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Abstract

We present a method to obtain high quality spline parameterization of 2D and 3D
geometries for their use in isogeometeric analysis. As input data, the proposed
method demands a boundary representation of the domain, and it constructs au-
tomatically a spline transformation between the physical and the parametric do-
mains. Parameterization of the interior of the object is obtained by deforming
isomorphically an adapted parametric T-mesh onto the physical domain by apply-
ing a T-mesh untangling and smoothing procedure, which is the key of the method.
The T-mesh optimization is based on the mean ratio shape quality measure. The
spline representation of the geometry is calculated by imposing interpolation con-
ditions using the data provided by one-to-one correspondence between the meshes
of the parametric and physical domains. We give a detailed description of the
proposed technique and show some examples. Also, we present some examples
of the application of isogeometric analysis in geometries parameterized with our
method.

Keywords: spline parameterization, isogeometric analysis, T-mesh optimization,
hexahedral mesh optimization, shape quality metric

1. Introduction

One of the open problems of isogeometric analysis [1, 2, 3] is how to obtain
a spline parameterization of the interior of a computational domain from the de-
scription of its boundary. CAD models usually provide only the boundary surface
of a solid. The application of isogeometric analysis requires a full volumetric rep-
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resentation of the geometry. A parameterization is suitable for analysis if there
are no self-intersections. Moreover, in order to obtain an accurate numerical re-
sult, it is necessary to have a good quality parameterization. Orthogonality and
uniformity are desirable for the tensor-product structured parameterization. It is
not a trivial task to obtain a good quality smooth global parametric mapping for
complex domains, and it can be very time-consuming. IGA requires an effective
method to construct a spline parameterization from the boundary of the object.
Here are some attempts to tackle the problem.

Zhang et al. described in [4] a procedure to construct a T-spline representation
of a genus-zero solid from its boundary triangulation. The method is based on the
control net optimization procedure. To remove tangled elements, the authors max-
imize the worst Jacobian of the trilinear map for each element, and the smoothing
is performed by moving each node towards the mass center of its neighboring el-
ements. In [5] the method was extended for an arbitrary genus topology. Some
additional techniques based on polycubes decomposition was developed in [6, 7]
for treating more complex cases. An optimization-based method is used in [8, 9].
To find the optimal values for the control points of B-spline planar domain the
authors minimize the Winslow functional with certain constraints to assure the
validity of the mapping. Another similar approach is developed in [10], where the
B-spline parameterization is found by solving a constraint optimization problem.
Constraints are defined by imposing injectivity sufficient conditions, and the opti-
mization consists in minimizing some energy functional in order to reach a good
orthogonality and uniformity of the parametric mapping. The idea was extended
for 3D case in [11]. Another similar technique was proposed by these authors
in [12, 13]. They use a harmonic mapping obtained by solving an optimization
problem for the control points. Some additional terms are added to the objective
function in order to improve the quality of the spline mapping. The use of har-
monic mapping is a common characteristic of several works dealing with 2D and
3D parameterization methods. For example, Li et al. [14] construct a harmonic
volumetric mapping through a meshless procedure by using a boundary method.
Martin et al. [15] present a methodology based on discrete harmonic functions to
parameterize a solid, where the input data are surface triangulation and a tetrahe-
dral mesh of the solid. Several Laplace equations are solved using FEM to obtain
two orthogonal harmonic functions, which are used to construct a structured hex-
ahedral mesh of the solid. In [16] the authors proposed harmonic mapping based
parameterization method for planar domains using THB-splines. First, a harmonic
mapping from the physical to the parametric domain is found via the boundary el-
ement method. Then, this harmonic mapping should be inverted to provide the
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desired mapping from the parametric to the physical domain. An approximation
of this inverse is obtained via a minimization problem with the control points as
unknown variables. The objective function also includes some additional terms to
obtain a better quality spline parameterization.

In this paper, we propose a different approach. To obtain the parameterization
of the object Ω (physical domain) we deform a T-mesh of the parametric domain,
the unitary cube Ω̂= [0,1]d , d = 2,3, until it achieves the shape of the object. This
deformation only affects the positions of the nodes, that is, there is not any change
in their connectivities: we say that both meshes are isomorphic. Given that a point
can be fully determined by the local coordinates relative to the cell in which it is
contained, we can define a one-to-one mapping between parametric domain Ω̂
and the object. Mesh deformation is accomplished by means of the simultane-
ous T-mesh untangling and smoothing procedure based on a pointwise mean ratio
quality measure. This quality metric gains both good orthogonality and uniformity
of the isoparametric curves and forces the mapping to be as conformal as possi-
ble. Besides, in contrast to other optimization-based methods, we do not need
to impose additional constraints to guarantee the validity of the mapping. Then,
spline representation of the object is calculated by imposing interpolation condi-
tions using the data provided by one-to-one correspondence between the mesh of
the parametric domain and the mesh of the physical object. The interpolation is
performed using polynomial spline spaces constructed via a technique proposed
in our previous work [17]. This simple strategy allows to define easily a cubic
spline space with nice properties over a given strongly balanced quadtree/octree
T-mesh. However, any other spline basis defined over a T-mesh can be used.

Globally smooth 3D parametrization entails some important limitations due to
the tensor-product nature of spline functions. First, for complex domains it is nec-
essary to subdivide the object and perform several-patches parameterization with
loss of regularity in some zone of the merging. Second, for the given boundary
surface of a solid it is not trivial to find optimal partition of this surface into six
patches corresponding to six faces of the parametric cube. Besides, to guarantee
regular parameterization (positive Jacobian), the boundary patches must merge in
a convex local region, which can be impossible for some geometries. Here, we
are not going to tackle these problems inherent to tensor-product spline parame-
terization. Thus, in this paper, we deal with genus-zero geometries given by six
boundary patches that merge forming convex regions around the junction.

The paper is organized as follows. In next section we describe the main steps
of the proposed algorithm. In Section 3 we explain the process of the construc-
tion of the T-mesh adapted to the singularities of the object boundary. Section 4
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describes the T-mesh optimization procedure which is the key of the method. The
modeling of the geometry by means of cubic splines is developed in Section 5. A
quality improvement strategy, based on adaptive refinement, is described in Sec-
tion 6. In Section 7 we show some examples of the application of isogeometric
analysis in geometries parameterized with our method. Finally, in section 8 we
present the conclusions and set out some future lines.

2. General scheme of the method

The method is based on the ideas of our previous works on mesh untangling
and smoothing and the Meccano method [18, 19, 20].

The algorithm includes the following stages:

1. Construction of an adapted T-mesh: An adapted T-mesh is generated by
refining the initial mesh until the input boundary is approximated with a
prescribed tolerance. During this process, the boundary nodes of the para-
metric domain are mapped to the boundary of the object.

2. T-Mesh optimization: The inner nodes of the physical T-mesh are relocated
by applying a simultaneous untangling and smoothing procedure.

3. Construction of a spline representation of the geometry: Spline represen-
tation of the object is calculated by interpolating the data provided by the
transformation between the parametric and physical meshes of the object.

4. Adaptive refinement to improve the mesh quality (optional step): If the qual-
ity of the mesh is not satisfactory, we apply an adaptive refinement of the
mesh in order to increase the degree of freedom in the areas with high dis-
tortion. Then, we return to step 2 and repeat the process until reaching a
good spline parameterization.

The T-meshes used in this work are hierarchical meshes with a quadtree/octree
structure [21], which are frequently used in engineering. Due to their simplicity,
tree-structured meshes are an attractive tool for performing adaptive refinement
in IGA and geometric modelling. For spline representation of the object we use
polynomial spline spaces constructed via the technique described in [17]. This
strategy allows to define easily a cubic spline space with nice properties over a
given strongly balanced quadtree/octree T-mesh. A strongly balanced mesh im-
plies that any cell has contact only with cells that differ at most in one level of
depth, and it can be straightforwardly obtained using a standard balancing proce-
dure.
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As was said before, the proposed parameterization algorithm is suitable for
2D and 3D geometries. It is worth noting that our 3D parameterization method is
a direct generalization of the 2D case. To facilitate the illustration of the whole
process, we are going to give a description of all steps of the method both for 2D
and 3D domains.

In the next sections we describe the details of each stage.

3. Construction of an adapted T-mesh

Here, we describe the process to construct an adapted T-mesh that allows to
represent the features of the physical object Ω with a desired tolerance.

3.1. 2D case
For planar domains we assume that the input boundary is given by four spline

curves or polygonals. Also, we assume that the four curves (polygonals) meet in
a convex zone ( the inner angle is less than 180◦). If the input boundary is given
by spline parametric curves, we take the sides of the square as their parametric
spaces to map them to the input boundary. If the input boundary are polygonals,
each edge of the unit square are mapped into its corresponding polygonal via
chord-length parameterization.

Let Γi (i = 1, . . . ,4) be the four boundary curves of the object Ω, and Γ̂i be the
four sides of the parametric cube Ω̂ = [0,1]2. Given the four parametrizations Πi

b :
Γ̂i → Γi, we can define a global parametric mapping between the cube boundary
∂Ω̂ = Γ̂ =

∪4
i=1 Γ̂i and the boundary of the object ∂Ω = Γ =

∪4
i=1 Γi:

Πb : Γ̂ → Γ (1)

Next, we construct an adapted quadtree T-mesh to approximate the input bound-
ary with a predefined tolerance ε . Let consider that Ω̂k is a T-mesh of Ω̂ resulting
after applying several quadtree refinements according to some approximation er-
ror criterion. Then, after mapping Γ̂k = ∂Ω̂k onto the physical space using Πb, we
obtain a new boundary Γk which is an approximation for the input boundary Γ,
i.e.

Γ̂k → Πb(Γ̂k) =: Γk ≈ Γ (2)

In order to improve this approximation we must refine the cells of Ω̂k, that contact
with the boundary, in such a way that the distance between Γk and Γ decreases
until reaching a prescribed tolerance ε . In this work, the following simple approx-
imation criterion is used. We evaluate the area of the triangle formed by the edge
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input boundary

cell edge

(a)

input boundary surface

cell face

(b)
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Figure 1: Step 1 of the method: construction of an adapted T-mesh. (a) Error criterion for the
boundary approximation in 2D. (b) Error criterion for the boundary surface approximation in 3D.
(c) Example of adaptive refinement to approximate the object boundary with a desired tolerance.

AB of the physical cell and the image of the edge center O over the input boundary,
see Fig. 1(a). A cell is refined if the error is greater than ε . Each refinement pro-
duces a new boundary point that is projected over the input boundary, obtaining a
more accurate approximation of the geometry, as illustrated in Fig. 1(c).
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3.2. 3D case
For 3D geometries we assume that the input boundary is given by six spline

surfaces, see Fig. 3, or six surface triangulations, merging in a convex region. If
the input boundary is given by spline parametric surfaces, we take the faces of
the cube as their parametric spaces. If the input surfaces are triangulations, the
parameterization is accomplished by the method proposed by M. Floater in [22].
This method establishes a one-to-one mapping between the surface triangulation
and a planar triangulation of the parametric domain, which is used to map a face
of the unit cube to the input boundary.

Let Γi (i = 1,2, . . . ,6) be the six boundary surfaces of the object Ω, and Γ̂i be
the surfaces of the parametric cube Ω̂ = [0,1]3. Given the parametrizations Πi

b :
Γ̂i → Γi, we can define a global parametric mapping between the cube boundary
∂Ω̂ = Γ̂ =

∪6
i=1 Γ̂i and the boundary of the object ∂Ω = Γ =

∪6
i=1 Γi:

Πb : Γ̂ → Γ (3)

An adapted parametric octree T-mesh Ω̂k is constructed analogously to 2D case,
that is, Ω̂ is refined according some approximation error criterion. As approxima-
tion error, we evaluate the volume of the four tetrahedra ABCO, BCDO, CDAO,
DABO constructed from the boundary cell face ABCD, where O is the image of the
face center, see Fig. 1(b). The cell is refined if there is at least one volume greater
that ε . A cell refinement introduces at most five new boundary points that are
projected over the input surface, obtaining a more accurate approximation of the
geometry. Then, after mapping the Γ̂k = ∂Ω̂k into the physical space, we obtain a
new boundary Γk which is an approximation for the input boundary Γ, i.e.

Γ̂k → Πb(Γ̂k) =: Γk ≈ Γ (4)

4. T-mesh optimization

As a result of the previous stage, the boundary Γ̂k of the adapted T-mesh Ω̂k is
mapped to the boundary of the object, generating the surface Γk, which is the final
approximation of Γ. The position of the inner nodes are determined by means
of the T-mesh optimization procedure developed in this section, which is the key
of the method. Once the inner nodes are relocated, the resulting physical T-mesh
Ωk is an approximation of the original geometry. The corresponding piece-wise
volumetric parameterization is denoted as
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(a) (b) (c)

Figure 2: Stages of T-mesh construction for the Cat test model geometry. (a) Parametric T-mesh
adapted to the boundary of the geometry; (b) previous relocation by Coons patch, tangled mesh; (c)
optimized physical T-mesh. The color lines represent the correspondence between the parametric
and physical boundaries.

Π : Ω̂K → ΩK, (5)

where any point p of a cell of Ω̂K is mapped into a point q of the transformed cell
of ΩK by using an appropriate local mapping related to the cell.

To reduce the computational effort during the optimization process it is prefer-
able to perform a previous relocation of the inner nodes. For this purpose Lapla-
cian smoothing or Coons patch [23, 24] can be used. This previous relocation
facilitates the untangling process, but in general does not obtain a satisfactory
mesh quality and can produce self-intersections. Therefore, it is essential to apply
an effective optimization algorithm. Figure 2(a) shows an example of the adapted
parametric T-mesh constructed in the previous stage, Fig. 2(b) shows the tangled
physical T-mesh after applying Coons patch, and Fig. 2(c) illustrates the result-
ing optimized T-mesh. An example of a 3D adapted parametric T-mesh and the
corresponding optimized physical T-mesh of the solid is shown in Fig. 3.

The mesh optimization procedure consists in an iterative process where each
node is moved to a new position in order to improve the quality of the local sub-
mesh, which is the set of elements connected to the free node. This new position
of the node is determined by minimizing an objective function based on the mean
ratio shape quality measure. This algebraic quality measure was originally in-
troduced for a triangle, and it is defined in terms of the Jacobian matrix of the
affine mapping from the ideal (target) triangle to the given one. It represents the
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(a)

(b) (c)

(d) (e)

Figure 3: Test model 1. (a) Parametric T-mesh adapted to the boundary of the geometry; (b)
optimized physical T-mesh; (c) a section of parametric T-mesh ; (d) a section of physical T-mesh.

deviation of the given triangle from the ideal one. The distortion of an element is
defined as the inverse of its quality.
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The objective function for a given free node is constructed as a sum of shape
distortion measures of all elements of its local submesh. For each cell of the
physical T-mesh, the corresponding parametric cell is used as its ideal element.
Repeating the optimization procedure for all inner nodes we achieve to minimize
the deformation of the physical mesh with respect to the parametric one.

4.1. Jacobian-based shape quality measure for a triangle/tetrahedral mesh opti-
mization

Here we briefly revise the concept of algebraic shape quality metric for a lin-
ear simplex element, see [25, 26], and the objective function we use for a linear
triangle/tetrahedral mesh optimization. For more details see [27, 20, 28, 29].

Let S be the Jacobian matrix of the affine mapping that takes the ideal element
(target) τI into the physical d-simplex element τ (d = 2,3). Then, quality metrics
of the simplex τ can be defined in terms of the matrix S. For example, mean ratio

q =
d σ2/d

∥S∥2 ,

is a scale, rotation and translation invariant algebraic quality metric of τ , where
σ = det(S) and ∥S∥ is the Frobenius norm of S. The maximum value of q is 1,
and it is reached when S = µR, where µ is a scalar and R is a rotation matrix.
In other words, q attains its maximum if and only if τ and τI are similar (same
shape). Besides, any degenerate simplex has quality measure 0. The distortion
measure is defined as the inverse of its quality, i.e.,

η =
1
q
=

∥S∥2

d σ2/d
.

Let x ∈Rd be a free node whose new position is to be determined. The objec-
tive function to be minimized is defined as

K(x) =
1
N

N

∑
i=1

ηi =
1
N

N

∑
i=1

∥Si∥2

d σ2/d
i

,

where N is the number of elements connected to the free node x and ηi is the
distortion measure for the i-th element of the local mesh.

The objective function K becomes discontinuous when the area of any triangle
tends to zero. Due to these singularities, the function K improves the quality of
valid elements but it does not work properly when the mesh is tangled (σ ≤ 0).
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In [20] we proposed a modification of K by replacing the determinant σ by the
positive, smooth and increasing function h(σ) = 1

2(σ +
√

σ2 +4δ 2). Then, the
modified distortion becomes

η∗ =
∥S∥2

d h(σ)2/d
.

This regularization eliminates the asymptotes associated with their singularities
and the new objective function

K∗(x) =
1
N

N

∑
i=1

η∗
i

becomes smooth in Rd . In the feasible region (subset of Rd where the free node
could be placed for the local mesh to be valid) the modified objective function
K∗ approximates the original function K as δ → 0, and then, the minimum of
the original and modified objective functions are nearly identical when δ is small.
When this region does not exist, the minimum of the modified objective function is
located in such a way that it tends to untangle the local mesh. Thus, the regularized
objective function allows the simultaneous untangling and smoothing of the mesh.
The value of δ is selected in terms of the local mesh under consideration, making
it as small as possible and in such a way that the evaluation of the minimum of the
modified function does not present any computational problem. For more details
see [20, 30]. The unconstrained optimization problem can be easily solved with
any standard method, see for example [31].

4.2. Jacobian-based shape quality metric for arbitrary elements
To extend the concept of the shape quality metric for non-simplicial elements

(or for a higher-order simplicial ones) with non-constant Jacobian matrix we in-
troduce the following concepts.

Let Ωe be any type physical cell of the local mesh for the free node x. First,
we define a pointwise distortion measure for the given cell using some appropriate
mapping G : Ω̂e → Ωe from the ideal element to the physical one. Here, we will
use quadratic isoparametric mapping.

Let JG(ξ) be the Jacobian matrix of the mapping G at point ξ. Then, the
regularized distortion at any point ξ of the ideal element is defined as

η∗(ξ) =
∥JG(ξ)∥2

d h(σ(ξ))2/d
, ξ ∈ Ω̂e.
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where σ(ξ) = det(JG(ξ)).
To asses the distortion of the entire physical element Ωe we can define a global

distortion measure (similarly to [32, 33, 34]) by means of L1 norm of the pointwise
distortion, namely

η∗
Ωe

=
1

VΩ̂e

∫
Ω̂e

η∗(ξ)dΩ̂e, (6)

where VΩ̂e
is the volume of Ω̂e. Other norms, for example L2, can be used.

Remark 1. Note that for 2D case, using in (6) a not regularized inverse mean ra-

tio distortion metric η = ∥S∥2

2σ , the resulting expression is equivalent to the Winslow
functional frequently used for planar parameterization methods, see [8, 9]. How-
ever, our global distortion measure based on the regularized distortion η∗ allows
to perform unconstrained optimization pursuing two goals at the same time: a
valid parametric mapping (positive Jacobian) and a mapping as conformal as
possible.

The global regularized distortion η∗
Ωe

takes values between 1 and ∞. If the
physical element Ωe coincides with the ideal one, then η∗(ξ)→ 1 when δ → 0.
On the other hand, this global distortion measure presents pseudo-barriers, that
is, η∗

Ω → ∞ when σ(ξ)≤ 0 and δ → 0.
The global quality of the element is defined as the inverse of its global distor-

tion, i.e.

q∗Ωe
=

1
η∗

Ωe

,

and it takes values from [0,1].
We define the objective function for a free node x using the introduced global

distortion measure for the cells

K∗(x) =
1
N

N

∑
i=1

η∗
Ωi
(x), (7)

being N the number of cells connected to the free node x and η∗
Ωi
(x) the global

distortion measure for the i-th cell.
The integrals in (7) are evaluated by a numerical quadrature. Let {ξ j} j=1,M be

a set of quadrature points over the ideal element Ω̂e. Then the objective function
for the free node x becomes

K∗(x) =
1
N

N

∑
i=1

(
M

∑
j=1

w jη∗
Ωi
(ξ j)

)
, (8)
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Coons patch 

virtual nodes 

real nodes  

master  element physical cell

local mesh for the free node x=(x,y) 

(x,y)

biquadratic  mapping for the cell

-1 1

G

virtual nodes incorporation

Figure 4: Defining a local quadratic mapping for each cell. Virtual nodes assigning for 2D case.

(x,y)

free node (x,y)
new position of the free node

and virtual nodes dependent on it

(x,y)

(x,y)

(x,y)

Figure 5: Virtual nodes of the cell connected to the free node update their position when the free
node is moved during optimization process.

where w j is the corresponding weight for the quadrature point ξ j. Thus, in prac-
tice, the objective function is based on the pointwise distortion measure, evaluated
at certain set of sample points within the ideal cell. Analogously to the triangu-
lar mesh, the unconstrained optimization problem can be easily solved with any
standard method. To maintain a low computational cost of the minimization, it
is preferable to use a few quadrature points. Also, it is preferable to evaluate
the quality at the corner vertices of the cell, because usually the major distortion
occurs at these points. Therefore, we use Gauss-Lobatto quadrature rule that in-
cludes boundary quadrature points. More specifically, we use three quadrature
points {−1,0,1} of the reference interval [−1,1].
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virtual nodes

real nodes

- edge nodes

- face nodes

- center node

- vertex nodes

Figure 6: Defining a local triquadratic mapping for the cell. Virtual nodes assigning for 3D case.

4.3. Parametric mapping for the elements of T-mesh
Here we explain how we define the local parametric mapping G for the ele-

ments of T-mesh used to define their global distortion measures.

4.3.1. 2D case
As was said before, for each cell of the physical T-mesh its counterpart in

parametric domain is used as its ideal element. In our particular case of quadtree
subdivisions all parametric cells are squares, so we take the master element Ω̂e =
[−1,1]2 as the ideal element for all cells. Physical cells of our T-mesh, in general,
are not straight-sided quadrilaterals since they can contain hanging nodes, which
are not aligned with the corner nodes of the edge. For our balanced quadtree
T-meshes an edge can contain at most one hanging node. To take into account
all mesh nodes for the distortion measure of a given cell, we can consider the
curvilinear second order element constructed via Lagrangian interpolation. Let
ξi ∈ R2, i = 1, . . . ,9, be the nodes of the master element Ω̂e, and Ni are the nodal
biquadratic Lagrangian shape functions defined on Ω̂e. Then, parametric mapping

G(ξ) = (x(ξ ,η),y(ξ ,η)) =
9

∑
i=1

xiNi(ξ) (9)

maps Ω̂e into the physical cell Ωe with the nodes xi, i = 1, . . . ,9. So, to define
the quadratic transformation G, 9 cell nodes are needed. In our case some of
these 9 nodes may not exist in the mesh, so we have to complement a given cell
with some virtual nodes. The position of these virtual nodes depends on the real
(existing) nodes of the cell, see Fig. 4(a). To assign reasonable positions to the
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virtual nodes we appeal to Coons patch interpolation of the boundary edges of the
cell. Suppose we define parameterizations of the four edges as x(0,η), x(1,η),
x(ξ ,0) and x(ξ ,1). The bilinear Coons patch is defined as

x(ξ ,η) =(1−ξ )x(0,η)+ξ x(1,η)

+(1−η)x(ξ ,0)+ηx(ξ ,1)

−
[

1−ξ ξ
][ x(0,0) x(0,1)

x(1,0) x(1,1)

][
1−η

η

]
Doing so, we obtain the following positions for the virtual nodes of the cell. The
missing edge nodes are placed in the midpoint of their corresponding edges, i.e.,
following the notation of the Fig. 4, the virtual node of the cell edge (xv

k,x
v
k+1) is

defined as
xe

k =
1
2
(xv

k +xv
k+1), k ∈ {1,2,3,4}. (10)

Then, to place the interior center node of the cell we apply x(1/2,1/2) and obtain
the following expression for the center node in terms of the boundary nodes of the
cell

x0 =
1
2
(xe

1 +xe
2 +xe

3 +xe
4)−

1
4
(xv

1 +xv
2 +xv

3 +xv
4). (11)

Note that virtual nodes do not introduce additional degrees of freedom for the
mesh, since their position depends on the existing mesh nodes, in particular on
the free node, too. Thus, the virtual nodes connected to it update their position
when the free node is moved during the optimization process, that is, virtual nodes
depend on coordinates (x,y) of the free node, see Fig. 5.

4.3.2. 3D case
The generalization of these ideas to a 3D T-mesh optimization is straightfor-

ward. To obtain a global shape distortion measure for each cell we define a tri-
quadratic mapping from the master element Ω̂e = [−1,1]3 to the physical one,
which requires 33 mesh nodes. A cell is complemented with virtual nodes calcu-
lated in terms of the existing nodes of the cell. First, virtual nodes are assigned
to each face of the cell in order to define biquadratic mapping for the faces. For
that we apply exactly the same procedure developed for the 2D case using Coons
interpolation of the four edges of the face. Some faces may contain all the nec-
essary 9 nodes, and therefore there is no need to add virtual nodes for them. If
the face misses some nodes, then its virtual mid-side nodes and the face center
node are assigned using the equations (10) and (11), respectively. When all the
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G

Figure 7: Mean ratio Jacobian as a pointwise quality metric of the parametric mapping G. Mean
ratio Jacobian at any point P0 represents the shape quality of the infinitesimal triangle P′

0P′
1P′

2.

six faces have their biquadtratic parametric representation, we define a 3D Coons
body [35] interpolating the six faces in order to define the position of the central
virtual node of the cell, see Fig. 6. The interior center node of the cell is assigned
as

x0 =
1
8
(xv

1 +xv
2 + · · ·+xv

8)−
1
4
(xe

1 +xe
2 + · · ·+xe

12)+
1
2
(x f

1 +x f
2 + · · ·+x f

6),

where xv
i , i = 1, . . . ,8, are the corner-vertex nodes; xe

i , i = 1, . . . ,12, are the mid-
side edge nodes, and x f

i , i = 1, . . . ,6, are the face center nodes.
Then, a triquadratic mapping from the master element Ω̂e into the physical

one Ωe given by its nodes xi, i = 1, . . . ,27, is defined as

G(ξ) = (x(ξ ,η ,ζ ),y(ξ ,η ,ζ ),z(ξ ,η ,ζ )) =
27

∑
i=1

xiNi(ξ), (12)

where Ni are the triquadratic Lagrangian shape functions defined on the master
element.

Remark 2. Note that the distortion measure for a triangle defined in terms of
its constant Jacobian matrix is a particular case of global distortion measure
based on the L1 norm of the pointwise distortion defined for a given arbitrary el-
ement. Also, the pointwise shape distortion measure of any mapping G is related
to the shape distortion measure for a triangle as follows: the value of the distor-
tion measure at any point P0 of the master element is the distortion measure of
the infinitesimal triangle in physical domain formed by two isoparametric curves
passing through the point P′

0 = G(P0), as illustrated in Fig. 7.
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Remark 3. Another way to evaluate the distortion of a non-simplicial element is
to decompose it into several overlapping simplicial elements and define the dis-
tortion as a sum of the distortions of each triangle of this decomposition. We have
used this approach in our previous work about the parameterization method based
on T-mesh optimization algorithm [36]. However, this approach has some short-
comings due to the large variety of possible simplicial decompositions, especially
in 3D case.

4.4. Weighted objective function
The objective function given in section 4.2 is a sum of the terms correspond-

ing to the global distortion measure of each cell. A conformal uniform mesh is
a particular case of our quadtree T-mesh. In this case, a free node is surrounded
by the cells of the same scale, in the sense that their counterparts in parametric
domain have the same size. For this situation it is reasonable to compose the ob-
jective function by the sum of global distortion measures. However, for a general
quadtree T-mesh, a free node can be surrounded by cells of different scales. In
computational experiments we have observed that for this case, a weighted objec-
tive function produces better results. Namely, we can define the objective function
as follows

K∗(x) =
1
N

N

∑
i=1

wi η∗
Ωi
(x),

where the weights wi have some relation with the scale of the corresponding cell,
that is, the cells of the same scale will have the same weight. For our balanced
quadtree/octree meshes a free node can be surrounded by the cells of at most two
different levels. So we need two different weights for our terms. Putting the
smallest weight to 1 for the cell of level k, we need one value for the weight of
the cells of level k−1. Assigning different values to this weight we can obtained
slightly different physical T-meshes. In practice, we have observed that good
parametrizations are obtained using the weight wi = 2 for the biggest cells of the
local mesh. The weighted objective function tends to obtain a better orthogonality
of the parametric curves in some cases.

5. Construction of a spline representation of the geometry

In this section we construct a spline representation of the geometry. For sim-
plicity, the process is described for 2D, being the generalization to 3D obvious.

We have to obtain a global one-to-one spline transformation S : Ω̂ = [0,1]2 →
Ω that maps the parametric domain into the physical one. For this purpose, we
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Figure 8: Cat test model. Parametric domain and spline representation of the physical domain.

use polynomial spline spaces constructed via the strategy proposed in our previ-
ous work [17, 37]. This strategy allows to define easily cubic spline spaces with
nice properties over a given strongly balanced quadtree/octree T-mesh. We are go-
ing to refer to these spline functions as Extended Polynomial splines (EP-splines).
According to the strategy, each regular node of the T-mesh has one blending func-
tion assigned. Similarly to T-splines [38], local knot vectors for each function are
inferred by walking across the mesh and traversing its edges. Then, in order to
span spaces with nice properties, some of the inferred function supports have to
be modified applying certain modification rules.

5.1. Interpolation
Spline representation of the physical domain is build as a linear combination

of EP-spline blending functions defined over the adapted parametric T-mesh T

S(ξ) = ∑
α∈AT

Pα N̂α (ξ) ,

where Pα ∈ R2 is the control point corresponding to the α-th blending function.
Control points Pα are found by imposing interpolation conditions. A stan-

dard choice for an interpolation with B-splines is Greville abscissae, which is
the averages of the knots. These points correspond approximately to the points
where the B-spline functions attain their maximum. The generalization of this

18



(a) (b)

Figure 9: Cat test model. Colormap of mean ratio Jacobian. (a) Parametric domain. (b) Physical
domain.

concept for the T-mesh leads to the so-called Greville collocation points. Dealing
with a T-mesh, we do not have a global knot vector, so a set of Greville points is
obtained as the knot average of each local knot vector, that is, for the local knot
vectors Ξα = {ξ1,ξ2,ξ3,ξ4,ξ5} and Hα = {η1,η2,η3,η4,η5} of the function N̂α ,
its Greville point is defined as ξα = (ξα ,ηα), where

ξα =
ξ2 +ξ3 +ξ4

3
and ηα =

η2 +η3 +η4

3
.

In the case of our EP-spline functions, Greville points coincide with their anchors
and thus with the vertices of the T-mesh, except for the functions that contain three
repeated boundary knots. For each point ξβ in the parametric space its image xβ
in the physical space is determined by the piece-wise mapping Π obtained by the
mesh optimization process developed in section 4.

Finally, the control points are found from the linear system of equations

xβ = S
(
ξβ
)
= Π

(
ξβ
)
= ∑

α∈AT

Pα N̂α
(
ξβ
)
, ∀ξβ , β ∈ AT .

We remark that the construction of the spline representation can also be per-
formed with any other spline basis functions defined over a T-mesh.
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6. Quality assessment and its improvement

6.1. Quality assessment of the mapping. Mean ratio Jacobian
To assess the pointwise quality of the obtained parameterization we appeal to

the same idea used in the optimization procedure. Namely, our objective function
was based on the pointwise quality measure of the local quadratic mapping for
each cell. Now we can analyze the pointwise quality measure of the constructed
spline transformation. That is, we calculate at each point of the domain the mean
ratio Jacobian given by

qS(ξ) =
d det(JS)

2/d

∥JS∥2 ,

where JS is the Jacobian matrix of the mapping S at the point ξ of the paramet-
ric domain. In contrast to the scaled Jacobian, that represents the quality of the
mapping S in the sense of the orthogonality of its isoparametric curves, the mean
ratio Jacobian represents both: a quality in the sense of the orthogonality and
uniformity. The mean ratio Jacobian equals 1 at the point P0 if the mapping con-
serves orthogonality and produces the same length distortion in both parametric
directions, i.e. the mapping is conformal at this point.

Figure 9 shows the resulting spline representation of the Cat test model and
the colormap of the mean ratio Jacobian, whose minimal value is 0.26. Other
examples of spline parametrization of a 2D domain are shown in Fig. 10 and Fig.
11. The minimal value of the mean ratio Jacobian for the Rabbit geometry is 0.17,
and it is 0.03 for the Map geometry.

Figures 12 and 13 show 3D parameterization examples with their correspond-
ing colormap of mean ratio Jacobian, whose minimal value is 0.34 and 0.032,
respectively.

6.2. Adaptive refinement
The parameterization of complex geometries entails a severe distortion that

can lead to low quality mesh cells, or even with negative Jacobian. In some cases,
the optimization procedure cannot obtain a good-quality mesh due to the lack of
degrees of freedom provided by the inner nodes; in other words, the refinement
level of the mesh is not sufficient to parameterize the given geometry. In order to
improve the mesh quality in this case, we have to increase the number of degrees
of freedom in the area. We adopt the following adaptive strategy: we refine the
cells with low quality and optimize again the refined mesh. More precisely, for
each cell of the mesh, the mean ratio Jacobian is calculated at some sample points
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(a) (b)

Figure 10: Rabbit geometry. Colormap of mean ratio Jacobian. (a) Parametric domain. (b)
Physical domain.

(a) (b)

Figure 11: Map geometry. Colormap of mean ratio Jacobian. (a) Parametric domain. (b) Physical
domain.

(normally quadrature points). A cell Ω̂e is marked to refine if, at least, one of its
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(a) (b)

(c) (d)

Figure 12: Test model 1. Colormap of mean ratio Jacobian. (a) Parametric domain; (b) spline
representation of the physical domain; (c) a section of the parametric domain; (d) corresponding
section in the physical domain.

sample points has mean ratio Jacobian less than a certain threshold. The refined
T-mesh is optimized again, and the process is repeated until a satisfactory mesh
quality is obtained.

7. Isogeometric analysis applications

7.1. Helmholtz equation with variable frequency
Here we present an example of solving a Helmholtz equation in the Cat do-

main using isogeometric analysis with EP-splines.
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(a) (b)

(c) (d)

Figure 13: Test model 2. Colormap of mean ratio Jacobian. (a) Parametric domain; (b) spline
representation of the physical domain; (c) a section of the parametric domain; (d) corresponding
section in the physical domain.

We have the following problem with Dirichlet boundary conditions

−∆u− 1
(α + r)4 u = f in Ω,

u = g on ∂Ω,

(13)
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Figure 14: Results of the adaptive IGA with EP-splines for the Helmholtz equation in the Cat
geometry. (a) Final refinement in the parametric domain. (b) Final refinement in the physical
domain. (c) Numerical solution in the parametric domain. (d) Numerical solution in the physical
domain. (e) Error convergence for the uniform and adaptive refinements.
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where r =
√
(x− x0)2 +(y− y0)2. The exact solution of the problem is given by

u(r) = sin
(

1
α + r

)
. (14)

The function (14) is highly oscillatory near the point (x0,y0), and the number
of oscillations is determined by the parameter α . We have taken α = 1/(4π).
Besides, it has a discontinuous gradient at the point (x0,y0).

Let T be a T-mesh of the parametric domain Ω̂, and V̂T = span{N̂i}i∈I is the
finite dimensional space spanned by the spline blending functions defined over
the mesh T . We construct the parametric mapping S : Ω̂ → Ω as S = ∑

i∈I
Pi N̂i.

Then, the discrete approximation space VT in the physical domain Ω is defined as
follows: VT = span

{
Ni : Ni = N̂i ◦S−1, for all N̂i, i ∈ I

}
. The test function space

is denoted by V0,T = span{Ni}i∈I0 . Vgh,T (Ω) is the subspace of functions of VT
that are equal to gh at the boundary, where gh is an interpolant of g.

The discrete variational formulation consists in finding uh ∈Vgh,T such that

a(uh,N j) = F(N j) ∀N j ∈V0,T .

where

a(u,v) =
∫

Ω

(
∇u ·∇v+ k(r)2uv

)
dΩ and F(v) =

∫
Ω

f v dΩ,

being k(r) =
1

(α + r)2 .

The adaptive refinement is performed using the residual-based error estimator
given by

η(Ωe)
2 = h2∥

(
f +∆uh + k(r)2uh

)
∥2

L2(Ωe)
,

where h is the diameter of the cell Ωe. We have used the following marking
strategy for the adaptive process. A cell Ωe is marked to be refined if η(Ωe) >
γ maxi {η(Ωi)}, being γ ∈ [0,1]. Normally we use γ = 0.5.

The numerical solution of the problem and the mesh corresponding to the final
refinement iteration are shown in Fig. 14(a)-(d). As expected, during adaptive
refinement the error estimator has marked the singularity zone. The evolution of
the exact error in L2-norm and H1-seminorm and its comparison with the uniform
refinement are shown in Fig. 14(e). As it can be observed, the adaptive refinement
gains the optimal rates of convergence.
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7.2. 3D Poisson problem
Now we consider a 3D Poisson problem with Dirichlet boundary conditions

in Test model 1

−∆u = f in Ω,

u = g on ∂Ω.
(15)

The problem is set up so that the exact solution is a function with a steep wave
front given by

u(r) = arctan(α(r− r0)),

where r =
√

(x− xc)2 +(y− yc)2 +(z− zc)2, the parameter α determines the steep-
ness of the wave front and r0 is its location. In this example, α = 200 and r0 = 0.6.
The center of the wave front (xc,yc,zc) is situated outside our computational do-
main, so the function is smooth in Ω. The adaptive refinement with EP-splines
is performed using residual-based error estimator. The numerical solution of the
problem and the mesh corresponding to the final refinement iteration are shown
in Fig. 15. As expected, the error estimator has marked for refinement the zone
of the wave front. The evolution of the exact error in L2-norm and H1-seminorm
and its comparison with uniform refinement are shown in Fig. 15(c).

7.3. Wind field adjustment problem
The problem of wind field adjustment consists in finding a velocity field u⃗ over

a certain complex terrain that offers the best adjustment to some initial field u⃗0 ob-
tained from experimental measures. We use a mass consistent model based on the
continuity equation of an incompressible flow with an impermeability boundary
condition on the terrain surface Γb

∇ · u⃗ = 0 in Ω (16)
n⃗ · u⃗ = 0 on Γb (17)

To find a field u⃗ = (u,v,w), adjusted to the given initial field u⃗0 = (u0,v0,w0),
we formulate a least-square problem in the domain Ω with the functional for a
field v⃗ = (ũ, ṽ, w̃)

E (⃗v) =
∫

Ω

[
(ũ−u0)

2 +(ṽ− v0)
2 +(w̃−w0)

2
]

dΩ. (18)
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Figure 15: Results of the IGA adaptive refinement with EP-splines for 3D Poisson problem. (b)
Final refinement in the physical domain. (d) Numerical solution in the physical domain. (e) Error
convergence for the uniform and adaptive refinements.

Then the velocities field u⃗ is the solution of the following problem: Find u⃗ ∈ K
such that

E (⃗u) = min
v⃗∈K

E (⃗v)

K= {⃗v : ∇ · v⃗ = 0, n⃗ · v⃗ = 0 on Γb}.
(19)

This problem is equivalent to find a saddle point (⃗u,λ ) of the Lagrangian

L (⃗v,λ ) = E (⃗v)+
∫

Ω
λ ∇ · v⃗ dΩ, (20)
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being λ (x,y,z) the Lagrange multiplier.
Then the resulting wind field u⃗ verifies the Euler-Lagrange equations

u⃗ = u⃗0 +∇λ . (21)

Substituting (21) into (16) and (17), the variational approach results in an elliptic
problem for λ

−∆λ = ∇ · u⃗0 in Ω
−⃗n · (∇λ ) = n⃗ · u⃗0 on Γb

λ = 0 on Γa

(22)

For more details about wind field adjustment model see [39, 40].
Numerical solution for the function λ is found via isogeometric analysis.

Then, we obtain the wind field u⃗ from equation (21). Here we solve the prob-
lem over the orography of the La Palma island with a constant initial wind veloc-
ity u⃗0 = (10,0,0) m/s. To solve the elliptic problem (22) we need to construct a
domain parameterization adapted to the singularities of the terrain. Figure 16(a)
shows the interior of the computational domain, which includes a 10 km air layer
above the terrain surface. Streamlines of the adjusted wind field u⃗ are shown in
Fig. 16(b). The black arrow indicates the direction of the initial wind velocity u⃗0.
It can be observed that the red streamlines started from the points close to the sur-
face tend to follow the terrain orography. The blue streamlines start at the points
with the same x,y coordinates but higher z coordinate, and it can be appreciated
that they are less influenced by the orography.

7.4. Application of the optimization procedure to high-order quadrilateral and
hexahedral meshes

It is worth noting that the T-mesh optimization algorithm described in this
work can also be used for FEM quadrilateral and hexahedral mesh optimization,
in particular, second order meshes. The difference with respect to a T-mesh opti-
mization is that we do not need to complement some elements with virtual nodes
since all 9 (27 for 3D) nodes are given for the second order elements, and all of
them should be relocated in order to improve the quality of the quadratic mapping
of each cell.

Frequently, for example in shape optimization problems, it is necessary to
change the boundary of the computational domain and solve the problem again
and again over the changed domain. Remeshing the geometry at each step can
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(a)

(b)

Figure 16: Wind field adjustment problem. (a) The interior of the computational domain (a 10 km
air layer above the terrain surface). (b) Streamlines of the adjusted field u⃗. Red streamlines start
from the points situated 300 m above terrain surface; blue streamlines start from the points with
the same x,y coordinates and at height of 1500 m.
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be very costly and can obstruct the automation of the process. Besides, a new
mesh generation can introduce a different number of degrees of freedom for the
problem. So, it is desirable to be able to adapt the initial mesh to the new boundary
without changing its topology.

Here, we show the effectiveness of the optimization algorithm in the follow-
ing scenario. Figure 17(a) shows an unstructured second order quadrilateral mesh
generated by the Gmsh mesh generator [41]. The computational domain repre-
sents a simplified model of the airfoil where its surroundings fluid is meshed for
applying FEM. The mesh contains 470 elements. Then we change the bound-
ary of the domain by rotating the airfoil. New positions of the boundary nodes
produce a tangled mesh, see Fig. 17(b). Our optimization algorithm is applied
to relocate the interior nodes. The resulting optimized mesh adapted to the new
boundary is shown in Fig. 17(c). Note that this mesh has the same topology as
the initial one. Thus, the problem can be solved again over the new domain with-
out remeshing the geometry. Figure 17(d) shows the comparison of the qualities
of the meshes after optimization and after Laplacian previous relocation, which
leaves 213 invalid cells.

A similar example was performed for a hexahedral mesh of a wing. A 2D
quadrilateral mesh was extruded with 25 layers forming a hexahedral mesh with
11750 elements, see Fig. 18(a). Then, one end of the wing was rotated π/10
degrees. The nodes over the internal surface are progressively rotated, obtaining
a 3D twisted wing. These rotations produce a tangled quadrilateral mesh of the
boundary surface and a tangled hexahedral elements in the interior, see Fig. 18(b).
First, the boundary quadrilateral elements are optimized, and then, the hexahedral
mesh is optimized, see Fig. 18(c). Figure 18(d) compares the elements quality
after optimization and after Laplacian previous relocation, which produced 5136
invalid elements.

8. Conclusions and challenges

We have presented an affective tool for obtaining a single patch spline param-
eterization for 2D and 3D geometries. A new T-mesh untangling and smoothing
procedure has been applied in order to define an isomorphic transformation be-
tween parametric and physical T-meshes. This transformation provides the data
to perform interpolation and construct a spline representation of the object. The
presented technique is simple and easy to implement. The algorithm has been
tested in several 2D and 3D geometries and, for all of them, we have obtained
a high quality parametric transformation with strictly positive Jacobian. Also,
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Figure 17: Unstructured quadrilateral mesh optimization. (a) Initial mesh. (b) Tangled mesh after
changing the contour of the geometry. (c) Optimized mesh. (d) Quality of the mesh before and
after optimization. A sorted list of qualities measures q∗Ωe

of all elements of the mesh.
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Figure 18: Unstructured hexahedral mesh optimization. (a) Initial mesh. (b) Tangled mesh after
changing the contour of the wing. (c) Optimized mesh. (d) Quality of the mesh before and after
optimization. A sorted list of qualities measures q∗Ωe

of all elements of the mesh.
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we have presented examples of solving partial differential equations using isoge-
ometric analysis with EP-splines in domains parameterized with our technique.
In our future work we plan to develop a more direct parameterization strategy
based on the optimization of the control points of the spline mapping instead
of its piecewise approximation. Also, in some cases, in order to obtain a bet-
ter quality volume parameterization, it may be desirable to include the boundary
nodes in the optimization process allowing their movement over the input surface.
On the other hand, as was mentioned before, there are still considerable limita-
tions (especially in 3D) for tensor product spline parameterization, since it may
present singularities in some cases. It is necessary to study the possibility to ob-
tain analysis-suitable parameterization for domains with non-convex merging of
the boundary curves or surfaces.
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