrocytes express the HA tag which co-localizes with the mitochondrial protein HSP-

60. 
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concentrations tested. Nevertheless, as in transfected MEFs, it seems that 

according to this experiment, mCAT is not able to down-modulate ROS when no 

hydrogen peroxide was added. 

 

 

Accordingly, we next used two more sensitive probes, namely the Amplex Red 

and the MitoSox. 

Hydrogen peroxide analysis from isolated mitochondria and intact astrocytes was 

first performed using the Amplex Red dye. The result represented in Figure 11A 

indicates that, under basal conditions, both +/mCAT mitochondria and intact 

astrocytes release hydrogen peroxide slower than WT. Next, MitoSox Probe was 

used. This mROS-sensitive probe enters the mitochondria depending on the 

mitochondrial membrane potential (DYm), and the oxidized product is highly 

fluorescent. Differences in the DYm may lead to a different accumulation of the 

MitoSox in the mitochondria. Hence, it is necessary to disregard any difference in 

the DYm to correctly analyze and interpret the MitoSox results. Using the 

DilC1(5) probe, DYm was measured by flow cytometry and the results show that 

Figure 10: Constitutive mCAT expression increases mitochondrial hydrogen peroxide detoxification in 

primary astrocytes. Incubation of isolated mitochondria with different concentrations of exogenous 

hydrogen peroxide for different time periods shows that mCAT constitutive expression increases significantly 

the rate of hydrogen peroxide neutralization at all concentration used. In the absence of exogenous hydrogen 

peroxide, there were no differences between mitochondria expressing mCAT and WT. Data are expressed as 

mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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there are no significant differences between WT and +/mCAT astrocytes (Figure 

11B). Subsequently, MitoSox fluorescence was measured and the result indicates 

that +/mCAT astrocytes present a ~20% lower amount of mROS compared to WT 

(Figure 11C). 

 

 

Altogether these results further indicate that mCAT is efficient at neutralizing 

exogenous hydrogen peroxide, and its constitutive expression in primary 

Figure 11: Constitutive mCAT expression down-modulates endogenous mROS and ROS in primary 

astrocytes. (A) Intact cells and isolated mitochondria constitutively expressing mCAT release hydrogen 

peroxide slower when compared to WT. (B) Assessment of DYm was performed by flow cytometry. WT and 

+/mCAT astrocytes do not show significant differences. (C) mROS measurement was performed by flow 

cytometry using the MitoSox Red dye. +/mCAT astrocytes present lower mROS when compared to WT. 

Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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astrocytes is sufficient to down-modulate endogenous mROS. Furthermore, these 

changes in the redox environment in glial cells do not affect DYm. 

8. Down-modulation of endogenous mROS does not affect 

astrocytic survival 

Given that ROS modulate apoptosis (Circu and Aw, 2010), it was investigated 

whether the constitutive expression of mCAT in primary astrocytes exerted any 

effect on cellular survival. To do so, the activity of the enzyme caspase-3 (CSP-3), 

an effector of apoptosis (Elmore, 2007), was used. CSP-3 activity was measured 

in primary astrocytes under basal conditions and after a 4 hours treatment with 

100 µM etoposide, an apoptotic inducer. The results obtained indicate that under 

basal conditions, mCAT constitutive expression does not affect astrocytic survival 

(Figure 12). The treatment with etoposide increased ~3.5 fold the CSP-3 activity, 

but no differences between WT and +/mCAT astrocytes were observed. Taken 

together, these results indicate that down-modulation of endogenous mROS has 

no effect on astrocytic survival, both under basal conditions or after an apoptotic 

stimulus.  
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9. Endogenous mROS modulate nuclear accumulation of NRF2 

in primary astrocytes and in vivo 

In order to investigate whether endogenous mROS modulate the NRF2 nuclear 

accumulation in astrocytes, a subcellular fractionation was performed. NRF2 

abundance was detected by immunoblot in the cytosolic and in the nuclear 

fraction of primary astrocytes. As shown in Figure 13, nuclei obtained from 

+/mCAT astrocytes show lower NRF2 abundance compared to the WT, whereas 

no differences were found in the cytosolic compartment.  

 

Figure 12: Down-modulation of endogenous mROS does not affect astrocytic survival. Activity of CSP-

3 was used as apoptotic marker. Under basal conditions, no differences were observed between WT and 

+/mCAT astrocytes. After a 4h treatment with 100 µM etoposide, activity of CSP-3 was increased ~3.5 fold, 

but still no differences between the two genotypes were detected. Data are expressed as mean ± S.E.M.; n.s 

p>0.05 Student’s t-test; n=3 independent experiments. 
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This result was further confirmed by immunofluorescence. As illustrated in 

Figure 14, WT astrocytes show higher nuclear abundance (~17%) of NRF2 

compared to mCAT cells, as shown by Cy2-labeled NRF2 co-localization with 

nuclear staining DAPI. 

Figure 13: Down-modulation of endogenous mROS decreases NRF2 nuclear accumulation in primary 

astrocytes. Nucleus isolated from +/mCAT astrocytes showed a lower nuclear NRF2 accumulation. Lamin B 

was used as loading control of the nuclear fraction. GAPDH was used as loading control of the cytosolic 

fraction. Data are expressed as mean ± S.E.M.; *p<0.05, n.s p>0.05 Student’s t-test; n=3 independent 

experiments. 
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Next, NRF2 levels were evaluated in the cytosolic and nuclear compartments of 

the brain, heart, liver and kidney obtained from WT or +/mCAT mice. 

Immunoblot revealed that brain from +/mCAT mice show lower nuclear and 

higher cytosolic abundance of NRF2 compared to WT (Figure 15A). a similar 

result was obtained in the heart, although the differences were less evident 

(Figure 15B). The hepatic cytosolic compartment did not show differences in 

NRF2 abundance, while a decrease was found in the nuclei of +/mCAT mice 

(Figure 15C). No differences were detected in the kidney (Figure 15D). 

Figure 14: mROS-weakened astrocytes show decreased NRF2 nuclear accumulation. Confocal 

microscopy images revealed that +/mCAT astrocytes present lower NRF2 co-localization with DAPI staining 

when compared to WT. Quantification of nuclear fluorescence was carried out in 120 cells. Data are 

expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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These results show that down-modulation of physiological endogenous mROS in 

primary astrocytes leads to a decrease in the nuclear accumulation of NRF2. In 

addition, they suggest that mCAT is more efficient at decreasing physiological 

endogenous mROS in the brain and heart than in the liver and kidney.  

10.  Endogenous mROS modulate NRF2 functional activity in 

primary astrocytes 

To investigate whether the decreased nuclear localization of NRF2 in +/mCAT 

astrocytes could affect its transcriptional activity, the mRNA levels of several 

NRF2 target genes were measured by RT-qPCR. The genes chosen were NADPH 

quinone dehydrogenase 1 (Nqo1), glutamate-cysteine ligase catalytic subunit 

(Gclc), glutathione peroxidase-2 (Gpx2), heme oxygenase 1 (Ho-1), thioredoxin-1 

(Trx1), nuclear factor (erythroid-derived-2)-like 2 (Nrf2), peroxiredoxin-1 

(Prdx1), 6-phosphogluconate dehydrogenase (6pgd) and glucose-6-phosphate 

dehydrogenase (G6pd). The firsts seven genes analyzed, had decreased mRNA 

levels in mCAT astrocytes, although the Prdx1 not in a significant manner 

(Figure 16). Surprisingly, the transcription of 6pgd and G6pd genes were up-

regulated in mROS-weakened astrocytes, suggesting the occurrence of another 

mechanism that modulates their transcription. 

Taken together, these results illustrate that endogenous mROS modulate the 

transcription levels of several NRF2 target genes. 

Figure 15: Constitutive mCAT expression in vivo modulates NRF2 subcellular localization. Immunoblot 

from in vivo samples reveals different cytosolic and nuclear NRF2 abundance. Cerebral (A) and cardiac (B) 

samples revealed higher cytosolic and lower nuclear NRF2 abundance in +/mCAT mice when compared to 

WT. The hepatic samples (C) show no differences in the cytosolic compartment, however NRF2 nuclear 

accumulation decreased in +/mCAT mice. Kidney (D) shows no differences of NRF2 abundance. Data are 

expressed as mean ± S.E.M.; *p<0.05, n.s >0.05 Student’s t-test; n=2 independent experiments. 



 

 102 

 

11.  Down-modulation of endogenous mROS increases the 

abundance of pentose phosphate pathway (PPP)-related 

enzymes 

Glucose-6-phosphate dehydrogenase (G6PD) is the enzyme that catalyses the first 

and rate limiting step of the pentose phosphate pathway (PPP). In order to 

investigate whether the increased transcription of the G6pd gene leads to an 

increase of the G6PD protein levels, its abundance was studied by 

immunoblotting. As shown in Figure 17A, +/mCAT astrocytes express higher 

G6PD abundance compared to WT, which is coherent with the previously data 

obtained by the mRNA analysis. In addition, abundance of 6-phosphogluconate 

dehydrogenase (6PGD) was evaluated. 6PGD is the third enzyme involved in the 

Figure 16: Endogenous mROS modulate the transcription of several NRF2 target genes. Expression of 

several NRF2 target genes was evaluated by RT-qPCR using b-actin as housekeeping gene. Constitutive 

expression of mCAT leads to a decreased expression of several NRF2 target genes (Nqo1, Gclc, Gpx2, Ho-1, 

Trx1, Nrf2, Prdx1) and, surprisingly, a significant increase of 6pgd and G6pd genes in +/mCAT astrocytes 

compared with WT. Nqo1: NADPH quinone dehydrogenase 1; Gclc: glutamate-cysteine ligase catalytic 

subunit; Gpx2: glutathione peroxidase-2; Ho-1: heme oxygenase 1; Trx1: thioredoxin-1; Nrf2: nuclear factor 

(erythroid-derived-2)-like 2; Prdx1: peroxiredoxin-1; 6pgd: 6-phoshogluconate dehydrogenase; G6pd: 

glucose-6-phosphate dehydrogenase. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 

independent experiments. 
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oxidative branch of the PPP, where it catalyses the decarboxylation of 6-

phosphogluconate to ribulose-5-phosphate. This enzyme is fundamental in 

maintaining cellular homeostasis, because together with G6PD, they are the major 

producers of cytosolic NADPH (Wamelink et al., 2008). This co-enzyme plays a 

key role in the glutathione (GSH) homeostasis and lipogenesis by supplying the 

reduced equivalents necessary to reduce GSSG to GSH and for the de novo 

synthesis of lipids (Wamelink et al., 2008). In +/mCAT astrocytes, protein levels 

of 6PGD are higher than in WT (Figure 17B). 

 

 

Figure 17: Endogenous mROS down-modulation increases G6PD and 6PGD abundance in primary 

astrocytes. Immunoblot showed that mROS-weakened astrocytes present higher G6PD (A) and 6PGD (B) 

abundance when compared to WT. b-Actin was used as loading control. Data are expressed as mean ± 

S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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12.  Down-modulation of endogenous mROS increases miR-1 and 

miR-206 expression in astrocytes 

Recently, an alternative regulation of the transcription of several PPP-related 

genes was discovered (Singh et al., 2013). This mechanism involves the histone 

deacetylase HDAC4, which accumulates in the nucleus when the two cysteine 

residues, Cys-667 and Cys-669, are in their reduced state (Ago et al., 2008). In 

this manner, HDAC4 represses the transcription of two microRNAs, miR-1 and 

miR-206, which degrade the newly synthesized mRNA of several PPP-related 

genes and HDAC4 itself (Singh et al., 2013). 

The increased G6pd and 6pgd mRNA levels that we observed are compatible with 

this mechanism. The results obtained so far show that +/mCAT astrocytes present 

lower ROS amount under basal conditions compared to the WT. In this less 

oxidant environment, HDAC4 cysteine resideus could be in their reduced state. In 

this scenario, HDAC4 would be localized in the nucleus repressing the 

transcription of miR-1 and miR-206, hence stabilizing G6PD and 6PGD mRNA. 

To investigate whether down-modulation of endogenous mROS in primary 

astrocytes regulates the subcellular localization of HDAC4, its abundance in 

whole cells and in the nuclear fraction was evaluated by immunoblotting. Both in 

whole cell extract (Figure 18A) and in the nuclear compartment (Figure 18B), 

+/mCAT astrocytes showed higher HDAC4 abundance compared to WT.  

Subsequently, miR-1 and miR-206 abundances were evaluated by RT-qPCR. The 

data obtained show that +/mCAT astrocytes express 15% and 30% less miR-1 and 

miR-206 abundances, respectively, compared to WT (Figure 18C). This result is 

consistent with the higher nuclear localization of HDAC4 in +/mCAT astrocytes 

and it could explain the higher levels of G6PD, 6PGD and HDAC4 in mROS-

weakened astrocytes. 
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Figure 18: Endogenous mROS down-modulation increases HDAC4 abundance and decreases miR-1 

and miR-206 expression. Immunoblot revealed that +/mCAT astrocytes express higher HDAC4 abundance 

both in whole cells (A) and in the nuclear fraction (B) when compared to WT. (C) RT-qPCR shows that 

mROS-weakened astrocytes express 15% and 30% less miR-1 and miR-206 respectively, when compared to 

WT. b-Actin was used as loading control for whole cells; lamin B was used as loading control for the nuclear 

compartment; mmu-miR-202 was used as endogenous control. Data are expressed as mean ± S.E.M.; *p<0.05 

Student’s t-test; n=3 independent experiments. 
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13.  Down-modulation of endogenous mROS increases glucose flux 

through PPP 

In light of these results, the flux of glucose through the PPP was measured 

following a protocol optimized in our laboratory (Rodriguez-Rodriguez et al., 

2013). To do so, intact primary astrocytes were incubated in the presence of D-[1-
14C]-glucose or D-[6-14C]-glucose, and the 14CO2 released was quantitatively 

trapped and measured. 14CO2 released from D-[1-14C]-glucose reflects 6-

phosphogluconate decarboxylation by 6PGD plus acetyl-CoA decarboxylation at 

isocitrate dehydrogenase and α-ketoglurate dehydrogenase of the tricarboxilic 

acid (TCA). However, 14CO2 released from D-[6-14C]-glucose reflects acetyl-CoA 

decarboxylation at isocitrate dehydrogenase and α-ketoglurate dehydrogenase. 

Thus, the difference between 14CO2 released from D-[1-14C]-glucose and that 

from D-[6-14C]-glucose is used to estimate glucose oxidized through the PPP. As 

shown in Figure 19, mCAT astrocytes show a 40% increase in the flux of glucose 

oxidized through the PPP when compared to WT cells. 

 

 

A major function of PPP is to regenerate NADPH necessary for redox 

homeostasis and anabolic pathways (Wamelink et al., 2008). Given that down-

Figure 19: Glucose flux through the oxidative branch of the PPP is increased by the down-modulation 

of endogenous mROS. PPP rate was evaluated incubating intact astrocytes with radiolabelled glucose. 

mROS-weakened astrocytes showed a 40% increase of glucose oxidation via the PPP when compared to WT. 

Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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modulation of astrocytic mROS increases the protein levels of G6PD and 6PGD, 

and increases the rate of the PPP, the NAPDH/NADP+ ratio was measured. 

Surprisingly, mROS-weakened astrocytes showed decreased NADPH/NADP+ 

ratio compared to WT (Figure 20A). One possible explanation is that +/mCAT 

astrocytes consume more NADPH compared to WT. Since lipid synthesis 

consumes NADPH (Wamelink et al., 2008), the de novo lipogenesis was 

measured. Intact astrocytes were incubated with D-[6-14C]-glucose for 3 hours, 

the lipid fraction was extracted and the radioactivity quantified. As shown in 

Figure 20B, the constitutive expression of mCAT does not alter the rate of the de 

novo lipogenesis in primary astrocytes. These results suggest that mROS deficient 

astrocytes consume more NADPH compared to WT, although these reducing 

equivalents do not seem to be used for the de novo lipogenesis. 

 

 

14.  Endogenous mROS modulate extracellular superoxide 

production in primary astrocytes 

Recent evidences show that G6PD is found in close proximity with the ROS 

producer enzymes NADPH-oxidases (NOX) (Yang et al., 2016). This enzyme 

Figure 20: Endogenous mROS down-modulation decreases the NADPH/NADP+ ratio, however it does 

not affect the de novo lipogenesis rate. mROS-weakened astrocytes showed a significant decrease of the 

NADPH/NADP+ ratio (A) compared to WT, which does not affect the rate of de novo lipogenesis (B). Data 

are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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family uses NADPH to produce superoxide or hydrogen peroxide, depending on 

the isoform. The interaction between G6PD (one of the major cytoplasmic 

NADPH producers) and NOXs may modulate downstream transduction signals. 

In addition, it was recently reported that NRF2 represses the expression of NOX2, 

while enhances NOX4 expression (Kovac et al., 2015; Wei et al., 2016), although 

the mechanism is unknown. Considering that +/mCAT astrocytes show lower 

NRF2 activity and more NADPH consumption compared to WT, the mRNA 

levels of NOX-1, -2, -4 were evaluated. The data obtained illustrate that +/mCAT 

astrocytes express higher levels of NOX1 and NOX2 mRNA (46% and 51%, 

respectively), while a decreased levels of NOX4 when compared with WT 

(Figure 21A). Considering that NOX1 and -2 produce extracellular superoxide, 

whereas NOX4 produces hydrogen peroxide, the extracellular superoxide release 

was determined. To do so, intact astrocytes were incubated with oxidized 

cytochrome c, which is reduced by superoxide. The reduced form of cytochrome c 

absorbs light at 550 nm, allowing its detection. As shown in Figure 21B, 

+/mCAT astrocytes release 20% more superoxide compared to WT. These results 

indicate that down-modulation of endogenous mROS in primary astrocytes 

increases the expression of NOX1 and NOX2, but decreases the levels of NOX4. 

This increase of the two NOX isoforms responsible for extracellular superoxide 

production is compatible with the observed increase of extracellular superoxide. 

Furthermore, the increase of NOX1 and NOX2 is consistent with the increased 

NADPH consumption observed in +/mCAT astrocytes. Nevertheless, the 

mechanism responsible of the increase of NOX1 and -2 and the decrease of 

NOX4 is still elusive. 
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15.  Rescue of the NRF2 levels decreases extracellular superoxide 

release by primary astrocytes  

In order to corroborate that NRF2 deficiency leads to an increase in extracellular 

superoxide release through NOX1 and -2 activities, +/mCAT astrocytes were 

transfected with a constitutively active form of NRF2. This construct encodes for 

a NRF2 protein which directly translocates to the nucleus and up-regulates the 

transcription of its target genes. The plasmid was previously designed and 

validated in our laboratory (Jimenez-Blasco et al., 2015). The construct contains 

the human NRF2 sequence (1817 bp, access number NM_006164.3) fused at the 

5’ end with the green fluorescent protein (GFP). To obtain the phosphomimetic 

form (NRF2 PM), three residues (Thr395, Ser433 and Thr439) were substituted 

by aspartate by site-directed mutagenesis (Jimenez-Blasco et al., 2015). The 

resulting phosphomimetic NRF2 (NRF2 PM) accumulates and translocates to the 

nucleus of transfected cells (Jimenez-Blasco et al., 2015). We first confirmed the 

correct NRF2 expression by RT-qPCR and immunoblotting. As shown in Figure 

Figure 21: Endogenous mROS down-modulation modulate NOX expression and increased superoxide 

release. mROS-weakened astrocytes showed an increase of the NOX-1 and -2 expression, whereas a NOX-4 

decrease (A) when compared to WT, which increase production of extracellular superoxide (B). Data are 

expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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22A, +/mCAT astrocytes transfected with NRF2 PM express ~35-fold higher Nrf2 

mRNA abundance compared to the empty plasmid. Immunoblot analysis revealed 

two bands of NRF2, namely the constitutive (with a molecular weight of 100 

kDa) and the phosphomimetic, which is detected at 130 kDa. As expected, only 

astrocytes transfected with NRF2 PM showed two bands (Figure 22B).  

 

 

Subsequently, the mRNA levels of NOX1, -2 and -4 were measured in +/mCAT 

astrocytes transfected with NRF2 PM. The data obtained show that the 

transfection of +/mCAT astrocytes with NRF2 PM completely rescued the mRNA 

levels of NOX1, -2 and -4 compared with WT cells transfected with the empty 

plasmid (Figure 23A). Next, extracellular superoxide release was measured in 

order to ascertain whether NRF2 PM expression was sufficient to restore the basal 

values. As illustrated in Figure 23B, +/mCAT astrocytes released a 10% more 

extracellular superoxide compared to WT cells when transfected with the empty 

plasmid. However, no differences were found when +/mCAT cells were trasfected 

with NRF2 PM versus WT cells transfected with the empty plasmid. Taken 

Figure 22: NRF2 PM expression increased NRF2 abundance in +/mCAT astrocytes. (A) mRNA levels 

of NRF2 were measured by RT-qPCR using b-actin as housekeeping gene. mCAT astrocytes transfected with 

NRF2 PM show a ~35-fold higher Nrf2 expression when compared to the empty plasmid. (B) NRF2 protein 

abundance was evaluated by immunoblot. +/mCAT astrocytes transfected with NRF2 PM show a slightly 

increase of consitutive NRF2, as shown by the 100 kDa band, and they expressed an additional band at 130 

kDa, corresponding to NRF2 PM, when compared to the empty plasmid. b-Actin was used as loading control. 

Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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together, these results confirm that NRF2 represses the expression of NOX1 and -

2, while it increases NOX4 in primary astrocytes. Furthermore, the rescue of 

NRF2 levels in +/mCAT glial cells restores basal release of extracellular 

superoxide, suggesting that mROS modulate extracellular ROS release through an 

NRF2-mediated mechanism. 

 

 

16.  Endogenous mROS modulate glutathione abundance in 

primary astrocytes via NRF2 

Glutathione (GSH), the most abundant thiol-containing antioxidant, is synthesized 

in two consecutive ATP-requiring steps, namely g-glutamate cysteine ligase 

(GCL) and glutathione synthase (GS), respectively (Dringen, 2000). The first step 

is the rate limiting, hence the expression and activity of GCL control the synthesis 

GSH. Down-modulation of endogenous mROS in astrocytes led to a decreased 

expression of the Gclc gene (Figure 16). In order to investigate whether this 

Figure 23: NRF2 PM expression in +/mCAT astrocytes restores basal expression of NOXs and 

extracellular superoxide release. mROS-weakened astrocytes expressing NRF2 PM show no differences of  

NOX1, -2 and -4 mRNA levels (A) and extracellular superoxide release (B) when compared with WT 

astrocytes transfected with the empty plasmid. b-actin was used as housekeeping gene. Data are expressed as 

mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 
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decreased Gclc transcription leads to a lower GSH synthesis in mROS-weakened 

astrocytes, GCL protein and the total GSH abundances were evaluated. 

Immunoblotting showed decreased GCL abundance in +/mCAT astrocytes 

compared to WT (Figure 24A). As expected, +/mCAT astrocytes showed a 

decrease (20%) of GSH concentration (Figure 24B).  

In order to investigate whether astrocytic mROS modulate GSH abundance 

through the NRF2 pathway, +/mCAT astrocytes were transfected with NRF2 PM. 

As expected, the expression of NRF2 PM increase GCL protein abundance in 

+/mCAT astrocytes (Figure 24C). Subsequently, total GSH concentration was 

measured. Consistent with the GCL increase, +/mCAT astrocytes transfected with 

NRF2 PM showed higher total GSH concentration (Figure 24D). 

Taken together, these results suggest that astrocytic endogenous mROS modulate 

GCL and GSH abundances via NRF2. 
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Figure 24: mROS modulate GSH synthesis through the NRF2 pathway. (A) Immunoblot showed that 

+/mCAT astrocytes express lower GCL levels when compared to WT. (B) Measurement of GSH 

concentration showed that mROS-weakened astrocytes present a 20% decrease in total GSH when compared 

to WT. Transfection of mROS-weakened astrocytes with NRF2 PM increases GCL abundance (C) and GSH 

concentration (D), when compared to the empty plasmid. b-Actin was used as loading control. Data are 

expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent experiments. 



 

 114 

17.  Neurons co-cultured with mROS-weakened astrocytes show 

less antioxidant defenses, and higher ROS release and 

apoptosis 

Previous works (Bolaños et al., 1996; Diaz-Hernandez et al., 2005; Dringen et al., 

1999) demonstrated that neurons depend on astrocytic supply of precursors for the 

de novo synthesis of GSH. Furthermore, it has been demonstrated that the 

increase of astrocytic NRF2 activity, increases GSH synthesis and export from 

glial cells (Jimenez-Blasco et al., 2015). In order to investigate whether down-

modulation of astrocytic endogenous mROS is deleterious for neurons, astrocyte-

neuron co-cultures were performed. To do so, astrocytes were plated in inserts 

with a semi-permeable membrane, while neurons were seeded in a multiwell 

plate. After three days, astrocytes-containing inserts were placed above neurons 

and co-cultured for four more days. Subsequently, inserts containing astrocytes 

were discarded and GSH concentration and hydrogen peroxide release were 

measured in neurons. 

As indicated in the Figure 25A, neurons co-cultured with +/mCAT astrocytes 

show a 27% decrease in total GSH concentration compared to neurons co-cultured 

with WT astrocytes. With the aim to ascertain whether this GSH deficit disrupts 

neuronal redox homeostasis, hydrogen peroxide was measured. As shown in 

Figure 25B, neurons had higher hydrogen peroxide production when co-cultured 

with mROS-weakened astrocytes. Taken together, these data confirm the 

importance of the GSH precursors supply from neighbour astrocytes for neuronal 

homeostasis. In addition, they strongly suggest that down-modulation of 

astrocytic endogenous mROS disrupt neuronal redox homeostasis. 
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To investigate whether disruption of neuronal redox homeostasis affects survival, 

the abundance of the active form CSP-3 and its activity were evaluated as markers 

of apoptosis. Once discarded the inserts, the abundance of the 17 kDa CSP-3 

cleaved active fragment was detected. Immunoblot show that neurons express 

higher active CSP-3 when co-cultured with mCAT astrocytes under basal 

conditions (Figure 26A). This result was further confirmed by the measurement 

of CSP-3 activity, which was evaluated in co-cultured neurons under basal 

conditions or after a 4 hours treatment with 100 µM etoposide. AMC release, a 

marker of CSP-3 activity, was higher in neurons co-cultured with mROS-

weakened astrocytes in basal conditions (Figure 26B). After a 4 hours treatment 

with etoposide, CSP-3 activity was significantly increased in neurons; however, 

as shown in Figure 26B, the increase was higher in neurons co-cultured with 

mROS-weakened astrocytes compared with neurons co-cultured with WT 

astrocytes. These data suggest an increased vulnerability of neurons co-cultured 

with mROS-weakened astrocytes. In addition to the CSP-3 activity, DYm was 

evaluated as a marker of mitochondrial stress. The data obtained using the 

DilC1(5) dye show no differences in DYm in neurons co-cultured with WT or 

mCAT astrocytes (Figure 26C). Taken together, these results indicate that down-

Figure 25: Neurons co-cultured with mROS-weakened astrocytes show lower antioxidant defences and 

increased ROS levels. Incubation of neurons with +/mCAT astrocytes for four days decreases neuronal GSH 

pool (A) and leads to an increase of the hydrogen peroxide release rate (B) when compared to neurons co-

cultured with WT astrocytes. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 

independent experiments. 
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modulation of astrocytic endogenous mROS is deleterious for the neighbour 

neurons, although neuronal DYm is unaffected. 

 

 

Figure 26: Neurons co-cultured with mROS-weakened astrocytes show higher apoptosis and 

unaffected mitochondrial membrane potential. (A) Immunoblot showed that, under basal conditions, co-

culture of neurons with mROS-weakened astrocytes increases the abundance of the active fragment of CSP-3. 

b-Actin was used as loading control. (B) Incubation of neurons with mCAT astrocytes for four days shows a 

~0.5 fold and ~1.7 fold higher CSP-3 activation under basal condition and after a 4h treatment with 100 µM 

etoposide, respectively, compared to neurons co-cultured with WT astrocytes. (C) Neuronal DYm was 

unaffected by the presence of +/mCAT astrocytes. Data are expressed as mean ± S.E.M.; *p<0.05, n.s. 

p>0.05 Student’s t-test; n=3 independent experiments  
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18.  Expression of NRF2 PM in mCAT astrocytes rescues the 

antioxidant defenses and survival of neurons 

To investigate whether astrocytic mROS modulate the neuronal redox 

homeostasis and survival via the NRF2 pathway, neurons were co-cultured with 

+/mCAT astrocytes previously transfected with NRF2 PM or with the empty 

plasmid. To do so, astrocytes were transfected at DIV11. On the following day, 

the inserts were washed, the medium replaced, and cells were co-cultured for 

three days. After this period, the inserts were discarded and total GSH 

concentration, hydrogen peroxide release and CSP-3 activity were measured in 

neurons. As previously reported, treatments that increase astrocytic GSH enhance 

neuronal GSH (Dringen et al., 2015; Jimenez-Blasco et al., 2015). With the aim 

to investigate whether NRF2 PM rescues neuronal GSH pool, total GSH 

concentration was measured in co-cultured neurons. As illustrated in Figure 27A, 

neurons co-cultured with +/mCAT astrocytes previously transfected with NRF2 

PM showed higher levels of GSH, reaching the values of neurons co-cultured with 

WT astrocytes (Figure 25A). Next, hydrogen peroxide release was measured. As 

depicted in Figure 27B, neurons co-cultured with mROS-weakened astrocytes, 

previously transfected with NRF2 PM, showed a ~40% decreased in hydrogen 

peroxide release when compared to neurons co-cultured with +/mCAT astrocytes 

transfected with the empty plasmid. Finally, to test whether astrocytic NRF2 PM 

expression rescues neuronal death, the activity of CSP-3 was evaluated. Figure 

27C illustrates that neurons co-cultured with mROS-weakened astrocytes 

expressing NRF2 PM had lower CSP-3 activity compared to neurons co-cultured 

with astrocytes transfected with the empty plasmid. 
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Taken together, these results are consistent with previous work from our 

laboratory (Jimenez-Blasco et al., 2015) which demonstrates that the increase of 

the astrocytic NRF2 pathway leads to a boost of neuronal antioxidant defences 

and survival. In addition, they strongly suggest that endogenous astrocytic mROS 

modulate redox homeostasis and increase viability of neurons through the NRF2 

pathway. 

 

Figure 27: NRF2 PM expression in mROS-weakened astrocytes rescued antioxidant defences and 

survival of co-cultured neurons. (A) Neurons incubated for 3 days with +/mCAT astrocytes expressing 

NRF2 PM rescued their GSH pool and their hydrogen peroxide release (B). In addition, a slightly but 

significant increase of neuronal viability (C) was found in neurons co-cultured with +/mCAT astrocytes 

expressing NRF2 PM. Data are expressed as mean ± S.E.M.; *p<0.05 Student’s t-test; n=3 independent 

experiments. 
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1. Expression of a mitochondrial form of catalase allows to 

investigate physiological roles of mROS 

Traditionally, ROS have been associated with oxidative stress and human 

diseases. However, given that clinical trials based on antioxidants have not been 

conclusive (Halliwell 2013; Heyland et al., 2013; Kamat et al., 2008; Snow et al., 

2010), the pathological role of ROS is questioned. 

To investigate the functions of ROS, the majority of studies have used strategies 

based on increasing ROS, either by exogenously or endogenously supplied ROS. 

However, this approach could mask the beneficial roles of endogenous ROS. 

Here, we implemented an alternative approach aimed to down-modulate 

endogenous mROS. Several mouse models designed to down-modulate 

endogenous mROS have already been described. However, they have side effects 

on metabolism (Chen et al., 1998; Matsushima et al., 2006; Quintana-Cabrera et 

al., 2012). The strategy used in this work to down-modulate endogenous mROS 

based on the expression of a mitochondrial form of catalase, which neutralizes 

hydrogen peroxide with minimal effect on metabolism. In fact, a mCAT mouse 

model has been previously described (Schriner et al., 2005). However, the 

conventional microinjection technique used to generate that model has two major 

drawbacks, namely a non site-directed insertion of the DNA construct and the 

impossibility to control the numbers of copies inserted. Hence, whether the effects 

observed are due to mCAT activity or to any unknown effect caused by gene 

expression disruption is uncertain. 

Accordingly, we generated a new mCAT mouse model in order to investigate the 

physiological roles of mROS. The mCAT construct was inserted in the Rosa26 

locus of C57Bl/6 of embryonic stem cells by homologous recombination. This 

technique inserts only one copy of the mCAT construct in a defined and safe 

locus. Furthermore, the model was generated based on the Cre-LoxP strategy, 

which allows controlling the in vivo mCAT expression in a tissue specific and 

time-controlled manner. 
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The results obtained in this work show that the newly generated mCAT mouse 

model is able to down-modulate endogenous mROS in primary astrocytes. 

Therefore, this is useful to investigate the biological roles of astrocytic mROS. 

Moreover, the mCAT floxed mouse model could be used to study the involvement 

of mROS in any tissue both in physiological and pathological circumstances. 

2. Endogenous mROS modulate redox homeostasis in primary 

astrocytes via the NRF2 pathway 

The NRF2 pathway is essential for redox homeostasis in the brain. However, its 

activity differs between the two most abundant cell types, neurons and astrocytes. 

Neurons show a repressed antioxidant defences because of the continuous NRF2 

protein destabilization (Bell et al., 2015; Jimenez-Blasco et al., 2015). In contrast, 

NRF2 is highly stable in astrocytes, which explains their robust antioxidant 

defences (Habas et al., 2013; Jimenez-Blasco et al., 2015). Nevertheless, the 

mechanism whereas astrocytic NRF2 is stabilized is still elusive. In this context, a 

recent study demonstrated that astrocytes produce severalfold higher mROS than 

neurons under basal conditions (Lopez-Fabuel et al., 2016). The physiological 

roles of these glial mROS production are, however, elusive. 

The results obtained in this work demonstrate that endogenous mROS in 

astrocytes maintain high the levels of NRF2 activation. Accordingly, high levels 

of NRF2 activity promote the expression of antioxidant systems that contribute to 

keep the robust antioxidant machinery of astrocytes. On the other hand, NRF2 

modulates the expression of the ROS-producer enzymes NADPH-oxidases in 

astrocytes. In particular, NRF2 represses the expression of NOX-1 and -2 and 

enhance NOX-4 expression, in good agreement with previous works (Kovac et 

al., 2015; Wei et al., 2016). The mechanism(s) whereby NRF2 modulates NOXs 

expression is unknown. It is tempting to speculate that the increase in extracellular 

superoxide production observed in mROS-weakened astrocytes could be a redox 

signal for neighbour neurons, indicating a altered astrocytic metabolism. 

To the best of our knowledge, this is the first evidence that endogenous mROS 

modulates the redox homeostasis via the NRF2 pathway in astrocytes. 
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Furthermore, considering that mCAT expression in brain, liver and heart 

decreases NRF2 nuclear abundance, our data strongly suggest that endogenous 

mROS modulate this pathway in vivo. 

3. Endogenous mROS modulate glucose flux through the pentose 

phosphate pathway (PPP) 

PPP is a metabolic pathway, a function of which in the adult brain is regenerating 

NADPH to contribute to cellular redox homeostasis. The data presented in this 

work show that down-modulation of endogenous mROS in astrocytes enhances 

the flux of glucose through the PPP. These data are in apparent contradiction with 

the widely-held notion that ROS activate PPP activity (Stincone et al., 2015). 

Thus, ROS, by activating NRF2, promote G6pd and 6pgd expression (Hayes and 

Dinkova-Kostova, 2014). However, in another work it has been shown that NRF2 

modulates the expression of PPP-related genes via an indirect mechanism 

involving epigenetic modifications (Singh et al., 2013).  

Here, we show that mROS-weakened astrocytes show a decreased NRF2 activity 

despite enhanced transcription of PPP-related genes. Our data suggest that mROS 

modulate the expression of G6PD and 6PGD by promoting nuclear localization of 

HDAC4, which represses the expression of miR-206. This miRNA targets G6PD 

and 6PGD mRNAs for degradation, leading to decreased protein levels. 

Altogether, these results demonstrate that endogenous mROS can modulate 

glucose metabolism in astrocytes. The suggested epigenetic mechanism is 

coherent with the study of Singh et al. (2013) and further demonstrate that G6pd 

and 6pgd are not direct NRF2 target genes. It will be very interesting to 

investigate if other metabolic pathways are also affected in mROS-weakened 

astrocytes, in order to have a better view on the role of mROS in the regulation of 

cell metabolism. 

4. Endogenous mROS are neuroprotective 

Oxidative stress is a hallmark of several neurodegenerative diseases. Accordingly, 
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ROS have always been considered as harmful species. However, the fact that 

astrocytes produce a considerable high amount of mROS (Lopez-Fabuel et al., 

2016), strongly suggests a physiological function of these mROS. 

Astrocytes protect co-cultured neurons from oxidative insults (Bélanger and 

Magistretti, 2009; Dringen, 2000; Wilson, 1997) by increasing the antioxidant 

defences through the supply of GSH precursors (Bolaños et al., 1996; Dringen et 

al., 1997). This phenomenon, which has been named as the astrocyte-neuron 

glutathione shuttle (Bolaños, 2016), is maintained by constitutively activation of 

NRF2 in astrocytes (Jimenez-Blasco et al., 2015). In fact, the notion that NRF2 

activation in astrocytes increases neuronal survival against an oxidative insult is a 

well known phenomenon, both in vitro (Jakel et al., 2007; Jimenez-Blasco et al., 

2015; Shih et al., 2003) and in rodent models of neurodegenerative diseases 

(Chen et al., 2009; Vargas et al., 2008). However, in these studies, astrocytic 

NRF2 activity was artificially increased by protein overexpression or 

pharmacological activation. Here, we further demonstrate that endogenous mROS 

play a major role at activating NRF2 in astrocytes, and through this mechanism 

exerts neuroprotection. A previous study suggested that subtoxic levels of 

astrocytic hydrogen peroxide failed to activate NRF2 and triggers NRF2-

independent processes that protected co-cultured neurons (Haskew-Layton et al., 

2010). However, these conclusions were questioned on the basis of the 

experimental design, which did not use appropriate techniques to evaluate 

astrocytic NRF2 activation (Bell et al., 2011). Moreover, subtoxic doses of 

hydrogen peroxide activated NRF2 in astrocytes (Bell et al., 2011). Whilst these 

data are in agreement with our results, the dose of hydrogen peroxide tested were 

~16 fold-higher than the physiological levels that we measured in primary 

astrocytes in our laboratory (Lopez-Fabuel et al., 2016). We therefore believe 

that, even at subtoxic concentrations of hydrogen peroxide, an aberrant redox 

signal might contribute to masking the neuroprotective role of endogenous 

astrocytic mROS. 

It should to be noted that rescue of NRF2 levels in mROS-weakened astrocytes 

only partially restored the survival of co-cultured neurons. These data suggest that 

endogenous mROS may modulate neuroprotective pathways besides NRF2. 
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Whether glycolysis, a fundamental metabolic route in the metabolic interactions 

between astrocytes and neurons (Pellerin and Magistretti, 1994), is affected in 

mROS-weakened astrocytes is an interessant possibility worth studying. 

The data obtained in this work further confirm that endogenous mROS play 

fundamental roles in maintaining cellular homeostasis, as observed in different 

tissues (Puente et al., 2014; Zhou et al., 2016). To the best of our knowledge, this 

work demonstrates for the first time that endogenous astrocytic mROS have a 

neuroprotective role. Furthermore, it can be speculated that clinical trials based on 

antioxidant strategy in patients suffering neurological disorders failed because 

antioxidants scavenge ROS unspecifically across the brain cell. We propose that 

this approach could be more beneficious if decreasing ROS specifically in 

neurons, and not in astrocytes that we show ROS are neuroprotective. These 

considerations should be taken into account for the design of new antioxidant 

therapies in the future. 
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In the light of the results presented in this Thesis, we have achieved the following 

conclusions: 

 

1. Here, we have partially characterized a novel mouse model conditionally 

expressing a mitochondrial-tagged isoform of catalase (mitoCatalase or 

mCAT) cDNA. This model was designed by our group, and externally 

generated specifically for this project, by targeted insertion of the mCAT 

sequence within the Rosa26 locus via homologous recombination in 

embryonic stem cells from C57Bl/6 mouse strain. The insertion was 

achieved such that in the resulting model the expression of the mCAT 

cDNA is under the control of the ubiquitous CAG promoter. A floxed 

(loxP flanked) transcriptional STOP cassette was incorporated between the 

mCAT sequence and the CAG promoter to allow the expression of the 

resulting transgene to be dependent upon the Cre recombinase 

(mCATfloxed/+). By breeding mCATfloxed/+ with the C57Bl/6 mice 

expressing Cre recombinase, it was obtained mice ubiquitously expressing 

mCAT (mCAT mouse). 

 

2. Cortical astrocytes in primary culture obtained from the mCAT mouse 

show a significant reduction in the production of endogenous (basal) 

mitochondrial reactive oxygen species (mROS). Taking advantage of this 

system, we show that endogenous mROS control the expression of 

antioxidant genes by up-regulating the activity of the nuclear factor 

(erythroid-derived 2)-like 2 (NRF2) transcriptional factor in astrocytes. In 

turn, NRF2 represses the production of extracellular ROS, likely by down-

modulating NADPH-dependent oxidases (NOXs) types -1 (NOX1) and -2 

(NOX2). 

 

3. Using cortical astrocytes in primary culture obtained from the mCAT 

mouse, we show that endogenous mROS regulates glucose oxidation 

through the pentose phosphate pathway (PPP). Thus, down-modulation of 
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endogenous mROS enhanced PPP activity through a mechanism likely 

mediated by the reduction of the redox-sensitive histone deacetylase 

HDAC4. When reduced, HDAC4 is constitutively active in the nucleus, 

where it represses the expression of miR-1 and miR-206, which in turn 

represses the mRNA abundances of G6PD and 6PGD. We show that 

mROS lowers the occurrence of HDAC4 in the nucleus, which leads to 

decreased miR-1 and miR206 abundances and enhanced G6PD and 6PGD 

expression and PPP activity. Therefore, in astrocytes, mROS keeps 

partially repressed the PPP activity thus representing, to the best of our 

knowledge, the first evidence connecting endogenous mROS production 

with the regulation of glucose metabolism. 

 

4. In experiments in which mCAT-derived astrocytes were co-cultured with 

wild type neurons, we show that mROS in astrocytes affects the redox 

status and survival of neurons. Thus, we show that endogenous mROS in 

astrocytes, by keeping NRF2 active, contributes to the sustaining of total 

glutathione abundance in neighbour neurons. Moreover, through this 

mechanism, we show that mROS in astrocytes supports neuronal survival.
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1. INTRODUCCIÓN 

La aparición del oxígeno en la atmósfera de la Tierra fue un evento crucial que 

promovió la evolución de los organismos aeróbicos, capaces de producir energía 

de una manera muy eficiente. Una de las consecuencias de esta mejora fue la 

aparición de nuevas moléculas reactivas derivadas del oxígeno denominadas 

especies reactivas de oxígeno (ROS, del inglés Reactive Oxygen Species). 

Los ROS incluyen, principalmente, anión superóxido (O2•-), peróxido de 

hidrógeno (H2O2) y radical hidroxilo (•OH). Estas especies presentan mayor 

reactividad química respecto al oxígeno y son capaces de desencadenar procesos 

tanto fisiológicos como patológicos. En condiciones normales, el nivel de los 

ROS celulares es constante en un equilibrio dinámico, y este equilibrio se modula 

mediante procesos celulares que producen y eliminan ROS (Zhang et al., 2016). 

Sin embargo, bajo ciertas circunstancias, la tasa de producción de ROS excede la 

capacidad de los sistemas antioxidantes para eliminarlos. Este exceso de ROS, 

comúnmente llamado estrés oxidativo o estrés redox, lleva a la oxidación de 

proteínas, ácidos nucleicos y lípidos (Poyton et al., 2009; Temple et al., 2005). De 

hecho, en las muestras cerebrales post mortem de enfermedades neurológicas se 

han encontrado huellas de estrés oxidativo en las áreas cerebrales dañadas 

(Cannon and Greenamyre 2013; Federico et al., 2012). Por lo tanto, el estrés 

oxidativo parece estar asociado a las enfermedades neurodegenerativas. Sin 

embargo, los ensayos clínicos basados en una estrategia antioxidante realizados 

hasta ahora en pacientes que padecen enfermedades neurodegenerativas no han 

sido fructíferos (Halliwell 2013; Heyland et al., 2013; Kamat et al., 2008; Snow et 

al., 2010), lo que podría sugerir que el exceso de ROS no tiene un papel 

patológico. Por el contrario, la idea de que los ROS modulan fisiológicamente 

vías de supervivencia ha recibido, sin embargo, poca o ninguna atención. 

Varios orgánulos dentro de la célula pueden generar ROS fisiológicamente. Estos 

incluyen las mitocondrias, el retículo endoplásmico y los peroxisomas. Además, 

varias enzimas, incluidas oxidasas y oxigenasas, generan ROS como parte de sus 

ciclos de reacción (Holmström and Finkel, 2014). Asimismo, la generación de 
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ROS es específica de especie, célula y tejido, y también depende del estado 

fisiopatológico de las células. Por estas razones, la identificación de la principal 

fuente intracelular de los ROS es compleja. 

Dentro del sistema nervioso central, las neuronas y los astrocitos, los dos tipos de 

células más abundantes en el cerebro, presentan un patrón diferencial de 

producción de los ROS mitocondriales (mROS), siendo las células gliales las que 

producen más mROS (López-Fabuel et al., 2016). Sin embargo, el papel 

fisiológico de esta producción de mROS por parte de los astrocitos aún se 

desconoce. 

Tradicionalmente, los ROS se consideran como especies no reguladas y nocivas, 

con dianas intracelulares aleatorias. Aunque este aspecto inespecífico, aleatorio y 

dañino de la biología de los ROS persiste, un creciente número de evidencias 

ahora sugiere que los ROS actúan como moléculas de señalización en varios 

procesos fisiológicos (D'Autréaux and Toledano, 2007; Holmström and Finkel, 

2014; Wang and Hai, 2016). Sin embargo, esta visión no está libre de 

controversia. Las especies reactivas de oxígeno, en particular el peróxido de 

hidrogeno, son segundos mensajeros capaces de modular rutas involucradas en la 

transcripción nuclear, diferenciación celular, muerte celular y envejecimiento, 

entre otros. Cabe destacar la importancia del factor de transcripción nuclear NRF2 

[nuclear factor (erythroid-derived-2)-like 2], el principal regulador de la respuesta 

antioxidante que está modulado por ROS. En condiciones basales, los niveles de 

NRF2 se mantienen bajos gracias a su degradación por parte del proteosoma 

mediada por el complejo formado por KEAP1 (Kelch-like ECH-associated 

protein 1) y CUL3 (Cullin 3) (Kobayashi et al., 2004). Actuando como un sensor 

de estrés redox, KEAP1 presenta múltiples tioles, cuya modificación lleva a un 

cambio conformacional de KEAP1 que conduce a la acumulación nuclear de 

NRF2 (Taguchi et al., 2011). Una vez en el núcleo, NRF2 promueve la 

transcripción de una plétora de genes implicados en la respuesta a diferentes tipos 

de estrés celulares (Taguchi et al., 2011). La ruta de NRF2 tiene un papel crucial 

en el cerebro, debido al hecho de que modula la transcripción de todas las enzimas 

involucradas en la homeostasis del glutatión, fundamental para mantener el estado 

redox de las neuronas. En el cerebro, los astrocitos son el reservorio principal de 
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GSH, mientras que las neuronas dependen del suministro de precursores de GSH 

por parte de las células gliales para sintetizarlo (Bolaños, 2016). Además de la 

regulación positiva de las defensas antioxidantes, recientemente se ha descubierto 

que NRF2 modula la homeostasis redox modulando la expresión de las NADPH 

oxidasas (NOXs), enzimas productores de ROS. La actividad de NRF2 reprime la 

expresión de la NOX2, mientras que aumenta la expresión de NOX4 (Kovac et 

al., 2015; Wei et al., 2016), aunque los mecanismos aún se desconocen. Estos 

enzimas producen ROS utilizando equivalentes reductores procedentes de 

NADPH, producidos mayoritariamente en la vía de las pentosas fosfato (PPP) 

gracias a la acción de la glucosa-6-fosfato deshidrogenasa (G6PD) y la 6-

fosfogluconato deshidrogenasa (6PGD) (Wamelink, et al., 2008). Esta ruta oxida 

la glucosa para producir ribosa-5-fosfato, necesaria para la síntesis de ácidos 

nucleicos, así como para regenerar NADPH para mantener la homeostasis redox y 

para ciertos procesos anabólicos (Riganti et al., 2012). 

2. HIPÓTESIS 

Los ROS han estado tradicionalmente asociados a situaciones de estrés redox e 

involucrados en la etiología de las patologías humanas, incluidas las 

enfermedades neurodegenerativas. Aunque los tratamientos con antioxidantes en 

modelos in vitro e in vivo de enfermedades neurodegenerativas han demostrado 

protección neuronal, la traslación a humanos no ha sido concluyente (Halliwell, 

2013; Heyland et al., 2013; Kamat et al., 2008; Snow et al., 2010), lo que 

cuestiona el papel patológico de los ROS. 

Resultados recientes de nuestro laboratorio muestran que, en condiciones basales, 

los astrocitos producen más ROS mitocondriales (mROS) en comparación con las 

neuronas (López-Fabuel et al., 2016). Esto parece ser una paradoja, considerando 

que los astrocitos expresan una robusta maquinaria antioxidante, gracias a una 

elevada actividad de la ruta NRF2, en comparación con las neuronas (Jimenez-

Blasco et al., 2015). Además, los astrocitos sustentan las defensas antioxidantes 

de las neuronas proporcionándoles los precursores del glutatión (GSH), gracias a 
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la acción de NRF2 en los astrocitos. Sin embargo, los mecanismos responsables 

de la alta actividad de la vía de NRF2 en los astrocitos aún se desconocen. 

Con estos antecedentes, nuestra hipótesis es que los mROS endógenos mantienen 

activa la ruta de NRF2 en los astrocitos contribuyendo a la supervivencia 

neuronal. 

3. OBJETIVOS 

Para abordar la hipótesis mencionada, nos hemos planteado los siguientes 

objetivos: 

 

1. Generar un modelo de ratón capaz de disminuir los niveles de mROS 

endógenos en astrocitos. 

 

2. Estudiar si los mROS endógenos modulan la homeostasis redox en los 

astrocitos. 

 

3. Estudiar si los mROS astrocíticos modulan la homeostasis redox y la 

supervivencia de las neuronas.  
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4. RESULTADOS 

1. Generación del ratón +/mCAT constitutivo 

Teniendo en cuenta los resultados preliminares en MEFs inmortalizados y 

astrocitos primarios transfectados, se generó el ratón inducible mitocatalasa 

(mCATfloxed/+), insertando la construcción mCAT en el locus Rosa 26 de células 

madre embrionarias de ratón con fondo C57Bl/6 por recombinación homóloga. 

Además, entre el fuerte promotor CAG y la mCAT, se insertó un cassette con la 

señal STOP floxeado. 

Con el fin de expresar mCAT de forma ubicua, los ratones mCATfloxed/+ se 

cruzaron con ratones (CMV)-Cre recombinasa bajo un fondo C57Bl/6, lo que 

produjo la línea de ratón C57Bl6+/mCAT (en adelante mCAT). La descendencia se 

genotipó (Figura 1) y se utilizó para obtener astrocitos primarios +/mCAT. 

 

 

 

2. Expresión constitutiva de la mCAT en los astrocitos primarios 

La presencia de la mCAT se confirmó en los astrocitos primarios. Primero, la 

expresión del epítopo HA y la abundancia de la catalasa se detectaron mediante 

transferencia de tipo Western en extractos de células enteras. Como era de 

Figura 1: Ejemplo de un gel de PCR. El genotipo de los ratones fue determinado por PCR. Los animales 

wild type presentan sólo una banda a 729 bp, mientras que en los mCAT aparece una banda adicional a 245 

bp. Como controles se utilizó DNA procedente de la cola de los ratones parentales.  
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esperar, los astrocitos +/mCAT mostraron una mayor abundancia de la catalasa, 

de unas 6 veces, en comparación con los WT (Figura 2A) y expresaron el epítopo 

HA (Figura 2B). Posteriormente, se confirmó la localización mitocondrial de la 

mCAT. Así, después de un fraccionamiento subcelular, se detectó HA en las 

mitocondrias aisladas de los astrocitos +/mCAT (Figura 2C). Sin embargo, se 

detectó también una pequeña banda correspondiente a HA en el compartimento 

citosólico de los astrocitos +/mCAT, lo que probablemente refleja la proteína 

recién sintetizada. En conjunto, estos resultados confirman que la mCAT se 

expresa correctamente en las mitocondrias de los astrocitos +/mCAT. 

 

Figura 2: Presencia del epítopo HA y abundancia de la catalasa en astrocitos primarios. El análisis de la 

transferencia de Western reveló que los astrocitos +/mCAT tienen niveles más altos de catalasa respecto a los 

WT (A) y presentan HA (B). Después de un fraccionamiento subcelular, la localización mitocondrial de HA 

se analizó mediante transferencia de Western (C). Se utilizó b-actina como control de carga del extracto total, 

GAPDH como control de carga citosólico y VDAC como control de carga mitocondrial. Los datos son 

expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos independientes. 
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3. La mCAT constitutiva destoxifica eficientemente el peróxido 

de hidrogeno y disminuye los niveles de los ROS endógenos en 

los astrocitos primarios 

El siguiente paso fue confirmar la funcionalidad de la mCAT y corroborar si su 

expresión constitutiva es suficiente para disminuir los niveles de mROS 

endógenos en astrocitos primarios. 

La actividad catalítica de la mCAT se midió en mitocondrias aisladas de astrocitos 

primarios WT y +/mCAT incubados con diferentes concentraciones de peróxido 

de hidrogeno exógeno. Los resultados mostrados en la Figura 3 demuestran que 

las mitocondrias que expresan mCAT neutralizan el peróxido de hidrógeno 

exógeno más rápidamente que las células WT. Después de 20 minutos, la 

totalidad del peróxido de hidrógeno exógeno se neutralizó por completo mediante 

la acción de la mCAT a todas las concentraciones de peroxido de hidrogeno 

utilizadas. No obstante, parece que la mCAT no es capaz de disminuir los noveles 

de los ROS en ausencia de peróxido de hidrógeno. En este sentido, hay que tener 

en cuenta que el método colorimétrico utilizado para medir la actividad de la 

mCAT no es muy sensible. 
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Por esta razón, se utilizaron dos sondas más sensibles: Amplex Red y MitoSox. Se 

midió la liberación de peróxido de hidrógeno por parte de las mitocondrias 

aisladas y de los astrocitos intactos con la sonda Amplex Red. El resultado 

mostrado en la Figura 4A indica que, en condiciones basales, tanto las 

mitocondrias +/mCAT como los astrocitos intactos liberan menos peróxido de 

hidrógeno respecto a los WT. A continuación, se utilizó la sonda MitoSox. Esta 

sonda sensible a mROS penetra en la mitocondria en función del potencial de 

membrana mitocondrial (Dym), por lo que diferencias en Dym podrían alterar la 

acumulación mitocondrial de MitoSox. Por lo tanto, es necesario monitorizar 

Dym. Usando la sonda DilC1(5), Dym se determinó por citometría de flujo y los 

resultados demuestran ausencia de diferencias significativas entre astrocitos WT y 

+/mCAT (Figura 4B). Posteriormente, se midió la fluorescencia de MitoSox y el 

resultado indica que los astrocitos +/mCAT presentan una menor abundancia de 

mROS (~20%) en comparación con los WT (Figura 4C). 

Figura 3: La expresión constitutiva de la mCAT aumenta la destoxificación mitocondrial del peróxido 

de hidrogeno en astrocitos primarios. La incubación de mitocondrias aisladas con diferentes 

concentraciones de peróxido de hidrogeno exógeno durante diferentes tiempos mostró que la expresión 

constitutiva de la mCAT aumenta de manera significativa la velocidad de destoxificación del peróxido de 

hidrogeno a todas las concentraciones testadas. En ausencia de peróxido de hidrogeno, no se han encontrado 

diferencias entre las mitocondrias que expresan la mCAT y los WT. Los datos son expresados como la media 

± SEM; *p<0,05 test t-Student; n=3 experimentos independientes. 



 

 143 

En conjunto, estos resultados muestran que mCAT eficientemente neutraliza el 

peróxido de hidrógeno exógeno, y que su expresión constitutiva en astrocitos 

primarios es suficiente para disminuir los niveles de los mROS endógenos. 

Además, estos cambios en el entorno redox en las células gliales no afectan al 

Dym. 

 

Figura 4: La expresión constitutiva de la mCAT disminuye los niveles de mROS y ROS endógenos en 

astrocitos primarios. (A) Células enteras y mitocondrias aisladas que expresan constitutivamente la mCAT 

liberan menos peróxido de hidrogeno respecto a los WT. (B) La medición del Dym ha sido analizado 

mediante citometría de flujo. No se encontraron diferencias entre los astrocitos WT y +/mCAT. (C) El 

análisis de los mROS ha sido realizado por citometrá de flujo utilizando la sonda MitoSox Red. Los astrocitos 

+/mCAT tienen menos mROS respecto a los WT. Los datos son expresados como la media ± SEM; *p<0,05 

test t-Student; n=3 experimentos independientes. 
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4. Los mROS endógenos modulan la acumulación nuclear y la 

actividad funcional de NRF2 en astrocitos primarios 

Para investigar si los mROS endógenos modulan la acumulación nuclear de NRF2 

en astrocitos, realizamos fraccionamiento subcelular y la abundancia de NRF2 se 

detectó mediante transferencia tipo Western en las fracciones citosólica y nuclear. 

Como se muestra en la Figura 5A, los núcleos obtenidos a partir de astrocitos 

+/mCAT presentan una menor abundancia de NRF2 en comparación con los WT, 

mientras que no se encontraron diferencias en el compartimento citosólico. 

Para investigar si la disminución de la localización nuclear de NRF2 en astrocitos 

+/mCAT podría afectar a su actividad transcripcional, los niveles de mRNA de 

varios genes diana de NRF2 se midieron mediante RT-qPCR. Los genes elegidos 

fueron NADPH-quinona deshidrogenasa 1 (Nqo1), glutamato-cisteína ligasa 

subunidad catalítica (Gclc), glutatión peroxidasa-2 (Gpx2), hemo-oxigenasa 1 

(Ho-1), tiorredoxina-1 (Trx1), nuclear factor (erythroid-derived-2)-like 2 (Nrf2), 

peroxiredoxina-1 (Prdx1), 6-fosfogluconato deshidrogenasa (6pgd) y glucosa-6-

fosfato deshidrogenasa (G6pd). Los primeros siete genes analizados mostraron 

menores niveles de mRNA en astrocitos mCAT, aunque Prdx1 no de manera 

significativa (Figura 5B). Sorprendentemente, la abundancia de los transcritos de 

los genes 6pgd y G6pd era superior en astrocitos +/mCAT, lo que sugiere la 

existencia de un mecanismo particular de control de su expresión. 

En conjunto, estos resultados muestran que los mROS endógenos modulan la 

acumulación nuclear de NRF2 y de los niveles de mRNA de varios de sus genes 

diana. 
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5. La disminución de los niveles de mROS endógenos aumenta la 

abundancia de los enzimas de la PPP 

La glucosa-6-fosfato deshidrogenasa (G6PD) cataliza el primer paso limitante de 

la vía de las pentosas fosfato (PPP). Con el fin de investigar si el aumento de la 

transcripción del gen G6pd conlleva un aumento de la proteína G6PD, se estudió 

Figura 5: La disminución de los mROS endógenos modula la acumulación nuclear de NRF2 y su 

actividad. (A) Los núcleos aislados de los astrocitos +/mCAT mostraron una menor acumulación nuclear de 

NRF2. Se utilizó GAPDH como control de carga citosólica y Lamina B como control de carga nuclear. (B) 

La expresión de varios genes diana de NRF2 se evaluó por RT-qPCR. Se utilizó b-actina como housekeeping 

gene. Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos 

independientes.  



 

 146 

su abundancia mediante transferencia tipo Western. Como se muestra en la 

Figura 6A, los astrocitos +/mCAT expresan una mayor abundancia de G6PD en 

comparación con los WT. Además, se evaluó la abundancia de 6-fosfogluconato 

deshidrogenasa (6PGD). La 6PGD cataliza la tercera reacción de la fase oxidativa 

del PPP, consistente en la descarboxilación del 6-fosfogluconato formando 

ribulosa-5-fosfato. Este enzima es fundamental en el mantenimiento de la 

homeostasis redox celular, porque junto con G6PD, es el principal sistema 

regenerador del NADPH citosólico (Wamelink et al., 2008). Este coenzima juega 

un papel clave en la homeostasis del glutatión (GSH) al suministrar los 

equivalentes reductores necesarios para reducir GSSG a GSH (Wamelink et al., 

2008). En astrocitos +/mCAT, los niveles de proteína de 6PGD son más altos que 

en los WT (Figura 6B). 

 

Figura 6: La disminución de los mROS endógenos aumenta la abundancia de G6PD y 6PGD en 

astrocitos primarios. El análisis de la transferencia de Western mostró que los astrocitos +/mCAT tienen una 

mayor abundancia de G6PD (A) y 6PGD (B) respecto a los WT. Se utilizó b-Actina como control de carga. 

Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos independientes.  
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6. La disminución de los niveles de los mROS endógenos aumenta 

la expresión de miR-1 y miR-206 

Recientemente se ha puesto de manifiesto un mecanismo de regulación alternativa 

de la transcripción de varios genes relacionados con la vía PPP (Singh et al., 

2013). Este mecanismo está mediado por la histona deacetilasa HDAC4, que se 

acumula en el núcleo cuando los dos residuos de cisteína, Cys-667 y Cys-669, 

están en su estado reducido (Ago et al., 2008). De esta manera, HDAC4 reprime 

la transcripción de dos microRNA, miR-1 y miR-206, los cuales degradan el 

mRNA recién sintetizado de varios genes relacionados con la vía PPP, además del 

propio HDAC4 (Singh et al., 2013). 

El aumento de los niveles de los mRNA de G6pd y 6pgd que hemos observado es 

compatible con este mecanismo. Puesto que los astrocitos +/mCAT presentan un 

entorno menos oxidante, los residuos de cisteína de HDAC4 podrían estar en su 

estado reducido. De ser así, HDAC4 estaría localizado en el núcleo reprimiendo la 

transcripción de miR-1 y miR-206, lo que conllevaría una estabilización de los 

mRNA de G6PD y 6PGD. Para dilucidar esta hipótesis, la abundancia de HDAC4 

en la fracción nuclear se evaluó mediante transferencia tipo western. Los 

resultados revelan que la abundancia de HDAC4 en el núcleo es mayor en los 

astrocitos +/mCAT que en los WT (Figura 7A). Para confirmar estos resultados, 

evaluamos las abundancias de los miR-1 y 206 mediante RT-qPCR. Los datos 

obtenidos muestran que las abundancias de los miR-1 y 206 en los astrocitos 

+/mCAT son un 15% y un 30% menores que las de los WT, respectivamente 

(Figura 7B). 
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7. La disminución de los niveles de los mROS endógenos aumenta 

el flujo de glucosa hacia la PPP 

Con objeto de dilucidar si los incrementos en las abundancias de mRNA y 

proteína de G6PD y 6PGD correlacionan con un aumento en el flujo de glucosa a 

través del PPP, a continuación determinamos la velocidad de esta vía metabólica 

utilizando un protocolo optimizado en nuestro laboratorio (Rodríguez-Rodríguez 

et al., 2013). Como se muestra en la Figura 8A, el flujo de glucosa oxidada a 

través de la vía PPP es un 40% mayor en los astrocitos mCAT  que en los WT. 

Figura 7: La disminución de los mROS endógenos aumenta la abundancia nuclear de HDAC4 y 

disminuye la expresión de miR-1 y miR-206. El análisis de la transferencia tipo Western mostró que los 

astrocitos +/mCAT presentan una mayor abundancia nuclear de HDAC4 (A) respecto a los WT. Se utilizó 

Lamina B como control de carga nuclear. (B) El análisis por RT-qPCR reveló que los astrocitos +/mCAT 

expresan menos miR-1 y miR-206 respecto a los WT. Se utilizó miR-202 como control interno. Los datos son 

expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos independientes. 
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Una de las funciones principales de la vía PPP es la regeneración del NADPH 

necesario para mantener la homeostasis redox y otras vías anabólicas (Wamelink 

et al., 2008). Dado que la disminución de los mROS astrocíticos aumenta los 

niveles de G6PD y 6PGD junto con la tasa de PPP, se midió la razón 

NAPDH/NADP+. Sorprendentemente, los astrocitos +/mCAT mostraron una 

razón NAPDH/NADP+ menor qua la de los WT (Figura 8B). Este resultado se 

podría explicar por un mayor consumo de NADPH en los astrocitos +/mCAT, 

entre otras posibles razones. 

 

8. Los mROS endógenos modulan la producción de superóxido 

extracelular en los astrocitos 

En estudios muy recientes se ha observado que la G6PD se encuentra muy 

próxima a los enzimas productores de ROS, NADPH-oxidasas (NOX) (Yang et 

al., 2016). Esta familia de enzimas utiliza NADPH para producir superóxido o, 

según la isoforma, peróxido de hidrógeno. Además, recientemente se ha 

demostrado que NRF2 reprime la expresión de NOX2, mientras que aumenta la 

expresión de NOX4 (Kovac et al., 2015; Wei et al., 2016), aunque se desconoce 

Figura 8: La disminución de los mROS endógenos aumenta flujo de la glucosa oxidada a través de la 

PPP. (A) El flujo de la PPP fue evaluado incubando los astrocitos con glucosa marcada radioactivamente. 

Las células +/mCAT mostraron un incremento de la oxidación de la glucosa a través de la PPP respecto a los 

WT. Sin embargo, los astrocitos +/mCAT presentan una menor razón NADPH/NADP+ comparados con los 

WT (B). Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos 

independientes. 
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el mecanismo. Considerando que los astrocitos +/mCAT muestran una menor 

actividad de NRF2 y, probablemente, más consumo de NADPH en comparación 

con los WT, decidimos evaluar los niveles de mRNA de NOX1, -2, -4. Los datos 

obtenidos ilustran que los astrocitos +/mCAT expresan niveles más altos de 

mRNA de NOX1 y NOX2 (46% y 51%, respectivamente), mientras que 

disminuyen los niveles de NOX4 en comparación con los WT (Figura 9A). 

Teniendo en cuenta que NOX1 y -2 producen superóxido extracelular, mientras 

que NOX4 produce peróxido de hidrógeno, se determinó la liberación de 

superóxido extracelular. Como se muestra en la Figura 9B, los astrocitos 

+/mCAT liberan un 20% más de superóxido extracelular en comparación con los 

WT. Estos resultados indican que la disminución de los mROS endógenos en 

astrocitos primarios aumenta la expresión de NOX1 y NOX2, pero disminuye los 

niveles de NOX4. Este aumento de las dos isoformas de NOX responsables de la 

producción de superóxido extracelular es compatible con el aumento observado de 

este ROS. Además, el aumento de NOX1 y NOX2 es consistente con el aumento 

en el consumo de NADPH observado en los astrocitos +/mCAT. Sin embargo, se 

desconoce el mecanismo responsable del aumento de NOX1 y -2 y la disminución 

de NOX4. 
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9. El rescate de los niveles de NRF2 disminuye la liberación de 

superóxido en los astrocitos 

Con el fin de corroborar que la deficiencia de NRF2 conduce a un aumento en la 

liberación de superóxido extracelular a través de la actividad de las NOX1 y -2, 

los astrocitos +/mCAT se transfectaron con un cDNA codificante para una forma 

fosfomimética de NRF2 (NRF2 PM). Esta isoforma de NRF2 se transloca 

directamente al núcleo e incrementa la transcripción de sus genes diana. El 

plásmido se diseñó y se validó previamente en nuestro laboratorio (Jimenez-

Blasco et al., 2015). 

Primero confirmamos la correcta expresión de NRF2 mediante RT-qPCR y 

transferencia de tipo Western. Como se muestra en la Figura 10A, los astrocitos 

+/mCAT transfectados con NRF2 PM expresan unas 35 veces más mRNA de 

Nrf2 en comparación con el plásmido vacío. La transferencia de tipo Western 

reveló dos bandas de NRF2, concretamente la constitutiva (con un peso molecular 

de 100 kDa) y la fosfomimética, que se detecta a 130 kDa. Como era esperable, 

Figura 9: Los mROS endógenos modulan la expresión de las NOXs y la liberación del superóxido 

extracelular. Los astrocitos +/mCAT presentan una mayor expresión de las NOX-1 y -2, mientras una 

disminución de la NOX-4 respecto a los WT (A), lo que lleva a un aumento de la liberación del superóxido 

extracelular (B). Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos 

independientes. 
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sólo los astrocitos transfectados con NRF2 PM mostraron dos bandas (Figura 

10B). 

 

Posteriormente, los niveles de mRNA de NOX1, -2 y -4 se midieron en astrocitos 

+/mCAT transfectados con NRF2 PM. Los datos obtenidos muestran que la 

transfección de astrocitos +/mCAT con NRF2 PM restableció los niveles de 

mRNA de NOX1, -2 y -4 en comparación con las células WT transfectadas con el 

plásmido vacío (Figura 11A). A continuación, se midió la liberación de 

superóxido extracelular con el fin de determinar si la expresión de NRF2 PM era 

suficiente para restablecer los valores basales. Como se ilustra en la Figura 11B, 

los astrocitos +/mCAT liberaron un 10% más de superóxido extracelular en 

comparación con las células WT cuando se transfectaron con el plásmido vacío. 

Sin embargo, no se encontraron diferencias entre las células +/mCAT 

transfectadas con NRF2 PM frente a las células WT transfectadas con el plásmido 

vacío. En conjunto, estos resultados confirman que NRF2 reprime la expresión de 

NOX1 y -2, mientras que aumenta NOX4 en astrocitos. Además, el rescate de los 

Figura 10: La expresión de NRF2 PM aumenta la abundancia de NRF2 en los astrocitos +/mCAT. (A) 

Se midieron los niveles de expresión de Nrf2 mediante RT-qPCR, utilizando b-actina como housekeeping 

gene. Los astrocitos +/mCAT transfectados con NRF2 PM muestran una expresión ~35 veces mayor respecto 

a las células transfectadas con el plásmido vacío. (B) El análisis de la transferencia tipo Western mostró que 

los astrocitos +/mCAT transfectados con NRF2 PM tienen un pequeño incremento de la expresión de la 

forma constitutiva de NRF2, como se aprecia en la banda de 100 kDa, y expresan una banda adicional a 130 

kDa que corresponde a NRF2 PM, respecto a las células transfectadas con el plásmido vacío. Los datos son 

expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos independientes. 
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niveles de NRF2 en los astrocitos +/mCAT restaura la liberación basal de 

superóxido extracelular, lo cual sugiere que los mROS modulan la liberación de 

ROS extracelular a través de un mecanismo mediado por NRF2. 

 

10. Los mROS endógenos modulan la abundancia del glutatión en 

astrocitos primarios a través de la vía NRF2 

El glutatión (GSH) se sintetiza en dos pasos consecutivos, ATP-dependientes, 

catalizados por la glutamato cisteína ligasa (GCL) y glutatión sintasa (GS), 

respectivamente (Dringen, 2000). El primer paso es el limitante, razón por la cual 

la expresión y actividad de GCL controlan la síntesis de GSH. La disminución de 

los mROS endógenos en astrocitos conlleva una menor expresión del gen Gclc 

(Figura 5B). Con el fin de investigar si esta disminución de la transcripción del 

gen Gclc conduce a una menor síntesis de GSH en astrocitos +/mCAT, se 

evaluaron las abundancias de la proteína GCL y de GSH total. La transferencia de 

tipo Western mostró una disminución de la abundancia de la GCL en astrocitos 

+/mCAT en comparación con los WT (Figura 12A). Como era esperable, los 

Figura 11: La transfección de los astrocitos +/mCAT con NRF2 PM restablece la expresión basal de las 

NOXs y la liberación del superóxido. Los astrocitos +/mCAT que expresan NRF2 PM no muestran 

diferencia en la expresión de NOX1, -2 y -4 (A) ni en la liberación de superóxido extracelular (B) respecto a 

los WT transfectado con plásmido vacío. Se utilizó b-actina como housekeeping gene. Los datos son 

expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos independientes. 
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astrocitos +/mCAT mostraron una disminución (20%) de la concentración de 

GSH (Figura 12B). 

Con el fin de investigar si los mROS astrocíticos modulan la abundancia de GSH 

a través de la ruta NRF2, los astrocitos +/mCAT se transfectaron con NRF2 PM. 

Como se observa en la Figura 12C, la expresión de NRF2 PM aumenta la 

abundancia de la proteína GCL en astrocitos +/mCAT. Posteriormente se midió la 

concentración total de GSH. Coherentemente con el aumento de la GCL, los 

astrocitos +/mCAT transfectados con NRF2 PM mostraron una concentración de 

GSH total mayor (Figura 12D). En conjunto, estos resultados sugieren que los 

mROS endógenos astrocíticos modulan las abundancias de GCL y GSH a través 

de NRF2. 
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Figura 12: Los mROS endógenos modulan la síntesis del GSH a través de la vía NRF2. (A) El análisis de 

la transferencia de tipo Western muestra que los astrocitos expresan una menor cantidad de GCL respecto a 

los WT. (B) La medición de los niveles de glutatión mostró que los astrocitos +/mCAT tienen una menor 

cantidad de GSH respecto a los WT. La transfección de los astrocitos +/mCAT con NRF2 PM aumenta la 

abundancia de la GCL (C) y la concentración de GSH (D) respecto al plásmido vacío. Se utilizó b-Actina 

como control de carga. Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; n=3 

experimentos independientes. 
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11.  Las neuronas co-cultivadas con astrocitos +/mCAT presentan 

menos defensas antioxidantes, un aumento de la liberación de 

ROS y más apoptosis 

Con el fin de investigar si la disminución de los mROS endógenos astrocíticos 

altera la homeostasis redox y supervivencia de las neuronas, se realizaron co-

cultivos de astrocitos y neuronas. Como se presenta en la Figura 13A, las 

neuronas co-cultivadas con astrocitos +/mCAT muestran una disminución del 

27% en la concentración total de GSH en comparación con las neuronas co-

cultivadas con astrocitos WT. Con el objetivo de determinar si este déficit de 

GSH altera la homeostasis redox neuronal, se midió el peróxido de hidrógeno. 

Como aparece en la Figura 13B, las neuronas produjeron más peróxido de 

hidrógeno cuando se co-cultivaron con astrocitos +/mCAT. Para averiguar si estos 

cambios en las defensas antioxidantes afectan a la supervivencia neuronal, se 

midió la actividad de la caspasa-3 (CSP-3) como marcador de apoptosis en 

neuronas co-cultivadas en condiciones basales o tras un tratamiento con 100 µM 

de etopósido, un activador de la apoptosis. La liberación de AMC, marcador de la 

actividad de la CSP-3, fue mayor en neuronas co-cultivadas con astrocitos 

+/mCAT en condiciones basales (Figura 13C). Después de un tratamiento de 4 

horas con etopósido, la actividad de CSP-3 aumentó significativamente en las 

neuronas; sin embargo, como se muestra en la Figura 13C, el aumento fue mayor 

en neuronas co-cultivadas con astrocitos +/mCAT en comparación con neuronas 

co-cultivadas con astrocitos WT. 

En conjunto, estos datos confirman la importancia del suministro de precursores 

de GSH de los astrocitos para la homeostasis neuronal. Además, sugieren que la 

disminución de los niveles de mROS endógenos astrocíticos altera la homeostasis 

redox y disminuye la supervivencia de las neuronas. 
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12.  La expresión de NRF2 PM en los astrocitos +/mCAT 

restablece las defensas antioxidantes y la supervivencia de las 

neuronas 

Para investigar si los mROS astrocíticos modulan la homeostasis redox y la 

supervivencia neuronal a través de la ruta NRF2, se co-cultivaron las neuronas 

con astrocitos +/mCAT previamente transfectados con NRF2 PM o con el 

plásmido vacío. Posteriormente se determinaron la concentración total de GSH, la 

liberación de peróxido de hidrógeno y la actividad de CSP-3 en las neuronas. 

Figura 13: Las neuronas co-cultivadas con astrocitos +/mCAT muestran una disminución en las 

defensas antioxidantes y una incrementada liberación de ROS y apoptosis. La incubación de las neuronas 

con astrocitos +/mCAT durante 4 días disminuye el pool neuronal de GSH (A), lo que lleva a un aumento de 

la liberación de ROS (B) y a una mayor activación apoptótica respecto a las neuronas co-cultivadas con 

astrocitos WT. Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; n=3 experimentos 

independientes. 
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Como se ilustra en la Figura 14A, las neuronas co-cultivadas con astrocitos 

+/mCAT previamente transfectados con NRF2 PM mostraron niveles más altos de 

GSH, alcanzando los valores de neuronas co-cultivadas con astrocitos WT 

(Figura 13A). A continuación se midió la liberación de peróxido de hidrógeno y, 

tal como se representa en la Figura 14B, las neuronas co-cultivadas con astrocitos 

+/mCAT, previamente transfectadas con NRF2 PM, mostraron una disminución 

del ~40% en la liberación de peróxido de hidrógeno respecto a las neuronas co-

cultivadas con astrocitos +/mCAT transfectados con el plásmido vacío. 

Finalmente, para corroborar si la expresión de NRF2 PM en los astrocitos rescata 

la muerte neuronal, se evaluó la actividad de CSP-3. La Figura 14C muestra que 

las neuronas co-cultivadas con astrocitos +/mCAT que expresan NRF2 PM tenían 

una menor actividad de CSP-3 en comparación con las neuronas co-cultivadas con 

astrocitos transfectados con el plásmido vacío. 

En conjunto, estos resultados son consistentes con el trabajo previo de nuestro 

laboratorio (Jimenez-Blasco et al., 2015) que demuestra que el aumento de la vía 

NRF2 en los astrocitos lleva a un aumento de las defensas antioxidantes y de la 

supervivencia neuronales. Además, nuestros datos demuestran que los mROS 

astrocíticos endógenos modulan la homeostasis redox y aumentan la viabilidad de 

las neuronas a través de la ruta NRF2. 
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5. DISCUSIÓN 

La expresión de una forma mitocondrial de la catalasa permite 

estudiar el papel fisiológico de los mROS 

Tradicionalmente, el exceso de ROS ha sido asociado a estrés oxidativo y 

enfermedades humanas. Sin embargo, los ensayos clínicos basados en 

antioxidantes no han sido concluyentes (Halliwell, 2013; Heyland et al., 2013; 

Figura 14: La expresión de NRF2 PM en los astrocitos +/mCAT restablece las defensas antioxidantes y 

la supervivencia de las neuronas co-cultivadas. La expresión de NRF2 PM en los astrocitos +/mCAT 

restablece los niveles de GSH (A) y disminuye la liberación de ROS (B) por parte de las neuronas co-

cultivadas, respecto al plásmido vacío. Además, se incrementa levemente, pero de manera significativa, la 

viabilidad neuronal tras el co-cultivo de las neuronas con los astrocitos +/mCAT que expresan NRF2 PM 

comparado con el plásmido vacío. Los datos son expresados como la media ± SEM; *p<0,05 test t-Student; 

n=3 experimentos independientes. 
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Kamat et al., 2008; Snow et al., 2010), lo que cuestiona un papel patológico para 

los ROS. 

Por otro lado, para investigar las funciones de los ROS, la mayoría de los estudios 

anteriores utilizan estrategias basadas en su aumento, ya sea por vías exógenas o 

endógenas. Sin embargo, este enfoque podría enmascarar los papeles beneficiosos 

de los ROS endógenos. En este trabajo, presentamos un enfoque alternativo 

consistente en la disminución de los niveles de mROS endógenos. Varios modelos 

de ratones diseñados con este fin ya han sido descritos. Sin embargo, tienen 

efectos secundarios sobre el metabolismo (Chen et al., 1998; Matsushima et al., 

2006; Quintana-Cabrera et al., 2012). La estrategia utilizada en este trabajo para 

disminuir los mROS endógenos está basada en la expresión de una forma 

mitocondrial de la catalasa, la cual neutraliza el peróxido de hidrógeno con un 

efecto mínimo sobre metabolismo. De hecho, se ha descrito previamente un 

modelo de ratón mCAT (Schriner et al., 2005). Sin embargo, la técnica de 

microinyección convencional utilizada para generar ese modelo tiene dos 

inconvenientes principales: una inserción del constructo de DNA no dirigida y la 

imposibilidad de controlar el número de copias insertadas. Por lo tanto, es incierto 

si los efectos observados se deben a la actividad de mCAT o a cualquier efecto 

desconocido causado por la alteración de la expresión génica. 

En consecuencia, diseñamos un modelo de ratón mCAT para investigar los 

papeles fisiológicos de los mROS. La construcción mCAT se insertó en el locus 

Rosa26 de células madre embrionarias de ratón con fondo C57Bl/6 mediante 

recombinación homóloga. Esta técnica inserta sólo una copia de la construcción 

mCAT en un locus definido. Además, el modelo se generó basado en la estrategia 

Cre-LoxP, que permite controlar la expresión de mCAT in vivo de una manera 

específica del tejido y controlada por tiempo. 

Los resultados obtenidos en este trabajo muestran que este modelo de ratón 

mCAT es capaz de disminuir los niveles de los mROS endógenos enlos astrocitos 

primarios. Por lo tanto, parece útil para investigar las funciones biológicas de los 

mROS astrocíticos. 
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Los mROS endógenos modulan la homeostasis redox en los 

astrocitos primarios a través de la vía NRF2 

La ruta NRF2 es esencial para la homeostasis redox en el cerebro. Sin embargo, 

su actividad difiere entre los dos tipos de células más abundantes, neuronas y 

astrocitos. Las neuronas muestran las defensas antioxidantes reprimidas debido a 

la desestabilización continua de la proteína NRF2 (Bell et al., 2015; Jiménez-

Blasco et al., 2015). Por el contrario, NRF2 es altamente estable en los astrocitos, 

lo que explica sus robustas defensas antioxidantes (Habas et al., 2013; Jiménez-

Blasco et al., 2015). No obstante, aún se desconoce el mecanismo según el cual 

NRF2 se estabiliza en astrocitos. En este contexto, un estudio reciente demostró 

que los astrocitos producen más mROS que las neuronas en condiciones basales 

(López-Fabuel et al., 2016). Sin embargo, las funciones fisiológicas de esta 

producción glial de mROS no se conocen. 

Los resultados obtenidos en este trabajo demuestran que los mROS endógenos en 

los astrocitos mantienen altos los niveles de activación de NRF2, promoviendo la 

expresión de sistemas antioxidantes que así contribuyen a mantener su robusta 

maquinaria antioxidante. Por otro lado, NRF2 modula la expresión de los enzimas 

productores de ROS, NADPH-oxidasas, en astrocitos. En particular, NRF2 

reprime la expresión de NOX-1 y -2 y aumenta la expresión de NOX-4, de 

acuerdo con trabajos previos (Kovac et al., 2015; Wei et al., 2016). El mecanismo 

(s) conforme al cual NRF2 modula la expresión de las NOXs es desconocido. Se 

puede especular que el aumento en la producción de superóxido extracelular 

observado en los astrocitos que contienen menos mROS podría ser una señal 

redox para las neuronas vecinas, lo que indicaría una alteración del metabolismo 

astrocítico. 

Hasta donde sabemos, ésta es la primera evidencia de que los mROS endógenos 

modulan la homeostasis redox a través de la ruta NRF2 en los astrocitos. 

 

Los mROS endógenos modulan el flujo de la glucosa hacia la PPP 



 

 162 

La PPP es una ruta metabólica cuya función principal en el cerebro adulto es 

regenerar NADPH para contribuir a la homeostasis redox celular. Los datos 

presentados en este trabajo muestran que la disminución de los mROS endógenos 

en astrocitos aumenta el flujo de la glucosa a través de la vía PPP. Estos datos 

están en aparente contradicción con la noción ampliamente difundida de que los 

ROS, al activar NRF2, promueven la expresión de G6pd y 6pgd aumentando la 

actividad de la PPP (Hayes and Dinkova-Kostova, 2014; Stincone et al., 2015). 

Sin embargo, se ha demostrado que NRF2 modula la expresión de genes 

relacionados con la vía PPP a través de un mecanismo indirecto involucrando 

modificaciones epigenéticas (Singh et al., 2013). 

En este trabajo mostramos que los astrocitos que presentan menos mROS 

muestran una actividad NRF2 disminuida a pesar de la aumentada transcripción 

de genes relacionados con la vía PPP. Nuestros datos sugieren que los mROS 

modulan la expresión de G6PD y 6PGD al promover la localización nuclear de 

HDAC4, que reprime la expresión de miR-206. Este miRNA se une a los mRNAs 

G6PD y 6PGD para su degradación, lo que lleva a la disminución de los niveles 

de proteína. 

En conjunto, estos resultados demuestran que los mROS endógenos pueden 

modular el metabolismo de la glucosa en los astrocitos. El mecanismo epigenético 

sugerido es coherente con el estudio de Singh et al. (2013) y demuestra una vez 

más que G6pd y 6pgd no son genes diana de NRF2. Sería muy interesante 

investigar si otras vías metabólicas también se ven afectadas en los astrocitos 

+/mCAT, con el fin de tener una visión más amplia del papel de los mROS en la 

regulación del metabolismo celular. 

 

Los mROS endógenos son neuroprotectores 

El estrés oxidativo es una característica distintiva de varias enfermedades 

neurodegenerativas. Así, los ROS han sido siempre considerados como especies 

dañinas. Sin embargo, el hecho de que los astrocitos produzcan una cantidad 

considerable de mROS (López-Fabuel et al., 2016) sugiere una función 

fisiológica de estos mROS. 
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Los astrocitos protegen a las neuronas co-cultivadas de los daños oxidativos 

(Bélanger and Magistretti, 2009; Dringen, 2000; Wilson, 1997) al aumentar las 

defensas antioxidantes a través del suministro de precursores de GSH (Bolaños et 

al., 1996; Dringen et al., 1997). Este fenómeno, que ha sido denominado 

lanzadera de glutatión astrocito-neurona (Bolaños, 2016), se mantiene mediante la 

activación constitutiva de NRF2 en astrocitos (Jimenez-Blasco et al., 2015). De 

hecho, la idea de que la activación de NRF2 en los astrocitos aumenta la 

supervivencia neuronal frente a un daño oxidativo es un fenómeno bien conocido, 

tanto in vitro (Jakel et al., 2007; Jiménez-Blasco et al., 2015; Shih et al., 2003) 

como en modelos animales de enfermedades neurodegenerativas (Chen et al., 

2009; Vargas et al., 2008). Sin embargo, en estos estudios, la actividad de NRF2 

en astrocitos se vio aumentada artificialmente por su sobreexpresión o su 

activación farmacológica. En este trabajo, demostramos que los mROS endógenos 

juegan un papel importante en la activación de NRF2 en astrocitos, y a través de 

este mecanismo ejercen neuroprotección. Un estudio previo sugirió que niveles 

subtóxicos de peróxido de hidrógeno astrocítico no activan NRF2 y desencadenan 

procesos independientes de NRF2 que protegen las neuronas co-cultivadas 

(Haskew-Layton et al., 2010). Sin embargo, estas conclusiones fueron 

cuestionadas (Bell et al., 2011). Además, las dosis subtóxicas de peróxido de 

hidrógeno utilizadas activan NRF2 en astrocitos (Bell et al., 2011). Si bien estos 

datos concuerdan con nuestros resultados, la dosis de peróxido de hidrógeno 

probada fue unas 16 veces mayor que los niveles fisiológicos que observamos en 

astrocitos en nuestro laboratorio (López-Fabuel et al., 2016). Por lo tanto, 

creemos que incluso utilizando concentraciones subtóxicas de peróxido de 

hidrógeno, se podría desencadenar una señal redox aberrante que podría 

enmascarar el papel neuroprotector de los mROS astrocíticos endógenos. 

Cabe destacar que el rescate de los niveles de NRF2 en astrocitos mCAT sólo 

restauró parcialmente la supervivencia de las neuronas co-cultivadas. Estos datos 

sugieren que los mROS endógenos pueden modular otras rutas neuroprotectoras 

además de NRF2. Una posibilidad interesante que merece la pena estudiar es si la 

glucólisis, una ruta metabólica fundamental en las interacciones metabólicas entre 
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los astrocitos y las neuronas (Pellerin and Magistretti, 1994), se ve afectada en los 

astrocitos que presentan menos mROS. 

Los datos obtenidos en este trabajo confirman una vez más que los mROS 

endógenos desempeñan papeles fundamentales en el mantenimiento de la 

homeostasis celular, como se observa en diferentes tejidos (Puente et al., 2014; 

Zhou et al., 2016). Este trabajo demuestra por primera vez que los mROS 

astrocíticos endógenos tienen un papel neuroprotector. Además, se puede 

especular que los ensayos clínicos basados en la estrategia antioxidante en 

pacientes que padecen enfermedades neurológicas no han sido concluyentes 

debido a que los antioxidantes eliminan los ROS de forma inespecífica en todas 

las células cerebrales. Proponemos que este enfoque podría ser más beneficioso si 

se disminuyen los ROS específicamente en las neuronas, y no en los astrocitos 

que demostramos ser neuroprotectores. Estas consideraciones deben tenerse en 

cuenta para el diseño de nuevas terapias antioxidantes en el futuro. 

6. CONCLUSIONES 

A la luz de los resultados presentados en esta Tesis, hemos obtenido las siguientes 

conclusiones: 

1. Hemos caracterizado parcialmente un nuevo modelo de ratón que expresa 

condicionalmente una isoforma mitocondrial de la catalasa (mitoCatalasa 

o mCAT). Este modelo ha sido diseñado por nuestro grupo, y se generó 

externamente y específicamente para este proyecto, mediante la inserción 

dirigida de la secuencia mCAT en el locus Rosa26 de células madre 

embrionarias de la cepa C57Bl/6 de ratón mediante recombinación 

homóloga. La inserción se logró de tal manera que, en el modelo 

resultante, la expresión del cDNA de la mCAT está bajo el control del 

promotor ubicuo CAG. Se insertó un cassete de STOP transcripcional 

floxeado (flanqueado con loxP) entre la secuencia mCAT y el promotor 

CAG para permitir que la expresión del transgén resultante dependa de la 

recombinasa Cre (mCATfloxed/+). Al cruzar mCATfloxed/+ con los ratones 
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C57Bl/6 que expresan la recombinasa Cre de forma ubicua, se obtuvieron 

ratones que expresan constitutivamente la mCAT (ratón mCAT). 

 

2. Los astrocitos corticales primarios obtenidos del ratón mCAT muestran 

una reducción significativa en la producción de especies reactivas de 

oxígeno mitocondriales endógenas (basales) (mROS). Aprovechando este 

sistema, demostramos que los mROS endógenos controlan la expresión de 

genes antioxidantes mediante la regulación positiva de la actividad de 

NRF2 [nuclear factor (erythroid-derived 2)-like 2] en los astrocitos. A su 

vez, NRF2 reprime la producción de ROS extracelulares, reprimiendo la 

expresión de las NADPH-oxidasas (NOX) tipo -1 (NOX1) y -2 (NOX2). 

 

3. Utilizando astrocitos corticales primarios obtenidos del ratón mCAT, 

demostramos que los mROS endógenos regulan la oxidación de la glucosa 

a través de la vía de las pentosas fosfato (PPP). De hecho, la disminución 

de los mROS endógenos aumentó la actividad de PPP a través de un 

mecanismo mediado por la reducción de la histona desacetilasa 4 

(HDAC4) sensible a ROS. En su estado reducido, HDAC4 es 

constitutivamente activa en el núcleo, donde reprime la expresión de miR-

1 y miR-206, que a su vez reprimen las abundancias de los mRNAs de 

G6PD y 6PGD. Aquí demostramos que los mROS disminuyen la 

acumulación de HDAC4 en el núcleo, lo que lleva a la disminución de la 

abundancia de miR-1 y miR206, y aumenta la expresión de G6PD y 6PGD 

junto con la actividad de la vía PPP. Por lo tanto, en los astrocitos, los 

mROS mantienen parcialmente reprimida la actividad de la PPP, 

representando la primera evidencia que conecta la producción endógena de 

mROS con la regulación del metabolismo de la glucosa. 

 

4. En experimentos en los que los astrocitos mCAT se co-cultivaron con 

neuronas WT, mostramos que los mROS de los astrocitos afectan el estado 

redox y la supervivencia de las neuronas. Así, los mROS endógenos de los 

astrocitos, al mantener NRF2 activa, contribuyen al mantenimiento de la 
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abundancia total de glutatión en las neuronas. Además, a través de este 

mecanismo, los mROS en astrocitos incrementan la supervivencia 

neuronal. 
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